xref: /linux/drivers/infiniband/hw/hfi1/affinity.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/cpumask.h>
51 
52 #include "hfi.h"
53 #include "affinity.h"
54 #include "sdma.h"
55 #include "trace.h"
56 
57 struct hfi1_affinity_node_list node_affinity = {
58 	.list = LIST_HEAD_INIT(node_affinity.list),
59 	.lock = __SPIN_LOCK_UNLOCKED(&node_affinity.lock),
60 };
61 
62 /* Name of IRQ types, indexed by enum irq_type */
63 static const char * const irq_type_names[] = {
64 	"SDMA",
65 	"RCVCTXT",
66 	"GENERAL",
67 	"OTHER",
68 };
69 
70 /* Per NUMA node count of HFI devices */
71 static unsigned int *hfi1_per_node_cntr;
72 
73 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
74 {
75 	cpumask_clear(&set->mask);
76 	cpumask_clear(&set->used);
77 	set->gen = 0;
78 }
79 
80 /* Initialize non-HT cpu cores mask */
81 void init_real_cpu_mask(void)
82 {
83 	int possible, curr_cpu, i, ht;
84 
85 	cpumask_clear(&node_affinity.real_cpu_mask);
86 
87 	/* Start with cpu online mask as the real cpu mask */
88 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
89 
90 	/*
91 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
92 	 */
93 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
94 	ht = cpumask_weight(topology_sibling_cpumask(
95 				cpumask_first(&node_affinity.real_cpu_mask)));
96 	/*
97 	 * Step 1.  Skip over the first N HT siblings and use them as the
98 	 * "real" cores.  Assumes that HT cores are not enumerated in
99 	 * succession (except in the single core case).
100 	 */
101 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
102 	for (i = 0; i < possible / ht; i++)
103 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
104 	/*
105 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
106 	 * skip any gaps.
107 	 */
108 	for (; i < possible; i++) {
109 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
110 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
111 	}
112 }
113 
114 int node_affinity_init(void)
115 {
116 	int node;
117 	struct pci_dev *dev = NULL;
118 	const struct pci_device_id *ids = hfi1_pci_tbl;
119 
120 	cpumask_clear(&node_affinity.proc.used);
121 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
122 
123 	node_affinity.proc.gen = 0;
124 	node_affinity.num_core_siblings =
125 				cpumask_weight(topology_sibling_cpumask(
126 					cpumask_first(&node_affinity.proc.mask)
127 					));
128 	node_affinity.num_online_nodes = num_online_nodes();
129 	node_affinity.num_online_cpus = num_online_cpus();
130 
131 	/*
132 	 * The real cpu mask is part of the affinity struct but it has to be
133 	 * initialized early. It is needed to calculate the number of user
134 	 * contexts in set_up_context_variables().
135 	 */
136 	init_real_cpu_mask();
137 
138 	hfi1_per_node_cntr = kcalloc(num_possible_nodes(),
139 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
140 	if (!hfi1_per_node_cntr)
141 		return -ENOMEM;
142 
143 	while (ids->vendor) {
144 		dev = NULL;
145 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
146 			node = pcibus_to_node(dev->bus);
147 			if (node < 0)
148 				node = numa_node_id();
149 
150 			hfi1_per_node_cntr[node]++;
151 		}
152 		ids++;
153 	}
154 
155 	return 0;
156 }
157 
158 void node_affinity_destroy(void)
159 {
160 	struct list_head *pos, *q;
161 	struct hfi1_affinity_node *entry;
162 
163 	spin_lock(&node_affinity.lock);
164 	list_for_each_safe(pos, q, &node_affinity.list) {
165 		entry = list_entry(pos, struct hfi1_affinity_node,
166 				   list);
167 		list_del(pos);
168 		kfree(entry);
169 	}
170 	spin_unlock(&node_affinity.lock);
171 	kfree(hfi1_per_node_cntr);
172 }
173 
174 static struct hfi1_affinity_node *node_affinity_allocate(int node)
175 {
176 	struct hfi1_affinity_node *entry;
177 
178 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
179 	if (!entry)
180 		return NULL;
181 	entry->node = node;
182 	INIT_LIST_HEAD(&entry->list);
183 
184 	return entry;
185 }
186 
187 /*
188  * It appends an entry to the list.
189  * It *must* be called with node_affinity.lock held.
190  */
191 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
192 {
193 	list_add_tail(&entry->list, &node_affinity.list);
194 }
195 
196 /* It must be called with node_affinity.lock held */
197 static struct hfi1_affinity_node *node_affinity_lookup(int node)
198 {
199 	struct list_head *pos;
200 	struct hfi1_affinity_node *entry;
201 
202 	list_for_each(pos, &node_affinity.list) {
203 		entry = list_entry(pos, struct hfi1_affinity_node, list);
204 		if (entry->node == node)
205 			return entry;
206 	}
207 
208 	return NULL;
209 }
210 
211 /*
212  * Interrupt affinity.
213  *
214  * non-rcv avail gets a default mask that
215  * starts as possible cpus with threads reset
216  * and each rcv avail reset.
217  *
218  * rcv avail gets node relative 1 wrapping back
219  * to the node relative 1 as necessary.
220  *
221  */
222 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
223 {
224 	int node = pcibus_to_node(dd->pcidev->bus);
225 	struct hfi1_affinity_node *entry;
226 	const struct cpumask *local_mask;
227 	int curr_cpu, possible, i;
228 
229 	if (node < 0)
230 		node = numa_node_id();
231 	dd->node = node;
232 
233 	local_mask = cpumask_of_node(dd->node);
234 	if (cpumask_first(local_mask) >= nr_cpu_ids)
235 		local_mask = topology_core_cpumask(0);
236 
237 	spin_lock(&node_affinity.lock);
238 	entry = node_affinity_lookup(dd->node);
239 	spin_unlock(&node_affinity.lock);
240 
241 	/*
242 	 * If this is the first time this NUMA node's affinity is used,
243 	 * create an entry in the global affinity structure and initialize it.
244 	 */
245 	if (!entry) {
246 		entry = node_affinity_allocate(node);
247 		if (!entry) {
248 			dd_dev_err(dd,
249 				   "Unable to allocate global affinity node\n");
250 			return -ENOMEM;
251 		}
252 		init_cpu_mask_set(&entry->def_intr);
253 		init_cpu_mask_set(&entry->rcv_intr);
254 		cpumask_clear(&entry->general_intr_mask);
255 		/* Use the "real" cpu mask of this node as the default */
256 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
257 			    local_mask);
258 
259 		/* fill in the receive list */
260 		possible = cpumask_weight(&entry->def_intr.mask);
261 		curr_cpu = cpumask_first(&entry->def_intr.mask);
262 
263 		if (possible == 1) {
264 			/* only one CPU, everyone will use it */
265 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
266 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
267 		} else {
268 			/*
269 			 * The general/control context will be the first CPU in
270 			 * the default list, so it is removed from the default
271 			 * list and added to the general interrupt list.
272 			 */
273 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
274 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
275 			curr_cpu = cpumask_next(curr_cpu,
276 						&entry->def_intr.mask);
277 
278 			/*
279 			 * Remove the remaining kernel receive queues from
280 			 * the default list and add them to the receive list.
281 			 */
282 			for (i = 0;
283 			     i < (dd->n_krcv_queues - 1) *
284 				  hfi1_per_node_cntr[dd->node];
285 			     i++) {
286 				cpumask_clear_cpu(curr_cpu,
287 						  &entry->def_intr.mask);
288 				cpumask_set_cpu(curr_cpu,
289 						&entry->rcv_intr.mask);
290 				curr_cpu = cpumask_next(curr_cpu,
291 							&entry->def_intr.mask);
292 				if (curr_cpu >= nr_cpu_ids)
293 					break;
294 			}
295 
296 			/*
297 			 * If there ends up being 0 CPU cores leftover for SDMA
298 			 * engines, use the same CPU cores as general/control
299 			 * context.
300 			 */
301 			if (cpumask_weight(&entry->def_intr.mask) == 0)
302 				cpumask_copy(&entry->def_intr.mask,
303 					     &entry->general_intr_mask);
304 		}
305 
306 		spin_lock(&node_affinity.lock);
307 		node_affinity_add_tail(entry);
308 		spin_unlock(&node_affinity.lock);
309 	}
310 
311 	return 0;
312 }
313 
314 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
315 {
316 	int ret;
317 	cpumask_var_t diff;
318 	struct hfi1_affinity_node *entry;
319 	struct cpu_mask_set *set = NULL;
320 	struct sdma_engine *sde = NULL;
321 	struct hfi1_ctxtdata *rcd = NULL;
322 	char extra[64];
323 	int cpu = -1;
324 
325 	extra[0] = '\0';
326 	cpumask_clear(&msix->mask);
327 
328 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
329 	if (!ret)
330 		return -ENOMEM;
331 
332 	spin_lock(&node_affinity.lock);
333 	entry = node_affinity_lookup(dd->node);
334 	spin_unlock(&node_affinity.lock);
335 
336 	switch (msix->type) {
337 	case IRQ_SDMA:
338 		sde = (struct sdma_engine *)msix->arg;
339 		scnprintf(extra, 64, "engine %u", sde->this_idx);
340 		set = &entry->def_intr;
341 		break;
342 	case IRQ_GENERAL:
343 		cpu = cpumask_first(&entry->general_intr_mask);
344 		break;
345 	case IRQ_RCVCTXT:
346 		rcd = (struct hfi1_ctxtdata *)msix->arg;
347 		if (rcd->ctxt == HFI1_CTRL_CTXT)
348 			cpu = cpumask_first(&entry->general_intr_mask);
349 		else
350 			set = &entry->rcv_intr;
351 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
352 		break;
353 	default:
354 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
355 		return -EINVAL;
356 	}
357 
358 	/*
359 	 * The general and control contexts are placed on a particular
360 	 * CPU, which is set above. Skip accounting for it. Everything else
361 	 * finds its CPU here.
362 	 */
363 	if (cpu == -1 && set) {
364 		spin_lock(&node_affinity.lock);
365 		if (cpumask_equal(&set->mask, &set->used)) {
366 			/*
367 			 * We've used up all the CPUs, bump up the generation
368 			 * and reset the 'used' map
369 			 */
370 			set->gen++;
371 			cpumask_clear(&set->used);
372 		}
373 		cpumask_andnot(diff, &set->mask, &set->used);
374 		cpu = cpumask_first(diff);
375 		cpumask_set_cpu(cpu, &set->used);
376 		spin_unlock(&node_affinity.lock);
377 	}
378 
379 	switch (msix->type) {
380 	case IRQ_SDMA:
381 		sde->cpu = cpu;
382 		break;
383 	case IRQ_GENERAL:
384 	case IRQ_RCVCTXT:
385 	case IRQ_OTHER:
386 		break;
387 	}
388 
389 	cpumask_set_cpu(cpu, &msix->mask);
390 	dd_dev_info(dd, "IRQ vector: %u, type %s %s -> cpu: %d\n",
391 		    msix->msix.vector, irq_type_names[msix->type],
392 		    extra, cpu);
393 	irq_set_affinity_hint(msix->msix.vector, &msix->mask);
394 
395 	free_cpumask_var(diff);
396 	return 0;
397 }
398 
399 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
400 			   struct hfi1_msix_entry *msix)
401 {
402 	struct cpu_mask_set *set = NULL;
403 	struct hfi1_ctxtdata *rcd;
404 	struct hfi1_affinity_node *entry;
405 
406 	spin_lock(&node_affinity.lock);
407 	entry = node_affinity_lookup(dd->node);
408 	spin_unlock(&node_affinity.lock);
409 
410 	switch (msix->type) {
411 	case IRQ_SDMA:
412 		set = &entry->def_intr;
413 		break;
414 	case IRQ_GENERAL:
415 		/* Don't do accounting for general contexts */
416 		break;
417 	case IRQ_RCVCTXT:
418 		rcd = (struct hfi1_ctxtdata *)msix->arg;
419 		/* Don't do accounting for control contexts */
420 		if (rcd->ctxt != HFI1_CTRL_CTXT)
421 			set = &entry->rcv_intr;
422 		break;
423 	default:
424 		return;
425 	}
426 
427 	if (set) {
428 		spin_lock(&node_affinity.lock);
429 		cpumask_andnot(&set->used, &set->used, &msix->mask);
430 		if (cpumask_empty(&set->used) && set->gen) {
431 			set->gen--;
432 			cpumask_copy(&set->used, &set->mask);
433 		}
434 		spin_unlock(&node_affinity.lock);
435 	}
436 
437 	irq_set_affinity_hint(msix->msix.vector, NULL);
438 	cpumask_clear(&msix->mask);
439 }
440 
441 /* This should be called with node_affinity.lock held */
442 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
443 				struct hfi1_affinity_node_list *affinity)
444 {
445 	int possible, curr_cpu, i;
446 	uint num_cores_per_socket = node_affinity.num_online_cpus /
447 					affinity->num_core_siblings /
448 						node_affinity.num_online_nodes;
449 
450 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
451 	if (affinity->num_core_siblings > 0) {
452 		/* Removing other siblings not needed for now */
453 		possible = cpumask_weight(hw_thread_mask);
454 		curr_cpu = cpumask_first(hw_thread_mask);
455 		for (i = 0;
456 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
457 		     i++)
458 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
459 
460 		for (; i < possible; i++) {
461 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
462 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
463 		}
464 
465 		/* Identifying correct HW threads within physical cores */
466 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
467 				   num_cores_per_socket *
468 				   node_affinity.num_online_nodes *
469 				   hw_thread_no);
470 	}
471 }
472 
473 int hfi1_get_proc_affinity(int node)
474 {
475 	int cpu = -1, ret, i;
476 	struct hfi1_affinity_node *entry;
477 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
478 	const struct cpumask *node_mask,
479 		*proc_mask = tsk_cpus_allowed(current);
480 	struct hfi1_affinity_node_list *affinity = &node_affinity;
481 	struct cpu_mask_set *set = &affinity->proc;
482 
483 	/*
484 	 * check whether process/context affinity has already
485 	 * been set
486 	 */
487 	if (cpumask_weight(proc_mask) == 1) {
488 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
489 			  current->pid, current->comm,
490 			  cpumask_pr_args(proc_mask));
491 		/*
492 		 * Mark the pre-set CPU as used. This is atomic so we don't
493 		 * need the lock
494 		 */
495 		cpu = cpumask_first(proc_mask);
496 		cpumask_set_cpu(cpu, &set->used);
497 		goto done;
498 	} else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
499 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
500 			  current->pid, current->comm,
501 			  cpumask_pr_args(proc_mask));
502 		goto done;
503 	}
504 
505 	/*
506 	 * The process does not have a preset CPU affinity so find one to
507 	 * recommend using the following algorithm:
508 	 *
509 	 * For each user process that is opening a context on HFI Y:
510 	 *  a) If all cores are filled, reinitialize the bitmask
511 	 *  b) Fill real cores first, then HT cores (First set of HT
512 	 *     cores on all physical cores, then second set of HT core,
513 	 *     and, so on) in the following order:
514 	 *
515 	 *     1. Same NUMA node as HFI Y and not running an IRQ
516 	 *        handler
517 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
518 	 *     3. Different NUMA node to HFI Y and not running an IRQ
519 	 *        handler
520 	 *     4. Different NUMA node to HFI Y and running an IRQ
521 	 *        handler
522 	 *  c) Mark core as filled in the bitmask. As user processes are
523 	 *     done, clear cores from the bitmask.
524 	 */
525 
526 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
527 	if (!ret)
528 		goto done;
529 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
530 	if (!ret)
531 		goto free_diff;
532 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
533 	if (!ret)
534 		goto free_hw_thread_mask;
535 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
536 	if (!ret)
537 		goto free_available_mask;
538 
539 	spin_lock(&affinity->lock);
540 	/*
541 	 * If we've used all available HW threads, clear the mask and start
542 	 * overloading.
543 	 */
544 	if (cpumask_equal(&set->mask, &set->used)) {
545 		set->gen++;
546 		cpumask_clear(&set->used);
547 	}
548 
549 	/*
550 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
551 	 * interrupt handler mask.
552 	 */
553 	entry = node_affinity_lookup(node);
554 	if (entry) {
555 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
556 					  &entry->def_intr.mask :
557 					  &entry->def_intr.used));
558 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
559 						    &entry->rcv_intr.mask :
560 						    &entry->rcv_intr.used));
561 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
562 	}
563 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
564 		  cpumask_pr_args(intrs_mask));
565 
566 	cpumask_copy(hw_thread_mask, &set->mask);
567 
568 	/*
569 	 * If HT cores are enabled, identify which HW threads within the
570 	 * physical cores should be used.
571 	 */
572 	if (affinity->num_core_siblings > 0) {
573 		for (i = 0; i < affinity->num_core_siblings; i++) {
574 			find_hw_thread_mask(i, hw_thread_mask, affinity);
575 
576 			/*
577 			 * If there's at least one available core for this HW
578 			 * thread number, stop looking for a core.
579 			 *
580 			 * diff will always be not empty at least once in this
581 			 * loop as the used mask gets reset when
582 			 * (set->mask == set->used) before this loop.
583 			 */
584 			cpumask_andnot(diff, hw_thread_mask, &set->used);
585 			if (!cpumask_empty(diff))
586 				break;
587 		}
588 	}
589 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
590 		  cpumask_pr_args(hw_thread_mask));
591 
592 	node_mask = cpumask_of_node(node);
593 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
594 		  cpumask_pr_args(node_mask));
595 
596 	/* Get cpumask of available CPUs on preferred NUMA */
597 	cpumask_and(available_mask, hw_thread_mask, node_mask);
598 	cpumask_andnot(available_mask, available_mask, &set->used);
599 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
600 		  cpumask_pr_args(available_mask));
601 
602 	/*
603 	 * At first, we don't want to place processes on the same
604 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
605 	 * handlers are used.
606 	 *
607 	 * 1) If diff is not empty, then there are CPUs not running
608 	 *    non-interrupt handlers available, so diff gets copied
609 	 *    over to available_mask.
610 	 * 2) If diff is empty, then all CPUs not running interrupt
611 	 *    handlers are taken, so available_mask contains all
612 	 *    available CPUs running interrupt handlers.
613 	 * 3) If available_mask is empty, then all CPUs on the
614 	 *    preferred NUMA node are taken, so other NUMA nodes are
615 	 *    used for process assignments using the same method as
616 	 *    the preferred NUMA node.
617 	 */
618 	cpumask_andnot(diff, available_mask, intrs_mask);
619 	if (!cpumask_empty(diff))
620 		cpumask_copy(available_mask, diff);
621 
622 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
623 	if (cpumask_empty(available_mask)) {
624 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
625 		/* Excluding preferred NUMA cores */
626 		cpumask_andnot(available_mask, available_mask, node_mask);
627 		hfi1_cdbg(PROC,
628 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
629 			  cpumask_pr_args(available_mask));
630 
631 		/*
632 		 * At first, we don't want to place processes on the same
633 		 * CPUs as interrupt handlers.
634 		 */
635 		cpumask_andnot(diff, available_mask, intrs_mask);
636 		if (!cpumask_empty(diff))
637 			cpumask_copy(available_mask, diff);
638 	}
639 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
640 		  cpumask_pr_args(available_mask));
641 
642 	cpu = cpumask_first(available_mask);
643 	if (cpu >= nr_cpu_ids) /* empty */
644 		cpu = -1;
645 	else
646 		cpumask_set_cpu(cpu, &set->used);
647 	spin_unlock(&affinity->lock);
648 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
649 
650 	free_cpumask_var(intrs_mask);
651 free_available_mask:
652 	free_cpumask_var(available_mask);
653 free_hw_thread_mask:
654 	free_cpumask_var(hw_thread_mask);
655 free_diff:
656 	free_cpumask_var(diff);
657 done:
658 	return cpu;
659 }
660 
661 void hfi1_put_proc_affinity(int cpu)
662 {
663 	struct hfi1_affinity_node_list *affinity = &node_affinity;
664 	struct cpu_mask_set *set = &affinity->proc;
665 
666 	if (cpu < 0)
667 		return;
668 	spin_lock(&affinity->lock);
669 	cpumask_clear_cpu(cpu, &set->used);
670 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
671 	if (cpumask_empty(&set->used) && set->gen) {
672 		set->gen--;
673 		cpumask_copy(&set->used, &set->mask);
674 	}
675 	spin_unlock(&affinity->lock);
676 }
677 
678 /* Prevents concurrent reads and writes of the sdma_affinity attrib */
679 static DEFINE_MUTEX(sdma_affinity_mutex);
680 
681 int hfi1_set_sdma_affinity(struct hfi1_devdata *dd, const char *buf,
682 			   size_t count)
683 {
684 	struct hfi1_affinity_node *entry;
685 	struct cpumask mask;
686 	int ret, i;
687 
688 	spin_lock(&node_affinity.lock);
689 	entry = node_affinity_lookup(dd->node);
690 	spin_unlock(&node_affinity.lock);
691 
692 	if (!entry)
693 		return -EINVAL;
694 
695 	ret = cpulist_parse(buf, &mask);
696 	if (ret)
697 		return ret;
698 
699 	if (!cpumask_subset(&mask, cpu_online_mask) || cpumask_empty(&mask)) {
700 		dd_dev_warn(dd, "Invalid CPU mask\n");
701 		return -EINVAL;
702 	}
703 
704 	mutex_lock(&sdma_affinity_mutex);
705 	/* reset the SDMA interrupt affinity details */
706 	init_cpu_mask_set(&entry->def_intr);
707 	cpumask_copy(&entry->def_intr.mask, &mask);
708 	/*
709 	 * Reassign the affinity for each SDMA interrupt.
710 	 */
711 	for (i = 0; i < dd->num_msix_entries; i++) {
712 		struct hfi1_msix_entry *msix;
713 
714 		msix = &dd->msix_entries[i];
715 		if (msix->type != IRQ_SDMA)
716 			continue;
717 
718 		ret = hfi1_get_irq_affinity(dd, msix);
719 
720 		if (ret)
721 			break;
722 	}
723 
724 	mutex_unlock(&sdma_affinity_mutex);
725 	return ret ? ret : strnlen(buf, PAGE_SIZE);
726 }
727 
728 int hfi1_get_sdma_affinity(struct hfi1_devdata *dd, char *buf)
729 {
730 	struct hfi1_affinity_node *entry;
731 
732 	spin_lock(&node_affinity.lock);
733 	entry = node_affinity_lookup(dd->node);
734 	spin_unlock(&node_affinity.lock);
735 
736 	if (!entry)
737 		return -EINVAL;
738 
739 	mutex_lock(&sdma_affinity_mutex);
740 	cpumap_print_to_pagebuf(true, buf, &entry->def_intr.mask);
741 	mutex_unlock(&sdma_affinity_mutex);
742 	return strnlen(buf, PAGE_SIZE);
743 }
744