1 // SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause 2 /* 3 * Copyright 2018-2021 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #include "efa_com.h" 7 #include "efa_regs_defs.h" 8 9 #define ADMIN_CMD_TIMEOUT_US 30000000 /* usecs */ 10 11 #define EFA_REG_READ_TIMEOUT_US 50000 /* usecs */ 12 #define EFA_MMIO_READ_INVALID 0xffffffff 13 14 #define EFA_POLL_INTERVAL_MS 100 /* msecs */ 15 16 #define EFA_ASYNC_QUEUE_DEPTH 16 17 #define EFA_ADMIN_QUEUE_DEPTH 32 18 19 #define EFA_CTRL_MAJOR 0 20 #define EFA_CTRL_MINOR 0 21 #define EFA_CTRL_SUB_MINOR 1 22 23 enum efa_cmd_status { 24 EFA_CMD_SUBMITTED, 25 EFA_CMD_COMPLETED, 26 }; 27 28 struct efa_comp_ctx { 29 struct completion wait_event; 30 struct efa_admin_acq_entry *user_cqe; 31 u32 comp_size; 32 enum efa_cmd_status status; 33 u8 cmd_opcode; 34 u8 occupied; 35 }; 36 37 static const char *efa_com_cmd_str(u8 cmd) 38 { 39 #define EFA_CMD_STR_CASE(_cmd) case EFA_ADMIN_##_cmd: return #_cmd 40 41 switch (cmd) { 42 EFA_CMD_STR_CASE(CREATE_QP); 43 EFA_CMD_STR_CASE(MODIFY_QP); 44 EFA_CMD_STR_CASE(QUERY_QP); 45 EFA_CMD_STR_CASE(DESTROY_QP); 46 EFA_CMD_STR_CASE(CREATE_AH); 47 EFA_CMD_STR_CASE(DESTROY_AH); 48 EFA_CMD_STR_CASE(REG_MR); 49 EFA_CMD_STR_CASE(DEREG_MR); 50 EFA_CMD_STR_CASE(CREATE_CQ); 51 EFA_CMD_STR_CASE(DESTROY_CQ); 52 EFA_CMD_STR_CASE(GET_FEATURE); 53 EFA_CMD_STR_CASE(SET_FEATURE); 54 EFA_CMD_STR_CASE(GET_STATS); 55 EFA_CMD_STR_CASE(ALLOC_PD); 56 EFA_CMD_STR_CASE(DEALLOC_PD); 57 EFA_CMD_STR_CASE(ALLOC_UAR); 58 EFA_CMD_STR_CASE(DEALLOC_UAR); 59 EFA_CMD_STR_CASE(CREATE_EQ); 60 EFA_CMD_STR_CASE(DESTROY_EQ); 61 default: return "unknown command opcode"; 62 } 63 #undef EFA_CMD_STR_CASE 64 } 65 66 void efa_com_set_dma_addr(dma_addr_t addr, u32 *addr_high, u32 *addr_low) 67 { 68 *addr_low = lower_32_bits(addr); 69 *addr_high = upper_32_bits(addr); 70 } 71 72 static u32 efa_com_reg_read32(struct efa_com_dev *edev, u16 offset) 73 { 74 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 75 struct efa_admin_mmio_req_read_less_resp *read_resp; 76 unsigned long exp_time; 77 u32 mmio_read_reg = 0; 78 u32 err; 79 80 read_resp = mmio_read->read_resp; 81 82 spin_lock(&mmio_read->lock); 83 mmio_read->seq_num++; 84 85 /* trash DMA req_id to identify when hardware is done */ 86 read_resp->req_id = mmio_read->seq_num + 0x9aL; 87 EFA_SET(&mmio_read_reg, EFA_REGS_MMIO_REG_READ_REG_OFF, offset); 88 EFA_SET(&mmio_read_reg, EFA_REGS_MMIO_REG_READ_REQ_ID, 89 mmio_read->seq_num); 90 91 writel(mmio_read_reg, edev->reg_bar + EFA_REGS_MMIO_REG_READ_OFF); 92 93 exp_time = jiffies + usecs_to_jiffies(mmio_read->mmio_read_timeout); 94 do { 95 if (READ_ONCE(read_resp->req_id) == mmio_read->seq_num) 96 break; 97 udelay(1); 98 } while (time_is_after_jiffies(exp_time)); 99 100 if (read_resp->req_id != mmio_read->seq_num) { 101 ibdev_err_ratelimited( 102 edev->efa_dev, 103 "Reading register timed out. expected: req id[%u] offset[%#x] actual: req id[%u] offset[%#x]\n", 104 mmio_read->seq_num, offset, read_resp->req_id, 105 read_resp->reg_off); 106 err = EFA_MMIO_READ_INVALID; 107 goto out; 108 } 109 110 if (read_resp->reg_off != offset) { 111 ibdev_err_ratelimited( 112 edev->efa_dev, 113 "Reading register failed: wrong offset provided\n"); 114 err = EFA_MMIO_READ_INVALID; 115 goto out; 116 } 117 118 err = read_resp->reg_val; 119 out: 120 spin_unlock(&mmio_read->lock); 121 return err; 122 } 123 124 static int efa_com_admin_init_sq(struct efa_com_dev *edev) 125 { 126 struct efa_com_admin_queue *aq = &edev->aq; 127 struct efa_com_admin_sq *sq = &aq->sq; 128 u16 size = aq->depth * sizeof(*sq->entries); 129 u32 aq_caps = 0; 130 u32 addr_high; 131 u32 addr_low; 132 133 sq->entries = 134 dma_alloc_coherent(aq->dmadev, size, &sq->dma_addr, GFP_KERNEL); 135 if (!sq->entries) 136 return -ENOMEM; 137 138 spin_lock_init(&sq->lock); 139 140 sq->cc = 0; 141 sq->pc = 0; 142 sq->phase = 1; 143 144 sq->db_addr = (u32 __iomem *)(edev->reg_bar + EFA_REGS_AQ_PROD_DB_OFF); 145 146 addr_high = upper_32_bits(sq->dma_addr); 147 addr_low = lower_32_bits(sq->dma_addr); 148 149 writel(addr_low, edev->reg_bar + EFA_REGS_AQ_BASE_LO_OFF); 150 writel(addr_high, edev->reg_bar + EFA_REGS_AQ_BASE_HI_OFF); 151 152 EFA_SET(&aq_caps, EFA_REGS_AQ_CAPS_AQ_DEPTH, aq->depth); 153 EFA_SET(&aq_caps, EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE, 154 sizeof(struct efa_admin_aq_entry)); 155 156 writel(aq_caps, edev->reg_bar + EFA_REGS_AQ_CAPS_OFF); 157 158 return 0; 159 } 160 161 static int efa_com_admin_init_cq(struct efa_com_dev *edev) 162 { 163 struct efa_com_admin_queue *aq = &edev->aq; 164 struct efa_com_admin_cq *cq = &aq->cq; 165 u16 size = aq->depth * sizeof(*cq->entries); 166 u32 acq_caps = 0; 167 u32 addr_high; 168 u32 addr_low; 169 170 cq->entries = 171 dma_alloc_coherent(aq->dmadev, size, &cq->dma_addr, GFP_KERNEL); 172 if (!cq->entries) 173 return -ENOMEM; 174 175 spin_lock_init(&cq->lock); 176 177 cq->cc = 0; 178 cq->phase = 1; 179 180 addr_high = upper_32_bits(cq->dma_addr); 181 addr_low = lower_32_bits(cq->dma_addr); 182 183 writel(addr_low, edev->reg_bar + EFA_REGS_ACQ_BASE_LO_OFF); 184 writel(addr_high, edev->reg_bar + EFA_REGS_ACQ_BASE_HI_OFF); 185 186 EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_DEPTH, aq->depth); 187 EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE, 188 sizeof(struct efa_admin_acq_entry)); 189 EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR, 190 aq->msix_vector_idx); 191 192 writel(acq_caps, edev->reg_bar + EFA_REGS_ACQ_CAPS_OFF); 193 194 return 0; 195 } 196 197 static int efa_com_admin_init_aenq(struct efa_com_dev *edev, 198 struct efa_aenq_handlers *aenq_handlers) 199 { 200 struct efa_com_aenq *aenq = &edev->aenq; 201 u32 addr_low, addr_high; 202 u32 aenq_caps = 0; 203 u16 size; 204 205 if (!aenq_handlers) { 206 ibdev_err(edev->efa_dev, "aenq handlers pointer is NULL\n"); 207 return -EINVAL; 208 } 209 210 size = EFA_ASYNC_QUEUE_DEPTH * sizeof(*aenq->entries); 211 aenq->entries = dma_alloc_coherent(edev->dmadev, size, &aenq->dma_addr, 212 GFP_KERNEL); 213 if (!aenq->entries) 214 return -ENOMEM; 215 216 aenq->aenq_handlers = aenq_handlers; 217 aenq->depth = EFA_ASYNC_QUEUE_DEPTH; 218 aenq->cc = 0; 219 aenq->phase = 1; 220 221 addr_low = lower_32_bits(aenq->dma_addr); 222 addr_high = upper_32_bits(aenq->dma_addr); 223 224 writel(addr_low, edev->reg_bar + EFA_REGS_AENQ_BASE_LO_OFF); 225 writel(addr_high, edev->reg_bar + EFA_REGS_AENQ_BASE_HI_OFF); 226 227 EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_DEPTH, aenq->depth); 228 EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE, 229 sizeof(struct efa_admin_aenq_entry)); 230 EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR, 231 aenq->msix_vector_idx); 232 writel(aenq_caps, edev->reg_bar + EFA_REGS_AENQ_CAPS_OFF); 233 234 /* 235 * Init cons_db to mark that all entries in the queue 236 * are initially available 237 */ 238 writel(edev->aenq.cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF); 239 240 return 0; 241 } 242 243 /* ID to be used with efa_com_get_comp_ctx */ 244 static u16 efa_com_alloc_ctx_id(struct efa_com_admin_queue *aq) 245 { 246 u16 ctx_id; 247 248 spin_lock(&aq->comp_ctx_lock); 249 ctx_id = aq->comp_ctx_pool[aq->comp_ctx_pool_next]; 250 aq->comp_ctx_pool_next++; 251 spin_unlock(&aq->comp_ctx_lock); 252 253 return ctx_id; 254 } 255 256 static void efa_com_dealloc_ctx_id(struct efa_com_admin_queue *aq, 257 u16 ctx_id) 258 { 259 spin_lock(&aq->comp_ctx_lock); 260 aq->comp_ctx_pool_next--; 261 aq->comp_ctx_pool[aq->comp_ctx_pool_next] = ctx_id; 262 spin_unlock(&aq->comp_ctx_lock); 263 } 264 265 static inline void efa_com_put_comp_ctx(struct efa_com_admin_queue *aq, 266 struct efa_comp_ctx *comp_ctx) 267 { 268 u16 cmd_id = EFA_GET(&comp_ctx->user_cqe->acq_common_descriptor.command, 269 EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID); 270 u16 ctx_id = cmd_id & (aq->depth - 1); 271 272 ibdev_dbg(aq->efa_dev, "Put completion command_id %#x\n", cmd_id); 273 comp_ctx->occupied = 0; 274 efa_com_dealloc_ctx_id(aq, ctx_id); 275 } 276 277 static struct efa_comp_ctx *efa_com_get_comp_ctx(struct efa_com_admin_queue *aq, 278 u16 cmd_id, bool capture) 279 { 280 u16 ctx_id = cmd_id & (aq->depth - 1); 281 282 if (aq->comp_ctx[ctx_id].occupied && capture) { 283 ibdev_err_ratelimited( 284 aq->efa_dev, 285 "Completion context for command_id %#x is occupied\n", 286 cmd_id); 287 return NULL; 288 } 289 290 if (capture) { 291 aq->comp_ctx[ctx_id].occupied = 1; 292 ibdev_dbg(aq->efa_dev, 293 "Take completion ctxt for command_id %#x\n", cmd_id); 294 } 295 296 return &aq->comp_ctx[ctx_id]; 297 } 298 299 static struct efa_comp_ctx *__efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq, 300 struct efa_admin_aq_entry *cmd, 301 size_t cmd_size_in_bytes, 302 struct efa_admin_acq_entry *comp, 303 size_t comp_size_in_bytes) 304 { 305 struct efa_admin_aq_entry *aqe; 306 struct efa_comp_ctx *comp_ctx; 307 u16 queue_size_mask; 308 u16 cmd_id; 309 u16 ctx_id; 310 u16 pi; 311 312 queue_size_mask = aq->depth - 1; 313 pi = aq->sq.pc & queue_size_mask; 314 315 ctx_id = efa_com_alloc_ctx_id(aq); 316 317 /* cmd_id LSBs are the ctx_id and MSBs are entropy bits from pc */ 318 cmd_id = ctx_id & queue_size_mask; 319 cmd_id |= aq->sq.pc & ~queue_size_mask; 320 cmd_id &= EFA_ADMIN_AQ_COMMON_DESC_COMMAND_ID_MASK; 321 322 cmd->aq_common_descriptor.command_id = cmd_id; 323 EFA_SET(&cmd->aq_common_descriptor.flags, 324 EFA_ADMIN_AQ_COMMON_DESC_PHASE, aq->sq.phase); 325 326 comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, true); 327 if (!comp_ctx) { 328 efa_com_dealloc_ctx_id(aq, ctx_id); 329 return ERR_PTR(-EINVAL); 330 } 331 332 comp_ctx->status = EFA_CMD_SUBMITTED; 333 comp_ctx->comp_size = comp_size_in_bytes; 334 comp_ctx->user_cqe = comp; 335 comp_ctx->cmd_opcode = cmd->aq_common_descriptor.opcode; 336 337 reinit_completion(&comp_ctx->wait_event); 338 339 aqe = &aq->sq.entries[pi]; 340 memset(aqe, 0, sizeof(*aqe)); 341 memcpy(aqe, cmd, cmd_size_in_bytes); 342 343 aq->sq.pc++; 344 atomic64_inc(&aq->stats.submitted_cmd); 345 346 if ((aq->sq.pc & queue_size_mask) == 0) 347 aq->sq.phase = !aq->sq.phase; 348 349 /* barrier not needed in case of writel */ 350 writel(aq->sq.pc, aq->sq.db_addr); 351 352 return comp_ctx; 353 } 354 355 static inline int efa_com_init_comp_ctxt(struct efa_com_admin_queue *aq) 356 { 357 size_t pool_size = aq->depth * sizeof(*aq->comp_ctx_pool); 358 size_t size = aq->depth * sizeof(struct efa_comp_ctx); 359 struct efa_comp_ctx *comp_ctx; 360 u16 i; 361 362 aq->comp_ctx = devm_kzalloc(aq->dmadev, size, GFP_KERNEL); 363 aq->comp_ctx_pool = devm_kzalloc(aq->dmadev, pool_size, GFP_KERNEL); 364 if (!aq->comp_ctx || !aq->comp_ctx_pool) { 365 devm_kfree(aq->dmadev, aq->comp_ctx_pool); 366 devm_kfree(aq->dmadev, aq->comp_ctx); 367 return -ENOMEM; 368 } 369 370 for (i = 0; i < aq->depth; i++) { 371 comp_ctx = efa_com_get_comp_ctx(aq, i, false); 372 if (comp_ctx) 373 init_completion(&comp_ctx->wait_event); 374 375 aq->comp_ctx_pool[i] = i; 376 } 377 378 spin_lock_init(&aq->comp_ctx_lock); 379 380 aq->comp_ctx_pool_next = 0; 381 382 return 0; 383 } 384 385 static struct efa_comp_ctx *efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq, 386 struct efa_admin_aq_entry *cmd, 387 size_t cmd_size_in_bytes, 388 struct efa_admin_acq_entry *comp, 389 size_t comp_size_in_bytes) 390 { 391 struct efa_comp_ctx *comp_ctx; 392 393 spin_lock(&aq->sq.lock); 394 if (!test_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state)) { 395 ibdev_err_ratelimited(aq->efa_dev, "Admin queue is closed\n"); 396 spin_unlock(&aq->sq.lock); 397 return ERR_PTR(-ENODEV); 398 } 399 400 comp_ctx = __efa_com_submit_admin_cmd(aq, cmd, cmd_size_in_bytes, comp, 401 comp_size_in_bytes); 402 spin_unlock(&aq->sq.lock); 403 if (IS_ERR(comp_ctx)) 404 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 405 406 return comp_ctx; 407 } 408 409 static void efa_com_handle_single_admin_completion(struct efa_com_admin_queue *aq, 410 struct efa_admin_acq_entry *cqe) 411 { 412 struct efa_comp_ctx *comp_ctx; 413 u16 cmd_id; 414 415 cmd_id = EFA_GET(&cqe->acq_common_descriptor.command, 416 EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID); 417 418 comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, false); 419 if (!comp_ctx) { 420 ibdev_err(aq->efa_dev, 421 "comp_ctx is NULL. Changing the admin queue running state\n"); 422 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 423 return; 424 } 425 426 comp_ctx->status = EFA_CMD_COMPLETED; 427 memcpy(comp_ctx->user_cqe, cqe, comp_ctx->comp_size); 428 429 if (!test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state)) 430 complete(&comp_ctx->wait_event); 431 } 432 433 static void efa_com_handle_admin_completion(struct efa_com_admin_queue *aq) 434 { 435 struct efa_admin_acq_entry *cqe; 436 u16 queue_size_mask; 437 u16 comp_num = 0; 438 u8 phase; 439 u16 ci; 440 441 queue_size_mask = aq->depth - 1; 442 443 ci = aq->cq.cc & queue_size_mask; 444 phase = aq->cq.phase; 445 446 cqe = &aq->cq.entries[ci]; 447 448 /* Go over all the completions */ 449 while ((READ_ONCE(cqe->acq_common_descriptor.flags) & 450 EFA_ADMIN_ACQ_COMMON_DESC_PHASE_MASK) == phase) { 451 /* 452 * Do not read the rest of the completion entry before the 453 * phase bit was validated 454 */ 455 dma_rmb(); 456 efa_com_handle_single_admin_completion(aq, cqe); 457 458 ci++; 459 comp_num++; 460 if (ci == aq->depth) { 461 ci = 0; 462 phase = !phase; 463 } 464 465 cqe = &aq->cq.entries[ci]; 466 } 467 468 aq->cq.cc += comp_num; 469 aq->cq.phase = phase; 470 aq->sq.cc += comp_num; 471 atomic64_add(comp_num, &aq->stats.completed_cmd); 472 } 473 474 static int efa_com_comp_status_to_errno(u8 comp_status) 475 { 476 switch (comp_status) { 477 case EFA_ADMIN_SUCCESS: 478 return 0; 479 case EFA_ADMIN_RESOURCE_ALLOCATION_FAILURE: 480 return -ENOMEM; 481 case EFA_ADMIN_UNSUPPORTED_OPCODE: 482 return -EOPNOTSUPP; 483 case EFA_ADMIN_BAD_OPCODE: 484 case EFA_ADMIN_MALFORMED_REQUEST: 485 case EFA_ADMIN_ILLEGAL_PARAMETER: 486 case EFA_ADMIN_UNKNOWN_ERROR: 487 return -EINVAL; 488 default: 489 return -EINVAL; 490 } 491 } 492 493 static int efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx *comp_ctx, 494 struct efa_com_admin_queue *aq) 495 { 496 unsigned long timeout; 497 unsigned long flags; 498 int err; 499 500 timeout = jiffies + usecs_to_jiffies(aq->completion_timeout); 501 502 while (1) { 503 spin_lock_irqsave(&aq->cq.lock, flags); 504 efa_com_handle_admin_completion(aq); 505 spin_unlock_irqrestore(&aq->cq.lock, flags); 506 507 if (comp_ctx->status != EFA_CMD_SUBMITTED) 508 break; 509 510 if (time_is_before_jiffies(timeout)) { 511 ibdev_err_ratelimited( 512 aq->efa_dev, 513 "Wait for completion (polling) timeout\n"); 514 /* EFA didn't have any completion */ 515 atomic64_inc(&aq->stats.no_completion); 516 517 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 518 err = -ETIME; 519 goto out; 520 } 521 522 msleep(aq->poll_interval); 523 } 524 525 err = efa_com_comp_status_to_errno(comp_ctx->user_cqe->acq_common_descriptor.status); 526 out: 527 efa_com_put_comp_ctx(aq, comp_ctx); 528 return err; 529 } 530 531 static int efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx *comp_ctx, 532 struct efa_com_admin_queue *aq) 533 { 534 unsigned long flags; 535 int err; 536 537 wait_for_completion_timeout(&comp_ctx->wait_event, 538 usecs_to_jiffies(aq->completion_timeout)); 539 540 /* 541 * In case the command wasn't completed find out the root cause. 542 * There might be 2 kinds of errors 543 * 1) No completion (timeout reached) 544 * 2) There is completion but the device didn't get any msi-x interrupt. 545 */ 546 if (comp_ctx->status == EFA_CMD_SUBMITTED) { 547 spin_lock_irqsave(&aq->cq.lock, flags); 548 efa_com_handle_admin_completion(aq); 549 spin_unlock_irqrestore(&aq->cq.lock, flags); 550 551 atomic64_inc(&aq->stats.no_completion); 552 553 if (comp_ctx->status == EFA_CMD_COMPLETED) 554 ibdev_err_ratelimited( 555 aq->efa_dev, 556 "The device sent a completion but the driver didn't receive any MSI-X interrupt for admin cmd %s(%d) status %d (ctx: 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n", 557 efa_com_cmd_str(comp_ctx->cmd_opcode), 558 comp_ctx->cmd_opcode, comp_ctx->status, 559 comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc); 560 else 561 ibdev_err_ratelimited( 562 aq->efa_dev, 563 "The device didn't send any completion for admin cmd %s(%d) status %d (ctx 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n", 564 efa_com_cmd_str(comp_ctx->cmd_opcode), 565 comp_ctx->cmd_opcode, comp_ctx->status, 566 comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc); 567 568 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 569 err = -ETIME; 570 goto out; 571 } 572 573 err = efa_com_comp_status_to_errno(comp_ctx->user_cqe->acq_common_descriptor.status); 574 out: 575 efa_com_put_comp_ctx(aq, comp_ctx); 576 return err; 577 } 578 579 /* 580 * There are two types to wait for completion. 581 * Polling mode - wait until the completion is available. 582 * Async mode - wait on wait queue until the completion is ready 583 * (or the timeout expired). 584 * It is expected that the IRQ called efa_com_handle_admin_completion 585 * to mark the completions. 586 */ 587 static int efa_com_wait_and_process_admin_cq(struct efa_comp_ctx *comp_ctx, 588 struct efa_com_admin_queue *aq) 589 { 590 if (test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state)) 591 return efa_com_wait_and_process_admin_cq_polling(comp_ctx, aq); 592 593 return efa_com_wait_and_process_admin_cq_interrupts(comp_ctx, aq); 594 } 595 596 /** 597 * efa_com_cmd_exec - Execute admin command 598 * @aq: admin queue. 599 * @cmd: the admin command to execute. 600 * @cmd_size: the command size. 601 * @comp: command completion return entry. 602 * @comp_size: command completion size. 603 * Submit an admin command and then wait until the device will return a 604 * completion. 605 * The completion will be copied into comp. 606 * 607 * @return - 0 on success, negative value on failure. 608 */ 609 int efa_com_cmd_exec(struct efa_com_admin_queue *aq, 610 struct efa_admin_aq_entry *cmd, 611 size_t cmd_size, 612 struct efa_admin_acq_entry *comp, 613 size_t comp_size) 614 { 615 struct efa_comp_ctx *comp_ctx; 616 int err; 617 618 might_sleep(); 619 620 /* In case of queue FULL */ 621 down(&aq->avail_cmds); 622 623 ibdev_dbg(aq->efa_dev, "%s (opcode %d)\n", 624 efa_com_cmd_str(cmd->aq_common_descriptor.opcode), 625 cmd->aq_common_descriptor.opcode); 626 comp_ctx = efa_com_submit_admin_cmd(aq, cmd, cmd_size, comp, comp_size); 627 if (IS_ERR(comp_ctx)) { 628 ibdev_err_ratelimited( 629 aq->efa_dev, 630 "Failed to submit command %s (opcode %u) err %ld\n", 631 efa_com_cmd_str(cmd->aq_common_descriptor.opcode), 632 cmd->aq_common_descriptor.opcode, PTR_ERR(comp_ctx)); 633 634 up(&aq->avail_cmds); 635 atomic64_inc(&aq->stats.cmd_err); 636 return PTR_ERR(comp_ctx); 637 } 638 639 err = efa_com_wait_and_process_admin_cq(comp_ctx, aq); 640 if (err) { 641 ibdev_err_ratelimited( 642 aq->efa_dev, 643 "Failed to process command %s (opcode %u) comp_status %d err %d\n", 644 efa_com_cmd_str(cmd->aq_common_descriptor.opcode), 645 cmd->aq_common_descriptor.opcode, 646 comp_ctx->user_cqe->acq_common_descriptor.status, err); 647 atomic64_inc(&aq->stats.cmd_err); 648 } 649 650 up(&aq->avail_cmds); 651 652 return err; 653 } 654 655 /** 656 * efa_com_admin_destroy - Destroy the admin and the async events queues. 657 * @edev: EFA communication layer struct 658 */ 659 void efa_com_admin_destroy(struct efa_com_dev *edev) 660 { 661 struct efa_com_admin_queue *aq = &edev->aq; 662 struct efa_com_aenq *aenq = &edev->aenq; 663 struct efa_com_admin_cq *cq = &aq->cq; 664 struct efa_com_admin_sq *sq = &aq->sq; 665 u16 size; 666 667 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 668 669 devm_kfree(edev->dmadev, aq->comp_ctx_pool); 670 devm_kfree(edev->dmadev, aq->comp_ctx); 671 672 size = aq->depth * sizeof(*sq->entries); 673 dma_free_coherent(edev->dmadev, size, sq->entries, sq->dma_addr); 674 675 size = aq->depth * sizeof(*cq->entries); 676 dma_free_coherent(edev->dmadev, size, cq->entries, cq->dma_addr); 677 678 size = aenq->depth * sizeof(*aenq->entries); 679 dma_free_coherent(edev->dmadev, size, aenq->entries, aenq->dma_addr); 680 } 681 682 /** 683 * efa_com_set_admin_polling_mode - Set the admin completion queue polling mode 684 * @edev: EFA communication layer struct 685 * @polling: Enable/Disable polling mode 686 * 687 * Set the admin completion mode. 688 */ 689 void efa_com_set_admin_polling_mode(struct efa_com_dev *edev, bool polling) 690 { 691 u32 mask_value = 0; 692 693 if (polling) 694 EFA_SET(&mask_value, EFA_REGS_INTR_MASK_EN, 1); 695 696 writel(mask_value, edev->reg_bar + EFA_REGS_INTR_MASK_OFF); 697 if (polling) 698 set_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state); 699 else 700 clear_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state); 701 } 702 703 static void efa_com_stats_init(struct efa_com_dev *edev) 704 { 705 atomic64_t *s = (atomic64_t *)&edev->aq.stats; 706 int i; 707 708 for (i = 0; i < sizeof(edev->aq.stats) / sizeof(*s); i++, s++) 709 atomic64_set(s, 0); 710 } 711 712 /** 713 * efa_com_admin_init - Init the admin and the async queues 714 * @edev: EFA communication layer struct 715 * @aenq_handlers: Those handlers to be called upon event. 716 * 717 * Initialize the admin submission and completion queues. 718 * Initialize the asynchronous events notification queues. 719 * 720 * @return - 0 on success, negative value on failure. 721 */ 722 int efa_com_admin_init(struct efa_com_dev *edev, 723 struct efa_aenq_handlers *aenq_handlers) 724 { 725 struct efa_com_admin_queue *aq = &edev->aq; 726 u32 timeout; 727 u32 dev_sts; 728 u32 cap; 729 int err; 730 731 dev_sts = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); 732 if (!EFA_GET(&dev_sts, EFA_REGS_DEV_STS_READY)) { 733 ibdev_err(edev->efa_dev, 734 "Device isn't ready, abort com init %#x\n", dev_sts); 735 return -ENODEV; 736 } 737 738 aq->depth = EFA_ADMIN_QUEUE_DEPTH; 739 740 aq->dmadev = edev->dmadev; 741 aq->efa_dev = edev->efa_dev; 742 set_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state); 743 744 sema_init(&aq->avail_cmds, aq->depth); 745 746 efa_com_stats_init(edev); 747 748 err = efa_com_init_comp_ctxt(aq); 749 if (err) 750 return err; 751 752 err = efa_com_admin_init_sq(edev); 753 if (err) 754 goto err_destroy_comp_ctxt; 755 756 err = efa_com_admin_init_cq(edev); 757 if (err) 758 goto err_destroy_sq; 759 760 efa_com_set_admin_polling_mode(edev, false); 761 762 err = efa_com_admin_init_aenq(edev, aenq_handlers); 763 if (err) 764 goto err_destroy_cq; 765 766 cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); 767 timeout = EFA_GET(&cap, EFA_REGS_CAPS_ADMIN_CMD_TO); 768 if (timeout) 769 /* the resolution of timeout reg is 100ms */ 770 aq->completion_timeout = timeout * 100000; 771 else 772 aq->completion_timeout = ADMIN_CMD_TIMEOUT_US; 773 774 aq->poll_interval = EFA_POLL_INTERVAL_MS; 775 776 set_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 777 778 return 0; 779 780 err_destroy_cq: 781 dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->cq.entries), 782 aq->cq.entries, aq->cq.dma_addr); 783 err_destroy_sq: 784 dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->sq.entries), 785 aq->sq.entries, aq->sq.dma_addr); 786 err_destroy_comp_ctxt: 787 devm_kfree(edev->dmadev, aq->comp_ctx); 788 789 return err; 790 } 791 792 /** 793 * efa_com_admin_q_comp_intr_handler - admin queue interrupt handler 794 * @edev: EFA communication layer struct 795 * 796 * This method goes over the admin completion queue and wakes up 797 * all the pending threads that wait on the commands wait event. 798 * 799 * Note: Should be called after MSI-X interrupt. 800 */ 801 void efa_com_admin_q_comp_intr_handler(struct efa_com_dev *edev) 802 { 803 unsigned long flags; 804 805 spin_lock_irqsave(&edev->aq.cq.lock, flags); 806 efa_com_handle_admin_completion(&edev->aq); 807 spin_unlock_irqrestore(&edev->aq.cq.lock, flags); 808 } 809 810 /* 811 * efa_handle_specific_aenq_event: 812 * return the handler that is relevant to the specific event group 813 */ 814 static efa_aenq_handler efa_com_get_specific_aenq_cb(struct efa_com_dev *edev, 815 u16 group) 816 { 817 struct efa_aenq_handlers *aenq_handlers = edev->aenq.aenq_handlers; 818 819 if (group < EFA_MAX_HANDLERS && aenq_handlers->handlers[group]) 820 return aenq_handlers->handlers[group]; 821 822 return aenq_handlers->unimplemented_handler; 823 } 824 825 /** 826 * efa_com_aenq_intr_handler - AENQ interrupt handler 827 * @edev: EFA communication layer struct 828 * @data: Data of interrupt handler. 829 * 830 * Go over the async event notification queue and call the proper aenq handler. 831 */ 832 void efa_com_aenq_intr_handler(struct efa_com_dev *edev, void *data) 833 { 834 struct efa_admin_aenq_common_desc *aenq_common; 835 struct efa_com_aenq *aenq = &edev->aenq; 836 struct efa_admin_aenq_entry *aenq_e; 837 efa_aenq_handler handler_cb; 838 u32 processed = 0; 839 u8 phase; 840 u32 ci; 841 842 ci = aenq->cc & (aenq->depth - 1); 843 phase = aenq->phase; 844 aenq_e = &aenq->entries[ci]; /* Get first entry */ 845 aenq_common = &aenq_e->aenq_common_desc; 846 847 /* Go over all the events */ 848 while ((READ_ONCE(aenq_common->flags) & 849 EFA_ADMIN_AENQ_COMMON_DESC_PHASE_MASK) == phase) { 850 /* 851 * Do not read the rest of the completion entry before the 852 * phase bit was validated 853 */ 854 dma_rmb(); 855 856 /* Handle specific event*/ 857 handler_cb = efa_com_get_specific_aenq_cb(edev, 858 aenq_common->group); 859 handler_cb(data, aenq_e); /* call the actual event handler*/ 860 861 /* Get next event entry */ 862 ci++; 863 processed++; 864 865 if (ci == aenq->depth) { 866 ci = 0; 867 phase = !phase; 868 } 869 aenq_e = &aenq->entries[ci]; 870 aenq_common = &aenq_e->aenq_common_desc; 871 } 872 873 aenq->cc += processed; 874 aenq->phase = phase; 875 876 /* Don't update aenq doorbell if there weren't any processed events */ 877 if (!processed) 878 return; 879 880 /* barrier not needed in case of writel */ 881 writel(aenq->cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF); 882 } 883 884 static void efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev *edev) 885 { 886 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 887 u32 addr_high; 888 u32 addr_low; 889 890 /* dma_addr_bits is unknown at this point */ 891 addr_high = (mmio_read->read_resp_dma_addr >> 32) & GENMASK(31, 0); 892 addr_low = mmio_read->read_resp_dma_addr & GENMASK(31, 0); 893 894 writel(addr_high, edev->reg_bar + EFA_REGS_MMIO_RESP_HI_OFF); 895 writel(addr_low, edev->reg_bar + EFA_REGS_MMIO_RESP_LO_OFF); 896 } 897 898 int efa_com_mmio_reg_read_init(struct efa_com_dev *edev) 899 { 900 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 901 902 spin_lock_init(&mmio_read->lock); 903 mmio_read->read_resp = 904 dma_alloc_coherent(edev->dmadev, sizeof(*mmio_read->read_resp), 905 &mmio_read->read_resp_dma_addr, GFP_KERNEL); 906 if (!mmio_read->read_resp) 907 return -ENOMEM; 908 909 efa_com_mmio_reg_read_resp_addr_init(edev); 910 911 mmio_read->read_resp->req_id = 0; 912 mmio_read->seq_num = 0; 913 mmio_read->mmio_read_timeout = EFA_REG_READ_TIMEOUT_US; 914 915 return 0; 916 } 917 918 void efa_com_mmio_reg_read_destroy(struct efa_com_dev *edev) 919 { 920 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 921 922 dma_free_coherent(edev->dmadev, sizeof(*mmio_read->read_resp), 923 mmio_read->read_resp, mmio_read->read_resp_dma_addr); 924 } 925 926 int efa_com_validate_version(struct efa_com_dev *edev) 927 { 928 u32 min_ctrl_ver = 0; 929 u32 ctrl_ver_masked; 930 u32 min_ver = 0; 931 u32 ctrl_ver; 932 u32 ver; 933 934 /* 935 * Make sure the EFA version and the controller version are at least 936 * as the driver expects 937 */ 938 ver = efa_com_reg_read32(edev, EFA_REGS_VERSION_OFF); 939 ctrl_ver = efa_com_reg_read32(edev, 940 EFA_REGS_CONTROLLER_VERSION_OFF); 941 942 ibdev_dbg(edev->efa_dev, "efa device version: %d.%d\n", 943 EFA_GET(&ver, EFA_REGS_VERSION_MAJOR_VERSION), 944 EFA_GET(&ver, EFA_REGS_VERSION_MINOR_VERSION)); 945 946 EFA_SET(&min_ver, EFA_REGS_VERSION_MAJOR_VERSION, 947 EFA_ADMIN_API_VERSION_MAJOR); 948 EFA_SET(&min_ver, EFA_REGS_VERSION_MINOR_VERSION, 949 EFA_ADMIN_API_VERSION_MINOR); 950 if (ver < min_ver) { 951 ibdev_err(edev->efa_dev, 952 "EFA version is lower than the minimal version the driver supports\n"); 953 return -EOPNOTSUPP; 954 } 955 956 ibdev_dbg( 957 edev->efa_dev, 958 "efa controller version: %d.%d.%d implementation version %d\n", 959 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION), 960 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION), 961 EFA_GET(&ctrl_ver, 962 EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION), 963 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_IMPL_ID)); 964 965 ctrl_ver_masked = 966 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION) | 967 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION) | 968 EFA_GET(&ctrl_ver, 969 EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION); 970 971 EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION, 972 EFA_CTRL_MAJOR); 973 EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION, 974 EFA_CTRL_MINOR); 975 EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION, 976 EFA_CTRL_SUB_MINOR); 977 /* Validate the ctrl version without the implementation ID */ 978 if (ctrl_ver_masked < min_ctrl_ver) { 979 ibdev_err(edev->efa_dev, 980 "EFA ctrl version is lower than the minimal ctrl version the driver supports\n"); 981 return -EOPNOTSUPP; 982 } 983 984 return 0; 985 } 986 987 /** 988 * efa_com_get_dma_width - Retrieve physical dma address width the device 989 * supports. 990 * @edev: EFA communication layer struct 991 * 992 * Retrieve the maximum physical address bits the device can handle. 993 * 994 * @return: > 0 on Success and negative value otherwise. 995 */ 996 int efa_com_get_dma_width(struct efa_com_dev *edev) 997 { 998 u32 caps = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); 999 int width; 1000 1001 width = EFA_GET(&caps, EFA_REGS_CAPS_DMA_ADDR_WIDTH); 1002 1003 ibdev_dbg(edev->efa_dev, "DMA width: %d\n", width); 1004 1005 if (width < 32 || width > 64) { 1006 ibdev_err(edev->efa_dev, "DMA width illegal value: %d\n", width); 1007 return -EINVAL; 1008 } 1009 1010 edev->dma_addr_bits = width; 1011 1012 return width; 1013 } 1014 1015 static int wait_for_reset_state(struct efa_com_dev *edev, u32 timeout, int on) 1016 { 1017 u32 val, i; 1018 1019 for (i = 0; i < timeout; i++) { 1020 val = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); 1021 1022 if (EFA_GET(&val, EFA_REGS_DEV_STS_RESET_IN_PROGRESS) == on) 1023 return 0; 1024 1025 ibdev_dbg(edev->efa_dev, "Reset indication val %d\n", val); 1026 msleep(EFA_POLL_INTERVAL_MS); 1027 } 1028 1029 return -ETIME; 1030 } 1031 1032 /** 1033 * efa_com_dev_reset - Perform device FLR to the device. 1034 * @edev: EFA communication layer struct 1035 * @reset_reason: Specify what is the trigger for the reset in case of an error. 1036 * 1037 * @return - 0 on success, negative value on failure. 1038 */ 1039 int efa_com_dev_reset(struct efa_com_dev *edev, 1040 enum efa_regs_reset_reason_types reset_reason) 1041 { 1042 u32 stat, timeout, cap; 1043 u32 reset_val = 0; 1044 int err; 1045 1046 stat = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); 1047 cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); 1048 1049 if (!EFA_GET(&stat, EFA_REGS_DEV_STS_READY)) { 1050 ibdev_err(edev->efa_dev, 1051 "Device isn't ready, can't reset device\n"); 1052 return -EINVAL; 1053 } 1054 1055 timeout = EFA_GET(&cap, EFA_REGS_CAPS_RESET_TIMEOUT); 1056 if (!timeout) { 1057 ibdev_err(edev->efa_dev, "Invalid timeout value\n"); 1058 return -EINVAL; 1059 } 1060 1061 /* start reset */ 1062 EFA_SET(&reset_val, EFA_REGS_DEV_CTL_DEV_RESET, 1); 1063 EFA_SET(&reset_val, EFA_REGS_DEV_CTL_RESET_REASON, reset_reason); 1064 writel(reset_val, edev->reg_bar + EFA_REGS_DEV_CTL_OFF); 1065 1066 /* reset clears the mmio readless address, restore it */ 1067 efa_com_mmio_reg_read_resp_addr_init(edev); 1068 1069 err = wait_for_reset_state(edev, timeout, 1); 1070 if (err) { 1071 ibdev_err(edev->efa_dev, "Reset indication didn't turn on\n"); 1072 return err; 1073 } 1074 1075 /* reset done */ 1076 writel(0, edev->reg_bar + EFA_REGS_DEV_CTL_OFF); 1077 err = wait_for_reset_state(edev, timeout, 0); 1078 if (err) { 1079 ibdev_err(edev->efa_dev, "Reset indication didn't turn off\n"); 1080 return err; 1081 } 1082 1083 timeout = EFA_GET(&cap, EFA_REGS_CAPS_ADMIN_CMD_TO); 1084 if (timeout) 1085 /* the resolution of timeout reg is 100ms */ 1086 edev->aq.completion_timeout = timeout * 100000; 1087 else 1088 edev->aq.completion_timeout = ADMIN_CMD_TIMEOUT_US; 1089 1090 return 0; 1091 } 1092 1093 static int efa_com_create_eq(struct efa_com_dev *edev, 1094 struct efa_com_create_eq_params *params, 1095 struct efa_com_create_eq_result *result) 1096 { 1097 struct efa_com_admin_queue *aq = &edev->aq; 1098 struct efa_admin_create_eq_resp resp = {}; 1099 struct efa_admin_create_eq_cmd cmd = {}; 1100 int err; 1101 1102 cmd.aq_common_descriptor.opcode = EFA_ADMIN_CREATE_EQ; 1103 EFA_SET(&cmd.caps, EFA_ADMIN_CREATE_EQ_CMD_ENTRY_SIZE_WORDS, 1104 params->entry_size_in_bytes / 4); 1105 cmd.depth = params->depth; 1106 cmd.event_bitmask = params->event_bitmask; 1107 cmd.msix_vec = params->msix_vec; 1108 1109 efa_com_set_dma_addr(params->dma_addr, &cmd.ba.mem_addr_high, 1110 &cmd.ba.mem_addr_low); 1111 1112 err = efa_com_cmd_exec(aq, 1113 (struct efa_admin_aq_entry *)&cmd, 1114 sizeof(cmd), 1115 (struct efa_admin_acq_entry *)&resp, 1116 sizeof(resp)); 1117 if (err) { 1118 ibdev_err_ratelimited(edev->efa_dev, 1119 "Failed to create eq[%d]\n", err); 1120 return err; 1121 } 1122 1123 result->eqn = resp.eqn; 1124 1125 return 0; 1126 } 1127 1128 static void efa_com_destroy_eq(struct efa_com_dev *edev, 1129 struct efa_com_destroy_eq_params *params) 1130 { 1131 struct efa_com_admin_queue *aq = &edev->aq; 1132 struct efa_admin_destroy_eq_resp resp = {}; 1133 struct efa_admin_destroy_eq_cmd cmd = {}; 1134 int err; 1135 1136 cmd.aq_common_descriptor.opcode = EFA_ADMIN_DESTROY_EQ; 1137 cmd.eqn = params->eqn; 1138 1139 err = efa_com_cmd_exec(aq, 1140 (struct efa_admin_aq_entry *)&cmd, 1141 sizeof(cmd), 1142 (struct efa_admin_acq_entry *)&resp, 1143 sizeof(resp)); 1144 if (err) 1145 ibdev_err_ratelimited(edev->efa_dev, 1146 "Failed to destroy EQ-%u [%d]\n", cmd.eqn, 1147 err); 1148 } 1149 1150 static void efa_com_arm_eq(struct efa_com_dev *edev, struct efa_com_eq *eeq) 1151 { 1152 u32 val = 0; 1153 1154 EFA_SET(&val, EFA_REGS_EQ_DB_EQN, eeq->eqn); 1155 EFA_SET(&val, EFA_REGS_EQ_DB_ARM, 1); 1156 1157 writel(val, edev->reg_bar + EFA_REGS_EQ_DB_OFF); 1158 } 1159 1160 void efa_com_eq_comp_intr_handler(struct efa_com_dev *edev, 1161 struct efa_com_eq *eeq) 1162 { 1163 struct efa_admin_eqe *eqe; 1164 u32 processed = 0; 1165 u8 phase; 1166 u32 ci; 1167 1168 ci = eeq->cc & (eeq->depth - 1); 1169 phase = eeq->phase; 1170 eqe = &eeq->eqes[ci]; 1171 1172 /* Go over all the events */ 1173 while ((READ_ONCE(eqe->common) & EFA_ADMIN_EQE_PHASE_MASK) == phase) { 1174 /* 1175 * Do not read the rest of the completion entry before the 1176 * phase bit was validated 1177 */ 1178 dma_rmb(); 1179 1180 eeq->cb(eeq, eqe); 1181 1182 /* Get next event entry */ 1183 ci++; 1184 processed++; 1185 1186 if (ci == eeq->depth) { 1187 ci = 0; 1188 phase = !phase; 1189 } 1190 1191 eqe = &eeq->eqes[ci]; 1192 } 1193 1194 eeq->cc += processed; 1195 eeq->phase = phase; 1196 efa_com_arm_eq(eeq->edev, eeq); 1197 } 1198 1199 void efa_com_eq_destroy(struct efa_com_dev *edev, struct efa_com_eq *eeq) 1200 { 1201 struct efa_com_destroy_eq_params params = { 1202 .eqn = eeq->eqn, 1203 }; 1204 1205 efa_com_destroy_eq(edev, ¶ms); 1206 dma_free_coherent(edev->dmadev, eeq->depth * sizeof(*eeq->eqes), 1207 eeq->eqes, eeq->dma_addr); 1208 } 1209 1210 int efa_com_eq_init(struct efa_com_dev *edev, struct efa_com_eq *eeq, 1211 efa_eqe_handler cb, u16 depth, u8 msix_vec) 1212 { 1213 struct efa_com_create_eq_params params = {}; 1214 struct efa_com_create_eq_result result = {}; 1215 int err; 1216 1217 params.depth = depth; 1218 params.entry_size_in_bytes = sizeof(*eeq->eqes); 1219 EFA_SET(¶ms.event_bitmask, 1220 EFA_ADMIN_CREATE_EQ_CMD_COMPLETION_EVENTS, 1); 1221 params.msix_vec = msix_vec; 1222 1223 eeq->eqes = dma_alloc_coherent(edev->dmadev, 1224 params.depth * sizeof(*eeq->eqes), 1225 ¶ms.dma_addr, GFP_KERNEL); 1226 if (!eeq->eqes) 1227 return -ENOMEM; 1228 1229 err = efa_com_create_eq(edev, ¶ms, &result); 1230 if (err) 1231 goto err_free_coherent; 1232 1233 eeq->eqn = result.eqn; 1234 eeq->edev = edev; 1235 eeq->dma_addr = params.dma_addr; 1236 eeq->phase = 1; 1237 eeq->depth = params.depth; 1238 eeq->cb = cb; 1239 efa_com_arm_eq(edev, eeq); 1240 1241 return 0; 1242 1243 err_free_coherent: 1244 dma_free_coherent(edev->dmadev, params.depth * sizeof(*eeq->eqes), 1245 eeq->eqes, params.dma_addr); 1246 return err; 1247 } 1248