xref: /linux/drivers/infiniband/hw/cxgb4/cq.c (revision fa84cf094ef9667e2b91c104b0a788fd1896f482)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include "iw_cxgb4.h"
34 
35 static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
36 		      struct c4iw_dev_ucontext *uctx, struct sk_buff *skb,
37 		      struct c4iw_wr_wait *wr_waitp)
38 {
39 	struct fw_ri_res_wr *res_wr;
40 	struct fw_ri_res *res;
41 	int wr_len;
42 	int ret;
43 
44 	wr_len = sizeof *res_wr + sizeof *res;
45 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
46 
47 	res_wr = __skb_put_zero(skb, wr_len);
48 	res_wr->op_nres = cpu_to_be32(
49 			FW_WR_OP_V(FW_RI_RES_WR) |
50 			FW_RI_RES_WR_NRES_V(1) |
51 			FW_WR_COMPL_F);
52 	res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
53 	res_wr->cookie = (uintptr_t)wr_waitp;
54 	res = res_wr->res;
55 	res->u.cq.restype = FW_RI_RES_TYPE_CQ;
56 	res->u.cq.op = FW_RI_RES_OP_RESET;
57 	res->u.cq.iqid = cpu_to_be32(cq->cqid);
58 
59 	c4iw_init_wr_wait(wr_waitp);
60 	ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
61 
62 	kfree(cq->sw_queue);
63 	dma_free_coherent(&(rdev->lldi.pdev->dev),
64 			  cq->memsize, cq->queue,
65 			  dma_unmap_addr(cq, mapping));
66 	c4iw_put_cqid(rdev, cq->cqid, uctx);
67 	return ret;
68 }
69 
70 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
71 		     struct c4iw_dev_ucontext *uctx,
72 		     struct c4iw_wr_wait *wr_waitp)
73 {
74 	struct fw_ri_res_wr *res_wr;
75 	struct fw_ri_res *res;
76 	int wr_len;
77 	int user = (uctx != &rdev->uctx);
78 	int ret;
79 	struct sk_buff *skb;
80 
81 	cq->cqid = c4iw_get_cqid(rdev, uctx);
82 	if (!cq->cqid) {
83 		ret = -ENOMEM;
84 		goto err1;
85 	}
86 
87 	if (!user) {
88 		cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
89 		if (!cq->sw_queue) {
90 			ret = -ENOMEM;
91 			goto err2;
92 		}
93 	}
94 	cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
95 				       &cq->dma_addr, GFP_KERNEL);
96 	if (!cq->queue) {
97 		ret = -ENOMEM;
98 		goto err3;
99 	}
100 	dma_unmap_addr_set(cq, mapping, cq->dma_addr);
101 	memset(cq->queue, 0, cq->memsize);
102 
103 	/* build fw_ri_res_wr */
104 	wr_len = sizeof *res_wr + sizeof *res;
105 
106 	skb = alloc_skb(wr_len, GFP_KERNEL);
107 	if (!skb) {
108 		ret = -ENOMEM;
109 		goto err4;
110 	}
111 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
112 
113 	res_wr = __skb_put_zero(skb, wr_len);
114 	res_wr->op_nres = cpu_to_be32(
115 			FW_WR_OP_V(FW_RI_RES_WR) |
116 			FW_RI_RES_WR_NRES_V(1) |
117 			FW_WR_COMPL_F);
118 	res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
119 	res_wr->cookie = (uintptr_t)wr_waitp;
120 	res = res_wr->res;
121 	res->u.cq.restype = FW_RI_RES_TYPE_CQ;
122 	res->u.cq.op = FW_RI_RES_OP_WRITE;
123 	res->u.cq.iqid = cpu_to_be32(cq->cqid);
124 	res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
125 			FW_RI_RES_WR_IQANUS_V(0) |
126 			FW_RI_RES_WR_IQANUD_V(1) |
127 			FW_RI_RES_WR_IQANDST_F |
128 			FW_RI_RES_WR_IQANDSTINDEX_V(
129 				rdev->lldi.ciq_ids[cq->vector]));
130 	res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
131 			FW_RI_RES_WR_IQDROPRSS_F |
132 			FW_RI_RES_WR_IQPCIECH_V(2) |
133 			FW_RI_RES_WR_IQINTCNTTHRESH_V(0) |
134 			FW_RI_RES_WR_IQO_F |
135 			FW_RI_RES_WR_IQESIZE_V(1));
136 	res->u.cq.iqsize = cpu_to_be16(cq->size);
137 	res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
138 
139 	c4iw_init_wr_wait(wr_waitp);
140 	ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
141 	if (ret)
142 		goto err4;
143 
144 	cq->gen = 1;
145 	cq->gts = rdev->lldi.gts_reg;
146 	cq->rdev = rdev;
147 
148 	cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, T4_BAR2_QTYPE_INGRESS,
149 				      &cq->bar2_qid,
150 				      user ? &cq->bar2_pa : NULL);
151 	if (user && !cq->bar2_pa) {
152 		pr_warn("%s: cqid %u not in BAR2 range\n",
153 			pci_name(rdev->lldi.pdev), cq->cqid);
154 		ret = -EINVAL;
155 		goto err4;
156 	}
157 	return 0;
158 err4:
159 	dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
160 			  dma_unmap_addr(cq, mapping));
161 err3:
162 	kfree(cq->sw_queue);
163 err2:
164 	c4iw_put_cqid(rdev, cq->cqid, uctx);
165 err1:
166 	return ret;
167 }
168 
169 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq)
170 {
171 	struct t4_cqe cqe;
172 
173 	pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
174 		 wq, cq, cq->sw_cidx, cq->sw_pidx);
175 	memset(&cqe, 0, sizeof(cqe));
176 	cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
177 				 CQE_OPCODE_V(FW_RI_SEND) |
178 				 CQE_TYPE_V(0) |
179 				 CQE_SWCQE_V(1) |
180 				 CQE_QPID_V(wq->sq.qid));
181 	cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
182 	cq->sw_queue[cq->sw_pidx] = cqe;
183 	t4_swcq_produce(cq);
184 }
185 
186 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
187 {
188 	int flushed = 0;
189 	int in_use = wq->rq.in_use - count;
190 
191 	pr_debug("wq %p cq %p rq.in_use %u skip count %u\n",
192 		 wq, cq, wq->rq.in_use, count);
193 	while (in_use--) {
194 		insert_recv_cqe(wq, cq);
195 		flushed++;
196 	}
197 	return flushed;
198 }
199 
200 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
201 			  struct t4_swsqe *swcqe)
202 {
203 	struct t4_cqe cqe;
204 
205 	pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
206 		 wq, cq, cq->sw_cidx, cq->sw_pidx);
207 	memset(&cqe, 0, sizeof(cqe));
208 	cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
209 				 CQE_OPCODE_V(swcqe->opcode) |
210 				 CQE_TYPE_V(1) |
211 				 CQE_SWCQE_V(1) |
212 				 CQE_QPID_V(wq->sq.qid));
213 	CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
214 	cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
215 	cq->sw_queue[cq->sw_pidx] = cqe;
216 	t4_swcq_produce(cq);
217 }
218 
219 static void advance_oldest_read(struct t4_wq *wq);
220 
221 int c4iw_flush_sq(struct c4iw_qp *qhp)
222 {
223 	int flushed = 0;
224 	struct t4_wq *wq = &qhp->wq;
225 	struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
226 	struct t4_cq *cq = &chp->cq;
227 	int idx;
228 	struct t4_swsqe *swsqe;
229 
230 	if (wq->sq.flush_cidx == -1)
231 		wq->sq.flush_cidx = wq->sq.cidx;
232 	idx = wq->sq.flush_cidx;
233 	while (idx != wq->sq.pidx) {
234 		swsqe = &wq->sq.sw_sq[idx];
235 		swsqe->flushed = 1;
236 		insert_sq_cqe(wq, cq, swsqe);
237 		if (wq->sq.oldest_read == swsqe) {
238 			advance_oldest_read(wq);
239 		}
240 		flushed++;
241 		if (++idx == wq->sq.size)
242 			idx = 0;
243 	}
244 	wq->sq.flush_cidx += flushed;
245 	if (wq->sq.flush_cidx >= wq->sq.size)
246 		wq->sq.flush_cidx -= wq->sq.size;
247 	return flushed;
248 }
249 
250 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
251 {
252 	struct t4_swsqe *swsqe;
253 	int cidx;
254 
255 	if (wq->sq.flush_cidx == -1)
256 		wq->sq.flush_cidx = wq->sq.cidx;
257 	cidx = wq->sq.flush_cidx;
258 
259 	while (cidx != wq->sq.pidx) {
260 		swsqe = &wq->sq.sw_sq[cidx];
261 		if (!swsqe->signaled) {
262 			if (++cidx == wq->sq.size)
263 				cidx = 0;
264 		} else if (swsqe->complete) {
265 
266 			/*
267 			 * Insert this completed cqe into the swcq.
268 			 */
269 			pr_debug("moving cqe into swcq sq idx %u cq idx %u\n",
270 				 cidx, cq->sw_pidx);
271 			swsqe->cqe.header |= htonl(CQE_SWCQE_V(1));
272 			cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
273 			t4_swcq_produce(cq);
274 			swsqe->flushed = 1;
275 			if (++cidx == wq->sq.size)
276 				cidx = 0;
277 			wq->sq.flush_cidx = cidx;
278 		} else
279 			break;
280 	}
281 }
282 
283 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
284 		struct t4_cqe *read_cqe)
285 {
286 	read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
287 	read_cqe->len = htonl(wq->sq.oldest_read->read_len);
288 	read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) |
289 			CQE_SWCQE_V(SW_CQE(hw_cqe)) |
290 			CQE_OPCODE_V(FW_RI_READ_REQ) |
291 			CQE_TYPE_V(1));
292 	read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
293 }
294 
295 static void advance_oldest_read(struct t4_wq *wq)
296 {
297 
298 	u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
299 
300 	if (rptr == wq->sq.size)
301 		rptr = 0;
302 	while (rptr != wq->sq.pidx) {
303 		wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
304 
305 		if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
306 			return;
307 		if (++rptr == wq->sq.size)
308 			rptr = 0;
309 	}
310 	wq->sq.oldest_read = NULL;
311 }
312 
313 /*
314  * Move all CQEs from the HWCQ into the SWCQ.
315  * Deal with out-of-order and/or completions that complete
316  * prior unsignalled WRs.
317  */
318 void c4iw_flush_hw_cq(struct c4iw_cq *chp, struct c4iw_qp *flush_qhp)
319 {
320 	struct t4_cqe *hw_cqe, *swcqe, read_cqe;
321 	struct c4iw_qp *qhp;
322 	struct t4_swsqe *swsqe;
323 	int ret;
324 
325 	pr_debug("cqid 0x%x\n", chp->cq.cqid);
326 	ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
327 
328 	/*
329 	 * This logic is similar to poll_cq(), but not quite the same
330 	 * unfortunately.  Need to move pertinent HW CQEs to the SW CQ but
331 	 * also do any translation magic that poll_cq() normally does.
332 	 */
333 	while (!ret) {
334 		qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
335 
336 		/*
337 		 * drop CQEs with no associated QP
338 		 */
339 		if (qhp == NULL)
340 			goto next_cqe;
341 
342 		if (flush_qhp != qhp) {
343 			spin_lock(&qhp->lock);
344 
345 			if (qhp->wq.flushed == 1)
346 				goto next_cqe;
347 		}
348 
349 		if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
350 			goto next_cqe;
351 
352 		if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
353 
354 			/* If we have reached here because of async
355 			 * event or other error, and have egress error
356 			 * then drop
357 			 */
358 			if (CQE_TYPE(hw_cqe) == 1)
359 				goto next_cqe;
360 
361 			/* drop peer2peer RTR reads.
362 			 */
363 			if (CQE_WRID_STAG(hw_cqe) == 1)
364 				goto next_cqe;
365 
366 			/*
367 			 * Eat completions for unsignaled read WRs.
368 			 */
369 			if (!qhp->wq.sq.oldest_read->signaled) {
370 				advance_oldest_read(&qhp->wq);
371 				goto next_cqe;
372 			}
373 
374 			/*
375 			 * Don't write to the HWCQ, create a new read req CQE
376 			 * in local memory and move it into the swcq.
377 			 */
378 			create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
379 			hw_cqe = &read_cqe;
380 			advance_oldest_read(&qhp->wq);
381 		}
382 
383 		/* if its a SQ completion, then do the magic to move all the
384 		 * unsignaled and now in-order completions into the swcq.
385 		 */
386 		if (SQ_TYPE(hw_cqe)) {
387 			swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
388 			swsqe->cqe = *hw_cqe;
389 			swsqe->complete = 1;
390 			flush_completed_wrs(&qhp->wq, &chp->cq);
391 		} else {
392 			swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
393 			*swcqe = *hw_cqe;
394 			swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1));
395 			t4_swcq_produce(&chp->cq);
396 		}
397 next_cqe:
398 		t4_hwcq_consume(&chp->cq);
399 		ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
400 		if (qhp && flush_qhp != qhp)
401 			spin_unlock(&qhp->lock);
402 	}
403 }
404 
405 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
406 {
407 	if (DRAIN_CQE(cqe)) {
408 		WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq->sq.qid);
409 		return 0;
410 	}
411 
412 	if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
413 		return 0;
414 
415 	if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
416 		return 0;
417 
418 	if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
419 		return 0;
420 
421 	if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
422 		return 0;
423 	return 1;
424 }
425 
426 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
427 {
428 	struct t4_cqe *cqe;
429 	u32 ptr;
430 
431 	*count = 0;
432 	pr_debug("count zero %d\n", *count);
433 	ptr = cq->sw_cidx;
434 	while (ptr != cq->sw_pidx) {
435 		cqe = &cq->sw_queue[ptr];
436 		if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
437 		    (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
438 			(*count)++;
439 		if (++ptr == cq->size)
440 			ptr = 0;
441 	}
442 	pr_debug("cq %p count %d\n", cq, *count);
443 }
444 
445 /*
446  * poll_cq
447  *
448  * Caller must:
449  *     check the validity of the first CQE,
450  *     supply the wq assicated with the qpid.
451  *
452  * credit: cq credit to return to sge.
453  * cqe_flushed: 1 iff the CQE is flushed.
454  * cqe: copy of the polled CQE.
455  *
456  * return value:
457  *    0		    CQE returned ok.
458  *    -EAGAIN       CQE skipped, try again.
459  *    -EOVERFLOW    CQ overflow detected.
460  */
461 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
462 		   u8 *cqe_flushed, u64 *cookie, u32 *credit)
463 {
464 	int ret = 0;
465 	struct t4_cqe *hw_cqe, read_cqe;
466 
467 	*cqe_flushed = 0;
468 	*credit = 0;
469 	ret = t4_next_cqe(cq, &hw_cqe);
470 	if (ret)
471 		return ret;
472 
473 	pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
474 		 CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
475 		 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
476 		 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
477 		 CQE_WRID_LOW(hw_cqe));
478 
479 	/*
480 	 * skip cqe's not affiliated with a QP.
481 	 */
482 	if (wq == NULL) {
483 		ret = -EAGAIN;
484 		goto skip_cqe;
485 	}
486 
487 	/*
488 	* skip hw cqe's if the wq is flushed.
489 	*/
490 	if (wq->flushed && !SW_CQE(hw_cqe)) {
491 		ret = -EAGAIN;
492 		goto skip_cqe;
493 	}
494 
495 	/*
496 	 * skip TERMINATE cqes...
497 	 */
498 	if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
499 		ret = -EAGAIN;
500 		goto skip_cqe;
501 	}
502 
503 	/*
504 	 * Special cqe for drain WR completions...
505 	 */
506 	if (DRAIN_CQE(hw_cqe)) {
507 		*cookie = CQE_DRAIN_COOKIE(hw_cqe);
508 		*cqe = *hw_cqe;
509 		goto skip_cqe;
510 	}
511 
512 	/*
513 	 * Gotta tweak READ completions:
514 	 *	1) the cqe doesn't contain the sq_wptr from the wr.
515 	 *	2) opcode not reflected from the wr.
516 	 *	3) read_len not reflected from the wr.
517 	 *	4) cq_type is RQ_TYPE not SQ_TYPE.
518 	 */
519 	if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
520 
521 		/* If we have reached here because of async
522 		 * event or other error, and have egress error
523 		 * then drop
524 		 */
525 		if (CQE_TYPE(hw_cqe) == 1) {
526 			if (CQE_STATUS(hw_cqe))
527 				t4_set_wq_in_error(wq);
528 			ret = -EAGAIN;
529 			goto skip_cqe;
530 		}
531 
532 		/* If this is an unsolicited read response, then the read
533 		 * was generated by the kernel driver as part of peer-2-peer
534 		 * connection setup.  So ignore the completion.
535 		 */
536 		if (CQE_WRID_STAG(hw_cqe) == 1) {
537 			if (CQE_STATUS(hw_cqe))
538 				t4_set_wq_in_error(wq);
539 			ret = -EAGAIN;
540 			goto skip_cqe;
541 		}
542 
543 		/*
544 		 * Eat completions for unsignaled read WRs.
545 		 */
546 		if (!wq->sq.oldest_read->signaled) {
547 			advance_oldest_read(wq);
548 			ret = -EAGAIN;
549 			goto skip_cqe;
550 		}
551 
552 		/*
553 		 * Don't write to the HWCQ, so create a new read req CQE
554 		 * in local memory.
555 		 */
556 		create_read_req_cqe(wq, hw_cqe, &read_cqe);
557 		hw_cqe = &read_cqe;
558 		advance_oldest_read(wq);
559 	}
560 
561 	if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
562 		*cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
563 		t4_set_wq_in_error(wq);
564 	}
565 
566 	/*
567 	 * RECV completion.
568 	 */
569 	if (RQ_TYPE(hw_cqe)) {
570 
571 		/*
572 		 * HW only validates 4 bits of MSN.  So we must validate that
573 		 * the MSN in the SEND is the next expected MSN.  If its not,
574 		 * then we complete this with T4_ERR_MSN and mark the wq in
575 		 * error.
576 		 */
577 
578 		if (t4_rq_empty(wq)) {
579 			t4_set_wq_in_error(wq);
580 			ret = -EAGAIN;
581 			goto skip_cqe;
582 		}
583 		if (unlikely(!CQE_STATUS(hw_cqe) &&
584 			     CQE_WRID_MSN(hw_cqe) != wq->rq.msn)) {
585 			t4_set_wq_in_error(wq);
586 			hw_cqe->header |= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN));
587 		}
588 		goto proc_cqe;
589 	}
590 
591 	/*
592 	 * If we get here its a send completion.
593 	 *
594 	 * Handle out of order completion. These get stuffed
595 	 * in the SW SQ. Then the SW SQ is walked to move any
596 	 * now in-order completions into the SW CQ.  This handles
597 	 * 2 cases:
598 	 *	1) reaping unsignaled WRs when the first subsequent
599 	 *	   signaled WR is completed.
600 	 *	2) out of order read completions.
601 	 */
602 	if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
603 		struct t4_swsqe *swsqe;
604 
605 		pr_debug("out of order completion going in sw_sq at idx %u\n",
606 			 CQE_WRID_SQ_IDX(hw_cqe));
607 		swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
608 		swsqe->cqe = *hw_cqe;
609 		swsqe->complete = 1;
610 		ret = -EAGAIN;
611 		goto flush_wq;
612 	}
613 
614 proc_cqe:
615 	*cqe = *hw_cqe;
616 
617 	/*
618 	 * Reap the associated WR(s) that are freed up with this
619 	 * completion.
620 	 */
621 	if (SQ_TYPE(hw_cqe)) {
622 		int idx = CQE_WRID_SQ_IDX(hw_cqe);
623 
624 		/*
625 		* Account for any unsignaled completions completed by
626 		* this signaled completion.  In this case, cidx points
627 		* to the first unsignaled one, and idx points to the
628 		* signaled one.  So adjust in_use based on this delta.
629 		* if this is not completing any unsigned wrs, then the
630 		* delta will be 0. Handle wrapping also!
631 		*/
632 		if (idx < wq->sq.cidx)
633 			wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
634 		else
635 			wq->sq.in_use -= idx - wq->sq.cidx;
636 
637 		wq->sq.cidx = (uint16_t)idx;
638 		pr_debug("completing sq idx %u\n", wq->sq.cidx);
639 		*cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
640 		if (c4iw_wr_log)
641 			c4iw_log_wr_stats(wq, hw_cqe);
642 		t4_sq_consume(wq);
643 	} else {
644 		pr_debug("completing rq idx %u\n", wq->rq.cidx);
645 		*cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
646 		if (c4iw_wr_log)
647 			c4iw_log_wr_stats(wq, hw_cqe);
648 		t4_rq_consume(wq);
649 		goto skip_cqe;
650 	}
651 
652 flush_wq:
653 	/*
654 	 * Flush any completed cqes that are now in-order.
655 	 */
656 	flush_completed_wrs(wq, cq);
657 
658 skip_cqe:
659 	if (SW_CQE(hw_cqe)) {
660 		pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n",
661 			 cq, cq->cqid, cq->sw_cidx);
662 		t4_swcq_consume(cq);
663 	} else {
664 		pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n",
665 			 cq, cq->cqid, cq->cidx);
666 		t4_hwcq_consume(cq);
667 	}
668 	return ret;
669 }
670 
671 /*
672  * Get one cq entry from c4iw and map it to openib.
673  *
674  * Returns:
675  *	0			cqe returned
676  *	-ENODATA		EMPTY;
677  *	-EAGAIN			caller must try again
678  *	any other -errno	fatal error
679  */
680 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
681 {
682 	struct c4iw_qp *qhp = NULL;
683 	struct t4_cqe uninitialized_var(cqe), *rd_cqe;
684 	struct t4_wq *wq;
685 	u32 credit = 0;
686 	u8 cqe_flushed;
687 	u64 cookie = 0;
688 	int ret;
689 
690 	ret = t4_next_cqe(&chp->cq, &rd_cqe);
691 
692 	if (ret)
693 		return ret;
694 
695 	qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
696 	if (!qhp)
697 		wq = NULL;
698 	else {
699 		spin_lock(&qhp->lock);
700 		wq = &(qhp->wq);
701 	}
702 	ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit);
703 	if (ret)
704 		goto out;
705 
706 	wc->wr_id = cookie;
707 	wc->qp = &qhp->ibqp;
708 	wc->vendor_err = CQE_STATUS(&cqe);
709 	wc->wc_flags = 0;
710 
711 	pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n",
712 		 CQE_QPID(&cqe),
713 		 CQE_TYPE(&cqe), CQE_OPCODE(&cqe),
714 		 CQE_STATUS(&cqe), CQE_LEN(&cqe),
715 		 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe),
716 		 (unsigned long long)cookie);
717 
718 	if (CQE_TYPE(&cqe) == 0) {
719 		if (!CQE_STATUS(&cqe))
720 			wc->byte_len = CQE_LEN(&cqe);
721 		else
722 			wc->byte_len = 0;
723 		wc->opcode = IB_WC_RECV;
724 		if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV ||
725 		    CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) {
726 			wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
727 			wc->wc_flags |= IB_WC_WITH_INVALIDATE;
728 			c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey);
729 		}
730 	} else {
731 		switch (CQE_OPCODE(&cqe)) {
732 		case FW_RI_RDMA_WRITE:
733 			wc->opcode = IB_WC_RDMA_WRITE;
734 			break;
735 		case FW_RI_READ_REQ:
736 			wc->opcode = IB_WC_RDMA_READ;
737 			wc->byte_len = CQE_LEN(&cqe);
738 			break;
739 		case FW_RI_SEND_WITH_INV:
740 		case FW_RI_SEND_WITH_SE_INV:
741 			wc->opcode = IB_WC_SEND;
742 			wc->wc_flags |= IB_WC_WITH_INVALIDATE;
743 			break;
744 		case FW_RI_SEND:
745 		case FW_RI_SEND_WITH_SE:
746 			wc->opcode = IB_WC_SEND;
747 			break;
748 
749 		case FW_RI_LOCAL_INV:
750 			wc->opcode = IB_WC_LOCAL_INV;
751 			break;
752 		case FW_RI_FAST_REGISTER:
753 			wc->opcode = IB_WC_REG_MR;
754 
755 			/* Invalidate the MR if the fastreg failed */
756 			if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS)
757 				c4iw_invalidate_mr(qhp->rhp,
758 						   CQE_WRID_FR_STAG(&cqe));
759 			break;
760 		default:
761 			pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
762 			       CQE_OPCODE(&cqe), CQE_QPID(&cqe));
763 			ret = -EINVAL;
764 			goto out;
765 		}
766 	}
767 
768 	if (cqe_flushed)
769 		wc->status = IB_WC_WR_FLUSH_ERR;
770 	else {
771 
772 		switch (CQE_STATUS(&cqe)) {
773 		case T4_ERR_SUCCESS:
774 			wc->status = IB_WC_SUCCESS;
775 			break;
776 		case T4_ERR_STAG:
777 			wc->status = IB_WC_LOC_ACCESS_ERR;
778 			break;
779 		case T4_ERR_PDID:
780 			wc->status = IB_WC_LOC_PROT_ERR;
781 			break;
782 		case T4_ERR_QPID:
783 		case T4_ERR_ACCESS:
784 			wc->status = IB_WC_LOC_ACCESS_ERR;
785 			break;
786 		case T4_ERR_WRAP:
787 			wc->status = IB_WC_GENERAL_ERR;
788 			break;
789 		case T4_ERR_BOUND:
790 			wc->status = IB_WC_LOC_LEN_ERR;
791 			break;
792 		case T4_ERR_INVALIDATE_SHARED_MR:
793 		case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
794 			wc->status = IB_WC_MW_BIND_ERR;
795 			break;
796 		case T4_ERR_CRC:
797 		case T4_ERR_MARKER:
798 		case T4_ERR_PDU_LEN_ERR:
799 		case T4_ERR_OUT_OF_RQE:
800 		case T4_ERR_DDP_VERSION:
801 		case T4_ERR_RDMA_VERSION:
802 		case T4_ERR_DDP_QUEUE_NUM:
803 		case T4_ERR_MSN:
804 		case T4_ERR_TBIT:
805 		case T4_ERR_MO:
806 		case T4_ERR_MSN_RANGE:
807 		case T4_ERR_IRD_OVERFLOW:
808 		case T4_ERR_OPCODE:
809 		case T4_ERR_INTERNAL_ERR:
810 			wc->status = IB_WC_FATAL_ERR;
811 			break;
812 		case T4_ERR_SWFLUSH:
813 			wc->status = IB_WC_WR_FLUSH_ERR;
814 			break;
815 		default:
816 			pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n",
817 			       CQE_STATUS(&cqe), CQE_QPID(&cqe));
818 			wc->status = IB_WC_FATAL_ERR;
819 		}
820 	}
821 out:
822 	if (wq)
823 		spin_unlock(&qhp->lock);
824 	return ret;
825 }
826 
827 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
828 {
829 	struct c4iw_cq *chp;
830 	unsigned long flags;
831 	int npolled;
832 	int err = 0;
833 
834 	chp = to_c4iw_cq(ibcq);
835 
836 	spin_lock_irqsave(&chp->lock, flags);
837 	for (npolled = 0; npolled < num_entries; ++npolled) {
838 		do {
839 			err = c4iw_poll_cq_one(chp, wc + npolled);
840 		} while (err == -EAGAIN);
841 		if (err)
842 			break;
843 	}
844 	spin_unlock_irqrestore(&chp->lock, flags);
845 	return !err || err == -ENODATA ? npolled : err;
846 }
847 
848 int c4iw_destroy_cq(struct ib_cq *ib_cq)
849 {
850 	struct c4iw_cq *chp;
851 	struct c4iw_ucontext *ucontext;
852 
853 	pr_debug("ib_cq %p\n", ib_cq);
854 	chp = to_c4iw_cq(ib_cq);
855 
856 	remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
857 	atomic_dec(&chp->refcnt);
858 	wait_event(chp->wait, !atomic_read(&chp->refcnt));
859 
860 	ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context)
861 				  : NULL;
862 	destroy_cq(&chp->rhp->rdev, &chp->cq,
863 		   ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx,
864 		   chp->destroy_skb, chp->wr_waitp);
865 	c4iw_put_wr_wait(chp->wr_waitp);
866 	kfree(chp);
867 	return 0;
868 }
869 
870 struct ib_cq *c4iw_create_cq(struct ib_device *ibdev,
871 			     const struct ib_cq_init_attr *attr,
872 			     struct ib_ucontext *ib_context,
873 			     struct ib_udata *udata)
874 {
875 	int entries = attr->cqe;
876 	int vector = attr->comp_vector;
877 	struct c4iw_dev *rhp;
878 	struct c4iw_cq *chp;
879 	struct c4iw_create_cq_resp uresp;
880 	struct c4iw_ucontext *ucontext = NULL;
881 	int ret, wr_len;
882 	size_t memsize, hwentries;
883 	struct c4iw_mm_entry *mm, *mm2;
884 
885 	pr_debug("ib_dev %p entries %d\n", ibdev, entries);
886 	if (attr->flags)
887 		return ERR_PTR(-EINVAL);
888 
889 	rhp = to_c4iw_dev(ibdev);
890 
891 	if (vector >= rhp->rdev.lldi.nciq)
892 		return ERR_PTR(-EINVAL);
893 
894 	chp = kzalloc(sizeof(*chp), GFP_KERNEL);
895 	if (!chp)
896 		return ERR_PTR(-ENOMEM);
897 	chp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL);
898 	if (!chp->wr_waitp) {
899 		ret = -ENOMEM;
900 		goto err_free_chp;
901 	}
902 	c4iw_init_wr_wait(chp->wr_waitp);
903 
904 	wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res);
905 	chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL);
906 	if (!chp->destroy_skb) {
907 		ret = -ENOMEM;
908 		goto err_free_wr_wait;
909 	}
910 
911 	if (ib_context)
912 		ucontext = to_c4iw_ucontext(ib_context);
913 
914 	/* account for the status page. */
915 	entries++;
916 
917 	/* IQ needs one extra entry to differentiate full vs empty. */
918 	entries++;
919 
920 	/*
921 	 * entries must be multiple of 16 for HW.
922 	 */
923 	entries = roundup(entries, 16);
924 
925 	/*
926 	 * Make actual HW queue 2x to avoid cdix_inc overflows.
927 	 */
928 	hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size);
929 
930 	/*
931 	 * Make HW queue at least 64 entries so GTS updates aren't too
932 	 * frequent.
933 	 */
934 	if (hwentries < 64)
935 		hwentries = 64;
936 
937 	memsize = hwentries * sizeof *chp->cq.queue;
938 
939 	/*
940 	 * memsize must be a multiple of the page size if its a user cq.
941 	 */
942 	if (ucontext)
943 		memsize = roundup(memsize, PAGE_SIZE);
944 	chp->cq.size = hwentries;
945 	chp->cq.memsize = memsize;
946 	chp->cq.vector = vector;
947 
948 	ret = create_cq(&rhp->rdev, &chp->cq,
949 			ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
950 			chp->wr_waitp);
951 	if (ret)
952 		goto err_free_skb;
953 
954 	chp->rhp = rhp;
955 	chp->cq.size--;				/* status page */
956 	chp->ibcq.cqe = entries - 2;
957 	spin_lock_init(&chp->lock);
958 	spin_lock_init(&chp->comp_handler_lock);
959 	atomic_set(&chp->refcnt, 1);
960 	init_waitqueue_head(&chp->wait);
961 	ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid);
962 	if (ret)
963 		goto err_destroy_cq;
964 
965 	if (ucontext) {
966 		ret = -ENOMEM;
967 		mm = kmalloc(sizeof *mm, GFP_KERNEL);
968 		if (!mm)
969 			goto err_remove_handle;
970 		mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
971 		if (!mm2)
972 			goto err_free_mm;
973 
974 		uresp.qid_mask = rhp->rdev.cqmask;
975 		uresp.cqid = chp->cq.cqid;
976 		uresp.size = chp->cq.size;
977 		uresp.memsize = chp->cq.memsize;
978 		spin_lock(&ucontext->mmap_lock);
979 		uresp.key = ucontext->key;
980 		ucontext->key += PAGE_SIZE;
981 		uresp.gts_key = ucontext->key;
982 		ucontext->key += PAGE_SIZE;
983 		spin_unlock(&ucontext->mmap_lock);
984 		ret = ib_copy_to_udata(udata, &uresp,
985 				       sizeof(uresp) - sizeof(uresp.reserved));
986 		if (ret)
987 			goto err_free_mm2;
988 
989 		mm->key = uresp.key;
990 		mm->addr = virt_to_phys(chp->cq.queue);
991 		mm->len = chp->cq.memsize;
992 		insert_mmap(ucontext, mm);
993 
994 		mm2->key = uresp.gts_key;
995 		mm2->addr = chp->cq.bar2_pa;
996 		mm2->len = PAGE_SIZE;
997 		insert_mmap(ucontext, mm2);
998 	}
999 	pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
1000 		 chp->cq.cqid, chp, chp->cq.size,
1001 		 chp->cq.memsize, (unsigned long long)chp->cq.dma_addr);
1002 	return &chp->ibcq;
1003 err_free_mm2:
1004 	kfree(mm2);
1005 err_free_mm:
1006 	kfree(mm);
1007 err_remove_handle:
1008 	remove_handle(rhp, &rhp->cqidr, chp->cq.cqid);
1009 err_destroy_cq:
1010 	destroy_cq(&chp->rhp->rdev, &chp->cq,
1011 		   ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
1012 		   chp->destroy_skb, chp->wr_waitp);
1013 err_free_skb:
1014 	kfree_skb(chp->destroy_skb);
1015 err_free_wr_wait:
1016 	c4iw_put_wr_wait(chp->wr_waitp);
1017 err_free_chp:
1018 	kfree(chp);
1019 	return ERR_PTR(ret);
1020 }
1021 
1022 int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
1023 {
1024 	return -ENOSYS;
1025 }
1026 
1027 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
1028 {
1029 	struct c4iw_cq *chp;
1030 	int ret = 0;
1031 	unsigned long flag;
1032 
1033 	chp = to_c4iw_cq(ibcq);
1034 	spin_lock_irqsave(&chp->lock, flag);
1035 	t4_arm_cq(&chp->cq,
1036 		  (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
1037 	if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1038 		ret = t4_cq_notempty(&chp->cq);
1039 	spin_unlock_irqrestore(&chp->lock, flag);
1040 	return ret;
1041 }
1042