1 /* 2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/uverbs_ioctl.h> 34 35 #include "iw_cxgb4.h" 36 37 static void destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq, 38 struct c4iw_dev_ucontext *uctx, struct sk_buff *skb, 39 struct c4iw_wr_wait *wr_waitp) 40 { 41 struct fw_ri_res_wr *res_wr; 42 struct fw_ri_res *res; 43 int wr_len; 44 45 wr_len = sizeof(*res_wr) + sizeof(*res); 46 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 47 48 res_wr = __skb_put_zero(skb, wr_len); 49 res_wr->op_nres = cpu_to_be32( 50 FW_WR_OP_V(FW_RI_RES_WR) | 51 FW_RI_RES_WR_NRES_V(1) | 52 FW_WR_COMPL_F); 53 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16)); 54 res_wr->cookie = (uintptr_t)wr_waitp; 55 res = res_wr->res; 56 res->u.cq.restype = FW_RI_RES_TYPE_CQ; 57 res->u.cq.op = FW_RI_RES_OP_RESET; 58 res->u.cq.iqid = cpu_to_be32(cq->cqid); 59 60 c4iw_init_wr_wait(wr_waitp); 61 c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__); 62 63 kfree(cq->sw_queue); 64 dma_free_coherent(&(rdev->lldi.pdev->dev), 65 cq->memsize, cq->queue, 66 dma_unmap_addr(cq, mapping)); 67 c4iw_put_cqid(rdev, cq->cqid, uctx); 68 } 69 70 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq, 71 struct c4iw_dev_ucontext *uctx, 72 struct c4iw_wr_wait *wr_waitp) 73 { 74 struct fw_ri_res_wr *res_wr; 75 struct fw_ri_res *res; 76 int wr_len; 77 int user = (uctx != &rdev->uctx); 78 int ret; 79 struct sk_buff *skb; 80 struct c4iw_ucontext *ucontext = NULL; 81 82 if (user) 83 ucontext = container_of(uctx, struct c4iw_ucontext, uctx); 84 85 cq->cqid = c4iw_get_cqid(rdev, uctx); 86 if (!cq->cqid) { 87 ret = -ENOMEM; 88 goto err1; 89 } 90 91 if (!user) { 92 cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL); 93 if (!cq->sw_queue) { 94 ret = -ENOMEM; 95 goto err2; 96 } 97 } 98 cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize, 99 &cq->dma_addr, GFP_KERNEL); 100 if (!cq->queue) { 101 ret = -ENOMEM; 102 goto err3; 103 } 104 dma_unmap_addr_set(cq, mapping, cq->dma_addr); 105 106 if (user && ucontext->is_32b_cqe) { 107 cq->qp_errp = &((struct t4_status_page *) 108 ((u8 *)cq->queue + (cq->size - 1) * 109 (sizeof(*cq->queue) / 2)))->qp_err; 110 } else { 111 cq->qp_errp = &((struct t4_status_page *) 112 ((u8 *)cq->queue + (cq->size - 1) * 113 sizeof(*cq->queue)))->qp_err; 114 } 115 116 /* build fw_ri_res_wr */ 117 wr_len = sizeof(*res_wr) + sizeof(*res); 118 119 skb = alloc_skb(wr_len, GFP_KERNEL); 120 if (!skb) { 121 ret = -ENOMEM; 122 goto err4; 123 } 124 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 125 126 res_wr = __skb_put_zero(skb, wr_len); 127 res_wr->op_nres = cpu_to_be32( 128 FW_WR_OP_V(FW_RI_RES_WR) | 129 FW_RI_RES_WR_NRES_V(1) | 130 FW_WR_COMPL_F); 131 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16)); 132 res_wr->cookie = (uintptr_t)wr_waitp; 133 res = res_wr->res; 134 res->u.cq.restype = FW_RI_RES_TYPE_CQ; 135 res->u.cq.op = FW_RI_RES_OP_WRITE; 136 res->u.cq.iqid = cpu_to_be32(cq->cqid); 137 res->u.cq.iqandst_to_iqandstindex = cpu_to_be32( 138 FW_RI_RES_WR_IQANUS_V(0) | 139 FW_RI_RES_WR_IQANUD_V(1) | 140 FW_RI_RES_WR_IQANDST_F | 141 FW_RI_RES_WR_IQANDSTINDEX_V( 142 rdev->lldi.ciq_ids[cq->vector])); 143 res->u.cq.iqdroprss_to_iqesize = cpu_to_be16( 144 FW_RI_RES_WR_IQDROPRSS_F | 145 FW_RI_RES_WR_IQPCIECH_V(2) | 146 FW_RI_RES_WR_IQINTCNTTHRESH_V(0) | 147 FW_RI_RES_WR_IQO_F | 148 ((user && ucontext->is_32b_cqe) ? 149 FW_RI_RES_WR_IQESIZE_V(1) : 150 FW_RI_RES_WR_IQESIZE_V(2))); 151 res->u.cq.iqsize = cpu_to_be16(cq->size); 152 res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr); 153 154 c4iw_init_wr_wait(wr_waitp); 155 ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__); 156 if (ret) 157 goto err4; 158 159 cq->gen = 1; 160 cq->gts = rdev->lldi.gts_reg; 161 cq->rdev = rdev; 162 163 cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, CXGB4_BAR2_QTYPE_INGRESS, 164 &cq->bar2_qid, 165 user ? &cq->bar2_pa : NULL); 166 if (user && !cq->bar2_pa) { 167 pr_warn("%s: cqid %u not in BAR2 range\n", 168 pci_name(rdev->lldi.pdev), cq->cqid); 169 ret = -EINVAL; 170 goto err4; 171 } 172 return 0; 173 err4: 174 dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue, 175 dma_unmap_addr(cq, mapping)); 176 err3: 177 kfree(cq->sw_queue); 178 err2: 179 c4iw_put_cqid(rdev, cq->cqid, uctx); 180 err1: 181 return ret; 182 } 183 184 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq, u32 srqidx) 185 { 186 struct t4_cqe cqe; 187 188 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n", 189 wq, cq, cq->sw_cidx, cq->sw_pidx); 190 memset(&cqe, 0, sizeof(cqe)); 191 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) | 192 CQE_OPCODE_V(FW_RI_SEND) | 193 CQE_TYPE_V(0) | 194 CQE_SWCQE_V(1) | 195 CQE_QPID_V(wq->sq.qid)); 196 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen)); 197 if (srqidx) 198 cqe.u.srcqe.abs_rqe_idx = cpu_to_be32(srqidx); 199 cq->sw_queue[cq->sw_pidx] = cqe; 200 t4_swcq_produce(cq); 201 } 202 203 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count) 204 { 205 int flushed = 0; 206 int in_use = wq->rq.in_use - count; 207 208 pr_debug("wq %p cq %p rq.in_use %u skip count %u\n", 209 wq, cq, wq->rq.in_use, count); 210 while (in_use--) { 211 insert_recv_cqe(wq, cq, 0); 212 flushed++; 213 } 214 return flushed; 215 } 216 217 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq, 218 struct t4_swsqe *swcqe) 219 { 220 struct t4_cqe cqe; 221 222 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n", 223 wq, cq, cq->sw_cidx, cq->sw_pidx); 224 memset(&cqe, 0, sizeof(cqe)); 225 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) | 226 CQE_OPCODE_V(swcqe->opcode) | 227 CQE_TYPE_V(1) | 228 CQE_SWCQE_V(1) | 229 CQE_QPID_V(wq->sq.qid)); 230 CQE_WRID_SQ_IDX(&cqe) = swcqe->idx; 231 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen)); 232 cq->sw_queue[cq->sw_pidx] = cqe; 233 t4_swcq_produce(cq); 234 } 235 236 static void advance_oldest_read(struct t4_wq *wq); 237 238 int c4iw_flush_sq(struct c4iw_qp *qhp) 239 { 240 int flushed = 0; 241 struct t4_wq *wq = &qhp->wq; 242 struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq); 243 struct t4_cq *cq = &chp->cq; 244 int idx; 245 struct t4_swsqe *swsqe; 246 247 if (wq->sq.flush_cidx == -1) 248 wq->sq.flush_cidx = wq->sq.cidx; 249 idx = wq->sq.flush_cidx; 250 while (idx != wq->sq.pidx) { 251 swsqe = &wq->sq.sw_sq[idx]; 252 swsqe->flushed = 1; 253 insert_sq_cqe(wq, cq, swsqe); 254 if (wq->sq.oldest_read == swsqe) { 255 advance_oldest_read(wq); 256 } 257 flushed++; 258 if (++idx == wq->sq.size) 259 idx = 0; 260 } 261 wq->sq.flush_cidx += flushed; 262 if (wq->sq.flush_cidx >= wq->sq.size) 263 wq->sq.flush_cidx -= wq->sq.size; 264 return flushed; 265 } 266 267 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq) 268 { 269 struct t4_swsqe *swsqe; 270 int cidx; 271 272 if (wq->sq.flush_cidx == -1) 273 wq->sq.flush_cidx = wq->sq.cidx; 274 cidx = wq->sq.flush_cidx; 275 276 while (cidx != wq->sq.pidx) { 277 swsqe = &wq->sq.sw_sq[cidx]; 278 if (!swsqe->signaled) { 279 if (++cidx == wq->sq.size) 280 cidx = 0; 281 } else if (swsqe->complete) { 282 283 /* 284 * Insert this completed cqe into the swcq. 285 */ 286 pr_debug("moving cqe into swcq sq idx %u cq idx %u\n", 287 cidx, cq->sw_pidx); 288 swsqe->cqe.header |= htonl(CQE_SWCQE_V(1)); 289 cq->sw_queue[cq->sw_pidx] = swsqe->cqe; 290 t4_swcq_produce(cq); 291 swsqe->flushed = 1; 292 if (++cidx == wq->sq.size) 293 cidx = 0; 294 wq->sq.flush_cidx = cidx; 295 } else 296 break; 297 } 298 } 299 300 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe, 301 struct t4_cqe *read_cqe) 302 { 303 read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx; 304 read_cqe->len = htonl(wq->sq.oldest_read->read_len); 305 read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) | 306 CQE_SWCQE_V(SW_CQE(hw_cqe)) | 307 CQE_OPCODE_V(FW_RI_READ_REQ) | 308 CQE_TYPE_V(1)); 309 read_cqe->bits_type_ts = hw_cqe->bits_type_ts; 310 } 311 312 static void advance_oldest_read(struct t4_wq *wq) 313 { 314 315 u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1; 316 317 if (rptr == wq->sq.size) 318 rptr = 0; 319 while (rptr != wq->sq.pidx) { 320 wq->sq.oldest_read = &wq->sq.sw_sq[rptr]; 321 322 if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ) 323 return; 324 if (++rptr == wq->sq.size) 325 rptr = 0; 326 } 327 wq->sq.oldest_read = NULL; 328 } 329 330 /* 331 * Move all CQEs from the HWCQ into the SWCQ. 332 * Deal with out-of-order and/or completions that complete 333 * prior unsignalled WRs. 334 */ 335 void c4iw_flush_hw_cq(struct c4iw_cq *chp, struct c4iw_qp *flush_qhp) 336 { 337 struct t4_cqe *hw_cqe, *swcqe, read_cqe; 338 struct c4iw_qp *qhp; 339 struct t4_swsqe *swsqe; 340 int ret; 341 342 pr_debug("cqid 0x%x\n", chp->cq.cqid); 343 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); 344 345 /* 346 * This logic is similar to poll_cq(), but not quite the same 347 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but 348 * also do any translation magic that poll_cq() normally does. 349 */ 350 while (!ret) { 351 qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe)); 352 353 /* 354 * drop CQEs with no associated QP 355 */ 356 if (qhp == NULL) 357 goto next_cqe; 358 359 if (flush_qhp != qhp) { 360 spin_lock(&qhp->lock); 361 362 if (qhp->wq.flushed == 1) 363 goto next_cqe; 364 } 365 366 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) 367 goto next_cqe; 368 369 if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) { 370 371 /* If we have reached here because of async 372 * event or other error, and have egress error 373 * then drop 374 */ 375 if (CQE_TYPE(hw_cqe) == 1) 376 goto next_cqe; 377 378 /* drop peer2peer RTR reads. 379 */ 380 if (CQE_WRID_STAG(hw_cqe) == 1) 381 goto next_cqe; 382 383 /* 384 * Eat completions for unsignaled read WRs. 385 */ 386 if (!qhp->wq.sq.oldest_read->signaled) { 387 advance_oldest_read(&qhp->wq); 388 goto next_cqe; 389 } 390 391 /* 392 * Don't write to the HWCQ, create a new read req CQE 393 * in local memory and move it into the swcq. 394 */ 395 create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe); 396 hw_cqe = &read_cqe; 397 advance_oldest_read(&qhp->wq); 398 } 399 400 /* if its a SQ completion, then do the magic to move all the 401 * unsignaled and now in-order completions into the swcq. 402 */ 403 if (SQ_TYPE(hw_cqe)) { 404 swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)]; 405 swsqe->cqe = *hw_cqe; 406 swsqe->complete = 1; 407 flush_completed_wrs(&qhp->wq, &chp->cq); 408 } else { 409 swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx]; 410 *swcqe = *hw_cqe; 411 swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1)); 412 t4_swcq_produce(&chp->cq); 413 } 414 next_cqe: 415 t4_hwcq_consume(&chp->cq); 416 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); 417 if (qhp && flush_qhp != qhp) 418 spin_unlock(&qhp->lock); 419 } 420 } 421 422 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq) 423 { 424 if (DRAIN_CQE(cqe)) { 425 WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq->sq.qid); 426 return 0; 427 } 428 429 if (CQE_OPCODE(cqe) == FW_RI_TERMINATE) 430 return 0; 431 432 if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe)) 433 return 0; 434 435 if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe)) 436 return 0; 437 438 if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq)) 439 return 0; 440 return 1; 441 } 442 443 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count) 444 { 445 struct t4_cqe *cqe; 446 u32 ptr; 447 448 *count = 0; 449 pr_debug("count zero %d\n", *count); 450 ptr = cq->sw_cidx; 451 while (ptr != cq->sw_pidx) { 452 cqe = &cq->sw_queue[ptr]; 453 if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) && 454 (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq)) 455 (*count)++; 456 if (++ptr == cq->size) 457 ptr = 0; 458 } 459 pr_debug("cq %p count %d\n", cq, *count); 460 } 461 462 static void post_pending_srq_wrs(struct t4_srq *srq) 463 { 464 struct t4_srq_pending_wr *pwr; 465 u16 idx = 0; 466 467 while (srq->pending_in_use) { 468 pwr = &srq->pending_wrs[srq->pending_cidx]; 469 srq->sw_rq[srq->pidx].wr_id = pwr->wr_id; 470 srq->sw_rq[srq->pidx].valid = 1; 471 472 pr_debug("%s posting pending cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n", 473 __func__, 474 srq->cidx, srq->pidx, srq->wq_pidx, 475 srq->in_use, srq->size, 476 (unsigned long long)pwr->wr_id); 477 478 c4iw_copy_wr_to_srq(srq, &pwr->wqe, pwr->len16); 479 t4_srq_consume_pending_wr(srq); 480 t4_srq_produce(srq, pwr->len16); 481 idx += DIV_ROUND_UP(pwr->len16 * 16, T4_EQ_ENTRY_SIZE); 482 } 483 484 if (idx) { 485 t4_ring_srq_db(srq, idx, pwr->len16, &pwr->wqe); 486 srq->queue[srq->size].status.host_wq_pidx = 487 srq->wq_pidx; 488 } 489 } 490 491 static u64 reap_srq_cqe(struct t4_cqe *hw_cqe, struct t4_srq *srq) 492 { 493 int rel_idx = CQE_ABS_RQE_IDX(hw_cqe) - srq->rqt_abs_idx; 494 u64 wr_id; 495 496 srq->sw_rq[rel_idx].valid = 0; 497 wr_id = srq->sw_rq[rel_idx].wr_id; 498 499 if (rel_idx == srq->cidx) { 500 pr_debug("%s in order cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n", 501 __func__, rel_idx, srq->cidx, srq->pidx, 502 srq->wq_pidx, srq->in_use, srq->size, 503 (unsigned long long)srq->sw_rq[rel_idx].wr_id); 504 t4_srq_consume(srq); 505 while (srq->ooo_count && !srq->sw_rq[srq->cidx].valid) { 506 pr_debug("%s eat ooo cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n", 507 __func__, srq->cidx, srq->pidx, 508 srq->wq_pidx, srq->in_use, 509 srq->size, srq->ooo_count, 510 (unsigned long long) 511 srq->sw_rq[srq->cidx].wr_id); 512 t4_srq_consume_ooo(srq); 513 } 514 if (srq->ooo_count == 0 && srq->pending_in_use) 515 post_pending_srq_wrs(srq); 516 } else { 517 pr_debug("%s ooo cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n", 518 __func__, rel_idx, srq->cidx, 519 srq->pidx, srq->wq_pidx, 520 srq->in_use, srq->size, 521 srq->ooo_count, 522 (unsigned long long)srq->sw_rq[rel_idx].wr_id); 523 t4_srq_produce_ooo(srq); 524 } 525 return wr_id; 526 } 527 528 /* 529 * poll_cq 530 * 531 * Caller must: 532 * check the validity of the first CQE, 533 * supply the wq assicated with the qpid. 534 * 535 * credit: cq credit to return to sge. 536 * cqe_flushed: 1 iff the CQE is flushed. 537 * cqe: copy of the polled CQE. 538 * 539 * return value: 540 * 0 CQE returned ok. 541 * -EAGAIN CQE skipped, try again. 542 * -EOVERFLOW CQ overflow detected. 543 */ 544 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe, 545 u8 *cqe_flushed, u64 *cookie, u32 *credit, 546 struct t4_srq *srq) 547 { 548 int ret = 0; 549 struct t4_cqe *hw_cqe, read_cqe; 550 551 *cqe_flushed = 0; 552 *credit = 0; 553 ret = t4_next_cqe(cq, &hw_cqe); 554 if (ret) 555 return ret; 556 557 pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n", 558 CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe), 559 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe), 560 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe), 561 CQE_WRID_LOW(hw_cqe)); 562 563 /* 564 * skip cqe's not affiliated with a QP. 565 */ 566 if (wq == NULL) { 567 ret = -EAGAIN; 568 goto skip_cqe; 569 } 570 571 /* 572 * skip hw cqe's if the wq is flushed. 573 */ 574 if (wq->flushed && !SW_CQE(hw_cqe)) { 575 ret = -EAGAIN; 576 goto skip_cqe; 577 } 578 579 /* 580 * skip TERMINATE cqes... 581 */ 582 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) { 583 ret = -EAGAIN; 584 goto skip_cqe; 585 } 586 587 /* 588 * Special cqe for drain WR completions... 589 */ 590 if (DRAIN_CQE(hw_cqe)) { 591 *cookie = CQE_DRAIN_COOKIE(hw_cqe); 592 *cqe = *hw_cqe; 593 goto skip_cqe; 594 } 595 596 /* 597 * Gotta tweak READ completions: 598 * 1) the cqe doesn't contain the sq_wptr from the wr. 599 * 2) opcode not reflected from the wr. 600 * 3) read_len not reflected from the wr. 601 * 4) cq_type is RQ_TYPE not SQ_TYPE. 602 */ 603 if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) { 604 605 /* If we have reached here because of async 606 * event or other error, and have egress error 607 * then drop 608 */ 609 if (CQE_TYPE(hw_cqe) == 1) { 610 if (CQE_STATUS(hw_cqe)) 611 t4_set_wq_in_error(wq, 0); 612 ret = -EAGAIN; 613 goto skip_cqe; 614 } 615 616 /* If this is an unsolicited read response, then the read 617 * was generated by the kernel driver as part of peer-2-peer 618 * connection setup. So ignore the completion. 619 */ 620 if (CQE_WRID_STAG(hw_cqe) == 1) { 621 if (CQE_STATUS(hw_cqe)) 622 t4_set_wq_in_error(wq, 0); 623 ret = -EAGAIN; 624 goto skip_cqe; 625 } 626 627 /* 628 * Eat completions for unsignaled read WRs. 629 */ 630 if (!wq->sq.oldest_read->signaled) { 631 advance_oldest_read(wq); 632 ret = -EAGAIN; 633 goto skip_cqe; 634 } 635 636 /* 637 * Don't write to the HWCQ, so create a new read req CQE 638 * in local memory. 639 */ 640 create_read_req_cqe(wq, hw_cqe, &read_cqe); 641 hw_cqe = &read_cqe; 642 advance_oldest_read(wq); 643 } 644 645 if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) { 646 *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH); 647 t4_set_wq_in_error(wq, 0); 648 } 649 650 /* 651 * RECV completion. 652 */ 653 if (RQ_TYPE(hw_cqe)) { 654 655 /* 656 * HW only validates 4 bits of MSN. So we must validate that 657 * the MSN in the SEND is the next expected MSN. If its not, 658 * then we complete this with T4_ERR_MSN and mark the wq in 659 * error. 660 */ 661 if (unlikely(!CQE_STATUS(hw_cqe) && 662 CQE_WRID_MSN(hw_cqe) != wq->rq.msn)) { 663 t4_set_wq_in_error(wq, 0); 664 hw_cqe->header |= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN)); 665 } 666 goto proc_cqe; 667 } 668 669 /* 670 * If we get here its a send completion. 671 * 672 * Handle out of order completion. These get stuffed 673 * in the SW SQ. Then the SW SQ is walked to move any 674 * now in-order completions into the SW CQ. This handles 675 * 2 cases: 676 * 1) reaping unsignaled WRs when the first subsequent 677 * signaled WR is completed. 678 * 2) out of order read completions. 679 */ 680 if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) { 681 struct t4_swsqe *swsqe; 682 683 pr_debug("out of order completion going in sw_sq at idx %u\n", 684 CQE_WRID_SQ_IDX(hw_cqe)); 685 swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)]; 686 swsqe->cqe = *hw_cqe; 687 swsqe->complete = 1; 688 ret = -EAGAIN; 689 goto flush_wq; 690 } 691 692 proc_cqe: 693 *cqe = *hw_cqe; 694 695 /* 696 * Reap the associated WR(s) that are freed up with this 697 * completion. 698 */ 699 if (SQ_TYPE(hw_cqe)) { 700 int idx = CQE_WRID_SQ_IDX(hw_cqe); 701 702 /* 703 * Account for any unsignaled completions completed by 704 * this signaled completion. In this case, cidx points 705 * to the first unsignaled one, and idx points to the 706 * signaled one. So adjust in_use based on this delta. 707 * if this is not completing any unsigned wrs, then the 708 * delta will be 0. Handle wrapping also! 709 */ 710 if (idx < wq->sq.cidx) 711 wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx; 712 else 713 wq->sq.in_use -= idx - wq->sq.cidx; 714 715 wq->sq.cidx = (uint16_t)idx; 716 pr_debug("completing sq idx %u\n", wq->sq.cidx); 717 *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id; 718 if (c4iw_wr_log) 719 c4iw_log_wr_stats(wq, hw_cqe); 720 t4_sq_consume(wq); 721 } else { 722 if (!srq) { 723 pr_debug("completing rq idx %u\n", wq->rq.cidx); 724 *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id; 725 if (c4iw_wr_log) 726 c4iw_log_wr_stats(wq, hw_cqe); 727 t4_rq_consume(wq); 728 } else { 729 *cookie = reap_srq_cqe(hw_cqe, srq); 730 } 731 wq->rq.msn++; 732 goto skip_cqe; 733 } 734 735 flush_wq: 736 /* 737 * Flush any completed cqes that are now in-order. 738 */ 739 flush_completed_wrs(wq, cq); 740 741 skip_cqe: 742 if (SW_CQE(hw_cqe)) { 743 pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n", 744 cq, cq->cqid, cq->sw_cidx); 745 t4_swcq_consume(cq); 746 } else { 747 pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n", 748 cq, cq->cqid, cq->cidx); 749 t4_hwcq_consume(cq); 750 } 751 return ret; 752 } 753 754 static int __c4iw_poll_cq_one(struct c4iw_cq *chp, struct c4iw_qp *qhp, 755 struct ib_wc *wc, struct c4iw_srq *srq) 756 { 757 struct t4_cqe cqe; 758 struct t4_wq *wq = qhp ? &qhp->wq : NULL; 759 u32 credit = 0; 760 u8 cqe_flushed; 761 u64 cookie = 0; 762 int ret; 763 764 ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit, 765 srq ? &srq->wq : NULL); 766 if (ret) 767 goto out; 768 769 wc->wr_id = cookie; 770 wc->qp = &qhp->ibqp; 771 wc->vendor_err = CQE_STATUS(&cqe); 772 wc->wc_flags = 0; 773 774 /* 775 * Simulate a SRQ_LIMIT_REACHED HW notification if required. 776 */ 777 if (srq && !(srq->flags & T4_SRQ_LIMIT_SUPPORT) && srq->armed && 778 srq->wq.in_use < srq->srq_limit) 779 c4iw_dispatch_srq_limit_reached_event(srq); 780 781 pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n", 782 CQE_QPID(&cqe), 783 CQE_TYPE(&cqe), CQE_OPCODE(&cqe), 784 CQE_STATUS(&cqe), CQE_LEN(&cqe), 785 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), 786 (unsigned long long)cookie); 787 788 if (CQE_TYPE(&cqe) == 0) { 789 if (!CQE_STATUS(&cqe)) 790 wc->byte_len = CQE_LEN(&cqe); 791 else 792 wc->byte_len = 0; 793 794 switch (CQE_OPCODE(&cqe)) { 795 case FW_RI_SEND: 796 wc->opcode = IB_WC_RECV; 797 break; 798 case FW_RI_SEND_WITH_INV: 799 case FW_RI_SEND_WITH_SE_INV: 800 wc->opcode = IB_WC_RECV; 801 wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe); 802 wc->wc_flags |= IB_WC_WITH_INVALIDATE; 803 c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey); 804 break; 805 case FW_RI_WRITE_IMMEDIATE: 806 wc->opcode = IB_WC_RECV_RDMA_WITH_IMM; 807 wc->ex.imm_data = CQE_IMM_DATA(&cqe); 808 wc->wc_flags |= IB_WC_WITH_IMM; 809 break; 810 default: 811 pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n", 812 CQE_OPCODE(&cqe), CQE_QPID(&cqe)); 813 ret = -EINVAL; 814 goto out; 815 } 816 } else { 817 switch (CQE_OPCODE(&cqe)) { 818 case FW_RI_WRITE_IMMEDIATE: 819 case FW_RI_RDMA_WRITE: 820 wc->opcode = IB_WC_RDMA_WRITE; 821 break; 822 case FW_RI_READ_REQ: 823 wc->opcode = IB_WC_RDMA_READ; 824 wc->byte_len = CQE_LEN(&cqe); 825 break; 826 case FW_RI_SEND_WITH_INV: 827 case FW_RI_SEND_WITH_SE_INV: 828 wc->opcode = IB_WC_SEND; 829 wc->wc_flags |= IB_WC_WITH_INVALIDATE; 830 break; 831 case FW_RI_SEND: 832 case FW_RI_SEND_WITH_SE: 833 wc->opcode = IB_WC_SEND; 834 break; 835 836 case FW_RI_LOCAL_INV: 837 wc->opcode = IB_WC_LOCAL_INV; 838 break; 839 case FW_RI_FAST_REGISTER: 840 wc->opcode = IB_WC_REG_MR; 841 842 /* Invalidate the MR if the fastreg failed */ 843 if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS) 844 c4iw_invalidate_mr(qhp->rhp, 845 CQE_WRID_FR_STAG(&cqe)); 846 break; 847 default: 848 pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n", 849 CQE_OPCODE(&cqe), CQE_QPID(&cqe)); 850 ret = -EINVAL; 851 goto out; 852 } 853 } 854 855 if (cqe_flushed) 856 wc->status = IB_WC_WR_FLUSH_ERR; 857 else { 858 859 switch (CQE_STATUS(&cqe)) { 860 case T4_ERR_SUCCESS: 861 wc->status = IB_WC_SUCCESS; 862 break; 863 case T4_ERR_STAG: 864 wc->status = IB_WC_LOC_ACCESS_ERR; 865 break; 866 case T4_ERR_PDID: 867 wc->status = IB_WC_LOC_PROT_ERR; 868 break; 869 case T4_ERR_QPID: 870 case T4_ERR_ACCESS: 871 wc->status = IB_WC_LOC_ACCESS_ERR; 872 break; 873 case T4_ERR_WRAP: 874 wc->status = IB_WC_GENERAL_ERR; 875 break; 876 case T4_ERR_BOUND: 877 wc->status = IB_WC_LOC_LEN_ERR; 878 break; 879 case T4_ERR_INVALIDATE_SHARED_MR: 880 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND: 881 wc->status = IB_WC_MW_BIND_ERR; 882 break; 883 case T4_ERR_CRC: 884 case T4_ERR_MARKER: 885 case T4_ERR_PDU_LEN_ERR: 886 case T4_ERR_OUT_OF_RQE: 887 case T4_ERR_DDP_VERSION: 888 case T4_ERR_RDMA_VERSION: 889 case T4_ERR_DDP_QUEUE_NUM: 890 case T4_ERR_MSN: 891 case T4_ERR_TBIT: 892 case T4_ERR_MO: 893 case T4_ERR_MSN_RANGE: 894 case T4_ERR_IRD_OVERFLOW: 895 case T4_ERR_OPCODE: 896 case T4_ERR_INTERNAL_ERR: 897 wc->status = IB_WC_FATAL_ERR; 898 break; 899 case T4_ERR_SWFLUSH: 900 wc->status = IB_WC_WR_FLUSH_ERR; 901 break; 902 default: 903 pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n", 904 CQE_STATUS(&cqe), CQE_QPID(&cqe)); 905 wc->status = IB_WC_FATAL_ERR; 906 } 907 } 908 out: 909 return ret; 910 } 911 912 /* 913 * Get one cq entry from c4iw and map it to openib. 914 * 915 * Returns: 916 * 0 cqe returned 917 * -ENODATA EMPTY; 918 * -EAGAIN caller must try again 919 * any other -errno fatal error 920 */ 921 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc) 922 { 923 struct c4iw_srq *srq = NULL; 924 struct c4iw_qp *qhp = NULL; 925 struct t4_cqe *rd_cqe; 926 int ret; 927 928 ret = t4_next_cqe(&chp->cq, &rd_cqe); 929 930 if (ret) 931 return ret; 932 933 qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe)); 934 if (qhp) { 935 spin_lock(&qhp->lock); 936 srq = qhp->srq; 937 if (srq) 938 spin_lock(&srq->lock); 939 ret = __c4iw_poll_cq_one(chp, qhp, wc, srq); 940 spin_unlock(&qhp->lock); 941 if (srq) 942 spin_unlock(&srq->lock); 943 } else { 944 ret = __c4iw_poll_cq_one(chp, NULL, wc, NULL); 945 } 946 return ret; 947 } 948 949 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc) 950 { 951 struct c4iw_cq *chp; 952 unsigned long flags; 953 int npolled; 954 int err = 0; 955 956 chp = to_c4iw_cq(ibcq); 957 958 spin_lock_irqsave(&chp->lock, flags); 959 for (npolled = 0; npolled < num_entries; ++npolled) { 960 do { 961 err = c4iw_poll_cq_one(chp, wc + npolled); 962 } while (err == -EAGAIN); 963 if (err) 964 break; 965 } 966 spin_unlock_irqrestore(&chp->lock, flags); 967 return !err || err == -ENODATA ? npolled : err; 968 } 969 970 void c4iw_cq_rem_ref(struct c4iw_cq *chp) 971 { 972 if (refcount_dec_and_test(&chp->refcnt)) 973 complete(&chp->cq_rel_comp); 974 } 975 976 int c4iw_destroy_cq(struct ib_cq *ib_cq, struct ib_udata *udata) 977 { 978 struct c4iw_cq *chp; 979 struct c4iw_ucontext *ucontext; 980 981 pr_debug("ib_cq %p\n", ib_cq); 982 chp = to_c4iw_cq(ib_cq); 983 984 xa_erase_irq(&chp->rhp->cqs, chp->cq.cqid); 985 c4iw_cq_rem_ref(chp); 986 wait_for_completion(&chp->cq_rel_comp); 987 988 ucontext = rdma_udata_to_drv_context(udata, struct c4iw_ucontext, 989 ibucontext); 990 destroy_cq(&chp->rhp->rdev, &chp->cq, 991 ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx, 992 chp->destroy_skb, chp->wr_waitp); 993 c4iw_put_wr_wait(chp->wr_waitp); 994 return 0; 995 } 996 997 int c4iw_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr, 998 struct uverbs_attr_bundle *attrs) 999 { 1000 struct ib_udata *udata = &attrs->driver_udata; 1001 struct ib_device *ibdev = ibcq->device; 1002 int entries = attr->cqe; 1003 int vector = attr->comp_vector; 1004 struct c4iw_dev *rhp = to_c4iw_dev(ibcq->device); 1005 struct c4iw_cq *chp = to_c4iw_cq(ibcq); 1006 struct c4iw_create_cq ucmd; 1007 struct c4iw_create_cq_resp uresp; 1008 int ret, wr_len; 1009 size_t memsize, hwentries; 1010 struct c4iw_mm_entry *mm, *mm2; 1011 struct c4iw_ucontext *ucontext = rdma_udata_to_drv_context( 1012 udata, struct c4iw_ucontext, ibucontext); 1013 1014 pr_debug("ib_dev %p entries %d\n", ibdev, entries); 1015 if (attr->flags) 1016 return -EOPNOTSUPP; 1017 1018 if (entries < 1 || entries > ibdev->attrs.max_cqe) 1019 return -EINVAL; 1020 1021 if (vector >= rhp->rdev.lldi.nciq) 1022 return -EINVAL; 1023 1024 if (udata) { 1025 if (udata->inlen < sizeof(ucmd)) 1026 ucontext->is_32b_cqe = 1; 1027 } 1028 1029 chp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL); 1030 if (!chp->wr_waitp) { 1031 ret = -ENOMEM; 1032 goto err_free_chp; 1033 } 1034 c4iw_init_wr_wait(chp->wr_waitp); 1035 1036 wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res); 1037 chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL); 1038 if (!chp->destroy_skb) { 1039 ret = -ENOMEM; 1040 goto err_free_wr_wait; 1041 } 1042 1043 /* account for the status page. */ 1044 entries++; 1045 1046 /* IQ needs one extra entry to differentiate full vs empty. */ 1047 entries++; 1048 1049 /* 1050 * entries must be multiple of 16 for HW. 1051 */ 1052 entries = roundup(entries, 16); 1053 1054 /* 1055 * Make actual HW queue 2x to avoid cdix_inc overflows. 1056 */ 1057 hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size); 1058 1059 /* 1060 * Make HW queue at least 64 entries so GTS updates aren't too 1061 * frequent. 1062 */ 1063 if (hwentries < 64) 1064 hwentries = 64; 1065 1066 memsize = hwentries * ((ucontext && ucontext->is_32b_cqe) ? 1067 (sizeof(*chp->cq.queue) / 2) : sizeof(*chp->cq.queue)); 1068 1069 /* 1070 * memsize must be a multiple of the page size if its a user cq. 1071 */ 1072 if (udata) 1073 memsize = roundup(memsize, PAGE_SIZE); 1074 1075 chp->cq.size = hwentries; 1076 chp->cq.memsize = memsize; 1077 chp->cq.vector = vector; 1078 1079 ret = create_cq(&rhp->rdev, &chp->cq, 1080 ucontext ? &ucontext->uctx : &rhp->rdev.uctx, 1081 chp->wr_waitp); 1082 if (ret) 1083 goto err_free_skb; 1084 1085 chp->rhp = rhp; 1086 chp->cq.size--; /* status page */ 1087 chp->ibcq.cqe = entries - 2; 1088 spin_lock_init(&chp->lock); 1089 spin_lock_init(&chp->comp_handler_lock); 1090 refcount_set(&chp->refcnt, 1); 1091 init_completion(&chp->cq_rel_comp); 1092 ret = xa_insert_irq(&rhp->cqs, chp->cq.cqid, chp, GFP_KERNEL); 1093 if (ret) 1094 goto err_destroy_cq; 1095 1096 if (ucontext) { 1097 ret = -ENOMEM; 1098 mm = kmalloc(sizeof(*mm), GFP_KERNEL); 1099 if (!mm) 1100 goto err_remove_handle; 1101 mm2 = kmalloc(sizeof(*mm2), GFP_KERNEL); 1102 if (!mm2) 1103 goto err_free_mm; 1104 1105 memset(&uresp, 0, sizeof(uresp)); 1106 uresp.qid_mask = rhp->rdev.cqmask; 1107 uresp.cqid = chp->cq.cqid; 1108 uresp.size = chp->cq.size; 1109 uresp.memsize = chp->cq.memsize; 1110 spin_lock(&ucontext->mmap_lock); 1111 uresp.key = ucontext->key; 1112 ucontext->key += PAGE_SIZE; 1113 uresp.gts_key = ucontext->key; 1114 ucontext->key += PAGE_SIZE; 1115 /* communicate to the userspace that 1116 * kernel driver supports 64B CQE 1117 */ 1118 uresp.flags |= C4IW_64B_CQE; 1119 1120 spin_unlock(&ucontext->mmap_lock); 1121 ret = ib_copy_to_udata(udata, &uresp, 1122 ucontext->is_32b_cqe ? 1123 sizeof(uresp) - sizeof(uresp.flags) : 1124 sizeof(uresp)); 1125 if (ret) 1126 goto err_free_mm2; 1127 1128 mm->key = uresp.key; 1129 mm->addr = 0; 1130 mm->vaddr = chp->cq.queue; 1131 mm->dma_addr = chp->cq.dma_addr; 1132 mm->len = chp->cq.memsize; 1133 insert_flag_to_mmap(&rhp->rdev, mm, mm->addr); 1134 insert_mmap(ucontext, mm); 1135 1136 mm2->key = uresp.gts_key; 1137 mm2->addr = chp->cq.bar2_pa; 1138 mm2->len = PAGE_SIZE; 1139 mm2->vaddr = NULL; 1140 mm2->dma_addr = 0; 1141 insert_flag_to_mmap(&rhp->rdev, mm2, mm2->addr); 1142 insert_mmap(ucontext, mm2); 1143 } 1144 1145 pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr %pad\n", 1146 chp->cq.cqid, chp, chp->cq.size, chp->cq.memsize, 1147 &chp->cq.dma_addr); 1148 return 0; 1149 err_free_mm2: 1150 kfree(mm2); 1151 err_free_mm: 1152 kfree(mm); 1153 err_remove_handle: 1154 xa_erase_irq(&rhp->cqs, chp->cq.cqid); 1155 err_destroy_cq: 1156 destroy_cq(&chp->rhp->rdev, &chp->cq, 1157 ucontext ? &ucontext->uctx : &rhp->rdev.uctx, 1158 chp->destroy_skb, chp->wr_waitp); 1159 err_free_skb: 1160 kfree_skb(chp->destroy_skb); 1161 err_free_wr_wait: 1162 c4iw_put_wr_wait(chp->wr_waitp); 1163 err_free_chp: 1164 return ret; 1165 } 1166 1167 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags) 1168 { 1169 struct c4iw_cq *chp; 1170 int ret = 0; 1171 unsigned long flag; 1172 1173 chp = to_c4iw_cq(ibcq); 1174 spin_lock_irqsave(&chp->lock, flag); 1175 t4_arm_cq(&chp->cq, 1176 (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED); 1177 if (flags & IB_CQ_REPORT_MISSED_EVENTS) 1178 ret = t4_cq_notempty(&chp->cq); 1179 spin_unlock_irqrestore(&chp->lock, flag); 1180 return ret; 1181 } 1182 1183 void c4iw_flush_srqidx(struct c4iw_qp *qhp, u32 srqidx) 1184 { 1185 struct c4iw_cq *rchp = to_c4iw_cq(qhp->ibqp.recv_cq); 1186 unsigned long flag; 1187 1188 /* locking heirarchy: cq lock first, then qp lock. */ 1189 spin_lock_irqsave(&rchp->lock, flag); 1190 spin_lock(&qhp->lock); 1191 1192 /* create a SRQ RECV CQE for srqidx */ 1193 insert_recv_cqe(&qhp->wq, &rchp->cq, srqidx); 1194 1195 spin_unlock(&qhp->lock); 1196 spin_unlock_irqrestore(&rchp->lock, flag); 1197 } 1198