1 /* 2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include "iw_cxgb4.h" 34 35 static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq, 36 struct c4iw_dev_ucontext *uctx) 37 { 38 struct fw_ri_res_wr *res_wr; 39 struct fw_ri_res *res; 40 int wr_len; 41 struct c4iw_wr_wait wr_wait; 42 struct sk_buff *skb; 43 int ret; 44 45 wr_len = sizeof *res_wr + sizeof *res; 46 skb = alloc_skb(wr_len, GFP_KERNEL); 47 if (!skb) 48 return -ENOMEM; 49 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 50 51 res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len); 52 memset(res_wr, 0, wr_len); 53 res_wr->op_nres = cpu_to_be32( 54 FW_WR_OP_V(FW_RI_RES_WR) | 55 FW_RI_RES_WR_NRES_V(1) | 56 FW_WR_COMPL_F); 57 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16)); 58 res_wr->cookie = (uintptr_t)&wr_wait; 59 res = res_wr->res; 60 res->u.cq.restype = FW_RI_RES_TYPE_CQ; 61 res->u.cq.op = FW_RI_RES_OP_RESET; 62 res->u.cq.iqid = cpu_to_be32(cq->cqid); 63 64 c4iw_init_wr_wait(&wr_wait); 65 ret = c4iw_ofld_send(rdev, skb); 66 if (!ret) { 67 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__); 68 } 69 70 kfree(cq->sw_queue); 71 dma_free_coherent(&(rdev->lldi.pdev->dev), 72 cq->memsize, cq->queue, 73 dma_unmap_addr(cq, mapping)); 74 c4iw_put_cqid(rdev, cq->cqid, uctx); 75 return ret; 76 } 77 78 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq, 79 struct c4iw_dev_ucontext *uctx) 80 { 81 struct fw_ri_res_wr *res_wr; 82 struct fw_ri_res *res; 83 int wr_len; 84 int user = (uctx != &rdev->uctx); 85 struct c4iw_wr_wait wr_wait; 86 int ret; 87 struct sk_buff *skb; 88 89 cq->cqid = c4iw_get_cqid(rdev, uctx); 90 if (!cq->cqid) { 91 ret = -ENOMEM; 92 goto err1; 93 } 94 95 if (!user) { 96 cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL); 97 if (!cq->sw_queue) { 98 ret = -ENOMEM; 99 goto err2; 100 } 101 } 102 cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize, 103 &cq->dma_addr, GFP_KERNEL); 104 if (!cq->queue) { 105 ret = -ENOMEM; 106 goto err3; 107 } 108 dma_unmap_addr_set(cq, mapping, cq->dma_addr); 109 memset(cq->queue, 0, cq->memsize); 110 111 /* build fw_ri_res_wr */ 112 wr_len = sizeof *res_wr + sizeof *res; 113 114 skb = alloc_skb(wr_len, GFP_KERNEL); 115 if (!skb) { 116 ret = -ENOMEM; 117 goto err4; 118 } 119 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 120 121 res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len); 122 memset(res_wr, 0, wr_len); 123 res_wr->op_nres = cpu_to_be32( 124 FW_WR_OP_V(FW_RI_RES_WR) | 125 FW_RI_RES_WR_NRES_V(1) | 126 FW_WR_COMPL_F); 127 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16)); 128 res_wr->cookie = (uintptr_t)&wr_wait; 129 res = res_wr->res; 130 res->u.cq.restype = FW_RI_RES_TYPE_CQ; 131 res->u.cq.op = FW_RI_RES_OP_WRITE; 132 res->u.cq.iqid = cpu_to_be32(cq->cqid); 133 res->u.cq.iqandst_to_iqandstindex = cpu_to_be32( 134 FW_RI_RES_WR_IQANUS_V(0) | 135 FW_RI_RES_WR_IQANUD_V(1) | 136 FW_RI_RES_WR_IQANDST_F | 137 FW_RI_RES_WR_IQANDSTINDEX_V( 138 rdev->lldi.ciq_ids[cq->vector])); 139 res->u.cq.iqdroprss_to_iqesize = cpu_to_be16( 140 FW_RI_RES_WR_IQDROPRSS_F | 141 FW_RI_RES_WR_IQPCIECH_V(2) | 142 FW_RI_RES_WR_IQINTCNTTHRESH_V(0) | 143 FW_RI_RES_WR_IQO_F | 144 FW_RI_RES_WR_IQESIZE_V(1)); 145 res->u.cq.iqsize = cpu_to_be16(cq->size); 146 res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr); 147 148 c4iw_init_wr_wait(&wr_wait); 149 150 ret = c4iw_ofld_send(rdev, skb); 151 if (ret) 152 goto err4; 153 PDBG("%s wait_event wr_wait %p\n", __func__, &wr_wait); 154 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__); 155 if (ret) 156 goto err4; 157 158 cq->gen = 1; 159 cq->gts = rdev->lldi.gts_reg; 160 cq->rdev = rdev; 161 162 cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, T4_BAR2_QTYPE_INGRESS, 163 &cq->bar2_qid, 164 user ? &cq->bar2_pa : NULL); 165 if (user && !cq->bar2_va) { 166 pr_warn(MOD "%s: cqid %u not in BAR2 range.\n", 167 pci_name(rdev->lldi.pdev), cq->cqid); 168 ret = -EINVAL; 169 goto err4; 170 } 171 return 0; 172 err4: 173 dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue, 174 dma_unmap_addr(cq, mapping)); 175 err3: 176 kfree(cq->sw_queue); 177 err2: 178 c4iw_put_cqid(rdev, cq->cqid, uctx); 179 err1: 180 return ret; 181 } 182 183 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq) 184 { 185 struct t4_cqe cqe; 186 187 PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__, 188 wq, cq, cq->sw_cidx, cq->sw_pidx); 189 memset(&cqe, 0, sizeof(cqe)); 190 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) | 191 CQE_OPCODE_V(FW_RI_SEND) | 192 CQE_TYPE_V(0) | 193 CQE_SWCQE_V(1) | 194 CQE_QPID_V(wq->sq.qid)); 195 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen)); 196 cq->sw_queue[cq->sw_pidx] = cqe; 197 t4_swcq_produce(cq); 198 } 199 200 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count) 201 { 202 int flushed = 0; 203 int in_use = wq->rq.in_use - count; 204 205 BUG_ON(in_use < 0); 206 PDBG("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__, 207 wq, cq, wq->rq.in_use, count); 208 while (in_use--) { 209 insert_recv_cqe(wq, cq); 210 flushed++; 211 } 212 return flushed; 213 } 214 215 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq, 216 struct t4_swsqe *swcqe) 217 { 218 struct t4_cqe cqe; 219 220 PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__, 221 wq, cq, cq->sw_cidx, cq->sw_pidx); 222 memset(&cqe, 0, sizeof(cqe)); 223 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) | 224 CQE_OPCODE_V(swcqe->opcode) | 225 CQE_TYPE_V(1) | 226 CQE_SWCQE_V(1) | 227 CQE_QPID_V(wq->sq.qid)); 228 CQE_WRID_SQ_IDX(&cqe) = swcqe->idx; 229 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen)); 230 cq->sw_queue[cq->sw_pidx] = cqe; 231 t4_swcq_produce(cq); 232 } 233 234 static void advance_oldest_read(struct t4_wq *wq); 235 236 int c4iw_flush_sq(struct c4iw_qp *qhp) 237 { 238 int flushed = 0; 239 struct t4_wq *wq = &qhp->wq; 240 struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq); 241 struct t4_cq *cq = &chp->cq; 242 int idx; 243 struct t4_swsqe *swsqe; 244 245 if (wq->sq.flush_cidx == -1) 246 wq->sq.flush_cidx = wq->sq.cidx; 247 idx = wq->sq.flush_cidx; 248 BUG_ON(idx >= wq->sq.size); 249 while (idx != wq->sq.pidx) { 250 swsqe = &wq->sq.sw_sq[idx]; 251 BUG_ON(swsqe->flushed); 252 swsqe->flushed = 1; 253 insert_sq_cqe(wq, cq, swsqe); 254 if (wq->sq.oldest_read == swsqe) { 255 BUG_ON(swsqe->opcode != FW_RI_READ_REQ); 256 advance_oldest_read(wq); 257 } 258 flushed++; 259 if (++idx == wq->sq.size) 260 idx = 0; 261 } 262 wq->sq.flush_cidx += flushed; 263 if (wq->sq.flush_cidx >= wq->sq.size) 264 wq->sq.flush_cidx -= wq->sq.size; 265 return flushed; 266 } 267 268 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq) 269 { 270 struct t4_swsqe *swsqe; 271 int cidx; 272 273 if (wq->sq.flush_cidx == -1) 274 wq->sq.flush_cidx = wq->sq.cidx; 275 cidx = wq->sq.flush_cidx; 276 BUG_ON(cidx > wq->sq.size); 277 278 while (cidx != wq->sq.pidx) { 279 swsqe = &wq->sq.sw_sq[cidx]; 280 if (!swsqe->signaled) { 281 if (++cidx == wq->sq.size) 282 cidx = 0; 283 } else if (swsqe->complete) { 284 285 BUG_ON(swsqe->flushed); 286 287 /* 288 * Insert this completed cqe into the swcq. 289 */ 290 PDBG("%s moving cqe into swcq sq idx %u cq idx %u\n", 291 __func__, cidx, cq->sw_pidx); 292 swsqe->cqe.header |= htonl(CQE_SWCQE_V(1)); 293 cq->sw_queue[cq->sw_pidx] = swsqe->cqe; 294 t4_swcq_produce(cq); 295 swsqe->flushed = 1; 296 if (++cidx == wq->sq.size) 297 cidx = 0; 298 wq->sq.flush_cidx = cidx; 299 } else 300 break; 301 } 302 } 303 304 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe, 305 struct t4_cqe *read_cqe) 306 { 307 read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx; 308 read_cqe->len = htonl(wq->sq.oldest_read->read_len); 309 read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) | 310 CQE_SWCQE_V(SW_CQE(hw_cqe)) | 311 CQE_OPCODE_V(FW_RI_READ_REQ) | 312 CQE_TYPE_V(1)); 313 read_cqe->bits_type_ts = hw_cqe->bits_type_ts; 314 } 315 316 static void advance_oldest_read(struct t4_wq *wq) 317 { 318 319 u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1; 320 321 if (rptr == wq->sq.size) 322 rptr = 0; 323 while (rptr != wq->sq.pidx) { 324 wq->sq.oldest_read = &wq->sq.sw_sq[rptr]; 325 326 if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ) 327 return; 328 if (++rptr == wq->sq.size) 329 rptr = 0; 330 } 331 wq->sq.oldest_read = NULL; 332 } 333 334 /* 335 * Move all CQEs from the HWCQ into the SWCQ. 336 * Deal with out-of-order and/or completions that complete 337 * prior unsignalled WRs. 338 */ 339 void c4iw_flush_hw_cq(struct c4iw_cq *chp) 340 { 341 struct t4_cqe *hw_cqe, *swcqe, read_cqe; 342 struct c4iw_qp *qhp; 343 struct t4_swsqe *swsqe; 344 int ret; 345 346 PDBG("%s cqid 0x%x\n", __func__, chp->cq.cqid); 347 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); 348 349 /* 350 * This logic is similar to poll_cq(), but not quite the same 351 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but 352 * also do any translation magic that poll_cq() normally does. 353 */ 354 while (!ret) { 355 qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe)); 356 357 /* 358 * drop CQEs with no associated QP 359 */ 360 if (qhp == NULL) 361 goto next_cqe; 362 363 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) 364 goto next_cqe; 365 366 if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) { 367 368 /* If we have reached here because of async 369 * event or other error, and have egress error 370 * then drop 371 */ 372 if (CQE_TYPE(hw_cqe) == 1) 373 goto next_cqe; 374 375 /* drop peer2peer RTR reads. 376 */ 377 if (CQE_WRID_STAG(hw_cqe) == 1) 378 goto next_cqe; 379 380 /* 381 * Eat completions for unsignaled read WRs. 382 */ 383 if (!qhp->wq.sq.oldest_read->signaled) { 384 advance_oldest_read(&qhp->wq); 385 goto next_cqe; 386 } 387 388 /* 389 * Don't write to the HWCQ, create a new read req CQE 390 * in local memory and move it into the swcq. 391 */ 392 create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe); 393 hw_cqe = &read_cqe; 394 advance_oldest_read(&qhp->wq); 395 } 396 397 /* if its a SQ completion, then do the magic to move all the 398 * unsignaled and now in-order completions into the swcq. 399 */ 400 if (SQ_TYPE(hw_cqe)) { 401 swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)]; 402 swsqe->cqe = *hw_cqe; 403 swsqe->complete = 1; 404 flush_completed_wrs(&qhp->wq, &chp->cq); 405 } else { 406 swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx]; 407 *swcqe = *hw_cqe; 408 swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1)); 409 t4_swcq_produce(&chp->cq); 410 } 411 next_cqe: 412 t4_hwcq_consume(&chp->cq); 413 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); 414 } 415 } 416 417 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq) 418 { 419 if (CQE_OPCODE(cqe) == FW_RI_TERMINATE) 420 return 0; 421 422 if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe)) 423 return 0; 424 425 if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe)) 426 return 0; 427 428 if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq)) 429 return 0; 430 return 1; 431 } 432 433 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count) 434 { 435 struct t4_cqe *cqe; 436 u32 ptr; 437 438 *count = 0; 439 PDBG("%s count zero %d\n", __func__, *count); 440 ptr = cq->sw_cidx; 441 while (ptr != cq->sw_pidx) { 442 cqe = &cq->sw_queue[ptr]; 443 if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) && 444 (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq)) 445 (*count)++; 446 if (++ptr == cq->size) 447 ptr = 0; 448 } 449 PDBG("%s cq %p count %d\n", __func__, cq, *count); 450 } 451 452 /* 453 * poll_cq 454 * 455 * Caller must: 456 * check the validity of the first CQE, 457 * supply the wq assicated with the qpid. 458 * 459 * credit: cq credit to return to sge. 460 * cqe_flushed: 1 iff the CQE is flushed. 461 * cqe: copy of the polled CQE. 462 * 463 * return value: 464 * 0 CQE returned ok. 465 * -EAGAIN CQE skipped, try again. 466 * -EOVERFLOW CQ overflow detected. 467 */ 468 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe, 469 u8 *cqe_flushed, u64 *cookie, u32 *credit) 470 { 471 int ret = 0; 472 struct t4_cqe *hw_cqe, read_cqe; 473 474 *cqe_flushed = 0; 475 *credit = 0; 476 ret = t4_next_cqe(cq, &hw_cqe); 477 if (ret) 478 return ret; 479 480 PDBG("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x" 481 " opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n", 482 __func__, CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe), 483 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe), 484 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe), 485 CQE_WRID_LOW(hw_cqe)); 486 487 /* 488 * skip cqe's not affiliated with a QP. 489 */ 490 if (wq == NULL) { 491 ret = -EAGAIN; 492 goto skip_cqe; 493 } 494 495 /* 496 * skip hw cqe's if the wq is flushed. 497 */ 498 if (wq->flushed && !SW_CQE(hw_cqe)) { 499 ret = -EAGAIN; 500 goto skip_cqe; 501 } 502 503 /* 504 * skip TERMINATE cqes... 505 */ 506 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) { 507 ret = -EAGAIN; 508 goto skip_cqe; 509 } 510 511 /* 512 * Gotta tweak READ completions: 513 * 1) the cqe doesn't contain the sq_wptr from the wr. 514 * 2) opcode not reflected from the wr. 515 * 3) read_len not reflected from the wr. 516 * 4) cq_type is RQ_TYPE not SQ_TYPE. 517 */ 518 if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) { 519 520 /* If we have reached here because of async 521 * event or other error, and have egress error 522 * then drop 523 */ 524 if (CQE_TYPE(hw_cqe) == 1) { 525 if (CQE_STATUS(hw_cqe)) 526 t4_set_wq_in_error(wq); 527 ret = -EAGAIN; 528 goto skip_cqe; 529 } 530 531 /* If this is an unsolicited read response, then the read 532 * was generated by the kernel driver as part of peer-2-peer 533 * connection setup. So ignore the completion. 534 */ 535 if (CQE_WRID_STAG(hw_cqe) == 1) { 536 if (CQE_STATUS(hw_cqe)) 537 t4_set_wq_in_error(wq); 538 ret = -EAGAIN; 539 goto skip_cqe; 540 } 541 542 /* 543 * Eat completions for unsignaled read WRs. 544 */ 545 if (!wq->sq.oldest_read->signaled) { 546 advance_oldest_read(wq); 547 ret = -EAGAIN; 548 goto skip_cqe; 549 } 550 551 /* 552 * Don't write to the HWCQ, so create a new read req CQE 553 * in local memory. 554 */ 555 create_read_req_cqe(wq, hw_cqe, &read_cqe); 556 hw_cqe = &read_cqe; 557 advance_oldest_read(wq); 558 } 559 560 if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) { 561 *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH); 562 t4_set_wq_in_error(wq); 563 } 564 565 /* 566 * RECV completion. 567 */ 568 if (RQ_TYPE(hw_cqe)) { 569 570 /* 571 * HW only validates 4 bits of MSN. So we must validate that 572 * the MSN in the SEND is the next expected MSN. If its not, 573 * then we complete this with T4_ERR_MSN and mark the wq in 574 * error. 575 */ 576 577 if (t4_rq_empty(wq)) { 578 t4_set_wq_in_error(wq); 579 ret = -EAGAIN; 580 goto skip_cqe; 581 } 582 if (unlikely((CQE_WRID_MSN(hw_cqe) != (wq->rq.msn)))) { 583 t4_set_wq_in_error(wq); 584 hw_cqe->header |= htonl(CQE_STATUS_V(T4_ERR_MSN)); 585 goto proc_cqe; 586 } 587 goto proc_cqe; 588 } 589 590 /* 591 * If we get here its a send completion. 592 * 593 * Handle out of order completion. These get stuffed 594 * in the SW SQ. Then the SW SQ is walked to move any 595 * now in-order completions into the SW CQ. This handles 596 * 2 cases: 597 * 1) reaping unsignaled WRs when the first subsequent 598 * signaled WR is completed. 599 * 2) out of order read completions. 600 */ 601 if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) { 602 struct t4_swsqe *swsqe; 603 604 PDBG("%s out of order completion going in sw_sq at idx %u\n", 605 __func__, CQE_WRID_SQ_IDX(hw_cqe)); 606 swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)]; 607 swsqe->cqe = *hw_cqe; 608 swsqe->complete = 1; 609 ret = -EAGAIN; 610 goto flush_wq; 611 } 612 613 proc_cqe: 614 *cqe = *hw_cqe; 615 616 /* 617 * Reap the associated WR(s) that are freed up with this 618 * completion. 619 */ 620 if (SQ_TYPE(hw_cqe)) { 621 int idx = CQE_WRID_SQ_IDX(hw_cqe); 622 BUG_ON(idx >= wq->sq.size); 623 624 /* 625 * Account for any unsignaled completions completed by 626 * this signaled completion. In this case, cidx points 627 * to the first unsignaled one, and idx points to the 628 * signaled one. So adjust in_use based on this delta. 629 * if this is not completing any unsigned wrs, then the 630 * delta will be 0. Handle wrapping also! 631 */ 632 if (idx < wq->sq.cidx) 633 wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx; 634 else 635 wq->sq.in_use -= idx - wq->sq.cidx; 636 BUG_ON(wq->sq.in_use <= 0 && wq->sq.in_use >= wq->sq.size); 637 638 wq->sq.cidx = (uint16_t)idx; 639 PDBG("%s completing sq idx %u\n", __func__, wq->sq.cidx); 640 *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id; 641 if (c4iw_wr_log) 642 c4iw_log_wr_stats(wq, hw_cqe); 643 t4_sq_consume(wq); 644 } else { 645 PDBG("%s completing rq idx %u\n", __func__, wq->rq.cidx); 646 *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id; 647 BUG_ON(t4_rq_empty(wq)); 648 if (c4iw_wr_log) 649 c4iw_log_wr_stats(wq, hw_cqe); 650 t4_rq_consume(wq); 651 goto skip_cqe; 652 } 653 654 flush_wq: 655 /* 656 * Flush any completed cqes that are now in-order. 657 */ 658 flush_completed_wrs(wq, cq); 659 660 skip_cqe: 661 if (SW_CQE(hw_cqe)) { 662 PDBG("%s cq %p cqid 0x%x skip sw cqe cidx %u\n", 663 __func__, cq, cq->cqid, cq->sw_cidx); 664 t4_swcq_consume(cq); 665 } else { 666 PDBG("%s cq %p cqid 0x%x skip hw cqe cidx %u\n", 667 __func__, cq, cq->cqid, cq->cidx); 668 t4_hwcq_consume(cq); 669 } 670 return ret; 671 } 672 673 /* 674 * Get one cq entry from c4iw and map it to openib. 675 * 676 * Returns: 677 * 0 cqe returned 678 * -ENODATA EMPTY; 679 * -EAGAIN caller must try again 680 * any other -errno fatal error 681 */ 682 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc) 683 { 684 struct c4iw_qp *qhp = NULL; 685 struct t4_cqe uninitialized_var(cqe), *rd_cqe; 686 struct t4_wq *wq; 687 u32 credit = 0; 688 u8 cqe_flushed; 689 u64 cookie = 0; 690 int ret; 691 692 ret = t4_next_cqe(&chp->cq, &rd_cqe); 693 694 if (ret) 695 return ret; 696 697 qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe)); 698 if (!qhp) 699 wq = NULL; 700 else { 701 spin_lock(&qhp->lock); 702 wq = &(qhp->wq); 703 } 704 ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit); 705 if (ret) 706 goto out; 707 708 wc->wr_id = cookie; 709 wc->qp = &qhp->ibqp; 710 wc->vendor_err = CQE_STATUS(&cqe); 711 wc->wc_flags = 0; 712 713 PDBG("%s qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x " 714 "lo 0x%x cookie 0x%llx\n", __func__, CQE_QPID(&cqe), 715 CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe), CQE_LEN(&cqe), 716 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), (unsigned long long)cookie); 717 718 if (CQE_TYPE(&cqe) == 0) { 719 if (!CQE_STATUS(&cqe)) 720 wc->byte_len = CQE_LEN(&cqe); 721 else 722 wc->byte_len = 0; 723 wc->opcode = IB_WC_RECV; 724 if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV || 725 CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) { 726 wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe); 727 wc->wc_flags |= IB_WC_WITH_INVALIDATE; 728 } 729 } else { 730 switch (CQE_OPCODE(&cqe)) { 731 case FW_RI_RDMA_WRITE: 732 wc->opcode = IB_WC_RDMA_WRITE; 733 break; 734 case FW_RI_READ_REQ: 735 wc->opcode = IB_WC_RDMA_READ; 736 wc->byte_len = CQE_LEN(&cqe); 737 break; 738 case FW_RI_SEND_WITH_INV: 739 case FW_RI_SEND_WITH_SE_INV: 740 wc->opcode = IB_WC_SEND; 741 wc->wc_flags |= IB_WC_WITH_INVALIDATE; 742 break; 743 case FW_RI_SEND: 744 case FW_RI_SEND_WITH_SE: 745 wc->opcode = IB_WC_SEND; 746 break; 747 case FW_RI_BIND_MW: 748 wc->opcode = IB_WC_BIND_MW; 749 break; 750 751 case FW_RI_LOCAL_INV: 752 wc->opcode = IB_WC_LOCAL_INV; 753 break; 754 case FW_RI_FAST_REGISTER: 755 wc->opcode = IB_WC_FAST_REG_MR; 756 break; 757 default: 758 printk(KERN_ERR MOD "Unexpected opcode %d " 759 "in the CQE received for QPID=0x%0x\n", 760 CQE_OPCODE(&cqe), CQE_QPID(&cqe)); 761 ret = -EINVAL; 762 goto out; 763 } 764 } 765 766 if (cqe_flushed) 767 wc->status = IB_WC_WR_FLUSH_ERR; 768 else { 769 770 switch (CQE_STATUS(&cqe)) { 771 case T4_ERR_SUCCESS: 772 wc->status = IB_WC_SUCCESS; 773 break; 774 case T4_ERR_STAG: 775 wc->status = IB_WC_LOC_ACCESS_ERR; 776 break; 777 case T4_ERR_PDID: 778 wc->status = IB_WC_LOC_PROT_ERR; 779 break; 780 case T4_ERR_QPID: 781 case T4_ERR_ACCESS: 782 wc->status = IB_WC_LOC_ACCESS_ERR; 783 break; 784 case T4_ERR_WRAP: 785 wc->status = IB_WC_GENERAL_ERR; 786 break; 787 case T4_ERR_BOUND: 788 wc->status = IB_WC_LOC_LEN_ERR; 789 break; 790 case T4_ERR_INVALIDATE_SHARED_MR: 791 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND: 792 wc->status = IB_WC_MW_BIND_ERR; 793 break; 794 case T4_ERR_CRC: 795 case T4_ERR_MARKER: 796 case T4_ERR_PDU_LEN_ERR: 797 case T4_ERR_OUT_OF_RQE: 798 case T4_ERR_DDP_VERSION: 799 case T4_ERR_RDMA_VERSION: 800 case T4_ERR_DDP_QUEUE_NUM: 801 case T4_ERR_MSN: 802 case T4_ERR_TBIT: 803 case T4_ERR_MO: 804 case T4_ERR_MSN_RANGE: 805 case T4_ERR_IRD_OVERFLOW: 806 case T4_ERR_OPCODE: 807 case T4_ERR_INTERNAL_ERR: 808 wc->status = IB_WC_FATAL_ERR; 809 break; 810 case T4_ERR_SWFLUSH: 811 wc->status = IB_WC_WR_FLUSH_ERR; 812 break; 813 default: 814 printk(KERN_ERR MOD 815 "Unexpected cqe_status 0x%x for QPID=0x%0x\n", 816 CQE_STATUS(&cqe), CQE_QPID(&cqe)); 817 ret = -EINVAL; 818 } 819 } 820 out: 821 if (wq) 822 spin_unlock(&qhp->lock); 823 return ret; 824 } 825 826 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc) 827 { 828 struct c4iw_cq *chp; 829 unsigned long flags; 830 int npolled; 831 int err = 0; 832 833 chp = to_c4iw_cq(ibcq); 834 835 spin_lock_irqsave(&chp->lock, flags); 836 for (npolled = 0; npolled < num_entries; ++npolled) { 837 do { 838 err = c4iw_poll_cq_one(chp, wc + npolled); 839 } while (err == -EAGAIN); 840 if (err) 841 break; 842 } 843 spin_unlock_irqrestore(&chp->lock, flags); 844 return !err || err == -ENODATA ? npolled : err; 845 } 846 847 int c4iw_destroy_cq(struct ib_cq *ib_cq) 848 { 849 struct c4iw_cq *chp; 850 struct c4iw_ucontext *ucontext; 851 852 PDBG("%s ib_cq %p\n", __func__, ib_cq); 853 chp = to_c4iw_cq(ib_cq); 854 855 remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid); 856 atomic_dec(&chp->refcnt); 857 wait_event(chp->wait, !atomic_read(&chp->refcnt)); 858 859 ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context) 860 : NULL; 861 destroy_cq(&chp->rhp->rdev, &chp->cq, 862 ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx); 863 kfree(chp); 864 return 0; 865 } 866 867 struct ib_cq *c4iw_create_cq(struct ib_device *ibdev, 868 const struct ib_cq_init_attr *attr, 869 struct ib_ucontext *ib_context, 870 struct ib_udata *udata) 871 { 872 int entries = attr->cqe; 873 int vector = attr->comp_vector; 874 struct c4iw_dev *rhp; 875 struct c4iw_cq *chp; 876 struct c4iw_create_cq_resp uresp; 877 struct c4iw_ucontext *ucontext = NULL; 878 int ret; 879 size_t memsize, hwentries; 880 struct c4iw_mm_entry *mm, *mm2; 881 882 PDBG("%s ib_dev %p entries %d\n", __func__, ibdev, entries); 883 if (attr->flags) 884 return ERR_PTR(-EINVAL); 885 886 rhp = to_c4iw_dev(ibdev); 887 888 if (vector >= rhp->rdev.lldi.nciq) 889 return ERR_PTR(-EINVAL); 890 891 chp = kzalloc(sizeof(*chp), GFP_KERNEL); 892 if (!chp) 893 return ERR_PTR(-ENOMEM); 894 895 if (ib_context) 896 ucontext = to_c4iw_ucontext(ib_context); 897 898 /* account for the status page. */ 899 entries++; 900 901 /* IQ needs one extra entry to differentiate full vs empty. */ 902 entries++; 903 904 /* 905 * entries must be multiple of 16 for HW. 906 */ 907 entries = roundup(entries, 16); 908 909 /* 910 * Make actual HW queue 2x to avoid cdix_inc overflows. 911 */ 912 hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size); 913 914 /* 915 * Make HW queue at least 64 entries so GTS updates aren't too 916 * frequent. 917 */ 918 if (hwentries < 64) 919 hwentries = 64; 920 921 memsize = hwentries * sizeof *chp->cq.queue; 922 923 /* 924 * memsize must be a multiple of the page size if its a user cq. 925 */ 926 if (ucontext) 927 memsize = roundup(memsize, PAGE_SIZE); 928 chp->cq.size = hwentries; 929 chp->cq.memsize = memsize; 930 chp->cq.vector = vector; 931 932 ret = create_cq(&rhp->rdev, &chp->cq, 933 ucontext ? &ucontext->uctx : &rhp->rdev.uctx); 934 if (ret) 935 goto err1; 936 937 chp->rhp = rhp; 938 chp->cq.size--; /* status page */ 939 chp->ibcq.cqe = entries - 2; 940 spin_lock_init(&chp->lock); 941 spin_lock_init(&chp->comp_handler_lock); 942 atomic_set(&chp->refcnt, 1); 943 init_waitqueue_head(&chp->wait); 944 ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid); 945 if (ret) 946 goto err2; 947 948 if (ucontext) { 949 mm = kmalloc(sizeof *mm, GFP_KERNEL); 950 if (!mm) 951 goto err3; 952 mm2 = kmalloc(sizeof *mm2, GFP_KERNEL); 953 if (!mm2) 954 goto err4; 955 956 uresp.qid_mask = rhp->rdev.cqmask; 957 uresp.cqid = chp->cq.cqid; 958 uresp.size = chp->cq.size; 959 uresp.memsize = chp->cq.memsize; 960 spin_lock(&ucontext->mmap_lock); 961 uresp.key = ucontext->key; 962 ucontext->key += PAGE_SIZE; 963 uresp.gts_key = ucontext->key; 964 ucontext->key += PAGE_SIZE; 965 spin_unlock(&ucontext->mmap_lock); 966 ret = ib_copy_to_udata(udata, &uresp, 967 sizeof(uresp) - sizeof(uresp.reserved)); 968 if (ret) 969 goto err5; 970 971 mm->key = uresp.key; 972 mm->addr = virt_to_phys(chp->cq.queue); 973 mm->len = chp->cq.memsize; 974 insert_mmap(ucontext, mm); 975 976 mm2->key = uresp.gts_key; 977 mm2->addr = chp->cq.bar2_pa; 978 mm2->len = PAGE_SIZE; 979 insert_mmap(ucontext, mm2); 980 } 981 PDBG("%s cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n", 982 __func__, chp->cq.cqid, chp, chp->cq.size, 983 chp->cq.memsize, (unsigned long long) chp->cq.dma_addr); 984 return &chp->ibcq; 985 err5: 986 kfree(mm2); 987 err4: 988 kfree(mm); 989 err3: 990 remove_handle(rhp, &rhp->cqidr, chp->cq.cqid); 991 err2: 992 destroy_cq(&chp->rhp->rdev, &chp->cq, 993 ucontext ? &ucontext->uctx : &rhp->rdev.uctx); 994 err1: 995 kfree(chp); 996 return ERR_PTR(ret); 997 } 998 999 int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata) 1000 { 1001 return -ENOSYS; 1002 } 1003 1004 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags) 1005 { 1006 struct c4iw_cq *chp; 1007 int ret; 1008 unsigned long flag; 1009 1010 chp = to_c4iw_cq(ibcq); 1011 spin_lock_irqsave(&chp->lock, flag); 1012 ret = t4_arm_cq(&chp->cq, 1013 (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED); 1014 spin_unlock_irqrestore(&chp->lock, flag); 1015 if (ret && !(flags & IB_CQ_REPORT_MISSED_EVENTS)) 1016 ret = 0; 1017 return ret; 1018 } 1019