1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode = 1; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 int c4iw_debug; 103 module_param(c4iw_debug, int, 0644); 104 MODULE_PARM_DESC(c4iw_debug, "obsolete"); 105 106 static int peer2peer = 1; 107 module_param(peer2peer, int, 0644); 108 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 109 110 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 111 module_param(p2p_type, int, 0644); 112 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 113 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 114 115 static int ep_timeout_secs = 60; 116 module_param(ep_timeout_secs, int, 0644); 117 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 118 "in seconds (default=60)"); 119 120 static int mpa_rev = 2; 121 module_param(mpa_rev, int, 0644); 122 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 123 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 124 " compliant (default=2)"); 125 126 static int markers_enabled; 127 module_param(markers_enabled, int, 0644); 128 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 129 130 static int crc_enabled = 1; 131 module_param(crc_enabled, int, 0644); 132 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 133 134 static int rcv_win = 256 * 1024; 135 module_param(rcv_win, int, 0644); 136 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 137 138 static int snd_win = 128 * 1024; 139 module_param(snd_win, int, 0644); 140 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 141 142 static struct workqueue_struct *workq; 143 144 static struct sk_buff_head rxq; 145 146 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 147 static void ep_timeout(unsigned long arg); 148 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 149 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 150 151 static LIST_HEAD(timeout_list); 152 static spinlock_t timeout_lock; 153 154 static void deref_cm_id(struct c4iw_ep_common *epc) 155 { 156 epc->cm_id->rem_ref(epc->cm_id); 157 epc->cm_id = NULL; 158 set_bit(CM_ID_DEREFED, &epc->history); 159 } 160 161 static void ref_cm_id(struct c4iw_ep_common *epc) 162 { 163 set_bit(CM_ID_REFED, &epc->history); 164 epc->cm_id->add_ref(epc->cm_id); 165 } 166 167 static void deref_qp(struct c4iw_ep *ep) 168 { 169 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 170 clear_bit(QP_REFERENCED, &ep->com.flags); 171 set_bit(QP_DEREFED, &ep->com.history); 172 } 173 174 static void ref_qp(struct c4iw_ep *ep) 175 { 176 set_bit(QP_REFERENCED, &ep->com.flags); 177 set_bit(QP_REFED, &ep->com.history); 178 c4iw_qp_add_ref(&ep->com.qp->ibqp); 179 } 180 181 static void start_ep_timer(struct c4iw_ep *ep) 182 { 183 pr_debug("%s ep %p\n", __func__, ep); 184 if (timer_pending(&ep->timer)) { 185 pr_err("%s timer already started! ep %p\n", 186 __func__, ep); 187 return; 188 } 189 clear_bit(TIMEOUT, &ep->com.flags); 190 c4iw_get_ep(&ep->com); 191 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 192 ep->timer.data = (unsigned long)ep; 193 ep->timer.function = ep_timeout; 194 add_timer(&ep->timer); 195 } 196 197 static int stop_ep_timer(struct c4iw_ep *ep) 198 { 199 pr_debug("%s ep %p stopping\n", __func__, ep); 200 del_timer_sync(&ep->timer); 201 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 202 c4iw_put_ep(&ep->com); 203 return 0; 204 } 205 return 1; 206 } 207 208 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 209 struct l2t_entry *l2e) 210 { 211 int error = 0; 212 213 if (c4iw_fatal_error(rdev)) { 214 kfree_skb(skb); 215 pr_debug("%s - device in error state - dropping\n", __func__); 216 return -EIO; 217 } 218 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 219 if (error < 0) 220 kfree_skb(skb); 221 else if (error == NET_XMIT_DROP) 222 return -ENOMEM; 223 return error < 0 ? error : 0; 224 } 225 226 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 227 { 228 int error = 0; 229 230 if (c4iw_fatal_error(rdev)) { 231 kfree_skb(skb); 232 pr_debug("%s - device in error state - dropping\n", __func__); 233 return -EIO; 234 } 235 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 236 if (error < 0) 237 kfree_skb(skb); 238 return error < 0 ? error : 0; 239 } 240 241 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 242 { 243 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 244 245 skb = get_skb(skb, len, GFP_KERNEL); 246 if (!skb) 247 return; 248 249 cxgb_mk_tid_release(skb, len, hwtid, 0); 250 c4iw_ofld_send(rdev, skb); 251 return; 252 } 253 254 static void set_emss(struct c4iw_ep *ep, u16 opt) 255 { 256 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 257 ((AF_INET == ep->com.remote_addr.ss_family) ? 258 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 259 sizeof(struct tcphdr); 260 ep->mss = ep->emss; 261 if (TCPOPT_TSTAMP_G(opt)) 262 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 263 if (ep->emss < 128) 264 ep->emss = 128; 265 if (ep->emss & 7) 266 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n", 267 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 268 pr_debug("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt), 269 ep->mss, ep->emss); 270 } 271 272 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 273 { 274 enum c4iw_ep_state state; 275 276 mutex_lock(&epc->mutex); 277 state = epc->state; 278 mutex_unlock(&epc->mutex); 279 return state; 280 } 281 282 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 283 { 284 epc->state = new; 285 } 286 287 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 288 { 289 mutex_lock(&epc->mutex); 290 pr_debug("%s - %s -> %s\n", __func__, states[epc->state], states[new]); 291 __state_set(epc, new); 292 mutex_unlock(&epc->mutex); 293 return; 294 } 295 296 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 297 { 298 struct sk_buff *skb; 299 unsigned int i; 300 size_t len; 301 302 len = roundup(sizeof(union cpl_wr_size), 16); 303 for (i = 0; i < size; i++) { 304 skb = alloc_skb(len, GFP_KERNEL); 305 if (!skb) 306 goto fail; 307 skb_queue_tail(ep_skb_list, skb); 308 } 309 return 0; 310 fail: 311 skb_queue_purge(ep_skb_list); 312 return -ENOMEM; 313 } 314 315 static void *alloc_ep(int size, gfp_t gfp) 316 { 317 struct c4iw_ep_common *epc; 318 319 epc = kzalloc(size, gfp); 320 if (epc) { 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(&epc->wr_wait); 324 } 325 pr_debug("%s alloc ep %p\n", __func__, epc); 326 return epc; 327 } 328 329 static void remove_ep_tid(struct c4iw_ep *ep) 330 { 331 unsigned long flags; 332 333 spin_lock_irqsave(&ep->com.dev->lock, flags); 334 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0); 335 if (idr_is_empty(&ep->com.dev->hwtid_idr)) 336 wake_up(&ep->com.dev->wait); 337 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 338 } 339 340 static void insert_ep_tid(struct c4iw_ep *ep) 341 { 342 unsigned long flags; 343 344 spin_lock_irqsave(&ep->com.dev->lock, flags); 345 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0); 346 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 347 } 348 349 /* 350 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 351 */ 352 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 353 { 354 struct c4iw_ep *ep; 355 unsigned long flags; 356 357 spin_lock_irqsave(&dev->lock, flags); 358 ep = idr_find(&dev->hwtid_idr, tid); 359 if (ep) 360 c4iw_get_ep(&ep->com); 361 spin_unlock_irqrestore(&dev->lock, flags); 362 return ep; 363 } 364 365 /* 366 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 367 */ 368 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 369 unsigned int stid) 370 { 371 struct c4iw_listen_ep *ep; 372 unsigned long flags; 373 374 spin_lock_irqsave(&dev->lock, flags); 375 ep = idr_find(&dev->stid_idr, stid); 376 if (ep) 377 c4iw_get_ep(&ep->com); 378 spin_unlock_irqrestore(&dev->lock, flags); 379 return ep; 380 } 381 382 void _c4iw_free_ep(struct kref *kref) 383 { 384 struct c4iw_ep *ep; 385 386 ep = container_of(kref, struct c4iw_ep, com.kref); 387 pr_debug("%s ep %p state %s\n", __func__, ep, states[ep->com.state]); 388 if (test_bit(QP_REFERENCED, &ep->com.flags)) 389 deref_qp(ep); 390 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 391 if (ep->com.remote_addr.ss_family == AF_INET6) { 392 struct sockaddr_in6 *sin6 = 393 (struct sockaddr_in6 *) 394 &ep->com.local_addr; 395 396 cxgb4_clip_release( 397 ep->com.dev->rdev.lldi.ports[0], 398 (const u32 *)&sin6->sin6_addr.s6_addr, 399 1); 400 } 401 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 402 dst_release(ep->dst); 403 cxgb4_l2t_release(ep->l2t); 404 if (ep->mpa_skb) 405 kfree_skb(ep->mpa_skb); 406 } 407 if (!skb_queue_empty(&ep->com.ep_skb_list)) 408 skb_queue_purge(&ep->com.ep_skb_list); 409 kfree(ep); 410 } 411 412 static void release_ep_resources(struct c4iw_ep *ep) 413 { 414 set_bit(RELEASE_RESOURCES, &ep->com.flags); 415 416 /* 417 * If we have a hwtid, then remove it from the idr table 418 * so lookups will no longer find this endpoint. Otherwise 419 * we have a race where one thread finds the ep ptr just 420 * before the other thread is freeing the ep memory. 421 */ 422 if (ep->hwtid != -1) 423 remove_ep_tid(ep); 424 c4iw_put_ep(&ep->com); 425 } 426 427 static int status2errno(int status) 428 { 429 switch (status) { 430 case CPL_ERR_NONE: 431 return 0; 432 case CPL_ERR_CONN_RESET: 433 return -ECONNRESET; 434 case CPL_ERR_ARP_MISS: 435 return -EHOSTUNREACH; 436 case CPL_ERR_CONN_TIMEDOUT: 437 return -ETIMEDOUT; 438 case CPL_ERR_TCAM_FULL: 439 return -ENOMEM; 440 case CPL_ERR_CONN_EXIST: 441 return -EADDRINUSE; 442 default: 443 return -EIO; 444 } 445 } 446 447 /* 448 * Try and reuse skbs already allocated... 449 */ 450 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 451 { 452 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 453 skb_trim(skb, 0); 454 skb_get(skb); 455 skb_reset_transport_header(skb); 456 } else { 457 skb = alloc_skb(len, gfp); 458 } 459 t4_set_arp_err_handler(skb, NULL, NULL); 460 return skb; 461 } 462 463 static struct net_device *get_real_dev(struct net_device *egress_dev) 464 { 465 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 466 } 467 468 static void arp_failure_discard(void *handle, struct sk_buff *skb) 469 { 470 pr_err("ARP failure\n"); 471 kfree_skb(skb); 472 } 473 474 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 475 { 476 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 477 } 478 479 enum { 480 NUM_FAKE_CPLS = 2, 481 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 482 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 483 }; 484 485 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 486 { 487 struct c4iw_ep *ep; 488 489 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 490 release_ep_resources(ep); 491 kfree_skb(skb); 492 return 0; 493 } 494 495 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 496 { 497 struct c4iw_ep *ep; 498 499 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 500 c4iw_put_ep(&ep->parent_ep->com); 501 release_ep_resources(ep); 502 kfree_skb(skb); 503 return 0; 504 } 505 506 /* 507 * Fake up a special CPL opcode and call sched() so process_work() will call 508 * _put_ep_safe() in a safe context to free the ep resources. This is needed 509 * because ARP error handlers are called in an ATOMIC context, and 510 * _c4iw_free_ep() needs to block. 511 */ 512 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 513 int cpl) 514 { 515 struct cpl_act_establish *rpl = cplhdr(skb); 516 517 /* Set our special ARP_FAILURE opcode */ 518 rpl->ot.opcode = cpl; 519 520 /* 521 * Save ep in the skb->cb area, after where sched() will save the dev 522 * ptr. 523 */ 524 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 525 sched(ep->com.dev, skb); 526 } 527 528 /* Handle an ARP failure for an accept */ 529 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 530 { 531 struct c4iw_ep *ep = handle; 532 533 pr_err("ARP failure during accept - tid %u - dropping connection\n", 534 ep->hwtid); 535 536 __state_set(&ep->com, DEAD); 537 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 538 } 539 540 /* 541 * Handle an ARP failure for an active open. 542 */ 543 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 544 { 545 struct c4iw_ep *ep = handle; 546 547 pr_err("ARP failure during connect\n"); 548 connect_reply_upcall(ep, -EHOSTUNREACH); 549 __state_set(&ep->com, DEAD); 550 if (ep->com.remote_addr.ss_family == AF_INET6) { 551 struct sockaddr_in6 *sin6 = 552 (struct sockaddr_in6 *)&ep->com.local_addr; 553 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 554 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 555 } 556 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 557 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 558 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 559 } 560 561 /* 562 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 563 * and send it along. 564 */ 565 static void abort_arp_failure(void *handle, struct sk_buff *skb) 566 { 567 int ret; 568 struct c4iw_ep *ep = handle; 569 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 570 struct cpl_abort_req *req = cplhdr(skb); 571 572 pr_debug("%s rdev %p\n", __func__, rdev); 573 req->cmd = CPL_ABORT_NO_RST; 574 skb_get(skb); 575 ret = c4iw_ofld_send(rdev, skb); 576 if (ret) { 577 __state_set(&ep->com, DEAD); 578 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 579 } else 580 kfree_skb(skb); 581 } 582 583 static int send_flowc(struct c4iw_ep *ep) 584 { 585 struct fw_flowc_wr *flowc; 586 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 587 int i; 588 u16 vlan = ep->l2t->vlan; 589 int nparams; 590 591 if (WARN_ON(!skb)) 592 return -ENOMEM; 593 594 if (vlan == CPL_L2T_VLAN_NONE) 595 nparams = 8; 596 else 597 nparams = 9; 598 599 flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN); 600 601 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 602 FW_FLOWC_WR_NPARAMS_V(nparams)); 603 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN, 604 16)) | FW_WR_FLOWID_V(ep->hwtid)); 605 606 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 607 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 608 (ep->com.dev->rdev.lldi.pf)); 609 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 610 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 611 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 612 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 613 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 614 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 615 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 616 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 617 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 618 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 619 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 620 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 621 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 622 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 623 if (nparams == 9) { 624 u16 pri; 625 626 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 627 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 628 flowc->mnemval[8].val = cpu_to_be32(pri); 629 } else { 630 /* Pad WR to 16 byte boundary */ 631 flowc->mnemval[8].mnemonic = 0; 632 flowc->mnemval[8].val = 0; 633 } 634 for (i = 0; i < 9; i++) { 635 flowc->mnemval[i].r4[0] = 0; 636 flowc->mnemval[i].r4[1] = 0; 637 flowc->mnemval[i].r4[2] = 0; 638 } 639 640 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 641 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 642 } 643 644 static int send_halfclose(struct c4iw_ep *ep) 645 { 646 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 647 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 648 649 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 650 if (WARN_ON(!skb)) 651 return -ENOMEM; 652 653 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 654 NULL, arp_failure_discard); 655 656 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 657 } 658 659 static int send_abort(struct c4iw_ep *ep) 660 { 661 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 662 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 663 664 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 665 if (WARN_ON(!req_skb)) 666 return -ENOMEM; 667 668 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 669 ep, abort_arp_failure); 670 671 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 672 } 673 674 static int send_connect(struct c4iw_ep *ep) 675 { 676 struct cpl_act_open_req *req = NULL; 677 struct cpl_t5_act_open_req *t5req = NULL; 678 struct cpl_t6_act_open_req *t6req = NULL; 679 struct cpl_act_open_req6 *req6 = NULL; 680 struct cpl_t5_act_open_req6 *t5req6 = NULL; 681 struct cpl_t6_act_open_req6 *t6req6 = NULL; 682 struct sk_buff *skb; 683 u64 opt0; 684 u32 opt2; 685 unsigned int mtu_idx; 686 u32 wscale; 687 int win, sizev4, sizev6, wrlen; 688 struct sockaddr_in *la = (struct sockaddr_in *) 689 &ep->com.local_addr; 690 struct sockaddr_in *ra = (struct sockaddr_in *) 691 &ep->com.remote_addr; 692 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 693 &ep->com.local_addr; 694 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 695 &ep->com.remote_addr; 696 int ret; 697 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 698 u32 isn = (prandom_u32() & ~7UL) - 1; 699 struct net_device *netdev; 700 u64 params; 701 702 netdev = ep->com.dev->rdev.lldi.ports[0]; 703 704 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 705 case CHELSIO_T4: 706 sizev4 = sizeof(struct cpl_act_open_req); 707 sizev6 = sizeof(struct cpl_act_open_req6); 708 break; 709 case CHELSIO_T5: 710 sizev4 = sizeof(struct cpl_t5_act_open_req); 711 sizev6 = sizeof(struct cpl_t5_act_open_req6); 712 break; 713 case CHELSIO_T6: 714 sizev4 = sizeof(struct cpl_t6_act_open_req); 715 sizev6 = sizeof(struct cpl_t6_act_open_req6); 716 break; 717 default: 718 pr_err("T%d Chip is not supported\n", 719 CHELSIO_CHIP_VERSION(adapter_type)); 720 return -EINVAL; 721 } 722 723 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 724 roundup(sizev4, 16) : 725 roundup(sizev6, 16); 726 727 pr_debug("%s ep %p atid %u\n", __func__, ep, ep->atid); 728 729 skb = get_skb(NULL, wrlen, GFP_KERNEL); 730 if (!skb) { 731 pr_err("%s - failed to alloc skb\n", __func__); 732 return -ENOMEM; 733 } 734 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 735 736 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 737 enable_tcp_timestamps, 738 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 739 wscale = cxgb_compute_wscale(rcv_win); 740 741 /* 742 * Specify the largest window that will fit in opt0. The 743 * remainder will be specified in the rx_data_ack. 744 */ 745 win = ep->rcv_win >> 10; 746 if (win > RCV_BUFSIZ_M) 747 win = RCV_BUFSIZ_M; 748 749 opt0 = (nocong ? NO_CONG_F : 0) | 750 KEEP_ALIVE_F | 751 DELACK_F | 752 WND_SCALE_V(wscale) | 753 MSS_IDX_V(mtu_idx) | 754 L2T_IDX_V(ep->l2t->idx) | 755 TX_CHAN_V(ep->tx_chan) | 756 SMAC_SEL_V(ep->smac_idx) | 757 DSCP_V(ep->tos >> 2) | 758 ULP_MODE_V(ULP_MODE_TCPDDP) | 759 RCV_BUFSIZ_V(win); 760 opt2 = RX_CHANNEL_V(0) | 761 CCTRL_ECN_V(enable_ecn) | 762 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 763 if (enable_tcp_timestamps) 764 opt2 |= TSTAMPS_EN_F; 765 if (enable_tcp_sack) 766 opt2 |= SACK_EN_F; 767 if (wscale && enable_tcp_window_scaling) 768 opt2 |= WND_SCALE_EN_F; 769 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 770 if (peer2peer) 771 isn += 4; 772 773 opt2 |= T5_OPT_2_VALID_F; 774 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 775 opt2 |= T5_ISS_F; 776 } 777 778 params = cxgb4_select_ntuple(netdev, ep->l2t); 779 780 if (ep->com.remote_addr.ss_family == AF_INET6) 781 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 782 (const u32 *)&la6->sin6_addr.s6_addr, 1); 783 784 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 785 786 if (ep->com.remote_addr.ss_family == AF_INET) { 787 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 788 case CHELSIO_T4: 789 req = (struct cpl_act_open_req *)skb_put(skb, wrlen); 790 INIT_TP_WR(req, 0); 791 break; 792 case CHELSIO_T5: 793 t5req = (struct cpl_t5_act_open_req *)skb_put(skb, 794 wrlen); 795 INIT_TP_WR(t5req, 0); 796 req = (struct cpl_act_open_req *)t5req; 797 break; 798 case CHELSIO_T6: 799 t6req = (struct cpl_t6_act_open_req *)skb_put(skb, 800 wrlen); 801 INIT_TP_WR(t6req, 0); 802 req = (struct cpl_act_open_req *)t6req; 803 t5req = (struct cpl_t5_act_open_req *)t6req; 804 break; 805 default: 806 pr_err("T%d Chip is not supported\n", 807 CHELSIO_CHIP_VERSION(adapter_type)); 808 ret = -EINVAL; 809 goto clip_release; 810 } 811 812 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 813 ((ep->rss_qid<<14) | ep->atid))); 814 req->local_port = la->sin_port; 815 req->peer_port = ra->sin_port; 816 req->local_ip = la->sin_addr.s_addr; 817 req->peer_ip = ra->sin_addr.s_addr; 818 req->opt0 = cpu_to_be64(opt0); 819 820 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 821 req->params = cpu_to_be32(params); 822 req->opt2 = cpu_to_be32(opt2); 823 } else { 824 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 825 t5req->params = 826 cpu_to_be64(FILTER_TUPLE_V(params)); 827 t5req->rsvd = cpu_to_be32(isn); 828 pr_debug("%s snd_isn %u\n", __func__, t5req->rsvd); 829 t5req->opt2 = cpu_to_be32(opt2); 830 } else { 831 t6req->params = 832 cpu_to_be64(FILTER_TUPLE_V(params)); 833 t6req->rsvd = cpu_to_be32(isn); 834 pr_debug("%s snd_isn %u\n", __func__, t6req->rsvd); 835 t6req->opt2 = cpu_to_be32(opt2); 836 } 837 } 838 } else { 839 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 840 case CHELSIO_T4: 841 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen); 842 INIT_TP_WR(req6, 0); 843 break; 844 case CHELSIO_T5: 845 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb, 846 wrlen); 847 INIT_TP_WR(t5req6, 0); 848 req6 = (struct cpl_act_open_req6 *)t5req6; 849 break; 850 case CHELSIO_T6: 851 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb, 852 wrlen); 853 INIT_TP_WR(t6req6, 0); 854 req6 = (struct cpl_act_open_req6 *)t6req6; 855 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 856 break; 857 default: 858 pr_err("T%d Chip is not supported\n", 859 CHELSIO_CHIP_VERSION(adapter_type)); 860 ret = -EINVAL; 861 goto clip_release; 862 } 863 864 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 865 ((ep->rss_qid<<14)|ep->atid))); 866 req6->local_port = la6->sin6_port; 867 req6->peer_port = ra6->sin6_port; 868 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 869 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 870 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 871 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 872 req6->opt0 = cpu_to_be64(opt0); 873 874 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 875 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, 876 ep->l2t)); 877 req6->opt2 = cpu_to_be32(opt2); 878 } else { 879 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 880 t5req6->params = 881 cpu_to_be64(FILTER_TUPLE_V(params)); 882 t5req6->rsvd = cpu_to_be32(isn); 883 pr_debug("%s snd_isn %u\n", __func__, t5req6->rsvd); 884 t5req6->opt2 = cpu_to_be32(opt2); 885 } else { 886 t6req6->params = 887 cpu_to_be64(FILTER_TUPLE_V(params)); 888 t6req6->rsvd = cpu_to_be32(isn); 889 pr_debug("%s snd_isn %u\n", __func__, t6req6->rsvd); 890 t6req6->opt2 = cpu_to_be32(opt2); 891 } 892 893 } 894 } 895 896 set_bit(ACT_OPEN_REQ, &ep->com.history); 897 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 898 clip_release: 899 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 900 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 901 (const u32 *)&la6->sin6_addr.s6_addr, 1); 902 return ret; 903 } 904 905 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 906 u8 mpa_rev_to_use) 907 { 908 int mpalen, wrlen, ret; 909 struct fw_ofld_tx_data_wr *req; 910 struct mpa_message *mpa; 911 struct mpa_v2_conn_params mpa_v2_params; 912 913 pr_debug("%s ep %p tid %u pd_len %d\n", 914 __func__, ep, ep->hwtid, ep->plen); 915 916 BUG_ON(skb_cloned(skb)); 917 918 mpalen = sizeof(*mpa) + ep->plen; 919 if (mpa_rev_to_use == 2) 920 mpalen += sizeof(struct mpa_v2_conn_params); 921 wrlen = roundup(mpalen + sizeof *req, 16); 922 skb = get_skb(skb, wrlen, GFP_KERNEL); 923 if (!skb) { 924 connect_reply_upcall(ep, -ENOMEM); 925 return -ENOMEM; 926 } 927 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 928 929 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 930 memset(req, 0, wrlen); 931 req->op_to_immdlen = cpu_to_be32( 932 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 933 FW_WR_COMPL_F | 934 FW_WR_IMMDLEN_V(mpalen)); 935 req->flowid_len16 = cpu_to_be32( 936 FW_WR_FLOWID_V(ep->hwtid) | 937 FW_WR_LEN16_V(wrlen >> 4)); 938 req->plen = cpu_to_be32(mpalen); 939 req->tunnel_to_proxy = cpu_to_be32( 940 FW_OFLD_TX_DATA_WR_FLUSH_F | 941 FW_OFLD_TX_DATA_WR_SHOVE_F); 942 943 mpa = (struct mpa_message *)(req + 1); 944 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 945 946 mpa->flags = 0; 947 if (crc_enabled) 948 mpa->flags |= MPA_CRC; 949 if (markers_enabled) { 950 mpa->flags |= MPA_MARKERS; 951 ep->mpa_attr.recv_marker_enabled = 1; 952 } else { 953 ep->mpa_attr.recv_marker_enabled = 0; 954 } 955 if (mpa_rev_to_use == 2) 956 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 957 958 mpa->private_data_size = htons(ep->plen); 959 mpa->revision = mpa_rev_to_use; 960 if (mpa_rev_to_use == 1) { 961 ep->tried_with_mpa_v1 = 1; 962 ep->retry_with_mpa_v1 = 0; 963 } 964 965 if (mpa_rev_to_use == 2) { 966 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 967 sizeof (struct mpa_v2_conn_params)); 968 pr_debug("%s initiator ird %u ord %u\n", __func__, ep->ird, 969 ep->ord); 970 mpa_v2_params.ird = htons((u16)ep->ird); 971 mpa_v2_params.ord = htons((u16)ep->ord); 972 973 if (peer2peer) { 974 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 975 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 976 mpa_v2_params.ord |= 977 htons(MPA_V2_RDMA_WRITE_RTR); 978 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 979 mpa_v2_params.ord |= 980 htons(MPA_V2_RDMA_READ_RTR); 981 } 982 memcpy(mpa->private_data, &mpa_v2_params, 983 sizeof(struct mpa_v2_conn_params)); 984 985 if (ep->plen) 986 memcpy(mpa->private_data + 987 sizeof(struct mpa_v2_conn_params), 988 ep->mpa_pkt + sizeof(*mpa), ep->plen); 989 } else 990 if (ep->plen) 991 memcpy(mpa->private_data, 992 ep->mpa_pkt + sizeof(*mpa), ep->plen); 993 994 /* 995 * Reference the mpa skb. This ensures the data area 996 * will remain in memory until the hw acks the tx. 997 * Function fw4_ack() will deref it. 998 */ 999 skb_get(skb); 1000 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 1001 BUG_ON(ep->mpa_skb); 1002 ep->mpa_skb = skb; 1003 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1004 if (ret) 1005 return ret; 1006 start_ep_timer(ep); 1007 __state_set(&ep->com, MPA_REQ_SENT); 1008 ep->mpa_attr.initiator = 1; 1009 ep->snd_seq += mpalen; 1010 return ret; 1011 } 1012 1013 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1014 { 1015 int mpalen, wrlen; 1016 struct fw_ofld_tx_data_wr *req; 1017 struct mpa_message *mpa; 1018 struct sk_buff *skb; 1019 struct mpa_v2_conn_params mpa_v2_params; 1020 1021 pr_debug("%s ep %p tid %u pd_len %d\n", 1022 __func__, ep, ep->hwtid, ep->plen); 1023 1024 mpalen = sizeof(*mpa) + plen; 1025 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1026 mpalen += sizeof(struct mpa_v2_conn_params); 1027 wrlen = roundup(mpalen + sizeof *req, 16); 1028 1029 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1030 if (!skb) { 1031 pr_err("%s - cannot alloc skb!\n", __func__); 1032 return -ENOMEM; 1033 } 1034 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1035 1036 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 1037 memset(req, 0, wrlen); 1038 req->op_to_immdlen = cpu_to_be32( 1039 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1040 FW_WR_COMPL_F | 1041 FW_WR_IMMDLEN_V(mpalen)); 1042 req->flowid_len16 = cpu_to_be32( 1043 FW_WR_FLOWID_V(ep->hwtid) | 1044 FW_WR_LEN16_V(wrlen >> 4)); 1045 req->plen = cpu_to_be32(mpalen); 1046 req->tunnel_to_proxy = cpu_to_be32( 1047 FW_OFLD_TX_DATA_WR_FLUSH_F | 1048 FW_OFLD_TX_DATA_WR_SHOVE_F); 1049 1050 mpa = (struct mpa_message *)(req + 1); 1051 memset(mpa, 0, sizeof(*mpa)); 1052 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1053 mpa->flags = MPA_REJECT; 1054 mpa->revision = ep->mpa_attr.version; 1055 mpa->private_data_size = htons(plen); 1056 1057 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1058 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1059 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1060 sizeof (struct mpa_v2_conn_params)); 1061 mpa_v2_params.ird = htons(((u16)ep->ird) | 1062 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1063 0)); 1064 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1065 (p2p_type == 1066 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1067 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1068 FW_RI_INIT_P2PTYPE_READ_REQ ? 1069 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1070 memcpy(mpa->private_data, &mpa_v2_params, 1071 sizeof(struct mpa_v2_conn_params)); 1072 1073 if (ep->plen) 1074 memcpy(mpa->private_data + 1075 sizeof(struct mpa_v2_conn_params), pdata, plen); 1076 } else 1077 if (plen) 1078 memcpy(mpa->private_data, pdata, plen); 1079 1080 /* 1081 * Reference the mpa skb again. This ensures the data area 1082 * will remain in memory until the hw acks the tx. 1083 * Function fw4_ack() will deref it. 1084 */ 1085 skb_get(skb); 1086 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1087 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1088 BUG_ON(ep->mpa_skb); 1089 ep->mpa_skb = skb; 1090 ep->snd_seq += mpalen; 1091 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1092 } 1093 1094 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1095 { 1096 int mpalen, wrlen; 1097 struct fw_ofld_tx_data_wr *req; 1098 struct mpa_message *mpa; 1099 struct sk_buff *skb; 1100 struct mpa_v2_conn_params mpa_v2_params; 1101 1102 pr_debug("%s ep %p tid %u pd_len %d\n", 1103 __func__, ep, ep->hwtid, ep->plen); 1104 1105 mpalen = sizeof(*mpa) + plen; 1106 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1107 mpalen += sizeof(struct mpa_v2_conn_params); 1108 wrlen = roundup(mpalen + sizeof *req, 16); 1109 1110 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1111 if (!skb) { 1112 pr_err("%s - cannot alloc skb!\n", __func__); 1113 return -ENOMEM; 1114 } 1115 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1116 1117 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen); 1118 memset(req, 0, wrlen); 1119 req->op_to_immdlen = cpu_to_be32( 1120 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1121 FW_WR_COMPL_F | 1122 FW_WR_IMMDLEN_V(mpalen)); 1123 req->flowid_len16 = cpu_to_be32( 1124 FW_WR_FLOWID_V(ep->hwtid) | 1125 FW_WR_LEN16_V(wrlen >> 4)); 1126 req->plen = cpu_to_be32(mpalen); 1127 req->tunnel_to_proxy = cpu_to_be32( 1128 FW_OFLD_TX_DATA_WR_FLUSH_F | 1129 FW_OFLD_TX_DATA_WR_SHOVE_F); 1130 1131 mpa = (struct mpa_message *)(req + 1); 1132 memset(mpa, 0, sizeof(*mpa)); 1133 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1134 mpa->flags = 0; 1135 if (ep->mpa_attr.crc_enabled) 1136 mpa->flags |= MPA_CRC; 1137 if (ep->mpa_attr.recv_marker_enabled) 1138 mpa->flags |= MPA_MARKERS; 1139 mpa->revision = ep->mpa_attr.version; 1140 mpa->private_data_size = htons(plen); 1141 1142 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1143 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1144 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1145 sizeof (struct mpa_v2_conn_params)); 1146 mpa_v2_params.ird = htons((u16)ep->ird); 1147 mpa_v2_params.ord = htons((u16)ep->ord); 1148 if (peer2peer && (ep->mpa_attr.p2p_type != 1149 FW_RI_INIT_P2PTYPE_DISABLED)) { 1150 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1151 1152 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1153 mpa_v2_params.ord |= 1154 htons(MPA_V2_RDMA_WRITE_RTR); 1155 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1156 mpa_v2_params.ord |= 1157 htons(MPA_V2_RDMA_READ_RTR); 1158 } 1159 1160 memcpy(mpa->private_data, &mpa_v2_params, 1161 sizeof(struct mpa_v2_conn_params)); 1162 1163 if (ep->plen) 1164 memcpy(mpa->private_data + 1165 sizeof(struct mpa_v2_conn_params), pdata, plen); 1166 } else 1167 if (plen) 1168 memcpy(mpa->private_data, pdata, plen); 1169 1170 /* 1171 * Reference the mpa skb. This ensures the data area 1172 * will remain in memory until the hw acks the tx. 1173 * Function fw4_ack() will deref it. 1174 */ 1175 skb_get(skb); 1176 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1177 ep->mpa_skb = skb; 1178 __state_set(&ep->com, MPA_REP_SENT); 1179 ep->snd_seq += mpalen; 1180 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1181 } 1182 1183 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1184 { 1185 struct c4iw_ep *ep; 1186 struct cpl_act_establish *req = cplhdr(skb); 1187 unsigned int tid = GET_TID(req); 1188 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1189 struct tid_info *t = dev->rdev.lldi.tids; 1190 int ret; 1191 1192 ep = lookup_atid(t, atid); 1193 1194 pr_debug("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid, 1195 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1196 1197 mutex_lock(&ep->com.mutex); 1198 dst_confirm(ep->dst); 1199 1200 /* setup the hwtid for this connection */ 1201 ep->hwtid = tid; 1202 cxgb4_insert_tid(t, ep, tid); 1203 insert_ep_tid(ep); 1204 1205 ep->snd_seq = be32_to_cpu(req->snd_isn); 1206 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1207 1208 set_emss(ep, ntohs(req->tcp_opt)); 1209 1210 /* dealloc the atid */ 1211 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 1212 cxgb4_free_atid(t, atid); 1213 set_bit(ACT_ESTAB, &ep->com.history); 1214 1215 /* start MPA negotiation */ 1216 ret = send_flowc(ep); 1217 if (ret) 1218 goto err; 1219 if (ep->retry_with_mpa_v1) 1220 ret = send_mpa_req(ep, skb, 1); 1221 else 1222 ret = send_mpa_req(ep, skb, mpa_rev); 1223 if (ret) 1224 goto err; 1225 mutex_unlock(&ep->com.mutex); 1226 return 0; 1227 err: 1228 mutex_unlock(&ep->com.mutex); 1229 connect_reply_upcall(ep, -ENOMEM); 1230 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1231 return 0; 1232 } 1233 1234 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1235 { 1236 struct iw_cm_event event; 1237 1238 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1239 memset(&event, 0, sizeof(event)); 1240 event.event = IW_CM_EVENT_CLOSE; 1241 event.status = status; 1242 if (ep->com.cm_id) { 1243 pr_debug("close complete delivered ep %p cm_id %p tid %u\n", 1244 ep, ep->com.cm_id, ep->hwtid); 1245 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1246 deref_cm_id(&ep->com); 1247 set_bit(CLOSE_UPCALL, &ep->com.history); 1248 } 1249 } 1250 1251 static void peer_close_upcall(struct c4iw_ep *ep) 1252 { 1253 struct iw_cm_event event; 1254 1255 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1256 memset(&event, 0, sizeof(event)); 1257 event.event = IW_CM_EVENT_DISCONNECT; 1258 if (ep->com.cm_id) { 1259 pr_debug("peer close delivered ep %p cm_id %p tid %u\n", 1260 ep, ep->com.cm_id, ep->hwtid); 1261 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1262 set_bit(DISCONN_UPCALL, &ep->com.history); 1263 } 1264 } 1265 1266 static void peer_abort_upcall(struct c4iw_ep *ep) 1267 { 1268 struct iw_cm_event event; 1269 1270 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1271 memset(&event, 0, sizeof(event)); 1272 event.event = IW_CM_EVENT_CLOSE; 1273 event.status = -ECONNRESET; 1274 if (ep->com.cm_id) { 1275 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep, 1276 ep->com.cm_id, ep->hwtid); 1277 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1278 deref_cm_id(&ep->com); 1279 set_bit(ABORT_UPCALL, &ep->com.history); 1280 } 1281 } 1282 1283 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1284 { 1285 struct iw_cm_event event; 1286 1287 pr_debug("%s ep %p tid %u status %d\n", 1288 __func__, ep, ep->hwtid, status); 1289 memset(&event, 0, sizeof(event)); 1290 event.event = IW_CM_EVENT_CONNECT_REPLY; 1291 event.status = status; 1292 memcpy(&event.local_addr, &ep->com.local_addr, 1293 sizeof(ep->com.local_addr)); 1294 memcpy(&event.remote_addr, &ep->com.remote_addr, 1295 sizeof(ep->com.remote_addr)); 1296 1297 if ((status == 0) || (status == -ECONNREFUSED)) { 1298 if (!ep->tried_with_mpa_v1) { 1299 /* this means MPA_v2 is used */ 1300 event.ord = ep->ird; 1301 event.ird = ep->ord; 1302 event.private_data_len = ep->plen - 1303 sizeof(struct mpa_v2_conn_params); 1304 event.private_data = ep->mpa_pkt + 1305 sizeof(struct mpa_message) + 1306 sizeof(struct mpa_v2_conn_params); 1307 } else { 1308 /* this means MPA_v1 is used */ 1309 event.ord = cur_max_read_depth(ep->com.dev); 1310 event.ird = cur_max_read_depth(ep->com.dev); 1311 event.private_data_len = ep->plen; 1312 event.private_data = ep->mpa_pkt + 1313 sizeof(struct mpa_message); 1314 } 1315 } 1316 1317 pr_debug("%s ep %p tid %u status %d\n", __func__, ep, 1318 ep->hwtid, status); 1319 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1320 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1321 1322 if (status < 0) 1323 deref_cm_id(&ep->com); 1324 } 1325 1326 static int connect_request_upcall(struct c4iw_ep *ep) 1327 { 1328 struct iw_cm_event event; 1329 int ret; 1330 1331 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1332 memset(&event, 0, sizeof(event)); 1333 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1334 memcpy(&event.local_addr, &ep->com.local_addr, 1335 sizeof(ep->com.local_addr)); 1336 memcpy(&event.remote_addr, &ep->com.remote_addr, 1337 sizeof(ep->com.remote_addr)); 1338 event.provider_data = ep; 1339 if (!ep->tried_with_mpa_v1) { 1340 /* this means MPA_v2 is used */ 1341 event.ord = ep->ord; 1342 event.ird = ep->ird; 1343 event.private_data_len = ep->plen - 1344 sizeof(struct mpa_v2_conn_params); 1345 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1346 sizeof(struct mpa_v2_conn_params); 1347 } else { 1348 /* this means MPA_v1 is used. Send max supported */ 1349 event.ord = cur_max_read_depth(ep->com.dev); 1350 event.ird = cur_max_read_depth(ep->com.dev); 1351 event.private_data_len = ep->plen; 1352 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1353 } 1354 c4iw_get_ep(&ep->com); 1355 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1356 &event); 1357 if (ret) 1358 c4iw_put_ep(&ep->com); 1359 set_bit(CONNREQ_UPCALL, &ep->com.history); 1360 c4iw_put_ep(&ep->parent_ep->com); 1361 return ret; 1362 } 1363 1364 static void established_upcall(struct c4iw_ep *ep) 1365 { 1366 struct iw_cm_event event; 1367 1368 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1369 memset(&event, 0, sizeof(event)); 1370 event.event = IW_CM_EVENT_ESTABLISHED; 1371 event.ird = ep->ord; 1372 event.ord = ep->ird; 1373 if (ep->com.cm_id) { 1374 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1375 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1376 set_bit(ESTAB_UPCALL, &ep->com.history); 1377 } 1378 } 1379 1380 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1381 { 1382 struct sk_buff *skb; 1383 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1384 u32 credit_dack; 1385 1386 pr_debug("%s ep %p tid %u credits %u\n", 1387 __func__, ep, ep->hwtid, credits); 1388 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1389 if (!skb) { 1390 pr_err("update_rx_credits - cannot alloc skb!\n"); 1391 return 0; 1392 } 1393 1394 /* 1395 * If we couldn't specify the entire rcv window at connection setup 1396 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1397 * then add the overage in to the credits returned. 1398 */ 1399 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1400 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1401 1402 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1403 RX_DACK_MODE_V(dack_mode); 1404 1405 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1406 credit_dack); 1407 1408 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1409 return credits; 1410 } 1411 1412 #define RELAXED_IRD_NEGOTIATION 1 1413 1414 /* 1415 * process_mpa_reply - process streaming mode MPA reply 1416 * 1417 * Returns: 1418 * 1419 * 0 upon success indicating a connect request was delivered to the ULP 1420 * or the mpa request is incomplete but valid so far. 1421 * 1422 * 1 if a failure requires the caller to close the connection. 1423 * 1424 * 2 if a failure requires the caller to abort the connection. 1425 */ 1426 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1427 { 1428 struct mpa_message *mpa; 1429 struct mpa_v2_conn_params *mpa_v2_params; 1430 u16 plen; 1431 u16 resp_ird, resp_ord; 1432 u8 rtr_mismatch = 0, insuff_ird = 0; 1433 struct c4iw_qp_attributes attrs; 1434 enum c4iw_qp_attr_mask mask; 1435 int err; 1436 int disconnect = 0; 1437 1438 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1439 1440 /* 1441 * If we get more than the supported amount of private data 1442 * then we must fail this connection. 1443 */ 1444 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1445 err = -EINVAL; 1446 goto err_stop_timer; 1447 } 1448 1449 /* 1450 * copy the new data into our accumulation buffer. 1451 */ 1452 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1453 skb->len); 1454 ep->mpa_pkt_len += skb->len; 1455 1456 /* 1457 * if we don't even have the mpa message, then bail. 1458 */ 1459 if (ep->mpa_pkt_len < sizeof(*mpa)) 1460 return 0; 1461 mpa = (struct mpa_message *) ep->mpa_pkt; 1462 1463 /* Validate MPA header. */ 1464 if (mpa->revision > mpa_rev) { 1465 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1466 __func__, mpa_rev, mpa->revision); 1467 err = -EPROTO; 1468 goto err_stop_timer; 1469 } 1470 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1471 err = -EPROTO; 1472 goto err_stop_timer; 1473 } 1474 1475 plen = ntohs(mpa->private_data_size); 1476 1477 /* 1478 * Fail if there's too much private data. 1479 */ 1480 if (plen > MPA_MAX_PRIVATE_DATA) { 1481 err = -EPROTO; 1482 goto err_stop_timer; 1483 } 1484 1485 /* 1486 * If plen does not account for pkt size 1487 */ 1488 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1489 err = -EPROTO; 1490 goto err_stop_timer; 1491 } 1492 1493 ep->plen = (u8) plen; 1494 1495 /* 1496 * If we don't have all the pdata yet, then bail. 1497 * We'll continue process when more data arrives. 1498 */ 1499 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1500 return 0; 1501 1502 if (mpa->flags & MPA_REJECT) { 1503 err = -ECONNREFUSED; 1504 goto err_stop_timer; 1505 } 1506 1507 /* 1508 * Stop mpa timer. If it expired, then 1509 * we ignore the MPA reply. process_timeout() 1510 * will abort the connection. 1511 */ 1512 if (stop_ep_timer(ep)) 1513 return 0; 1514 1515 /* 1516 * If we get here we have accumulated the entire mpa 1517 * start reply message including private data. And 1518 * the MPA header is valid. 1519 */ 1520 __state_set(&ep->com, FPDU_MODE); 1521 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1522 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1523 ep->mpa_attr.version = mpa->revision; 1524 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1525 1526 if (mpa->revision == 2) { 1527 ep->mpa_attr.enhanced_rdma_conn = 1528 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1529 if (ep->mpa_attr.enhanced_rdma_conn) { 1530 mpa_v2_params = (struct mpa_v2_conn_params *) 1531 (ep->mpa_pkt + sizeof(*mpa)); 1532 resp_ird = ntohs(mpa_v2_params->ird) & 1533 MPA_V2_IRD_ORD_MASK; 1534 resp_ord = ntohs(mpa_v2_params->ord) & 1535 MPA_V2_IRD_ORD_MASK; 1536 pr_debug("%s responder ird %u ord %u ep ird %u ord %u\n", 1537 __func__, 1538 resp_ird, resp_ord, ep->ird, ep->ord); 1539 1540 /* 1541 * This is a double-check. Ideally, below checks are 1542 * not required since ird/ord stuff has been taken 1543 * care of in c4iw_accept_cr 1544 */ 1545 if (ep->ird < resp_ord) { 1546 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1547 ep->com.dev->rdev.lldi.max_ordird_qp) 1548 ep->ird = resp_ord; 1549 else 1550 insuff_ird = 1; 1551 } else if (ep->ird > resp_ord) { 1552 ep->ird = resp_ord; 1553 } 1554 if (ep->ord > resp_ird) { 1555 if (RELAXED_IRD_NEGOTIATION) 1556 ep->ord = resp_ird; 1557 else 1558 insuff_ird = 1; 1559 } 1560 if (insuff_ird) { 1561 err = -ENOMEM; 1562 ep->ird = resp_ord; 1563 ep->ord = resp_ird; 1564 } 1565 1566 if (ntohs(mpa_v2_params->ird) & 1567 MPA_V2_PEER2PEER_MODEL) { 1568 if (ntohs(mpa_v2_params->ord) & 1569 MPA_V2_RDMA_WRITE_RTR) 1570 ep->mpa_attr.p2p_type = 1571 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1572 else if (ntohs(mpa_v2_params->ord) & 1573 MPA_V2_RDMA_READ_RTR) 1574 ep->mpa_attr.p2p_type = 1575 FW_RI_INIT_P2PTYPE_READ_REQ; 1576 } 1577 } 1578 } else if (mpa->revision == 1) 1579 if (peer2peer) 1580 ep->mpa_attr.p2p_type = p2p_type; 1581 1582 pr_debug("%s - crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n", 1583 __func__, ep->mpa_attr.crc_enabled, 1584 ep->mpa_attr.recv_marker_enabled, 1585 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1586 ep->mpa_attr.p2p_type, p2p_type); 1587 1588 /* 1589 * If responder's RTR does not match with that of initiator, assign 1590 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1591 * generated when moving QP to RTS state. 1592 * A TERM message will be sent after QP has moved to RTS state 1593 */ 1594 if ((ep->mpa_attr.version == 2) && peer2peer && 1595 (ep->mpa_attr.p2p_type != p2p_type)) { 1596 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1597 rtr_mismatch = 1; 1598 } 1599 1600 attrs.mpa_attr = ep->mpa_attr; 1601 attrs.max_ird = ep->ird; 1602 attrs.max_ord = ep->ord; 1603 attrs.llp_stream_handle = ep; 1604 attrs.next_state = C4IW_QP_STATE_RTS; 1605 1606 mask = C4IW_QP_ATTR_NEXT_STATE | 1607 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1608 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1609 1610 /* bind QP and TID with INIT_WR */ 1611 err = c4iw_modify_qp(ep->com.qp->rhp, 1612 ep->com.qp, mask, &attrs, 1); 1613 if (err) 1614 goto err; 1615 1616 /* 1617 * If responder's RTR requirement did not match with what initiator 1618 * supports, generate TERM message 1619 */ 1620 if (rtr_mismatch) { 1621 pr_err("%s: RTR mismatch, sending TERM\n", __func__); 1622 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1623 attrs.ecode = MPA_NOMATCH_RTR; 1624 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1625 attrs.send_term = 1; 1626 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1627 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1628 err = -ENOMEM; 1629 disconnect = 1; 1630 goto out; 1631 } 1632 1633 /* 1634 * Generate TERM if initiator IRD is not sufficient for responder 1635 * provided ORD. Currently, we do the same behaviour even when 1636 * responder provided IRD is also not sufficient as regards to 1637 * initiator ORD. 1638 */ 1639 if (insuff_ird) { 1640 pr_err("%s: Insufficient IRD, sending TERM\n", __func__); 1641 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1642 attrs.ecode = MPA_INSUFF_IRD; 1643 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1644 attrs.send_term = 1; 1645 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1646 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1647 err = -ENOMEM; 1648 disconnect = 1; 1649 goto out; 1650 } 1651 goto out; 1652 err_stop_timer: 1653 stop_ep_timer(ep); 1654 err: 1655 disconnect = 2; 1656 out: 1657 connect_reply_upcall(ep, err); 1658 return disconnect; 1659 } 1660 1661 /* 1662 * process_mpa_request - process streaming mode MPA request 1663 * 1664 * Returns: 1665 * 1666 * 0 upon success indicating a connect request was delivered to the ULP 1667 * or the mpa request is incomplete but valid so far. 1668 * 1669 * 1 if a failure requires the caller to close the connection. 1670 * 1671 * 2 if a failure requires the caller to abort the connection. 1672 */ 1673 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1674 { 1675 struct mpa_message *mpa; 1676 struct mpa_v2_conn_params *mpa_v2_params; 1677 u16 plen; 1678 1679 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1680 1681 /* 1682 * If we get more than the supported amount of private data 1683 * then we must fail this connection. 1684 */ 1685 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1686 goto err_stop_timer; 1687 1688 pr_debug("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1689 1690 /* 1691 * Copy the new data into our accumulation buffer. 1692 */ 1693 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1694 skb->len); 1695 ep->mpa_pkt_len += skb->len; 1696 1697 /* 1698 * If we don't even have the mpa message, then bail. 1699 * We'll continue process when more data arrives. 1700 */ 1701 if (ep->mpa_pkt_len < sizeof(*mpa)) 1702 return 0; 1703 1704 pr_debug("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1705 mpa = (struct mpa_message *) ep->mpa_pkt; 1706 1707 /* 1708 * Validate MPA Header. 1709 */ 1710 if (mpa->revision > mpa_rev) { 1711 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1712 __func__, mpa_rev, mpa->revision); 1713 goto err_stop_timer; 1714 } 1715 1716 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1717 goto err_stop_timer; 1718 1719 plen = ntohs(mpa->private_data_size); 1720 1721 /* 1722 * Fail if there's too much private data. 1723 */ 1724 if (plen > MPA_MAX_PRIVATE_DATA) 1725 goto err_stop_timer; 1726 1727 /* 1728 * If plen does not account for pkt size 1729 */ 1730 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1731 goto err_stop_timer; 1732 ep->plen = (u8) plen; 1733 1734 /* 1735 * If we don't have all the pdata yet, then bail. 1736 */ 1737 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1738 return 0; 1739 1740 /* 1741 * If we get here we have accumulated the entire mpa 1742 * start reply message including private data. 1743 */ 1744 ep->mpa_attr.initiator = 0; 1745 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1746 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1747 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1748 ep->mpa_attr.version = mpa->revision; 1749 if (mpa->revision == 1) 1750 ep->tried_with_mpa_v1 = 1; 1751 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1752 1753 if (mpa->revision == 2) { 1754 ep->mpa_attr.enhanced_rdma_conn = 1755 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1756 if (ep->mpa_attr.enhanced_rdma_conn) { 1757 mpa_v2_params = (struct mpa_v2_conn_params *) 1758 (ep->mpa_pkt + sizeof(*mpa)); 1759 ep->ird = ntohs(mpa_v2_params->ird) & 1760 MPA_V2_IRD_ORD_MASK; 1761 ep->ird = min_t(u32, ep->ird, 1762 cur_max_read_depth(ep->com.dev)); 1763 ep->ord = ntohs(mpa_v2_params->ord) & 1764 MPA_V2_IRD_ORD_MASK; 1765 ep->ord = min_t(u32, ep->ord, 1766 cur_max_read_depth(ep->com.dev)); 1767 pr_debug("%s initiator ird %u ord %u\n", 1768 __func__, ep->ird, ep->ord); 1769 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1770 if (peer2peer) { 1771 if (ntohs(mpa_v2_params->ord) & 1772 MPA_V2_RDMA_WRITE_RTR) 1773 ep->mpa_attr.p2p_type = 1774 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1775 else if (ntohs(mpa_v2_params->ord) & 1776 MPA_V2_RDMA_READ_RTR) 1777 ep->mpa_attr.p2p_type = 1778 FW_RI_INIT_P2PTYPE_READ_REQ; 1779 } 1780 } 1781 } else if (mpa->revision == 1) 1782 if (peer2peer) 1783 ep->mpa_attr.p2p_type = p2p_type; 1784 1785 pr_debug("%s - crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n", 1786 __func__, 1787 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1788 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1789 ep->mpa_attr.p2p_type); 1790 1791 __state_set(&ep->com, MPA_REQ_RCVD); 1792 1793 /* drive upcall */ 1794 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1795 if (ep->parent_ep->com.state != DEAD) { 1796 if (connect_request_upcall(ep)) 1797 goto err_unlock_parent; 1798 } else { 1799 goto err_unlock_parent; 1800 } 1801 mutex_unlock(&ep->parent_ep->com.mutex); 1802 return 0; 1803 1804 err_unlock_parent: 1805 mutex_unlock(&ep->parent_ep->com.mutex); 1806 goto err_out; 1807 err_stop_timer: 1808 (void)stop_ep_timer(ep); 1809 err_out: 1810 return 2; 1811 } 1812 1813 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1814 { 1815 struct c4iw_ep *ep; 1816 struct cpl_rx_data *hdr = cplhdr(skb); 1817 unsigned int dlen = ntohs(hdr->len); 1818 unsigned int tid = GET_TID(hdr); 1819 __u8 status = hdr->status; 1820 int disconnect = 0; 1821 1822 ep = get_ep_from_tid(dev, tid); 1823 if (!ep) 1824 return 0; 1825 pr_debug("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen); 1826 skb_pull(skb, sizeof(*hdr)); 1827 skb_trim(skb, dlen); 1828 mutex_lock(&ep->com.mutex); 1829 1830 switch (ep->com.state) { 1831 case MPA_REQ_SENT: 1832 update_rx_credits(ep, dlen); 1833 ep->rcv_seq += dlen; 1834 disconnect = process_mpa_reply(ep, skb); 1835 break; 1836 case MPA_REQ_WAIT: 1837 update_rx_credits(ep, dlen); 1838 ep->rcv_seq += dlen; 1839 disconnect = process_mpa_request(ep, skb); 1840 break; 1841 case FPDU_MODE: { 1842 struct c4iw_qp_attributes attrs; 1843 1844 update_rx_credits(ep, dlen); 1845 BUG_ON(!ep->com.qp); 1846 if (status) 1847 pr_err("%s Unexpected streaming data." \ 1848 " qpid %u ep %p state %d tid %u status %d\n", 1849 __func__, ep->com.qp->wq.sq.qid, ep, 1850 ep->com.state, ep->hwtid, status); 1851 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1852 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1853 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1854 disconnect = 1; 1855 break; 1856 } 1857 default: 1858 break; 1859 } 1860 mutex_unlock(&ep->com.mutex); 1861 if (disconnect) 1862 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1863 c4iw_put_ep(&ep->com); 1864 return 0; 1865 } 1866 1867 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1868 { 1869 struct c4iw_ep *ep; 1870 struct cpl_abort_rpl_rss *rpl = cplhdr(skb); 1871 int release = 0; 1872 unsigned int tid = GET_TID(rpl); 1873 1874 ep = get_ep_from_tid(dev, tid); 1875 if (!ep) { 1876 pr_warn("Abort rpl to freed endpoint\n"); 1877 return 0; 1878 } 1879 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1880 mutex_lock(&ep->com.mutex); 1881 switch (ep->com.state) { 1882 case ABORTING: 1883 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 1884 __state_set(&ep->com, DEAD); 1885 release = 1; 1886 break; 1887 default: 1888 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state); 1889 break; 1890 } 1891 mutex_unlock(&ep->com.mutex); 1892 1893 if (release) 1894 release_ep_resources(ep); 1895 c4iw_put_ep(&ep->com); 1896 return 0; 1897 } 1898 1899 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1900 { 1901 struct sk_buff *skb; 1902 struct fw_ofld_connection_wr *req; 1903 unsigned int mtu_idx; 1904 u32 wscale; 1905 struct sockaddr_in *sin; 1906 int win; 1907 1908 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1909 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req)); 1910 memset(req, 0, sizeof(*req)); 1911 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1912 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1913 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1914 ep->com.dev->rdev.lldi.ports[0], 1915 ep->l2t)); 1916 sin = (struct sockaddr_in *)&ep->com.local_addr; 1917 req->le.lport = sin->sin_port; 1918 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1919 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1920 req->le.pport = sin->sin_port; 1921 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1922 req->tcb.t_state_to_astid = 1923 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1924 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1925 req->tcb.cplrxdataack_cplpassacceptrpl = 1926 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1927 req->tcb.tx_max = (__force __be32) jiffies; 1928 req->tcb.rcv_adv = htons(1); 1929 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1930 enable_tcp_timestamps, 1931 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1932 wscale = cxgb_compute_wscale(rcv_win); 1933 1934 /* 1935 * Specify the largest window that will fit in opt0. The 1936 * remainder will be specified in the rx_data_ack. 1937 */ 1938 win = ep->rcv_win >> 10; 1939 if (win > RCV_BUFSIZ_M) 1940 win = RCV_BUFSIZ_M; 1941 1942 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 1943 (nocong ? NO_CONG_F : 0) | 1944 KEEP_ALIVE_F | 1945 DELACK_F | 1946 WND_SCALE_V(wscale) | 1947 MSS_IDX_V(mtu_idx) | 1948 L2T_IDX_V(ep->l2t->idx) | 1949 TX_CHAN_V(ep->tx_chan) | 1950 SMAC_SEL_V(ep->smac_idx) | 1951 DSCP_V(ep->tos >> 2) | 1952 ULP_MODE_V(ULP_MODE_TCPDDP) | 1953 RCV_BUFSIZ_V(win)); 1954 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 1955 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 1956 RX_CHANNEL_V(0) | 1957 CCTRL_ECN_V(enable_ecn) | 1958 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 1959 if (enable_tcp_timestamps) 1960 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 1961 if (enable_tcp_sack) 1962 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 1963 if (wscale && enable_tcp_window_scaling) 1964 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 1965 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 1966 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 1967 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 1968 set_bit(ACT_OFLD_CONN, &ep->com.history); 1969 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1970 } 1971 1972 /* 1973 * Some of the error codes above implicitly indicate that there is no TID 1974 * allocated with the result of an ACT_OPEN. We use this predicate to make 1975 * that explicit. 1976 */ 1977 static inline int act_open_has_tid(int status) 1978 { 1979 return (status != CPL_ERR_TCAM_PARITY && 1980 status != CPL_ERR_TCAM_MISS && 1981 status != CPL_ERR_TCAM_FULL && 1982 status != CPL_ERR_CONN_EXIST_SYNRECV && 1983 status != CPL_ERR_CONN_EXIST); 1984 } 1985 1986 static char *neg_adv_str(unsigned int status) 1987 { 1988 switch (status) { 1989 case CPL_ERR_RTX_NEG_ADVICE: 1990 return "Retransmit timeout"; 1991 case CPL_ERR_PERSIST_NEG_ADVICE: 1992 return "Persist timeout"; 1993 case CPL_ERR_KEEPALV_NEG_ADVICE: 1994 return "Keepalive timeout"; 1995 default: 1996 return "Unknown"; 1997 } 1998 } 1999 2000 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 2001 { 2002 ep->snd_win = snd_win; 2003 ep->rcv_win = rcv_win; 2004 pr_debug("%s snd_win %d rcv_win %d\n", 2005 __func__, ep->snd_win, ep->rcv_win); 2006 } 2007 2008 #define ACT_OPEN_RETRY_COUNT 2 2009 2010 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 2011 struct dst_entry *dst, struct c4iw_dev *cdev, 2012 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2013 { 2014 struct neighbour *n; 2015 int err, step; 2016 struct net_device *pdev; 2017 2018 n = dst_neigh_lookup(dst, peer_ip); 2019 if (!n) 2020 return -ENODEV; 2021 2022 rcu_read_lock(); 2023 err = -ENOMEM; 2024 if (n->dev->flags & IFF_LOOPBACK) { 2025 if (iptype == 4) 2026 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2027 else if (IS_ENABLED(CONFIG_IPV6)) 2028 for_each_netdev(&init_net, pdev) { 2029 if (ipv6_chk_addr(&init_net, 2030 (struct in6_addr *)peer_ip, 2031 pdev, 1)) 2032 break; 2033 } 2034 else 2035 pdev = NULL; 2036 2037 if (!pdev) { 2038 err = -ENODEV; 2039 goto out; 2040 } 2041 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2042 n, pdev, rt_tos2priority(tos)); 2043 if (!ep->l2t) { 2044 dev_put(pdev); 2045 goto out; 2046 } 2047 ep->mtu = pdev->mtu; 2048 ep->tx_chan = cxgb4_port_chan(pdev); 2049 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2050 cxgb4_port_viid(pdev)); 2051 step = cdev->rdev.lldi.ntxq / 2052 cdev->rdev.lldi.nchan; 2053 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2054 step = cdev->rdev.lldi.nrxq / 2055 cdev->rdev.lldi.nchan; 2056 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2057 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2058 cxgb4_port_idx(pdev) * step]; 2059 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2060 dev_put(pdev); 2061 } else { 2062 pdev = get_real_dev(n->dev); 2063 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2064 n, pdev, 0); 2065 if (!ep->l2t) 2066 goto out; 2067 ep->mtu = dst_mtu(dst); 2068 ep->tx_chan = cxgb4_port_chan(pdev); 2069 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2070 cxgb4_port_viid(pdev)); 2071 step = cdev->rdev.lldi.ntxq / 2072 cdev->rdev.lldi.nchan; 2073 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2074 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2075 step = cdev->rdev.lldi.nrxq / 2076 cdev->rdev.lldi.nchan; 2077 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2078 cxgb4_port_idx(pdev) * step]; 2079 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2080 2081 if (clear_mpa_v1) { 2082 ep->retry_with_mpa_v1 = 0; 2083 ep->tried_with_mpa_v1 = 0; 2084 } 2085 } 2086 err = 0; 2087 out: 2088 rcu_read_unlock(); 2089 2090 neigh_release(n); 2091 2092 return err; 2093 } 2094 2095 static int c4iw_reconnect(struct c4iw_ep *ep) 2096 { 2097 int err = 0; 2098 int size = 0; 2099 struct sockaddr_in *laddr = (struct sockaddr_in *) 2100 &ep->com.cm_id->m_local_addr; 2101 struct sockaddr_in *raddr = (struct sockaddr_in *) 2102 &ep->com.cm_id->m_remote_addr; 2103 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2104 &ep->com.cm_id->m_local_addr; 2105 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2106 &ep->com.cm_id->m_remote_addr; 2107 int iptype; 2108 __u8 *ra; 2109 2110 pr_debug("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id); 2111 init_timer(&ep->timer); 2112 c4iw_init_wr_wait(&ep->com.wr_wait); 2113 2114 /* When MPA revision is different on nodes, the node with MPA_rev=2 2115 * tries to reconnect with MPA_rev 1 for the same EP through 2116 * c4iw_reconnect(), where the same EP is assigned with new tid for 2117 * further connection establishment. As we are using the same EP pointer 2118 * for reconnect, few skbs are used during the previous c4iw_connect(), 2119 * which leaves the EP with inadequate skbs for further 2120 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty 2121 * skb_list() during peer_abort(). Allocate skbs which is already used. 2122 */ 2123 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2124 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2125 err = -ENOMEM; 2126 goto fail1; 2127 } 2128 2129 /* 2130 * Allocate an active TID to initiate a TCP connection. 2131 */ 2132 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2133 if (ep->atid == -1) { 2134 pr_err("%s - cannot alloc atid\n", __func__); 2135 err = -ENOMEM; 2136 goto fail2; 2137 } 2138 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid); 2139 2140 /* find a route */ 2141 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2142 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2143 laddr->sin_addr.s_addr, 2144 raddr->sin_addr.s_addr, 2145 laddr->sin_port, 2146 raddr->sin_port, ep->com.cm_id->tos); 2147 iptype = 4; 2148 ra = (__u8 *)&raddr->sin_addr; 2149 } else { 2150 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2151 get_real_dev, 2152 laddr6->sin6_addr.s6_addr, 2153 raddr6->sin6_addr.s6_addr, 2154 laddr6->sin6_port, 2155 raddr6->sin6_port, 0, 2156 raddr6->sin6_scope_id); 2157 iptype = 6; 2158 ra = (__u8 *)&raddr6->sin6_addr; 2159 } 2160 if (!ep->dst) { 2161 pr_err("%s - cannot find route\n", __func__); 2162 err = -EHOSTUNREACH; 2163 goto fail3; 2164 } 2165 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2166 ep->com.dev->rdev.lldi.adapter_type, 2167 ep->com.cm_id->tos); 2168 if (err) { 2169 pr_err("%s - cannot alloc l2e\n", __func__); 2170 goto fail4; 2171 } 2172 2173 pr_debug("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2174 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2175 ep->l2t->idx); 2176 2177 state_set(&ep->com, CONNECTING); 2178 ep->tos = ep->com.cm_id->tos; 2179 2180 /* send connect request to rnic */ 2181 err = send_connect(ep); 2182 if (!err) 2183 goto out; 2184 2185 cxgb4_l2t_release(ep->l2t); 2186 fail4: 2187 dst_release(ep->dst); 2188 fail3: 2189 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 2190 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2191 fail2: 2192 /* 2193 * remember to send notification to upper layer. 2194 * We are in here so the upper layer is not aware that this is 2195 * re-connect attempt and so, upper layer is still waiting for 2196 * response of 1st connect request. 2197 */ 2198 connect_reply_upcall(ep, -ECONNRESET); 2199 fail1: 2200 c4iw_put_ep(&ep->com); 2201 out: 2202 return err; 2203 } 2204 2205 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2206 { 2207 struct c4iw_ep *ep; 2208 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2209 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2210 ntohl(rpl->atid_status))); 2211 struct tid_info *t = dev->rdev.lldi.tids; 2212 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2213 struct sockaddr_in *la; 2214 struct sockaddr_in *ra; 2215 struct sockaddr_in6 *la6; 2216 struct sockaddr_in6 *ra6; 2217 int ret = 0; 2218 2219 ep = lookup_atid(t, atid); 2220 la = (struct sockaddr_in *)&ep->com.local_addr; 2221 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2222 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2223 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2224 2225 pr_debug("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid, 2226 status, status2errno(status)); 2227 2228 if (cxgb_is_neg_adv(status)) { 2229 pr_debug("%s Connection problems for atid %u status %u (%s)\n", 2230 __func__, atid, status, neg_adv_str(status)); 2231 ep->stats.connect_neg_adv++; 2232 mutex_lock(&dev->rdev.stats.lock); 2233 dev->rdev.stats.neg_adv++; 2234 mutex_unlock(&dev->rdev.stats.lock); 2235 return 0; 2236 } 2237 2238 set_bit(ACT_OPEN_RPL, &ep->com.history); 2239 2240 /* 2241 * Log interesting failures. 2242 */ 2243 switch (status) { 2244 case CPL_ERR_CONN_RESET: 2245 case CPL_ERR_CONN_TIMEDOUT: 2246 break; 2247 case CPL_ERR_TCAM_FULL: 2248 mutex_lock(&dev->rdev.stats.lock); 2249 dev->rdev.stats.tcam_full++; 2250 mutex_unlock(&dev->rdev.stats.lock); 2251 if (ep->com.local_addr.ss_family == AF_INET && 2252 dev->rdev.lldi.enable_fw_ofld_conn) { 2253 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2254 ntohl(rpl->atid_status)))); 2255 if (ret) 2256 goto fail; 2257 return 0; 2258 } 2259 break; 2260 case CPL_ERR_CONN_EXIST: 2261 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2262 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2263 if (ep->com.remote_addr.ss_family == AF_INET6) { 2264 struct sockaddr_in6 *sin6 = 2265 (struct sockaddr_in6 *) 2266 &ep->com.local_addr; 2267 cxgb4_clip_release( 2268 ep->com.dev->rdev.lldi.ports[0], 2269 (const u32 *) 2270 &sin6->sin6_addr.s6_addr, 1); 2271 } 2272 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, 2273 atid); 2274 cxgb4_free_atid(t, atid); 2275 dst_release(ep->dst); 2276 cxgb4_l2t_release(ep->l2t); 2277 c4iw_reconnect(ep); 2278 return 0; 2279 } 2280 break; 2281 default: 2282 if (ep->com.local_addr.ss_family == AF_INET) { 2283 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2284 atid, status, status2errno(status), 2285 &la->sin_addr.s_addr, ntohs(la->sin_port), 2286 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2287 } else { 2288 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2289 atid, status, status2errno(status), 2290 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2291 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2292 } 2293 break; 2294 } 2295 2296 fail: 2297 connect_reply_upcall(ep, status2errno(status)); 2298 state_set(&ep->com, DEAD); 2299 2300 if (ep->com.remote_addr.ss_family == AF_INET6) { 2301 struct sockaddr_in6 *sin6 = 2302 (struct sockaddr_in6 *)&ep->com.local_addr; 2303 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2304 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2305 } 2306 if (status && act_open_has_tid(status)) 2307 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl)); 2308 2309 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 2310 cxgb4_free_atid(t, atid); 2311 dst_release(ep->dst); 2312 cxgb4_l2t_release(ep->l2t); 2313 c4iw_put_ep(&ep->com); 2314 2315 return 0; 2316 } 2317 2318 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2319 { 2320 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2321 unsigned int stid = GET_TID(rpl); 2322 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2323 2324 if (!ep) { 2325 pr_debug("%s stid %d lookup failure!\n", __func__, stid); 2326 goto out; 2327 } 2328 pr_debug("%s ep %p status %d error %d\n", __func__, ep, 2329 rpl->status, status2errno(rpl->status)); 2330 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2331 c4iw_put_ep(&ep->com); 2332 out: 2333 return 0; 2334 } 2335 2336 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2337 { 2338 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2339 unsigned int stid = GET_TID(rpl); 2340 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2341 2342 pr_debug("%s ep %p\n", __func__, ep); 2343 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2344 c4iw_put_ep(&ep->com); 2345 return 0; 2346 } 2347 2348 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2349 struct cpl_pass_accept_req *req) 2350 { 2351 struct cpl_pass_accept_rpl *rpl; 2352 unsigned int mtu_idx; 2353 u64 opt0; 2354 u32 opt2; 2355 u32 wscale; 2356 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2357 int win; 2358 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2359 2360 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2361 BUG_ON(skb_cloned(skb)); 2362 2363 skb_get(skb); 2364 rpl = cplhdr(skb); 2365 if (!is_t4(adapter_type)) { 2366 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2367 rpl5 = (void *)rpl; 2368 INIT_TP_WR(rpl5, ep->hwtid); 2369 } else { 2370 skb_trim(skb, sizeof(*rpl)); 2371 INIT_TP_WR(rpl, ep->hwtid); 2372 } 2373 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2374 ep->hwtid)); 2375 2376 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2377 enable_tcp_timestamps && req->tcpopt.tstamp, 2378 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2379 wscale = cxgb_compute_wscale(rcv_win); 2380 2381 /* 2382 * Specify the largest window that will fit in opt0. The 2383 * remainder will be specified in the rx_data_ack. 2384 */ 2385 win = ep->rcv_win >> 10; 2386 if (win > RCV_BUFSIZ_M) 2387 win = RCV_BUFSIZ_M; 2388 opt0 = (nocong ? NO_CONG_F : 0) | 2389 KEEP_ALIVE_F | 2390 DELACK_F | 2391 WND_SCALE_V(wscale) | 2392 MSS_IDX_V(mtu_idx) | 2393 L2T_IDX_V(ep->l2t->idx) | 2394 TX_CHAN_V(ep->tx_chan) | 2395 SMAC_SEL_V(ep->smac_idx) | 2396 DSCP_V(ep->tos >> 2) | 2397 ULP_MODE_V(ULP_MODE_TCPDDP) | 2398 RCV_BUFSIZ_V(win); 2399 opt2 = RX_CHANNEL_V(0) | 2400 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2401 2402 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2403 opt2 |= TSTAMPS_EN_F; 2404 if (enable_tcp_sack && req->tcpopt.sack) 2405 opt2 |= SACK_EN_F; 2406 if (wscale && enable_tcp_window_scaling) 2407 opt2 |= WND_SCALE_EN_F; 2408 if (enable_ecn) { 2409 const struct tcphdr *tcph; 2410 u32 hlen = ntohl(req->hdr_len); 2411 2412 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2413 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2414 IP_HDR_LEN_G(hlen); 2415 else 2416 tcph = (const void *)(req + 1) + 2417 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2418 if (tcph->ece && tcph->cwr) 2419 opt2 |= CCTRL_ECN_V(1); 2420 } 2421 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2422 u32 isn = (prandom_u32() & ~7UL) - 1; 2423 opt2 |= T5_OPT_2_VALID_F; 2424 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2425 opt2 |= T5_ISS_F; 2426 rpl5 = (void *)rpl; 2427 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2428 if (peer2peer) 2429 isn += 4; 2430 rpl5->iss = cpu_to_be32(isn); 2431 pr_debug("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss)); 2432 } 2433 2434 rpl->opt0 = cpu_to_be64(opt0); 2435 rpl->opt2 = cpu_to_be32(opt2); 2436 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2437 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2438 2439 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2440 } 2441 2442 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2443 { 2444 pr_debug("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid); 2445 BUG_ON(skb_cloned(skb)); 2446 skb_trim(skb, sizeof(struct cpl_tid_release)); 2447 release_tid(&dev->rdev, hwtid, skb); 2448 return; 2449 } 2450 2451 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2452 { 2453 struct c4iw_ep *child_ep = NULL, *parent_ep; 2454 struct cpl_pass_accept_req *req = cplhdr(skb); 2455 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2456 struct tid_info *t = dev->rdev.lldi.tids; 2457 unsigned int hwtid = GET_TID(req); 2458 struct dst_entry *dst; 2459 __u8 local_ip[16], peer_ip[16]; 2460 __be16 local_port, peer_port; 2461 struct sockaddr_in6 *sin6; 2462 int err; 2463 u16 peer_mss = ntohs(req->tcpopt.mss); 2464 int iptype; 2465 unsigned short hdrs; 2466 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2467 2468 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2469 if (!parent_ep) { 2470 pr_debug("%s connect request on invalid stid %d\n", 2471 __func__, stid); 2472 goto reject; 2473 } 2474 2475 if (state_read(&parent_ep->com) != LISTEN) { 2476 pr_debug("%s - listening ep not in LISTEN\n", __func__); 2477 goto reject; 2478 } 2479 2480 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2481 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2482 2483 /* Find output route */ 2484 if (iptype == 4) { 2485 pr_debug("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2486 , __func__, parent_ep, hwtid, 2487 local_ip, peer_ip, ntohs(local_port), 2488 ntohs(peer_port), peer_mss); 2489 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2490 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2491 local_port, peer_port, tos); 2492 } else { 2493 pr_debug("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2494 , __func__, parent_ep, hwtid, 2495 local_ip, peer_ip, ntohs(local_port), 2496 ntohs(peer_port), peer_mss); 2497 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2498 local_ip, peer_ip, local_port, peer_port, 2499 PASS_OPEN_TOS_G(ntohl(req->tos_stid)), 2500 ((struct sockaddr_in6 *) 2501 &parent_ep->com.local_addr)->sin6_scope_id); 2502 } 2503 if (!dst) { 2504 pr_err("%s - failed to find dst entry!\n", __func__); 2505 goto reject; 2506 } 2507 2508 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2509 if (!child_ep) { 2510 pr_err("%s - failed to allocate ep entry!\n", __func__); 2511 dst_release(dst); 2512 goto reject; 2513 } 2514 2515 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2516 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2517 if (err) { 2518 pr_err("%s - failed to allocate l2t entry!\n", __func__); 2519 dst_release(dst); 2520 kfree(child_ep); 2521 goto reject; 2522 } 2523 2524 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + 2525 sizeof(struct tcphdr) + 2526 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2527 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2528 child_ep->mtu = peer_mss + hdrs; 2529 2530 skb_queue_head_init(&child_ep->com.ep_skb_list); 2531 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2532 goto fail; 2533 2534 state_set(&child_ep->com, CONNECTING); 2535 child_ep->com.dev = dev; 2536 child_ep->com.cm_id = NULL; 2537 2538 if (iptype == 4) { 2539 struct sockaddr_in *sin = (struct sockaddr_in *) 2540 &child_ep->com.local_addr; 2541 2542 sin->sin_family = AF_INET; 2543 sin->sin_port = local_port; 2544 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2545 2546 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2547 sin->sin_family = AF_INET; 2548 sin->sin_port = ((struct sockaddr_in *) 2549 &parent_ep->com.local_addr)->sin_port; 2550 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2551 2552 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2553 sin->sin_family = AF_INET; 2554 sin->sin_port = peer_port; 2555 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2556 } else { 2557 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2558 sin6->sin6_family = PF_INET6; 2559 sin6->sin6_port = local_port; 2560 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2561 2562 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2563 sin6->sin6_family = PF_INET6; 2564 sin6->sin6_port = ((struct sockaddr_in6 *) 2565 &parent_ep->com.local_addr)->sin6_port; 2566 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2567 2568 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2569 sin6->sin6_family = PF_INET6; 2570 sin6->sin6_port = peer_port; 2571 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2572 } 2573 2574 c4iw_get_ep(&parent_ep->com); 2575 child_ep->parent_ep = parent_ep; 2576 child_ep->tos = tos; 2577 child_ep->dst = dst; 2578 child_ep->hwtid = hwtid; 2579 2580 pr_debug("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__, 2581 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2582 2583 init_timer(&child_ep->timer); 2584 cxgb4_insert_tid(t, child_ep, hwtid); 2585 insert_ep_tid(child_ep); 2586 if (accept_cr(child_ep, skb, req)) { 2587 c4iw_put_ep(&parent_ep->com); 2588 release_ep_resources(child_ep); 2589 } else { 2590 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2591 } 2592 if (iptype == 6) { 2593 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2594 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2595 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2596 } 2597 goto out; 2598 fail: 2599 c4iw_put_ep(&child_ep->com); 2600 reject: 2601 reject_cr(dev, hwtid, skb); 2602 if (parent_ep) 2603 c4iw_put_ep(&parent_ep->com); 2604 out: 2605 return 0; 2606 } 2607 2608 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2609 { 2610 struct c4iw_ep *ep; 2611 struct cpl_pass_establish *req = cplhdr(skb); 2612 unsigned int tid = GET_TID(req); 2613 int ret; 2614 2615 ep = get_ep_from_tid(dev, tid); 2616 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2617 ep->snd_seq = be32_to_cpu(req->snd_isn); 2618 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2619 2620 pr_debug("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid, 2621 ntohs(req->tcp_opt)); 2622 2623 set_emss(ep, ntohs(req->tcp_opt)); 2624 2625 dst_confirm(ep->dst); 2626 mutex_lock(&ep->com.mutex); 2627 ep->com.state = MPA_REQ_WAIT; 2628 start_ep_timer(ep); 2629 set_bit(PASS_ESTAB, &ep->com.history); 2630 ret = send_flowc(ep); 2631 mutex_unlock(&ep->com.mutex); 2632 if (ret) 2633 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2634 c4iw_put_ep(&ep->com); 2635 2636 return 0; 2637 } 2638 2639 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2640 { 2641 struct cpl_peer_close *hdr = cplhdr(skb); 2642 struct c4iw_ep *ep; 2643 struct c4iw_qp_attributes attrs; 2644 int disconnect = 1; 2645 int release = 0; 2646 unsigned int tid = GET_TID(hdr); 2647 int ret; 2648 2649 ep = get_ep_from_tid(dev, tid); 2650 if (!ep) 2651 return 0; 2652 2653 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2654 dst_confirm(ep->dst); 2655 2656 set_bit(PEER_CLOSE, &ep->com.history); 2657 mutex_lock(&ep->com.mutex); 2658 switch (ep->com.state) { 2659 case MPA_REQ_WAIT: 2660 __state_set(&ep->com, CLOSING); 2661 break; 2662 case MPA_REQ_SENT: 2663 __state_set(&ep->com, CLOSING); 2664 connect_reply_upcall(ep, -ECONNRESET); 2665 break; 2666 case MPA_REQ_RCVD: 2667 2668 /* 2669 * We're gonna mark this puppy DEAD, but keep 2670 * the reference on it until the ULP accepts or 2671 * rejects the CR. Also wake up anyone waiting 2672 * in rdma connection migration (see c4iw_accept_cr()). 2673 */ 2674 __state_set(&ep->com, CLOSING); 2675 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2676 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2677 break; 2678 case MPA_REP_SENT: 2679 __state_set(&ep->com, CLOSING); 2680 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2681 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2682 break; 2683 case FPDU_MODE: 2684 start_ep_timer(ep); 2685 __state_set(&ep->com, CLOSING); 2686 attrs.next_state = C4IW_QP_STATE_CLOSING; 2687 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2688 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2689 if (ret != -ECONNRESET) { 2690 peer_close_upcall(ep); 2691 disconnect = 1; 2692 } 2693 break; 2694 case ABORTING: 2695 disconnect = 0; 2696 break; 2697 case CLOSING: 2698 __state_set(&ep->com, MORIBUND); 2699 disconnect = 0; 2700 break; 2701 case MORIBUND: 2702 (void)stop_ep_timer(ep); 2703 if (ep->com.cm_id && ep->com.qp) { 2704 attrs.next_state = C4IW_QP_STATE_IDLE; 2705 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2706 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2707 } 2708 close_complete_upcall(ep, 0); 2709 __state_set(&ep->com, DEAD); 2710 release = 1; 2711 disconnect = 0; 2712 break; 2713 case DEAD: 2714 disconnect = 0; 2715 break; 2716 default: 2717 BUG_ON(1); 2718 } 2719 mutex_unlock(&ep->com.mutex); 2720 if (disconnect) 2721 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2722 if (release) 2723 release_ep_resources(ep); 2724 c4iw_put_ep(&ep->com); 2725 return 0; 2726 } 2727 2728 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2729 { 2730 struct cpl_abort_req_rss *req = cplhdr(skb); 2731 struct c4iw_ep *ep; 2732 struct sk_buff *rpl_skb; 2733 struct c4iw_qp_attributes attrs; 2734 int ret; 2735 int release = 0; 2736 unsigned int tid = GET_TID(req); 2737 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2738 2739 ep = get_ep_from_tid(dev, tid); 2740 if (!ep) 2741 return 0; 2742 2743 if (cxgb_is_neg_adv(req->status)) { 2744 pr_debug("%s Negative advice on abort- tid %u status %d (%s)\n", 2745 __func__, ep->hwtid, req->status, 2746 neg_adv_str(req->status)); 2747 ep->stats.abort_neg_adv++; 2748 mutex_lock(&dev->rdev.stats.lock); 2749 dev->rdev.stats.neg_adv++; 2750 mutex_unlock(&dev->rdev.stats.lock); 2751 goto deref_ep; 2752 } 2753 pr_debug("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 2754 ep->com.state); 2755 set_bit(PEER_ABORT, &ep->com.history); 2756 2757 /* 2758 * Wake up any threads in rdma_init() or rdma_fini(). 2759 * However, this is not needed if com state is just 2760 * MPA_REQ_SENT 2761 */ 2762 if (ep->com.state != MPA_REQ_SENT) 2763 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2764 2765 mutex_lock(&ep->com.mutex); 2766 switch (ep->com.state) { 2767 case CONNECTING: 2768 c4iw_put_ep(&ep->parent_ep->com); 2769 break; 2770 case MPA_REQ_WAIT: 2771 (void)stop_ep_timer(ep); 2772 break; 2773 case MPA_REQ_SENT: 2774 (void)stop_ep_timer(ep); 2775 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2776 connect_reply_upcall(ep, -ECONNRESET); 2777 else { 2778 /* 2779 * we just don't send notification upwards because we 2780 * want to retry with mpa_v1 without upper layers even 2781 * knowing it. 2782 * 2783 * do some housekeeping so as to re-initiate the 2784 * connection 2785 */ 2786 pr_debug("%s: mpa_rev=%d. Retrying with mpav1\n", 2787 __func__, mpa_rev); 2788 ep->retry_with_mpa_v1 = 1; 2789 } 2790 break; 2791 case MPA_REP_SENT: 2792 break; 2793 case MPA_REQ_RCVD: 2794 break; 2795 case MORIBUND: 2796 case CLOSING: 2797 stop_ep_timer(ep); 2798 /*FALLTHROUGH*/ 2799 case FPDU_MODE: 2800 if (ep->com.cm_id && ep->com.qp) { 2801 attrs.next_state = C4IW_QP_STATE_ERROR; 2802 ret = c4iw_modify_qp(ep->com.qp->rhp, 2803 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2804 &attrs, 1); 2805 if (ret) 2806 pr_err("%s - qp <- error failed!\n", __func__); 2807 } 2808 peer_abort_upcall(ep); 2809 break; 2810 case ABORTING: 2811 break; 2812 case DEAD: 2813 pr_debug("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2814 mutex_unlock(&ep->com.mutex); 2815 goto deref_ep; 2816 default: 2817 BUG_ON(1); 2818 break; 2819 } 2820 dst_confirm(ep->dst); 2821 if (ep->com.state != ABORTING) { 2822 __state_set(&ep->com, DEAD); 2823 /* we don't release if we want to retry with mpa_v1 */ 2824 if (!ep->retry_with_mpa_v1) 2825 release = 1; 2826 } 2827 mutex_unlock(&ep->com.mutex); 2828 2829 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2830 if (WARN_ON(!rpl_skb)) { 2831 release = 1; 2832 goto out; 2833 } 2834 2835 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2836 2837 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2838 out: 2839 if (release) 2840 release_ep_resources(ep); 2841 else if (ep->retry_with_mpa_v1) { 2842 if (ep->com.remote_addr.ss_family == AF_INET6) { 2843 struct sockaddr_in6 *sin6 = 2844 (struct sockaddr_in6 *) 2845 &ep->com.local_addr; 2846 cxgb4_clip_release( 2847 ep->com.dev->rdev.lldi.ports[0], 2848 (const u32 *)&sin6->sin6_addr.s6_addr, 2849 1); 2850 } 2851 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid); 2852 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 2853 dst_release(ep->dst); 2854 cxgb4_l2t_release(ep->l2t); 2855 c4iw_reconnect(ep); 2856 } 2857 2858 deref_ep: 2859 c4iw_put_ep(&ep->com); 2860 /* Dereferencing ep, referenced in peer_abort_intr() */ 2861 c4iw_put_ep(&ep->com); 2862 return 0; 2863 } 2864 2865 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2866 { 2867 struct c4iw_ep *ep; 2868 struct c4iw_qp_attributes attrs; 2869 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2870 int release = 0; 2871 unsigned int tid = GET_TID(rpl); 2872 2873 ep = get_ep_from_tid(dev, tid); 2874 if (!ep) 2875 return 0; 2876 2877 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2878 BUG_ON(!ep); 2879 2880 /* The cm_id may be null if we failed to connect */ 2881 mutex_lock(&ep->com.mutex); 2882 set_bit(CLOSE_CON_RPL, &ep->com.history); 2883 switch (ep->com.state) { 2884 case CLOSING: 2885 __state_set(&ep->com, MORIBUND); 2886 break; 2887 case MORIBUND: 2888 (void)stop_ep_timer(ep); 2889 if ((ep->com.cm_id) && (ep->com.qp)) { 2890 attrs.next_state = C4IW_QP_STATE_IDLE; 2891 c4iw_modify_qp(ep->com.qp->rhp, 2892 ep->com.qp, 2893 C4IW_QP_ATTR_NEXT_STATE, 2894 &attrs, 1); 2895 } 2896 close_complete_upcall(ep, 0); 2897 __state_set(&ep->com, DEAD); 2898 release = 1; 2899 break; 2900 case ABORTING: 2901 case DEAD: 2902 break; 2903 default: 2904 BUG_ON(1); 2905 break; 2906 } 2907 mutex_unlock(&ep->com.mutex); 2908 if (release) 2909 release_ep_resources(ep); 2910 c4iw_put_ep(&ep->com); 2911 return 0; 2912 } 2913 2914 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 2915 { 2916 struct cpl_rdma_terminate *rpl = cplhdr(skb); 2917 unsigned int tid = GET_TID(rpl); 2918 struct c4iw_ep *ep; 2919 struct c4iw_qp_attributes attrs; 2920 2921 ep = get_ep_from_tid(dev, tid); 2922 BUG_ON(!ep); 2923 2924 if (ep && ep->com.qp) { 2925 pr_warn("TERM received tid %u qpid %u\n", 2926 tid, ep->com.qp->wq.sq.qid); 2927 attrs.next_state = C4IW_QP_STATE_TERMINATE; 2928 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2929 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2930 } else 2931 pr_warn("TERM received tid %u no ep/qp\n", tid); 2932 c4iw_put_ep(&ep->com); 2933 2934 return 0; 2935 } 2936 2937 /* 2938 * Upcall from the adapter indicating data has been transmitted. 2939 * For us its just the single MPA request or reply. We can now free 2940 * the skb holding the mpa message. 2941 */ 2942 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 2943 { 2944 struct c4iw_ep *ep; 2945 struct cpl_fw4_ack *hdr = cplhdr(skb); 2946 u8 credits = hdr->credits; 2947 unsigned int tid = GET_TID(hdr); 2948 2949 2950 ep = get_ep_from_tid(dev, tid); 2951 if (!ep) 2952 return 0; 2953 pr_debug("%s ep %p tid %u credits %u\n", 2954 __func__, ep, ep->hwtid, credits); 2955 if (credits == 0) { 2956 pr_debug("%s 0 credit ack ep %p tid %u state %u\n", 2957 __func__, ep, ep->hwtid, state_read(&ep->com)); 2958 goto out; 2959 } 2960 2961 dst_confirm(ep->dst); 2962 if (ep->mpa_skb) { 2963 pr_debug("%s last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n", 2964 __func__, ep, ep->hwtid, 2965 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0); 2966 mutex_lock(&ep->com.mutex); 2967 kfree_skb(ep->mpa_skb); 2968 ep->mpa_skb = NULL; 2969 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 2970 stop_ep_timer(ep); 2971 mutex_unlock(&ep->com.mutex); 2972 } 2973 out: 2974 c4iw_put_ep(&ep->com); 2975 return 0; 2976 } 2977 2978 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 2979 { 2980 int abort; 2981 struct c4iw_ep *ep = to_ep(cm_id); 2982 2983 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2984 2985 mutex_lock(&ep->com.mutex); 2986 if (ep->com.state != MPA_REQ_RCVD) { 2987 mutex_unlock(&ep->com.mutex); 2988 c4iw_put_ep(&ep->com); 2989 return -ECONNRESET; 2990 } 2991 set_bit(ULP_REJECT, &ep->com.history); 2992 if (mpa_rev == 0) 2993 abort = 1; 2994 else 2995 abort = send_mpa_reject(ep, pdata, pdata_len); 2996 mutex_unlock(&ep->com.mutex); 2997 2998 stop_ep_timer(ep); 2999 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 3000 c4iw_put_ep(&ep->com); 3001 return 0; 3002 } 3003 3004 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3005 { 3006 int err; 3007 struct c4iw_qp_attributes attrs; 3008 enum c4iw_qp_attr_mask mask; 3009 struct c4iw_ep *ep = to_ep(cm_id); 3010 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3011 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3012 int abort = 0; 3013 3014 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 3015 3016 mutex_lock(&ep->com.mutex); 3017 if (ep->com.state != MPA_REQ_RCVD) { 3018 err = -ECONNRESET; 3019 goto err_out; 3020 } 3021 3022 BUG_ON(!qp); 3023 3024 set_bit(ULP_ACCEPT, &ep->com.history); 3025 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3026 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3027 err = -EINVAL; 3028 goto err_abort; 3029 } 3030 3031 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3032 if (conn_param->ord > ep->ird) { 3033 if (RELAXED_IRD_NEGOTIATION) { 3034 conn_param->ord = ep->ird; 3035 } else { 3036 ep->ird = conn_param->ird; 3037 ep->ord = conn_param->ord; 3038 send_mpa_reject(ep, conn_param->private_data, 3039 conn_param->private_data_len); 3040 err = -ENOMEM; 3041 goto err_abort; 3042 } 3043 } 3044 if (conn_param->ird < ep->ord) { 3045 if (RELAXED_IRD_NEGOTIATION && 3046 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3047 conn_param->ird = ep->ord; 3048 } else { 3049 err = -ENOMEM; 3050 goto err_abort; 3051 } 3052 } 3053 } 3054 ep->ird = conn_param->ird; 3055 ep->ord = conn_param->ord; 3056 3057 if (ep->mpa_attr.version == 1) { 3058 if (peer2peer && ep->ird == 0) 3059 ep->ird = 1; 3060 } else { 3061 if (peer2peer && 3062 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3063 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3064 ep->ird = 1; 3065 } 3066 3067 pr_debug("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord); 3068 3069 ep->com.cm_id = cm_id; 3070 ref_cm_id(&ep->com); 3071 ep->com.qp = qp; 3072 ref_qp(ep); 3073 3074 /* bind QP to EP and move to RTS */ 3075 attrs.mpa_attr = ep->mpa_attr; 3076 attrs.max_ird = ep->ird; 3077 attrs.max_ord = ep->ord; 3078 attrs.llp_stream_handle = ep; 3079 attrs.next_state = C4IW_QP_STATE_RTS; 3080 3081 /* bind QP and TID with INIT_WR */ 3082 mask = C4IW_QP_ATTR_NEXT_STATE | 3083 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3084 C4IW_QP_ATTR_MPA_ATTR | 3085 C4IW_QP_ATTR_MAX_IRD | 3086 C4IW_QP_ATTR_MAX_ORD; 3087 3088 err = c4iw_modify_qp(ep->com.qp->rhp, 3089 ep->com.qp, mask, &attrs, 1); 3090 if (err) 3091 goto err_deref_cm_id; 3092 3093 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3094 err = send_mpa_reply(ep, conn_param->private_data, 3095 conn_param->private_data_len); 3096 if (err) 3097 goto err_deref_cm_id; 3098 3099 __state_set(&ep->com, FPDU_MODE); 3100 established_upcall(ep); 3101 mutex_unlock(&ep->com.mutex); 3102 c4iw_put_ep(&ep->com); 3103 return 0; 3104 err_deref_cm_id: 3105 deref_cm_id(&ep->com); 3106 err_abort: 3107 abort = 1; 3108 err_out: 3109 mutex_unlock(&ep->com.mutex); 3110 if (abort) 3111 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3112 c4iw_put_ep(&ep->com); 3113 return err; 3114 } 3115 3116 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3117 { 3118 struct in_device *ind; 3119 int found = 0; 3120 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3121 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3122 3123 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3124 if (!ind) 3125 return -EADDRNOTAVAIL; 3126 for_primary_ifa(ind) { 3127 laddr->sin_addr.s_addr = ifa->ifa_address; 3128 raddr->sin_addr.s_addr = ifa->ifa_address; 3129 found = 1; 3130 break; 3131 } 3132 endfor_ifa(ind); 3133 in_dev_put(ind); 3134 return found ? 0 : -EADDRNOTAVAIL; 3135 } 3136 3137 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3138 unsigned char banned_flags) 3139 { 3140 struct inet6_dev *idev; 3141 int err = -EADDRNOTAVAIL; 3142 3143 rcu_read_lock(); 3144 idev = __in6_dev_get(dev); 3145 if (idev != NULL) { 3146 struct inet6_ifaddr *ifp; 3147 3148 read_lock_bh(&idev->lock); 3149 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3150 if (ifp->scope == IFA_LINK && 3151 !(ifp->flags & banned_flags)) { 3152 memcpy(addr, &ifp->addr, 16); 3153 err = 0; 3154 break; 3155 } 3156 } 3157 read_unlock_bh(&idev->lock); 3158 } 3159 rcu_read_unlock(); 3160 return err; 3161 } 3162 3163 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3164 { 3165 struct in6_addr uninitialized_var(addr); 3166 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3167 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3168 3169 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3170 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3171 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3172 return 0; 3173 } 3174 return -EADDRNOTAVAIL; 3175 } 3176 3177 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3178 { 3179 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3180 struct c4iw_ep *ep; 3181 int err = 0; 3182 struct sockaddr_in *laddr; 3183 struct sockaddr_in *raddr; 3184 struct sockaddr_in6 *laddr6; 3185 struct sockaddr_in6 *raddr6; 3186 __u8 *ra; 3187 int iptype; 3188 3189 if ((conn_param->ord > cur_max_read_depth(dev)) || 3190 (conn_param->ird > cur_max_read_depth(dev))) { 3191 err = -EINVAL; 3192 goto out; 3193 } 3194 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3195 if (!ep) { 3196 pr_err("%s - cannot alloc ep\n", __func__); 3197 err = -ENOMEM; 3198 goto out; 3199 } 3200 3201 skb_queue_head_init(&ep->com.ep_skb_list); 3202 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3203 err = -ENOMEM; 3204 goto fail1; 3205 } 3206 3207 init_timer(&ep->timer); 3208 ep->plen = conn_param->private_data_len; 3209 if (ep->plen) 3210 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3211 conn_param->private_data, ep->plen); 3212 ep->ird = conn_param->ird; 3213 ep->ord = conn_param->ord; 3214 3215 if (peer2peer && ep->ord == 0) 3216 ep->ord = 1; 3217 3218 ep->com.cm_id = cm_id; 3219 ref_cm_id(&ep->com); 3220 ep->com.dev = dev; 3221 ep->com.qp = get_qhp(dev, conn_param->qpn); 3222 if (!ep->com.qp) { 3223 pr_debug("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3224 err = -EINVAL; 3225 goto fail2; 3226 } 3227 ref_qp(ep); 3228 pr_debug("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn, 3229 ep->com.qp, cm_id); 3230 3231 /* 3232 * Allocate an active TID to initiate a TCP connection. 3233 */ 3234 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3235 if (ep->atid == -1) { 3236 pr_err("%s - cannot alloc atid\n", __func__); 3237 err = -ENOMEM; 3238 goto fail2; 3239 } 3240 insert_handle(dev, &dev->atid_idr, ep, ep->atid); 3241 3242 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3243 sizeof(ep->com.local_addr)); 3244 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3245 sizeof(ep->com.remote_addr)); 3246 3247 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3248 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3249 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3250 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3251 3252 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3253 iptype = 4; 3254 ra = (__u8 *)&raddr->sin_addr; 3255 3256 /* 3257 * Handle loopback requests to INADDR_ANY. 3258 */ 3259 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3260 err = pick_local_ipaddrs(dev, cm_id); 3261 if (err) 3262 goto fail2; 3263 } 3264 3265 /* find a route */ 3266 pr_debug("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3267 __func__, &laddr->sin_addr, ntohs(laddr->sin_port), 3268 ra, ntohs(raddr->sin_port)); 3269 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3270 laddr->sin_addr.s_addr, 3271 raddr->sin_addr.s_addr, 3272 laddr->sin_port, 3273 raddr->sin_port, cm_id->tos); 3274 } else { 3275 iptype = 6; 3276 ra = (__u8 *)&raddr6->sin6_addr; 3277 3278 /* 3279 * Handle loopback requests to INADDR_ANY. 3280 */ 3281 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3282 err = pick_local_ip6addrs(dev, cm_id); 3283 if (err) 3284 goto fail2; 3285 } 3286 3287 /* find a route */ 3288 pr_debug("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3289 __func__, laddr6->sin6_addr.s6_addr, 3290 ntohs(laddr6->sin6_port), 3291 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3292 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3293 laddr6->sin6_addr.s6_addr, 3294 raddr6->sin6_addr.s6_addr, 3295 laddr6->sin6_port, 3296 raddr6->sin6_port, 0, 3297 raddr6->sin6_scope_id); 3298 } 3299 if (!ep->dst) { 3300 pr_err("%s - cannot find route\n", __func__); 3301 err = -EHOSTUNREACH; 3302 goto fail3; 3303 } 3304 3305 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3306 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3307 if (err) { 3308 pr_err("%s - cannot alloc l2e\n", __func__); 3309 goto fail4; 3310 } 3311 3312 pr_debug("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3313 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3314 ep->l2t->idx); 3315 3316 state_set(&ep->com, CONNECTING); 3317 ep->tos = cm_id->tos; 3318 3319 /* send connect request to rnic */ 3320 err = send_connect(ep); 3321 if (!err) 3322 goto out; 3323 3324 cxgb4_l2t_release(ep->l2t); 3325 fail4: 3326 dst_release(ep->dst); 3327 fail3: 3328 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 3329 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3330 fail2: 3331 skb_queue_purge(&ep->com.ep_skb_list); 3332 deref_cm_id(&ep->com); 3333 fail1: 3334 c4iw_put_ep(&ep->com); 3335 out: 3336 return err; 3337 } 3338 3339 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3340 { 3341 int err; 3342 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3343 &ep->com.local_addr; 3344 3345 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3346 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3347 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3348 if (err) 3349 return err; 3350 } 3351 c4iw_init_wr_wait(&ep->com.wr_wait); 3352 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3353 ep->stid, &sin6->sin6_addr, 3354 sin6->sin6_port, 3355 ep->com.dev->rdev.lldi.rxq_ids[0]); 3356 if (!err) 3357 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3358 &ep->com.wr_wait, 3359 0, 0, __func__); 3360 else if (err > 0) 3361 err = net_xmit_errno(err); 3362 if (err) { 3363 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3364 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3365 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3366 err, ep->stid, 3367 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3368 } 3369 return err; 3370 } 3371 3372 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3373 { 3374 int err; 3375 struct sockaddr_in *sin = (struct sockaddr_in *) 3376 &ep->com.local_addr; 3377 3378 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3379 do { 3380 err = cxgb4_create_server_filter( 3381 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3382 sin->sin_addr.s_addr, sin->sin_port, 0, 3383 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3384 if (err == -EBUSY) { 3385 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3386 err = -EIO; 3387 break; 3388 } 3389 set_current_state(TASK_UNINTERRUPTIBLE); 3390 schedule_timeout(usecs_to_jiffies(100)); 3391 } 3392 } while (err == -EBUSY); 3393 } else { 3394 c4iw_init_wr_wait(&ep->com.wr_wait); 3395 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3396 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3397 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3398 if (!err) 3399 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3400 &ep->com.wr_wait, 3401 0, 0, __func__); 3402 else if (err > 0) 3403 err = net_xmit_errno(err); 3404 } 3405 if (err) 3406 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3407 , err, ep->stid, 3408 &sin->sin_addr, ntohs(sin->sin_port)); 3409 return err; 3410 } 3411 3412 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3413 { 3414 int err = 0; 3415 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3416 struct c4iw_listen_ep *ep; 3417 3418 might_sleep(); 3419 3420 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3421 if (!ep) { 3422 pr_err("%s - cannot alloc ep\n", __func__); 3423 err = -ENOMEM; 3424 goto fail1; 3425 } 3426 skb_queue_head_init(&ep->com.ep_skb_list); 3427 pr_debug("%s ep %p\n", __func__, ep); 3428 ep->com.cm_id = cm_id; 3429 ref_cm_id(&ep->com); 3430 ep->com.dev = dev; 3431 ep->backlog = backlog; 3432 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3433 sizeof(ep->com.local_addr)); 3434 3435 /* 3436 * Allocate a server TID. 3437 */ 3438 if (dev->rdev.lldi.enable_fw_ofld_conn && 3439 ep->com.local_addr.ss_family == AF_INET) 3440 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3441 cm_id->m_local_addr.ss_family, ep); 3442 else 3443 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3444 cm_id->m_local_addr.ss_family, ep); 3445 3446 if (ep->stid == -1) { 3447 pr_err("%s - cannot alloc stid\n", __func__); 3448 err = -ENOMEM; 3449 goto fail2; 3450 } 3451 insert_handle(dev, &dev->stid_idr, ep, ep->stid); 3452 3453 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3454 sizeof(ep->com.local_addr)); 3455 3456 state_set(&ep->com, LISTEN); 3457 if (ep->com.local_addr.ss_family == AF_INET) 3458 err = create_server4(dev, ep); 3459 else 3460 err = create_server6(dev, ep); 3461 if (!err) { 3462 cm_id->provider_data = ep; 3463 goto out; 3464 } 3465 3466 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3467 ep->com.local_addr.ss_family); 3468 fail2: 3469 deref_cm_id(&ep->com); 3470 c4iw_put_ep(&ep->com); 3471 fail1: 3472 out: 3473 return err; 3474 } 3475 3476 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3477 { 3478 int err; 3479 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3480 3481 pr_debug("%s ep %p\n", __func__, ep); 3482 3483 might_sleep(); 3484 state_set(&ep->com, DEAD); 3485 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3486 ep->com.local_addr.ss_family == AF_INET) { 3487 err = cxgb4_remove_server_filter( 3488 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3489 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3490 } else { 3491 struct sockaddr_in6 *sin6; 3492 c4iw_init_wr_wait(&ep->com.wr_wait); 3493 err = cxgb4_remove_server( 3494 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3495 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3496 if (err) 3497 goto done; 3498 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 3499 0, 0, __func__); 3500 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3501 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3502 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3503 } 3504 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3505 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3506 ep->com.local_addr.ss_family); 3507 done: 3508 deref_cm_id(&ep->com); 3509 c4iw_put_ep(&ep->com); 3510 return err; 3511 } 3512 3513 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3514 { 3515 int ret = 0; 3516 int close = 0; 3517 int fatal = 0; 3518 struct c4iw_rdev *rdev; 3519 3520 mutex_lock(&ep->com.mutex); 3521 3522 pr_debug("%s ep %p state %s, abrupt %d\n", __func__, ep, 3523 states[ep->com.state], abrupt); 3524 3525 /* 3526 * Ref the ep here in case we have fatal errors causing the 3527 * ep to be released and freed. 3528 */ 3529 c4iw_get_ep(&ep->com); 3530 3531 rdev = &ep->com.dev->rdev; 3532 if (c4iw_fatal_error(rdev)) { 3533 fatal = 1; 3534 close_complete_upcall(ep, -EIO); 3535 ep->com.state = DEAD; 3536 } 3537 switch (ep->com.state) { 3538 case MPA_REQ_WAIT: 3539 case MPA_REQ_SENT: 3540 case MPA_REQ_RCVD: 3541 case MPA_REP_SENT: 3542 case FPDU_MODE: 3543 case CONNECTING: 3544 close = 1; 3545 if (abrupt) 3546 ep->com.state = ABORTING; 3547 else { 3548 ep->com.state = CLOSING; 3549 3550 /* 3551 * if we close before we see the fw4_ack() then we fix 3552 * up the timer state since we're reusing it. 3553 */ 3554 if (ep->mpa_skb && 3555 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3556 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3557 stop_ep_timer(ep); 3558 } 3559 start_ep_timer(ep); 3560 } 3561 set_bit(CLOSE_SENT, &ep->com.flags); 3562 break; 3563 case CLOSING: 3564 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3565 close = 1; 3566 if (abrupt) { 3567 (void)stop_ep_timer(ep); 3568 ep->com.state = ABORTING; 3569 } else 3570 ep->com.state = MORIBUND; 3571 } 3572 break; 3573 case MORIBUND: 3574 case ABORTING: 3575 case DEAD: 3576 pr_debug("%s ignoring disconnect ep %p state %u\n", 3577 __func__, ep, ep->com.state); 3578 break; 3579 default: 3580 BUG(); 3581 break; 3582 } 3583 3584 if (close) { 3585 if (abrupt) { 3586 set_bit(EP_DISC_ABORT, &ep->com.history); 3587 close_complete_upcall(ep, -ECONNRESET); 3588 ret = send_abort(ep); 3589 } else { 3590 set_bit(EP_DISC_CLOSE, &ep->com.history); 3591 ret = send_halfclose(ep); 3592 } 3593 if (ret) { 3594 set_bit(EP_DISC_FAIL, &ep->com.history); 3595 if (!abrupt) { 3596 stop_ep_timer(ep); 3597 close_complete_upcall(ep, -EIO); 3598 } 3599 if (ep->com.qp) { 3600 struct c4iw_qp_attributes attrs; 3601 3602 attrs.next_state = C4IW_QP_STATE_ERROR; 3603 ret = c4iw_modify_qp(ep->com.qp->rhp, 3604 ep->com.qp, 3605 C4IW_QP_ATTR_NEXT_STATE, 3606 &attrs, 1); 3607 if (ret) 3608 pr_err("%s - qp <- error failed!\n", 3609 __func__); 3610 } 3611 fatal = 1; 3612 } 3613 } 3614 mutex_unlock(&ep->com.mutex); 3615 c4iw_put_ep(&ep->com); 3616 if (fatal) 3617 release_ep_resources(ep); 3618 return ret; 3619 } 3620 3621 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3622 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3623 { 3624 struct c4iw_ep *ep; 3625 int atid = be32_to_cpu(req->tid); 3626 3627 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3628 (__force u32) req->tid); 3629 if (!ep) 3630 return; 3631 3632 switch (req->retval) { 3633 case FW_ENOMEM: 3634 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3635 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3636 send_fw_act_open_req(ep, atid); 3637 return; 3638 } 3639 case FW_EADDRINUSE: 3640 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3641 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3642 send_fw_act_open_req(ep, atid); 3643 return; 3644 } 3645 break; 3646 default: 3647 pr_info("%s unexpected ofld conn wr retval %d\n", 3648 __func__, req->retval); 3649 break; 3650 } 3651 pr_err("active ofld_connect_wr failure %d atid %d\n", 3652 req->retval, atid); 3653 mutex_lock(&dev->rdev.stats.lock); 3654 dev->rdev.stats.act_ofld_conn_fails++; 3655 mutex_unlock(&dev->rdev.stats.lock); 3656 connect_reply_upcall(ep, status2errno(req->retval)); 3657 state_set(&ep->com, DEAD); 3658 if (ep->com.remote_addr.ss_family == AF_INET6) { 3659 struct sockaddr_in6 *sin6 = 3660 (struct sockaddr_in6 *)&ep->com.local_addr; 3661 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3662 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3663 } 3664 remove_handle(dev, &dev->atid_idr, atid); 3665 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3666 dst_release(ep->dst); 3667 cxgb4_l2t_release(ep->l2t); 3668 c4iw_put_ep(&ep->com); 3669 } 3670 3671 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3672 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3673 { 3674 struct sk_buff *rpl_skb; 3675 struct cpl_pass_accept_req *cpl; 3676 int ret; 3677 3678 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3679 BUG_ON(!rpl_skb); 3680 if (req->retval) { 3681 pr_debug("%s passive open failure %d\n", __func__, req->retval); 3682 mutex_lock(&dev->rdev.stats.lock); 3683 dev->rdev.stats.pas_ofld_conn_fails++; 3684 mutex_unlock(&dev->rdev.stats.lock); 3685 kfree_skb(rpl_skb); 3686 } else { 3687 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3688 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3689 (__force u32) htonl( 3690 (__force u32) req->tid))); 3691 ret = pass_accept_req(dev, rpl_skb); 3692 if (!ret) 3693 kfree_skb(rpl_skb); 3694 } 3695 return; 3696 } 3697 3698 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3699 { 3700 struct cpl_fw6_msg *rpl = cplhdr(skb); 3701 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3702 3703 switch (rpl->type) { 3704 case FW6_TYPE_CQE: 3705 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3706 break; 3707 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3708 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3709 switch (req->t_state) { 3710 case TCP_SYN_SENT: 3711 active_ofld_conn_reply(dev, skb, req); 3712 break; 3713 case TCP_SYN_RECV: 3714 passive_ofld_conn_reply(dev, skb, req); 3715 break; 3716 default: 3717 pr_err("%s unexpected ofld conn wr state %d\n", 3718 __func__, req->t_state); 3719 break; 3720 } 3721 break; 3722 } 3723 return 0; 3724 } 3725 3726 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3727 { 3728 __be32 l2info; 3729 __be16 hdr_len, vlantag, len; 3730 u16 eth_hdr_len; 3731 int tcp_hdr_len, ip_hdr_len; 3732 u8 intf; 3733 struct cpl_rx_pkt *cpl = cplhdr(skb); 3734 struct cpl_pass_accept_req *req; 3735 struct tcp_options_received tmp_opt; 3736 struct c4iw_dev *dev; 3737 enum chip_type type; 3738 3739 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3740 /* Store values from cpl_rx_pkt in temporary location. */ 3741 vlantag = cpl->vlan; 3742 len = cpl->len; 3743 l2info = cpl->l2info; 3744 hdr_len = cpl->hdr_len; 3745 intf = cpl->iff; 3746 3747 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3748 3749 /* 3750 * We need to parse the TCP options from SYN packet. 3751 * to generate cpl_pass_accept_req. 3752 */ 3753 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3754 tcp_clear_options(&tmp_opt); 3755 tcp_parse_options(skb, &tmp_opt, 0, NULL); 3756 3757 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req)); 3758 memset(req, 0, sizeof(*req)); 3759 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3760 SYN_MAC_IDX_V(RX_MACIDX_G( 3761 be32_to_cpu(l2info))) | 3762 SYN_XACT_MATCH_F); 3763 type = dev->rdev.lldi.adapter_type; 3764 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3765 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3766 req->hdr_len = 3767 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3768 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3769 eth_hdr_len = is_t4(type) ? 3770 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3771 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3772 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3773 IP_HDR_LEN_V(ip_hdr_len) | 3774 ETH_HDR_LEN_V(eth_hdr_len)); 3775 } else { /* T6 and later */ 3776 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3777 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3778 T6_IP_HDR_LEN_V(ip_hdr_len) | 3779 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3780 } 3781 req->vlan = vlantag; 3782 req->len = len; 3783 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3784 PASS_OPEN_TOS_V(tos)); 3785 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3786 if (tmp_opt.wscale_ok) 3787 req->tcpopt.wsf = tmp_opt.snd_wscale; 3788 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3789 if (tmp_opt.sack_ok) 3790 req->tcpopt.sack = 1; 3791 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3792 return; 3793 } 3794 3795 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3796 __be32 laddr, __be16 lport, 3797 __be32 raddr, __be16 rport, 3798 u32 rcv_isn, u32 filter, u16 window, 3799 u32 rss_qid, u8 port_id) 3800 { 3801 struct sk_buff *req_skb; 3802 struct fw_ofld_connection_wr *req; 3803 struct cpl_pass_accept_req *cpl = cplhdr(skb); 3804 int ret; 3805 3806 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 3807 if (!req_skb) 3808 return; 3809 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req)); 3810 memset(req, 0, sizeof(*req)); 3811 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 3812 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 3813 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 3814 req->le.filter = (__force __be32) filter; 3815 req->le.lport = lport; 3816 req->le.pport = rport; 3817 req->le.u.ipv4.lip = laddr; 3818 req->le.u.ipv4.pip = raddr; 3819 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 3820 req->tcb.rcv_adv = htons(window); 3821 req->tcb.t_state_to_astid = 3822 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 3823 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 3824 FW_OFLD_CONNECTION_WR_ASTID_V( 3825 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 3826 3827 /* 3828 * We store the qid in opt2 which will be used by the firmware 3829 * to send us the wr response. 3830 */ 3831 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 3832 3833 /* 3834 * We initialize the MSS index in TCB to 0xF. 3835 * So that when driver sends cpl_pass_accept_rpl 3836 * TCB picks up the correct value. If this was 0 3837 * TP will ignore any value > 0 for MSS index. 3838 */ 3839 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 3840 req->cookie = (uintptr_t)skb; 3841 3842 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 3843 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 3844 if (ret < 0) { 3845 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 3846 ret); 3847 kfree_skb(skb); 3848 kfree_skb(req_skb); 3849 } 3850 } 3851 3852 /* 3853 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 3854 * messages when a filter is being used instead of server to 3855 * redirect a syn packet. When packets hit filter they are redirected 3856 * to the offload queue and driver tries to establish the connection 3857 * using firmware work request. 3858 */ 3859 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 3860 { 3861 int stid; 3862 unsigned int filter; 3863 struct ethhdr *eh = NULL; 3864 struct vlan_ethhdr *vlan_eh = NULL; 3865 struct iphdr *iph; 3866 struct tcphdr *tcph; 3867 struct rss_header *rss = (void *)skb->data; 3868 struct cpl_rx_pkt *cpl = (void *)skb->data; 3869 struct cpl_pass_accept_req *req = (void *)(rss + 1); 3870 struct l2t_entry *e; 3871 struct dst_entry *dst; 3872 struct c4iw_ep *lep = NULL; 3873 u16 window; 3874 struct port_info *pi; 3875 struct net_device *pdev; 3876 u16 rss_qid, eth_hdr_len; 3877 int step; 3878 u32 tx_chan; 3879 struct neighbour *neigh; 3880 3881 /* Drop all non-SYN packets */ 3882 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 3883 goto reject; 3884 3885 /* 3886 * Drop all packets which did not hit the filter. 3887 * Unlikely to happen. 3888 */ 3889 if (!(rss->filter_hit && rss->filter_tid)) 3890 goto reject; 3891 3892 /* 3893 * Calculate the server tid from filter hit index from cpl_rx_pkt. 3894 */ 3895 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 3896 3897 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 3898 if (!lep) { 3899 pr_debug("%s connect request on invalid stid %d\n", 3900 __func__, stid); 3901 goto reject; 3902 } 3903 3904 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 3905 case CHELSIO_T4: 3906 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3907 break; 3908 case CHELSIO_T5: 3909 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3910 break; 3911 case CHELSIO_T6: 3912 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3913 break; 3914 default: 3915 pr_err("T%d Chip is not supported\n", 3916 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 3917 goto reject; 3918 } 3919 3920 if (eth_hdr_len == ETH_HLEN) { 3921 eh = (struct ethhdr *)(req + 1); 3922 iph = (struct iphdr *)(eh + 1); 3923 } else { 3924 vlan_eh = (struct vlan_ethhdr *)(req + 1); 3925 iph = (struct iphdr *)(vlan_eh + 1); 3926 skb->vlan_tci = ntohs(cpl->vlan); 3927 } 3928 3929 if (iph->version != 0x4) 3930 goto reject; 3931 3932 tcph = (struct tcphdr *)(iph + 1); 3933 skb_set_network_header(skb, (void *)iph - (void *)rss); 3934 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 3935 skb_get(skb); 3936 3937 pr_debug("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__, 3938 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 3939 ntohs(tcph->source), iph->tos); 3940 3941 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3942 iph->daddr, iph->saddr, tcph->dest, 3943 tcph->source, iph->tos); 3944 if (!dst) { 3945 pr_err("%s - failed to find dst entry!\n", 3946 __func__); 3947 goto reject; 3948 } 3949 neigh = dst_neigh_lookup_skb(dst, skb); 3950 3951 if (!neigh) { 3952 pr_err("%s - failed to allocate neigh!\n", 3953 __func__); 3954 goto free_dst; 3955 } 3956 3957 if (neigh->dev->flags & IFF_LOOPBACK) { 3958 pdev = ip_dev_find(&init_net, iph->daddr); 3959 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3960 pdev, 0); 3961 pi = (struct port_info *)netdev_priv(pdev); 3962 tx_chan = cxgb4_port_chan(pdev); 3963 dev_put(pdev); 3964 } else { 3965 pdev = get_real_dev(neigh->dev); 3966 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3967 pdev, 0); 3968 pi = (struct port_info *)netdev_priv(pdev); 3969 tx_chan = cxgb4_port_chan(pdev); 3970 } 3971 neigh_release(neigh); 3972 if (!e) { 3973 pr_err("%s - failed to allocate l2t entry!\n", 3974 __func__); 3975 goto free_dst; 3976 } 3977 3978 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 3979 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 3980 window = (__force u16) htons((__force u16)tcph->window); 3981 3982 /* Calcuate filter portion for LE region. */ 3983 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 3984 dev->rdev.lldi.ports[0], 3985 e)); 3986 3987 /* 3988 * Synthesize the cpl_pass_accept_req. We have everything except the 3989 * TID. Once firmware sends a reply with TID we update the TID field 3990 * in cpl and pass it through the regular cpl_pass_accept_req path. 3991 */ 3992 build_cpl_pass_accept_req(skb, stid, iph->tos); 3993 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 3994 tcph->source, ntohl(tcph->seq), filter, window, 3995 rss_qid, pi->port_id); 3996 cxgb4_l2t_release(e); 3997 free_dst: 3998 dst_release(dst); 3999 reject: 4000 if (lep) 4001 c4iw_put_ep(&lep->com); 4002 return 0; 4003 } 4004 4005 /* 4006 * These are the real handlers that are called from a 4007 * work queue. 4008 */ 4009 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 4010 [CPL_ACT_ESTABLISH] = act_establish, 4011 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4012 [CPL_RX_DATA] = rx_data, 4013 [CPL_ABORT_RPL_RSS] = abort_rpl, 4014 [CPL_ABORT_RPL] = abort_rpl, 4015 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4016 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4017 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4018 [CPL_PASS_ESTABLISH] = pass_establish, 4019 [CPL_PEER_CLOSE] = peer_close, 4020 [CPL_ABORT_REQ_RSS] = peer_abort, 4021 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4022 [CPL_RDMA_TERMINATE] = terminate, 4023 [CPL_FW4_ACK] = fw4_ack, 4024 [CPL_FW6_MSG] = deferred_fw6_msg, 4025 [CPL_RX_PKT] = rx_pkt, 4026 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4027 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4028 }; 4029 4030 static void process_timeout(struct c4iw_ep *ep) 4031 { 4032 struct c4iw_qp_attributes attrs; 4033 int abort = 1; 4034 4035 mutex_lock(&ep->com.mutex); 4036 pr_debug("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid, 4037 ep->com.state); 4038 set_bit(TIMEDOUT, &ep->com.history); 4039 switch (ep->com.state) { 4040 case MPA_REQ_SENT: 4041 connect_reply_upcall(ep, -ETIMEDOUT); 4042 break; 4043 case MPA_REQ_WAIT: 4044 case MPA_REQ_RCVD: 4045 case MPA_REP_SENT: 4046 case FPDU_MODE: 4047 break; 4048 case CLOSING: 4049 case MORIBUND: 4050 if (ep->com.cm_id && ep->com.qp) { 4051 attrs.next_state = C4IW_QP_STATE_ERROR; 4052 c4iw_modify_qp(ep->com.qp->rhp, 4053 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4054 &attrs, 1); 4055 } 4056 close_complete_upcall(ep, -ETIMEDOUT); 4057 break; 4058 case ABORTING: 4059 case DEAD: 4060 4061 /* 4062 * These states are expected if the ep timed out at the same 4063 * time as another thread was calling stop_ep_timer(). 4064 * So we silently do nothing for these states. 4065 */ 4066 abort = 0; 4067 break; 4068 default: 4069 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4070 __func__, ep, ep->hwtid, ep->com.state); 4071 abort = 0; 4072 } 4073 mutex_unlock(&ep->com.mutex); 4074 if (abort) 4075 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4076 c4iw_put_ep(&ep->com); 4077 } 4078 4079 static void process_timedout_eps(void) 4080 { 4081 struct c4iw_ep *ep; 4082 4083 spin_lock_irq(&timeout_lock); 4084 while (!list_empty(&timeout_list)) { 4085 struct list_head *tmp; 4086 4087 tmp = timeout_list.next; 4088 list_del(tmp); 4089 tmp->next = NULL; 4090 tmp->prev = NULL; 4091 spin_unlock_irq(&timeout_lock); 4092 ep = list_entry(tmp, struct c4iw_ep, entry); 4093 process_timeout(ep); 4094 spin_lock_irq(&timeout_lock); 4095 } 4096 spin_unlock_irq(&timeout_lock); 4097 } 4098 4099 static void process_work(struct work_struct *work) 4100 { 4101 struct sk_buff *skb = NULL; 4102 struct c4iw_dev *dev; 4103 struct cpl_act_establish *rpl; 4104 unsigned int opcode; 4105 int ret; 4106 4107 process_timedout_eps(); 4108 while ((skb = skb_dequeue(&rxq))) { 4109 rpl = cplhdr(skb); 4110 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4111 opcode = rpl->ot.opcode; 4112 4113 BUG_ON(!work_handlers[opcode]); 4114 ret = work_handlers[opcode](dev, skb); 4115 if (!ret) 4116 kfree_skb(skb); 4117 process_timedout_eps(); 4118 } 4119 } 4120 4121 static DECLARE_WORK(skb_work, process_work); 4122 4123 static void ep_timeout(unsigned long arg) 4124 { 4125 struct c4iw_ep *ep = (struct c4iw_ep *)arg; 4126 int kickit = 0; 4127 4128 spin_lock(&timeout_lock); 4129 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4130 /* 4131 * Only insert if it is not already on the list. 4132 */ 4133 if (!ep->entry.next) { 4134 list_add_tail(&ep->entry, &timeout_list); 4135 kickit = 1; 4136 } 4137 } 4138 spin_unlock(&timeout_lock); 4139 if (kickit) 4140 queue_work(workq, &skb_work); 4141 } 4142 4143 /* 4144 * All the CM events are handled on a work queue to have a safe context. 4145 */ 4146 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4147 { 4148 4149 /* 4150 * Save dev in the skb->cb area. 4151 */ 4152 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4153 4154 /* 4155 * Queue the skb and schedule the worker thread. 4156 */ 4157 skb_queue_tail(&rxq, skb); 4158 queue_work(workq, &skb_work); 4159 return 0; 4160 } 4161 4162 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4163 { 4164 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4165 4166 if (rpl->status != CPL_ERR_NONE) { 4167 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n", 4168 rpl->status, GET_TID(rpl)); 4169 } 4170 kfree_skb(skb); 4171 return 0; 4172 } 4173 4174 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4175 { 4176 struct cpl_fw6_msg *rpl = cplhdr(skb); 4177 struct c4iw_wr_wait *wr_waitp; 4178 int ret; 4179 4180 pr_debug("%s type %u\n", __func__, rpl->type); 4181 4182 switch (rpl->type) { 4183 case FW6_TYPE_WR_RPL: 4184 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4185 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4186 pr_debug("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret); 4187 if (wr_waitp) 4188 c4iw_wake_up(wr_waitp, ret ? -ret : 0); 4189 kfree_skb(skb); 4190 break; 4191 case FW6_TYPE_CQE: 4192 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4193 sched(dev, skb); 4194 break; 4195 default: 4196 pr_err("%s unexpected fw6 msg type %u\n", 4197 __func__, rpl->type); 4198 kfree_skb(skb); 4199 break; 4200 } 4201 return 0; 4202 } 4203 4204 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4205 { 4206 struct cpl_abort_req_rss *req = cplhdr(skb); 4207 struct c4iw_ep *ep; 4208 unsigned int tid = GET_TID(req); 4209 4210 ep = get_ep_from_tid(dev, tid); 4211 /* This EP will be dereferenced in peer_abort() */ 4212 if (!ep) { 4213 pr_warn("Abort on non-existent endpoint, tid %d\n", tid); 4214 kfree_skb(skb); 4215 return 0; 4216 } 4217 if (cxgb_is_neg_adv(req->status)) { 4218 pr_debug("%s Negative advice on abort- tid %u status %d (%s)\n", 4219 __func__, ep->hwtid, req->status, 4220 neg_adv_str(req->status)); 4221 goto out; 4222 } 4223 pr_debug("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 4224 ep->com.state); 4225 4226 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 4227 out: 4228 sched(dev, skb); 4229 return 0; 4230 } 4231 4232 /* 4233 * Most upcalls from the T4 Core go to sched() to 4234 * schedule the processing on a work queue. 4235 */ 4236 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4237 [CPL_ACT_ESTABLISH] = sched, 4238 [CPL_ACT_OPEN_RPL] = sched, 4239 [CPL_RX_DATA] = sched, 4240 [CPL_ABORT_RPL_RSS] = sched, 4241 [CPL_ABORT_RPL] = sched, 4242 [CPL_PASS_OPEN_RPL] = sched, 4243 [CPL_CLOSE_LISTSRV_RPL] = sched, 4244 [CPL_PASS_ACCEPT_REQ] = sched, 4245 [CPL_PASS_ESTABLISH] = sched, 4246 [CPL_PEER_CLOSE] = sched, 4247 [CPL_CLOSE_CON_RPL] = sched, 4248 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4249 [CPL_RDMA_TERMINATE] = sched, 4250 [CPL_FW4_ACK] = sched, 4251 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4252 [CPL_FW6_MSG] = fw6_msg, 4253 [CPL_RX_PKT] = sched 4254 }; 4255 4256 int __init c4iw_cm_init(void) 4257 { 4258 spin_lock_init(&timeout_lock); 4259 skb_queue_head_init(&rxq); 4260 4261 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4262 if (!workq) 4263 return -ENOMEM; 4264 4265 return 0; 4266 } 4267 4268 void c4iw_cm_term(void) 4269 { 4270 WARN_ON(!list_empty(&timeout_list)); 4271 flush_workqueue(workq); 4272 destroy_workqueue(workq); 4273 } 4274