1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode = 1; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 static int peer2peer = 1; 103 module_param(peer2peer, int, 0644); 104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 105 106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 107 module_param(p2p_type, int, 0644); 108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 109 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 110 111 static int ep_timeout_secs = 60; 112 module_param(ep_timeout_secs, int, 0644); 113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 114 "in seconds (default=60)"); 115 116 static int mpa_rev = 2; 117 module_param(mpa_rev, int, 0644); 118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 119 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 120 " compliant (default=2)"); 121 122 static int markers_enabled; 123 module_param(markers_enabled, int, 0644); 124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 125 126 static int crc_enabled = 1; 127 module_param(crc_enabled, int, 0644); 128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 129 130 static int rcv_win = 256 * 1024; 131 module_param(rcv_win, int, 0644); 132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 133 134 static int snd_win = 128 * 1024; 135 module_param(snd_win, int, 0644); 136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 137 138 static struct workqueue_struct *workq; 139 140 static struct sk_buff_head rxq; 141 142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 143 static void ep_timeout(struct timer_list *t); 144 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 146 147 static LIST_HEAD(timeout_list); 148 static spinlock_t timeout_lock; 149 150 static void deref_cm_id(struct c4iw_ep_common *epc) 151 { 152 epc->cm_id->rem_ref(epc->cm_id); 153 epc->cm_id = NULL; 154 set_bit(CM_ID_DEREFED, &epc->history); 155 } 156 157 static void ref_cm_id(struct c4iw_ep_common *epc) 158 { 159 set_bit(CM_ID_REFED, &epc->history); 160 epc->cm_id->add_ref(epc->cm_id); 161 } 162 163 static void deref_qp(struct c4iw_ep *ep) 164 { 165 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 166 clear_bit(QP_REFERENCED, &ep->com.flags); 167 set_bit(QP_DEREFED, &ep->com.history); 168 } 169 170 static void ref_qp(struct c4iw_ep *ep) 171 { 172 set_bit(QP_REFERENCED, &ep->com.flags); 173 set_bit(QP_REFED, &ep->com.history); 174 c4iw_qp_add_ref(&ep->com.qp->ibqp); 175 } 176 177 static void start_ep_timer(struct c4iw_ep *ep) 178 { 179 pr_debug("ep %p\n", ep); 180 if (timer_pending(&ep->timer)) { 181 pr_err("%s timer already started! ep %p\n", 182 __func__, ep); 183 return; 184 } 185 clear_bit(TIMEOUT, &ep->com.flags); 186 c4iw_get_ep(&ep->com); 187 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 188 add_timer(&ep->timer); 189 } 190 191 static int stop_ep_timer(struct c4iw_ep *ep) 192 { 193 pr_debug("ep %p stopping\n", ep); 194 del_timer_sync(&ep->timer); 195 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 196 c4iw_put_ep(&ep->com); 197 return 0; 198 } 199 return 1; 200 } 201 202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 203 struct l2t_entry *l2e) 204 { 205 int error = 0; 206 207 if (c4iw_fatal_error(rdev)) { 208 kfree_skb(skb); 209 pr_err("%s - device in error state - dropping\n", __func__); 210 return -EIO; 211 } 212 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 213 if (error < 0) 214 kfree_skb(skb); 215 else if (error == NET_XMIT_DROP) 216 return -ENOMEM; 217 return error < 0 ? error : 0; 218 } 219 220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 221 { 222 int error = 0; 223 224 if (c4iw_fatal_error(rdev)) { 225 kfree_skb(skb); 226 pr_err("%s - device in error state - dropping\n", __func__); 227 return -EIO; 228 } 229 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 230 if (error < 0) 231 kfree_skb(skb); 232 return error < 0 ? error : 0; 233 } 234 235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 236 { 237 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 238 239 skb = get_skb(skb, len, GFP_KERNEL); 240 if (!skb) 241 return; 242 243 cxgb_mk_tid_release(skb, len, hwtid, 0); 244 c4iw_ofld_send(rdev, skb); 245 return; 246 } 247 248 static void set_emss(struct c4iw_ep *ep, u16 opt) 249 { 250 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 251 ((AF_INET == ep->com.remote_addr.ss_family) ? 252 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 253 sizeof(struct tcphdr); 254 ep->mss = ep->emss; 255 if (TCPOPT_TSTAMP_G(opt)) 256 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 257 if (ep->emss < 128) 258 ep->emss = 128; 259 if (ep->emss & 7) 260 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n", 261 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 262 pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss, 263 ep->emss); 264 } 265 266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 267 { 268 enum c4iw_ep_state state; 269 270 mutex_lock(&epc->mutex); 271 state = epc->state; 272 mutex_unlock(&epc->mutex); 273 return state; 274 } 275 276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 277 { 278 epc->state = new; 279 } 280 281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 282 { 283 mutex_lock(&epc->mutex); 284 pr_debug("%s -> %s\n", states[epc->state], states[new]); 285 __state_set(epc, new); 286 mutex_unlock(&epc->mutex); 287 return; 288 } 289 290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 291 { 292 struct sk_buff *skb; 293 unsigned int i; 294 size_t len; 295 296 len = roundup(sizeof(union cpl_wr_size), 16); 297 for (i = 0; i < size; i++) { 298 skb = alloc_skb(len, GFP_KERNEL); 299 if (!skb) 300 goto fail; 301 skb_queue_tail(ep_skb_list, skb); 302 } 303 return 0; 304 fail: 305 skb_queue_purge(ep_skb_list); 306 return -ENOMEM; 307 } 308 309 static void *alloc_ep(int size, gfp_t gfp) 310 { 311 struct c4iw_ep_common *epc; 312 313 epc = kzalloc(size, gfp); 314 if (epc) { 315 epc->wr_waitp = c4iw_alloc_wr_wait(gfp); 316 if (!epc->wr_waitp) { 317 kfree(epc); 318 epc = NULL; 319 goto out; 320 } 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(epc->wr_waitp); 324 } 325 pr_debug("alloc ep %p\n", epc); 326 out: 327 return epc; 328 } 329 330 static void remove_ep_tid(struct c4iw_ep *ep) 331 { 332 unsigned long flags; 333 334 xa_lock_irqsave(&ep->com.dev->hwtids, flags); 335 __xa_erase(&ep->com.dev->hwtids, ep->hwtid); 336 if (xa_empty(&ep->com.dev->hwtids)) 337 wake_up(&ep->com.dev->wait); 338 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags); 339 } 340 341 static int insert_ep_tid(struct c4iw_ep *ep) 342 { 343 unsigned long flags; 344 int err; 345 346 xa_lock_irqsave(&ep->com.dev->hwtids, flags); 347 err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL); 348 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags); 349 350 return err; 351 } 352 353 /* 354 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 355 */ 356 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 357 { 358 struct c4iw_ep *ep; 359 unsigned long flags; 360 361 xa_lock_irqsave(&dev->hwtids, flags); 362 ep = xa_load(&dev->hwtids, tid); 363 if (ep) 364 c4iw_get_ep(&ep->com); 365 xa_unlock_irqrestore(&dev->hwtids, flags); 366 return ep; 367 } 368 369 /* 370 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 371 */ 372 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 373 unsigned int stid) 374 { 375 struct c4iw_listen_ep *ep; 376 unsigned long flags; 377 378 xa_lock_irqsave(&dev->stids, flags); 379 ep = xa_load(&dev->stids, stid); 380 if (ep) 381 c4iw_get_ep(&ep->com); 382 xa_unlock_irqrestore(&dev->stids, flags); 383 return ep; 384 } 385 386 void _c4iw_free_ep(struct kref *kref) 387 { 388 struct c4iw_ep *ep; 389 390 ep = container_of(kref, struct c4iw_ep, com.kref); 391 pr_debug("ep %p state %s\n", ep, states[ep->com.state]); 392 if (test_bit(QP_REFERENCED, &ep->com.flags)) 393 deref_qp(ep); 394 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 395 if (ep->com.remote_addr.ss_family == AF_INET6) { 396 struct sockaddr_in6 *sin6 = 397 (struct sockaddr_in6 *) 398 &ep->com.local_addr; 399 400 cxgb4_clip_release( 401 ep->com.dev->rdev.lldi.ports[0], 402 (const u32 *)&sin6->sin6_addr.s6_addr, 403 1); 404 } 405 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 406 ep->com.local_addr.ss_family); 407 dst_release(ep->dst); 408 cxgb4_l2t_release(ep->l2t); 409 kfree_skb(ep->mpa_skb); 410 } 411 if (!skb_queue_empty(&ep->com.ep_skb_list)) 412 skb_queue_purge(&ep->com.ep_skb_list); 413 c4iw_put_wr_wait(ep->com.wr_waitp); 414 kfree(ep); 415 } 416 417 static void release_ep_resources(struct c4iw_ep *ep) 418 { 419 set_bit(RELEASE_RESOURCES, &ep->com.flags); 420 421 /* 422 * If we have a hwtid, then remove it from the idr table 423 * so lookups will no longer find this endpoint. Otherwise 424 * we have a race where one thread finds the ep ptr just 425 * before the other thread is freeing the ep memory. 426 */ 427 if (ep->hwtid != -1) 428 remove_ep_tid(ep); 429 c4iw_put_ep(&ep->com); 430 } 431 432 static int status2errno(int status) 433 { 434 switch (status) { 435 case CPL_ERR_NONE: 436 return 0; 437 case CPL_ERR_CONN_RESET: 438 return -ECONNRESET; 439 case CPL_ERR_ARP_MISS: 440 return -EHOSTUNREACH; 441 case CPL_ERR_CONN_TIMEDOUT: 442 return -ETIMEDOUT; 443 case CPL_ERR_TCAM_FULL: 444 return -ENOMEM; 445 case CPL_ERR_CONN_EXIST: 446 return -EADDRINUSE; 447 default: 448 return -EIO; 449 } 450 } 451 452 /* 453 * Try and reuse skbs already allocated... 454 */ 455 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 456 { 457 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 458 skb_trim(skb, 0); 459 skb_get(skb); 460 skb_reset_transport_header(skb); 461 } else { 462 skb = alloc_skb(len, gfp); 463 if (!skb) 464 return NULL; 465 } 466 t4_set_arp_err_handler(skb, NULL, NULL); 467 return skb; 468 } 469 470 static struct net_device *get_real_dev(struct net_device *egress_dev) 471 { 472 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 473 } 474 475 static void arp_failure_discard(void *handle, struct sk_buff *skb) 476 { 477 pr_err("ARP failure\n"); 478 kfree_skb(skb); 479 } 480 481 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 482 { 483 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 484 } 485 486 enum { 487 NUM_FAKE_CPLS = 2, 488 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 489 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 490 }; 491 492 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 493 { 494 struct c4iw_ep *ep; 495 496 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 497 release_ep_resources(ep); 498 kfree_skb(skb); 499 return 0; 500 } 501 502 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 503 { 504 struct c4iw_ep *ep; 505 506 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 507 c4iw_put_ep(&ep->parent_ep->com); 508 release_ep_resources(ep); 509 kfree_skb(skb); 510 return 0; 511 } 512 513 /* 514 * Fake up a special CPL opcode and call sched() so process_work() will call 515 * _put_ep_safe() in a safe context to free the ep resources. This is needed 516 * because ARP error handlers are called in an ATOMIC context, and 517 * _c4iw_free_ep() needs to block. 518 */ 519 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 520 int cpl) 521 { 522 struct cpl_act_establish *rpl = cplhdr(skb); 523 524 /* Set our special ARP_FAILURE opcode */ 525 rpl->ot.opcode = cpl; 526 527 /* 528 * Save ep in the skb->cb area, after where sched() will save the dev 529 * ptr. 530 */ 531 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 532 sched(ep->com.dev, skb); 533 } 534 535 /* Handle an ARP failure for an accept */ 536 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 537 { 538 struct c4iw_ep *ep = handle; 539 540 pr_err("ARP failure during accept - tid %u - dropping connection\n", 541 ep->hwtid); 542 543 __state_set(&ep->com, DEAD); 544 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 545 } 546 547 /* 548 * Handle an ARP failure for an active open. 549 */ 550 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 551 { 552 struct c4iw_ep *ep = handle; 553 554 pr_err("ARP failure during connect\n"); 555 connect_reply_upcall(ep, -EHOSTUNREACH); 556 __state_set(&ep->com, DEAD); 557 if (ep->com.remote_addr.ss_family == AF_INET6) { 558 struct sockaddr_in6 *sin6 = 559 (struct sockaddr_in6 *)&ep->com.local_addr; 560 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 561 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 562 } 563 xa_erase_irq(&ep->com.dev->atids, ep->atid); 564 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 565 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 566 } 567 568 /* 569 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 570 * and send it along. 571 */ 572 static void abort_arp_failure(void *handle, struct sk_buff *skb) 573 { 574 int ret; 575 struct c4iw_ep *ep = handle; 576 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 577 struct cpl_abort_req *req = cplhdr(skb); 578 579 pr_debug("rdev %p\n", rdev); 580 req->cmd = CPL_ABORT_NO_RST; 581 skb_get(skb); 582 ret = c4iw_ofld_send(rdev, skb); 583 if (ret) { 584 __state_set(&ep->com, DEAD); 585 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 586 } else 587 kfree_skb(skb); 588 } 589 590 static int send_flowc(struct c4iw_ep *ep) 591 { 592 struct fw_flowc_wr *flowc; 593 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 594 u16 vlan = ep->l2t->vlan; 595 int nparams; 596 int flowclen, flowclen16; 597 598 if (WARN_ON(!skb)) 599 return -ENOMEM; 600 601 if (vlan == CPL_L2T_VLAN_NONE) 602 nparams = 9; 603 else 604 nparams = 10; 605 606 flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]); 607 flowclen16 = DIV_ROUND_UP(flowclen, 16); 608 flowclen = flowclen16 * 16; 609 610 flowc = __skb_put(skb, flowclen); 611 memset(flowc, 0, flowclen); 612 613 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 614 FW_FLOWC_WR_NPARAMS_V(nparams)); 615 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) | 616 FW_WR_FLOWID_V(ep->hwtid)); 617 618 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 619 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 620 (ep->com.dev->rdev.lldi.pf)); 621 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 622 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 623 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 624 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 625 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 626 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 627 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 628 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 629 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 630 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 631 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 632 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 633 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 634 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 635 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE; 636 flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale); 637 if (nparams == 10) { 638 u16 pri; 639 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 640 flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 641 flowc->mnemval[9].val = cpu_to_be32(pri); 642 } 643 644 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 645 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 646 } 647 648 static int send_halfclose(struct c4iw_ep *ep) 649 { 650 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 651 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 652 653 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 654 if (WARN_ON(!skb)) 655 return -ENOMEM; 656 657 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 658 NULL, arp_failure_discard); 659 660 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 661 } 662 663 static void read_tcb(struct c4iw_ep *ep) 664 { 665 struct sk_buff *skb; 666 struct cpl_get_tcb *req; 667 int wrlen = roundup(sizeof(*req), 16); 668 669 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 670 if (WARN_ON(!skb)) 671 return; 672 673 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 674 req = (struct cpl_get_tcb *) skb_put(skb, wrlen); 675 memset(req, 0, wrlen); 676 INIT_TP_WR(req, ep->hwtid); 677 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid)); 678 req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid)); 679 680 /* 681 * keep a ref on the ep so the tcb is not unlocked before this 682 * cpl completes. The ref is released in read_tcb_rpl(). 683 */ 684 c4iw_get_ep(&ep->com); 685 if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb))) 686 c4iw_put_ep(&ep->com); 687 } 688 689 static int send_abort_req(struct c4iw_ep *ep) 690 { 691 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 692 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 693 694 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 695 if (WARN_ON(!req_skb)) 696 return -ENOMEM; 697 698 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 699 ep, abort_arp_failure); 700 701 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 702 } 703 704 static int send_abort(struct c4iw_ep *ep) 705 { 706 if (!ep->com.qp || !ep->com.qp->srq) { 707 send_abort_req(ep); 708 return 0; 709 } 710 set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags); 711 read_tcb(ep); 712 return 0; 713 } 714 715 static int send_connect(struct c4iw_ep *ep) 716 { 717 struct cpl_act_open_req *req = NULL; 718 struct cpl_t5_act_open_req *t5req = NULL; 719 struct cpl_t6_act_open_req *t6req = NULL; 720 struct cpl_act_open_req6 *req6 = NULL; 721 struct cpl_t5_act_open_req6 *t5req6 = NULL; 722 struct cpl_t6_act_open_req6 *t6req6 = NULL; 723 struct sk_buff *skb; 724 u64 opt0; 725 u32 opt2; 726 unsigned int mtu_idx; 727 u32 wscale; 728 int win, sizev4, sizev6, wrlen; 729 struct sockaddr_in *la = (struct sockaddr_in *) 730 &ep->com.local_addr; 731 struct sockaddr_in *ra = (struct sockaddr_in *) 732 &ep->com.remote_addr; 733 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 734 &ep->com.local_addr; 735 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 736 &ep->com.remote_addr; 737 int ret; 738 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 739 u32 isn = (prandom_u32() & ~7UL) - 1; 740 struct net_device *netdev; 741 u64 params; 742 743 netdev = ep->com.dev->rdev.lldi.ports[0]; 744 745 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 746 case CHELSIO_T4: 747 sizev4 = sizeof(struct cpl_act_open_req); 748 sizev6 = sizeof(struct cpl_act_open_req6); 749 break; 750 case CHELSIO_T5: 751 sizev4 = sizeof(struct cpl_t5_act_open_req); 752 sizev6 = sizeof(struct cpl_t5_act_open_req6); 753 break; 754 case CHELSIO_T6: 755 sizev4 = sizeof(struct cpl_t6_act_open_req); 756 sizev6 = sizeof(struct cpl_t6_act_open_req6); 757 break; 758 default: 759 pr_err("T%d Chip is not supported\n", 760 CHELSIO_CHIP_VERSION(adapter_type)); 761 return -EINVAL; 762 } 763 764 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 765 roundup(sizev4, 16) : 766 roundup(sizev6, 16); 767 768 pr_debug("ep %p atid %u\n", ep, ep->atid); 769 770 skb = get_skb(NULL, wrlen, GFP_KERNEL); 771 if (!skb) { 772 pr_err("%s - failed to alloc skb\n", __func__); 773 return -ENOMEM; 774 } 775 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 776 777 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 778 enable_tcp_timestamps, 779 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 780 wscale = cxgb_compute_wscale(rcv_win); 781 782 /* 783 * Specify the largest window that will fit in opt0. The 784 * remainder will be specified in the rx_data_ack. 785 */ 786 win = ep->rcv_win >> 10; 787 if (win > RCV_BUFSIZ_M) 788 win = RCV_BUFSIZ_M; 789 790 opt0 = (nocong ? NO_CONG_F : 0) | 791 KEEP_ALIVE_F | 792 DELACK_F | 793 WND_SCALE_V(wscale) | 794 MSS_IDX_V(mtu_idx) | 795 L2T_IDX_V(ep->l2t->idx) | 796 TX_CHAN_V(ep->tx_chan) | 797 SMAC_SEL_V(ep->smac_idx) | 798 DSCP_V(ep->tos >> 2) | 799 ULP_MODE_V(ULP_MODE_TCPDDP) | 800 RCV_BUFSIZ_V(win); 801 opt2 = RX_CHANNEL_V(0) | 802 CCTRL_ECN_V(enable_ecn) | 803 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 804 if (enable_tcp_timestamps) 805 opt2 |= TSTAMPS_EN_F; 806 if (enable_tcp_sack) 807 opt2 |= SACK_EN_F; 808 if (wscale && enable_tcp_window_scaling) 809 opt2 |= WND_SCALE_EN_F; 810 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 811 if (peer2peer) 812 isn += 4; 813 814 opt2 |= T5_OPT_2_VALID_F; 815 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 816 opt2 |= T5_ISS_F; 817 } 818 819 params = cxgb4_select_ntuple(netdev, ep->l2t); 820 821 if (ep->com.remote_addr.ss_family == AF_INET6) 822 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 823 (const u32 *)&la6->sin6_addr.s6_addr, 1); 824 825 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 826 827 if (ep->com.remote_addr.ss_family == AF_INET) { 828 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 829 case CHELSIO_T4: 830 req = skb_put(skb, wrlen); 831 INIT_TP_WR(req, 0); 832 break; 833 case CHELSIO_T5: 834 t5req = skb_put(skb, wrlen); 835 INIT_TP_WR(t5req, 0); 836 req = (struct cpl_act_open_req *)t5req; 837 break; 838 case CHELSIO_T6: 839 t6req = skb_put(skb, wrlen); 840 INIT_TP_WR(t6req, 0); 841 req = (struct cpl_act_open_req *)t6req; 842 t5req = (struct cpl_t5_act_open_req *)t6req; 843 break; 844 default: 845 pr_err("T%d Chip is not supported\n", 846 CHELSIO_CHIP_VERSION(adapter_type)); 847 ret = -EINVAL; 848 goto clip_release; 849 } 850 851 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 852 ((ep->rss_qid<<14) | ep->atid))); 853 req->local_port = la->sin_port; 854 req->peer_port = ra->sin_port; 855 req->local_ip = la->sin_addr.s_addr; 856 req->peer_ip = ra->sin_addr.s_addr; 857 req->opt0 = cpu_to_be64(opt0); 858 859 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 860 req->params = cpu_to_be32(params); 861 req->opt2 = cpu_to_be32(opt2); 862 } else { 863 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 864 t5req->params = 865 cpu_to_be64(FILTER_TUPLE_V(params)); 866 t5req->rsvd = cpu_to_be32(isn); 867 pr_debug("snd_isn %u\n", t5req->rsvd); 868 t5req->opt2 = cpu_to_be32(opt2); 869 } else { 870 t6req->params = 871 cpu_to_be64(FILTER_TUPLE_V(params)); 872 t6req->rsvd = cpu_to_be32(isn); 873 pr_debug("snd_isn %u\n", t6req->rsvd); 874 t6req->opt2 = cpu_to_be32(opt2); 875 } 876 } 877 } else { 878 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 879 case CHELSIO_T4: 880 req6 = skb_put(skb, wrlen); 881 INIT_TP_WR(req6, 0); 882 break; 883 case CHELSIO_T5: 884 t5req6 = skb_put(skb, wrlen); 885 INIT_TP_WR(t5req6, 0); 886 req6 = (struct cpl_act_open_req6 *)t5req6; 887 break; 888 case CHELSIO_T6: 889 t6req6 = skb_put(skb, wrlen); 890 INIT_TP_WR(t6req6, 0); 891 req6 = (struct cpl_act_open_req6 *)t6req6; 892 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 893 break; 894 default: 895 pr_err("T%d Chip is not supported\n", 896 CHELSIO_CHIP_VERSION(adapter_type)); 897 ret = -EINVAL; 898 goto clip_release; 899 } 900 901 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 902 ((ep->rss_qid<<14)|ep->atid))); 903 req6->local_port = la6->sin6_port; 904 req6->peer_port = ra6->sin6_port; 905 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 906 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 907 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 908 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 909 req6->opt0 = cpu_to_be64(opt0); 910 911 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 912 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, 913 ep->l2t)); 914 req6->opt2 = cpu_to_be32(opt2); 915 } else { 916 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 917 t5req6->params = 918 cpu_to_be64(FILTER_TUPLE_V(params)); 919 t5req6->rsvd = cpu_to_be32(isn); 920 pr_debug("snd_isn %u\n", t5req6->rsvd); 921 t5req6->opt2 = cpu_to_be32(opt2); 922 } else { 923 t6req6->params = 924 cpu_to_be64(FILTER_TUPLE_V(params)); 925 t6req6->rsvd = cpu_to_be32(isn); 926 pr_debug("snd_isn %u\n", t6req6->rsvd); 927 t6req6->opt2 = cpu_to_be32(opt2); 928 } 929 930 } 931 } 932 933 set_bit(ACT_OPEN_REQ, &ep->com.history); 934 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 935 clip_release: 936 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 937 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 938 (const u32 *)&la6->sin6_addr.s6_addr, 1); 939 return ret; 940 } 941 942 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 943 u8 mpa_rev_to_use) 944 { 945 int mpalen, wrlen, ret; 946 struct fw_ofld_tx_data_wr *req; 947 struct mpa_message *mpa; 948 struct mpa_v2_conn_params mpa_v2_params; 949 950 pr_debug("ep %p tid %u pd_len %d\n", 951 ep, ep->hwtid, ep->plen); 952 953 mpalen = sizeof(*mpa) + ep->plen; 954 if (mpa_rev_to_use == 2) 955 mpalen += sizeof(struct mpa_v2_conn_params); 956 wrlen = roundup(mpalen + sizeof(*req), 16); 957 skb = get_skb(skb, wrlen, GFP_KERNEL); 958 if (!skb) { 959 connect_reply_upcall(ep, -ENOMEM); 960 return -ENOMEM; 961 } 962 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 963 964 req = skb_put_zero(skb, wrlen); 965 req->op_to_immdlen = cpu_to_be32( 966 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 967 FW_WR_COMPL_F | 968 FW_WR_IMMDLEN_V(mpalen)); 969 req->flowid_len16 = cpu_to_be32( 970 FW_WR_FLOWID_V(ep->hwtid) | 971 FW_WR_LEN16_V(wrlen >> 4)); 972 req->plen = cpu_to_be32(mpalen); 973 req->tunnel_to_proxy = cpu_to_be32( 974 FW_OFLD_TX_DATA_WR_FLUSH_F | 975 FW_OFLD_TX_DATA_WR_SHOVE_F); 976 977 mpa = (struct mpa_message *)(req + 1); 978 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 979 980 mpa->flags = 0; 981 if (crc_enabled) 982 mpa->flags |= MPA_CRC; 983 if (markers_enabled) { 984 mpa->flags |= MPA_MARKERS; 985 ep->mpa_attr.recv_marker_enabled = 1; 986 } else { 987 ep->mpa_attr.recv_marker_enabled = 0; 988 } 989 if (mpa_rev_to_use == 2) 990 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 991 992 mpa->private_data_size = htons(ep->plen); 993 mpa->revision = mpa_rev_to_use; 994 if (mpa_rev_to_use == 1) { 995 ep->tried_with_mpa_v1 = 1; 996 ep->retry_with_mpa_v1 = 0; 997 } 998 999 if (mpa_rev_to_use == 2) { 1000 mpa->private_data_size = 1001 htons(ntohs(mpa->private_data_size) + 1002 sizeof(struct mpa_v2_conn_params)); 1003 pr_debug("initiator ird %u ord %u\n", ep->ird, 1004 ep->ord); 1005 mpa_v2_params.ird = htons((u16)ep->ird); 1006 mpa_v2_params.ord = htons((u16)ep->ord); 1007 1008 if (peer2peer) { 1009 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1010 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1011 mpa_v2_params.ord |= 1012 htons(MPA_V2_RDMA_WRITE_RTR); 1013 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1014 mpa_v2_params.ord |= 1015 htons(MPA_V2_RDMA_READ_RTR); 1016 } 1017 memcpy(mpa->private_data, &mpa_v2_params, 1018 sizeof(struct mpa_v2_conn_params)); 1019 1020 if (ep->plen) 1021 memcpy(mpa->private_data + 1022 sizeof(struct mpa_v2_conn_params), 1023 ep->mpa_pkt + sizeof(*mpa), ep->plen); 1024 } else 1025 if (ep->plen) 1026 memcpy(mpa->private_data, 1027 ep->mpa_pkt + sizeof(*mpa), ep->plen); 1028 1029 /* 1030 * Reference the mpa skb. This ensures the data area 1031 * will remain in memory until the hw acks the tx. 1032 * Function fw4_ack() will deref it. 1033 */ 1034 skb_get(skb); 1035 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 1036 ep->mpa_skb = skb; 1037 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1038 if (ret) 1039 return ret; 1040 start_ep_timer(ep); 1041 __state_set(&ep->com, MPA_REQ_SENT); 1042 ep->mpa_attr.initiator = 1; 1043 ep->snd_seq += mpalen; 1044 return ret; 1045 } 1046 1047 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1048 { 1049 int mpalen, wrlen; 1050 struct fw_ofld_tx_data_wr *req; 1051 struct mpa_message *mpa; 1052 struct sk_buff *skb; 1053 struct mpa_v2_conn_params mpa_v2_params; 1054 1055 pr_debug("ep %p tid %u pd_len %d\n", 1056 ep, ep->hwtid, ep->plen); 1057 1058 mpalen = sizeof(*mpa) + plen; 1059 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1060 mpalen += sizeof(struct mpa_v2_conn_params); 1061 wrlen = roundup(mpalen + sizeof(*req), 16); 1062 1063 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1064 if (!skb) { 1065 pr_err("%s - cannot alloc skb!\n", __func__); 1066 return -ENOMEM; 1067 } 1068 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1069 1070 req = skb_put_zero(skb, wrlen); 1071 req->op_to_immdlen = cpu_to_be32( 1072 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1073 FW_WR_COMPL_F | 1074 FW_WR_IMMDLEN_V(mpalen)); 1075 req->flowid_len16 = cpu_to_be32( 1076 FW_WR_FLOWID_V(ep->hwtid) | 1077 FW_WR_LEN16_V(wrlen >> 4)); 1078 req->plen = cpu_to_be32(mpalen); 1079 req->tunnel_to_proxy = cpu_to_be32( 1080 FW_OFLD_TX_DATA_WR_FLUSH_F | 1081 FW_OFLD_TX_DATA_WR_SHOVE_F); 1082 1083 mpa = (struct mpa_message *)(req + 1); 1084 memset(mpa, 0, sizeof(*mpa)); 1085 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1086 mpa->flags = MPA_REJECT; 1087 mpa->revision = ep->mpa_attr.version; 1088 mpa->private_data_size = htons(plen); 1089 1090 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1091 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1092 mpa->private_data_size = 1093 htons(ntohs(mpa->private_data_size) + 1094 sizeof(struct mpa_v2_conn_params)); 1095 mpa_v2_params.ird = htons(((u16)ep->ird) | 1096 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1097 0)); 1098 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1099 (p2p_type == 1100 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1101 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1102 FW_RI_INIT_P2PTYPE_READ_REQ ? 1103 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1104 memcpy(mpa->private_data, &mpa_v2_params, 1105 sizeof(struct mpa_v2_conn_params)); 1106 1107 if (ep->plen) 1108 memcpy(mpa->private_data + 1109 sizeof(struct mpa_v2_conn_params), pdata, plen); 1110 } else 1111 if (plen) 1112 memcpy(mpa->private_data, pdata, plen); 1113 1114 /* 1115 * Reference the mpa skb again. This ensures the data area 1116 * will remain in memory until the hw acks the tx. 1117 * Function fw4_ack() will deref it. 1118 */ 1119 skb_get(skb); 1120 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1121 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1122 ep->mpa_skb = skb; 1123 ep->snd_seq += mpalen; 1124 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1125 } 1126 1127 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1128 { 1129 int mpalen, wrlen; 1130 struct fw_ofld_tx_data_wr *req; 1131 struct mpa_message *mpa; 1132 struct sk_buff *skb; 1133 struct mpa_v2_conn_params mpa_v2_params; 1134 1135 pr_debug("ep %p tid %u pd_len %d\n", 1136 ep, ep->hwtid, ep->plen); 1137 1138 mpalen = sizeof(*mpa) + plen; 1139 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1140 mpalen += sizeof(struct mpa_v2_conn_params); 1141 wrlen = roundup(mpalen + sizeof(*req), 16); 1142 1143 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1144 if (!skb) { 1145 pr_err("%s - cannot alloc skb!\n", __func__); 1146 return -ENOMEM; 1147 } 1148 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1149 1150 req = skb_put_zero(skb, wrlen); 1151 req->op_to_immdlen = cpu_to_be32( 1152 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1153 FW_WR_COMPL_F | 1154 FW_WR_IMMDLEN_V(mpalen)); 1155 req->flowid_len16 = cpu_to_be32( 1156 FW_WR_FLOWID_V(ep->hwtid) | 1157 FW_WR_LEN16_V(wrlen >> 4)); 1158 req->plen = cpu_to_be32(mpalen); 1159 req->tunnel_to_proxy = cpu_to_be32( 1160 FW_OFLD_TX_DATA_WR_FLUSH_F | 1161 FW_OFLD_TX_DATA_WR_SHOVE_F); 1162 1163 mpa = (struct mpa_message *)(req + 1); 1164 memset(mpa, 0, sizeof(*mpa)); 1165 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1166 mpa->flags = 0; 1167 if (ep->mpa_attr.crc_enabled) 1168 mpa->flags |= MPA_CRC; 1169 if (ep->mpa_attr.recv_marker_enabled) 1170 mpa->flags |= MPA_MARKERS; 1171 mpa->revision = ep->mpa_attr.version; 1172 mpa->private_data_size = htons(plen); 1173 1174 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1175 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1176 mpa->private_data_size = 1177 htons(ntohs(mpa->private_data_size) + 1178 sizeof(struct mpa_v2_conn_params)); 1179 mpa_v2_params.ird = htons((u16)ep->ird); 1180 mpa_v2_params.ord = htons((u16)ep->ord); 1181 if (peer2peer && (ep->mpa_attr.p2p_type != 1182 FW_RI_INIT_P2PTYPE_DISABLED)) { 1183 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1184 1185 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1186 mpa_v2_params.ord |= 1187 htons(MPA_V2_RDMA_WRITE_RTR); 1188 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1189 mpa_v2_params.ord |= 1190 htons(MPA_V2_RDMA_READ_RTR); 1191 } 1192 1193 memcpy(mpa->private_data, &mpa_v2_params, 1194 sizeof(struct mpa_v2_conn_params)); 1195 1196 if (ep->plen) 1197 memcpy(mpa->private_data + 1198 sizeof(struct mpa_v2_conn_params), pdata, plen); 1199 } else 1200 if (plen) 1201 memcpy(mpa->private_data, pdata, plen); 1202 1203 /* 1204 * Reference the mpa skb. This ensures the data area 1205 * will remain in memory until the hw acks the tx. 1206 * Function fw4_ack() will deref it. 1207 */ 1208 skb_get(skb); 1209 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1210 ep->mpa_skb = skb; 1211 __state_set(&ep->com, MPA_REP_SENT); 1212 ep->snd_seq += mpalen; 1213 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1214 } 1215 1216 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1217 { 1218 struct c4iw_ep *ep; 1219 struct cpl_act_establish *req = cplhdr(skb); 1220 unsigned short tcp_opt = ntohs(req->tcp_opt); 1221 unsigned int tid = GET_TID(req); 1222 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1223 struct tid_info *t = dev->rdev.lldi.tids; 1224 int ret; 1225 1226 ep = lookup_atid(t, atid); 1227 1228 pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid, 1229 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1230 1231 mutex_lock(&ep->com.mutex); 1232 dst_confirm(ep->dst); 1233 1234 /* setup the hwtid for this connection */ 1235 ep->hwtid = tid; 1236 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family); 1237 insert_ep_tid(ep); 1238 1239 ep->snd_seq = be32_to_cpu(req->snd_isn); 1240 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1241 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); 1242 1243 set_emss(ep, tcp_opt); 1244 1245 /* dealloc the atid */ 1246 xa_erase_irq(&ep->com.dev->atids, atid); 1247 cxgb4_free_atid(t, atid); 1248 set_bit(ACT_ESTAB, &ep->com.history); 1249 1250 /* start MPA negotiation */ 1251 ret = send_flowc(ep); 1252 if (ret) 1253 goto err; 1254 if (ep->retry_with_mpa_v1) 1255 ret = send_mpa_req(ep, skb, 1); 1256 else 1257 ret = send_mpa_req(ep, skb, mpa_rev); 1258 if (ret) 1259 goto err; 1260 mutex_unlock(&ep->com.mutex); 1261 return 0; 1262 err: 1263 mutex_unlock(&ep->com.mutex); 1264 connect_reply_upcall(ep, -ENOMEM); 1265 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1266 return 0; 1267 } 1268 1269 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1270 { 1271 struct iw_cm_event event; 1272 1273 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1274 memset(&event, 0, sizeof(event)); 1275 event.event = IW_CM_EVENT_CLOSE; 1276 event.status = status; 1277 if (ep->com.cm_id) { 1278 pr_debug("close complete delivered ep %p cm_id %p tid %u\n", 1279 ep, ep->com.cm_id, ep->hwtid); 1280 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1281 deref_cm_id(&ep->com); 1282 set_bit(CLOSE_UPCALL, &ep->com.history); 1283 } 1284 } 1285 1286 static void peer_close_upcall(struct c4iw_ep *ep) 1287 { 1288 struct iw_cm_event event; 1289 1290 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1291 memset(&event, 0, sizeof(event)); 1292 event.event = IW_CM_EVENT_DISCONNECT; 1293 if (ep->com.cm_id) { 1294 pr_debug("peer close delivered ep %p cm_id %p tid %u\n", 1295 ep, ep->com.cm_id, ep->hwtid); 1296 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1297 set_bit(DISCONN_UPCALL, &ep->com.history); 1298 } 1299 } 1300 1301 static void peer_abort_upcall(struct c4iw_ep *ep) 1302 { 1303 struct iw_cm_event event; 1304 1305 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1306 memset(&event, 0, sizeof(event)); 1307 event.event = IW_CM_EVENT_CLOSE; 1308 event.status = -ECONNRESET; 1309 if (ep->com.cm_id) { 1310 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep, 1311 ep->com.cm_id, ep->hwtid); 1312 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1313 deref_cm_id(&ep->com); 1314 set_bit(ABORT_UPCALL, &ep->com.history); 1315 } 1316 } 1317 1318 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1319 { 1320 struct iw_cm_event event; 1321 1322 pr_debug("ep %p tid %u status %d\n", 1323 ep, ep->hwtid, status); 1324 memset(&event, 0, sizeof(event)); 1325 event.event = IW_CM_EVENT_CONNECT_REPLY; 1326 event.status = status; 1327 memcpy(&event.local_addr, &ep->com.local_addr, 1328 sizeof(ep->com.local_addr)); 1329 memcpy(&event.remote_addr, &ep->com.remote_addr, 1330 sizeof(ep->com.remote_addr)); 1331 1332 if ((status == 0) || (status == -ECONNREFUSED)) { 1333 if (!ep->tried_with_mpa_v1) { 1334 /* this means MPA_v2 is used */ 1335 event.ord = ep->ird; 1336 event.ird = ep->ord; 1337 event.private_data_len = ep->plen - 1338 sizeof(struct mpa_v2_conn_params); 1339 event.private_data = ep->mpa_pkt + 1340 sizeof(struct mpa_message) + 1341 sizeof(struct mpa_v2_conn_params); 1342 } else { 1343 /* this means MPA_v1 is used */ 1344 event.ord = cur_max_read_depth(ep->com.dev); 1345 event.ird = cur_max_read_depth(ep->com.dev); 1346 event.private_data_len = ep->plen; 1347 event.private_data = ep->mpa_pkt + 1348 sizeof(struct mpa_message); 1349 } 1350 } 1351 1352 pr_debug("ep %p tid %u status %d\n", ep, 1353 ep->hwtid, status); 1354 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1355 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1356 1357 if (status < 0) 1358 deref_cm_id(&ep->com); 1359 } 1360 1361 static int connect_request_upcall(struct c4iw_ep *ep) 1362 { 1363 struct iw_cm_event event; 1364 int ret; 1365 1366 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1367 memset(&event, 0, sizeof(event)); 1368 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1369 memcpy(&event.local_addr, &ep->com.local_addr, 1370 sizeof(ep->com.local_addr)); 1371 memcpy(&event.remote_addr, &ep->com.remote_addr, 1372 sizeof(ep->com.remote_addr)); 1373 event.provider_data = ep; 1374 if (!ep->tried_with_mpa_v1) { 1375 /* this means MPA_v2 is used */ 1376 event.ord = ep->ord; 1377 event.ird = ep->ird; 1378 event.private_data_len = ep->plen - 1379 sizeof(struct mpa_v2_conn_params); 1380 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1381 sizeof(struct mpa_v2_conn_params); 1382 } else { 1383 /* this means MPA_v1 is used. Send max supported */ 1384 event.ord = cur_max_read_depth(ep->com.dev); 1385 event.ird = cur_max_read_depth(ep->com.dev); 1386 event.private_data_len = ep->plen; 1387 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1388 } 1389 c4iw_get_ep(&ep->com); 1390 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1391 &event); 1392 if (ret) 1393 c4iw_put_ep(&ep->com); 1394 set_bit(CONNREQ_UPCALL, &ep->com.history); 1395 c4iw_put_ep(&ep->parent_ep->com); 1396 return ret; 1397 } 1398 1399 static void established_upcall(struct c4iw_ep *ep) 1400 { 1401 struct iw_cm_event event; 1402 1403 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1404 memset(&event, 0, sizeof(event)); 1405 event.event = IW_CM_EVENT_ESTABLISHED; 1406 event.ird = ep->ord; 1407 event.ord = ep->ird; 1408 if (ep->com.cm_id) { 1409 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1410 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1411 set_bit(ESTAB_UPCALL, &ep->com.history); 1412 } 1413 } 1414 1415 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1416 { 1417 struct sk_buff *skb; 1418 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1419 u32 credit_dack; 1420 1421 pr_debug("ep %p tid %u credits %u\n", 1422 ep, ep->hwtid, credits); 1423 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1424 if (!skb) { 1425 pr_err("update_rx_credits - cannot alloc skb!\n"); 1426 return 0; 1427 } 1428 1429 /* 1430 * If we couldn't specify the entire rcv window at connection setup 1431 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1432 * then add the overage in to the credits returned. 1433 */ 1434 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1435 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1436 1437 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1438 RX_DACK_MODE_V(dack_mode); 1439 1440 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1441 credit_dack); 1442 1443 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1444 return credits; 1445 } 1446 1447 #define RELAXED_IRD_NEGOTIATION 1 1448 1449 /* 1450 * process_mpa_reply - process streaming mode MPA reply 1451 * 1452 * Returns: 1453 * 1454 * 0 upon success indicating a connect request was delivered to the ULP 1455 * or the mpa request is incomplete but valid so far. 1456 * 1457 * 1 if a failure requires the caller to close the connection. 1458 * 1459 * 2 if a failure requires the caller to abort the connection. 1460 */ 1461 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1462 { 1463 struct mpa_message *mpa; 1464 struct mpa_v2_conn_params *mpa_v2_params; 1465 u16 plen; 1466 u16 resp_ird, resp_ord; 1467 u8 rtr_mismatch = 0, insuff_ird = 0; 1468 struct c4iw_qp_attributes attrs; 1469 enum c4iw_qp_attr_mask mask; 1470 int err; 1471 int disconnect = 0; 1472 1473 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1474 1475 /* 1476 * If we get more than the supported amount of private data 1477 * then we must fail this connection. 1478 */ 1479 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1480 err = -EINVAL; 1481 goto err_stop_timer; 1482 } 1483 1484 /* 1485 * copy the new data into our accumulation buffer. 1486 */ 1487 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1488 skb->len); 1489 ep->mpa_pkt_len += skb->len; 1490 1491 /* 1492 * if we don't even have the mpa message, then bail. 1493 */ 1494 if (ep->mpa_pkt_len < sizeof(*mpa)) 1495 return 0; 1496 mpa = (struct mpa_message *) ep->mpa_pkt; 1497 1498 /* Validate MPA header. */ 1499 if (mpa->revision > mpa_rev) { 1500 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1501 __func__, mpa_rev, mpa->revision); 1502 err = -EPROTO; 1503 goto err_stop_timer; 1504 } 1505 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1506 err = -EPROTO; 1507 goto err_stop_timer; 1508 } 1509 1510 plen = ntohs(mpa->private_data_size); 1511 1512 /* 1513 * Fail if there's too much private data. 1514 */ 1515 if (plen > MPA_MAX_PRIVATE_DATA) { 1516 err = -EPROTO; 1517 goto err_stop_timer; 1518 } 1519 1520 /* 1521 * If plen does not account for pkt size 1522 */ 1523 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1524 err = -EPROTO; 1525 goto err_stop_timer; 1526 } 1527 1528 ep->plen = (u8) plen; 1529 1530 /* 1531 * If we don't have all the pdata yet, then bail. 1532 * We'll continue process when more data arrives. 1533 */ 1534 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1535 return 0; 1536 1537 if (mpa->flags & MPA_REJECT) { 1538 err = -ECONNREFUSED; 1539 goto err_stop_timer; 1540 } 1541 1542 /* 1543 * Stop mpa timer. If it expired, then 1544 * we ignore the MPA reply. process_timeout() 1545 * will abort the connection. 1546 */ 1547 if (stop_ep_timer(ep)) 1548 return 0; 1549 1550 /* 1551 * If we get here we have accumulated the entire mpa 1552 * start reply message including private data. And 1553 * the MPA header is valid. 1554 */ 1555 __state_set(&ep->com, FPDU_MODE); 1556 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1557 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1558 ep->mpa_attr.version = mpa->revision; 1559 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1560 1561 if (mpa->revision == 2) { 1562 ep->mpa_attr.enhanced_rdma_conn = 1563 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1564 if (ep->mpa_attr.enhanced_rdma_conn) { 1565 mpa_v2_params = (struct mpa_v2_conn_params *) 1566 (ep->mpa_pkt + sizeof(*mpa)); 1567 resp_ird = ntohs(mpa_v2_params->ird) & 1568 MPA_V2_IRD_ORD_MASK; 1569 resp_ord = ntohs(mpa_v2_params->ord) & 1570 MPA_V2_IRD_ORD_MASK; 1571 pr_debug("responder ird %u ord %u ep ird %u ord %u\n", 1572 resp_ird, resp_ord, ep->ird, ep->ord); 1573 1574 /* 1575 * This is a double-check. Ideally, below checks are 1576 * not required since ird/ord stuff has been taken 1577 * care of in c4iw_accept_cr 1578 */ 1579 if (ep->ird < resp_ord) { 1580 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1581 ep->com.dev->rdev.lldi.max_ordird_qp) 1582 ep->ird = resp_ord; 1583 else 1584 insuff_ird = 1; 1585 } else if (ep->ird > resp_ord) { 1586 ep->ird = resp_ord; 1587 } 1588 if (ep->ord > resp_ird) { 1589 if (RELAXED_IRD_NEGOTIATION) 1590 ep->ord = resp_ird; 1591 else 1592 insuff_ird = 1; 1593 } 1594 if (insuff_ird) { 1595 err = -ENOMEM; 1596 ep->ird = resp_ord; 1597 ep->ord = resp_ird; 1598 } 1599 1600 if (ntohs(mpa_v2_params->ird) & 1601 MPA_V2_PEER2PEER_MODEL) { 1602 if (ntohs(mpa_v2_params->ord) & 1603 MPA_V2_RDMA_WRITE_RTR) 1604 ep->mpa_attr.p2p_type = 1605 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1606 else if (ntohs(mpa_v2_params->ord) & 1607 MPA_V2_RDMA_READ_RTR) 1608 ep->mpa_attr.p2p_type = 1609 FW_RI_INIT_P2PTYPE_READ_REQ; 1610 } 1611 } 1612 } else if (mpa->revision == 1) 1613 if (peer2peer) 1614 ep->mpa_attr.p2p_type = p2p_type; 1615 1616 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n", 1617 ep->mpa_attr.crc_enabled, 1618 ep->mpa_attr.recv_marker_enabled, 1619 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1620 ep->mpa_attr.p2p_type, p2p_type); 1621 1622 /* 1623 * If responder's RTR does not match with that of initiator, assign 1624 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1625 * generated when moving QP to RTS state. 1626 * A TERM message will be sent after QP has moved to RTS state 1627 */ 1628 if ((ep->mpa_attr.version == 2) && peer2peer && 1629 (ep->mpa_attr.p2p_type != p2p_type)) { 1630 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1631 rtr_mismatch = 1; 1632 } 1633 1634 attrs.mpa_attr = ep->mpa_attr; 1635 attrs.max_ird = ep->ird; 1636 attrs.max_ord = ep->ord; 1637 attrs.llp_stream_handle = ep; 1638 attrs.next_state = C4IW_QP_STATE_RTS; 1639 1640 mask = C4IW_QP_ATTR_NEXT_STATE | 1641 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1642 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1643 1644 /* bind QP and TID with INIT_WR */ 1645 err = c4iw_modify_qp(ep->com.qp->rhp, 1646 ep->com.qp, mask, &attrs, 1); 1647 if (err) 1648 goto err; 1649 1650 /* 1651 * If responder's RTR requirement did not match with what initiator 1652 * supports, generate TERM message 1653 */ 1654 if (rtr_mismatch) { 1655 pr_err("%s: RTR mismatch, sending TERM\n", __func__); 1656 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1657 attrs.ecode = MPA_NOMATCH_RTR; 1658 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1659 attrs.send_term = 1; 1660 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1661 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1662 err = -ENOMEM; 1663 disconnect = 1; 1664 goto out; 1665 } 1666 1667 /* 1668 * Generate TERM if initiator IRD is not sufficient for responder 1669 * provided ORD. Currently, we do the same behaviour even when 1670 * responder provided IRD is also not sufficient as regards to 1671 * initiator ORD. 1672 */ 1673 if (insuff_ird) { 1674 pr_err("%s: Insufficient IRD, sending TERM\n", __func__); 1675 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1676 attrs.ecode = MPA_INSUFF_IRD; 1677 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1678 attrs.send_term = 1; 1679 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1680 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1681 err = -ENOMEM; 1682 disconnect = 1; 1683 goto out; 1684 } 1685 goto out; 1686 err_stop_timer: 1687 stop_ep_timer(ep); 1688 err: 1689 disconnect = 2; 1690 out: 1691 connect_reply_upcall(ep, err); 1692 return disconnect; 1693 } 1694 1695 /* 1696 * process_mpa_request - process streaming mode MPA request 1697 * 1698 * Returns: 1699 * 1700 * 0 upon success indicating a connect request was delivered to the ULP 1701 * or the mpa request is incomplete but valid so far. 1702 * 1703 * 1 if a failure requires the caller to close the connection. 1704 * 1705 * 2 if a failure requires the caller to abort the connection. 1706 */ 1707 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1708 { 1709 struct mpa_message *mpa; 1710 struct mpa_v2_conn_params *mpa_v2_params; 1711 u16 plen; 1712 1713 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1714 1715 /* 1716 * If we get more than the supported amount of private data 1717 * then we must fail this connection. 1718 */ 1719 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1720 goto err_stop_timer; 1721 1722 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1723 1724 /* 1725 * Copy the new data into our accumulation buffer. 1726 */ 1727 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1728 skb->len); 1729 ep->mpa_pkt_len += skb->len; 1730 1731 /* 1732 * If we don't even have the mpa message, then bail. 1733 * We'll continue process when more data arrives. 1734 */ 1735 if (ep->mpa_pkt_len < sizeof(*mpa)) 1736 return 0; 1737 1738 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1739 mpa = (struct mpa_message *) ep->mpa_pkt; 1740 1741 /* 1742 * Validate MPA Header. 1743 */ 1744 if (mpa->revision > mpa_rev) { 1745 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1746 __func__, mpa_rev, mpa->revision); 1747 goto err_stop_timer; 1748 } 1749 1750 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1751 goto err_stop_timer; 1752 1753 plen = ntohs(mpa->private_data_size); 1754 1755 /* 1756 * Fail if there's too much private data. 1757 */ 1758 if (plen > MPA_MAX_PRIVATE_DATA) 1759 goto err_stop_timer; 1760 1761 /* 1762 * If plen does not account for pkt size 1763 */ 1764 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1765 goto err_stop_timer; 1766 ep->plen = (u8) plen; 1767 1768 /* 1769 * If we don't have all the pdata yet, then bail. 1770 */ 1771 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1772 return 0; 1773 1774 /* 1775 * If we get here we have accumulated the entire mpa 1776 * start reply message including private data. 1777 */ 1778 ep->mpa_attr.initiator = 0; 1779 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1780 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1781 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1782 ep->mpa_attr.version = mpa->revision; 1783 if (mpa->revision == 1) 1784 ep->tried_with_mpa_v1 = 1; 1785 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1786 1787 if (mpa->revision == 2) { 1788 ep->mpa_attr.enhanced_rdma_conn = 1789 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1790 if (ep->mpa_attr.enhanced_rdma_conn) { 1791 mpa_v2_params = (struct mpa_v2_conn_params *) 1792 (ep->mpa_pkt + sizeof(*mpa)); 1793 ep->ird = ntohs(mpa_v2_params->ird) & 1794 MPA_V2_IRD_ORD_MASK; 1795 ep->ird = min_t(u32, ep->ird, 1796 cur_max_read_depth(ep->com.dev)); 1797 ep->ord = ntohs(mpa_v2_params->ord) & 1798 MPA_V2_IRD_ORD_MASK; 1799 ep->ord = min_t(u32, ep->ord, 1800 cur_max_read_depth(ep->com.dev)); 1801 pr_debug("initiator ird %u ord %u\n", 1802 ep->ird, ep->ord); 1803 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1804 if (peer2peer) { 1805 if (ntohs(mpa_v2_params->ord) & 1806 MPA_V2_RDMA_WRITE_RTR) 1807 ep->mpa_attr.p2p_type = 1808 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1809 else if (ntohs(mpa_v2_params->ord) & 1810 MPA_V2_RDMA_READ_RTR) 1811 ep->mpa_attr.p2p_type = 1812 FW_RI_INIT_P2PTYPE_READ_REQ; 1813 } 1814 } 1815 } else if (mpa->revision == 1) 1816 if (peer2peer) 1817 ep->mpa_attr.p2p_type = p2p_type; 1818 1819 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n", 1820 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1821 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1822 ep->mpa_attr.p2p_type); 1823 1824 __state_set(&ep->com, MPA_REQ_RCVD); 1825 1826 /* drive upcall */ 1827 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1828 if (ep->parent_ep->com.state != DEAD) { 1829 if (connect_request_upcall(ep)) 1830 goto err_unlock_parent; 1831 } else { 1832 goto err_unlock_parent; 1833 } 1834 mutex_unlock(&ep->parent_ep->com.mutex); 1835 return 0; 1836 1837 err_unlock_parent: 1838 mutex_unlock(&ep->parent_ep->com.mutex); 1839 goto err_out; 1840 err_stop_timer: 1841 (void)stop_ep_timer(ep); 1842 err_out: 1843 return 2; 1844 } 1845 1846 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1847 { 1848 struct c4iw_ep *ep; 1849 struct cpl_rx_data *hdr = cplhdr(skb); 1850 unsigned int dlen = ntohs(hdr->len); 1851 unsigned int tid = GET_TID(hdr); 1852 __u8 status = hdr->status; 1853 int disconnect = 0; 1854 1855 ep = get_ep_from_tid(dev, tid); 1856 if (!ep) 1857 return 0; 1858 pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen); 1859 skb_pull(skb, sizeof(*hdr)); 1860 skb_trim(skb, dlen); 1861 mutex_lock(&ep->com.mutex); 1862 1863 switch (ep->com.state) { 1864 case MPA_REQ_SENT: 1865 update_rx_credits(ep, dlen); 1866 ep->rcv_seq += dlen; 1867 disconnect = process_mpa_reply(ep, skb); 1868 break; 1869 case MPA_REQ_WAIT: 1870 update_rx_credits(ep, dlen); 1871 ep->rcv_seq += dlen; 1872 disconnect = process_mpa_request(ep, skb); 1873 break; 1874 case FPDU_MODE: { 1875 struct c4iw_qp_attributes attrs; 1876 1877 update_rx_credits(ep, dlen); 1878 if (status) 1879 pr_err("%s Unexpected streaming data." \ 1880 " qpid %u ep %p state %d tid %u status %d\n", 1881 __func__, ep->com.qp->wq.sq.qid, ep, 1882 ep->com.state, ep->hwtid, status); 1883 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1884 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1885 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1886 disconnect = 1; 1887 break; 1888 } 1889 default: 1890 break; 1891 } 1892 mutex_unlock(&ep->com.mutex); 1893 if (disconnect) 1894 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1895 c4iw_put_ep(&ep->com); 1896 return 0; 1897 } 1898 1899 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx) 1900 { 1901 enum chip_type adapter_type; 1902 1903 adapter_type = ep->com.dev->rdev.lldi.adapter_type; 1904 1905 /* 1906 * If this TCB had a srq buffer cached, then we must complete 1907 * it. For user mode, that means saving the srqidx in the 1908 * user/kernel status page for this qp. For kernel mode, just 1909 * synthesize the CQE now. 1910 */ 1911 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) { 1912 if (ep->com.qp->ibqp.uobject) 1913 t4_set_wq_in_error(&ep->com.qp->wq, srqidx); 1914 else 1915 c4iw_flush_srqidx(ep->com.qp, srqidx); 1916 } 1917 } 1918 1919 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1920 { 1921 u32 srqidx; 1922 struct c4iw_ep *ep; 1923 struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb); 1924 int release = 0; 1925 unsigned int tid = GET_TID(rpl); 1926 1927 ep = get_ep_from_tid(dev, tid); 1928 if (!ep) { 1929 pr_warn("Abort rpl to freed endpoint\n"); 1930 return 0; 1931 } 1932 1933 if (ep->com.qp && ep->com.qp->srq) { 1934 srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status)); 1935 complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx); 1936 } 1937 1938 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1939 mutex_lock(&ep->com.mutex); 1940 switch (ep->com.state) { 1941 case ABORTING: 1942 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 1943 __state_set(&ep->com, DEAD); 1944 release = 1; 1945 break; 1946 default: 1947 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state); 1948 break; 1949 } 1950 mutex_unlock(&ep->com.mutex); 1951 1952 if (release) { 1953 close_complete_upcall(ep, -ECONNRESET); 1954 release_ep_resources(ep); 1955 } 1956 c4iw_put_ep(&ep->com); 1957 return 0; 1958 } 1959 1960 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1961 { 1962 struct sk_buff *skb; 1963 struct fw_ofld_connection_wr *req; 1964 unsigned int mtu_idx; 1965 u32 wscale; 1966 struct sockaddr_in *sin; 1967 int win; 1968 1969 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1970 req = __skb_put_zero(skb, sizeof(*req)); 1971 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1972 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1973 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1974 ep->com.dev->rdev.lldi.ports[0], 1975 ep->l2t)); 1976 sin = (struct sockaddr_in *)&ep->com.local_addr; 1977 req->le.lport = sin->sin_port; 1978 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1979 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1980 req->le.pport = sin->sin_port; 1981 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1982 req->tcb.t_state_to_astid = 1983 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1984 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1985 req->tcb.cplrxdataack_cplpassacceptrpl = 1986 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1987 req->tcb.tx_max = (__force __be32) jiffies; 1988 req->tcb.rcv_adv = htons(1); 1989 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1990 enable_tcp_timestamps, 1991 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1992 wscale = cxgb_compute_wscale(rcv_win); 1993 1994 /* 1995 * Specify the largest window that will fit in opt0. The 1996 * remainder will be specified in the rx_data_ack. 1997 */ 1998 win = ep->rcv_win >> 10; 1999 if (win > RCV_BUFSIZ_M) 2000 win = RCV_BUFSIZ_M; 2001 2002 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 2003 (nocong ? NO_CONG_F : 0) | 2004 KEEP_ALIVE_F | 2005 DELACK_F | 2006 WND_SCALE_V(wscale) | 2007 MSS_IDX_V(mtu_idx) | 2008 L2T_IDX_V(ep->l2t->idx) | 2009 TX_CHAN_V(ep->tx_chan) | 2010 SMAC_SEL_V(ep->smac_idx) | 2011 DSCP_V(ep->tos >> 2) | 2012 ULP_MODE_V(ULP_MODE_TCPDDP) | 2013 RCV_BUFSIZ_V(win)); 2014 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 2015 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 2016 RX_CHANNEL_V(0) | 2017 CCTRL_ECN_V(enable_ecn) | 2018 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 2019 if (enable_tcp_timestamps) 2020 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 2021 if (enable_tcp_sack) 2022 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 2023 if (wscale && enable_tcp_window_scaling) 2024 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 2025 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 2026 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 2027 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 2028 set_bit(ACT_OFLD_CONN, &ep->com.history); 2029 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2030 } 2031 2032 /* 2033 * Some of the error codes above implicitly indicate that there is no TID 2034 * allocated with the result of an ACT_OPEN. We use this predicate to make 2035 * that explicit. 2036 */ 2037 static inline int act_open_has_tid(int status) 2038 { 2039 return (status != CPL_ERR_TCAM_PARITY && 2040 status != CPL_ERR_TCAM_MISS && 2041 status != CPL_ERR_TCAM_FULL && 2042 status != CPL_ERR_CONN_EXIST_SYNRECV && 2043 status != CPL_ERR_CONN_EXIST); 2044 } 2045 2046 static char *neg_adv_str(unsigned int status) 2047 { 2048 switch (status) { 2049 case CPL_ERR_RTX_NEG_ADVICE: 2050 return "Retransmit timeout"; 2051 case CPL_ERR_PERSIST_NEG_ADVICE: 2052 return "Persist timeout"; 2053 case CPL_ERR_KEEPALV_NEG_ADVICE: 2054 return "Keepalive timeout"; 2055 default: 2056 return "Unknown"; 2057 } 2058 } 2059 2060 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 2061 { 2062 ep->snd_win = snd_win; 2063 ep->rcv_win = rcv_win; 2064 pr_debug("snd_win %d rcv_win %d\n", 2065 ep->snd_win, ep->rcv_win); 2066 } 2067 2068 #define ACT_OPEN_RETRY_COUNT 2 2069 2070 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 2071 struct dst_entry *dst, struct c4iw_dev *cdev, 2072 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2073 { 2074 struct neighbour *n; 2075 int err, step; 2076 struct net_device *pdev; 2077 2078 n = dst_neigh_lookup(dst, peer_ip); 2079 if (!n) 2080 return -ENODEV; 2081 2082 rcu_read_lock(); 2083 err = -ENOMEM; 2084 if (n->dev->flags & IFF_LOOPBACK) { 2085 if (iptype == 4) 2086 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2087 else if (IS_ENABLED(CONFIG_IPV6)) 2088 for_each_netdev(&init_net, pdev) { 2089 if (ipv6_chk_addr(&init_net, 2090 (struct in6_addr *)peer_ip, 2091 pdev, 1)) 2092 break; 2093 } 2094 else 2095 pdev = NULL; 2096 2097 if (!pdev) { 2098 err = -ENODEV; 2099 goto out; 2100 } 2101 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2102 n, pdev, rt_tos2priority(tos)); 2103 if (!ep->l2t) { 2104 dev_put(pdev); 2105 goto out; 2106 } 2107 ep->mtu = pdev->mtu; 2108 ep->tx_chan = cxgb4_port_chan(pdev); 2109 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx; 2110 step = cdev->rdev.lldi.ntxq / 2111 cdev->rdev.lldi.nchan; 2112 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2113 step = cdev->rdev.lldi.nrxq / 2114 cdev->rdev.lldi.nchan; 2115 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2116 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2117 cxgb4_port_idx(pdev) * step]; 2118 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2119 dev_put(pdev); 2120 } else { 2121 pdev = get_real_dev(n->dev); 2122 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2123 n, pdev, rt_tos2priority(tos)); 2124 if (!ep->l2t) 2125 goto out; 2126 ep->mtu = dst_mtu(dst); 2127 ep->tx_chan = cxgb4_port_chan(pdev); 2128 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx; 2129 step = cdev->rdev.lldi.ntxq / 2130 cdev->rdev.lldi.nchan; 2131 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2132 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2133 step = cdev->rdev.lldi.nrxq / 2134 cdev->rdev.lldi.nchan; 2135 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2136 cxgb4_port_idx(pdev) * step]; 2137 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2138 2139 if (clear_mpa_v1) { 2140 ep->retry_with_mpa_v1 = 0; 2141 ep->tried_with_mpa_v1 = 0; 2142 } 2143 } 2144 err = 0; 2145 out: 2146 rcu_read_unlock(); 2147 2148 neigh_release(n); 2149 2150 return err; 2151 } 2152 2153 static int c4iw_reconnect(struct c4iw_ep *ep) 2154 { 2155 int err = 0; 2156 int size = 0; 2157 struct sockaddr_in *laddr = (struct sockaddr_in *) 2158 &ep->com.cm_id->m_local_addr; 2159 struct sockaddr_in *raddr = (struct sockaddr_in *) 2160 &ep->com.cm_id->m_remote_addr; 2161 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2162 &ep->com.cm_id->m_local_addr; 2163 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2164 &ep->com.cm_id->m_remote_addr; 2165 int iptype; 2166 __u8 *ra; 2167 2168 pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id); 2169 c4iw_init_wr_wait(ep->com.wr_waitp); 2170 2171 /* When MPA revision is different on nodes, the node with MPA_rev=2 2172 * tries to reconnect with MPA_rev 1 for the same EP through 2173 * c4iw_reconnect(), where the same EP is assigned with new tid for 2174 * further connection establishment. As we are using the same EP pointer 2175 * for reconnect, few skbs are used during the previous c4iw_connect(), 2176 * which leaves the EP with inadequate skbs for further 2177 * c4iw_reconnect(), Further causing a crash due to an empty 2178 * skb_list() during peer_abort(). Allocate skbs which is already used. 2179 */ 2180 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2181 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2182 err = -ENOMEM; 2183 goto fail1; 2184 } 2185 2186 /* 2187 * Allocate an active TID to initiate a TCP connection. 2188 */ 2189 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2190 if (ep->atid == -1) { 2191 pr_err("%s - cannot alloc atid\n", __func__); 2192 err = -ENOMEM; 2193 goto fail2; 2194 } 2195 err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL); 2196 if (err) 2197 goto fail2a; 2198 2199 /* find a route */ 2200 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2201 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2202 laddr->sin_addr.s_addr, 2203 raddr->sin_addr.s_addr, 2204 laddr->sin_port, 2205 raddr->sin_port, ep->com.cm_id->tos); 2206 iptype = 4; 2207 ra = (__u8 *)&raddr->sin_addr; 2208 } else { 2209 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2210 get_real_dev, 2211 laddr6->sin6_addr.s6_addr, 2212 raddr6->sin6_addr.s6_addr, 2213 laddr6->sin6_port, 2214 raddr6->sin6_port, 2215 ep->com.cm_id->tos, 2216 raddr6->sin6_scope_id); 2217 iptype = 6; 2218 ra = (__u8 *)&raddr6->sin6_addr; 2219 } 2220 if (!ep->dst) { 2221 pr_err("%s - cannot find route\n", __func__); 2222 err = -EHOSTUNREACH; 2223 goto fail3; 2224 } 2225 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2226 ep->com.dev->rdev.lldi.adapter_type, 2227 ep->com.cm_id->tos); 2228 if (err) { 2229 pr_err("%s - cannot alloc l2e\n", __func__); 2230 goto fail4; 2231 } 2232 2233 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2234 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2235 ep->l2t->idx); 2236 2237 state_set(&ep->com, CONNECTING); 2238 ep->tos = ep->com.cm_id->tos; 2239 2240 /* send connect request to rnic */ 2241 err = send_connect(ep); 2242 if (!err) 2243 goto out; 2244 2245 cxgb4_l2t_release(ep->l2t); 2246 fail4: 2247 dst_release(ep->dst); 2248 fail3: 2249 xa_erase_irq(&ep->com.dev->atids, ep->atid); 2250 fail2a: 2251 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2252 fail2: 2253 /* 2254 * remember to send notification to upper layer. 2255 * We are in here so the upper layer is not aware that this is 2256 * re-connect attempt and so, upper layer is still waiting for 2257 * response of 1st connect request. 2258 */ 2259 connect_reply_upcall(ep, -ECONNRESET); 2260 fail1: 2261 c4iw_put_ep(&ep->com); 2262 out: 2263 return err; 2264 } 2265 2266 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2267 { 2268 struct c4iw_ep *ep; 2269 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2270 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2271 ntohl(rpl->atid_status))); 2272 struct tid_info *t = dev->rdev.lldi.tids; 2273 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2274 struct sockaddr_in *la; 2275 struct sockaddr_in *ra; 2276 struct sockaddr_in6 *la6; 2277 struct sockaddr_in6 *ra6; 2278 int ret = 0; 2279 2280 ep = lookup_atid(t, atid); 2281 la = (struct sockaddr_in *)&ep->com.local_addr; 2282 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2283 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2284 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2285 2286 pr_debug("ep %p atid %u status %u errno %d\n", ep, atid, 2287 status, status2errno(status)); 2288 2289 if (cxgb_is_neg_adv(status)) { 2290 pr_debug("Connection problems for atid %u status %u (%s)\n", 2291 atid, status, neg_adv_str(status)); 2292 ep->stats.connect_neg_adv++; 2293 mutex_lock(&dev->rdev.stats.lock); 2294 dev->rdev.stats.neg_adv++; 2295 mutex_unlock(&dev->rdev.stats.lock); 2296 return 0; 2297 } 2298 2299 set_bit(ACT_OPEN_RPL, &ep->com.history); 2300 2301 /* 2302 * Log interesting failures. 2303 */ 2304 switch (status) { 2305 case CPL_ERR_CONN_RESET: 2306 case CPL_ERR_CONN_TIMEDOUT: 2307 break; 2308 case CPL_ERR_TCAM_FULL: 2309 mutex_lock(&dev->rdev.stats.lock); 2310 dev->rdev.stats.tcam_full++; 2311 mutex_unlock(&dev->rdev.stats.lock); 2312 if (ep->com.local_addr.ss_family == AF_INET && 2313 dev->rdev.lldi.enable_fw_ofld_conn) { 2314 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2315 ntohl(rpl->atid_status)))); 2316 if (ret) 2317 goto fail; 2318 return 0; 2319 } 2320 break; 2321 case CPL_ERR_CONN_EXIST: 2322 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2323 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2324 if (ep->com.remote_addr.ss_family == AF_INET6) { 2325 struct sockaddr_in6 *sin6 = 2326 (struct sockaddr_in6 *) 2327 &ep->com.local_addr; 2328 cxgb4_clip_release( 2329 ep->com.dev->rdev.lldi.ports[0], 2330 (const u32 *) 2331 &sin6->sin6_addr.s6_addr, 1); 2332 } 2333 xa_erase_irq(&ep->com.dev->atids, atid); 2334 cxgb4_free_atid(t, atid); 2335 dst_release(ep->dst); 2336 cxgb4_l2t_release(ep->l2t); 2337 c4iw_reconnect(ep); 2338 return 0; 2339 } 2340 break; 2341 default: 2342 if (ep->com.local_addr.ss_family == AF_INET) { 2343 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2344 atid, status, status2errno(status), 2345 &la->sin_addr.s_addr, ntohs(la->sin_port), 2346 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2347 } else { 2348 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2349 atid, status, status2errno(status), 2350 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2351 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2352 } 2353 break; 2354 } 2355 2356 fail: 2357 connect_reply_upcall(ep, status2errno(status)); 2358 state_set(&ep->com, DEAD); 2359 2360 if (ep->com.remote_addr.ss_family == AF_INET6) { 2361 struct sockaddr_in6 *sin6 = 2362 (struct sockaddr_in6 *)&ep->com.local_addr; 2363 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2364 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2365 } 2366 if (status && act_open_has_tid(status)) 2367 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl), 2368 ep->com.local_addr.ss_family); 2369 2370 xa_erase_irq(&ep->com.dev->atids, atid); 2371 cxgb4_free_atid(t, atid); 2372 dst_release(ep->dst); 2373 cxgb4_l2t_release(ep->l2t); 2374 c4iw_put_ep(&ep->com); 2375 2376 return 0; 2377 } 2378 2379 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2380 { 2381 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2382 unsigned int stid = GET_TID(rpl); 2383 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2384 2385 if (!ep) { 2386 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2387 goto out; 2388 } 2389 pr_debug("ep %p status %d error %d\n", ep, 2390 rpl->status, status2errno(rpl->status)); 2391 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2392 c4iw_put_ep(&ep->com); 2393 out: 2394 return 0; 2395 } 2396 2397 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2398 { 2399 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2400 unsigned int stid = GET_TID(rpl); 2401 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2402 2403 if (!ep) { 2404 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2405 goto out; 2406 } 2407 pr_debug("ep %p\n", ep); 2408 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2409 c4iw_put_ep(&ep->com); 2410 out: 2411 return 0; 2412 } 2413 2414 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2415 struct cpl_pass_accept_req *req) 2416 { 2417 struct cpl_pass_accept_rpl *rpl; 2418 unsigned int mtu_idx; 2419 u64 opt0; 2420 u32 opt2; 2421 u32 wscale; 2422 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2423 int win; 2424 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2425 2426 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2427 2428 skb_get(skb); 2429 rpl = cplhdr(skb); 2430 if (!is_t4(adapter_type)) { 2431 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2432 rpl5 = (void *)rpl; 2433 INIT_TP_WR(rpl5, ep->hwtid); 2434 } else { 2435 skb_trim(skb, sizeof(*rpl)); 2436 INIT_TP_WR(rpl, ep->hwtid); 2437 } 2438 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2439 ep->hwtid)); 2440 2441 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2442 enable_tcp_timestamps && req->tcpopt.tstamp, 2443 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2444 wscale = cxgb_compute_wscale(rcv_win); 2445 2446 /* 2447 * Specify the largest window that will fit in opt0. The 2448 * remainder will be specified in the rx_data_ack. 2449 */ 2450 win = ep->rcv_win >> 10; 2451 if (win > RCV_BUFSIZ_M) 2452 win = RCV_BUFSIZ_M; 2453 opt0 = (nocong ? NO_CONG_F : 0) | 2454 KEEP_ALIVE_F | 2455 DELACK_F | 2456 WND_SCALE_V(wscale) | 2457 MSS_IDX_V(mtu_idx) | 2458 L2T_IDX_V(ep->l2t->idx) | 2459 TX_CHAN_V(ep->tx_chan) | 2460 SMAC_SEL_V(ep->smac_idx) | 2461 DSCP_V(ep->tos >> 2) | 2462 ULP_MODE_V(ULP_MODE_TCPDDP) | 2463 RCV_BUFSIZ_V(win); 2464 opt2 = RX_CHANNEL_V(0) | 2465 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2466 2467 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2468 opt2 |= TSTAMPS_EN_F; 2469 if (enable_tcp_sack && req->tcpopt.sack) 2470 opt2 |= SACK_EN_F; 2471 if (wscale && enable_tcp_window_scaling) 2472 opt2 |= WND_SCALE_EN_F; 2473 if (enable_ecn) { 2474 const struct tcphdr *tcph; 2475 u32 hlen = ntohl(req->hdr_len); 2476 2477 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2478 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2479 IP_HDR_LEN_G(hlen); 2480 else 2481 tcph = (const void *)(req + 1) + 2482 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2483 if (tcph->ece && tcph->cwr) 2484 opt2 |= CCTRL_ECN_V(1); 2485 } 2486 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2487 u32 isn = (prandom_u32() & ~7UL) - 1; 2488 opt2 |= T5_OPT_2_VALID_F; 2489 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2490 opt2 |= T5_ISS_F; 2491 rpl5 = (void *)rpl; 2492 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2493 if (peer2peer) 2494 isn += 4; 2495 rpl5->iss = cpu_to_be32(isn); 2496 pr_debug("iss %u\n", be32_to_cpu(rpl5->iss)); 2497 } 2498 2499 rpl->opt0 = cpu_to_be64(opt0); 2500 rpl->opt2 = cpu_to_be32(opt2); 2501 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2502 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2503 2504 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2505 } 2506 2507 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2508 { 2509 pr_debug("c4iw_dev %p tid %u\n", dev, hwtid); 2510 skb_trim(skb, sizeof(struct cpl_tid_release)); 2511 release_tid(&dev->rdev, hwtid, skb); 2512 return; 2513 } 2514 2515 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2516 { 2517 struct c4iw_ep *child_ep = NULL, *parent_ep; 2518 struct cpl_pass_accept_req *req = cplhdr(skb); 2519 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2520 struct tid_info *t = dev->rdev.lldi.tids; 2521 unsigned int hwtid = GET_TID(req); 2522 struct dst_entry *dst; 2523 __u8 local_ip[16], peer_ip[16]; 2524 __be16 local_port, peer_port; 2525 struct sockaddr_in6 *sin6; 2526 int err; 2527 u16 peer_mss = ntohs(req->tcpopt.mss); 2528 int iptype; 2529 unsigned short hdrs; 2530 u8 tos; 2531 2532 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2533 if (!parent_ep) { 2534 pr_err("%s connect request on invalid stid %d\n", 2535 __func__, stid); 2536 goto reject; 2537 } 2538 2539 if (state_read(&parent_ep->com) != LISTEN) { 2540 pr_err("%s - listening ep not in LISTEN\n", __func__); 2541 goto reject; 2542 } 2543 2544 if (parent_ep->com.cm_id->tos_set) 2545 tos = parent_ep->com.cm_id->tos; 2546 else 2547 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2548 2549 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2550 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2551 2552 /* Find output route */ 2553 if (iptype == 4) { 2554 pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2555 , parent_ep, hwtid, 2556 local_ip, peer_ip, ntohs(local_port), 2557 ntohs(peer_port), peer_mss); 2558 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2559 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2560 local_port, peer_port, tos); 2561 } else { 2562 pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2563 , parent_ep, hwtid, 2564 local_ip, peer_ip, ntohs(local_port), 2565 ntohs(peer_port), peer_mss); 2566 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2567 local_ip, peer_ip, local_port, peer_port, 2568 tos, 2569 ((struct sockaddr_in6 *) 2570 &parent_ep->com.local_addr)->sin6_scope_id); 2571 } 2572 if (!dst) { 2573 pr_err("%s - failed to find dst entry!\n", __func__); 2574 goto reject; 2575 } 2576 2577 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2578 if (!child_ep) { 2579 pr_err("%s - failed to allocate ep entry!\n", __func__); 2580 dst_release(dst); 2581 goto reject; 2582 } 2583 2584 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2585 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2586 if (err) { 2587 pr_err("%s - failed to allocate l2t entry!\n", __func__); 2588 dst_release(dst); 2589 kfree(child_ep); 2590 goto reject; 2591 } 2592 2593 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + 2594 sizeof(struct tcphdr) + 2595 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2596 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2597 child_ep->mtu = peer_mss + hdrs; 2598 2599 skb_queue_head_init(&child_ep->com.ep_skb_list); 2600 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2601 goto fail; 2602 2603 state_set(&child_ep->com, CONNECTING); 2604 child_ep->com.dev = dev; 2605 child_ep->com.cm_id = NULL; 2606 2607 if (iptype == 4) { 2608 struct sockaddr_in *sin = (struct sockaddr_in *) 2609 &child_ep->com.local_addr; 2610 2611 sin->sin_family = AF_INET; 2612 sin->sin_port = local_port; 2613 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2614 2615 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2616 sin->sin_family = AF_INET; 2617 sin->sin_port = ((struct sockaddr_in *) 2618 &parent_ep->com.local_addr)->sin_port; 2619 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2620 2621 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2622 sin->sin_family = AF_INET; 2623 sin->sin_port = peer_port; 2624 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2625 } else { 2626 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2627 sin6->sin6_family = PF_INET6; 2628 sin6->sin6_port = local_port; 2629 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2630 2631 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2632 sin6->sin6_family = PF_INET6; 2633 sin6->sin6_port = ((struct sockaddr_in6 *) 2634 &parent_ep->com.local_addr)->sin6_port; 2635 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2636 2637 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2638 sin6->sin6_family = PF_INET6; 2639 sin6->sin6_port = peer_port; 2640 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2641 } 2642 2643 c4iw_get_ep(&parent_ep->com); 2644 child_ep->parent_ep = parent_ep; 2645 child_ep->tos = tos; 2646 child_ep->dst = dst; 2647 child_ep->hwtid = hwtid; 2648 2649 pr_debug("tx_chan %u smac_idx %u rss_qid %u\n", 2650 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2651 2652 timer_setup(&child_ep->timer, ep_timeout, 0); 2653 cxgb4_insert_tid(t, child_ep, hwtid, 2654 child_ep->com.local_addr.ss_family); 2655 insert_ep_tid(child_ep); 2656 if (accept_cr(child_ep, skb, req)) { 2657 c4iw_put_ep(&parent_ep->com); 2658 release_ep_resources(child_ep); 2659 } else { 2660 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2661 } 2662 if (iptype == 6) { 2663 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2664 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2665 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2666 } 2667 goto out; 2668 fail: 2669 c4iw_put_ep(&child_ep->com); 2670 reject: 2671 reject_cr(dev, hwtid, skb); 2672 out: 2673 if (parent_ep) 2674 c4iw_put_ep(&parent_ep->com); 2675 return 0; 2676 } 2677 2678 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2679 { 2680 struct c4iw_ep *ep; 2681 struct cpl_pass_establish *req = cplhdr(skb); 2682 unsigned int tid = GET_TID(req); 2683 int ret; 2684 u16 tcp_opt = ntohs(req->tcp_opt); 2685 2686 ep = get_ep_from_tid(dev, tid); 2687 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2688 ep->snd_seq = be32_to_cpu(req->snd_isn); 2689 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2690 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); 2691 2692 pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt); 2693 2694 set_emss(ep, tcp_opt); 2695 2696 dst_confirm(ep->dst); 2697 mutex_lock(&ep->com.mutex); 2698 ep->com.state = MPA_REQ_WAIT; 2699 start_ep_timer(ep); 2700 set_bit(PASS_ESTAB, &ep->com.history); 2701 ret = send_flowc(ep); 2702 mutex_unlock(&ep->com.mutex); 2703 if (ret) 2704 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2705 c4iw_put_ep(&ep->com); 2706 2707 return 0; 2708 } 2709 2710 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2711 { 2712 struct cpl_peer_close *hdr = cplhdr(skb); 2713 struct c4iw_ep *ep; 2714 struct c4iw_qp_attributes attrs; 2715 int disconnect = 1; 2716 int release = 0; 2717 unsigned int tid = GET_TID(hdr); 2718 int ret; 2719 2720 ep = get_ep_from_tid(dev, tid); 2721 if (!ep) 2722 return 0; 2723 2724 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2725 dst_confirm(ep->dst); 2726 2727 set_bit(PEER_CLOSE, &ep->com.history); 2728 mutex_lock(&ep->com.mutex); 2729 switch (ep->com.state) { 2730 case MPA_REQ_WAIT: 2731 __state_set(&ep->com, CLOSING); 2732 break; 2733 case MPA_REQ_SENT: 2734 __state_set(&ep->com, CLOSING); 2735 connect_reply_upcall(ep, -ECONNRESET); 2736 break; 2737 case MPA_REQ_RCVD: 2738 2739 /* 2740 * We're gonna mark this puppy DEAD, but keep 2741 * the reference on it until the ULP accepts or 2742 * rejects the CR. Also wake up anyone waiting 2743 * in rdma connection migration (see c4iw_accept_cr()). 2744 */ 2745 __state_set(&ep->com, CLOSING); 2746 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2747 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2748 break; 2749 case MPA_REP_SENT: 2750 __state_set(&ep->com, CLOSING); 2751 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2752 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2753 break; 2754 case FPDU_MODE: 2755 start_ep_timer(ep); 2756 __state_set(&ep->com, CLOSING); 2757 attrs.next_state = C4IW_QP_STATE_CLOSING; 2758 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2759 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2760 if (ret != -ECONNRESET) { 2761 peer_close_upcall(ep); 2762 disconnect = 1; 2763 } 2764 break; 2765 case ABORTING: 2766 disconnect = 0; 2767 break; 2768 case CLOSING: 2769 __state_set(&ep->com, MORIBUND); 2770 disconnect = 0; 2771 break; 2772 case MORIBUND: 2773 (void)stop_ep_timer(ep); 2774 if (ep->com.cm_id && ep->com.qp) { 2775 attrs.next_state = C4IW_QP_STATE_IDLE; 2776 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2777 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2778 } 2779 close_complete_upcall(ep, 0); 2780 __state_set(&ep->com, DEAD); 2781 release = 1; 2782 disconnect = 0; 2783 break; 2784 case DEAD: 2785 disconnect = 0; 2786 break; 2787 default: 2788 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2789 } 2790 mutex_unlock(&ep->com.mutex); 2791 if (disconnect) 2792 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2793 if (release) 2794 release_ep_resources(ep); 2795 c4iw_put_ep(&ep->com); 2796 return 0; 2797 } 2798 2799 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep) 2800 { 2801 complete_cached_srq_buffers(ep, ep->srqe_idx); 2802 if (ep->com.cm_id && ep->com.qp) { 2803 struct c4iw_qp_attributes attrs; 2804 2805 attrs.next_state = C4IW_QP_STATE_ERROR; 2806 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2807 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2808 } 2809 peer_abort_upcall(ep); 2810 release_ep_resources(ep); 2811 c4iw_put_ep(&ep->com); 2812 } 2813 2814 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2815 { 2816 struct cpl_abort_req_rss6 *req = cplhdr(skb); 2817 struct c4iw_ep *ep; 2818 struct sk_buff *rpl_skb; 2819 struct c4iw_qp_attributes attrs; 2820 int ret; 2821 int release = 0; 2822 unsigned int tid = GET_TID(req); 2823 u8 status; 2824 u32 srqidx; 2825 2826 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2827 2828 ep = get_ep_from_tid(dev, tid); 2829 if (!ep) 2830 return 0; 2831 2832 status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status)); 2833 2834 if (cxgb_is_neg_adv(status)) { 2835 pr_debug("Negative advice on abort- tid %u status %d (%s)\n", 2836 ep->hwtid, status, neg_adv_str(status)); 2837 ep->stats.abort_neg_adv++; 2838 mutex_lock(&dev->rdev.stats.lock); 2839 dev->rdev.stats.neg_adv++; 2840 mutex_unlock(&dev->rdev.stats.lock); 2841 goto deref_ep; 2842 } 2843 2844 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, 2845 ep->com.state); 2846 set_bit(PEER_ABORT, &ep->com.history); 2847 2848 /* 2849 * Wake up any threads in rdma_init() or rdma_fini(). 2850 * However, this is not needed if com state is just 2851 * MPA_REQ_SENT 2852 */ 2853 if (ep->com.state != MPA_REQ_SENT) 2854 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2855 2856 mutex_lock(&ep->com.mutex); 2857 switch (ep->com.state) { 2858 case CONNECTING: 2859 c4iw_put_ep(&ep->parent_ep->com); 2860 break; 2861 case MPA_REQ_WAIT: 2862 (void)stop_ep_timer(ep); 2863 break; 2864 case MPA_REQ_SENT: 2865 (void)stop_ep_timer(ep); 2866 if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 || 2867 (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2868 connect_reply_upcall(ep, -ECONNRESET); 2869 else { 2870 /* 2871 * we just don't send notification upwards because we 2872 * want to retry with mpa_v1 without upper layers even 2873 * knowing it. 2874 * 2875 * do some housekeeping so as to re-initiate the 2876 * connection 2877 */ 2878 pr_info("%s: mpa_rev=%d. Retrying with mpav1\n", 2879 __func__, mpa_rev); 2880 ep->retry_with_mpa_v1 = 1; 2881 } 2882 break; 2883 case MPA_REP_SENT: 2884 break; 2885 case MPA_REQ_RCVD: 2886 break; 2887 case MORIBUND: 2888 case CLOSING: 2889 stop_ep_timer(ep); 2890 /*FALLTHROUGH*/ 2891 case FPDU_MODE: 2892 if (ep->com.qp && ep->com.qp->srq) { 2893 srqidx = ABORT_RSS_SRQIDX_G( 2894 be32_to_cpu(req->srqidx_status)); 2895 if (srqidx) { 2896 complete_cached_srq_buffers(ep, 2897 req->srqidx_status); 2898 } else { 2899 /* Hold ep ref until finish_peer_abort() */ 2900 c4iw_get_ep(&ep->com); 2901 __state_set(&ep->com, ABORTING); 2902 set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags); 2903 read_tcb(ep); 2904 break; 2905 2906 } 2907 } 2908 2909 if (ep->com.cm_id && ep->com.qp) { 2910 attrs.next_state = C4IW_QP_STATE_ERROR; 2911 ret = c4iw_modify_qp(ep->com.qp->rhp, 2912 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2913 &attrs, 1); 2914 if (ret) 2915 pr_err("%s - qp <- error failed!\n", __func__); 2916 } 2917 peer_abort_upcall(ep); 2918 break; 2919 case ABORTING: 2920 break; 2921 case DEAD: 2922 pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2923 mutex_unlock(&ep->com.mutex); 2924 goto deref_ep; 2925 default: 2926 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2927 break; 2928 } 2929 dst_confirm(ep->dst); 2930 if (ep->com.state != ABORTING) { 2931 __state_set(&ep->com, DEAD); 2932 /* we don't release if we want to retry with mpa_v1 */ 2933 if (!ep->retry_with_mpa_v1) 2934 release = 1; 2935 } 2936 mutex_unlock(&ep->com.mutex); 2937 2938 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2939 if (WARN_ON(!rpl_skb)) { 2940 release = 1; 2941 goto out; 2942 } 2943 2944 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2945 2946 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2947 out: 2948 if (release) 2949 release_ep_resources(ep); 2950 else if (ep->retry_with_mpa_v1) { 2951 if (ep->com.remote_addr.ss_family == AF_INET6) { 2952 struct sockaddr_in6 *sin6 = 2953 (struct sockaddr_in6 *) 2954 &ep->com.local_addr; 2955 cxgb4_clip_release( 2956 ep->com.dev->rdev.lldi.ports[0], 2957 (const u32 *)&sin6->sin6_addr.s6_addr, 2958 1); 2959 } 2960 xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid); 2961 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 2962 ep->com.local_addr.ss_family); 2963 dst_release(ep->dst); 2964 cxgb4_l2t_release(ep->l2t); 2965 c4iw_reconnect(ep); 2966 } 2967 2968 deref_ep: 2969 c4iw_put_ep(&ep->com); 2970 /* Dereferencing ep, referenced in peer_abort_intr() */ 2971 c4iw_put_ep(&ep->com); 2972 return 0; 2973 } 2974 2975 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2976 { 2977 struct c4iw_ep *ep; 2978 struct c4iw_qp_attributes attrs; 2979 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2980 int release = 0; 2981 unsigned int tid = GET_TID(rpl); 2982 2983 ep = get_ep_from_tid(dev, tid); 2984 if (!ep) 2985 return 0; 2986 2987 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2988 2989 /* The cm_id may be null if we failed to connect */ 2990 mutex_lock(&ep->com.mutex); 2991 set_bit(CLOSE_CON_RPL, &ep->com.history); 2992 switch (ep->com.state) { 2993 case CLOSING: 2994 __state_set(&ep->com, MORIBUND); 2995 break; 2996 case MORIBUND: 2997 (void)stop_ep_timer(ep); 2998 if ((ep->com.cm_id) && (ep->com.qp)) { 2999 attrs.next_state = C4IW_QP_STATE_IDLE; 3000 c4iw_modify_qp(ep->com.qp->rhp, 3001 ep->com.qp, 3002 C4IW_QP_ATTR_NEXT_STATE, 3003 &attrs, 1); 3004 } 3005 close_complete_upcall(ep, 0); 3006 __state_set(&ep->com, DEAD); 3007 release = 1; 3008 break; 3009 case ABORTING: 3010 case DEAD: 3011 break; 3012 default: 3013 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 3014 break; 3015 } 3016 mutex_unlock(&ep->com.mutex); 3017 if (release) 3018 release_ep_resources(ep); 3019 c4iw_put_ep(&ep->com); 3020 return 0; 3021 } 3022 3023 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 3024 { 3025 struct cpl_rdma_terminate *rpl = cplhdr(skb); 3026 unsigned int tid = GET_TID(rpl); 3027 struct c4iw_ep *ep; 3028 struct c4iw_qp_attributes attrs; 3029 3030 ep = get_ep_from_tid(dev, tid); 3031 3032 if (ep) { 3033 if (ep->com.qp) { 3034 pr_warn("TERM received tid %u qpid %u\n", tid, 3035 ep->com.qp->wq.sq.qid); 3036 attrs.next_state = C4IW_QP_STATE_TERMINATE; 3037 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 3038 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 3039 } 3040 3041 c4iw_put_ep(&ep->com); 3042 } else 3043 pr_warn("TERM received tid %u no ep/qp\n", tid); 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * Upcall from the adapter indicating data has been transmitted. 3050 * For us its just the single MPA request or reply. We can now free 3051 * the skb holding the mpa message. 3052 */ 3053 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 3054 { 3055 struct c4iw_ep *ep; 3056 struct cpl_fw4_ack *hdr = cplhdr(skb); 3057 u8 credits = hdr->credits; 3058 unsigned int tid = GET_TID(hdr); 3059 3060 3061 ep = get_ep_from_tid(dev, tid); 3062 if (!ep) 3063 return 0; 3064 pr_debug("ep %p tid %u credits %u\n", 3065 ep, ep->hwtid, credits); 3066 if (credits == 0) { 3067 pr_debug("0 credit ack ep %p tid %u state %u\n", 3068 ep, ep->hwtid, state_read(&ep->com)); 3069 goto out; 3070 } 3071 3072 dst_confirm(ep->dst); 3073 if (ep->mpa_skb) { 3074 pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n", 3075 ep, ep->hwtid, state_read(&ep->com), 3076 ep->mpa_attr.initiator ? 1 : 0); 3077 mutex_lock(&ep->com.mutex); 3078 kfree_skb(ep->mpa_skb); 3079 ep->mpa_skb = NULL; 3080 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 3081 stop_ep_timer(ep); 3082 mutex_unlock(&ep->com.mutex); 3083 } 3084 out: 3085 c4iw_put_ep(&ep->com); 3086 return 0; 3087 } 3088 3089 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 3090 { 3091 int abort; 3092 struct c4iw_ep *ep = to_ep(cm_id); 3093 3094 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 3095 3096 mutex_lock(&ep->com.mutex); 3097 if (ep->com.state != MPA_REQ_RCVD) { 3098 mutex_unlock(&ep->com.mutex); 3099 c4iw_put_ep(&ep->com); 3100 return -ECONNRESET; 3101 } 3102 set_bit(ULP_REJECT, &ep->com.history); 3103 if (mpa_rev == 0) 3104 abort = 1; 3105 else 3106 abort = send_mpa_reject(ep, pdata, pdata_len); 3107 mutex_unlock(&ep->com.mutex); 3108 3109 stop_ep_timer(ep); 3110 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 3111 c4iw_put_ep(&ep->com); 3112 return 0; 3113 } 3114 3115 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3116 { 3117 int err; 3118 struct c4iw_qp_attributes attrs; 3119 enum c4iw_qp_attr_mask mask; 3120 struct c4iw_ep *ep = to_ep(cm_id); 3121 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3122 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3123 int abort = 0; 3124 3125 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 3126 3127 mutex_lock(&ep->com.mutex); 3128 if (ep->com.state != MPA_REQ_RCVD) { 3129 err = -ECONNRESET; 3130 goto err_out; 3131 } 3132 3133 if (!qp) { 3134 err = -EINVAL; 3135 goto err_out; 3136 } 3137 3138 set_bit(ULP_ACCEPT, &ep->com.history); 3139 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3140 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3141 err = -EINVAL; 3142 goto err_abort; 3143 } 3144 3145 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3146 if (conn_param->ord > ep->ird) { 3147 if (RELAXED_IRD_NEGOTIATION) { 3148 conn_param->ord = ep->ird; 3149 } else { 3150 ep->ird = conn_param->ird; 3151 ep->ord = conn_param->ord; 3152 send_mpa_reject(ep, conn_param->private_data, 3153 conn_param->private_data_len); 3154 err = -ENOMEM; 3155 goto err_abort; 3156 } 3157 } 3158 if (conn_param->ird < ep->ord) { 3159 if (RELAXED_IRD_NEGOTIATION && 3160 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3161 conn_param->ird = ep->ord; 3162 } else { 3163 err = -ENOMEM; 3164 goto err_abort; 3165 } 3166 } 3167 } 3168 ep->ird = conn_param->ird; 3169 ep->ord = conn_param->ord; 3170 3171 if (ep->mpa_attr.version == 1) { 3172 if (peer2peer && ep->ird == 0) 3173 ep->ird = 1; 3174 } else { 3175 if (peer2peer && 3176 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3177 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3178 ep->ird = 1; 3179 } 3180 3181 pr_debug("ird %d ord %d\n", ep->ird, ep->ord); 3182 3183 ep->com.cm_id = cm_id; 3184 ref_cm_id(&ep->com); 3185 ep->com.qp = qp; 3186 ref_qp(ep); 3187 3188 /* bind QP to EP and move to RTS */ 3189 attrs.mpa_attr = ep->mpa_attr; 3190 attrs.max_ird = ep->ird; 3191 attrs.max_ord = ep->ord; 3192 attrs.llp_stream_handle = ep; 3193 attrs.next_state = C4IW_QP_STATE_RTS; 3194 3195 /* bind QP and TID with INIT_WR */ 3196 mask = C4IW_QP_ATTR_NEXT_STATE | 3197 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3198 C4IW_QP_ATTR_MPA_ATTR | 3199 C4IW_QP_ATTR_MAX_IRD | 3200 C4IW_QP_ATTR_MAX_ORD; 3201 3202 err = c4iw_modify_qp(ep->com.qp->rhp, 3203 ep->com.qp, mask, &attrs, 1); 3204 if (err) 3205 goto err_deref_cm_id; 3206 3207 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3208 err = send_mpa_reply(ep, conn_param->private_data, 3209 conn_param->private_data_len); 3210 if (err) 3211 goto err_deref_cm_id; 3212 3213 __state_set(&ep->com, FPDU_MODE); 3214 established_upcall(ep); 3215 mutex_unlock(&ep->com.mutex); 3216 c4iw_put_ep(&ep->com); 3217 return 0; 3218 err_deref_cm_id: 3219 deref_cm_id(&ep->com); 3220 err_abort: 3221 abort = 1; 3222 err_out: 3223 mutex_unlock(&ep->com.mutex); 3224 if (abort) 3225 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3226 c4iw_put_ep(&ep->com); 3227 return err; 3228 } 3229 3230 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3231 { 3232 struct in_device *ind; 3233 int found = 0; 3234 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3235 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3236 const struct in_ifaddr *ifa; 3237 3238 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3239 if (!ind) 3240 return -EADDRNOTAVAIL; 3241 rcu_read_lock(); 3242 in_dev_for_each_ifa_rcu(ifa, ind) { 3243 if (ifa->ifa_flags & IFA_F_SECONDARY) 3244 continue; 3245 laddr->sin_addr.s_addr = ifa->ifa_address; 3246 raddr->sin_addr.s_addr = ifa->ifa_address; 3247 found = 1; 3248 break; 3249 } 3250 rcu_read_unlock(); 3251 3252 in_dev_put(ind); 3253 return found ? 0 : -EADDRNOTAVAIL; 3254 } 3255 3256 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3257 unsigned char banned_flags) 3258 { 3259 struct inet6_dev *idev; 3260 int err = -EADDRNOTAVAIL; 3261 3262 rcu_read_lock(); 3263 idev = __in6_dev_get(dev); 3264 if (idev != NULL) { 3265 struct inet6_ifaddr *ifp; 3266 3267 read_lock_bh(&idev->lock); 3268 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3269 if (ifp->scope == IFA_LINK && 3270 !(ifp->flags & banned_flags)) { 3271 memcpy(addr, &ifp->addr, 16); 3272 err = 0; 3273 break; 3274 } 3275 } 3276 read_unlock_bh(&idev->lock); 3277 } 3278 rcu_read_unlock(); 3279 return err; 3280 } 3281 3282 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3283 { 3284 struct in6_addr uninitialized_var(addr); 3285 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3286 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3287 3288 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3289 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3290 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3291 return 0; 3292 } 3293 return -EADDRNOTAVAIL; 3294 } 3295 3296 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3297 { 3298 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3299 struct c4iw_ep *ep; 3300 int err = 0; 3301 struct sockaddr_in *laddr; 3302 struct sockaddr_in *raddr; 3303 struct sockaddr_in6 *laddr6; 3304 struct sockaddr_in6 *raddr6; 3305 __u8 *ra; 3306 int iptype; 3307 3308 if ((conn_param->ord > cur_max_read_depth(dev)) || 3309 (conn_param->ird > cur_max_read_depth(dev))) { 3310 err = -EINVAL; 3311 goto out; 3312 } 3313 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3314 if (!ep) { 3315 pr_err("%s - cannot alloc ep\n", __func__); 3316 err = -ENOMEM; 3317 goto out; 3318 } 3319 3320 skb_queue_head_init(&ep->com.ep_skb_list); 3321 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3322 err = -ENOMEM; 3323 goto fail1; 3324 } 3325 3326 timer_setup(&ep->timer, ep_timeout, 0); 3327 ep->plen = conn_param->private_data_len; 3328 if (ep->plen) 3329 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3330 conn_param->private_data, ep->plen); 3331 ep->ird = conn_param->ird; 3332 ep->ord = conn_param->ord; 3333 3334 if (peer2peer && ep->ord == 0) 3335 ep->ord = 1; 3336 3337 ep->com.cm_id = cm_id; 3338 ref_cm_id(&ep->com); 3339 cm_id->provider_data = ep; 3340 ep->com.dev = dev; 3341 ep->com.qp = get_qhp(dev, conn_param->qpn); 3342 if (!ep->com.qp) { 3343 pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3344 err = -EINVAL; 3345 goto fail2; 3346 } 3347 ref_qp(ep); 3348 pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn, 3349 ep->com.qp, cm_id); 3350 3351 /* 3352 * Allocate an active TID to initiate a TCP connection. 3353 */ 3354 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3355 if (ep->atid == -1) { 3356 pr_err("%s - cannot alloc atid\n", __func__); 3357 err = -ENOMEM; 3358 goto fail2; 3359 } 3360 err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL); 3361 if (err) 3362 goto fail5; 3363 3364 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3365 sizeof(ep->com.local_addr)); 3366 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3367 sizeof(ep->com.remote_addr)); 3368 3369 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3370 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3371 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3372 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3373 3374 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3375 iptype = 4; 3376 ra = (__u8 *)&raddr->sin_addr; 3377 3378 /* 3379 * Handle loopback requests to INADDR_ANY. 3380 */ 3381 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3382 err = pick_local_ipaddrs(dev, cm_id); 3383 if (err) 3384 goto fail2; 3385 } 3386 3387 /* find a route */ 3388 pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3389 &laddr->sin_addr, ntohs(laddr->sin_port), 3390 ra, ntohs(raddr->sin_port)); 3391 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3392 laddr->sin_addr.s_addr, 3393 raddr->sin_addr.s_addr, 3394 laddr->sin_port, 3395 raddr->sin_port, cm_id->tos); 3396 } else { 3397 iptype = 6; 3398 ra = (__u8 *)&raddr6->sin6_addr; 3399 3400 /* 3401 * Handle loopback requests to INADDR_ANY. 3402 */ 3403 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3404 err = pick_local_ip6addrs(dev, cm_id); 3405 if (err) 3406 goto fail2; 3407 } 3408 3409 /* find a route */ 3410 pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3411 laddr6->sin6_addr.s6_addr, 3412 ntohs(laddr6->sin6_port), 3413 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3414 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3415 laddr6->sin6_addr.s6_addr, 3416 raddr6->sin6_addr.s6_addr, 3417 laddr6->sin6_port, 3418 raddr6->sin6_port, cm_id->tos, 3419 raddr6->sin6_scope_id); 3420 } 3421 if (!ep->dst) { 3422 pr_err("%s - cannot find route\n", __func__); 3423 err = -EHOSTUNREACH; 3424 goto fail3; 3425 } 3426 3427 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3428 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3429 if (err) { 3430 pr_err("%s - cannot alloc l2e\n", __func__); 3431 goto fail4; 3432 } 3433 3434 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3435 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3436 ep->l2t->idx); 3437 3438 state_set(&ep->com, CONNECTING); 3439 ep->tos = cm_id->tos; 3440 3441 /* send connect request to rnic */ 3442 err = send_connect(ep); 3443 if (!err) 3444 goto out; 3445 3446 cxgb4_l2t_release(ep->l2t); 3447 fail4: 3448 dst_release(ep->dst); 3449 fail3: 3450 xa_erase_irq(&ep->com.dev->atids, ep->atid); 3451 fail5: 3452 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3453 fail2: 3454 skb_queue_purge(&ep->com.ep_skb_list); 3455 deref_cm_id(&ep->com); 3456 fail1: 3457 c4iw_put_ep(&ep->com); 3458 out: 3459 return err; 3460 } 3461 3462 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3463 { 3464 int err; 3465 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3466 &ep->com.local_addr; 3467 3468 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3469 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3470 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3471 if (err) 3472 return err; 3473 } 3474 c4iw_init_wr_wait(ep->com.wr_waitp); 3475 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3476 ep->stid, &sin6->sin6_addr, 3477 sin6->sin6_port, 3478 ep->com.dev->rdev.lldi.rxq_ids[0]); 3479 if (!err) 3480 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3481 ep->com.wr_waitp, 3482 0, 0, __func__); 3483 else if (err > 0) 3484 err = net_xmit_errno(err); 3485 if (err) { 3486 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3487 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3488 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3489 err, ep->stid, 3490 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3491 } 3492 return err; 3493 } 3494 3495 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3496 { 3497 int err; 3498 struct sockaddr_in *sin = (struct sockaddr_in *) 3499 &ep->com.local_addr; 3500 3501 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3502 do { 3503 err = cxgb4_create_server_filter( 3504 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3505 sin->sin_addr.s_addr, sin->sin_port, 0, 3506 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3507 if (err == -EBUSY) { 3508 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3509 err = -EIO; 3510 break; 3511 } 3512 set_current_state(TASK_UNINTERRUPTIBLE); 3513 schedule_timeout(usecs_to_jiffies(100)); 3514 } 3515 } while (err == -EBUSY); 3516 } else { 3517 c4iw_init_wr_wait(ep->com.wr_waitp); 3518 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3519 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3520 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3521 if (!err) 3522 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3523 ep->com.wr_waitp, 3524 0, 0, __func__); 3525 else if (err > 0) 3526 err = net_xmit_errno(err); 3527 } 3528 if (err) 3529 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3530 , err, ep->stid, 3531 &sin->sin_addr, ntohs(sin->sin_port)); 3532 return err; 3533 } 3534 3535 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3536 { 3537 int err = 0; 3538 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3539 struct c4iw_listen_ep *ep; 3540 3541 might_sleep(); 3542 3543 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3544 if (!ep) { 3545 pr_err("%s - cannot alloc ep\n", __func__); 3546 err = -ENOMEM; 3547 goto fail1; 3548 } 3549 skb_queue_head_init(&ep->com.ep_skb_list); 3550 pr_debug("ep %p\n", ep); 3551 ep->com.cm_id = cm_id; 3552 ref_cm_id(&ep->com); 3553 ep->com.dev = dev; 3554 ep->backlog = backlog; 3555 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3556 sizeof(ep->com.local_addr)); 3557 3558 /* 3559 * Allocate a server TID. 3560 */ 3561 if (dev->rdev.lldi.enable_fw_ofld_conn && 3562 ep->com.local_addr.ss_family == AF_INET) 3563 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3564 cm_id->m_local_addr.ss_family, ep); 3565 else 3566 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3567 cm_id->m_local_addr.ss_family, ep); 3568 3569 if (ep->stid == -1) { 3570 pr_err("%s - cannot alloc stid\n", __func__); 3571 err = -ENOMEM; 3572 goto fail2; 3573 } 3574 err = xa_insert_irq(&dev->stids, ep->stid, ep, GFP_KERNEL); 3575 if (err) 3576 goto fail3; 3577 3578 state_set(&ep->com, LISTEN); 3579 if (ep->com.local_addr.ss_family == AF_INET) 3580 err = create_server4(dev, ep); 3581 else 3582 err = create_server6(dev, ep); 3583 if (!err) { 3584 cm_id->provider_data = ep; 3585 goto out; 3586 } 3587 xa_erase_irq(&ep->com.dev->stids, ep->stid); 3588 fail3: 3589 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3590 ep->com.local_addr.ss_family); 3591 fail2: 3592 deref_cm_id(&ep->com); 3593 c4iw_put_ep(&ep->com); 3594 fail1: 3595 out: 3596 return err; 3597 } 3598 3599 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3600 { 3601 int err; 3602 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3603 3604 pr_debug("ep %p\n", ep); 3605 3606 might_sleep(); 3607 state_set(&ep->com, DEAD); 3608 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3609 ep->com.local_addr.ss_family == AF_INET) { 3610 err = cxgb4_remove_server_filter( 3611 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3612 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3613 } else { 3614 struct sockaddr_in6 *sin6; 3615 c4iw_init_wr_wait(ep->com.wr_waitp); 3616 err = cxgb4_remove_server( 3617 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3618 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3619 if (err) 3620 goto done; 3621 err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp, 3622 0, 0, __func__); 3623 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3624 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3625 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3626 } 3627 xa_erase_irq(&ep->com.dev->stids, ep->stid); 3628 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3629 ep->com.local_addr.ss_family); 3630 done: 3631 deref_cm_id(&ep->com); 3632 c4iw_put_ep(&ep->com); 3633 return err; 3634 } 3635 3636 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3637 { 3638 int ret = 0; 3639 int close = 0; 3640 int fatal = 0; 3641 struct c4iw_rdev *rdev; 3642 3643 mutex_lock(&ep->com.mutex); 3644 3645 pr_debug("ep %p state %s, abrupt %d\n", ep, 3646 states[ep->com.state], abrupt); 3647 3648 /* 3649 * Ref the ep here in case we have fatal errors causing the 3650 * ep to be released and freed. 3651 */ 3652 c4iw_get_ep(&ep->com); 3653 3654 rdev = &ep->com.dev->rdev; 3655 if (c4iw_fatal_error(rdev)) { 3656 fatal = 1; 3657 close_complete_upcall(ep, -EIO); 3658 ep->com.state = DEAD; 3659 } 3660 switch (ep->com.state) { 3661 case MPA_REQ_WAIT: 3662 case MPA_REQ_SENT: 3663 case MPA_REQ_RCVD: 3664 case MPA_REP_SENT: 3665 case FPDU_MODE: 3666 case CONNECTING: 3667 close = 1; 3668 if (abrupt) 3669 ep->com.state = ABORTING; 3670 else { 3671 ep->com.state = CLOSING; 3672 3673 /* 3674 * if we close before we see the fw4_ack() then we fix 3675 * up the timer state since we're reusing it. 3676 */ 3677 if (ep->mpa_skb && 3678 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3679 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3680 stop_ep_timer(ep); 3681 } 3682 start_ep_timer(ep); 3683 } 3684 set_bit(CLOSE_SENT, &ep->com.flags); 3685 break; 3686 case CLOSING: 3687 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3688 close = 1; 3689 if (abrupt) { 3690 (void)stop_ep_timer(ep); 3691 ep->com.state = ABORTING; 3692 } else 3693 ep->com.state = MORIBUND; 3694 } 3695 break; 3696 case MORIBUND: 3697 case ABORTING: 3698 case DEAD: 3699 pr_debug("ignoring disconnect ep %p state %u\n", 3700 ep, ep->com.state); 3701 break; 3702 default: 3703 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 3704 break; 3705 } 3706 3707 if (close) { 3708 if (abrupt) { 3709 set_bit(EP_DISC_ABORT, &ep->com.history); 3710 ret = send_abort(ep); 3711 } else { 3712 set_bit(EP_DISC_CLOSE, &ep->com.history); 3713 ret = send_halfclose(ep); 3714 } 3715 if (ret) { 3716 set_bit(EP_DISC_FAIL, &ep->com.history); 3717 if (!abrupt) { 3718 stop_ep_timer(ep); 3719 close_complete_upcall(ep, -EIO); 3720 } 3721 if (ep->com.qp) { 3722 struct c4iw_qp_attributes attrs; 3723 3724 attrs.next_state = C4IW_QP_STATE_ERROR; 3725 ret = c4iw_modify_qp(ep->com.qp->rhp, 3726 ep->com.qp, 3727 C4IW_QP_ATTR_NEXT_STATE, 3728 &attrs, 1); 3729 if (ret) 3730 pr_err("%s - qp <- error failed!\n", 3731 __func__); 3732 } 3733 fatal = 1; 3734 } 3735 } 3736 mutex_unlock(&ep->com.mutex); 3737 c4iw_put_ep(&ep->com); 3738 if (fatal) 3739 release_ep_resources(ep); 3740 return ret; 3741 } 3742 3743 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3744 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3745 { 3746 struct c4iw_ep *ep; 3747 int atid = be32_to_cpu(req->tid); 3748 3749 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3750 (__force u32) req->tid); 3751 if (!ep) 3752 return; 3753 3754 switch (req->retval) { 3755 case FW_ENOMEM: 3756 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3757 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3758 send_fw_act_open_req(ep, atid); 3759 return; 3760 } 3761 /* fall through */ 3762 case FW_EADDRINUSE: 3763 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3764 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3765 send_fw_act_open_req(ep, atid); 3766 return; 3767 } 3768 break; 3769 default: 3770 pr_info("%s unexpected ofld conn wr retval %d\n", 3771 __func__, req->retval); 3772 break; 3773 } 3774 pr_err("active ofld_connect_wr failure %d atid %d\n", 3775 req->retval, atid); 3776 mutex_lock(&dev->rdev.stats.lock); 3777 dev->rdev.stats.act_ofld_conn_fails++; 3778 mutex_unlock(&dev->rdev.stats.lock); 3779 connect_reply_upcall(ep, status2errno(req->retval)); 3780 state_set(&ep->com, DEAD); 3781 if (ep->com.remote_addr.ss_family == AF_INET6) { 3782 struct sockaddr_in6 *sin6 = 3783 (struct sockaddr_in6 *)&ep->com.local_addr; 3784 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3785 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3786 } 3787 xa_erase_irq(&dev->atids, atid); 3788 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3789 dst_release(ep->dst); 3790 cxgb4_l2t_release(ep->l2t); 3791 c4iw_put_ep(&ep->com); 3792 } 3793 3794 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3795 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3796 { 3797 struct sk_buff *rpl_skb; 3798 struct cpl_pass_accept_req *cpl; 3799 int ret; 3800 3801 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3802 if (req->retval) { 3803 pr_err("%s passive open failure %d\n", __func__, req->retval); 3804 mutex_lock(&dev->rdev.stats.lock); 3805 dev->rdev.stats.pas_ofld_conn_fails++; 3806 mutex_unlock(&dev->rdev.stats.lock); 3807 kfree_skb(rpl_skb); 3808 } else { 3809 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3810 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3811 (__force u32) htonl( 3812 (__force u32) req->tid))); 3813 ret = pass_accept_req(dev, rpl_skb); 3814 if (!ret) 3815 kfree_skb(rpl_skb); 3816 } 3817 return; 3818 } 3819 3820 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word) 3821 { 3822 u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]); 3823 u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]); 3824 u64 t; 3825 u32 shift = 32; 3826 3827 t = (thi << shift) | (tlo >> shift); 3828 3829 return t; 3830 } 3831 3832 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift) 3833 { 3834 u32 v; 3835 u64 t = be64_to_cpu(tcb[(31 - word) / 2]); 3836 3837 if (word & 0x1) 3838 shift += 32; 3839 v = (t >> shift) & mask; 3840 return v; 3841 } 3842 3843 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 3844 { 3845 struct cpl_get_tcb_rpl *rpl = cplhdr(skb); 3846 __be64 *tcb = (__be64 *)(rpl + 1); 3847 unsigned int tid = GET_TID(rpl); 3848 struct c4iw_ep *ep; 3849 u64 t_flags_64; 3850 u32 rx_pdu_out; 3851 3852 ep = get_ep_from_tid(dev, tid); 3853 if (!ep) 3854 return 0; 3855 /* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to 3856 * determine if there's a rx PDU feedback event pending. 3857 * 3858 * If that bit is set, it means we'll need to re-read the TCB's 3859 * rq_start value. The final value is the one present in a TCB 3860 * with the TF_RX_PDU_OUT bit cleared. 3861 */ 3862 3863 t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W); 3864 rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S; 3865 3866 c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */ 3867 c4iw_put_ep(&ep->com); /* from read_tcb() */ 3868 3869 /* If TF_RX_PDU_OUT bit is set, re-read the TCB */ 3870 if (rx_pdu_out) { 3871 if (++ep->rx_pdu_out_cnt >= 2) { 3872 WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n"); 3873 goto cleanup; 3874 } 3875 read_tcb(ep); 3876 return 0; 3877 } 3878 3879 ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_W, 3880 TCB_RQ_START_S); 3881 cleanup: 3882 pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx); 3883 3884 if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) 3885 finish_peer_abort(dev, ep); 3886 else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) 3887 send_abort_req(ep); 3888 else 3889 WARN_ONCE(1, "unexpected state!"); 3890 3891 return 0; 3892 } 3893 3894 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3895 { 3896 struct cpl_fw6_msg *rpl = cplhdr(skb); 3897 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3898 3899 switch (rpl->type) { 3900 case FW6_TYPE_CQE: 3901 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3902 break; 3903 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3904 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3905 switch (req->t_state) { 3906 case TCP_SYN_SENT: 3907 active_ofld_conn_reply(dev, skb, req); 3908 break; 3909 case TCP_SYN_RECV: 3910 passive_ofld_conn_reply(dev, skb, req); 3911 break; 3912 default: 3913 pr_err("%s unexpected ofld conn wr state %d\n", 3914 __func__, req->t_state); 3915 break; 3916 } 3917 break; 3918 } 3919 return 0; 3920 } 3921 3922 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3923 { 3924 __be32 l2info; 3925 __be16 hdr_len, vlantag, len; 3926 u16 eth_hdr_len; 3927 int tcp_hdr_len, ip_hdr_len; 3928 u8 intf; 3929 struct cpl_rx_pkt *cpl = cplhdr(skb); 3930 struct cpl_pass_accept_req *req; 3931 struct tcp_options_received tmp_opt; 3932 struct c4iw_dev *dev; 3933 enum chip_type type; 3934 3935 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3936 /* Store values from cpl_rx_pkt in temporary location. */ 3937 vlantag = cpl->vlan; 3938 len = cpl->len; 3939 l2info = cpl->l2info; 3940 hdr_len = cpl->hdr_len; 3941 intf = cpl->iff; 3942 3943 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3944 3945 /* 3946 * We need to parse the TCP options from SYN packet. 3947 * to generate cpl_pass_accept_req. 3948 */ 3949 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3950 tcp_clear_options(&tmp_opt); 3951 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL); 3952 3953 req = __skb_push(skb, sizeof(*req)); 3954 memset(req, 0, sizeof(*req)); 3955 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3956 SYN_MAC_IDX_V(RX_MACIDX_G( 3957 be32_to_cpu(l2info))) | 3958 SYN_XACT_MATCH_F); 3959 type = dev->rdev.lldi.adapter_type; 3960 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3961 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3962 req->hdr_len = 3963 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3964 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3965 eth_hdr_len = is_t4(type) ? 3966 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3967 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3968 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3969 IP_HDR_LEN_V(ip_hdr_len) | 3970 ETH_HDR_LEN_V(eth_hdr_len)); 3971 } else { /* T6 and later */ 3972 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3973 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3974 T6_IP_HDR_LEN_V(ip_hdr_len) | 3975 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3976 } 3977 req->vlan = vlantag; 3978 req->len = len; 3979 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3980 PASS_OPEN_TOS_V(tos)); 3981 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3982 if (tmp_opt.wscale_ok) 3983 req->tcpopt.wsf = tmp_opt.snd_wscale; 3984 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3985 if (tmp_opt.sack_ok) 3986 req->tcpopt.sack = 1; 3987 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3988 return; 3989 } 3990 3991 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3992 __be32 laddr, __be16 lport, 3993 __be32 raddr, __be16 rport, 3994 u32 rcv_isn, u32 filter, u16 window, 3995 u32 rss_qid, u8 port_id) 3996 { 3997 struct sk_buff *req_skb; 3998 struct fw_ofld_connection_wr *req; 3999 struct cpl_pass_accept_req *cpl = cplhdr(skb); 4000 int ret; 4001 4002 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 4003 if (!req_skb) 4004 return; 4005 req = __skb_put_zero(req_skb, sizeof(*req)); 4006 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 4007 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 4008 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 4009 req->le.filter = (__force __be32) filter; 4010 req->le.lport = lport; 4011 req->le.pport = rport; 4012 req->le.u.ipv4.lip = laddr; 4013 req->le.u.ipv4.pip = raddr; 4014 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 4015 req->tcb.rcv_adv = htons(window); 4016 req->tcb.t_state_to_astid = 4017 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 4018 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 4019 FW_OFLD_CONNECTION_WR_ASTID_V( 4020 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 4021 4022 /* 4023 * We store the qid in opt2 which will be used by the firmware 4024 * to send us the wr response. 4025 */ 4026 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 4027 4028 /* 4029 * We initialize the MSS index in TCB to 0xF. 4030 * So that when driver sends cpl_pass_accept_rpl 4031 * TCB picks up the correct value. If this was 0 4032 * TP will ignore any value > 0 for MSS index. 4033 */ 4034 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 4035 req->cookie = (uintptr_t)skb; 4036 4037 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 4038 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 4039 if (ret < 0) { 4040 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 4041 ret); 4042 kfree_skb(skb); 4043 kfree_skb(req_skb); 4044 } 4045 } 4046 4047 /* 4048 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 4049 * messages when a filter is being used instead of server to 4050 * redirect a syn packet. When packets hit filter they are redirected 4051 * to the offload queue and driver tries to establish the connection 4052 * using firmware work request. 4053 */ 4054 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 4055 { 4056 int stid; 4057 unsigned int filter; 4058 struct ethhdr *eh = NULL; 4059 struct vlan_ethhdr *vlan_eh = NULL; 4060 struct iphdr *iph; 4061 struct tcphdr *tcph; 4062 struct rss_header *rss = (void *)skb->data; 4063 struct cpl_rx_pkt *cpl = (void *)skb->data; 4064 struct cpl_pass_accept_req *req = (void *)(rss + 1); 4065 struct l2t_entry *e; 4066 struct dst_entry *dst; 4067 struct c4iw_ep *lep = NULL; 4068 u16 window; 4069 struct port_info *pi; 4070 struct net_device *pdev; 4071 u16 rss_qid, eth_hdr_len; 4072 int step; 4073 struct neighbour *neigh; 4074 4075 /* Drop all non-SYN packets */ 4076 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 4077 goto reject; 4078 4079 /* 4080 * Drop all packets which did not hit the filter. 4081 * Unlikely to happen. 4082 */ 4083 if (!(rss->filter_hit && rss->filter_tid)) 4084 goto reject; 4085 4086 /* 4087 * Calculate the server tid from filter hit index from cpl_rx_pkt. 4088 */ 4089 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 4090 4091 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 4092 if (!lep) { 4093 pr_warn("%s connect request on invalid stid %d\n", 4094 __func__, stid); 4095 goto reject; 4096 } 4097 4098 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 4099 case CHELSIO_T4: 4100 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4101 break; 4102 case CHELSIO_T5: 4103 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4104 break; 4105 case CHELSIO_T6: 4106 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4107 break; 4108 default: 4109 pr_err("T%d Chip is not supported\n", 4110 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 4111 goto reject; 4112 } 4113 4114 if (eth_hdr_len == ETH_HLEN) { 4115 eh = (struct ethhdr *)(req + 1); 4116 iph = (struct iphdr *)(eh + 1); 4117 } else { 4118 vlan_eh = (struct vlan_ethhdr *)(req + 1); 4119 iph = (struct iphdr *)(vlan_eh + 1); 4120 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 4121 } 4122 4123 if (iph->version != 0x4) 4124 goto reject; 4125 4126 tcph = (struct tcphdr *)(iph + 1); 4127 skb_set_network_header(skb, (void *)iph - (void *)rss); 4128 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 4129 skb_get(skb); 4130 4131 pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n", 4132 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 4133 ntohs(tcph->source), iph->tos); 4134 4135 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 4136 iph->daddr, iph->saddr, tcph->dest, 4137 tcph->source, iph->tos); 4138 if (!dst) { 4139 pr_err("%s - failed to find dst entry!\n", __func__); 4140 goto reject; 4141 } 4142 neigh = dst_neigh_lookup_skb(dst, skb); 4143 4144 if (!neigh) { 4145 pr_err("%s - failed to allocate neigh!\n", __func__); 4146 goto free_dst; 4147 } 4148 4149 if (neigh->dev->flags & IFF_LOOPBACK) { 4150 pdev = ip_dev_find(&init_net, iph->daddr); 4151 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 4152 pdev, 0); 4153 pi = (struct port_info *)netdev_priv(pdev); 4154 dev_put(pdev); 4155 } else { 4156 pdev = get_real_dev(neigh->dev); 4157 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 4158 pdev, 0); 4159 pi = (struct port_info *)netdev_priv(pdev); 4160 } 4161 neigh_release(neigh); 4162 if (!e) { 4163 pr_err("%s - failed to allocate l2t entry!\n", 4164 __func__); 4165 goto free_dst; 4166 } 4167 4168 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 4169 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 4170 window = (__force u16) htons((__force u16)tcph->window); 4171 4172 /* Calcuate filter portion for LE region. */ 4173 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 4174 dev->rdev.lldi.ports[0], 4175 e)); 4176 4177 /* 4178 * Synthesize the cpl_pass_accept_req. We have everything except the 4179 * TID. Once firmware sends a reply with TID we update the TID field 4180 * in cpl and pass it through the regular cpl_pass_accept_req path. 4181 */ 4182 build_cpl_pass_accept_req(skb, stid, iph->tos); 4183 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 4184 tcph->source, ntohl(tcph->seq), filter, window, 4185 rss_qid, pi->port_id); 4186 cxgb4_l2t_release(e); 4187 free_dst: 4188 dst_release(dst); 4189 reject: 4190 if (lep) 4191 c4iw_put_ep(&lep->com); 4192 return 0; 4193 } 4194 4195 /* 4196 * These are the real handlers that are called from a 4197 * work queue. 4198 */ 4199 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 4200 [CPL_ACT_ESTABLISH] = act_establish, 4201 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4202 [CPL_RX_DATA] = rx_data, 4203 [CPL_ABORT_RPL_RSS] = abort_rpl, 4204 [CPL_ABORT_RPL] = abort_rpl, 4205 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4206 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4207 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4208 [CPL_PASS_ESTABLISH] = pass_establish, 4209 [CPL_PEER_CLOSE] = peer_close, 4210 [CPL_ABORT_REQ_RSS] = peer_abort, 4211 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4212 [CPL_RDMA_TERMINATE] = terminate, 4213 [CPL_FW4_ACK] = fw4_ack, 4214 [CPL_GET_TCB_RPL] = read_tcb_rpl, 4215 [CPL_FW6_MSG] = deferred_fw6_msg, 4216 [CPL_RX_PKT] = rx_pkt, 4217 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4218 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4219 }; 4220 4221 static void process_timeout(struct c4iw_ep *ep) 4222 { 4223 struct c4iw_qp_attributes attrs; 4224 int abort = 1; 4225 4226 mutex_lock(&ep->com.mutex); 4227 pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state); 4228 set_bit(TIMEDOUT, &ep->com.history); 4229 switch (ep->com.state) { 4230 case MPA_REQ_SENT: 4231 connect_reply_upcall(ep, -ETIMEDOUT); 4232 break; 4233 case MPA_REQ_WAIT: 4234 case MPA_REQ_RCVD: 4235 case MPA_REP_SENT: 4236 case FPDU_MODE: 4237 break; 4238 case CLOSING: 4239 case MORIBUND: 4240 if (ep->com.cm_id && ep->com.qp) { 4241 attrs.next_state = C4IW_QP_STATE_ERROR; 4242 c4iw_modify_qp(ep->com.qp->rhp, 4243 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4244 &attrs, 1); 4245 } 4246 close_complete_upcall(ep, -ETIMEDOUT); 4247 break; 4248 case ABORTING: 4249 case DEAD: 4250 4251 /* 4252 * These states are expected if the ep timed out at the same 4253 * time as another thread was calling stop_ep_timer(). 4254 * So we silently do nothing for these states. 4255 */ 4256 abort = 0; 4257 break; 4258 default: 4259 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4260 __func__, ep, ep->hwtid, ep->com.state); 4261 abort = 0; 4262 } 4263 mutex_unlock(&ep->com.mutex); 4264 if (abort) 4265 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4266 c4iw_put_ep(&ep->com); 4267 } 4268 4269 static void process_timedout_eps(void) 4270 { 4271 struct c4iw_ep *ep; 4272 4273 spin_lock_irq(&timeout_lock); 4274 while (!list_empty(&timeout_list)) { 4275 struct list_head *tmp; 4276 4277 tmp = timeout_list.next; 4278 list_del(tmp); 4279 tmp->next = NULL; 4280 tmp->prev = NULL; 4281 spin_unlock_irq(&timeout_lock); 4282 ep = list_entry(tmp, struct c4iw_ep, entry); 4283 process_timeout(ep); 4284 spin_lock_irq(&timeout_lock); 4285 } 4286 spin_unlock_irq(&timeout_lock); 4287 } 4288 4289 static void process_work(struct work_struct *work) 4290 { 4291 struct sk_buff *skb = NULL; 4292 struct c4iw_dev *dev; 4293 struct cpl_act_establish *rpl; 4294 unsigned int opcode; 4295 int ret; 4296 4297 process_timedout_eps(); 4298 while ((skb = skb_dequeue(&rxq))) { 4299 rpl = cplhdr(skb); 4300 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4301 opcode = rpl->ot.opcode; 4302 4303 if (opcode >= ARRAY_SIZE(work_handlers) || 4304 !work_handlers[opcode]) { 4305 pr_err("No handler for opcode 0x%x.\n", opcode); 4306 kfree_skb(skb); 4307 } else { 4308 ret = work_handlers[opcode](dev, skb); 4309 if (!ret) 4310 kfree_skb(skb); 4311 } 4312 process_timedout_eps(); 4313 } 4314 } 4315 4316 static DECLARE_WORK(skb_work, process_work); 4317 4318 static void ep_timeout(struct timer_list *t) 4319 { 4320 struct c4iw_ep *ep = from_timer(ep, t, timer); 4321 int kickit = 0; 4322 4323 spin_lock(&timeout_lock); 4324 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4325 /* 4326 * Only insert if it is not already on the list. 4327 */ 4328 if (!ep->entry.next) { 4329 list_add_tail(&ep->entry, &timeout_list); 4330 kickit = 1; 4331 } 4332 } 4333 spin_unlock(&timeout_lock); 4334 if (kickit) 4335 queue_work(workq, &skb_work); 4336 } 4337 4338 /* 4339 * All the CM events are handled on a work queue to have a safe context. 4340 */ 4341 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4342 { 4343 4344 /* 4345 * Save dev in the skb->cb area. 4346 */ 4347 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4348 4349 /* 4350 * Queue the skb and schedule the worker thread. 4351 */ 4352 skb_queue_tail(&rxq, skb); 4353 queue_work(workq, &skb_work); 4354 return 0; 4355 } 4356 4357 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4358 { 4359 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4360 4361 if (rpl->status != CPL_ERR_NONE) { 4362 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n", 4363 rpl->status, GET_TID(rpl)); 4364 } 4365 kfree_skb(skb); 4366 return 0; 4367 } 4368 4369 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4370 { 4371 struct cpl_fw6_msg *rpl = cplhdr(skb); 4372 struct c4iw_wr_wait *wr_waitp; 4373 int ret; 4374 4375 pr_debug("type %u\n", rpl->type); 4376 4377 switch (rpl->type) { 4378 case FW6_TYPE_WR_RPL: 4379 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4380 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4381 pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret); 4382 if (wr_waitp) 4383 c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0); 4384 kfree_skb(skb); 4385 break; 4386 case FW6_TYPE_CQE: 4387 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4388 sched(dev, skb); 4389 break; 4390 default: 4391 pr_err("%s unexpected fw6 msg type %u\n", 4392 __func__, rpl->type); 4393 kfree_skb(skb); 4394 break; 4395 } 4396 return 0; 4397 } 4398 4399 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4400 { 4401 struct cpl_abort_req_rss *req = cplhdr(skb); 4402 struct c4iw_ep *ep; 4403 unsigned int tid = GET_TID(req); 4404 4405 ep = get_ep_from_tid(dev, tid); 4406 /* This EP will be dereferenced in peer_abort() */ 4407 if (!ep) { 4408 pr_warn("Abort on non-existent endpoint, tid %d\n", tid); 4409 kfree_skb(skb); 4410 return 0; 4411 } 4412 if (cxgb_is_neg_adv(req->status)) { 4413 pr_debug("Negative advice on abort- tid %u status %d (%s)\n", 4414 ep->hwtid, req->status, 4415 neg_adv_str(req->status)); 4416 goto out; 4417 } 4418 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state); 4419 4420 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 4421 out: 4422 sched(dev, skb); 4423 return 0; 4424 } 4425 4426 /* 4427 * Most upcalls from the T4 Core go to sched() to 4428 * schedule the processing on a work queue. 4429 */ 4430 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4431 [CPL_ACT_ESTABLISH] = sched, 4432 [CPL_ACT_OPEN_RPL] = sched, 4433 [CPL_RX_DATA] = sched, 4434 [CPL_ABORT_RPL_RSS] = sched, 4435 [CPL_ABORT_RPL] = sched, 4436 [CPL_PASS_OPEN_RPL] = sched, 4437 [CPL_CLOSE_LISTSRV_RPL] = sched, 4438 [CPL_PASS_ACCEPT_REQ] = sched, 4439 [CPL_PASS_ESTABLISH] = sched, 4440 [CPL_PEER_CLOSE] = sched, 4441 [CPL_CLOSE_CON_RPL] = sched, 4442 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4443 [CPL_RDMA_TERMINATE] = sched, 4444 [CPL_FW4_ACK] = sched, 4445 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4446 [CPL_GET_TCB_RPL] = sched, 4447 [CPL_FW6_MSG] = fw6_msg, 4448 [CPL_RX_PKT] = sched 4449 }; 4450 4451 int __init c4iw_cm_init(void) 4452 { 4453 spin_lock_init(&timeout_lock); 4454 skb_queue_head_init(&rxq); 4455 4456 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4457 if (!workq) 4458 return -ENOMEM; 4459 4460 return 0; 4461 } 4462 4463 void c4iw_cm_term(void) 4464 { 4465 WARN_ON(!list_empty(&timeout_list)); 4466 flush_workqueue(workq); 4467 destroy_workqueue(workq); 4468 } 4469