xref: /linux/drivers/infiniband/hw/cxgb4/cm.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 /*
2  * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42 
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49 
50 #include <rdma/ib_addr.h>
51 
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
55 
56 static char *states[] = {
57 	"idle",
58 	"listen",
59 	"connecting",
60 	"mpa_wait_req",
61 	"mpa_req_sent",
62 	"mpa_req_rcvd",
63 	"mpa_rep_sent",
64 	"fpdu_mode",
65 	"aborting",
66 	"closing",
67 	"moribund",
68 	"dead",
69 	NULL,
70 };
71 
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
75 
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
79 
80 static int dack_mode = 1;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
83 
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 		 "Per-connection max ORD/IRD (default=32)");
88 
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
92 
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
96 
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 		 "Enable tcp window scaling (default=1)");
101 
102 static int peer2peer = 1;
103 module_param(peer2peer, int, 0644);
104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
105 
106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
107 module_param(p2p_type, int, 0644);
108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
109 			   "1=RDMA_READ 0=RDMA_WRITE (default 1)");
110 
111 static int ep_timeout_secs = 60;
112 module_param(ep_timeout_secs, int, 0644);
113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
114 				   "in seconds (default=60)");
115 
116 static int mpa_rev = 2;
117 module_param(mpa_rev, int, 0644);
118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
119 		"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
120 		" compliant (default=2)");
121 
122 static int markers_enabled;
123 module_param(markers_enabled, int, 0644);
124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
125 
126 static int crc_enabled = 1;
127 module_param(crc_enabled, int, 0644);
128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
129 
130 static int rcv_win = 256 * 1024;
131 module_param(rcv_win, int, 0644);
132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
133 
134 static int snd_win = 128 * 1024;
135 module_param(snd_win, int, 0644);
136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
137 
138 static struct workqueue_struct *workq;
139 
140 static struct sk_buff_head rxq;
141 
142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
143 static void ep_timeout(struct timer_list *t);
144 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
146 
147 static LIST_HEAD(timeout_list);
148 static spinlock_t timeout_lock;
149 
150 static void deref_cm_id(struct c4iw_ep_common *epc)
151 {
152 	epc->cm_id->rem_ref(epc->cm_id);
153 	epc->cm_id = NULL;
154 	set_bit(CM_ID_DEREFED, &epc->history);
155 }
156 
157 static void ref_cm_id(struct c4iw_ep_common *epc)
158 {
159 	set_bit(CM_ID_REFED, &epc->history);
160 	epc->cm_id->add_ref(epc->cm_id);
161 }
162 
163 static void deref_qp(struct c4iw_ep *ep)
164 {
165 	c4iw_qp_rem_ref(&ep->com.qp->ibqp);
166 	clear_bit(QP_REFERENCED, &ep->com.flags);
167 	set_bit(QP_DEREFED, &ep->com.history);
168 }
169 
170 static void ref_qp(struct c4iw_ep *ep)
171 {
172 	set_bit(QP_REFERENCED, &ep->com.flags);
173 	set_bit(QP_REFED, &ep->com.history);
174 	c4iw_qp_add_ref(&ep->com.qp->ibqp);
175 }
176 
177 static void start_ep_timer(struct c4iw_ep *ep)
178 {
179 	pr_debug("ep %p\n", ep);
180 	if (timer_pending(&ep->timer)) {
181 		pr_err("%s timer already started! ep %p\n",
182 		       __func__, ep);
183 		return;
184 	}
185 	clear_bit(TIMEOUT, &ep->com.flags);
186 	c4iw_get_ep(&ep->com);
187 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
188 	add_timer(&ep->timer);
189 }
190 
191 static int stop_ep_timer(struct c4iw_ep *ep)
192 {
193 	pr_debug("ep %p stopping\n", ep);
194 	del_timer_sync(&ep->timer);
195 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
196 		c4iw_put_ep(&ep->com);
197 		return 0;
198 	}
199 	return 1;
200 }
201 
202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
203 		  struct l2t_entry *l2e)
204 {
205 	int	error = 0;
206 
207 	if (c4iw_fatal_error(rdev)) {
208 		kfree_skb(skb);
209 		pr_err("%s - device in error state - dropping\n", __func__);
210 		return -EIO;
211 	}
212 	error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
213 	if (error < 0)
214 		kfree_skb(skb);
215 	else if (error == NET_XMIT_DROP)
216 		return -ENOMEM;
217 	return error < 0 ? error : 0;
218 }
219 
220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
221 {
222 	int	error = 0;
223 
224 	if (c4iw_fatal_error(rdev)) {
225 		kfree_skb(skb);
226 		pr_err("%s - device in error state - dropping\n", __func__);
227 		return -EIO;
228 	}
229 	error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
230 	if (error < 0)
231 		kfree_skb(skb);
232 	return error < 0 ? error : 0;
233 }
234 
235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
236 {
237 	u32 len = roundup(sizeof(struct cpl_tid_release), 16);
238 
239 	skb = get_skb(skb, len, GFP_KERNEL);
240 	if (!skb)
241 		return;
242 
243 	cxgb_mk_tid_release(skb, len, hwtid, 0);
244 	c4iw_ofld_send(rdev, skb);
245 	return;
246 }
247 
248 static void set_emss(struct c4iw_ep *ep, u16 opt)
249 {
250 	ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
251 		   ((AF_INET == ep->com.remote_addr.ss_family) ?
252 		    sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
253 		   sizeof(struct tcphdr);
254 	ep->mss = ep->emss;
255 	if (TCPOPT_TSTAMP_G(opt))
256 		ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
257 	if (ep->emss < 128)
258 		ep->emss = 128;
259 	if (ep->emss & 7)
260 		pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
261 			 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
262 	pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss,
263 		 ep->emss);
264 }
265 
266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
267 {
268 	enum c4iw_ep_state state;
269 
270 	mutex_lock(&epc->mutex);
271 	state = epc->state;
272 	mutex_unlock(&epc->mutex);
273 	return state;
274 }
275 
276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
277 {
278 	epc->state = new;
279 }
280 
281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
282 {
283 	mutex_lock(&epc->mutex);
284 	pr_debug("%s -> %s\n", states[epc->state], states[new]);
285 	__state_set(epc, new);
286 	mutex_unlock(&epc->mutex);
287 	return;
288 }
289 
290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
291 {
292 	struct sk_buff *skb;
293 	unsigned int i;
294 	size_t len;
295 
296 	len = roundup(sizeof(union cpl_wr_size), 16);
297 	for (i = 0; i < size; i++) {
298 		skb = alloc_skb(len, GFP_KERNEL);
299 		if (!skb)
300 			goto fail;
301 		skb_queue_tail(ep_skb_list, skb);
302 	}
303 	return 0;
304 fail:
305 	skb_queue_purge(ep_skb_list);
306 	return -ENOMEM;
307 }
308 
309 static void *alloc_ep(int size, gfp_t gfp)
310 {
311 	struct c4iw_ep_common *epc;
312 
313 	epc = kzalloc(size, gfp);
314 	if (epc) {
315 		epc->wr_waitp = c4iw_alloc_wr_wait(gfp);
316 		if (!epc->wr_waitp) {
317 			kfree(epc);
318 			epc = NULL;
319 			goto out;
320 		}
321 		kref_init(&epc->kref);
322 		mutex_init(&epc->mutex);
323 		c4iw_init_wr_wait(epc->wr_waitp);
324 	}
325 	pr_debug("alloc ep %p\n", epc);
326 out:
327 	return epc;
328 }
329 
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 	unsigned long flags;
333 
334 	xa_lock_irqsave(&ep->com.dev->hwtids, flags);
335 	__xa_erase(&ep->com.dev->hwtids, ep->hwtid);
336 	if (xa_empty(&ep->com.dev->hwtids))
337 		wake_up(&ep->com.dev->wait);
338 	xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
339 }
340 
341 static int insert_ep_tid(struct c4iw_ep *ep)
342 {
343 	unsigned long flags;
344 	int err;
345 
346 	xa_lock_irqsave(&ep->com.dev->hwtids, flags);
347 	err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL);
348 	xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
349 
350 	return err;
351 }
352 
353 /*
354  * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
355  */
356 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
357 {
358 	struct c4iw_ep *ep;
359 	unsigned long flags;
360 
361 	xa_lock_irqsave(&dev->hwtids, flags);
362 	ep = xa_load(&dev->hwtids, tid);
363 	if (ep)
364 		c4iw_get_ep(&ep->com);
365 	xa_unlock_irqrestore(&dev->hwtids, flags);
366 	return ep;
367 }
368 
369 /*
370  * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
371  */
372 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
373 					       unsigned int stid)
374 {
375 	struct c4iw_listen_ep *ep;
376 	unsigned long flags;
377 
378 	xa_lock_irqsave(&dev->stids, flags);
379 	ep = xa_load(&dev->stids, stid);
380 	if (ep)
381 		c4iw_get_ep(&ep->com);
382 	xa_unlock_irqrestore(&dev->stids, flags);
383 	return ep;
384 }
385 
386 void _c4iw_free_ep(struct kref *kref)
387 {
388 	struct c4iw_ep *ep;
389 
390 	ep = container_of(kref, struct c4iw_ep, com.kref);
391 	pr_debug("ep %p state %s\n", ep, states[ep->com.state]);
392 	if (test_bit(QP_REFERENCED, &ep->com.flags))
393 		deref_qp(ep);
394 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
395 		if (ep->com.remote_addr.ss_family == AF_INET6) {
396 			struct sockaddr_in6 *sin6 =
397 					(struct sockaddr_in6 *)
398 					&ep->com.local_addr;
399 
400 			cxgb4_clip_release(
401 					ep->com.dev->rdev.lldi.ports[0],
402 					(const u32 *)&sin6->sin6_addr.s6_addr,
403 					1);
404 		}
405 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
406 				 ep->com.local_addr.ss_family);
407 		dst_release(ep->dst);
408 		cxgb4_l2t_release(ep->l2t);
409 		kfree_skb(ep->mpa_skb);
410 	}
411 	if (!skb_queue_empty(&ep->com.ep_skb_list))
412 		skb_queue_purge(&ep->com.ep_skb_list);
413 	c4iw_put_wr_wait(ep->com.wr_waitp);
414 	kfree(ep);
415 }
416 
417 static void release_ep_resources(struct c4iw_ep *ep)
418 {
419 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
420 
421 	/*
422 	 * If we have a hwtid, then remove it from the idr table
423 	 * so lookups will no longer find this endpoint.  Otherwise
424 	 * we have a race where one thread finds the ep ptr just
425 	 * before the other thread is freeing the ep memory.
426 	 */
427 	if (ep->hwtid != -1)
428 		remove_ep_tid(ep);
429 	c4iw_put_ep(&ep->com);
430 }
431 
432 static int status2errno(int status)
433 {
434 	switch (status) {
435 	case CPL_ERR_NONE:
436 		return 0;
437 	case CPL_ERR_CONN_RESET:
438 		return -ECONNRESET;
439 	case CPL_ERR_ARP_MISS:
440 		return -EHOSTUNREACH;
441 	case CPL_ERR_CONN_TIMEDOUT:
442 		return -ETIMEDOUT;
443 	case CPL_ERR_TCAM_FULL:
444 		return -ENOMEM;
445 	case CPL_ERR_CONN_EXIST:
446 		return -EADDRINUSE;
447 	default:
448 		return -EIO;
449 	}
450 }
451 
452 /*
453  * Try and reuse skbs already allocated...
454  */
455 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
456 {
457 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
458 		skb_trim(skb, 0);
459 		skb_get(skb);
460 		skb_reset_transport_header(skb);
461 	} else {
462 		skb = alloc_skb(len, gfp);
463 		if (!skb)
464 			return NULL;
465 	}
466 	t4_set_arp_err_handler(skb, NULL, NULL);
467 	return skb;
468 }
469 
470 static struct net_device *get_real_dev(struct net_device *egress_dev)
471 {
472 	return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
473 }
474 
475 static void arp_failure_discard(void *handle, struct sk_buff *skb)
476 {
477 	pr_err("ARP failure\n");
478 	kfree_skb(skb);
479 }
480 
481 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
482 {
483 	pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
484 }
485 
486 enum {
487 	NUM_FAKE_CPLS = 2,
488 	FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
489 	FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
490 };
491 
492 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
493 {
494 	struct c4iw_ep *ep;
495 
496 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
497 	release_ep_resources(ep);
498 	kfree_skb(skb);
499 	return 0;
500 }
501 
502 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
503 {
504 	struct c4iw_ep *ep;
505 
506 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
507 	c4iw_put_ep(&ep->parent_ep->com);
508 	release_ep_resources(ep);
509 	kfree_skb(skb);
510 	return 0;
511 }
512 
513 /*
514  * Fake up a special CPL opcode and call sched() so process_work() will call
515  * _put_ep_safe() in a safe context to free the ep resources.  This is needed
516  * because ARP error handlers are called in an ATOMIC context, and
517  * _c4iw_free_ep() needs to block.
518  */
519 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
520 				  int cpl)
521 {
522 	struct cpl_act_establish *rpl = cplhdr(skb);
523 
524 	/* Set our special ARP_FAILURE opcode */
525 	rpl->ot.opcode = cpl;
526 
527 	/*
528 	 * Save ep in the skb->cb area, after where sched() will save the dev
529 	 * ptr.
530 	 */
531 	*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
532 	sched(ep->com.dev, skb);
533 }
534 
535 /* Handle an ARP failure for an accept */
536 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
537 {
538 	struct c4iw_ep *ep = handle;
539 
540 	pr_err("ARP failure during accept - tid %u - dropping connection\n",
541 	       ep->hwtid);
542 
543 	__state_set(&ep->com, DEAD);
544 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
545 }
546 
547 /*
548  * Handle an ARP failure for an active open.
549  */
550 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
551 {
552 	struct c4iw_ep *ep = handle;
553 
554 	pr_err("ARP failure during connect\n");
555 	connect_reply_upcall(ep, -EHOSTUNREACH);
556 	__state_set(&ep->com, DEAD);
557 	if (ep->com.remote_addr.ss_family == AF_INET6) {
558 		struct sockaddr_in6 *sin6 =
559 			(struct sockaddr_in6 *)&ep->com.local_addr;
560 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
561 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
562 	}
563 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
564 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
565 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
566 }
567 
568 /*
569  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
570  * and send it along.
571  */
572 static void abort_arp_failure(void *handle, struct sk_buff *skb)
573 {
574 	int ret;
575 	struct c4iw_ep *ep = handle;
576 	struct c4iw_rdev *rdev = &ep->com.dev->rdev;
577 	struct cpl_abort_req *req = cplhdr(skb);
578 
579 	pr_debug("rdev %p\n", rdev);
580 	req->cmd = CPL_ABORT_NO_RST;
581 	skb_get(skb);
582 	ret = c4iw_ofld_send(rdev, skb);
583 	if (ret) {
584 		__state_set(&ep->com, DEAD);
585 		queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
586 	} else
587 		kfree_skb(skb);
588 }
589 
590 static int send_flowc(struct c4iw_ep *ep)
591 {
592 	struct fw_flowc_wr *flowc;
593 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
594 	u16 vlan = ep->l2t->vlan;
595 	int nparams;
596 	int flowclen, flowclen16;
597 
598 	if (WARN_ON(!skb))
599 		return -ENOMEM;
600 
601 	if (vlan == CPL_L2T_VLAN_NONE)
602 		nparams = 9;
603 	else
604 		nparams = 10;
605 
606 	flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
607 	flowclen16 = DIV_ROUND_UP(flowclen, 16);
608 	flowclen = flowclen16 * 16;
609 
610 	flowc = __skb_put(skb, flowclen);
611 	memset(flowc, 0, flowclen);
612 
613 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
614 					   FW_FLOWC_WR_NPARAMS_V(nparams));
615 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
616 					  FW_WR_FLOWID_V(ep->hwtid));
617 
618 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
619 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
620 					    (ep->com.dev->rdev.lldi.pf));
621 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
622 	flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
623 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
624 	flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
625 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
626 	flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
627 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
628 	flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
629 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
630 	flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
631 	flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
632 	flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
633 	flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
634 	flowc->mnemval[7].val = cpu_to_be32(ep->emss);
635 	flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
636 	flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale);
637 	if (nparams == 10) {
638 		u16 pri;
639 		pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
640 		flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
641 		flowc->mnemval[9].val = cpu_to_be32(pri);
642 	}
643 
644 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
645 	return c4iw_ofld_send(&ep->com.dev->rdev, skb);
646 }
647 
648 static int send_halfclose(struct c4iw_ep *ep)
649 {
650 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
651 	u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
652 
653 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
654 	if (WARN_ON(!skb))
655 		return -ENOMEM;
656 
657 	cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
658 			      NULL, arp_failure_discard);
659 
660 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
661 }
662 
663 static void read_tcb(struct c4iw_ep *ep)
664 {
665 	struct sk_buff *skb;
666 	struct cpl_get_tcb *req;
667 	int wrlen = roundup(sizeof(*req), 16);
668 
669 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
670 	if (WARN_ON(!skb))
671 		return;
672 
673 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
674 	req = (struct cpl_get_tcb *) skb_put(skb, wrlen);
675 	memset(req, 0, wrlen);
676 	INIT_TP_WR(req, ep->hwtid);
677 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid));
678 	req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid));
679 
680 	/*
681 	 * keep a ref on the ep so the tcb is not unlocked before this
682 	 * cpl completes. The ref is released in read_tcb_rpl().
683 	 */
684 	c4iw_get_ep(&ep->com);
685 	if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb)))
686 		c4iw_put_ep(&ep->com);
687 }
688 
689 static int send_abort_req(struct c4iw_ep *ep)
690 {
691 	u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
692 	struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
693 
694 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
695 	if (WARN_ON(!req_skb))
696 		return -ENOMEM;
697 
698 	cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
699 			  ep, abort_arp_failure);
700 
701 	return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
702 }
703 
704 static int send_abort(struct c4iw_ep *ep)
705 {
706 	if (!ep->com.qp || !ep->com.qp->srq) {
707 		send_abort_req(ep);
708 		return 0;
709 	}
710 	set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags);
711 	read_tcb(ep);
712 	return 0;
713 }
714 
715 static int send_connect(struct c4iw_ep *ep)
716 {
717 	struct cpl_act_open_req *req = NULL;
718 	struct cpl_t5_act_open_req *t5req = NULL;
719 	struct cpl_t6_act_open_req *t6req = NULL;
720 	struct cpl_act_open_req6 *req6 = NULL;
721 	struct cpl_t5_act_open_req6 *t5req6 = NULL;
722 	struct cpl_t6_act_open_req6 *t6req6 = NULL;
723 	struct sk_buff *skb;
724 	u64 opt0;
725 	u32 opt2;
726 	unsigned int mtu_idx;
727 	u32 wscale;
728 	int win, sizev4, sizev6, wrlen;
729 	struct sockaddr_in *la = (struct sockaddr_in *)
730 				 &ep->com.local_addr;
731 	struct sockaddr_in *ra = (struct sockaddr_in *)
732 				 &ep->com.remote_addr;
733 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
734 				   &ep->com.local_addr;
735 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
736 				   &ep->com.remote_addr;
737 	int ret;
738 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
739 	u32 isn = (prandom_u32() & ~7UL) - 1;
740 	struct net_device *netdev;
741 	u64 params;
742 
743 	netdev = ep->com.dev->rdev.lldi.ports[0];
744 
745 	switch (CHELSIO_CHIP_VERSION(adapter_type)) {
746 	case CHELSIO_T4:
747 		sizev4 = sizeof(struct cpl_act_open_req);
748 		sizev6 = sizeof(struct cpl_act_open_req6);
749 		break;
750 	case CHELSIO_T5:
751 		sizev4 = sizeof(struct cpl_t5_act_open_req);
752 		sizev6 = sizeof(struct cpl_t5_act_open_req6);
753 		break;
754 	case CHELSIO_T6:
755 		sizev4 = sizeof(struct cpl_t6_act_open_req);
756 		sizev6 = sizeof(struct cpl_t6_act_open_req6);
757 		break;
758 	default:
759 		pr_err("T%d Chip is not supported\n",
760 		       CHELSIO_CHIP_VERSION(adapter_type));
761 		return -EINVAL;
762 	}
763 
764 	wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
765 			roundup(sizev4, 16) :
766 			roundup(sizev6, 16);
767 
768 	pr_debug("ep %p atid %u\n", ep, ep->atid);
769 
770 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
771 	if (!skb) {
772 		pr_err("%s - failed to alloc skb\n", __func__);
773 		return -ENOMEM;
774 	}
775 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
776 
777 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
778 		      enable_tcp_timestamps,
779 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
780 	wscale = cxgb_compute_wscale(rcv_win);
781 
782 	/*
783 	 * Specify the largest window that will fit in opt0. The
784 	 * remainder will be specified in the rx_data_ack.
785 	 */
786 	win = ep->rcv_win >> 10;
787 	if (win > RCV_BUFSIZ_M)
788 		win = RCV_BUFSIZ_M;
789 
790 	opt0 = (nocong ? NO_CONG_F : 0) |
791 	       KEEP_ALIVE_F |
792 	       DELACK_F |
793 	       WND_SCALE_V(wscale) |
794 	       MSS_IDX_V(mtu_idx) |
795 	       L2T_IDX_V(ep->l2t->idx) |
796 	       TX_CHAN_V(ep->tx_chan) |
797 	       SMAC_SEL_V(ep->smac_idx) |
798 	       DSCP_V(ep->tos >> 2) |
799 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
800 	       RCV_BUFSIZ_V(win);
801 	opt2 = RX_CHANNEL_V(0) |
802 	       CCTRL_ECN_V(enable_ecn) |
803 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
804 	if (enable_tcp_timestamps)
805 		opt2 |= TSTAMPS_EN_F;
806 	if (enable_tcp_sack)
807 		opt2 |= SACK_EN_F;
808 	if (wscale && enable_tcp_window_scaling)
809 		opt2 |= WND_SCALE_EN_F;
810 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
811 		if (peer2peer)
812 			isn += 4;
813 
814 		opt2 |= T5_OPT_2_VALID_F;
815 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
816 		opt2 |= T5_ISS_F;
817 	}
818 
819 	params = cxgb4_select_ntuple(netdev, ep->l2t);
820 
821 	if (ep->com.remote_addr.ss_family == AF_INET6)
822 		cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
823 			       (const u32 *)&la6->sin6_addr.s6_addr, 1);
824 
825 	t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
826 
827 	if (ep->com.remote_addr.ss_family == AF_INET) {
828 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
829 		case CHELSIO_T4:
830 			req = skb_put(skb, wrlen);
831 			INIT_TP_WR(req, 0);
832 			break;
833 		case CHELSIO_T5:
834 			t5req = skb_put(skb, wrlen);
835 			INIT_TP_WR(t5req, 0);
836 			req = (struct cpl_act_open_req *)t5req;
837 			break;
838 		case CHELSIO_T6:
839 			t6req = skb_put(skb, wrlen);
840 			INIT_TP_WR(t6req, 0);
841 			req = (struct cpl_act_open_req *)t6req;
842 			t5req = (struct cpl_t5_act_open_req *)t6req;
843 			break;
844 		default:
845 			pr_err("T%d Chip is not supported\n",
846 			       CHELSIO_CHIP_VERSION(adapter_type));
847 			ret = -EINVAL;
848 			goto clip_release;
849 		}
850 
851 		OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
852 					((ep->rss_qid<<14) | ep->atid)));
853 		req->local_port = la->sin_port;
854 		req->peer_port = ra->sin_port;
855 		req->local_ip = la->sin_addr.s_addr;
856 		req->peer_ip = ra->sin_addr.s_addr;
857 		req->opt0 = cpu_to_be64(opt0);
858 
859 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
860 			req->params = cpu_to_be32(params);
861 			req->opt2 = cpu_to_be32(opt2);
862 		} else {
863 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
864 				t5req->params =
865 					  cpu_to_be64(FILTER_TUPLE_V(params));
866 				t5req->rsvd = cpu_to_be32(isn);
867 				pr_debug("snd_isn %u\n", t5req->rsvd);
868 				t5req->opt2 = cpu_to_be32(opt2);
869 			} else {
870 				t6req->params =
871 					  cpu_to_be64(FILTER_TUPLE_V(params));
872 				t6req->rsvd = cpu_to_be32(isn);
873 				pr_debug("snd_isn %u\n", t6req->rsvd);
874 				t6req->opt2 = cpu_to_be32(opt2);
875 			}
876 		}
877 	} else {
878 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
879 		case CHELSIO_T4:
880 			req6 = skb_put(skb, wrlen);
881 			INIT_TP_WR(req6, 0);
882 			break;
883 		case CHELSIO_T5:
884 			t5req6 = skb_put(skb, wrlen);
885 			INIT_TP_WR(t5req6, 0);
886 			req6 = (struct cpl_act_open_req6 *)t5req6;
887 			break;
888 		case CHELSIO_T6:
889 			t6req6 = skb_put(skb, wrlen);
890 			INIT_TP_WR(t6req6, 0);
891 			req6 = (struct cpl_act_open_req6 *)t6req6;
892 			t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
893 			break;
894 		default:
895 			pr_err("T%d Chip is not supported\n",
896 			       CHELSIO_CHIP_VERSION(adapter_type));
897 			ret = -EINVAL;
898 			goto clip_release;
899 		}
900 
901 		OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
902 					((ep->rss_qid<<14)|ep->atid)));
903 		req6->local_port = la6->sin6_port;
904 		req6->peer_port = ra6->sin6_port;
905 		req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
906 		req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
907 		req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
908 		req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
909 		req6->opt0 = cpu_to_be64(opt0);
910 
911 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
912 			req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev,
913 								      ep->l2t));
914 			req6->opt2 = cpu_to_be32(opt2);
915 		} else {
916 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
917 				t5req6->params =
918 					    cpu_to_be64(FILTER_TUPLE_V(params));
919 				t5req6->rsvd = cpu_to_be32(isn);
920 				pr_debug("snd_isn %u\n", t5req6->rsvd);
921 				t5req6->opt2 = cpu_to_be32(opt2);
922 			} else {
923 				t6req6->params =
924 					    cpu_to_be64(FILTER_TUPLE_V(params));
925 				t6req6->rsvd = cpu_to_be32(isn);
926 				pr_debug("snd_isn %u\n", t6req6->rsvd);
927 				t6req6->opt2 = cpu_to_be32(opt2);
928 			}
929 
930 		}
931 	}
932 
933 	set_bit(ACT_OPEN_REQ, &ep->com.history);
934 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
935 clip_release:
936 	if (ret && ep->com.remote_addr.ss_family == AF_INET6)
937 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
938 				   (const u32 *)&la6->sin6_addr.s6_addr, 1);
939 	return ret;
940 }
941 
942 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
943 			u8 mpa_rev_to_use)
944 {
945 	int mpalen, wrlen, ret;
946 	struct fw_ofld_tx_data_wr *req;
947 	struct mpa_message *mpa;
948 	struct mpa_v2_conn_params mpa_v2_params;
949 
950 	pr_debug("ep %p tid %u pd_len %d\n",
951 		 ep, ep->hwtid, ep->plen);
952 
953 	mpalen = sizeof(*mpa) + ep->plen;
954 	if (mpa_rev_to_use == 2)
955 		mpalen += sizeof(struct mpa_v2_conn_params);
956 	wrlen = roundup(mpalen + sizeof(*req), 16);
957 	skb = get_skb(skb, wrlen, GFP_KERNEL);
958 	if (!skb) {
959 		connect_reply_upcall(ep, -ENOMEM);
960 		return -ENOMEM;
961 	}
962 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
963 
964 	req = skb_put_zero(skb, wrlen);
965 	req->op_to_immdlen = cpu_to_be32(
966 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
967 		FW_WR_COMPL_F |
968 		FW_WR_IMMDLEN_V(mpalen));
969 	req->flowid_len16 = cpu_to_be32(
970 		FW_WR_FLOWID_V(ep->hwtid) |
971 		FW_WR_LEN16_V(wrlen >> 4));
972 	req->plen = cpu_to_be32(mpalen);
973 	req->tunnel_to_proxy = cpu_to_be32(
974 		FW_OFLD_TX_DATA_WR_FLUSH_F |
975 		FW_OFLD_TX_DATA_WR_SHOVE_F);
976 
977 	mpa = (struct mpa_message *)(req + 1);
978 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
979 
980 	mpa->flags = 0;
981 	if (crc_enabled)
982 		mpa->flags |= MPA_CRC;
983 	if (markers_enabled) {
984 		mpa->flags |= MPA_MARKERS;
985 		ep->mpa_attr.recv_marker_enabled = 1;
986 	} else {
987 		ep->mpa_attr.recv_marker_enabled = 0;
988 	}
989 	if (mpa_rev_to_use == 2)
990 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
991 
992 	mpa->private_data_size = htons(ep->plen);
993 	mpa->revision = mpa_rev_to_use;
994 	if (mpa_rev_to_use == 1) {
995 		ep->tried_with_mpa_v1 = 1;
996 		ep->retry_with_mpa_v1 = 0;
997 	}
998 
999 	if (mpa_rev_to_use == 2) {
1000 		mpa->private_data_size =
1001 			htons(ntohs(mpa->private_data_size) +
1002 			      sizeof(struct mpa_v2_conn_params));
1003 		pr_debug("initiator ird %u ord %u\n", ep->ird,
1004 			 ep->ord);
1005 		mpa_v2_params.ird = htons((u16)ep->ird);
1006 		mpa_v2_params.ord = htons((u16)ep->ord);
1007 
1008 		if (peer2peer) {
1009 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1010 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1011 				mpa_v2_params.ord |=
1012 					htons(MPA_V2_RDMA_WRITE_RTR);
1013 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1014 				mpa_v2_params.ord |=
1015 					htons(MPA_V2_RDMA_READ_RTR);
1016 		}
1017 		memcpy(mpa->private_data, &mpa_v2_params,
1018 		       sizeof(struct mpa_v2_conn_params));
1019 
1020 		if (ep->plen)
1021 			memcpy(mpa->private_data +
1022 			       sizeof(struct mpa_v2_conn_params),
1023 			       ep->mpa_pkt + sizeof(*mpa), ep->plen);
1024 	} else
1025 		if (ep->plen)
1026 			memcpy(mpa->private_data,
1027 					ep->mpa_pkt + sizeof(*mpa), ep->plen);
1028 
1029 	/*
1030 	 * Reference the mpa skb.  This ensures the data area
1031 	 * will remain in memory until the hw acks the tx.
1032 	 * Function fw4_ack() will deref it.
1033 	 */
1034 	skb_get(skb);
1035 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1036 	ep->mpa_skb = skb;
1037 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1038 	if (ret)
1039 		return ret;
1040 	start_ep_timer(ep);
1041 	__state_set(&ep->com, MPA_REQ_SENT);
1042 	ep->mpa_attr.initiator = 1;
1043 	ep->snd_seq += mpalen;
1044 	return ret;
1045 }
1046 
1047 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1048 {
1049 	int mpalen, wrlen;
1050 	struct fw_ofld_tx_data_wr *req;
1051 	struct mpa_message *mpa;
1052 	struct sk_buff *skb;
1053 	struct mpa_v2_conn_params mpa_v2_params;
1054 
1055 	pr_debug("ep %p tid %u pd_len %d\n",
1056 		 ep, ep->hwtid, ep->plen);
1057 
1058 	mpalen = sizeof(*mpa) + plen;
1059 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1060 		mpalen += sizeof(struct mpa_v2_conn_params);
1061 	wrlen = roundup(mpalen + sizeof(*req), 16);
1062 
1063 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1064 	if (!skb) {
1065 		pr_err("%s - cannot alloc skb!\n", __func__);
1066 		return -ENOMEM;
1067 	}
1068 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1069 
1070 	req = skb_put_zero(skb, wrlen);
1071 	req->op_to_immdlen = cpu_to_be32(
1072 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1073 		FW_WR_COMPL_F |
1074 		FW_WR_IMMDLEN_V(mpalen));
1075 	req->flowid_len16 = cpu_to_be32(
1076 		FW_WR_FLOWID_V(ep->hwtid) |
1077 		FW_WR_LEN16_V(wrlen >> 4));
1078 	req->plen = cpu_to_be32(mpalen);
1079 	req->tunnel_to_proxy = cpu_to_be32(
1080 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1081 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1082 
1083 	mpa = (struct mpa_message *)(req + 1);
1084 	memset(mpa, 0, sizeof(*mpa));
1085 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1086 	mpa->flags = MPA_REJECT;
1087 	mpa->revision = ep->mpa_attr.version;
1088 	mpa->private_data_size = htons(plen);
1089 
1090 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1091 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1092 		mpa->private_data_size =
1093 			htons(ntohs(mpa->private_data_size) +
1094 			      sizeof(struct mpa_v2_conn_params));
1095 		mpa_v2_params.ird = htons(((u16)ep->ird) |
1096 					  (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1097 					   0));
1098 		mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1099 					  (p2p_type ==
1100 					   FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1101 					   MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1102 					   FW_RI_INIT_P2PTYPE_READ_REQ ?
1103 					   MPA_V2_RDMA_READ_RTR : 0) : 0));
1104 		memcpy(mpa->private_data, &mpa_v2_params,
1105 		       sizeof(struct mpa_v2_conn_params));
1106 
1107 		if (ep->plen)
1108 			memcpy(mpa->private_data +
1109 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1110 	} else
1111 		if (plen)
1112 			memcpy(mpa->private_data, pdata, plen);
1113 
1114 	/*
1115 	 * Reference the mpa skb again.  This ensures the data area
1116 	 * will remain in memory until the hw acks the tx.
1117 	 * Function fw4_ack() will deref it.
1118 	 */
1119 	skb_get(skb);
1120 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1121 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1122 	ep->mpa_skb = skb;
1123 	ep->snd_seq += mpalen;
1124 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1125 }
1126 
1127 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1128 {
1129 	int mpalen, wrlen;
1130 	struct fw_ofld_tx_data_wr *req;
1131 	struct mpa_message *mpa;
1132 	struct sk_buff *skb;
1133 	struct mpa_v2_conn_params mpa_v2_params;
1134 
1135 	pr_debug("ep %p tid %u pd_len %d\n",
1136 		 ep, ep->hwtid, ep->plen);
1137 
1138 	mpalen = sizeof(*mpa) + plen;
1139 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1140 		mpalen += sizeof(struct mpa_v2_conn_params);
1141 	wrlen = roundup(mpalen + sizeof(*req), 16);
1142 
1143 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1144 	if (!skb) {
1145 		pr_err("%s - cannot alloc skb!\n", __func__);
1146 		return -ENOMEM;
1147 	}
1148 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1149 
1150 	req = skb_put_zero(skb, wrlen);
1151 	req->op_to_immdlen = cpu_to_be32(
1152 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1153 		FW_WR_COMPL_F |
1154 		FW_WR_IMMDLEN_V(mpalen));
1155 	req->flowid_len16 = cpu_to_be32(
1156 		FW_WR_FLOWID_V(ep->hwtid) |
1157 		FW_WR_LEN16_V(wrlen >> 4));
1158 	req->plen = cpu_to_be32(mpalen);
1159 	req->tunnel_to_proxy = cpu_to_be32(
1160 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1161 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1162 
1163 	mpa = (struct mpa_message *)(req + 1);
1164 	memset(mpa, 0, sizeof(*mpa));
1165 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1166 	mpa->flags = 0;
1167 	if (ep->mpa_attr.crc_enabled)
1168 		mpa->flags |= MPA_CRC;
1169 	if (ep->mpa_attr.recv_marker_enabled)
1170 		mpa->flags |= MPA_MARKERS;
1171 	mpa->revision = ep->mpa_attr.version;
1172 	mpa->private_data_size = htons(plen);
1173 
1174 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1175 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1176 		mpa->private_data_size =
1177 			htons(ntohs(mpa->private_data_size) +
1178 			      sizeof(struct mpa_v2_conn_params));
1179 		mpa_v2_params.ird = htons((u16)ep->ird);
1180 		mpa_v2_params.ord = htons((u16)ep->ord);
1181 		if (peer2peer && (ep->mpa_attr.p2p_type !=
1182 					FW_RI_INIT_P2PTYPE_DISABLED)) {
1183 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1184 
1185 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1186 				mpa_v2_params.ord |=
1187 					htons(MPA_V2_RDMA_WRITE_RTR);
1188 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1189 				mpa_v2_params.ord |=
1190 					htons(MPA_V2_RDMA_READ_RTR);
1191 		}
1192 
1193 		memcpy(mpa->private_data, &mpa_v2_params,
1194 		       sizeof(struct mpa_v2_conn_params));
1195 
1196 		if (ep->plen)
1197 			memcpy(mpa->private_data +
1198 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1199 	} else
1200 		if (plen)
1201 			memcpy(mpa->private_data, pdata, plen);
1202 
1203 	/*
1204 	 * Reference the mpa skb.  This ensures the data area
1205 	 * will remain in memory until the hw acks the tx.
1206 	 * Function fw4_ack() will deref it.
1207 	 */
1208 	skb_get(skb);
1209 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1210 	ep->mpa_skb = skb;
1211 	__state_set(&ep->com, MPA_REP_SENT);
1212 	ep->snd_seq += mpalen;
1213 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1214 }
1215 
1216 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1217 {
1218 	struct c4iw_ep *ep;
1219 	struct cpl_act_establish *req = cplhdr(skb);
1220 	unsigned short tcp_opt = ntohs(req->tcp_opt);
1221 	unsigned int tid = GET_TID(req);
1222 	unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1223 	struct tid_info *t = dev->rdev.lldi.tids;
1224 	int ret;
1225 
1226 	ep = lookup_atid(t, atid);
1227 
1228 	pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid,
1229 		 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1230 
1231 	mutex_lock(&ep->com.mutex);
1232 	dst_confirm(ep->dst);
1233 
1234 	/* setup the hwtid for this connection */
1235 	ep->hwtid = tid;
1236 	cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family);
1237 	insert_ep_tid(ep);
1238 
1239 	ep->snd_seq = be32_to_cpu(req->snd_isn);
1240 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1241 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
1242 
1243 	set_emss(ep, tcp_opt);
1244 
1245 	/* dealloc the atid */
1246 	xa_erase_irq(&ep->com.dev->atids, atid);
1247 	cxgb4_free_atid(t, atid);
1248 	set_bit(ACT_ESTAB, &ep->com.history);
1249 
1250 	/* start MPA negotiation */
1251 	ret = send_flowc(ep);
1252 	if (ret)
1253 		goto err;
1254 	if (ep->retry_with_mpa_v1)
1255 		ret = send_mpa_req(ep, skb, 1);
1256 	else
1257 		ret = send_mpa_req(ep, skb, mpa_rev);
1258 	if (ret)
1259 		goto err;
1260 	mutex_unlock(&ep->com.mutex);
1261 	return 0;
1262 err:
1263 	mutex_unlock(&ep->com.mutex);
1264 	connect_reply_upcall(ep, -ENOMEM);
1265 	c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1266 	return 0;
1267 }
1268 
1269 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1270 {
1271 	struct iw_cm_event event;
1272 
1273 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1274 	memset(&event, 0, sizeof(event));
1275 	event.event = IW_CM_EVENT_CLOSE;
1276 	event.status = status;
1277 	if (ep->com.cm_id) {
1278 		pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1279 			 ep, ep->com.cm_id, ep->hwtid);
1280 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1281 		deref_cm_id(&ep->com);
1282 		set_bit(CLOSE_UPCALL, &ep->com.history);
1283 	}
1284 }
1285 
1286 static void peer_close_upcall(struct c4iw_ep *ep)
1287 {
1288 	struct iw_cm_event event;
1289 
1290 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1291 	memset(&event, 0, sizeof(event));
1292 	event.event = IW_CM_EVENT_DISCONNECT;
1293 	if (ep->com.cm_id) {
1294 		pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1295 			 ep, ep->com.cm_id, ep->hwtid);
1296 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1297 		set_bit(DISCONN_UPCALL, &ep->com.history);
1298 	}
1299 }
1300 
1301 static void peer_abort_upcall(struct c4iw_ep *ep)
1302 {
1303 	struct iw_cm_event event;
1304 
1305 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1306 	memset(&event, 0, sizeof(event));
1307 	event.event = IW_CM_EVENT_CLOSE;
1308 	event.status = -ECONNRESET;
1309 	if (ep->com.cm_id) {
1310 		pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep,
1311 			 ep->com.cm_id, ep->hwtid);
1312 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 		deref_cm_id(&ep->com);
1314 		set_bit(ABORT_UPCALL, &ep->com.history);
1315 	}
1316 }
1317 
1318 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1319 {
1320 	struct iw_cm_event event;
1321 
1322 	pr_debug("ep %p tid %u status %d\n",
1323 		 ep, ep->hwtid, status);
1324 	memset(&event, 0, sizeof(event));
1325 	event.event = IW_CM_EVENT_CONNECT_REPLY;
1326 	event.status = status;
1327 	memcpy(&event.local_addr, &ep->com.local_addr,
1328 	       sizeof(ep->com.local_addr));
1329 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1330 	       sizeof(ep->com.remote_addr));
1331 
1332 	if ((status == 0) || (status == -ECONNREFUSED)) {
1333 		if (!ep->tried_with_mpa_v1) {
1334 			/* this means MPA_v2 is used */
1335 			event.ord = ep->ird;
1336 			event.ird = ep->ord;
1337 			event.private_data_len = ep->plen -
1338 				sizeof(struct mpa_v2_conn_params);
1339 			event.private_data = ep->mpa_pkt +
1340 				sizeof(struct mpa_message) +
1341 				sizeof(struct mpa_v2_conn_params);
1342 		} else {
1343 			/* this means MPA_v1 is used */
1344 			event.ord = cur_max_read_depth(ep->com.dev);
1345 			event.ird = cur_max_read_depth(ep->com.dev);
1346 			event.private_data_len = ep->plen;
1347 			event.private_data = ep->mpa_pkt +
1348 				sizeof(struct mpa_message);
1349 		}
1350 	}
1351 
1352 	pr_debug("ep %p tid %u status %d\n", ep,
1353 		 ep->hwtid, status);
1354 	set_bit(CONN_RPL_UPCALL, &ep->com.history);
1355 	ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1356 
1357 	if (status < 0)
1358 		deref_cm_id(&ep->com);
1359 }
1360 
1361 static int connect_request_upcall(struct c4iw_ep *ep)
1362 {
1363 	struct iw_cm_event event;
1364 	int ret;
1365 
1366 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1367 	memset(&event, 0, sizeof(event));
1368 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
1369 	memcpy(&event.local_addr, &ep->com.local_addr,
1370 	       sizeof(ep->com.local_addr));
1371 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1372 	       sizeof(ep->com.remote_addr));
1373 	event.provider_data = ep;
1374 	if (!ep->tried_with_mpa_v1) {
1375 		/* this means MPA_v2 is used */
1376 		event.ord = ep->ord;
1377 		event.ird = ep->ird;
1378 		event.private_data_len = ep->plen -
1379 			sizeof(struct mpa_v2_conn_params);
1380 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1381 			sizeof(struct mpa_v2_conn_params);
1382 	} else {
1383 		/* this means MPA_v1 is used. Send max supported */
1384 		event.ord = cur_max_read_depth(ep->com.dev);
1385 		event.ird = cur_max_read_depth(ep->com.dev);
1386 		event.private_data_len = ep->plen;
1387 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1388 	}
1389 	c4iw_get_ep(&ep->com);
1390 	ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1391 						      &event);
1392 	if (ret)
1393 		c4iw_put_ep(&ep->com);
1394 	set_bit(CONNREQ_UPCALL, &ep->com.history);
1395 	c4iw_put_ep(&ep->parent_ep->com);
1396 	return ret;
1397 }
1398 
1399 static void established_upcall(struct c4iw_ep *ep)
1400 {
1401 	struct iw_cm_event event;
1402 
1403 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1404 	memset(&event, 0, sizeof(event));
1405 	event.event = IW_CM_EVENT_ESTABLISHED;
1406 	event.ird = ep->ord;
1407 	event.ord = ep->ird;
1408 	if (ep->com.cm_id) {
1409 		pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1410 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1411 		set_bit(ESTAB_UPCALL, &ep->com.history);
1412 	}
1413 }
1414 
1415 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1416 {
1417 	struct sk_buff *skb;
1418 	u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1419 	u32 credit_dack;
1420 
1421 	pr_debug("ep %p tid %u credits %u\n",
1422 		 ep, ep->hwtid, credits);
1423 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1424 	if (!skb) {
1425 		pr_err("update_rx_credits - cannot alloc skb!\n");
1426 		return 0;
1427 	}
1428 
1429 	/*
1430 	 * If we couldn't specify the entire rcv window at connection setup
1431 	 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1432 	 * then add the overage in to the credits returned.
1433 	 */
1434 	if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1435 		credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1436 
1437 	credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1438 		      RX_DACK_MODE_V(dack_mode);
1439 
1440 	cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1441 			    credit_dack);
1442 
1443 	c4iw_ofld_send(&ep->com.dev->rdev, skb);
1444 	return credits;
1445 }
1446 
1447 #define RELAXED_IRD_NEGOTIATION 1
1448 
1449 /*
1450  * process_mpa_reply - process streaming mode MPA reply
1451  *
1452  * Returns:
1453  *
1454  * 0 upon success indicating a connect request was delivered to the ULP
1455  * or the mpa request is incomplete but valid so far.
1456  *
1457  * 1 if a failure requires the caller to close the connection.
1458  *
1459  * 2 if a failure requires the caller to abort the connection.
1460  */
1461 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1462 {
1463 	struct mpa_message *mpa;
1464 	struct mpa_v2_conn_params *mpa_v2_params;
1465 	u16 plen;
1466 	u16 resp_ird, resp_ord;
1467 	u8 rtr_mismatch = 0, insuff_ird = 0;
1468 	struct c4iw_qp_attributes attrs;
1469 	enum c4iw_qp_attr_mask mask;
1470 	int err;
1471 	int disconnect = 0;
1472 
1473 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1474 
1475 	/*
1476 	 * If we get more than the supported amount of private data
1477 	 * then we must fail this connection.
1478 	 */
1479 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1480 		err = -EINVAL;
1481 		goto err_stop_timer;
1482 	}
1483 
1484 	/*
1485 	 * copy the new data into our accumulation buffer.
1486 	 */
1487 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1488 				  skb->len);
1489 	ep->mpa_pkt_len += skb->len;
1490 
1491 	/*
1492 	 * if we don't even have the mpa message, then bail.
1493 	 */
1494 	if (ep->mpa_pkt_len < sizeof(*mpa))
1495 		return 0;
1496 	mpa = (struct mpa_message *) ep->mpa_pkt;
1497 
1498 	/* Validate MPA header. */
1499 	if (mpa->revision > mpa_rev) {
1500 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1501 		       __func__, mpa_rev, mpa->revision);
1502 		err = -EPROTO;
1503 		goto err_stop_timer;
1504 	}
1505 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1506 		err = -EPROTO;
1507 		goto err_stop_timer;
1508 	}
1509 
1510 	plen = ntohs(mpa->private_data_size);
1511 
1512 	/*
1513 	 * Fail if there's too much private data.
1514 	 */
1515 	if (plen > MPA_MAX_PRIVATE_DATA) {
1516 		err = -EPROTO;
1517 		goto err_stop_timer;
1518 	}
1519 
1520 	/*
1521 	 * If plen does not account for pkt size
1522 	 */
1523 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1524 		err = -EPROTO;
1525 		goto err_stop_timer;
1526 	}
1527 
1528 	ep->plen = (u8) plen;
1529 
1530 	/*
1531 	 * If we don't have all the pdata yet, then bail.
1532 	 * We'll continue process when more data arrives.
1533 	 */
1534 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1535 		return 0;
1536 
1537 	if (mpa->flags & MPA_REJECT) {
1538 		err = -ECONNREFUSED;
1539 		goto err_stop_timer;
1540 	}
1541 
1542 	/*
1543 	 * Stop mpa timer.  If it expired, then
1544 	 * we ignore the MPA reply.  process_timeout()
1545 	 * will abort the connection.
1546 	 */
1547 	if (stop_ep_timer(ep))
1548 		return 0;
1549 
1550 	/*
1551 	 * If we get here we have accumulated the entire mpa
1552 	 * start reply message including private data. And
1553 	 * the MPA header is valid.
1554 	 */
1555 	__state_set(&ep->com, FPDU_MODE);
1556 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1557 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1558 	ep->mpa_attr.version = mpa->revision;
1559 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1560 
1561 	if (mpa->revision == 2) {
1562 		ep->mpa_attr.enhanced_rdma_conn =
1563 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1564 		if (ep->mpa_attr.enhanced_rdma_conn) {
1565 			mpa_v2_params = (struct mpa_v2_conn_params *)
1566 				(ep->mpa_pkt + sizeof(*mpa));
1567 			resp_ird = ntohs(mpa_v2_params->ird) &
1568 				MPA_V2_IRD_ORD_MASK;
1569 			resp_ord = ntohs(mpa_v2_params->ord) &
1570 				MPA_V2_IRD_ORD_MASK;
1571 			pr_debug("responder ird %u ord %u ep ird %u ord %u\n",
1572 				 resp_ird, resp_ord, ep->ird, ep->ord);
1573 
1574 			/*
1575 			 * This is a double-check. Ideally, below checks are
1576 			 * not required since ird/ord stuff has been taken
1577 			 * care of in c4iw_accept_cr
1578 			 */
1579 			if (ep->ird < resp_ord) {
1580 				if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1581 				    ep->com.dev->rdev.lldi.max_ordird_qp)
1582 					ep->ird = resp_ord;
1583 				else
1584 					insuff_ird = 1;
1585 			} else if (ep->ird > resp_ord) {
1586 				ep->ird = resp_ord;
1587 			}
1588 			if (ep->ord > resp_ird) {
1589 				if (RELAXED_IRD_NEGOTIATION)
1590 					ep->ord = resp_ird;
1591 				else
1592 					insuff_ird = 1;
1593 			}
1594 			if (insuff_ird) {
1595 				err = -ENOMEM;
1596 				ep->ird = resp_ord;
1597 				ep->ord = resp_ird;
1598 			}
1599 
1600 			if (ntohs(mpa_v2_params->ird) &
1601 					MPA_V2_PEER2PEER_MODEL) {
1602 				if (ntohs(mpa_v2_params->ord) &
1603 						MPA_V2_RDMA_WRITE_RTR)
1604 					ep->mpa_attr.p2p_type =
1605 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1606 				else if (ntohs(mpa_v2_params->ord) &
1607 						MPA_V2_RDMA_READ_RTR)
1608 					ep->mpa_attr.p2p_type =
1609 						FW_RI_INIT_P2PTYPE_READ_REQ;
1610 			}
1611 		}
1612 	} else if (mpa->revision == 1)
1613 		if (peer2peer)
1614 			ep->mpa_attr.p2p_type = p2p_type;
1615 
1616 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1617 		 ep->mpa_attr.crc_enabled,
1618 		 ep->mpa_attr.recv_marker_enabled,
1619 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1620 		 ep->mpa_attr.p2p_type, p2p_type);
1621 
1622 	/*
1623 	 * If responder's RTR does not match with that of initiator, assign
1624 	 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1625 	 * generated when moving QP to RTS state.
1626 	 * A TERM message will be sent after QP has moved to RTS state
1627 	 */
1628 	if ((ep->mpa_attr.version == 2) && peer2peer &&
1629 			(ep->mpa_attr.p2p_type != p2p_type)) {
1630 		ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1631 		rtr_mismatch = 1;
1632 	}
1633 
1634 	attrs.mpa_attr = ep->mpa_attr;
1635 	attrs.max_ird = ep->ird;
1636 	attrs.max_ord = ep->ord;
1637 	attrs.llp_stream_handle = ep;
1638 	attrs.next_state = C4IW_QP_STATE_RTS;
1639 
1640 	mask = C4IW_QP_ATTR_NEXT_STATE |
1641 	    C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1642 	    C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1643 
1644 	/* bind QP and TID with INIT_WR */
1645 	err = c4iw_modify_qp(ep->com.qp->rhp,
1646 			     ep->com.qp, mask, &attrs, 1);
1647 	if (err)
1648 		goto err;
1649 
1650 	/*
1651 	 * If responder's RTR requirement did not match with what initiator
1652 	 * supports, generate TERM message
1653 	 */
1654 	if (rtr_mismatch) {
1655 		pr_err("%s: RTR mismatch, sending TERM\n", __func__);
1656 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1657 		attrs.ecode = MPA_NOMATCH_RTR;
1658 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1659 		attrs.send_term = 1;
1660 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1661 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1662 		err = -ENOMEM;
1663 		disconnect = 1;
1664 		goto out;
1665 	}
1666 
1667 	/*
1668 	 * Generate TERM if initiator IRD is not sufficient for responder
1669 	 * provided ORD. Currently, we do the same behaviour even when
1670 	 * responder provided IRD is also not sufficient as regards to
1671 	 * initiator ORD.
1672 	 */
1673 	if (insuff_ird) {
1674 		pr_err("%s: Insufficient IRD, sending TERM\n", __func__);
1675 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1676 		attrs.ecode = MPA_INSUFF_IRD;
1677 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1678 		attrs.send_term = 1;
1679 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1680 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1681 		err = -ENOMEM;
1682 		disconnect = 1;
1683 		goto out;
1684 	}
1685 	goto out;
1686 err_stop_timer:
1687 	stop_ep_timer(ep);
1688 err:
1689 	disconnect = 2;
1690 out:
1691 	connect_reply_upcall(ep, err);
1692 	return disconnect;
1693 }
1694 
1695 /*
1696  * process_mpa_request - process streaming mode MPA request
1697  *
1698  * Returns:
1699  *
1700  * 0 upon success indicating a connect request was delivered to the ULP
1701  * or the mpa request is incomplete but valid so far.
1702  *
1703  * 1 if a failure requires the caller to close the connection.
1704  *
1705  * 2 if a failure requires the caller to abort the connection.
1706  */
1707 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1708 {
1709 	struct mpa_message *mpa;
1710 	struct mpa_v2_conn_params *mpa_v2_params;
1711 	u16 plen;
1712 
1713 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1714 
1715 	/*
1716 	 * If we get more than the supported amount of private data
1717 	 * then we must fail this connection.
1718 	 */
1719 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1720 		goto err_stop_timer;
1721 
1722 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1723 
1724 	/*
1725 	 * Copy the new data into our accumulation buffer.
1726 	 */
1727 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1728 				  skb->len);
1729 	ep->mpa_pkt_len += skb->len;
1730 
1731 	/*
1732 	 * If we don't even have the mpa message, then bail.
1733 	 * We'll continue process when more data arrives.
1734 	 */
1735 	if (ep->mpa_pkt_len < sizeof(*mpa))
1736 		return 0;
1737 
1738 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1739 	mpa = (struct mpa_message *) ep->mpa_pkt;
1740 
1741 	/*
1742 	 * Validate MPA Header.
1743 	 */
1744 	if (mpa->revision > mpa_rev) {
1745 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1746 		       __func__, mpa_rev, mpa->revision);
1747 		goto err_stop_timer;
1748 	}
1749 
1750 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1751 		goto err_stop_timer;
1752 
1753 	plen = ntohs(mpa->private_data_size);
1754 
1755 	/*
1756 	 * Fail if there's too much private data.
1757 	 */
1758 	if (plen > MPA_MAX_PRIVATE_DATA)
1759 		goto err_stop_timer;
1760 
1761 	/*
1762 	 * If plen does not account for pkt size
1763 	 */
1764 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1765 		goto err_stop_timer;
1766 	ep->plen = (u8) plen;
1767 
1768 	/*
1769 	 * If we don't have all the pdata yet, then bail.
1770 	 */
1771 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1772 		return 0;
1773 
1774 	/*
1775 	 * If we get here we have accumulated the entire mpa
1776 	 * start reply message including private data.
1777 	 */
1778 	ep->mpa_attr.initiator = 0;
1779 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1780 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1781 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1782 	ep->mpa_attr.version = mpa->revision;
1783 	if (mpa->revision == 1)
1784 		ep->tried_with_mpa_v1 = 1;
1785 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1786 
1787 	if (mpa->revision == 2) {
1788 		ep->mpa_attr.enhanced_rdma_conn =
1789 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1790 		if (ep->mpa_attr.enhanced_rdma_conn) {
1791 			mpa_v2_params = (struct mpa_v2_conn_params *)
1792 				(ep->mpa_pkt + sizeof(*mpa));
1793 			ep->ird = ntohs(mpa_v2_params->ird) &
1794 				MPA_V2_IRD_ORD_MASK;
1795 			ep->ird = min_t(u32, ep->ird,
1796 					cur_max_read_depth(ep->com.dev));
1797 			ep->ord = ntohs(mpa_v2_params->ord) &
1798 				MPA_V2_IRD_ORD_MASK;
1799 			ep->ord = min_t(u32, ep->ord,
1800 					cur_max_read_depth(ep->com.dev));
1801 			pr_debug("initiator ird %u ord %u\n",
1802 				 ep->ird, ep->ord);
1803 			if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1804 				if (peer2peer) {
1805 					if (ntohs(mpa_v2_params->ord) &
1806 							MPA_V2_RDMA_WRITE_RTR)
1807 						ep->mpa_attr.p2p_type =
1808 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1809 					else if (ntohs(mpa_v2_params->ord) &
1810 							MPA_V2_RDMA_READ_RTR)
1811 						ep->mpa_attr.p2p_type =
1812 						FW_RI_INIT_P2PTYPE_READ_REQ;
1813 				}
1814 		}
1815 	} else if (mpa->revision == 1)
1816 		if (peer2peer)
1817 			ep->mpa_attr.p2p_type = p2p_type;
1818 
1819 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1820 		 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1821 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1822 		 ep->mpa_attr.p2p_type);
1823 
1824 	__state_set(&ep->com, MPA_REQ_RCVD);
1825 
1826 	/* drive upcall */
1827 	mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1828 	if (ep->parent_ep->com.state != DEAD) {
1829 		if (connect_request_upcall(ep))
1830 			goto err_unlock_parent;
1831 	} else {
1832 		goto err_unlock_parent;
1833 	}
1834 	mutex_unlock(&ep->parent_ep->com.mutex);
1835 	return 0;
1836 
1837 err_unlock_parent:
1838 	mutex_unlock(&ep->parent_ep->com.mutex);
1839 	goto err_out;
1840 err_stop_timer:
1841 	(void)stop_ep_timer(ep);
1842 err_out:
1843 	return 2;
1844 }
1845 
1846 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1847 {
1848 	struct c4iw_ep *ep;
1849 	struct cpl_rx_data *hdr = cplhdr(skb);
1850 	unsigned int dlen = ntohs(hdr->len);
1851 	unsigned int tid = GET_TID(hdr);
1852 	__u8 status = hdr->status;
1853 	int disconnect = 0;
1854 
1855 	ep = get_ep_from_tid(dev, tid);
1856 	if (!ep)
1857 		return 0;
1858 	pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen);
1859 	skb_pull(skb, sizeof(*hdr));
1860 	skb_trim(skb, dlen);
1861 	mutex_lock(&ep->com.mutex);
1862 
1863 	switch (ep->com.state) {
1864 	case MPA_REQ_SENT:
1865 		update_rx_credits(ep, dlen);
1866 		ep->rcv_seq += dlen;
1867 		disconnect = process_mpa_reply(ep, skb);
1868 		break;
1869 	case MPA_REQ_WAIT:
1870 		update_rx_credits(ep, dlen);
1871 		ep->rcv_seq += dlen;
1872 		disconnect = process_mpa_request(ep, skb);
1873 		break;
1874 	case FPDU_MODE: {
1875 		struct c4iw_qp_attributes attrs;
1876 
1877 		update_rx_credits(ep, dlen);
1878 		if (status)
1879 			pr_err("%s Unexpected streaming data." \
1880 			       " qpid %u ep %p state %d tid %u status %d\n",
1881 			       __func__, ep->com.qp->wq.sq.qid, ep,
1882 			       ep->com.state, ep->hwtid, status);
1883 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1884 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1885 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1886 		disconnect = 1;
1887 		break;
1888 	}
1889 	default:
1890 		break;
1891 	}
1892 	mutex_unlock(&ep->com.mutex);
1893 	if (disconnect)
1894 		c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1895 	c4iw_put_ep(&ep->com);
1896 	return 0;
1897 }
1898 
1899 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx)
1900 {
1901 	enum chip_type adapter_type;
1902 
1903 	adapter_type = ep->com.dev->rdev.lldi.adapter_type;
1904 
1905 	/*
1906 	 * If this TCB had a srq buffer cached, then we must complete
1907 	 * it. For user mode, that means saving the srqidx in the
1908 	 * user/kernel status page for this qp.  For kernel mode, just
1909 	 * synthesize the CQE now.
1910 	 */
1911 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) {
1912 		if (ep->com.qp->ibqp.uobject)
1913 			t4_set_wq_in_error(&ep->com.qp->wq, srqidx);
1914 		else
1915 			c4iw_flush_srqidx(ep->com.qp, srqidx);
1916 	}
1917 }
1918 
1919 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1920 {
1921 	u32 srqidx;
1922 	struct c4iw_ep *ep;
1923 	struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb);
1924 	int release = 0;
1925 	unsigned int tid = GET_TID(rpl);
1926 
1927 	ep = get_ep_from_tid(dev, tid);
1928 	if (!ep) {
1929 		pr_warn("Abort rpl to freed endpoint\n");
1930 		return 0;
1931 	}
1932 
1933 	if (ep->com.qp && ep->com.qp->srq) {
1934 		srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status));
1935 		complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx);
1936 	}
1937 
1938 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1939 	mutex_lock(&ep->com.mutex);
1940 	switch (ep->com.state) {
1941 	case ABORTING:
1942 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
1943 		__state_set(&ep->com, DEAD);
1944 		release = 1;
1945 		break;
1946 	default:
1947 		pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state);
1948 		break;
1949 	}
1950 	mutex_unlock(&ep->com.mutex);
1951 
1952 	if (release) {
1953 		close_complete_upcall(ep, -ECONNRESET);
1954 		release_ep_resources(ep);
1955 	}
1956 	c4iw_put_ep(&ep->com);
1957 	return 0;
1958 }
1959 
1960 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1961 {
1962 	struct sk_buff *skb;
1963 	struct fw_ofld_connection_wr *req;
1964 	unsigned int mtu_idx;
1965 	u32 wscale;
1966 	struct sockaddr_in *sin;
1967 	int win;
1968 
1969 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1970 	req = __skb_put_zero(skb, sizeof(*req));
1971 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1972 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1973 	req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1974 				     ep->com.dev->rdev.lldi.ports[0],
1975 				     ep->l2t));
1976 	sin = (struct sockaddr_in *)&ep->com.local_addr;
1977 	req->le.lport = sin->sin_port;
1978 	req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1979 	sin = (struct sockaddr_in *)&ep->com.remote_addr;
1980 	req->le.pport = sin->sin_port;
1981 	req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1982 	req->tcb.t_state_to_astid =
1983 			htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1984 			FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1985 	req->tcb.cplrxdataack_cplpassacceptrpl =
1986 			htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1987 	req->tcb.tx_max = (__force __be32) jiffies;
1988 	req->tcb.rcv_adv = htons(1);
1989 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1990 		      enable_tcp_timestamps,
1991 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1992 	wscale = cxgb_compute_wscale(rcv_win);
1993 
1994 	/*
1995 	 * Specify the largest window that will fit in opt0. The
1996 	 * remainder will be specified in the rx_data_ack.
1997 	 */
1998 	win = ep->rcv_win >> 10;
1999 	if (win > RCV_BUFSIZ_M)
2000 		win = RCV_BUFSIZ_M;
2001 
2002 	req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2003 		(nocong ? NO_CONG_F : 0) |
2004 		KEEP_ALIVE_F |
2005 		DELACK_F |
2006 		WND_SCALE_V(wscale) |
2007 		MSS_IDX_V(mtu_idx) |
2008 		L2T_IDX_V(ep->l2t->idx) |
2009 		TX_CHAN_V(ep->tx_chan) |
2010 		SMAC_SEL_V(ep->smac_idx) |
2011 		DSCP_V(ep->tos >> 2) |
2012 		ULP_MODE_V(ULP_MODE_TCPDDP) |
2013 		RCV_BUFSIZ_V(win));
2014 	req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2015 		TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2016 		RX_CHANNEL_V(0) |
2017 		CCTRL_ECN_V(enable_ecn) |
2018 		RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2019 	if (enable_tcp_timestamps)
2020 		req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2021 	if (enable_tcp_sack)
2022 		req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2023 	if (wscale && enable_tcp_window_scaling)
2024 		req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2025 	req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2026 	req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2027 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2028 	set_bit(ACT_OFLD_CONN, &ep->com.history);
2029 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2030 }
2031 
2032 /*
2033  * Some of the error codes above implicitly indicate that there is no TID
2034  * allocated with the result of an ACT_OPEN.  We use this predicate to make
2035  * that explicit.
2036  */
2037 static inline int act_open_has_tid(int status)
2038 {
2039 	return (status != CPL_ERR_TCAM_PARITY &&
2040 		status != CPL_ERR_TCAM_MISS &&
2041 		status != CPL_ERR_TCAM_FULL &&
2042 		status != CPL_ERR_CONN_EXIST_SYNRECV &&
2043 		status != CPL_ERR_CONN_EXIST);
2044 }
2045 
2046 static char *neg_adv_str(unsigned int status)
2047 {
2048 	switch (status) {
2049 	case CPL_ERR_RTX_NEG_ADVICE:
2050 		return "Retransmit timeout";
2051 	case CPL_ERR_PERSIST_NEG_ADVICE:
2052 		return "Persist timeout";
2053 	case CPL_ERR_KEEPALV_NEG_ADVICE:
2054 		return "Keepalive timeout";
2055 	default:
2056 		return "Unknown";
2057 	}
2058 }
2059 
2060 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2061 {
2062 	ep->snd_win = snd_win;
2063 	ep->rcv_win = rcv_win;
2064 	pr_debug("snd_win %d rcv_win %d\n",
2065 		 ep->snd_win, ep->rcv_win);
2066 }
2067 
2068 #define ACT_OPEN_RETRY_COUNT 2
2069 
2070 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2071 		     struct dst_entry *dst, struct c4iw_dev *cdev,
2072 		     bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2073 {
2074 	struct neighbour *n;
2075 	int err, step;
2076 	struct net_device *pdev;
2077 
2078 	n = dst_neigh_lookup(dst, peer_ip);
2079 	if (!n)
2080 		return -ENODEV;
2081 
2082 	rcu_read_lock();
2083 	err = -ENOMEM;
2084 	if (n->dev->flags & IFF_LOOPBACK) {
2085 		if (iptype == 4)
2086 			pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2087 		else if (IS_ENABLED(CONFIG_IPV6))
2088 			for_each_netdev(&init_net, pdev) {
2089 				if (ipv6_chk_addr(&init_net,
2090 						  (struct in6_addr *)peer_ip,
2091 						  pdev, 1))
2092 					break;
2093 			}
2094 		else
2095 			pdev = NULL;
2096 
2097 		if (!pdev) {
2098 			err = -ENODEV;
2099 			goto out;
2100 		}
2101 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2102 					n, pdev, rt_tos2priority(tos));
2103 		if (!ep->l2t) {
2104 			dev_put(pdev);
2105 			goto out;
2106 		}
2107 		ep->mtu = pdev->mtu;
2108 		ep->tx_chan = cxgb4_port_chan(pdev);
2109 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2110 		step = cdev->rdev.lldi.ntxq /
2111 			cdev->rdev.lldi.nchan;
2112 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2113 		step = cdev->rdev.lldi.nrxq /
2114 			cdev->rdev.lldi.nchan;
2115 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2116 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2117 			cxgb4_port_idx(pdev) * step];
2118 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2119 		dev_put(pdev);
2120 	} else {
2121 		pdev = get_real_dev(n->dev);
2122 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2123 					n, pdev, rt_tos2priority(tos));
2124 		if (!ep->l2t)
2125 			goto out;
2126 		ep->mtu = dst_mtu(dst);
2127 		ep->tx_chan = cxgb4_port_chan(pdev);
2128 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2129 		step = cdev->rdev.lldi.ntxq /
2130 			cdev->rdev.lldi.nchan;
2131 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2132 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2133 		step = cdev->rdev.lldi.nrxq /
2134 			cdev->rdev.lldi.nchan;
2135 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2136 			cxgb4_port_idx(pdev) * step];
2137 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2138 
2139 		if (clear_mpa_v1) {
2140 			ep->retry_with_mpa_v1 = 0;
2141 			ep->tried_with_mpa_v1 = 0;
2142 		}
2143 	}
2144 	err = 0;
2145 out:
2146 	rcu_read_unlock();
2147 
2148 	neigh_release(n);
2149 
2150 	return err;
2151 }
2152 
2153 static int c4iw_reconnect(struct c4iw_ep *ep)
2154 {
2155 	int err = 0;
2156 	int size = 0;
2157 	struct sockaddr_in *laddr = (struct sockaddr_in *)
2158 				    &ep->com.cm_id->m_local_addr;
2159 	struct sockaddr_in *raddr = (struct sockaddr_in *)
2160 				    &ep->com.cm_id->m_remote_addr;
2161 	struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2162 				      &ep->com.cm_id->m_local_addr;
2163 	struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2164 				      &ep->com.cm_id->m_remote_addr;
2165 	int iptype;
2166 	__u8 *ra;
2167 
2168 	pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id);
2169 	c4iw_init_wr_wait(ep->com.wr_waitp);
2170 
2171 	/* When MPA revision is different on nodes, the node with MPA_rev=2
2172 	 * tries to reconnect with MPA_rev 1 for the same EP through
2173 	 * c4iw_reconnect(), where the same EP is assigned with new tid for
2174 	 * further connection establishment. As we are using the same EP pointer
2175 	 * for reconnect, few skbs are used during the previous c4iw_connect(),
2176 	 * which leaves the EP with inadequate skbs for further
2177 	 * c4iw_reconnect(), Further causing a crash due to an empty
2178 	 * skb_list() during peer_abort(). Allocate skbs which is already used.
2179 	 */
2180 	size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2181 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2182 		err = -ENOMEM;
2183 		goto fail1;
2184 	}
2185 
2186 	/*
2187 	 * Allocate an active TID to initiate a TCP connection.
2188 	 */
2189 	ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2190 	if (ep->atid == -1) {
2191 		pr_err("%s - cannot alloc atid\n", __func__);
2192 		err = -ENOMEM;
2193 		goto fail2;
2194 	}
2195 	err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL);
2196 	if (err)
2197 		goto fail2a;
2198 
2199 	/* find a route */
2200 	if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2201 		ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2202 					  laddr->sin_addr.s_addr,
2203 					  raddr->sin_addr.s_addr,
2204 					  laddr->sin_port,
2205 					  raddr->sin_port, ep->com.cm_id->tos);
2206 		iptype = 4;
2207 		ra = (__u8 *)&raddr->sin_addr;
2208 	} else {
2209 		ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2210 					   get_real_dev,
2211 					   laddr6->sin6_addr.s6_addr,
2212 					   raddr6->sin6_addr.s6_addr,
2213 					   laddr6->sin6_port,
2214 					   raddr6->sin6_port,
2215 					   ep->com.cm_id->tos,
2216 					   raddr6->sin6_scope_id);
2217 		iptype = 6;
2218 		ra = (__u8 *)&raddr6->sin6_addr;
2219 	}
2220 	if (!ep->dst) {
2221 		pr_err("%s - cannot find route\n", __func__);
2222 		err = -EHOSTUNREACH;
2223 		goto fail3;
2224 	}
2225 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2226 			ep->com.dev->rdev.lldi.adapter_type,
2227 			ep->com.cm_id->tos);
2228 	if (err) {
2229 		pr_err("%s - cannot alloc l2e\n", __func__);
2230 		goto fail4;
2231 	}
2232 
2233 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2234 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2235 		 ep->l2t->idx);
2236 
2237 	state_set(&ep->com, CONNECTING);
2238 	ep->tos = ep->com.cm_id->tos;
2239 
2240 	/* send connect request to rnic */
2241 	err = send_connect(ep);
2242 	if (!err)
2243 		goto out;
2244 
2245 	cxgb4_l2t_release(ep->l2t);
2246 fail4:
2247 	dst_release(ep->dst);
2248 fail3:
2249 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
2250 fail2a:
2251 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2252 fail2:
2253 	/*
2254 	 * remember to send notification to upper layer.
2255 	 * We are in here so the upper layer is not aware that this is
2256 	 * re-connect attempt and so, upper layer is still waiting for
2257 	 * response of 1st connect request.
2258 	 */
2259 	connect_reply_upcall(ep, -ECONNRESET);
2260 fail1:
2261 	c4iw_put_ep(&ep->com);
2262 out:
2263 	return err;
2264 }
2265 
2266 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2267 {
2268 	struct c4iw_ep *ep;
2269 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
2270 	unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2271 				      ntohl(rpl->atid_status)));
2272 	struct tid_info *t = dev->rdev.lldi.tids;
2273 	int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2274 	struct sockaddr_in *la;
2275 	struct sockaddr_in *ra;
2276 	struct sockaddr_in6 *la6;
2277 	struct sockaddr_in6 *ra6;
2278 	int ret = 0;
2279 
2280 	ep = lookup_atid(t, atid);
2281 	la = (struct sockaddr_in *)&ep->com.local_addr;
2282 	ra = (struct sockaddr_in *)&ep->com.remote_addr;
2283 	la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2284 	ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2285 
2286 	pr_debug("ep %p atid %u status %u errno %d\n", ep, atid,
2287 		 status, status2errno(status));
2288 
2289 	if (cxgb_is_neg_adv(status)) {
2290 		pr_debug("Connection problems for atid %u status %u (%s)\n",
2291 			 atid, status, neg_adv_str(status));
2292 		ep->stats.connect_neg_adv++;
2293 		mutex_lock(&dev->rdev.stats.lock);
2294 		dev->rdev.stats.neg_adv++;
2295 		mutex_unlock(&dev->rdev.stats.lock);
2296 		return 0;
2297 	}
2298 
2299 	set_bit(ACT_OPEN_RPL, &ep->com.history);
2300 
2301 	/*
2302 	 * Log interesting failures.
2303 	 */
2304 	switch (status) {
2305 	case CPL_ERR_CONN_RESET:
2306 	case CPL_ERR_CONN_TIMEDOUT:
2307 		break;
2308 	case CPL_ERR_TCAM_FULL:
2309 		mutex_lock(&dev->rdev.stats.lock);
2310 		dev->rdev.stats.tcam_full++;
2311 		mutex_unlock(&dev->rdev.stats.lock);
2312 		if (ep->com.local_addr.ss_family == AF_INET &&
2313 		    dev->rdev.lldi.enable_fw_ofld_conn) {
2314 			ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2315 						   ntohl(rpl->atid_status))));
2316 			if (ret)
2317 				goto fail;
2318 			return 0;
2319 		}
2320 		break;
2321 	case CPL_ERR_CONN_EXIST:
2322 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2323 			set_bit(ACT_RETRY_INUSE, &ep->com.history);
2324 			if (ep->com.remote_addr.ss_family == AF_INET6) {
2325 				struct sockaddr_in6 *sin6 =
2326 						(struct sockaddr_in6 *)
2327 						&ep->com.local_addr;
2328 				cxgb4_clip_release(
2329 						ep->com.dev->rdev.lldi.ports[0],
2330 						(const u32 *)
2331 						&sin6->sin6_addr.s6_addr, 1);
2332 			}
2333 			xa_erase_irq(&ep->com.dev->atids, atid);
2334 			cxgb4_free_atid(t, atid);
2335 			dst_release(ep->dst);
2336 			cxgb4_l2t_release(ep->l2t);
2337 			c4iw_reconnect(ep);
2338 			return 0;
2339 		}
2340 		break;
2341 	default:
2342 		if (ep->com.local_addr.ss_family == AF_INET) {
2343 			pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2344 				atid, status, status2errno(status),
2345 				&la->sin_addr.s_addr, ntohs(la->sin_port),
2346 				&ra->sin_addr.s_addr, ntohs(ra->sin_port));
2347 		} else {
2348 			pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2349 				atid, status, status2errno(status),
2350 				la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2351 				ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2352 		}
2353 		break;
2354 	}
2355 
2356 fail:
2357 	connect_reply_upcall(ep, status2errno(status));
2358 	state_set(&ep->com, DEAD);
2359 
2360 	if (ep->com.remote_addr.ss_family == AF_INET6) {
2361 		struct sockaddr_in6 *sin6 =
2362 			(struct sockaddr_in6 *)&ep->com.local_addr;
2363 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2364 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2365 	}
2366 	if (status && act_open_has_tid(status))
2367 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl),
2368 				 ep->com.local_addr.ss_family);
2369 
2370 	xa_erase_irq(&ep->com.dev->atids, atid);
2371 	cxgb4_free_atid(t, atid);
2372 	dst_release(ep->dst);
2373 	cxgb4_l2t_release(ep->l2t);
2374 	c4iw_put_ep(&ep->com);
2375 
2376 	return 0;
2377 }
2378 
2379 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2380 {
2381 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2382 	unsigned int stid = GET_TID(rpl);
2383 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2384 
2385 	if (!ep) {
2386 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2387 		goto out;
2388 	}
2389 	pr_debug("ep %p status %d error %d\n", ep,
2390 		 rpl->status, status2errno(rpl->status));
2391 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2392 	c4iw_put_ep(&ep->com);
2393 out:
2394 	return 0;
2395 }
2396 
2397 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2398 {
2399 	struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2400 	unsigned int stid = GET_TID(rpl);
2401 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2402 
2403 	if (!ep) {
2404 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2405 		goto out;
2406 	}
2407 	pr_debug("ep %p\n", ep);
2408 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2409 	c4iw_put_ep(&ep->com);
2410 out:
2411 	return 0;
2412 }
2413 
2414 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2415 		     struct cpl_pass_accept_req *req)
2416 {
2417 	struct cpl_pass_accept_rpl *rpl;
2418 	unsigned int mtu_idx;
2419 	u64 opt0;
2420 	u32 opt2;
2421 	u32 wscale;
2422 	struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2423 	int win;
2424 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2425 
2426 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2427 
2428 	skb_get(skb);
2429 	rpl = cplhdr(skb);
2430 	if (!is_t4(adapter_type)) {
2431 		skb_trim(skb, roundup(sizeof(*rpl5), 16));
2432 		rpl5 = (void *)rpl;
2433 		INIT_TP_WR(rpl5, ep->hwtid);
2434 	} else {
2435 		skb_trim(skb, sizeof(*rpl));
2436 		INIT_TP_WR(rpl, ep->hwtid);
2437 	}
2438 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2439 						    ep->hwtid));
2440 
2441 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2442 		      enable_tcp_timestamps && req->tcpopt.tstamp,
2443 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2444 	wscale = cxgb_compute_wscale(rcv_win);
2445 
2446 	/*
2447 	 * Specify the largest window that will fit in opt0. The
2448 	 * remainder will be specified in the rx_data_ack.
2449 	 */
2450 	win = ep->rcv_win >> 10;
2451 	if (win > RCV_BUFSIZ_M)
2452 		win = RCV_BUFSIZ_M;
2453 	opt0 = (nocong ? NO_CONG_F : 0) |
2454 	       KEEP_ALIVE_F |
2455 	       DELACK_F |
2456 	       WND_SCALE_V(wscale) |
2457 	       MSS_IDX_V(mtu_idx) |
2458 	       L2T_IDX_V(ep->l2t->idx) |
2459 	       TX_CHAN_V(ep->tx_chan) |
2460 	       SMAC_SEL_V(ep->smac_idx) |
2461 	       DSCP_V(ep->tos >> 2) |
2462 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
2463 	       RCV_BUFSIZ_V(win);
2464 	opt2 = RX_CHANNEL_V(0) |
2465 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2466 
2467 	if (enable_tcp_timestamps && req->tcpopt.tstamp)
2468 		opt2 |= TSTAMPS_EN_F;
2469 	if (enable_tcp_sack && req->tcpopt.sack)
2470 		opt2 |= SACK_EN_F;
2471 	if (wscale && enable_tcp_window_scaling)
2472 		opt2 |= WND_SCALE_EN_F;
2473 	if (enable_ecn) {
2474 		const struct tcphdr *tcph;
2475 		u32 hlen = ntohl(req->hdr_len);
2476 
2477 		if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2478 			tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2479 				IP_HDR_LEN_G(hlen);
2480 		else
2481 			tcph = (const void *)(req + 1) +
2482 				T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2483 		if (tcph->ece && tcph->cwr)
2484 			opt2 |= CCTRL_ECN_V(1);
2485 	}
2486 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2487 		u32 isn = (prandom_u32() & ~7UL) - 1;
2488 		opt2 |= T5_OPT_2_VALID_F;
2489 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2490 		opt2 |= T5_ISS_F;
2491 		rpl5 = (void *)rpl;
2492 		memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2493 		if (peer2peer)
2494 			isn += 4;
2495 		rpl5->iss = cpu_to_be32(isn);
2496 		pr_debug("iss %u\n", be32_to_cpu(rpl5->iss));
2497 	}
2498 
2499 	rpl->opt0 = cpu_to_be64(opt0);
2500 	rpl->opt2 = cpu_to_be32(opt2);
2501 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2502 	t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2503 
2504 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2505 }
2506 
2507 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2508 {
2509 	pr_debug("c4iw_dev %p tid %u\n", dev, hwtid);
2510 	skb_trim(skb, sizeof(struct cpl_tid_release));
2511 	release_tid(&dev->rdev, hwtid, skb);
2512 	return;
2513 }
2514 
2515 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2516 {
2517 	struct c4iw_ep *child_ep = NULL, *parent_ep;
2518 	struct cpl_pass_accept_req *req = cplhdr(skb);
2519 	unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2520 	struct tid_info *t = dev->rdev.lldi.tids;
2521 	unsigned int hwtid = GET_TID(req);
2522 	struct dst_entry *dst;
2523 	__u8 local_ip[16], peer_ip[16];
2524 	__be16 local_port, peer_port;
2525 	struct sockaddr_in6 *sin6;
2526 	int err;
2527 	u16 peer_mss = ntohs(req->tcpopt.mss);
2528 	int iptype;
2529 	unsigned short hdrs;
2530 	u8 tos;
2531 
2532 	parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2533 	if (!parent_ep) {
2534 		pr_err("%s connect request on invalid stid %d\n",
2535 		       __func__, stid);
2536 		goto reject;
2537 	}
2538 
2539 	if (state_read(&parent_ep->com) != LISTEN) {
2540 		pr_err("%s - listening ep not in LISTEN\n", __func__);
2541 		goto reject;
2542 	}
2543 
2544 	if (parent_ep->com.cm_id->tos_set)
2545 		tos = parent_ep->com.cm_id->tos;
2546 	else
2547 		tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2548 
2549 	cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2550 			&iptype, local_ip, peer_ip, &local_port, &peer_port);
2551 
2552 	/* Find output route */
2553 	if (iptype == 4)  {
2554 		pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2555 			 , parent_ep, hwtid,
2556 			 local_ip, peer_ip, ntohs(local_port),
2557 			 ntohs(peer_port), peer_mss);
2558 		dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2559 				      *(__be32 *)local_ip, *(__be32 *)peer_ip,
2560 				      local_port, peer_port, tos);
2561 	} else {
2562 		pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2563 			 , parent_ep, hwtid,
2564 			 local_ip, peer_ip, ntohs(local_port),
2565 			 ntohs(peer_port), peer_mss);
2566 		dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2567 				local_ip, peer_ip, local_port, peer_port,
2568 				tos,
2569 				((struct sockaddr_in6 *)
2570 				 &parent_ep->com.local_addr)->sin6_scope_id);
2571 	}
2572 	if (!dst) {
2573 		pr_err("%s - failed to find dst entry!\n", __func__);
2574 		goto reject;
2575 	}
2576 
2577 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2578 	if (!child_ep) {
2579 		pr_err("%s - failed to allocate ep entry!\n", __func__);
2580 		dst_release(dst);
2581 		goto reject;
2582 	}
2583 
2584 	err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2585 			parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2586 	if (err) {
2587 		pr_err("%s - failed to allocate l2t entry!\n", __func__);
2588 		dst_release(dst);
2589 		kfree(child_ep);
2590 		goto reject;
2591 	}
2592 
2593 	hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
2594 	       sizeof(struct tcphdr) +
2595 	       ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2596 	if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2597 		child_ep->mtu = peer_mss + hdrs;
2598 
2599 	skb_queue_head_init(&child_ep->com.ep_skb_list);
2600 	if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2601 		goto fail;
2602 
2603 	state_set(&child_ep->com, CONNECTING);
2604 	child_ep->com.dev = dev;
2605 	child_ep->com.cm_id = NULL;
2606 
2607 	if (iptype == 4) {
2608 		struct sockaddr_in *sin = (struct sockaddr_in *)
2609 			&child_ep->com.local_addr;
2610 
2611 		sin->sin_family = AF_INET;
2612 		sin->sin_port = local_port;
2613 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2614 
2615 		sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2616 		sin->sin_family = AF_INET;
2617 		sin->sin_port = ((struct sockaddr_in *)
2618 				 &parent_ep->com.local_addr)->sin_port;
2619 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2620 
2621 		sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2622 		sin->sin_family = AF_INET;
2623 		sin->sin_port = peer_port;
2624 		sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2625 	} else {
2626 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2627 		sin6->sin6_family = PF_INET6;
2628 		sin6->sin6_port = local_port;
2629 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2630 
2631 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2632 		sin6->sin6_family = PF_INET6;
2633 		sin6->sin6_port = ((struct sockaddr_in6 *)
2634 				   &parent_ep->com.local_addr)->sin6_port;
2635 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2636 
2637 		sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2638 		sin6->sin6_family = PF_INET6;
2639 		sin6->sin6_port = peer_port;
2640 		memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2641 	}
2642 
2643 	c4iw_get_ep(&parent_ep->com);
2644 	child_ep->parent_ep = parent_ep;
2645 	child_ep->tos = tos;
2646 	child_ep->dst = dst;
2647 	child_ep->hwtid = hwtid;
2648 
2649 	pr_debug("tx_chan %u smac_idx %u rss_qid %u\n",
2650 		 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2651 
2652 	timer_setup(&child_ep->timer, ep_timeout, 0);
2653 	cxgb4_insert_tid(t, child_ep, hwtid,
2654 			 child_ep->com.local_addr.ss_family);
2655 	insert_ep_tid(child_ep);
2656 	if (accept_cr(child_ep, skb, req)) {
2657 		c4iw_put_ep(&parent_ep->com);
2658 		release_ep_resources(child_ep);
2659 	} else {
2660 		set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2661 	}
2662 	if (iptype == 6) {
2663 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2664 		cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2665 			       (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2666 	}
2667 	goto out;
2668 fail:
2669 	c4iw_put_ep(&child_ep->com);
2670 reject:
2671 	reject_cr(dev, hwtid, skb);
2672 out:
2673 	if (parent_ep)
2674 		c4iw_put_ep(&parent_ep->com);
2675 	return 0;
2676 }
2677 
2678 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2679 {
2680 	struct c4iw_ep *ep;
2681 	struct cpl_pass_establish *req = cplhdr(skb);
2682 	unsigned int tid = GET_TID(req);
2683 	int ret;
2684 	u16 tcp_opt = ntohs(req->tcp_opt);
2685 
2686 	ep = get_ep_from_tid(dev, tid);
2687 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2688 	ep->snd_seq = be32_to_cpu(req->snd_isn);
2689 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2690 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
2691 
2692 	pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt);
2693 
2694 	set_emss(ep, tcp_opt);
2695 
2696 	dst_confirm(ep->dst);
2697 	mutex_lock(&ep->com.mutex);
2698 	ep->com.state = MPA_REQ_WAIT;
2699 	start_ep_timer(ep);
2700 	set_bit(PASS_ESTAB, &ep->com.history);
2701 	ret = send_flowc(ep);
2702 	mutex_unlock(&ep->com.mutex);
2703 	if (ret)
2704 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2705 	c4iw_put_ep(&ep->com);
2706 
2707 	return 0;
2708 }
2709 
2710 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2711 {
2712 	struct cpl_peer_close *hdr = cplhdr(skb);
2713 	struct c4iw_ep *ep;
2714 	struct c4iw_qp_attributes attrs;
2715 	int disconnect = 1;
2716 	int release = 0;
2717 	unsigned int tid = GET_TID(hdr);
2718 	int ret;
2719 
2720 	ep = get_ep_from_tid(dev, tid);
2721 	if (!ep)
2722 		return 0;
2723 
2724 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2725 	dst_confirm(ep->dst);
2726 
2727 	set_bit(PEER_CLOSE, &ep->com.history);
2728 	mutex_lock(&ep->com.mutex);
2729 	switch (ep->com.state) {
2730 	case MPA_REQ_WAIT:
2731 		__state_set(&ep->com, CLOSING);
2732 		break;
2733 	case MPA_REQ_SENT:
2734 		__state_set(&ep->com, CLOSING);
2735 		connect_reply_upcall(ep, -ECONNRESET);
2736 		break;
2737 	case MPA_REQ_RCVD:
2738 
2739 		/*
2740 		 * We're gonna mark this puppy DEAD, but keep
2741 		 * the reference on it until the ULP accepts or
2742 		 * rejects the CR. Also wake up anyone waiting
2743 		 * in rdma connection migration (see c4iw_accept_cr()).
2744 		 */
2745 		__state_set(&ep->com, CLOSING);
2746 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2747 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2748 		break;
2749 	case MPA_REP_SENT:
2750 		__state_set(&ep->com, CLOSING);
2751 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2752 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2753 		break;
2754 	case FPDU_MODE:
2755 		start_ep_timer(ep);
2756 		__state_set(&ep->com, CLOSING);
2757 		attrs.next_state = C4IW_QP_STATE_CLOSING;
2758 		ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2759 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2760 		if (ret != -ECONNRESET) {
2761 			peer_close_upcall(ep);
2762 			disconnect = 1;
2763 		}
2764 		break;
2765 	case ABORTING:
2766 		disconnect = 0;
2767 		break;
2768 	case CLOSING:
2769 		__state_set(&ep->com, MORIBUND);
2770 		disconnect = 0;
2771 		break;
2772 	case MORIBUND:
2773 		(void)stop_ep_timer(ep);
2774 		if (ep->com.cm_id && ep->com.qp) {
2775 			attrs.next_state = C4IW_QP_STATE_IDLE;
2776 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2777 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2778 		}
2779 		close_complete_upcall(ep, 0);
2780 		__state_set(&ep->com, DEAD);
2781 		release = 1;
2782 		disconnect = 0;
2783 		break;
2784 	case DEAD:
2785 		disconnect = 0;
2786 		break;
2787 	default:
2788 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2789 	}
2790 	mutex_unlock(&ep->com.mutex);
2791 	if (disconnect)
2792 		c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2793 	if (release)
2794 		release_ep_resources(ep);
2795 	c4iw_put_ep(&ep->com);
2796 	return 0;
2797 }
2798 
2799 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep)
2800 {
2801 	complete_cached_srq_buffers(ep, ep->srqe_idx);
2802 	if (ep->com.cm_id && ep->com.qp) {
2803 		struct c4iw_qp_attributes attrs;
2804 
2805 		attrs.next_state = C4IW_QP_STATE_ERROR;
2806 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2807 			       C4IW_QP_ATTR_NEXT_STATE,	&attrs, 1);
2808 	}
2809 	peer_abort_upcall(ep);
2810 	release_ep_resources(ep);
2811 	c4iw_put_ep(&ep->com);
2812 }
2813 
2814 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2815 {
2816 	struct cpl_abort_req_rss6 *req = cplhdr(skb);
2817 	struct c4iw_ep *ep;
2818 	struct sk_buff *rpl_skb;
2819 	struct c4iw_qp_attributes attrs;
2820 	int ret;
2821 	int release = 0;
2822 	unsigned int tid = GET_TID(req);
2823 	u8 status;
2824 	u32 srqidx;
2825 
2826 	u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2827 
2828 	ep = get_ep_from_tid(dev, tid);
2829 	if (!ep)
2830 		return 0;
2831 
2832 	status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status));
2833 
2834 	if (cxgb_is_neg_adv(status)) {
2835 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
2836 			 ep->hwtid, status, neg_adv_str(status));
2837 		ep->stats.abort_neg_adv++;
2838 		mutex_lock(&dev->rdev.stats.lock);
2839 		dev->rdev.stats.neg_adv++;
2840 		mutex_unlock(&dev->rdev.stats.lock);
2841 		goto deref_ep;
2842 	}
2843 
2844 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid,
2845 		 ep->com.state);
2846 	set_bit(PEER_ABORT, &ep->com.history);
2847 
2848 	/*
2849 	 * Wake up any threads in rdma_init() or rdma_fini().
2850 	 * However, this is not needed if com state is just
2851 	 * MPA_REQ_SENT
2852 	 */
2853 	if (ep->com.state != MPA_REQ_SENT)
2854 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2855 
2856 	mutex_lock(&ep->com.mutex);
2857 	switch (ep->com.state) {
2858 	case CONNECTING:
2859 		c4iw_put_ep(&ep->parent_ep->com);
2860 		break;
2861 	case MPA_REQ_WAIT:
2862 		(void)stop_ep_timer(ep);
2863 		break;
2864 	case MPA_REQ_SENT:
2865 		(void)stop_ep_timer(ep);
2866 		if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 ||
2867 		    (mpa_rev == 2 && ep->tried_with_mpa_v1))
2868 			connect_reply_upcall(ep, -ECONNRESET);
2869 		else {
2870 			/*
2871 			 * we just don't send notification upwards because we
2872 			 * want to retry with mpa_v1 without upper layers even
2873 			 * knowing it.
2874 			 *
2875 			 * do some housekeeping so as to re-initiate the
2876 			 * connection
2877 			 */
2878 			pr_info("%s: mpa_rev=%d. Retrying with mpav1\n",
2879 				__func__, mpa_rev);
2880 			ep->retry_with_mpa_v1 = 1;
2881 		}
2882 		break;
2883 	case MPA_REP_SENT:
2884 		break;
2885 	case MPA_REQ_RCVD:
2886 		break;
2887 	case MORIBUND:
2888 	case CLOSING:
2889 		stop_ep_timer(ep);
2890 		/*FALLTHROUGH*/
2891 	case FPDU_MODE:
2892 		if (ep->com.qp && ep->com.qp->srq) {
2893 			srqidx = ABORT_RSS_SRQIDX_G(
2894 					be32_to_cpu(req->srqidx_status));
2895 			if (srqidx) {
2896 				complete_cached_srq_buffers(ep,
2897 							    req->srqidx_status);
2898 			} else {
2899 				/* Hold ep ref until finish_peer_abort() */
2900 				c4iw_get_ep(&ep->com);
2901 				__state_set(&ep->com, ABORTING);
2902 				set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags);
2903 				read_tcb(ep);
2904 				break;
2905 
2906 			}
2907 		}
2908 
2909 		if (ep->com.cm_id && ep->com.qp) {
2910 			attrs.next_state = C4IW_QP_STATE_ERROR;
2911 			ret = c4iw_modify_qp(ep->com.qp->rhp,
2912 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2913 				     &attrs, 1);
2914 			if (ret)
2915 				pr_err("%s - qp <- error failed!\n", __func__);
2916 		}
2917 		peer_abort_upcall(ep);
2918 		break;
2919 	case ABORTING:
2920 		break;
2921 	case DEAD:
2922 		pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2923 		mutex_unlock(&ep->com.mutex);
2924 		goto deref_ep;
2925 	default:
2926 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2927 		break;
2928 	}
2929 	dst_confirm(ep->dst);
2930 	if (ep->com.state != ABORTING) {
2931 		__state_set(&ep->com, DEAD);
2932 		/* we don't release if we want to retry with mpa_v1 */
2933 		if (!ep->retry_with_mpa_v1)
2934 			release = 1;
2935 	}
2936 	mutex_unlock(&ep->com.mutex);
2937 
2938 	rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2939 	if (WARN_ON(!rpl_skb)) {
2940 		release = 1;
2941 		goto out;
2942 	}
2943 
2944 	cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2945 
2946 	c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2947 out:
2948 	if (release)
2949 		release_ep_resources(ep);
2950 	else if (ep->retry_with_mpa_v1) {
2951 		if (ep->com.remote_addr.ss_family == AF_INET6) {
2952 			struct sockaddr_in6 *sin6 =
2953 					(struct sockaddr_in6 *)
2954 					&ep->com.local_addr;
2955 			cxgb4_clip_release(
2956 					ep->com.dev->rdev.lldi.ports[0],
2957 					(const u32 *)&sin6->sin6_addr.s6_addr,
2958 					1);
2959 		}
2960 		xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid);
2961 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
2962 				 ep->com.local_addr.ss_family);
2963 		dst_release(ep->dst);
2964 		cxgb4_l2t_release(ep->l2t);
2965 		c4iw_reconnect(ep);
2966 	}
2967 
2968 deref_ep:
2969 	c4iw_put_ep(&ep->com);
2970 	/* Dereferencing ep, referenced in peer_abort_intr() */
2971 	c4iw_put_ep(&ep->com);
2972 	return 0;
2973 }
2974 
2975 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2976 {
2977 	struct c4iw_ep *ep;
2978 	struct c4iw_qp_attributes attrs;
2979 	struct cpl_close_con_rpl *rpl = cplhdr(skb);
2980 	int release = 0;
2981 	unsigned int tid = GET_TID(rpl);
2982 
2983 	ep = get_ep_from_tid(dev, tid);
2984 	if (!ep)
2985 		return 0;
2986 
2987 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2988 
2989 	/* The cm_id may be null if we failed to connect */
2990 	mutex_lock(&ep->com.mutex);
2991 	set_bit(CLOSE_CON_RPL, &ep->com.history);
2992 	switch (ep->com.state) {
2993 	case CLOSING:
2994 		__state_set(&ep->com, MORIBUND);
2995 		break;
2996 	case MORIBUND:
2997 		(void)stop_ep_timer(ep);
2998 		if ((ep->com.cm_id) && (ep->com.qp)) {
2999 			attrs.next_state = C4IW_QP_STATE_IDLE;
3000 			c4iw_modify_qp(ep->com.qp->rhp,
3001 					     ep->com.qp,
3002 					     C4IW_QP_ATTR_NEXT_STATE,
3003 					     &attrs, 1);
3004 		}
3005 		close_complete_upcall(ep, 0);
3006 		__state_set(&ep->com, DEAD);
3007 		release = 1;
3008 		break;
3009 	case ABORTING:
3010 	case DEAD:
3011 		break;
3012 	default:
3013 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3014 		break;
3015 	}
3016 	mutex_unlock(&ep->com.mutex);
3017 	if (release)
3018 		release_ep_resources(ep);
3019 	c4iw_put_ep(&ep->com);
3020 	return 0;
3021 }
3022 
3023 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3024 {
3025 	struct cpl_rdma_terminate *rpl = cplhdr(skb);
3026 	unsigned int tid = GET_TID(rpl);
3027 	struct c4iw_ep *ep;
3028 	struct c4iw_qp_attributes attrs;
3029 
3030 	ep = get_ep_from_tid(dev, tid);
3031 
3032 	if (ep) {
3033 		if (ep->com.qp) {
3034 			pr_warn("TERM received tid %u qpid %u\n", tid,
3035 				ep->com.qp->wq.sq.qid);
3036 			attrs.next_state = C4IW_QP_STATE_TERMINATE;
3037 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3038 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3039 		}
3040 
3041 		c4iw_put_ep(&ep->com);
3042 	} else
3043 		pr_warn("TERM received tid %u no ep/qp\n", tid);
3044 
3045 	return 0;
3046 }
3047 
3048 /*
3049  * Upcall from the adapter indicating data has been transmitted.
3050  * For us its just the single MPA request or reply.  We can now free
3051  * the skb holding the mpa message.
3052  */
3053 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3054 {
3055 	struct c4iw_ep *ep;
3056 	struct cpl_fw4_ack *hdr = cplhdr(skb);
3057 	u8 credits = hdr->credits;
3058 	unsigned int tid = GET_TID(hdr);
3059 
3060 
3061 	ep = get_ep_from_tid(dev, tid);
3062 	if (!ep)
3063 		return 0;
3064 	pr_debug("ep %p tid %u credits %u\n",
3065 		 ep, ep->hwtid, credits);
3066 	if (credits == 0) {
3067 		pr_debug("0 credit ack ep %p tid %u state %u\n",
3068 			 ep, ep->hwtid, state_read(&ep->com));
3069 		goto out;
3070 	}
3071 
3072 	dst_confirm(ep->dst);
3073 	if (ep->mpa_skb) {
3074 		pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
3075 			 ep, ep->hwtid, state_read(&ep->com),
3076 			 ep->mpa_attr.initiator ? 1 : 0);
3077 		mutex_lock(&ep->com.mutex);
3078 		kfree_skb(ep->mpa_skb);
3079 		ep->mpa_skb = NULL;
3080 		if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3081 			stop_ep_timer(ep);
3082 		mutex_unlock(&ep->com.mutex);
3083 	}
3084 out:
3085 	c4iw_put_ep(&ep->com);
3086 	return 0;
3087 }
3088 
3089 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3090 {
3091 	int abort;
3092 	struct c4iw_ep *ep = to_ep(cm_id);
3093 
3094 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3095 
3096 	mutex_lock(&ep->com.mutex);
3097 	if (ep->com.state != MPA_REQ_RCVD) {
3098 		mutex_unlock(&ep->com.mutex);
3099 		c4iw_put_ep(&ep->com);
3100 		return -ECONNRESET;
3101 	}
3102 	set_bit(ULP_REJECT, &ep->com.history);
3103 	if (mpa_rev == 0)
3104 		abort = 1;
3105 	else
3106 		abort = send_mpa_reject(ep, pdata, pdata_len);
3107 	mutex_unlock(&ep->com.mutex);
3108 
3109 	stop_ep_timer(ep);
3110 	c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3111 	c4iw_put_ep(&ep->com);
3112 	return 0;
3113 }
3114 
3115 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3116 {
3117 	int err;
3118 	struct c4iw_qp_attributes attrs;
3119 	enum c4iw_qp_attr_mask mask;
3120 	struct c4iw_ep *ep = to_ep(cm_id);
3121 	struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3122 	struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3123 	int abort = 0;
3124 
3125 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3126 
3127 	mutex_lock(&ep->com.mutex);
3128 	if (ep->com.state != MPA_REQ_RCVD) {
3129 		err = -ECONNRESET;
3130 		goto err_out;
3131 	}
3132 
3133 	if (!qp) {
3134 		err = -EINVAL;
3135 		goto err_out;
3136 	}
3137 
3138 	set_bit(ULP_ACCEPT, &ep->com.history);
3139 	if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3140 	    (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3141 		err = -EINVAL;
3142 		goto err_abort;
3143 	}
3144 
3145 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3146 		if (conn_param->ord > ep->ird) {
3147 			if (RELAXED_IRD_NEGOTIATION) {
3148 				conn_param->ord = ep->ird;
3149 			} else {
3150 				ep->ird = conn_param->ird;
3151 				ep->ord = conn_param->ord;
3152 				send_mpa_reject(ep, conn_param->private_data,
3153 						conn_param->private_data_len);
3154 				err = -ENOMEM;
3155 				goto err_abort;
3156 			}
3157 		}
3158 		if (conn_param->ird < ep->ord) {
3159 			if (RELAXED_IRD_NEGOTIATION &&
3160 			    ep->ord <= h->rdev.lldi.max_ordird_qp) {
3161 				conn_param->ird = ep->ord;
3162 			} else {
3163 				err = -ENOMEM;
3164 				goto err_abort;
3165 			}
3166 		}
3167 	}
3168 	ep->ird = conn_param->ird;
3169 	ep->ord = conn_param->ord;
3170 
3171 	if (ep->mpa_attr.version == 1) {
3172 		if (peer2peer && ep->ird == 0)
3173 			ep->ird = 1;
3174 	} else {
3175 		if (peer2peer &&
3176 		    (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3177 		    (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3178 			ep->ird = 1;
3179 	}
3180 
3181 	pr_debug("ird %d ord %d\n", ep->ird, ep->ord);
3182 
3183 	ep->com.cm_id = cm_id;
3184 	ref_cm_id(&ep->com);
3185 	ep->com.qp = qp;
3186 	ref_qp(ep);
3187 
3188 	/* bind QP to EP and move to RTS */
3189 	attrs.mpa_attr = ep->mpa_attr;
3190 	attrs.max_ird = ep->ird;
3191 	attrs.max_ord = ep->ord;
3192 	attrs.llp_stream_handle = ep;
3193 	attrs.next_state = C4IW_QP_STATE_RTS;
3194 
3195 	/* bind QP and TID with INIT_WR */
3196 	mask = C4IW_QP_ATTR_NEXT_STATE |
3197 			     C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3198 			     C4IW_QP_ATTR_MPA_ATTR |
3199 			     C4IW_QP_ATTR_MAX_IRD |
3200 			     C4IW_QP_ATTR_MAX_ORD;
3201 
3202 	err = c4iw_modify_qp(ep->com.qp->rhp,
3203 			     ep->com.qp, mask, &attrs, 1);
3204 	if (err)
3205 		goto err_deref_cm_id;
3206 
3207 	set_bit(STOP_MPA_TIMER, &ep->com.flags);
3208 	err = send_mpa_reply(ep, conn_param->private_data,
3209 			     conn_param->private_data_len);
3210 	if (err)
3211 		goto err_deref_cm_id;
3212 
3213 	__state_set(&ep->com, FPDU_MODE);
3214 	established_upcall(ep);
3215 	mutex_unlock(&ep->com.mutex);
3216 	c4iw_put_ep(&ep->com);
3217 	return 0;
3218 err_deref_cm_id:
3219 	deref_cm_id(&ep->com);
3220 err_abort:
3221 	abort = 1;
3222 err_out:
3223 	mutex_unlock(&ep->com.mutex);
3224 	if (abort)
3225 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3226 	c4iw_put_ep(&ep->com);
3227 	return err;
3228 }
3229 
3230 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3231 {
3232 	struct in_device *ind;
3233 	int found = 0;
3234 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3235 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3236 	const struct in_ifaddr *ifa;
3237 
3238 	ind = in_dev_get(dev->rdev.lldi.ports[0]);
3239 	if (!ind)
3240 		return -EADDRNOTAVAIL;
3241 	rcu_read_lock();
3242 	in_dev_for_each_ifa_rcu(ifa, ind) {
3243 		if (ifa->ifa_flags & IFA_F_SECONDARY)
3244 			continue;
3245 		laddr->sin_addr.s_addr = ifa->ifa_address;
3246 		raddr->sin_addr.s_addr = ifa->ifa_address;
3247 		found = 1;
3248 		break;
3249 	}
3250 	rcu_read_unlock();
3251 
3252 	in_dev_put(ind);
3253 	return found ? 0 : -EADDRNOTAVAIL;
3254 }
3255 
3256 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3257 		      unsigned char banned_flags)
3258 {
3259 	struct inet6_dev *idev;
3260 	int err = -EADDRNOTAVAIL;
3261 
3262 	rcu_read_lock();
3263 	idev = __in6_dev_get(dev);
3264 	if (idev != NULL) {
3265 		struct inet6_ifaddr *ifp;
3266 
3267 		read_lock_bh(&idev->lock);
3268 		list_for_each_entry(ifp, &idev->addr_list, if_list) {
3269 			if (ifp->scope == IFA_LINK &&
3270 			    !(ifp->flags & banned_flags)) {
3271 				memcpy(addr, &ifp->addr, 16);
3272 				err = 0;
3273 				break;
3274 			}
3275 		}
3276 		read_unlock_bh(&idev->lock);
3277 	}
3278 	rcu_read_unlock();
3279 	return err;
3280 }
3281 
3282 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3283 {
3284 	struct in6_addr uninitialized_var(addr);
3285 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3286 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3287 
3288 	if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3289 		memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3290 		memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3291 		return 0;
3292 	}
3293 	return -EADDRNOTAVAIL;
3294 }
3295 
3296 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3297 {
3298 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3299 	struct c4iw_ep *ep;
3300 	int err = 0;
3301 	struct sockaddr_in *laddr;
3302 	struct sockaddr_in *raddr;
3303 	struct sockaddr_in6 *laddr6;
3304 	struct sockaddr_in6 *raddr6;
3305 	__u8 *ra;
3306 	int iptype;
3307 
3308 	if ((conn_param->ord > cur_max_read_depth(dev)) ||
3309 	    (conn_param->ird > cur_max_read_depth(dev))) {
3310 		err = -EINVAL;
3311 		goto out;
3312 	}
3313 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3314 	if (!ep) {
3315 		pr_err("%s - cannot alloc ep\n", __func__);
3316 		err = -ENOMEM;
3317 		goto out;
3318 	}
3319 
3320 	skb_queue_head_init(&ep->com.ep_skb_list);
3321 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3322 		err = -ENOMEM;
3323 		goto fail1;
3324 	}
3325 
3326 	timer_setup(&ep->timer, ep_timeout, 0);
3327 	ep->plen = conn_param->private_data_len;
3328 	if (ep->plen)
3329 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3330 		       conn_param->private_data, ep->plen);
3331 	ep->ird = conn_param->ird;
3332 	ep->ord = conn_param->ord;
3333 
3334 	if (peer2peer && ep->ord == 0)
3335 		ep->ord = 1;
3336 
3337 	ep->com.cm_id = cm_id;
3338 	ref_cm_id(&ep->com);
3339 	cm_id->provider_data = ep;
3340 	ep->com.dev = dev;
3341 	ep->com.qp = get_qhp(dev, conn_param->qpn);
3342 	if (!ep->com.qp) {
3343 		pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3344 		err = -EINVAL;
3345 		goto fail2;
3346 	}
3347 	ref_qp(ep);
3348 	pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn,
3349 		 ep->com.qp, cm_id);
3350 
3351 	/*
3352 	 * Allocate an active TID to initiate a TCP connection.
3353 	 */
3354 	ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3355 	if (ep->atid == -1) {
3356 		pr_err("%s - cannot alloc atid\n", __func__);
3357 		err = -ENOMEM;
3358 		goto fail2;
3359 	}
3360 	err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL);
3361 	if (err)
3362 		goto fail5;
3363 
3364 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3365 	       sizeof(ep->com.local_addr));
3366 	memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3367 	       sizeof(ep->com.remote_addr));
3368 
3369 	laddr = (struct sockaddr_in *)&ep->com.local_addr;
3370 	raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3371 	laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3372 	raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3373 
3374 	if (cm_id->m_remote_addr.ss_family == AF_INET) {
3375 		iptype = 4;
3376 		ra = (__u8 *)&raddr->sin_addr;
3377 
3378 		/*
3379 		 * Handle loopback requests to INADDR_ANY.
3380 		 */
3381 		if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3382 			err = pick_local_ipaddrs(dev, cm_id);
3383 			if (err)
3384 				goto fail2;
3385 		}
3386 
3387 		/* find a route */
3388 		pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3389 			 &laddr->sin_addr, ntohs(laddr->sin_port),
3390 			 ra, ntohs(raddr->sin_port));
3391 		ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3392 					  laddr->sin_addr.s_addr,
3393 					  raddr->sin_addr.s_addr,
3394 					  laddr->sin_port,
3395 					  raddr->sin_port, cm_id->tos);
3396 	} else {
3397 		iptype = 6;
3398 		ra = (__u8 *)&raddr6->sin6_addr;
3399 
3400 		/*
3401 		 * Handle loopback requests to INADDR_ANY.
3402 		 */
3403 		if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3404 			err = pick_local_ip6addrs(dev, cm_id);
3405 			if (err)
3406 				goto fail2;
3407 		}
3408 
3409 		/* find a route */
3410 		pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3411 			 laddr6->sin6_addr.s6_addr,
3412 			 ntohs(laddr6->sin6_port),
3413 			 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3414 		ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3415 					   laddr6->sin6_addr.s6_addr,
3416 					   raddr6->sin6_addr.s6_addr,
3417 					   laddr6->sin6_port,
3418 					   raddr6->sin6_port, cm_id->tos,
3419 					   raddr6->sin6_scope_id);
3420 	}
3421 	if (!ep->dst) {
3422 		pr_err("%s - cannot find route\n", __func__);
3423 		err = -EHOSTUNREACH;
3424 		goto fail3;
3425 	}
3426 
3427 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3428 			ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3429 	if (err) {
3430 		pr_err("%s - cannot alloc l2e\n", __func__);
3431 		goto fail4;
3432 	}
3433 
3434 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3435 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3436 		 ep->l2t->idx);
3437 
3438 	state_set(&ep->com, CONNECTING);
3439 	ep->tos = cm_id->tos;
3440 
3441 	/* send connect request to rnic */
3442 	err = send_connect(ep);
3443 	if (!err)
3444 		goto out;
3445 
3446 	cxgb4_l2t_release(ep->l2t);
3447 fail4:
3448 	dst_release(ep->dst);
3449 fail3:
3450 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
3451 fail5:
3452 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3453 fail2:
3454 	skb_queue_purge(&ep->com.ep_skb_list);
3455 	deref_cm_id(&ep->com);
3456 fail1:
3457 	c4iw_put_ep(&ep->com);
3458 out:
3459 	return err;
3460 }
3461 
3462 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3463 {
3464 	int err;
3465 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3466 				    &ep->com.local_addr;
3467 
3468 	if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3469 		err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3470 				     (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3471 		if (err)
3472 			return err;
3473 	}
3474 	c4iw_init_wr_wait(ep->com.wr_waitp);
3475 	err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3476 				   ep->stid, &sin6->sin6_addr,
3477 				   sin6->sin6_port,
3478 				   ep->com.dev->rdev.lldi.rxq_ids[0]);
3479 	if (!err)
3480 		err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3481 					  ep->com.wr_waitp,
3482 					  0, 0, __func__);
3483 	else if (err > 0)
3484 		err = net_xmit_errno(err);
3485 	if (err) {
3486 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3487 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3488 		pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3489 		       err, ep->stid,
3490 		       sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3491 	}
3492 	return err;
3493 }
3494 
3495 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3496 {
3497 	int err;
3498 	struct sockaddr_in *sin = (struct sockaddr_in *)
3499 				  &ep->com.local_addr;
3500 
3501 	if (dev->rdev.lldi.enable_fw_ofld_conn) {
3502 		do {
3503 			err = cxgb4_create_server_filter(
3504 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3505 				sin->sin_addr.s_addr, sin->sin_port, 0,
3506 				ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3507 			if (err == -EBUSY) {
3508 				if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3509 					err = -EIO;
3510 					break;
3511 				}
3512 				set_current_state(TASK_UNINTERRUPTIBLE);
3513 				schedule_timeout(usecs_to_jiffies(100));
3514 			}
3515 		} while (err == -EBUSY);
3516 	} else {
3517 		c4iw_init_wr_wait(ep->com.wr_waitp);
3518 		err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3519 				ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3520 				0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3521 		if (!err)
3522 			err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3523 						  ep->com.wr_waitp,
3524 						  0, 0, __func__);
3525 		else if (err > 0)
3526 			err = net_xmit_errno(err);
3527 	}
3528 	if (err)
3529 		pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3530 		       , err, ep->stid,
3531 		       &sin->sin_addr, ntohs(sin->sin_port));
3532 	return err;
3533 }
3534 
3535 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3536 {
3537 	int err = 0;
3538 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3539 	struct c4iw_listen_ep *ep;
3540 
3541 	might_sleep();
3542 
3543 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3544 	if (!ep) {
3545 		pr_err("%s - cannot alloc ep\n", __func__);
3546 		err = -ENOMEM;
3547 		goto fail1;
3548 	}
3549 	skb_queue_head_init(&ep->com.ep_skb_list);
3550 	pr_debug("ep %p\n", ep);
3551 	ep->com.cm_id = cm_id;
3552 	ref_cm_id(&ep->com);
3553 	ep->com.dev = dev;
3554 	ep->backlog = backlog;
3555 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3556 	       sizeof(ep->com.local_addr));
3557 
3558 	/*
3559 	 * Allocate a server TID.
3560 	 */
3561 	if (dev->rdev.lldi.enable_fw_ofld_conn &&
3562 	    ep->com.local_addr.ss_family == AF_INET)
3563 		ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3564 					     cm_id->m_local_addr.ss_family, ep);
3565 	else
3566 		ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3567 					    cm_id->m_local_addr.ss_family, ep);
3568 
3569 	if (ep->stid == -1) {
3570 		pr_err("%s - cannot alloc stid\n", __func__);
3571 		err = -ENOMEM;
3572 		goto fail2;
3573 	}
3574 	err = xa_insert_irq(&dev->stids, ep->stid, ep, GFP_KERNEL);
3575 	if (err)
3576 		goto fail3;
3577 
3578 	state_set(&ep->com, LISTEN);
3579 	if (ep->com.local_addr.ss_family == AF_INET)
3580 		err = create_server4(dev, ep);
3581 	else
3582 		err = create_server6(dev, ep);
3583 	if (!err) {
3584 		cm_id->provider_data = ep;
3585 		goto out;
3586 	}
3587 	xa_erase_irq(&ep->com.dev->stids, ep->stid);
3588 fail3:
3589 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3590 			ep->com.local_addr.ss_family);
3591 fail2:
3592 	deref_cm_id(&ep->com);
3593 	c4iw_put_ep(&ep->com);
3594 fail1:
3595 out:
3596 	return err;
3597 }
3598 
3599 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3600 {
3601 	int err;
3602 	struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3603 
3604 	pr_debug("ep %p\n", ep);
3605 
3606 	might_sleep();
3607 	state_set(&ep->com, DEAD);
3608 	if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3609 	    ep->com.local_addr.ss_family == AF_INET) {
3610 		err = cxgb4_remove_server_filter(
3611 			ep->com.dev->rdev.lldi.ports[0], ep->stid,
3612 			ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3613 	} else {
3614 		struct sockaddr_in6 *sin6;
3615 		c4iw_init_wr_wait(ep->com.wr_waitp);
3616 		err = cxgb4_remove_server(
3617 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3618 				ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3619 		if (err)
3620 			goto done;
3621 		err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp,
3622 					  0, 0, __func__);
3623 		sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3624 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3625 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3626 	}
3627 	xa_erase_irq(&ep->com.dev->stids, ep->stid);
3628 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3629 			ep->com.local_addr.ss_family);
3630 done:
3631 	deref_cm_id(&ep->com);
3632 	c4iw_put_ep(&ep->com);
3633 	return err;
3634 }
3635 
3636 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3637 {
3638 	int ret = 0;
3639 	int close = 0;
3640 	int fatal = 0;
3641 	struct c4iw_rdev *rdev;
3642 
3643 	mutex_lock(&ep->com.mutex);
3644 
3645 	pr_debug("ep %p state %s, abrupt %d\n", ep,
3646 		 states[ep->com.state], abrupt);
3647 
3648 	/*
3649 	 * Ref the ep here in case we have fatal errors causing the
3650 	 * ep to be released and freed.
3651 	 */
3652 	c4iw_get_ep(&ep->com);
3653 
3654 	rdev = &ep->com.dev->rdev;
3655 	if (c4iw_fatal_error(rdev)) {
3656 		fatal = 1;
3657 		close_complete_upcall(ep, -EIO);
3658 		ep->com.state = DEAD;
3659 	}
3660 	switch (ep->com.state) {
3661 	case MPA_REQ_WAIT:
3662 	case MPA_REQ_SENT:
3663 	case MPA_REQ_RCVD:
3664 	case MPA_REP_SENT:
3665 	case FPDU_MODE:
3666 	case CONNECTING:
3667 		close = 1;
3668 		if (abrupt)
3669 			ep->com.state = ABORTING;
3670 		else {
3671 			ep->com.state = CLOSING;
3672 
3673 			/*
3674 			 * if we close before we see the fw4_ack() then we fix
3675 			 * up the timer state since we're reusing it.
3676 			 */
3677 			if (ep->mpa_skb &&
3678 			    test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3679 				clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3680 				stop_ep_timer(ep);
3681 			}
3682 			start_ep_timer(ep);
3683 		}
3684 		set_bit(CLOSE_SENT, &ep->com.flags);
3685 		break;
3686 	case CLOSING:
3687 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3688 			close = 1;
3689 			if (abrupt) {
3690 				(void)stop_ep_timer(ep);
3691 				ep->com.state = ABORTING;
3692 			} else
3693 				ep->com.state = MORIBUND;
3694 		}
3695 		break;
3696 	case MORIBUND:
3697 	case ABORTING:
3698 	case DEAD:
3699 		pr_debug("ignoring disconnect ep %p state %u\n",
3700 			 ep, ep->com.state);
3701 		break;
3702 	default:
3703 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3704 		break;
3705 	}
3706 
3707 	if (close) {
3708 		if (abrupt) {
3709 			set_bit(EP_DISC_ABORT, &ep->com.history);
3710 			ret = send_abort(ep);
3711 		} else {
3712 			set_bit(EP_DISC_CLOSE, &ep->com.history);
3713 			ret = send_halfclose(ep);
3714 		}
3715 		if (ret) {
3716 			set_bit(EP_DISC_FAIL, &ep->com.history);
3717 			if (!abrupt) {
3718 				stop_ep_timer(ep);
3719 				close_complete_upcall(ep, -EIO);
3720 			}
3721 			if (ep->com.qp) {
3722 				struct c4iw_qp_attributes attrs;
3723 
3724 				attrs.next_state = C4IW_QP_STATE_ERROR;
3725 				ret = c4iw_modify_qp(ep->com.qp->rhp,
3726 						     ep->com.qp,
3727 						     C4IW_QP_ATTR_NEXT_STATE,
3728 						     &attrs, 1);
3729 				if (ret)
3730 					pr_err("%s - qp <- error failed!\n",
3731 					       __func__);
3732 			}
3733 			fatal = 1;
3734 		}
3735 	}
3736 	mutex_unlock(&ep->com.mutex);
3737 	c4iw_put_ep(&ep->com);
3738 	if (fatal)
3739 		release_ep_resources(ep);
3740 	return ret;
3741 }
3742 
3743 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3744 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3745 {
3746 	struct c4iw_ep *ep;
3747 	int atid = be32_to_cpu(req->tid);
3748 
3749 	ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3750 					   (__force u32) req->tid);
3751 	if (!ep)
3752 		return;
3753 
3754 	switch (req->retval) {
3755 	case FW_ENOMEM:
3756 		set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3757 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3758 			send_fw_act_open_req(ep, atid);
3759 			return;
3760 		}
3761 		/* fall through */
3762 	case FW_EADDRINUSE:
3763 		set_bit(ACT_RETRY_INUSE, &ep->com.history);
3764 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3765 			send_fw_act_open_req(ep, atid);
3766 			return;
3767 		}
3768 		break;
3769 	default:
3770 		pr_info("%s unexpected ofld conn wr retval %d\n",
3771 		       __func__, req->retval);
3772 		break;
3773 	}
3774 	pr_err("active ofld_connect_wr failure %d atid %d\n",
3775 	       req->retval, atid);
3776 	mutex_lock(&dev->rdev.stats.lock);
3777 	dev->rdev.stats.act_ofld_conn_fails++;
3778 	mutex_unlock(&dev->rdev.stats.lock);
3779 	connect_reply_upcall(ep, status2errno(req->retval));
3780 	state_set(&ep->com, DEAD);
3781 	if (ep->com.remote_addr.ss_family == AF_INET6) {
3782 		struct sockaddr_in6 *sin6 =
3783 			(struct sockaddr_in6 *)&ep->com.local_addr;
3784 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3785 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3786 	}
3787 	xa_erase_irq(&dev->atids, atid);
3788 	cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3789 	dst_release(ep->dst);
3790 	cxgb4_l2t_release(ep->l2t);
3791 	c4iw_put_ep(&ep->com);
3792 }
3793 
3794 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3795 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3796 {
3797 	struct sk_buff *rpl_skb;
3798 	struct cpl_pass_accept_req *cpl;
3799 	int ret;
3800 
3801 	rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3802 	if (req->retval) {
3803 		pr_err("%s passive open failure %d\n", __func__, req->retval);
3804 		mutex_lock(&dev->rdev.stats.lock);
3805 		dev->rdev.stats.pas_ofld_conn_fails++;
3806 		mutex_unlock(&dev->rdev.stats.lock);
3807 		kfree_skb(rpl_skb);
3808 	} else {
3809 		cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3810 		OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3811 					(__force u32) htonl(
3812 					(__force u32) req->tid)));
3813 		ret = pass_accept_req(dev, rpl_skb);
3814 		if (!ret)
3815 			kfree_skb(rpl_skb);
3816 	}
3817 	return;
3818 }
3819 
3820 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word)
3821 {
3822 	u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]);
3823 	u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]);
3824 	u64 t;
3825 	u32 shift = 32;
3826 
3827 	t = (thi << shift) | (tlo >> shift);
3828 
3829 	return t;
3830 }
3831 
3832 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift)
3833 {
3834 	u32 v;
3835 	u64 t = be64_to_cpu(tcb[(31 - word) / 2]);
3836 
3837 	if (word & 0x1)
3838 		shift += 32;
3839 	v = (t >> shift) & mask;
3840 	return v;
3841 }
3842 
3843 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3844 {
3845 	struct cpl_get_tcb_rpl *rpl = cplhdr(skb);
3846 	__be64 *tcb = (__be64 *)(rpl + 1);
3847 	unsigned int tid = GET_TID(rpl);
3848 	struct c4iw_ep *ep;
3849 	u64 t_flags_64;
3850 	u32 rx_pdu_out;
3851 
3852 	ep = get_ep_from_tid(dev, tid);
3853 	if (!ep)
3854 		return 0;
3855 	/* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to
3856 	 * determine if there's a rx PDU feedback event pending.
3857 	 *
3858 	 * If that bit is set, it means we'll need to re-read the TCB's
3859 	 * rq_start value. The final value is the one present in a TCB
3860 	 * with the TF_RX_PDU_OUT bit cleared.
3861 	 */
3862 
3863 	t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W);
3864 	rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S;
3865 
3866 	c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */
3867 	c4iw_put_ep(&ep->com); /* from read_tcb() */
3868 
3869 	/* If TF_RX_PDU_OUT bit is set, re-read the TCB */
3870 	if (rx_pdu_out) {
3871 		if (++ep->rx_pdu_out_cnt >= 2) {
3872 			WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n");
3873 			goto cleanup;
3874 		}
3875 		read_tcb(ep);
3876 		return 0;
3877 	}
3878 
3879 	ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_W,
3880 			TCB_RQ_START_S);
3881 cleanup:
3882 	pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx);
3883 
3884 	if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags))
3885 		finish_peer_abort(dev, ep);
3886 	else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags))
3887 		send_abort_req(ep);
3888 	else
3889 		WARN_ONCE(1, "unexpected state!");
3890 
3891 	return 0;
3892 }
3893 
3894 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3895 {
3896 	struct cpl_fw6_msg *rpl = cplhdr(skb);
3897 	struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3898 
3899 	switch (rpl->type) {
3900 	case FW6_TYPE_CQE:
3901 		c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3902 		break;
3903 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3904 		req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3905 		switch (req->t_state) {
3906 		case TCP_SYN_SENT:
3907 			active_ofld_conn_reply(dev, skb, req);
3908 			break;
3909 		case TCP_SYN_RECV:
3910 			passive_ofld_conn_reply(dev, skb, req);
3911 			break;
3912 		default:
3913 			pr_err("%s unexpected ofld conn wr state %d\n",
3914 			       __func__, req->t_state);
3915 			break;
3916 		}
3917 		break;
3918 	}
3919 	return 0;
3920 }
3921 
3922 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3923 {
3924 	__be32 l2info;
3925 	__be16 hdr_len, vlantag, len;
3926 	u16 eth_hdr_len;
3927 	int tcp_hdr_len, ip_hdr_len;
3928 	u8 intf;
3929 	struct cpl_rx_pkt *cpl = cplhdr(skb);
3930 	struct cpl_pass_accept_req *req;
3931 	struct tcp_options_received tmp_opt;
3932 	struct c4iw_dev *dev;
3933 	enum chip_type type;
3934 
3935 	dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3936 	/* Store values from cpl_rx_pkt in temporary location. */
3937 	vlantag = cpl->vlan;
3938 	len = cpl->len;
3939 	l2info  = cpl->l2info;
3940 	hdr_len = cpl->hdr_len;
3941 	intf = cpl->iff;
3942 
3943 	__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3944 
3945 	/*
3946 	 * We need to parse the TCP options from SYN packet.
3947 	 * to generate cpl_pass_accept_req.
3948 	 */
3949 	memset(&tmp_opt, 0, sizeof(tmp_opt));
3950 	tcp_clear_options(&tmp_opt);
3951 	tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL);
3952 
3953 	req = __skb_push(skb, sizeof(*req));
3954 	memset(req, 0, sizeof(*req));
3955 	req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3956 			 SYN_MAC_IDX_V(RX_MACIDX_G(
3957 			 be32_to_cpu(l2info))) |
3958 			 SYN_XACT_MATCH_F);
3959 	type = dev->rdev.lldi.adapter_type;
3960 	tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3961 	ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3962 	req->hdr_len =
3963 		cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3964 	if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3965 		eth_hdr_len = is_t4(type) ?
3966 				RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3967 				RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3968 		req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3969 					    IP_HDR_LEN_V(ip_hdr_len) |
3970 					    ETH_HDR_LEN_V(eth_hdr_len));
3971 	} else { /* T6 and later */
3972 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3973 		req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3974 					    T6_IP_HDR_LEN_V(ip_hdr_len) |
3975 					    T6_ETH_HDR_LEN_V(eth_hdr_len));
3976 	}
3977 	req->vlan = vlantag;
3978 	req->len = len;
3979 	req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3980 				    PASS_OPEN_TOS_V(tos));
3981 	req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3982 	if (tmp_opt.wscale_ok)
3983 		req->tcpopt.wsf = tmp_opt.snd_wscale;
3984 	req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3985 	if (tmp_opt.sack_ok)
3986 		req->tcpopt.sack = 1;
3987 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3988 	return;
3989 }
3990 
3991 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3992 				  __be32 laddr, __be16 lport,
3993 				  __be32 raddr, __be16 rport,
3994 				  u32 rcv_isn, u32 filter, u16 window,
3995 				  u32 rss_qid, u8 port_id)
3996 {
3997 	struct sk_buff *req_skb;
3998 	struct fw_ofld_connection_wr *req;
3999 	struct cpl_pass_accept_req *cpl = cplhdr(skb);
4000 	int ret;
4001 
4002 	req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
4003 	if (!req_skb)
4004 		return;
4005 	req = __skb_put_zero(req_skb, sizeof(*req));
4006 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
4007 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
4008 	req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
4009 	req->le.filter = (__force __be32) filter;
4010 	req->le.lport = lport;
4011 	req->le.pport = rport;
4012 	req->le.u.ipv4.lip = laddr;
4013 	req->le.u.ipv4.pip = raddr;
4014 	req->tcb.rcv_nxt = htonl(rcv_isn + 1);
4015 	req->tcb.rcv_adv = htons(window);
4016 	req->tcb.t_state_to_astid =
4017 		 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
4018 			FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
4019 			FW_OFLD_CONNECTION_WR_ASTID_V(
4020 			PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
4021 
4022 	/*
4023 	 * We store the qid in opt2 which will be used by the firmware
4024 	 * to send us the wr response.
4025 	 */
4026 	req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
4027 
4028 	/*
4029 	 * We initialize the MSS index in TCB to 0xF.
4030 	 * So that when driver sends cpl_pass_accept_rpl
4031 	 * TCB picks up the correct value. If this was 0
4032 	 * TP will ignore any value > 0 for MSS index.
4033 	 */
4034 	req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
4035 	req->cookie = (uintptr_t)skb;
4036 
4037 	set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
4038 	ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
4039 	if (ret < 0) {
4040 		pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
4041 		       ret);
4042 		kfree_skb(skb);
4043 		kfree_skb(req_skb);
4044 	}
4045 }
4046 
4047 /*
4048  * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
4049  * messages when a filter is being used instead of server to
4050  * redirect a syn packet. When packets hit filter they are redirected
4051  * to the offload queue and driver tries to establish the connection
4052  * using firmware work request.
4053  */
4054 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
4055 {
4056 	int stid;
4057 	unsigned int filter;
4058 	struct ethhdr *eh = NULL;
4059 	struct vlan_ethhdr *vlan_eh = NULL;
4060 	struct iphdr *iph;
4061 	struct tcphdr *tcph;
4062 	struct rss_header *rss = (void *)skb->data;
4063 	struct cpl_rx_pkt *cpl = (void *)skb->data;
4064 	struct cpl_pass_accept_req *req = (void *)(rss + 1);
4065 	struct l2t_entry *e;
4066 	struct dst_entry *dst;
4067 	struct c4iw_ep *lep = NULL;
4068 	u16 window;
4069 	struct port_info *pi;
4070 	struct net_device *pdev;
4071 	u16 rss_qid, eth_hdr_len;
4072 	int step;
4073 	struct neighbour *neigh;
4074 
4075 	/* Drop all non-SYN packets */
4076 	if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
4077 		goto reject;
4078 
4079 	/*
4080 	 * Drop all packets which did not hit the filter.
4081 	 * Unlikely to happen.
4082 	 */
4083 	if (!(rss->filter_hit && rss->filter_tid))
4084 		goto reject;
4085 
4086 	/*
4087 	 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4088 	 */
4089 	stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4090 
4091 	lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4092 	if (!lep) {
4093 		pr_warn("%s connect request on invalid stid %d\n",
4094 			__func__, stid);
4095 		goto reject;
4096 	}
4097 
4098 	switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4099 	case CHELSIO_T4:
4100 		eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4101 		break;
4102 	case CHELSIO_T5:
4103 		eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4104 		break;
4105 	case CHELSIO_T6:
4106 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4107 		break;
4108 	default:
4109 		pr_err("T%d Chip is not supported\n",
4110 		       CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4111 		goto reject;
4112 	}
4113 
4114 	if (eth_hdr_len == ETH_HLEN) {
4115 		eh = (struct ethhdr *)(req + 1);
4116 		iph = (struct iphdr *)(eh + 1);
4117 	} else {
4118 		vlan_eh = (struct vlan_ethhdr *)(req + 1);
4119 		iph = (struct iphdr *)(vlan_eh + 1);
4120 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
4121 	}
4122 
4123 	if (iph->version != 0x4)
4124 		goto reject;
4125 
4126 	tcph = (struct tcphdr *)(iph + 1);
4127 	skb_set_network_header(skb, (void *)iph - (void *)rss);
4128 	skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4129 	skb_get(skb);
4130 
4131 	pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n",
4132 		 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4133 		 ntohs(tcph->source), iph->tos);
4134 
4135 	dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
4136 			      iph->daddr, iph->saddr, tcph->dest,
4137 			      tcph->source, iph->tos);
4138 	if (!dst) {
4139 		pr_err("%s - failed to find dst entry!\n", __func__);
4140 		goto reject;
4141 	}
4142 	neigh = dst_neigh_lookup_skb(dst, skb);
4143 
4144 	if (!neigh) {
4145 		pr_err("%s - failed to allocate neigh!\n", __func__);
4146 		goto free_dst;
4147 	}
4148 
4149 	if (neigh->dev->flags & IFF_LOOPBACK) {
4150 		pdev = ip_dev_find(&init_net, iph->daddr);
4151 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4152 				    pdev, 0);
4153 		pi = (struct port_info *)netdev_priv(pdev);
4154 		dev_put(pdev);
4155 	} else {
4156 		pdev = get_real_dev(neigh->dev);
4157 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4158 					pdev, 0);
4159 		pi = (struct port_info *)netdev_priv(pdev);
4160 	}
4161 	neigh_release(neigh);
4162 	if (!e) {
4163 		pr_err("%s - failed to allocate l2t entry!\n",
4164 		       __func__);
4165 		goto free_dst;
4166 	}
4167 
4168 	step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4169 	rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4170 	window = (__force u16) htons((__force u16)tcph->window);
4171 
4172 	/* Calcuate filter portion for LE region. */
4173 	filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4174 						    dev->rdev.lldi.ports[0],
4175 						    e));
4176 
4177 	/*
4178 	 * Synthesize the cpl_pass_accept_req. We have everything except the
4179 	 * TID. Once firmware sends a reply with TID we update the TID field
4180 	 * in cpl and pass it through the regular cpl_pass_accept_req path.
4181 	 */
4182 	build_cpl_pass_accept_req(skb, stid, iph->tos);
4183 	send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4184 			      tcph->source, ntohl(tcph->seq), filter, window,
4185 			      rss_qid, pi->port_id);
4186 	cxgb4_l2t_release(e);
4187 free_dst:
4188 	dst_release(dst);
4189 reject:
4190 	if (lep)
4191 		c4iw_put_ep(&lep->com);
4192 	return 0;
4193 }
4194 
4195 /*
4196  * These are the real handlers that are called from a
4197  * work queue.
4198  */
4199 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4200 	[CPL_ACT_ESTABLISH] = act_establish,
4201 	[CPL_ACT_OPEN_RPL] = act_open_rpl,
4202 	[CPL_RX_DATA] = rx_data,
4203 	[CPL_ABORT_RPL_RSS] = abort_rpl,
4204 	[CPL_ABORT_RPL] = abort_rpl,
4205 	[CPL_PASS_OPEN_RPL] = pass_open_rpl,
4206 	[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4207 	[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4208 	[CPL_PASS_ESTABLISH] = pass_establish,
4209 	[CPL_PEER_CLOSE] = peer_close,
4210 	[CPL_ABORT_REQ_RSS] = peer_abort,
4211 	[CPL_CLOSE_CON_RPL] = close_con_rpl,
4212 	[CPL_RDMA_TERMINATE] = terminate,
4213 	[CPL_FW4_ACK] = fw4_ack,
4214 	[CPL_GET_TCB_RPL] = read_tcb_rpl,
4215 	[CPL_FW6_MSG] = deferred_fw6_msg,
4216 	[CPL_RX_PKT] = rx_pkt,
4217 	[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4218 	[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4219 };
4220 
4221 static void process_timeout(struct c4iw_ep *ep)
4222 {
4223 	struct c4iw_qp_attributes attrs;
4224 	int abort = 1;
4225 
4226 	mutex_lock(&ep->com.mutex);
4227 	pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state);
4228 	set_bit(TIMEDOUT, &ep->com.history);
4229 	switch (ep->com.state) {
4230 	case MPA_REQ_SENT:
4231 		connect_reply_upcall(ep, -ETIMEDOUT);
4232 		break;
4233 	case MPA_REQ_WAIT:
4234 	case MPA_REQ_RCVD:
4235 	case MPA_REP_SENT:
4236 	case FPDU_MODE:
4237 		break;
4238 	case CLOSING:
4239 	case MORIBUND:
4240 		if (ep->com.cm_id && ep->com.qp) {
4241 			attrs.next_state = C4IW_QP_STATE_ERROR;
4242 			c4iw_modify_qp(ep->com.qp->rhp,
4243 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4244 				     &attrs, 1);
4245 		}
4246 		close_complete_upcall(ep, -ETIMEDOUT);
4247 		break;
4248 	case ABORTING:
4249 	case DEAD:
4250 
4251 		/*
4252 		 * These states are expected if the ep timed out at the same
4253 		 * time as another thread was calling stop_ep_timer().
4254 		 * So we silently do nothing for these states.
4255 		 */
4256 		abort = 0;
4257 		break;
4258 	default:
4259 		WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4260 			__func__, ep, ep->hwtid, ep->com.state);
4261 		abort = 0;
4262 	}
4263 	mutex_unlock(&ep->com.mutex);
4264 	if (abort)
4265 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4266 	c4iw_put_ep(&ep->com);
4267 }
4268 
4269 static void process_timedout_eps(void)
4270 {
4271 	struct c4iw_ep *ep;
4272 
4273 	spin_lock_irq(&timeout_lock);
4274 	while (!list_empty(&timeout_list)) {
4275 		struct list_head *tmp;
4276 
4277 		tmp = timeout_list.next;
4278 		list_del(tmp);
4279 		tmp->next = NULL;
4280 		tmp->prev = NULL;
4281 		spin_unlock_irq(&timeout_lock);
4282 		ep = list_entry(tmp, struct c4iw_ep, entry);
4283 		process_timeout(ep);
4284 		spin_lock_irq(&timeout_lock);
4285 	}
4286 	spin_unlock_irq(&timeout_lock);
4287 }
4288 
4289 static void process_work(struct work_struct *work)
4290 {
4291 	struct sk_buff *skb = NULL;
4292 	struct c4iw_dev *dev;
4293 	struct cpl_act_establish *rpl;
4294 	unsigned int opcode;
4295 	int ret;
4296 
4297 	process_timedout_eps();
4298 	while ((skb = skb_dequeue(&rxq))) {
4299 		rpl = cplhdr(skb);
4300 		dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4301 		opcode = rpl->ot.opcode;
4302 
4303 		if (opcode >= ARRAY_SIZE(work_handlers) ||
4304 		    !work_handlers[opcode]) {
4305 			pr_err("No handler for opcode 0x%x.\n", opcode);
4306 			kfree_skb(skb);
4307 		} else {
4308 			ret = work_handlers[opcode](dev, skb);
4309 			if (!ret)
4310 				kfree_skb(skb);
4311 		}
4312 		process_timedout_eps();
4313 	}
4314 }
4315 
4316 static DECLARE_WORK(skb_work, process_work);
4317 
4318 static void ep_timeout(struct timer_list *t)
4319 {
4320 	struct c4iw_ep *ep = from_timer(ep, t, timer);
4321 	int kickit = 0;
4322 
4323 	spin_lock(&timeout_lock);
4324 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4325 		/*
4326 		 * Only insert if it is not already on the list.
4327 		 */
4328 		if (!ep->entry.next) {
4329 			list_add_tail(&ep->entry, &timeout_list);
4330 			kickit = 1;
4331 		}
4332 	}
4333 	spin_unlock(&timeout_lock);
4334 	if (kickit)
4335 		queue_work(workq, &skb_work);
4336 }
4337 
4338 /*
4339  * All the CM events are handled on a work queue to have a safe context.
4340  */
4341 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4342 {
4343 
4344 	/*
4345 	 * Save dev in the skb->cb area.
4346 	 */
4347 	*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4348 
4349 	/*
4350 	 * Queue the skb and schedule the worker thread.
4351 	 */
4352 	skb_queue_tail(&rxq, skb);
4353 	queue_work(workq, &skb_work);
4354 	return 0;
4355 }
4356 
4357 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4358 {
4359 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4360 
4361 	if (rpl->status != CPL_ERR_NONE) {
4362 		pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4363 		       rpl->status, GET_TID(rpl));
4364 	}
4365 	kfree_skb(skb);
4366 	return 0;
4367 }
4368 
4369 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4370 {
4371 	struct cpl_fw6_msg *rpl = cplhdr(skb);
4372 	struct c4iw_wr_wait *wr_waitp;
4373 	int ret;
4374 
4375 	pr_debug("type %u\n", rpl->type);
4376 
4377 	switch (rpl->type) {
4378 	case FW6_TYPE_WR_RPL:
4379 		ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4380 		wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4381 		pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret);
4382 		if (wr_waitp)
4383 			c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0);
4384 		kfree_skb(skb);
4385 		break;
4386 	case FW6_TYPE_CQE:
4387 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4388 		sched(dev, skb);
4389 		break;
4390 	default:
4391 		pr_err("%s unexpected fw6 msg type %u\n",
4392 		       __func__, rpl->type);
4393 		kfree_skb(skb);
4394 		break;
4395 	}
4396 	return 0;
4397 }
4398 
4399 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4400 {
4401 	struct cpl_abort_req_rss *req = cplhdr(skb);
4402 	struct c4iw_ep *ep;
4403 	unsigned int tid = GET_TID(req);
4404 
4405 	ep = get_ep_from_tid(dev, tid);
4406 	/* This EP will be dereferenced in peer_abort() */
4407 	if (!ep) {
4408 		pr_warn("Abort on non-existent endpoint, tid %d\n", tid);
4409 		kfree_skb(skb);
4410 		return 0;
4411 	}
4412 	if (cxgb_is_neg_adv(req->status)) {
4413 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
4414 			 ep->hwtid, req->status,
4415 			 neg_adv_str(req->status));
4416 		goto out;
4417 	}
4418 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state);
4419 
4420 	c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
4421 out:
4422 	sched(dev, skb);
4423 	return 0;
4424 }
4425 
4426 /*
4427  * Most upcalls from the T4 Core go to sched() to
4428  * schedule the processing on a work queue.
4429  */
4430 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4431 	[CPL_ACT_ESTABLISH] = sched,
4432 	[CPL_ACT_OPEN_RPL] = sched,
4433 	[CPL_RX_DATA] = sched,
4434 	[CPL_ABORT_RPL_RSS] = sched,
4435 	[CPL_ABORT_RPL] = sched,
4436 	[CPL_PASS_OPEN_RPL] = sched,
4437 	[CPL_CLOSE_LISTSRV_RPL] = sched,
4438 	[CPL_PASS_ACCEPT_REQ] = sched,
4439 	[CPL_PASS_ESTABLISH] = sched,
4440 	[CPL_PEER_CLOSE] = sched,
4441 	[CPL_CLOSE_CON_RPL] = sched,
4442 	[CPL_ABORT_REQ_RSS] = peer_abort_intr,
4443 	[CPL_RDMA_TERMINATE] = sched,
4444 	[CPL_FW4_ACK] = sched,
4445 	[CPL_SET_TCB_RPL] = set_tcb_rpl,
4446 	[CPL_GET_TCB_RPL] = sched,
4447 	[CPL_FW6_MSG] = fw6_msg,
4448 	[CPL_RX_PKT] = sched
4449 };
4450 
4451 int __init c4iw_cm_init(void)
4452 {
4453 	spin_lock_init(&timeout_lock);
4454 	skb_queue_head_init(&rxq);
4455 
4456 	workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4457 	if (!workq)
4458 		return -ENOMEM;
4459 
4460 	return 0;
4461 }
4462 
4463 void c4iw_cm_term(void)
4464 {
4465 	WARN_ON(!list_empty(&timeout_list));
4466 	flush_workqueue(workq);
4467 	destroy_workqueue(workq);
4468 }
4469