xref: /linux/drivers/infiniband/hw/cxgb4/cm.c (revision 91afa49a3eda8ebf902ce68f02cb16b48c879b6a)
1 /*
2  * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42 
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49 
50 #include <rdma/ib_addr.h>
51 
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
55 
56 static char *states[] = {
57 	"idle",
58 	"listen",
59 	"connecting",
60 	"mpa_wait_req",
61 	"mpa_req_sent",
62 	"mpa_req_rcvd",
63 	"mpa_rep_sent",
64 	"fpdu_mode",
65 	"aborting",
66 	"closing",
67 	"moribund",
68 	"dead",
69 	NULL,
70 };
71 
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
75 
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
79 
80 static int dack_mode;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=0)");
83 
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 		 "Per-connection max ORD/IRD (default=32)");
88 
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
92 
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
96 
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 		 "Enable tcp window scaling (default=1)");
101 
102 static int peer2peer = 1;
103 module_param(peer2peer, int, 0644);
104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
105 
106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
107 module_param(p2p_type, int, 0644);
108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
109 			   "1=RDMA_READ 0=RDMA_WRITE (default 1)");
110 
111 static int ep_timeout_secs = 60;
112 module_param(ep_timeout_secs, int, 0644);
113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
114 				   "in seconds (default=60)");
115 
116 static int mpa_rev = 2;
117 module_param(mpa_rev, int, 0644);
118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
119 		"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
120 		" compliant (default=2)");
121 
122 static int markers_enabled;
123 module_param(markers_enabled, int, 0644);
124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
125 
126 static int crc_enabled = 1;
127 module_param(crc_enabled, int, 0644);
128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
129 
130 static int rcv_win = 256 * 1024;
131 module_param(rcv_win, int, 0644);
132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
133 
134 static int snd_win = 128 * 1024;
135 module_param(snd_win, int, 0644);
136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
137 
138 static struct workqueue_struct *workq;
139 
140 static struct sk_buff_head rxq;
141 
142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
143 static void ep_timeout(struct timer_list *t);
144 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
146 
147 static LIST_HEAD(timeout_list);
148 static DEFINE_SPINLOCK(timeout_lock);
149 
150 static void deref_cm_id(struct c4iw_ep_common *epc)
151 {
152 	epc->cm_id->rem_ref(epc->cm_id);
153 	epc->cm_id = NULL;
154 	set_bit(CM_ID_DEREFED, &epc->history);
155 }
156 
157 static void ref_cm_id(struct c4iw_ep_common *epc)
158 {
159 	set_bit(CM_ID_REFED, &epc->history);
160 	epc->cm_id->add_ref(epc->cm_id);
161 }
162 
163 static void deref_qp(struct c4iw_ep *ep)
164 {
165 	c4iw_qp_rem_ref(&ep->com.qp->ibqp);
166 	clear_bit(QP_REFERENCED, &ep->com.flags);
167 	set_bit(QP_DEREFED, &ep->com.history);
168 }
169 
170 static void ref_qp(struct c4iw_ep *ep)
171 {
172 	set_bit(QP_REFERENCED, &ep->com.flags);
173 	set_bit(QP_REFED, &ep->com.history);
174 	c4iw_qp_add_ref(&ep->com.qp->ibqp);
175 }
176 
177 static void start_ep_timer(struct c4iw_ep *ep)
178 {
179 	pr_debug("ep %p\n", ep);
180 	if (timer_pending(&ep->timer)) {
181 		pr_err("%s timer already started! ep %p\n",
182 		       __func__, ep);
183 		return;
184 	}
185 	clear_bit(TIMEOUT, &ep->com.flags);
186 	c4iw_get_ep(&ep->com);
187 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
188 	add_timer(&ep->timer);
189 }
190 
191 static int stop_ep_timer(struct c4iw_ep *ep)
192 {
193 	pr_debug("ep %p stopping\n", ep);
194 	del_timer_sync(&ep->timer);
195 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
196 		c4iw_put_ep(&ep->com);
197 		return 0;
198 	}
199 	return 1;
200 }
201 
202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
203 		  struct l2t_entry *l2e)
204 {
205 	int	error = 0;
206 
207 	if (c4iw_fatal_error(rdev)) {
208 		kfree_skb(skb);
209 		pr_err("%s - device in error state - dropping\n", __func__);
210 		return -EIO;
211 	}
212 	error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
213 	if (error < 0)
214 		kfree_skb(skb);
215 	else if (error == NET_XMIT_DROP)
216 		return -ENOMEM;
217 	return error < 0 ? error : 0;
218 }
219 
220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
221 {
222 	int	error = 0;
223 
224 	if (c4iw_fatal_error(rdev)) {
225 		kfree_skb(skb);
226 		pr_err("%s - device in error state - dropping\n", __func__);
227 		return -EIO;
228 	}
229 	error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
230 	if (error < 0)
231 		kfree_skb(skb);
232 	return error < 0 ? error : 0;
233 }
234 
235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
236 {
237 	u32 len = roundup(sizeof(struct cpl_tid_release), 16);
238 
239 	skb = get_skb(skb, len, GFP_KERNEL);
240 	if (!skb)
241 		return;
242 
243 	cxgb_mk_tid_release(skb, len, hwtid, 0);
244 	c4iw_ofld_send(rdev, skb);
245 	return;
246 }
247 
248 static void set_emss(struct c4iw_ep *ep, u16 opt)
249 {
250 	ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
251 		   ((AF_INET == ep->com.remote_addr.ss_family) ?
252 		    sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
253 		   sizeof(struct tcphdr);
254 	ep->mss = ep->emss;
255 	if (TCPOPT_TSTAMP_G(opt))
256 		ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
257 	if (ep->emss < 128)
258 		ep->emss = 128;
259 	if (ep->emss & 7)
260 		pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
261 			 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
262 	pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss,
263 		 ep->emss);
264 }
265 
266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
267 {
268 	enum c4iw_ep_state state;
269 
270 	mutex_lock(&epc->mutex);
271 	state = epc->state;
272 	mutex_unlock(&epc->mutex);
273 	return state;
274 }
275 
276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
277 {
278 	epc->state = new;
279 }
280 
281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
282 {
283 	mutex_lock(&epc->mutex);
284 	pr_debug("%s -> %s\n", states[epc->state], states[new]);
285 	__state_set(epc, new);
286 	mutex_unlock(&epc->mutex);
287 	return;
288 }
289 
290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
291 {
292 	struct sk_buff *skb;
293 	unsigned int i;
294 	size_t len;
295 
296 	len = roundup(sizeof(union cpl_wr_size), 16);
297 	for (i = 0; i < size; i++) {
298 		skb = alloc_skb(len, GFP_KERNEL);
299 		if (!skb)
300 			goto fail;
301 		skb_queue_tail(ep_skb_list, skb);
302 	}
303 	return 0;
304 fail:
305 	skb_queue_purge(ep_skb_list);
306 	return -ENOMEM;
307 }
308 
309 static void *alloc_ep(int size, gfp_t gfp)
310 {
311 	struct c4iw_ep_common *epc;
312 
313 	epc = kzalloc(size, gfp);
314 	if (epc) {
315 		epc->wr_waitp = c4iw_alloc_wr_wait(gfp);
316 		if (!epc->wr_waitp) {
317 			kfree(epc);
318 			epc = NULL;
319 			goto out;
320 		}
321 		kref_init(&epc->kref);
322 		mutex_init(&epc->mutex);
323 		c4iw_init_wr_wait(epc->wr_waitp);
324 	}
325 	pr_debug("alloc ep %p\n", epc);
326 out:
327 	return epc;
328 }
329 
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 	unsigned long flags;
333 
334 	xa_lock_irqsave(&ep->com.dev->hwtids, flags);
335 	__xa_erase(&ep->com.dev->hwtids, ep->hwtid);
336 	if (xa_empty(&ep->com.dev->hwtids))
337 		wake_up(&ep->com.dev->wait);
338 	xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
339 }
340 
341 static int insert_ep_tid(struct c4iw_ep *ep)
342 {
343 	unsigned long flags;
344 	int err;
345 
346 	xa_lock_irqsave(&ep->com.dev->hwtids, flags);
347 	err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL);
348 	xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
349 
350 	return err;
351 }
352 
353 /*
354  * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
355  */
356 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
357 {
358 	struct c4iw_ep *ep;
359 	unsigned long flags;
360 
361 	xa_lock_irqsave(&dev->hwtids, flags);
362 	ep = xa_load(&dev->hwtids, tid);
363 	if (ep)
364 		c4iw_get_ep(&ep->com);
365 	xa_unlock_irqrestore(&dev->hwtids, flags);
366 	return ep;
367 }
368 
369 /*
370  * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
371  */
372 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
373 					       unsigned int stid)
374 {
375 	struct c4iw_listen_ep *ep;
376 	unsigned long flags;
377 
378 	xa_lock_irqsave(&dev->stids, flags);
379 	ep = xa_load(&dev->stids, stid);
380 	if (ep)
381 		c4iw_get_ep(&ep->com);
382 	xa_unlock_irqrestore(&dev->stids, flags);
383 	return ep;
384 }
385 
386 void _c4iw_free_ep(struct kref *kref)
387 {
388 	struct c4iw_ep *ep;
389 
390 	ep = container_of(kref, struct c4iw_ep, com.kref);
391 	pr_debug("ep %p state %s\n", ep, states[ep->com.state]);
392 	if (test_bit(QP_REFERENCED, &ep->com.flags))
393 		deref_qp(ep);
394 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
395 		if (ep->com.remote_addr.ss_family == AF_INET6) {
396 			struct sockaddr_in6 *sin6 =
397 					(struct sockaddr_in6 *)
398 					&ep->com.local_addr;
399 
400 			cxgb4_clip_release(
401 					ep->com.dev->rdev.lldi.ports[0],
402 					(const u32 *)&sin6->sin6_addr.s6_addr,
403 					1);
404 		}
405 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
406 				 ep->com.local_addr.ss_family);
407 		dst_release(ep->dst);
408 		cxgb4_l2t_release(ep->l2t);
409 		kfree_skb(ep->mpa_skb);
410 	}
411 	if (!skb_queue_empty(&ep->com.ep_skb_list))
412 		skb_queue_purge(&ep->com.ep_skb_list);
413 	c4iw_put_wr_wait(ep->com.wr_waitp);
414 	kfree(ep);
415 }
416 
417 static void release_ep_resources(struct c4iw_ep *ep)
418 {
419 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
420 
421 	/*
422 	 * If we have a hwtid, then remove it from the idr table
423 	 * so lookups will no longer find this endpoint.  Otherwise
424 	 * we have a race where one thread finds the ep ptr just
425 	 * before the other thread is freeing the ep memory.
426 	 */
427 	if (ep->hwtid != -1)
428 		remove_ep_tid(ep);
429 	c4iw_put_ep(&ep->com);
430 }
431 
432 static int status2errno(int status)
433 {
434 	switch (status) {
435 	case CPL_ERR_NONE:
436 		return 0;
437 	case CPL_ERR_CONN_RESET:
438 		return -ECONNRESET;
439 	case CPL_ERR_ARP_MISS:
440 		return -EHOSTUNREACH;
441 	case CPL_ERR_CONN_TIMEDOUT:
442 		return -ETIMEDOUT;
443 	case CPL_ERR_TCAM_FULL:
444 		return -ENOMEM;
445 	case CPL_ERR_CONN_EXIST:
446 		return -EADDRINUSE;
447 	default:
448 		return -EIO;
449 	}
450 }
451 
452 /*
453  * Try and reuse skbs already allocated...
454  */
455 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
456 {
457 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
458 		skb_trim(skb, 0);
459 		skb_get(skb);
460 		skb_reset_transport_header(skb);
461 	} else {
462 		skb = alloc_skb(len, gfp);
463 		if (!skb)
464 			return NULL;
465 	}
466 	t4_set_arp_err_handler(skb, NULL, NULL);
467 	return skb;
468 }
469 
470 static struct net_device *get_real_dev(struct net_device *egress_dev)
471 {
472 	return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
473 }
474 
475 static void arp_failure_discard(void *handle, struct sk_buff *skb)
476 {
477 	pr_err("ARP failure\n");
478 	kfree_skb(skb);
479 }
480 
481 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
482 {
483 	pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
484 }
485 
486 enum {
487 	NUM_FAKE_CPLS = 2,
488 	FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
489 	FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
490 };
491 
492 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
493 {
494 	struct c4iw_ep *ep;
495 
496 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
497 	release_ep_resources(ep);
498 	return 0;
499 }
500 
501 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
502 {
503 	struct c4iw_ep *ep;
504 
505 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
506 	c4iw_put_ep(&ep->parent_ep->com);
507 	release_ep_resources(ep);
508 	return 0;
509 }
510 
511 /*
512  * Fake up a special CPL opcode and call sched() so process_work() will call
513  * _put_ep_safe() in a safe context to free the ep resources.  This is needed
514  * because ARP error handlers are called in an ATOMIC context, and
515  * _c4iw_free_ep() needs to block.
516  */
517 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
518 				  int cpl)
519 {
520 	struct cpl_act_establish *rpl = cplhdr(skb);
521 
522 	/* Set our special ARP_FAILURE opcode */
523 	rpl->ot.opcode = cpl;
524 
525 	/*
526 	 * Save ep in the skb->cb area, after where sched() will save the dev
527 	 * ptr.
528 	 */
529 	*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
530 	sched(ep->com.dev, skb);
531 }
532 
533 /* Handle an ARP failure for an accept */
534 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
535 {
536 	struct c4iw_ep *ep = handle;
537 
538 	pr_err("ARP failure during accept - tid %u - dropping connection\n",
539 	       ep->hwtid);
540 
541 	__state_set(&ep->com, DEAD);
542 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
543 }
544 
545 /*
546  * Handle an ARP failure for an active open.
547  */
548 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
549 {
550 	struct c4iw_ep *ep = handle;
551 
552 	pr_err("ARP failure during connect\n");
553 	connect_reply_upcall(ep, -EHOSTUNREACH);
554 	__state_set(&ep->com, DEAD);
555 	if (ep->com.remote_addr.ss_family == AF_INET6) {
556 		struct sockaddr_in6 *sin6 =
557 			(struct sockaddr_in6 *)&ep->com.local_addr;
558 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
559 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
560 	}
561 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
562 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
563 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
564 }
565 
566 /*
567  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
568  * and send it along.
569  */
570 static void abort_arp_failure(void *handle, struct sk_buff *skb)
571 {
572 	int ret;
573 	struct c4iw_ep *ep = handle;
574 	struct c4iw_rdev *rdev = &ep->com.dev->rdev;
575 	struct cpl_abort_req *req = cplhdr(skb);
576 
577 	pr_debug("rdev %p\n", rdev);
578 	req->cmd = CPL_ABORT_NO_RST;
579 	skb_get(skb);
580 	ret = c4iw_ofld_send(rdev, skb);
581 	if (ret) {
582 		__state_set(&ep->com, DEAD);
583 		queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
584 	} else
585 		kfree_skb(skb);
586 }
587 
588 static int send_flowc(struct c4iw_ep *ep)
589 {
590 	struct fw_flowc_wr *flowc;
591 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
592 	u16 vlan = ep->l2t->vlan;
593 	int nparams;
594 	int flowclen, flowclen16;
595 
596 	if (WARN_ON(!skb))
597 		return -ENOMEM;
598 
599 	if (vlan == CPL_L2T_VLAN_NONE)
600 		nparams = 9;
601 	else
602 		nparams = 10;
603 
604 	flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
605 	flowclen16 = DIV_ROUND_UP(flowclen, 16);
606 	flowclen = flowclen16 * 16;
607 
608 	flowc = __skb_put(skb, flowclen);
609 	memset(flowc, 0, flowclen);
610 
611 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
612 					   FW_FLOWC_WR_NPARAMS_V(nparams));
613 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
614 					  FW_WR_FLOWID_V(ep->hwtid));
615 
616 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
617 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
618 					    (ep->com.dev->rdev.lldi.pf));
619 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
620 	flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
621 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
622 	flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
623 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
624 	flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
625 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
626 	flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
627 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
628 	flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
629 	flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
630 	flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
631 	flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
632 	flowc->mnemval[7].val = cpu_to_be32(ep->emss);
633 	flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
634 	flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale);
635 	if (nparams == 10) {
636 		u16 pri;
637 		pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
638 		flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
639 		flowc->mnemval[9].val = cpu_to_be32(pri);
640 	}
641 
642 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
643 	return c4iw_ofld_send(&ep->com.dev->rdev, skb);
644 }
645 
646 static int send_halfclose(struct c4iw_ep *ep)
647 {
648 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
649 	u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
650 
651 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
652 	if (WARN_ON(!skb))
653 		return -ENOMEM;
654 
655 	cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
656 			      NULL, arp_failure_discard);
657 
658 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
659 }
660 
661 static void read_tcb(struct c4iw_ep *ep)
662 {
663 	struct sk_buff *skb;
664 	struct cpl_get_tcb *req;
665 	int wrlen = roundup(sizeof(*req), 16);
666 
667 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
668 	if (WARN_ON(!skb))
669 		return;
670 
671 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
672 	req = (struct cpl_get_tcb *) skb_put(skb, wrlen);
673 	memset(req, 0, wrlen);
674 	INIT_TP_WR(req, ep->hwtid);
675 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid));
676 	req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid));
677 
678 	/*
679 	 * keep a ref on the ep so the tcb is not unlocked before this
680 	 * cpl completes. The ref is released in read_tcb_rpl().
681 	 */
682 	c4iw_get_ep(&ep->com);
683 	if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb)))
684 		c4iw_put_ep(&ep->com);
685 }
686 
687 static int send_abort_req(struct c4iw_ep *ep)
688 {
689 	u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
690 	struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
691 
692 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
693 	if (WARN_ON(!req_skb))
694 		return -ENOMEM;
695 
696 	cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
697 			  ep, abort_arp_failure);
698 
699 	return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
700 }
701 
702 static int send_abort(struct c4iw_ep *ep)
703 {
704 	if (!ep->com.qp || !ep->com.qp->srq) {
705 		send_abort_req(ep);
706 		return 0;
707 	}
708 	set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags);
709 	read_tcb(ep);
710 	return 0;
711 }
712 
713 static int send_connect(struct c4iw_ep *ep)
714 {
715 	struct cpl_act_open_req *req = NULL;
716 	struct cpl_t5_act_open_req *t5req = NULL;
717 	struct cpl_t6_act_open_req *t6req = NULL;
718 	struct cpl_act_open_req6 *req6 = NULL;
719 	struct cpl_t5_act_open_req6 *t5req6 = NULL;
720 	struct cpl_t6_act_open_req6 *t6req6 = NULL;
721 	struct sk_buff *skb;
722 	u64 opt0;
723 	u32 opt2;
724 	unsigned int mtu_idx;
725 	u32 wscale;
726 	int win, sizev4, sizev6, wrlen;
727 	struct sockaddr_in *la = (struct sockaddr_in *)
728 				 &ep->com.local_addr;
729 	struct sockaddr_in *ra = (struct sockaddr_in *)
730 				 &ep->com.remote_addr;
731 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
732 				   &ep->com.local_addr;
733 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
734 				   &ep->com.remote_addr;
735 	int ret;
736 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
737 	u32 isn = (get_random_u32() & ~7UL) - 1;
738 	struct net_device *netdev;
739 	u64 params;
740 
741 	netdev = ep->com.dev->rdev.lldi.ports[0];
742 
743 	switch (CHELSIO_CHIP_VERSION(adapter_type)) {
744 	case CHELSIO_T4:
745 		sizev4 = sizeof(struct cpl_act_open_req);
746 		sizev6 = sizeof(struct cpl_act_open_req6);
747 		break;
748 	case CHELSIO_T5:
749 		sizev4 = sizeof(struct cpl_t5_act_open_req);
750 		sizev6 = sizeof(struct cpl_t5_act_open_req6);
751 		break;
752 	case CHELSIO_T6:
753 		sizev4 = sizeof(struct cpl_t6_act_open_req);
754 		sizev6 = sizeof(struct cpl_t6_act_open_req6);
755 		break;
756 	default:
757 		pr_err("T%d Chip is not supported\n",
758 		       CHELSIO_CHIP_VERSION(adapter_type));
759 		return -EINVAL;
760 	}
761 
762 	wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
763 			roundup(sizev4, 16) :
764 			roundup(sizev6, 16);
765 
766 	pr_debug("ep %p atid %u\n", ep, ep->atid);
767 
768 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
769 	if (!skb) {
770 		pr_err("%s - failed to alloc skb\n", __func__);
771 		return -ENOMEM;
772 	}
773 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
774 
775 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
776 		      enable_tcp_timestamps,
777 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
778 	wscale = cxgb_compute_wscale(rcv_win);
779 
780 	/*
781 	 * Specify the largest window that will fit in opt0. The
782 	 * remainder will be specified in the rx_data_ack.
783 	 */
784 	win = ep->rcv_win >> 10;
785 	if (win > RCV_BUFSIZ_M)
786 		win = RCV_BUFSIZ_M;
787 
788 	opt0 = (nocong ? NO_CONG_F : 0) |
789 	       KEEP_ALIVE_F |
790 	       DELACK_F |
791 	       WND_SCALE_V(wscale) |
792 	       MSS_IDX_V(mtu_idx) |
793 	       L2T_IDX_V(ep->l2t->idx) |
794 	       TX_CHAN_V(ep->tx_chan) |
795 	       SMAC_SEL_V(ep->smac_idx) |
796 	       DSCP_V(ep->tos >> 2) |
797 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
798 	       RCV_BUFSIZ_V(win);
799 	opt2 = RX_CHANNEL_V(0) |
800 	       CCTRL_ECN_V(enable_ecn) |
801 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
802 	if (enable_tcp_timestamps)
803 		opt2 |= TSTAMPS_EN_F;
804 	if (enable_tcp_sack)
805 		opt2 |= SACK_EN_F;
806 	if (wscale && enable_tcp_window_scaling)
807 		opt2 |= WND_SCALE_EN_F;
808 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
809 		if (peer2peer)
810 			isn += 4;
811 
812 		opt2 |= T5_OPT_2_VALID_F;
813 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
814 		opt2 |= T5_ISS_F;
815 	}
816 
817 	params = cxgb4_select_ntuple(netdev, ep->l2t);
818 
819 	if (ep->com.remote_addr.ss_family == AF_INET6)
820 		cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
821 			       (const u32 *)&la6->sin6_addr.s6_addr, 1);
822 
823 	t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
824 
825 	if (ep->com.remote_addr.ss_family == AF_INET) {
826 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
827 		case CHELSIO_T4:
828 			req = skb_put(skb, wrlen);
829 			INIT_TP_WR(req, 0);
830 			break;
831 		case CHELSIO_T5:
832 			t5req = skb_put(skb, wrlen);
833 			INIT_TP_WR(t5req, 0);
834 			req = (struct cpl_act_open_req *)t5req;
835 			break;
836 		case CHELSIO_T6:
837 			t6req = skb_put(skb, wrlen);
838 			INIT_TP_WR(t6req, 0);
839 			req = (struct cpl_act_open_req *)t6req;
840 			t5req = (struct cpl_t5_act_open_req *)t6req;
841 			break;
842 		default:
843 			pr_err("T%d Chip is not supported\n",
844 			       CHELSIO_CHIP_VERSION(adapter_type));
845 			ret = -EINVAL;
846 			goto clip_release;
847 		}
848 
849 		OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
850 					((ep->rss_qid<<14) | ep->atid)));
851 		req->local_port = la->sin_port;
852 		req->peer_port = ra->sin_port;
853 		req->local_ip = la->sin_addr.s_addr;
854 		req->peer_ip = ra->sin_addr.s_addr;
855 		req->opt0 = cpu_to_be64(opt0);
856 
857 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
858 			req->params = cpu_to_be32(params);
859 			req->opt2 = cpu_to_be32(opt2);
860 		} else {
861 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
862 				t5req->params =
863 					  cpu_to_be64(FILTER_TUPLE_V(params));
864 				t5req->rsvd = cpu_to_be32(isn);
865 				pr_debug("snd_isn %u\n", t5req->rsvd);
866 				t5req->opt2 = cpu_to_be32(opt2);
867 			} else {
868 				t6req->params =
869 					  cpu_to_be64(FILTER_TUPLE_V(params));
870 				t6req->rsvd = cpu_to_be32(isn);
871 				pr_debug("snd_isn %u\n", t6req->rsvd);
872 				t6req->opt2 = cpu_to_be32(opt2);
873 			}
874 		}
875 	} else {
876 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
877 		case CHELSIO_T4:
878 			req6 = skb_put(skb, wrlen);
879 			INIT_TP_WR(req6, 0);
880 			break;
881 		case CHELSIO_T5:
882 			t5req6 = skb_put(skb, wrlen);
883 			INIT_TP_WR(t5req6, 0);
884 			req6 = (struct cpl_act_open_req6 *)t5req6;
885 			break;
886 		case CHELSIO_T6:
887 			t6req6 = skb_put(skb, wrlen);
888 			INIT_TP_WR(t6req6, 0);
889 			req6 = (struct cpl_act_open_req6 *)t6req6;
890 			t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
891 			break;
892 		default:
893 			pr_err("T%d Chip is not supported\n",
894 			       CHELSIO_CHIP_VERSION(adapter_type));
895 			ret = -EINVAL;
896 			goto clip_release;
897 		}
898 
899 		OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
900 					((ep->rss_qid<<14)|ep->atid)));
901 		req6->local_port = la6->sin6_port;
902 		req6->peer_port = ra6->sin6_port;
903 		req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
904 		req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
905 		req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
906 		req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
907 		req6->opt0 = cpu_to_be64(opt0);
908 
909 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
910 			req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev,
911 								      ep->l2t));
912 			req6->opt2 = cpu_to_be32(opt2);
913 		} else {
914 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
915 				t5req6->params =
916 					    cpu_to_be64(FILTER_TUPLE_V(params));
917 				t5req6->rsvd = cpu_to_be32(isn);
918 				pr_debug("snd_isn %u\n", t5req6->rsvd);
919 				t5req6->opt2 = cpu_to_be32(opt2);
920 			} else {
921 				t6req6->params =
922 					    cpu_to_be64(FILTER_TUPLE_V(params));
923 				t6req6->rsvd = cpu_to_be32(isn);
924 				pr_debug("snd_isn %u\n", t6req6->rsvd);
925 				t6req6->opt2 = cpu_to_be32(opt2);
926 			}
927 
928 		}
929 	}
930 
931 	set_bit(ACT_OPEN_REQ, &ep->com.history);
932 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
933 clip_release:
934 	if (ret && ep->com.remote_addr.ss_family == AF_INET6)
935 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
936 				   (const u32 *)&la6->sin6_addr.s6_addr, 1);
937 	return ret;
938 }
939 
940 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
941 			u8 mpa_rev_to_use)
942 {
943 	int mpalen, wrlen, ret;
944 	struct fw_ofld_tx_data_wr *req;
945 	struct mpa_message *mpa;
946 	struct mpa_v2_conn_params mpa_v2_params;
947 
948 	pr_debug("ep %p tid %u pd_len %d\n",
949 		 ep, ep->hwtid, ep->plen);
950 
951 	mpalen = sizeof(*mpa) + ep->plen;
952 	if (mpa_rev_to_use == 2)
953 		mpalen += sizeof(struct mpa_v2_conn_params);
954 	wrlen = roundup(mpalen + sizeof(*req), 16);
955 	skb = get_skb(skb, wrlen, GFP_KERNEL);
956 	if (!skb) {
957 		connect_reply_upcall(ep, -ENOMEM);
958 		return -ENOMEM;
959 	}
960 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
961 
962 	req = skb_put_zero(skb, wrlen);
963 	req->op_to_immdlen = cpu_to_be32(
964 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
965 		FW_WR_COMPL_F |
966 		FW_WR_IMMDLEN_V(mpalen));
967 	req->flowid_len16 = cpu_to_be32(
968 		FW_WR_FLOWID_V(ep->hwtid) |
969 		FW_WR_LEN16_V(wrlen >> 4));
970 	req->plen = cpu_to_be32(mpalen);
971 	req->tunnel_to_proxy = cpu_to_be32(
972 		FW_OFLD_TX_DATA_WR_FLUSH_F |
973 		FW_OFLD_TX_DATA_WR_SHOVE_F);
974 
975 	mpa = (struct mpa_message *)(req + 1);
976 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
977 
978 	mpa->flags = 0;
979 	if (crc_enabled)
980 		mpa->flags |= MPA_CRC;
981 	if (markers_enabled) {
982 		mpa->flags |= MPA_MARKERS;
983 		ep->mpa_attr.recv_marker_enabled = 1;
984 	} else {
985 		ep->mpa_attr.recv_marker_enabled = 0;
986 	}
987 	if (mpa_rev_to_use == 2)
988 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
989 
990 	mpa->private_data_size = htons(ep->plen);
991 	mpa->revision = mpa_rev_to_use;
992 	if (mpa_rev_to_use == 1) {
993 		ep->tried_with_mpa_v1 = 1;
994 		ep->retry_with_mpa_v1 = 0;
995 	}
996 
997 	if (mpa_rev_to_use == 2) {
998 		mpa->private_data_size =
999 			htons(ntohs(mpa->private_data_size) +
1000 			      sizeof(struct mpa_v2_conn_params));
1001 		pr_debug("initiator ird %u ord %u\n", ep->ird,
1002 			 ep->ord);
1003 		mpa_v2_params.ird = htons((u16)ep->ird);
1004 		mpa_v2_params.ord = htons((u16)ep->ord);
1005 
1006 		if (peer2peer) {
1007 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1008 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1009 				mpa_v2_params.ord |=
1010 					htons(MPA_V2_RDMA_WRITE_RTR);
1011 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1012 				mpa_v2_params.ord |=
1013 					htons(MPA_V2_RDMA_READ_RTR);
1014 		}
1015 		memcpy(mpa->private_data, &mpa_v2_params,
1016 		       sizeof(struct mpa_v2_conn_params));
1017 
1018 		if (ep->plen)
1019 			memcpy(mpa->private_data +
1020 			       sizeof(struct mpa_v2_conn_params),
1021 			       ep->mpa_pkt + sizeof(*mpa), ep->plen);
1022 	} else
1023 		if (ep->plen)
1024 			memcpy(mpa->private_data,
1025 					ep->mpa_pkt + sizeof(*mpa), ep->plen);
1026 
1027 	/*
1028 	 * Reference the mpa skb.  This ensures the data area
1029 	 * will remain in memory until the hw acks the tx.
1030 	 * Function fw4_ack() will deref it.
1031 	 */
1032 	skb_get(skb);
1033 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1034 	ep->mpa_skb = skb;
1035 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1036 	if (ret)
1037 		return ret;
1038 	start_ep_timer(ep);
1039 	__state_set(&ep->com, MPA_REQ_SENT);
1040 	ep->mpa_attr.initiator = 1;
1041 	ep->snd_seq += mpalen;
1042 	return ret;
1043 }
1044 
1045 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1046 {
1047 	int mpalen, wrlen;
1048 	struct fw_ofld_tx_data_wr *req;
1049 	struct mpa_message *mpa;
1050 	struct sk_buff *skb;
1051 	struct mpa_v2_conn_params mpa_v2_params;
1052 
1053 	pr_debug("ep %p tid %u pd_len %d\n",
1054 		 ep, ep->hwtid, ep->plen);
1055 
1056 	mpalen = sizeof(*mpa) + plen;
1057 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1058 		mpalen += sizeof(struct mpa_v2_conn_params);
1059 	wrlen = roundup(mpalen + sizeof(*req), 16);
1060 
1061 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1062 	if (!skb) {
1063 		pr_err("%s - cannot alloc skb!\n", __func__);
1064 		return -ENOMEM;
1065 	}
1066 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1067 
1068 	req = skb_put_zero(skb, wrlen);
1069 	req->op_to_immdlen = cpu_to_be32(
1070 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1071 		FW_WR_COMPL_F |
1072 		FW_WR_IMMDLEN_V(mpalen));
1073 	req->flowid_len16 = cpu_to_be32(
1074 		FW_WR_FLOWID_V(ep->hwtid) |
1075 		FW_WR_LEN16_V(wrlen >> 4));
1076 	req->plen = cpu_to_be32(mpalen);
1077 	req->tunnel_to_proxy = cpu_to_be32(
1078 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1079 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1080 
1081 	mpa = (struct mpa_message *)(req + 1);
1082 	memset(mpa, 0, sizeof(*mpa));
1083 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1084 	mpa->flags = MPA_REJECT;
1085 	mpa->revision = ep->mpa_attr.version;
1086 	mpa->private_data_size = htons(plen);
1087 
1088 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1089 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1090 		mpa->private_data_size =
1091 			htons(ntohs(mpa->private_data_size) +
1092 			      sizeof(struct mpa_v2_conn_params));
1093 		mpa_v2_params.ird = htons(((u16)ep->ird) |
1094 					  (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1095 					   0));
1096 		mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1097 					  (p2p_type ==
1098 					   FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1099 					   MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1100 					   FW_RI_INIT_P2PTYPE_READ_REQ ?
1101 					   MPA_V2_RDMA_READ_RTR : 0) : 0));
1102 		memcpy(mpa->private_data, &mpa_v2_params,
1103 		       sizeof(struct mpa_v2_conn_params));
1104 
1105 		if (ep->plen)
1106 			memcpy(mpa->private_data +
1107 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1108 	} else
1109 		if (plen)
1110 			memcpy(mpa->private_data, pdata, plen);
1111 
1112 	/*
1113 	 * Reference the mpa skb again.  This ensures the data area
1114 	 * will remain in memory until the hw acks the tx.
1115 	 * Function fw4_ack() will deref it.
1116 	 */
1117 	skb_get(skb);
1118 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1119 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1120 	ep->mpa_skb = skb;
1121 	ep->snd_seq += mpalen;
1122 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1123 }
1124 
1125 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1126 {
1127 	int mpalen, wrlen;
1128 	struct fw_ofld_tx_data_wr *req;
1129 	struct mpa_message *mpa;
1130 	struct sk_buff *skb;
1131 	struct mpa_v2_conn_params mpa_v2_params;
1132 
1133 	pr_debug("ep %p tid %u pd_len %d\n",
1134 		 ep, ep->hwtid, ep->plen);
1135 
1136 	mpalen = sizeof(*mpa) + plen;
1137 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1138 		mpalen += sizeof(struct mpa_v2_conn_params);
1139 	wrlen = roundup(mpalen + sizeof(*req), 16);
1140 
1141 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1142 	if (!skb) {
1143 		pr_err("%s - cannot alloc skb!\n", __func__);
1144 		return -ENOMEM;
1145 	}
1146 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1147 
1148 	req = skb_put_zero(skb, wrlen);
1149 	req->op_to_immdlen = cpu_to_be32(
1150 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1151 		FW_WR_COMPL_F |
1152 		FW_WR_IMMDLEN_V(mpalen));
1153 	req->flowid_len16 = cpu_to_be32(
1154 		FW_WR_FLOWID_V(ep->hwtid) |
1155 		FW_WR_LEN16_V(wrlen >> 4));
1156 	req->plen = cpu_to_be32(mpalen);
1157 	req->tunnel_to_proxy = cpu_to_be32(
1158 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1159 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1160 
1161 	mpa = (struct mpa_message *)(req + 1);
1162 	memset(mpa, 0, sizeof(*mpa));
1163 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1164 	mpa->flags = 0;
1165 	if (ep->mpa_attr.crc_enabled)
1166 		mpa->flags |= MPA_CRC;
1167 	if (ep->mpa_attr.recv_marker_enabled)
1168 		mpa->flags |= MPA_MARKERS;
1169 	mpa->revision = ep->mpa_attr.version;
1170 	mpa->private_data_size = htons(plen);
1171 
1172 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1173 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1174 		mpa->private_data_size =
1175 			htons(ntohs(mpa->private_data_size) +
1176 			      sizeof(struct mpa_v2_conn_params));
1177 		mpa_v2_params.ird = htons((u16)ep->ird);
1178 		mpa_v2_params.ord = htons((u16)ep->ord);
1179 		if (peer2peer && (ep->mpa_attr.p2p_type !=
1180 					FW_RI_INIT_P2PTYPE_DISABLED)) {
1181 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1182 
1183 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1184 				mpa_v2_params.ord |=
1185 					htons(MPA_V2_RDMA_WRITE_RTR);
1186 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1187 				mpa_v2_params.ord |=
1188 					htons(MPA_V2_RDMA_READ_RTR);
1189 		}
1190 
1191 		memcpy(mpa->private_data, &mpa_v2_params,
1192 		       sizeof(struct mpa_v2_conn_params));
1193 
1194 		if (ep->plen)
1195 			memcpy(mpa->private_data +
1196 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1197 	} else
1198 		if (plen)
1199 			memcpy(mpa->private_data, pdata, plen);
1200 
1201 	/*
1202 	 * Reference the mpa skb.  This ensures the data area
1203 	 * will remain in memory until the hw acks the tx.
1204 	 * Function fw4_ack() will deref it.
1205 	 */
1206 	skb_get(skb);
1207 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1208 	ep->mpa_skb = skb;
1209 	__state_set(&ep->com, MPA_REP_SENT);
1210 	ep->snd_seq += mpalen;
1211 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1212 }
1213 
1214 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1215 {
1216 	struct c4iw_ep *ep;
1217 	struct cpl_act_establish *req = cplhdr(skb);
1218 	unsigned short tcp_opt = ntohs(req->tcp_opt);
1219 	unsigned int tid = GET_TID(req);
1220 	unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1221 	struct tid_info *t = dev->rdev.lldi.tids;
1222 	int ret;
1223 
1224 	ep = lookup_atid(t, atid);
1225 	if (!ep)
1226 		return -EINVAL;
1227 
1228 	pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid,
1229 		 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1230 
1231 	mutex_lock(&ep->com.mutex);
1232 	dst_confirm(ep->dst);
1233 
1234 	/* setup the hwtid for this connection */
1235 	ep->hwtid = tid;
1236 	cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family);
1237 	insert_ep_tid(ep);
1238 
1239 	ep->snd_seq = be32_to_cpu(req->snd_isn);
1240 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1241 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
1242 
1243 	set_emss(ep, tcp_opt);
1244 
1245 	/* dealloc the atid */
1246 	xa_erase_irq(&ep->com.dev->atids, atid);
1247 	cxgb4_free_atid(t, atid);
1248 	set_bit(ACT_ESTAB, &ep->com.history);
1249 
1250 	/* start MPA negotiation */
1251 	ret = send_flowc(ep);
1252 	if (ret)
1253 		goto err;
1254 	if (ep->retry_with_mpa_v1)
1255 		ret = send_mpa_req(ep, skb, 1);
1256 	else
1257 		ret = send_mpa_req(ep, skb, mpa_rev);
1258 	if (ret)
1259 		goto err;
1260 	mutex_unlock(&ep->com.mutex);
1261 	return 0;
1262 err:
1263 	mutex_unlock(&ep->com.mutex);
1264 	connect_reply_upcall(ep, -ENOMEM);
1265 	c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1266 	return 0;
1267 }
1268 
1269 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1270 {
1271 	struct iw_cm_event event;
1272 
1273 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1274 	memset(&event, 0, sizeof(event));
1275 	event.event = IW_CM_EVENT_CLOSE;
1276 	event.status = status;
1277 	if (ep->com.cm_id) {
1278 		pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1279 			 ep, ep->com.cm_id, ep->hwtid);
1280 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1281 		deref_cm_id(&ep->com);
1282 		set_bit(CLOSE_UPCALL, &ep->com.history);
1283 	}
1284 }
1285 
1286 static void peer_close_upcall(struct c4iw_ep *ep)
1287 {
1288 	struct iw_cm_event event;
1289 
1290 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1291 	memset(&event, 0, sizeof(event));
1292 	event.event = IW_CM_EVENT_DISCONNECT;
1293 	if (ep->com.cm_id) {
1294 		pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1295 			 ep, ep->com.cm_id, ep->hwtid);
1296 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1297 		set_bit(DISCONN_UPCALL, &ep->com.history);
1298 	}
1299 }
1300 
1301 static void peer_abort_upcall(struct c4iw_ep *ep)
1302 {
1303 	struct iw_cm_event event;
1304 
1305 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1306 	memset(&event, 0, sizeof(event));
1307 	event.event = IW_CM_EVENT_CLOSE;
1308 	event.status = -ECONNRESET;
1309 	if (ep->com.cm_id) {
1310 		pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep,
1311 			 ep->com.cm_id, ep->hwtid);
1312 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 		deref_cm_id(&ep->com);
1314 		set_bit(ABORT_UPCALL, &ep->com.history);
1315 	}
1316 }
1317 
1318 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1319 {
1320 	struct iw_cm_event event;
1321 
1322 	pr_debug("ep %p tid %u status %d\n",
1323 		 ep, ep->hwtid, status);
1324 	memset(&event, 0, sizeof(event));
1325 	event.event = IW_CM_EVENT_CONNECT_REPLY;
1326 	event.status = status;
1327 	memcpy(&event.local_addr, &ep->com.local_addr,
1328 	       sizeof(ep->com.local_addr));
1329 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1330 	       sizeof(ep->com.remote_addr));
1331 
1332 	if ((status == 0) || (status == -ECONNREFUSED)) {
1333 		if (!ep->tried_with_mpa_v1) {
1334 			/* this means MPA_v2 is used */
1335 			event.ord = ep->ird;
1336 			event.ird = ep->ord;
1337 			event.private_data_len = ep->plen -
1338 				sizeof(struct mpa_v2_conn_params);
1339 			event.private_data = ep->mpa_pkt +
1340 				sizeof(struct mpa_message) +
1341 				sizeof(struct mpa_v2_conn_params);
1342 		} else {
1343 			/* this means MPA_v1 is used */
1344 			event.ord = cur_max_read_depth(ep->com.dev);
1345 			event.ird = cur_max_read_depth(ep->com.dev);
1346 			event.private_data_len = ep->plen;
1347 			event.private_data = ep->mpa_pkt +
1348 				sizeof(struct mpa_message);
1349 		}
1350 	}
1351 
1352 	pr_debug("ep %p tid %u status %d\n", ep,
1353 		 ep->hwtid, status);
1354 	set_bit(CONN_RPL_UPCALL, &ep->com.history);
1355 	ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1356 
1357 	if (status < 0)
1358 		deref_cm_id(&ep->com);
1359 }
1360 
1361 static int connect_request_upcall(struct c4iw_ep *ep)
1362 {
1363 	struct iw_cm_event event;
1364 	int ret;
1365 
1366 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1367 	memset(&event, 0, sizeof(event));
1368 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
1369 	memcpy(&event.local_addr, &ep->com.local_addr,
1370 	       sizeof(ep->com.local_addr));
1371 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1372 	       sizeof(ep->com.remote_addr));
1373 	event.provider_data = ep;
1374 	if (!ep->tried_with_mpa_v1) {
1375 		/* this means MPA_v2 is used */
1376 		event.ord = ep->ord;
1377 		event.ird = ep->ird;
1378 		event.private_data_len = ep->plen -
1379 			sizeof(struct mpa_v2_conn_params);
1380 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1381 			sizeof(struct mpa_v2_conn_params);
1382 	} else {
1383 		/* this means MPA_v1 is used. Send max supported */
1384 		event.ord = cur_max_read_depth(ep->com.dev);
1385 		event.ird = cur_max_read_depth(ep->com.dev);
1386 		event.private_data_len = ep->plen;
1387 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1388 	}
1389 	c4iw_get_ep(&ep->com);
1390 	ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1391 						      &event);
1392 	if (ret)
1393 		c4iw_put_ep(&ep->com);
1394 	set_bit(CONNREQ_UPCALL, &ep->com.history);
1395 	c4iw_put_ep(&ep->parent_ep->com);
1396 	return ret;
1397 }
1398 
1399 static void established_upcall(struct c4iw_ep *ep)
1400 {
1401 	struct iw_cm_event event;
1402 
1403 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1404 	memset(&event, 0, sizeof(event));
1405 	event.event = IW_CM_EVENT_ESTABLISHED;
1406 	event.ird = ep->ord;
1407 	event.ord = ep->ird;
1408 	if (ep->com.cm_id) {
1409 		pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1410 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1411 		set_bit(ESTAB_UPCALL, &ep->com.history);
1412 	}
1413 }
1414 
1415 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1416 {
1417 	struct sk_buff *skb;
1418 	u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1419 	u32 credit_dack;
1420 
1421 	pr_debug("ep %p tid %u credits %u\n",
1422 		 ep, ep->hwtid, credits);
1423 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1424 	if (!skb) {
1425 		pr_err("update_rx_credits - cannot alloc skb!\n");
1426 		return 0;
1427 	}
1428 
1429 	/*
1430 	 * If we couldn't specify the entire rcv window at connection setup
1431 	 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1432 	 * then add the overage in to the credits returned.
1433 	 */
1434 	if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1435 		credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1436 
1437 	credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1438 		      RX_DACK_MODE_V(dack_mode);
1439 
1440 	cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1441 			    credit_dack);
1442 
1443 	c4iw_ofld_send(&ep->com.dev->rdev, skb);
1444 	return credits;
1445 }
1446 
1447 #define RELAXED_IRD_NEGOTIATION 1
1448 
1449 /*
1450  * process_mpa_reply - process streaming mode MPA reply
1451  *
1452  * Returns:
1453  *
1454  * 0 upon success indicating a connect request was delivered to the ULP
1455  * or the mpa request is incomplete but valid so far.
1456  *
1457  * 1 if a failure requires the caller to close the connection.
1458  *
1459  * 2 if a failure requires the caller to abort the connection.
1460  */
1461 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1462 {
1463 	struct mpa_message *mpa;
1464 	struct mpa_v2_conn_params *mpa_v2_params;
1465 	u16 plen;
1466 	u16 resp_ird, resp_ord;
1467 	u8 rtr_mismatch = 0, insuff_ird = 0;
1468 	struct c4iw_qp_attributes attrs;
1469 	enum c4iw_qp_attr_mask mask;
1470 	int err;
1471 	int disconnect = 0;
1472 
1473 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1474 
1475 	/*
1476 	 * If we get more than the supported amount of private data
1477 	 * then we must fail this connection.
1478 	 */
1479 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1480 		err = -EINVAL;
1481 		goto err_stop_timer;
1482 	}
1483 
1484 	/*
1485 	 * copy the new data into our accumulation buffer.
1486 	 */
1487 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1488 				  skb->len);
1489 	ep->mpa_pkt_len += skb->len;
1490 
1491 	/*
1492 	 * if we don't even have the mpa message, then bail.
1493 	 */
1494 	if (ep->mpa_pkt_len < sizeof(*mpa))
1495 		return 0;
1496 	mpa = (struct mpa_message *) ep->mpa_pkt;
1497 
1498 	/* Validate MPA header. */
1499 	if (mpa->revision > mpa_rev) {
1500 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1501 		       __func__, mpa_rev, mpa->revision);
1502 		err = -EPROTO;
1503 		goto err_stop_timer;
1504 	}
1505 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1506 		err = -EPROTO;
1507 		goto err_stop_timer;
1508 	}
1509 
1510 	plen = ntohs(mpa->private_data_size);
1511 
1512 	/*
1513 	 * Fail if there's too much private data.
1514 	 */
1515 	if (plen > MPA_MAX_PRIVATE_DATA) {
1516 		err = -EPROTO;
1517 		goto err_stop_timer;
1518 	}
1519 
1520 	/*
1521 	 * If plen does not account for pkt size
1522 	 */
1523 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1524 		err = -EPROTO;
1525 		goto err_stop_timer;
1526 	}
1527 
1528 	ep->plen = (u8) plen;
1529 
1530 	/*
1531 	 * If we don't have all the pdata yet, then bail.
1532 	 * We'll continue process when more data arrives.
1533 	 */
1534 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1535 		return 0;
1536 
1537 	if (mpa->flags & MPA_REJECT) {
1538 		err = -ECONNREFUSED;
1539 		goto err_stop_timer;
1540 	}
1541 
1542 	/*
1543 	 * Stop mpa timer.  If it expired, then
1544 	 * we ignore the MPA reply.  process_timeout()
1545 	 * will abort the connection.
1546 	 */
1547 	if (stop_ep_timer(ep))
1548 		return 0;
1549 
1550 	/*
1551 	 * If we get here we have accumulated the entire mpa
1552 	 * start reply message including private data. And
1553 	 * the MPA header is valid.
1554 	 */
1555 	__state_set(&ep->com, FPDU_MODE);
1556 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1557 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1558 	ep->mpa_attr.version = mpa->revision;
1559 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1560 
1561 	if (mpa->revision == 2) {
1562 		ep->mpa_attr.enhanced_rdma_conn =
1563 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1564 		if (ep->mpa_attr.enhanced_rdma_conn) {
1565 			mpa_v2_params = (struct mpa_v2_conn_params *)
1566 				(ep->mpa_pkt + sizeof(*mpa));
1567 			resp_ird = ntohs(mpa_v2_params->ird) &
1568 				MPA_V2_IRD_ORD_MASK;
1569 			resp_ord = ntohs(mpa_v2_params->ord) &
1570 				MPA_V2_IRD_ORD_MASK;
1571 			pr_debug("responder ird %u ord %u ep ird %u ord %u\n",
1572 				 resp_ird, resp_ord, ep->ird, ep->ord);
1573 
1574 			/*
1575 			 * This is a double-check. Ideally, below checks are
1576 			 * not required since ird/ord stuff has been taken
1577 			 * care of in c4iw_accept_cr
1578 			 */
1579 			if (ep->ird < resp_ord) {
1580 				if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1581 				    ep->com.dev->rdev.lldi.max_ordird_qp)
1582 					ep->ird = resp_ord;
1583 				else
1584 					insuff_ird = 1;
1585 			} else if (ep->ird > resp_ord) {
1586 				ep->ird = resp_ord;
1587 			}
1588 			if (ep->ord > resp_ird) {
1589 				if (RELAXED_IRD_NEGOTIATION)
1590 					ep->ord = resp_ird;
1591 				else
1592 					insuff_ird = 1;
1593 			}
1594 			if (insuff_ird) {
1595 				err = -ENOMEM;
1596 				ep->ird = resp_ord;
1597 				ep->ord = resp_ird;
1598 			}
1599 
1600 			if (ntohs(mpa_v2_params->ird) &
1601 					MPA_V2_PEER2PEER_MODEL) {
1602 				if (ntohs(mpa_v2_params->ord) &
1603 						MPA_V2_RDMA_WRITE_RTR)
1604 					ep->mpa_attr.p2p_type =
1605 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1606 				else if (ntohs(mpa_v2_params->ord) &
1607 						MPA_V2_RDMA_READ_RTR)
1608 					ep->mpa_attr.p2p_type =
1609 						FW_RI_INIT_P2PTYPE_READ_REQ;
1610 			}
1611 		}
1612 	} else if (mpa->revision == 1)
1613 		if (peer2peer)
1614 			ep->mpa_attr.p2p_type = p2p_type;
1615 
1616 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1617 		 ep->mpa_attr.crc_enabled,
1618 		 ep->mpa_attr.recv_marker_enabled,
1619 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1620 		 ep->mpa_attr.p2p_type, p2p_type);
1621 
1622 	/*
1623 	 * If responder's RTR does not match with that of initiator, assign
1624 	 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1625 	 * generated when moving QP to RTS state.
1626 	 * A TERM message will be sent after QP has moved to RTS state
1627 	 */
1628 	if ((ep->mpa_attr.version == 2) && peer2peer &&
1629 			(ep->mpa_attr.p2p_type != p2p_type)) {
1630 		ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1631 		rtr_mismatch = 1;
1632 	}
1633 
1634 	attrs.mpa_attr = ep->mpa_attr;
1635 	attrs.max_ird = ep->ird;
1636 	attrs.max_ord = ep->ord;
1637 	attrs.llp_stream_handle = ep;
1638 	attrs.next_state = C4IW_QP_STATE_RTS;
1639 
1640 	mask = C4IW_QP_ATTR_NEXT_STATE |
1641 	    C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1642 	    C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1643 
1644 	/* bind QP and TID with INIT_WR */
1645 	err = c4iw_modify_qp(ep->com.qp->rhp,
1646 			     ep->com.qp, mask, &attrs, 1);
1647 	if (err)
1648 		goto err;
1649 
1650 	/*
1651 	 * If responder's RTR requirement did not match with what initiator
1652 	 * supports, generate TERM message
1653 	 */
1654 	if (rtr_mismatch) {
1655 		pr_err("%s: RTR mismatch, sending TERM\n", __func__);
1656 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1657 		attrs.ecode = MPA_NOMATCH_RTR;
1658 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1659 		attrs.send_term = 1;
1660 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1661 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1662 		err = -ENOMEM;
1663 		disconnect = 1;
1664 		goto out;
1665 	}
1666 
1667 	/*
1668 	 * Generate TERM if initiator IRD is not sufficient for responder
1669 	 * provided ORD. Currently, we do the same behaviour even when
1670 	 * responder provided IRD is also not sufficient as regards to
1671 	 * initiator ORD.
1672 	 */
1673 	if (insuff_ird) {
1674 		pr_err("%s: Insufficient IRD, sending TERM\n", __func__);
1675 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1676 		attrs.ecode = MPA_INSUFF_IRD;
1677 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1678 		attrs.send_term = 1;
1679 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1680 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1681 		err = -ENOMEM;
1682 		disconnect = 1;
1683 		goto out;
1684 	}
1685 	goto out;
1686 err_stop_timer:
1687 	stop_ep_timer(ep);
1688 err:
1689 	disconnect = 2;
1690 out:
1691 	connect_reply_upcall(ep, err);
1692 	return disconnect;
1693 }
1694 
1695 /*
1696  * process_mpa_request - process streaming mode MPA request
1697  *
1698  * Returns:
1699  *
1700  * 0 upon success indicating a connect request was delivered to the ULP
1701  * or the mpa request is incomplete but valid so far.
1702  *
1703  * 1 if a failure requires the caller to close the connection.
1704  *
1705  * 2 if a failure requires the caller to abort the connection.
1706  */
1707 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1708 {
1709 	struct mpa_message *mpa;
1710 	struct mpa_v2_conn_params *mpa_v2_params;
1711 	u16 plen;
1712 
1713 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1714 
1715 	/*
1716 	 * If we get more than the supported amount of private data
1717 	 * then we must fail this connection.
1718 	 */
1719 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1720 		goto err_stop_timer;
1721 
1722 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1723 
1724 	/*
1725 	 * Copy the new data into our accumulation buffer.
1726 	 */
1727 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1728 				  skb->len);
1729 	ep->mpa_pkt_len += skb->len;
1730 
1731 	/*
1732 	 * If we don't even have the mpa message, then bail.
1733 	 * We'll continue process when more data arrives.
1734 	 */
1735 	if (ep->mpa_pkt_len < sizeof(*mpa))
1736 		return 0;
1737 
1738 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1739 	mpa = (struct mpa_message *) ep->mpa_pkt;
1740 
1741 	/*
1742 	 * Validate MPA Header.
1743 	 */
1744 	if (mpa->revision > mpa_rev) {
1745 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1746 		       __func__, mpa_rev, mpa->revision);
1747 		goto err_stop_timer;
1748 	}
1749 
1750 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1751 		goto err_stop_timer;
1752 
1753 	plen = ntohs(mpa->private_data_size);
1754 
1755 	/*
1756 	 * Fail if there's too much private data.
1757 	 */
1758 	if (plen > MPA_MAX_PRIVATE_DATA)
1759 		goto err_stop_timer;
1760 
1761 	/*
1762 	 * If plen does not account for pkt size
1763 	 */
1764 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1765 		goto err_stop_timer;
1766 	ep->plen = (u8) plen;
1767 
1768 	/*
1769 	 * If we don't have all the pdata yet, then bail.
1770 	 */
1771 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1772 		return 0;
1773 
1774 	/*
1775 	 * If we get here we have accumulated the entire mpa
1776 	 * start reply message including private data.
1777 	 */
1778 	ep->mpa_attr.initiator = 0;
1779 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1780 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1781 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1782 	ep->mpa_attr.version = mpa->revision;
1783 	if (mpa->revision == 1)
1784 		ep->tried_with_mpa_v1 = 1;
1785 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1786 
1787 	if (mpa->revision == 2) {
1788 		ep->mpa_attr.enhanced_rdma_conn =
1789 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1790 		if (ep->mpa_attr.enhanced_rdma_conn) {
1791 			mpa_v2_params = (struct mpa_v2_conn_params *)
1792 				(ep->mpa_pkt + sizeof(*mpa));
1793 			ep->ird = ntohs(mpa_v2_params->ird) &
1794 				MPA_V2_IRD_ORD_MASK;
1795 			ep->ird = min_t(u32, ep->ird,
1796 					cur_max_read_depth(ep->com.dev));
1797 			ep->ord = ntohs(mpa_v2_params->ord) &
1798 				MPA_V2_IRD_ORD_MASK;
1799 			ep->ord = min_t(u32, ep->ord,
1800 					cur_max_read_depth(ep->com.dev));
1801 			pr_debug("initiator ird %u ord %u\n",
1802 				 ep->ird, ep->ord);
1803 			if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1804 				if (peer2peer) {
1805 					if (ntohs(mpa_v2_params->ord) &
1806 							MPA_V2_RDMA_WRITE_RTR)
1807 						ep->mpa_attr.p2p_type =
1808 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1809 					else if (ntohs(mpa_v2_params->ord) &
1810 							MPA_V2_RDMA_READ_RTR)
1811 						ep->mpa_attr.p2p_type =
1812 						FW_RI_INIT_P2PTYPE_READ_REQ;
1813 				}
1814 		}
1815 	} else if (mpa->revision == 1)
1816 		if (peer2peer)
1817 			ep->mpa_attr.p2p_type = p2p_type;
1818 
1819 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1820 		 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1821 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1822 		 ep->mpa_attr.p2p_type);
1823 
1824 	__state_set(&ep->com, MPA_REQ_RCVD);
1825 
1826 	/* drive upcall */
1827 	mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1828 	if (ep->parent_ep->com.state != DEAD) {
1829 		if (connect_request_upcall(ep))
1830 			goto err_unlock_parent;
1831 	} else {
1832 		goto err_unlock_parent;
1833 	}
1834 	mutex_unlock(&ep->parent_ep->com.mutex);
1835 	return 0;
1836 
1837 err_unlock_parent:
1838 	mutex_unlock(&ep->parent_ep->com.mutex);
1839 	goto err_out;
1840 err_stop_timer:
1841 	(void)stop_ep_timer(ep);
1842 err_out:
1843 	return 2;
1844 }
1845 
1846 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1847 {
1848 	struct c4iw_ep *ep;
1849 	struct cpl_rx_data *hdr = cplhdr(skb);
1850 	unsigned int dlen = ntohs(hdr->len);
1851 	unsigned int tid = GET_TID(hdr);
1852 	__u8 status = hdr->status;
1853 	int disconnect = 0;
1854 
1855 	ep = get_ep_from_tid(dev, tid);
1856 	if (!ep)
1857 		return 0;
1858 	pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen);
1859 	skb_pull(skb, sizeof(*hdr));
1860 	skb_trim(skb, dlen);
1861 	mutex_lock(&ep->com.mutex);
1862 
1863 	switch (ep->com.state) {
1864 	case MPA_REQ_SENT:
1865 		update_rx_credits(ep, dlen);
1866 		ep->rcv_seq += dlen;
1867 		disconnect = process_mpa_reply(ep, skb);
1868 		break;
1869 	case MPA_REQ_WAIT:
1870 		update_rx_credits(ep, dlen);
1871 		ep->rcv_seq += dlen;
1872 		disconnect = process_mpa_request(ep, skb);
1873 		break;
1874 	case FPDU_MODE: {
1875 		struct c4iw_qp_attributes attrs;
1876 
1877 		update_rx_credits(ep, dlen);
1878 		if (status)
1879 			pr_err("%s Unexpected streaming data." \
1880 			       " qpid %u ep %p state %d tid %u status %d\n",
1881 			       __func__, ep->com.qp->wq.sq.qid, ep,
1882 			       ep->com.state, ep->hwtid, status);
1883 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1884 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1885 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1886 		disconnect = 1;
1887 		break;
1888 	}
1889 	default:
1890 		break;
1891 	}
1892 	mutex_unlock(&ep->com.mutex);
1893 	if (disconnect)
1894 		c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1895 	c4iw_put_ep(&ep->com);
1896 	return 0;
1897 }
1898 
1899 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx)
1900 {
1901 	enum chip_type adapter_type;
1902 
1903 	adapter_type = ep->com.dev->rdev.lldi.adapter_type;
1904 
1905 	/*
1906 	 * If this TCB had a srq buffer cached, then we must complete
1907 	 * it. For user mode, that means saving the srqidx in the
1908 	 * user/kernel status page for this qp.  For kernel mode, just
1909 	 * synthesize the CQE now.
1910 	 */
1911 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) {
1912 		if (ep->com.qp->ibqp.uobject)
1913 			t4_set_wq_in_error(&ep->com.qp->wq, srqidx);
1914 		else
1915 			c4iw_flush_srqidx(ep->com.qp, srqidx);
1916 	}
1917 }
1918 
1919 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1920 {
1921 	u32 srqidx;
1922 	struct c4iw_ep *ep;
1923 	struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb);
1924 	int release = 0;
1925 	unsigned int tid = GET_TID(rpl);
1926 
1927 	ep = get_ep_from_tid(dev, tid);
1928 	if (!ep) {
1929 		pr_warn("Abort rpl to freed endpoint\n");
1930 		return 0;
1931 	}
1932 
1933 	if (ep->com.qp && ep->com.qp->srq) {
1934 		srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status));
1935 		complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx);
1936 	}
1937 
1938 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1939 	mutex_lock(&ep->com.mutex);
1940 	switch (ep->com.state) {
1941 	case ABORTING:
1942 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
1943 		__state_set(&ep->com, DEAD);
1944 		release = 1;
1945 		break;
1946 	default:
1947 		pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state);
1948 		break;
1949 	}
1950 	mutex_unlock(&ep->com.mutex);
1951 
1952 	if (release) {
1953 		close_complete_upcall(ep, -ECONNRESET);
1954 		release_ep_resources(ep);
1955 	}
1956 	c4iw_put_ep(&ep->com);
1957 	return 0;
1958 }
1959 
1960 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1961 {
1962 	struct sk_buff *skb;
1963 	struct fw_ofld_connection_wr *req;
1964 	unsigned int mtu_idx;
1965 	u32 wscale;
1966 	struct sockaddr_in *sin;
1967 	int win;
1968 
1969 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1970 	if (!skb)
1971 		return -ENOMEM;
1972 
1973 	req = __skb_put_zero(skb, sizeof(*req));
1974 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1975 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1976 	req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1977 				     ep->com.dev->rdev.lldi.ports[0],
1978 				     ep->l2t));
1979 	sin = (struct sockaddr_in *)&ep->com.local_addr;
1980 	req->le.lport = sin->sin_port;
1981 	req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1982 	sin = (struct sockaddr_in *)&ep->com.remote_addr;
1983 	req->le.pport = sin->sin_port;
1984 	req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1985 	req->tcb.t_state_to_astid =
1986 			htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1987 			FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1988 	req->tcb.cplrxdataack_cplpassacceptrpl =
1989 			htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1990 	req->tcb.tx_max = (__force __be32) jiffies;
1991 	req->tcb.rcv_adv = htons(1);
1992 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1993 		      enable_tcp_timestamps,
1994 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1995 	wscale = cxgb_compute_wscale(rcv_win);
1996 
1997 	/*
1998 	 * Specify the largest window that will fit in opt0. The
1999 	 * remainder will be specified in the rx_data_ack.
2000 	 */
2001 	win = ep->rcv_win >> 10;
2002 	if (win > RCV_BUFSIZ_M)
2003 		win = RCV_BUFSIZ_M;
2004 
2005 	req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2006 		(nocong ? NO_CONG_F : 0) |
2007 		KEEP_ALIVE_F |
2008 		DELACK_F |
2009 		WND_SCALE_V(wscale) |
2010 		MSS_IDX_V(mtu_idx) |
2011 		L2T_IDX_V(ep->l2t->idx) |
2012 		TX_CHAN_V(ep->tx_chan) |
2013 		SMAC_SEL_V(ep->smac_idx) |
2014 		DSCP_V(ep->tos >> 2) |
2015 		ULP_MODE_V(ULP_MODE_TCPDDP) |
2016 		RCV_BUFSIZ_V(win));
2017 	req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2018 		TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2019 		RX_CHANNEL_V(0) |
2020 		CCTRL_ECN_V(enable_ecn) |
2021 		RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2022 	if (enable_tcp_timestamps)
2023 		req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2024 	if (enable_tcp_sack)
2025 		req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2026 	if (wscale && enable_tcp_window_scaling)
2027 		req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2028 	req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2029 	req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2030 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2031 	set_bit(ACT_OFLD_CONN, &ep->com.history);
2032 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2033 }
2034 
2035 /*
2036  * Some of the error codes above implicitly indicate that there is no TID
2037  * allocated with the result of an ACT_OPEN.  We use this predicate to make
2038  * that explicit.
2039  */
2040 static inline int act_open_has_tid(int status)
2041 {
2042 	return (status != CPL_ERR_TCAM_PARITY &&
2043 		status != CPL_ERR_TCAM_MISS &&
2044 		status != CPL_ERR_TCAM_FULL &&
2045 		status != CPL_ERR_CONN_EXIST_SYNRECV &&
2046 		status != CPL_ERR_CONN_EXIST);
2047 }
2048 
2049 static char *neg_adv_str(unsigned int status)
2050 {
2051 	switch (status) {
2052 	case CPL_ERR_RTX_NEG_ADVICE:
2053 		return "Retransmit timeout";
2054 	case CPL_ERR_PERSIST_NEG_ADVICE:
2055 		return "Persist timeout";
2056 	case CPL_ERR_KEEPALV_NEG_ADVICE:
2057 		return "Keepalive timeout";
2058 	default:
2059 		return "Unknown";
2060 	}
2061 }
2062 
2063 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2064 {
2065 	ep->snd_win = snd_win;
2066 	ep->rcv_win = rcv_win;
2067 	pr_debug("snd_win %d rcv_win %d\n",
2068 		 ep->snd_win, ep->rcv_win);
2069 }
2070 
2071 #define ACT_OPEN_RETRY_COUNT 2
2072 
2073 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2074 		     struct dst_entry *dst, struct c4iw_dev *cdev,
2075 		     bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2076 {
2077 	struct neighbour *n;
2078 	int err, step;
2079 	struct net_device *pdev;
2080 
2081 	n = dst_neigh_lookup(dst, peer_ip);
2082 	if (!n)
2083 		return -ENODEV;
2084 
2085 	rcu_read_lock();
2086 	err = -ENOMEM;
2087 	if (n->dev->flags & IFF_LOOPBACK) {
2088 		if (iptype == 4)
2089 			pdev = __ip_dev_find(&init_net, *(__be32 *)peer_ip, false);
2090 		else if (IS_ENABLED(CONFIG_IPV6))
2091 			for_each_netdev(&init_net, pdev) {
2092 				if (ipv6_chk_addr(&init_net,
2093 						  (struct in6_addr *)peer_ip,
2094 						  pdev, 1))
2095 					break;
2096 			}
2097 		else
2098 			pdev = NULL;
2099 
2100 		if (!pdev) {
2101 			err = -ENODEV;
2102 			goto out;
2103 		}
2104 		if (is_vlan_dev(pdev))
2105 			pdev = vlan_dev_real_dev(pdev);
2106 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2107 					n, pdev, rt_tos2priority(tos));
2108 		if (!ep->l2t)
2109 			goto out;
2110 		ep->mtu = pdev->mtu;
2111 		ep->tx_chan = cxgb4_port_chan(pdev);
2112 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2113 		step = cdev->rdev.lldi.ntxq /
2114 			cdev->rdev.lldi.nchan;
2115 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2116 		step = cdev->rdev.lldi.nrxq /
2117 			cdev->rdev.lldi.nchan;
2118 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2119 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2120 			cxgb4_port_idx(pdev) * step];
2121 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2122 	} else {
2123 		pdev = get_real_dev(n->dev);
2124 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2125 					n, pdev, rt_tos2priority(tos));
2126 		if (!ep->l2t)
2127 			goto out;
2128 		ep->mtu = dst_mtu(dst);
2129 		ep->tx_chan = cxgb4_port_chan(pdev);
2130 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2131 		step = cdev->rdev.lldi.ntxq /
2132 			cdev->rdev.lldi.nchan;
2133 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2134 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2135 		step = cdev->rdev.lldi.nrxq /
2136 			cdev->rdev.lldi.nchan;
2137 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2138 			cxgb4_port_idx(pdev) * step];
2139 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2140 
2141 		if (clear_mpa_v1) {
2142 			ep->retry_with_mpa_v1 = 0;
2143 			ep->tried_with_mpa_v1 = 0;
2144 		}
2145 	}
2146 	err = 0;
2147 out:
2148 	rcu_read_unlock();
2149 
2150 	neigh_release(n);
2151 
2152 	return err;
2153 }
2154 
2155 static int c4iw_reconnect(struct c4iw_ep *ep)
2156 {
2157 	int err = 0;
2158 	int size = 0;
2159 	struct sockaddr_in *laddr = (struct sockaddr_in *)
2160 				    &ep->com.cm_id->m_local_addr;
2161 	struct sockaddr_in *raddr = (struct sockaddr_in *)
2162 				    &ep->com.cm_id->m_remote_addr;
2163 	struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2164 				      &ep->com.cm_id->m_local_addr;
2165 	struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2166 				      &ep->com.cm_id->m_remote_addr;
2167 	int iptype;
2168 	__u8 *ra;
2169 
2170 	pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id);
2171 	c4iw_init_wr_wait(ep->com.wr_waitp);
2172 
2173 	/* When MPA revision is different on nodes, the node with MPA_rev=2
2174 	 * tries to reconnect with MPA_rev 1 for the same EP through
2175 	 * c4iw_reconnect(), where the same EP is assigned with new tid for
2176 	 * further connection establishment. As we are using the same EP pointer
2177 	 * for reconnect, few skbs are used during the previous c4iw_connect(),
2178 	 * which leaves the EP with inadequate skbs for further
2179 	 * c4iw_reconnect(), Further causing a crash due to an empty
2180 	 * skb_list() during peer_abort(). Allocate skbs which is already used.
2181 	 */
2182 	size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2183 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2184 		err = -ENOMEM;
2185 		goto fail1;
2186 	}
2187 
2188 	/*
2189 	 * Allocate an active TID to initiate a TCP connection.
2190 	 */
2191 	ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2192 	if (ep->atid == -1) {
2193 		pr_err("%s - cannot alloc atid\n", __func__);
2194 		err = -ENOMEM;
2195 		goto fail2;
2196 	}
2197 	err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL);
2198 	if (err)
2199 		goto fail2a;
2200 
2201 	/* find a route */
2202 	if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2203 		ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2204 					  laddr->sin_addr.s_addr,
2205 					  raddr->sin_addr.s_addr,
2206 					  laddr->sin_port,
2207 					  raddr->sin_port, ep->com.cm_id->tos);
2208 		iptype = 4;
2209 		ra = (__u8 *)&raddr->sin_addr;
2210 	} else {
2211 		ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2212 					   get_real_dev,
2213 					   laddr6->sin6_addr.s6_addr,
2214 					   raddr6->sin6_addr.s6_addr,
2215 					   laddr6->sin6_port,
2216 					   raddr6->sin6_port,
2217 					   ep->com.cm_id->tos,
2218 					   raddr6->sin6_scope_id);
2219 		iptype = 6;
2220 		ra = (__u8 *)&raddr6->sin6_addr;
2221 	}
2222 	if (!ep->dst) {
2223 		pr_err("%s - cannot find route\n", __func__);
2224 		err = -EHOSTUNREACH;
2225 		goto fail3;
2226 	}
2227 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2228 			ep->com.dev->rdev.lldi.adapter_type,
2229 			ep->com.cm_id->tos);
2230 	if (err) {
2231 		pr_err("%s - cannot alloc l2e\n", __func__);
2232 		goto fail4;
2233 	}
2234 
2235 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2236 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2237 		 ep->l2t->idx);
2238 
2239 	state_set(&ep->com, CONNECTING);
2240 	ep->tos = ep->com.cm_id->tos;
2241 
2242 	/* send connect request to rnic */
2243 	err = send_connect(ep);
2244 	if (!err)
2245 		goto out;
2246 
2247 	cxgb4_l2t_release(ep->l2t);
2248 fail4:
2249 	dst_release(ep->dst);
2250 fail3:
2251 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
2252 fail2a:
2253 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2254 fail2:
2255 	/*
2256 	 * remember to send notification to upper layer.
2257 	 * We are in here so the upper layer is not aware that this is
2258 	 * re-connect attempt and so, upper layer is still waiting for
2259 	 * response of 1st connect request.
2260 	 */
2261 	connect_reply_upcall(ep, -ECONNRESET);
2262 fail1:
2263 	c4iw_put_ep(&ep->com);
2264 out:
2265 	return err;
2266 }
2267 
2268 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2269 {
2270 	struct c4iw_ep *ep;
2271 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
2272 	unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2273 				      ntohl(rpl->atid_status)));
2274 	struct tid_info *t = dev->rdev.lldi.tids;
2275 	int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2276 	struct sockaddr_in *la;
2277 	struct sockaddr_in *ra;
2278 	struct sockaddr_in6 *la6;
2279 	struct sockaddr_in6 *ra6;
2280 	int ret = 0;
2281 
2282 	ep = lookup_atid(t, atid);
2283 	if (!ep)
2284 		return -EINVAL;
2285 
2286 	la = (struct sockaddr_in *)&ep->com.local_addr;
2287 	ra = (struct sockaddr_in *)&ep->com.remote_addr;
2288 	la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2289 	ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2290 
2291 	pr_debug("ep %p atid %u status %u errno %d\n", ep, atid,
2292 		 status, status2errno(status));
2293 
2294 	if (cxgb_is_neg_adv(status)) {
2295 		pr_debug("Connection problems for atid %u status %u (%s)\n",
2296 			 atid, status, neg_adv_str(status));
2297 		ep->stats.connect_neg_adv++;
2298 		mutex_lock(&dev->rdev.stats.lock);
2299 		dev->rdev.stats.neg_adv++;
2300 		mutex_unlock(&dev->rdev.stats.lock);
2301 		return 0;
2302 	}
2303 
2304 	set_bit(ACT_OPEN_RPL, &ep->com.history);
2305 
2306 	/*
2307 	 * Log interesting failures.
2308 	 */
2309 	switch (status) {
2310 	case CPL_ERR_CONN_RESET:
2311 	case CPL_ERR_CONN_TIMEDOUT:
2312 		break;
2313 	case CPL_ERR_TCAM_FULL:
2314 		mutex_lock(&dev->rdev.stats.lock);
2315 		dev->rdev.stats.tcam_full++;
2316 		mutex_unlock(&dev->rdev.stats.lock);
2317 		if (ep->com.local_addr.ss_family == AF_INET &&
2318 		    dev->rdev.lldi.enable_fw_ofld_conn) {
2319 			ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2320 						   ntohl(rpl->atid_status))));
2321 			if (ret)
2322 				goto fail;
2323 			return 0;
2324 		}
2325 		break;
2326 	case CPL_ERR_CONN_EXIST:
2327 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2328 			set_bit(ACT_RETRY_INUSE, &ep->com.history);
2329 			if (ep->com.remote_addr.ss_family == AF_INET6) {
2330 				struct sockaddr_in6 *sin6 =
2331 						(struct sockaddr_in6 *)
2332 						&ep->com.local_addr;
2333 				cxgb4_clip_release(
2334 						ep->com.dev->rdev.lldi.ports[0],
2335 						(const u32 *)
2336 						&sin6->sin6_addr.s6_addr, 1);
2337 			}
2338 			xa_erase_irq(&ep->com.dev->atids, atid);
2339 			cxgb4_free_atid(t, atid);
2340 			dst_release(ep->dst);
2341 			cxgb4_l2t_release(ep->l2t);
2342 			c4iw_reconnect(ep);
2343 			return 0;
2344 		}
2345 		break;
2346 	default:
2347 		if (ep->com.local_addr.ss_family == AF_INET) {
2348 			pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2349 				atid, status, status2errno(status),
2350 				&la->sin_addr.s_addr, ntohs(la->sin_port),
2351 				&ra->sin_addr.s_addr, ntohs(ra->sin_port));
2352 		} else {
2353 			pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2354 				atid, status, status2errno(status),
2355 				la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2356 				ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2357 		}
2358 		break;
2359 	}
2360 
2361 fail:
2362 	connect_reply_upcall(ep, status2errno(status));
2363 	state_set(&ep->com, DEAD);
2364 
2365 	if (ep->com.remote_addr.ss_family == AF_INET6) {
2366 		struct sockaddr_in6 *sin6 =
2367 			(struct sockaddr_in6 *)&ep->com.local_addr;
2368 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2369 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2370 	}
2371 	if (status && act_open_has_tid(status))
2372 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl),
2373 				 ep->com.local_addr.ss_family);
2374 
2375 	xa_erase_irq(&ep->com.dev->atids, atid);
2376 	cxgb4_free_atid(t, atid);
2377 	dst_release(ep->dst);
2378 	cxgb4_l2t_release(ep->l2t);
2379 	c4iw_put_ep(&ep->com);
2380 
2381 	return 0;
2382 }
2383 
2384 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2385 {
2386 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2387 	unsigned int stid = GET_TID(rpl);
2388 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2389 
2390 	if (!ep) {
2391 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2392 		goto out;
2393 	}
2394 	pr_debug("ep %p status %d error %d\n", ep,
2395 		 rpl->status, status2errno(rpl->status));
2396 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2397 	c4iw_put_ep(&ep->com);
2398 out:
2399 	return 0;
2400 }
2401 
2402 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2403 {
2404 	struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2405 	unsigned int stid = GET_TID(rpl);
2406 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2407 
2408 	if (!ep) {
2409 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2410 		goto out;
2411 	}
2412 	pr_debug("ep %p\n", ep);
2413 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2414 	c4iw_put_ep(&ep->com);
2415 out:
2416 	return 0;
2417 }
2418 
2419 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2420 		     struct cpl_pass_accept_req *req)
2421 {
2422 	struct cpl_pass_accept_rpl *rpl;
2423 	unsigned int mtu_idx;
2424 	u64 opt0;
2425 	u32 opt2;
2426 	u32 wscale;
2427 	struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2428 	int win;
2429 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2430 
2431 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2432 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2433 		      enable_tcp_timestamps && req->tcpopt.tstamp,
2434 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2435 	wscale = cxgb_compute_wscale(rcv_win);
2436 
2437 	/*
2438 	 * Specify the largest window that will fit in opt0. The
2439 	 * remainder will be specified in the rx_data_ack.
2440 	 */
2441 	win = ep->rcv_win >> 10;
2442 	if (win > RCV_BUFSIZ_M)
2443 		win = RCV_BUFSIZ_M;
2444 	opt0 = (nocong ? NO_CONG_F : 0) |
2445 	       KEEP_ALIVE_F |
2446 	       DELACK_F |
2447 	       WND_SCALE_V(wscale) |
2448 	       MSS_IDX_V(mtu_idx) |
2449 	       L2T_IDX_V(ep->l2t->idx) |
2450 	       TX_CHAN_V(ep->tx_chan) |
2451 	       SMAC_SEL_V(ep->smac_idx) |
2452 	       DSCP_V(ep->tos >> 2) |
2453 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
2454 	       RCV_BUFSIZ_V(win);
2455 	opt2 = RX_CHANNEL_V(0) |
2456 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2457 
2458 	if (enable_tcp_timestamps && req->tcpopt.tstamp)
2459 		opt2 |= TSTAMPS_EN_F;
2460 	if (enable_tcp_sack && req->tcpopt.sack)
2461 		opt2 |= SACK_EN_F;
2462 	if (wscale && enable_tcp_window_scaling)
2463 		opt2 |= WND_SCALE_EN_F;
2464 	if (enable_ecn) {
2465 		const struct tcphdr *tcph;
2466 		u32 hlen = ntohl(req->hdr_len);
2467 
2468 		if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2469 			tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2470 				IP_HDR_LEN_G(hlen);
2471 		else
2472 			tcph = (const void *)(req + 1) +
2473 				T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2474 		if (tcph->ece && tcph->cwr)
2475 			opt2 |= CCTRL_ECN_V(1);
2476 	}
2477 
2478 	if (!is_t4(adapter_type)) {
2479 		u32 isn = (get_random_u32() & ~7UL) - 1;
2480 
2481 		skb = get_skb(skb, roundup(sizeof(*rpl5), 16), GFP_KERNEL);
2482 		rpl5 = __skb_put_zero(skb, roundup(sizeof(*rpl5), 16));
2483 		rpl = (void *)rpl5;
2484 		INIT_TP_WR_CPL(rpl5, CPL_PASS_ACCEPT_RPL, ep->hwtid);
2485 		opt2 |= T5_OPT_2_VALID_F;
2486 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2487 		opt2 |= T5_ISS_F;
2488 		if (peer2peer)
2489 			isn += 4;
2490 		rpl5->iss = cpu_to_be32(isn);
2491 		pr_debug("iss %u\n", be32_to_cpu(rpl5->iss));
2492 	} else {
2493 		skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
2494 		rpl = __skb_put_zero(skb, sizeof(*rpl));
2495 		INIT_TP_WR_CPL(rpl, CPL_PASS_ACCEPT_RPL, ep->hwtid);
2496 	}
2497 
2498 	rpl->opt0 = cpu_to_be64(opt0);
2499 	rpl->opt2 = cpu_to_be32(opt2);
2500 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2501 	t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2502 
2503 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2504 }
2505 
2506 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2507 {
2508 	pr_debug("c4iw_dev %p tid %u\n", dev, hwtid);
2509 	skb_trim(skb, sizeof(struct cpl_tid_release));
2510 	release_tid(&dev->rdev, hwtid, skb);
2511 	return;
2512 }
2513 
2514 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2515 {
2516 	struct c4iw_ep *child_ep = NULL, *parent_ep;
2517 	struct cpl_pass_accept_req *req = cplhdr(skb);
2518 	unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2519 	struct tid_info *t = dev->rdev.lldi.tids;
2520 	unsigned int hwtid = GET_TID(req);
2521 	struct dst_entry *dst;
2522 	__u8 local_ip[16], peer_ip[16];
2523 	__be16 local_port, peer_port;
2524 	struct sockaddr_in6 *sin6;
2525 	int err;
2526 	u16 peer_mss = ntohs(req->tcpopt.mss);
2527 	int iptype;
2528 	unsigned short hdrs;
2529 	u8 tos;
2530 
2531 	parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2532 	if (!parent_ep) {
2533 		pr_err("%s connect request on invalid stid %d\n",
2534 		       __func__, stid);
2535 		goto reject;
2536 	}
2537 
2538 	if (state_read(&parent_ep->com) != LISTEN) {
2539 		pr_err("%s - listening ep not in LISTEN\n", __func__);
2540 		goto reject;
2541 	}
2542 
2543 	if (parent_ep->com.cm_id->tos_set)
2544 		tos = parent_ep->com.cm_id->tos;
2545 	else
2546 		tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2547 
2548 	cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2549 			&iptype, local_ip, peer_ip, &local_port, &peer_port);
2550 
2551 	/* Find output route */
2552 	if (iptype == 4)  {
2553 		pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2554 			 , parent_ep, hwtid,
2555 			 local_ip, peer_ip, ntohs(local_port),
2556 			 ntohs(peer_port), peer_mss);
2557 		dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2558 				      *(__be32 *)local_ip, *(__be32 *)peer_ip,
2559 				      local_port, peer_port, tos);
2560 	} else {
2561 		pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2562 			 , parent_ep, hwtid,
2563 			 local_ip, peer_ip, ntohs(local_port),
2564 			 ntohs(peer_port), peer_mss);
2565 		dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2566 				local_ip, peer_ip, local_port, peer_port,
2567 				tos,
2568 				((struct sockaddr_in6 *)
2569 				 &parent_ep->com.local_addr)->sin6_scope_id);
2570 	}
2571 	if (!dst) {
2572 		pr_err("%s - failed to find dst entry!\n", __func__);
2573 		goto reject;
2574 	}
2575 
2576 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2577 	if (!child_ep) {
2578 		pr_err("%s - failed to allocate ep entry!\n", __func__);
2579 		dst_release(dst);
2580 		goto reject;
2581 	}
2582 
2583 	err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2584 			parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2585 	if (err) {
2586 		pr_err("%s - failed to allocate l2t entry!\n", __func__);
2587 		dst_release(dst);
2588 		kfree(child_ep);
2589 		goto reject;
2590 	}
2591 
2592 	hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
2593 	       sizeof(struct tcphdr) +
2594 	       ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2595 	if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2596 		child_ep->mtu = peer_mss + hdrs;
2597 
2598 	skb_queue_head_init(&child_ep->com.ep_skb_list);
2599 	if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2600 		goto fail;
2601 
2602 	state_set(&child_ep->com, CONNECTING);
2603 	child_ep->com.dev = dev;
2604 	child_ep->com.cm_id = NULL;
2605 
2606 	if (iptype == 4) {
2607 		struct sockaddr_in *sin = (struct sockaddr_in *)
2608 			&child_ep->com.local_addr;
2609 
2610 		sin->sin_family = AF_INET;
2611 		sin->sin_port = local_port;
2612 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2613 
2614 		sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2615 		sin->sin_family = AF_INET;
2616 		sin->sin_port = ((struct sockaddr_in *)
2617 				 &parent_ep->com.local_addr)->sin_port;
2618 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2619 
2620 		sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2621 		sin->sin_family = AF_INET;
2622 		sin->sin_port = peer_port;
2623 		sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2624 	} else {
2625 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2626 		sin6->sin6_family = PF_INET6;
2627 		sin6->sin6_port = local_port;
2628 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2629 
2630 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2631 		sin6->sin6_family = PF_INET6;
2632 		sin6->sin6_port = ((struct sockaddr_in6 *)
2633 				   &parent_ep->com.local_addr)->sin6_port;
2634 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2635 
2636 		sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2637 		sin6->sin6_family = PF_INET6;
2638 		sin6->sin6_port = peer_port;
2639 		memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2640 	}
2641 
2642 	c4iw_get_ep(&parent_ep->com);
2643 	child_ep->parent_ep = parent_ep;
2644 	child_ep->tos = tos;
2645 	child_ep->dst = dst;
2646 	child_ep->hwtid = hwtid;
2647 
2648 	pr_debug("tx_chan %u smac_idx %u rss_qid %u\n",
2649 		 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2650 
2651 	timer_setup(&child_ep->timer, ep_timeout, 0);
2652 	cxgb4_insert_tid(t, child_ep, hwtid,
2653 			 child_ep->com.local_addr.ss_family);
2654 	insert_ep_tid(child_ep);
2655 	if (accept_cr(child_ep, skb, req)) {
2656 		c4iw_put_ep(&parent_ep->com);
2657 		release_ep_resources(child_ep);
2658 	} else {
2659 		set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2660 	}
2661 	if (iptype == 6) {
2662 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2663 		cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2664 			       (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2665 	}
2666 	goto out;
2667 fail:
2668 	c4iw_put_ep(&child_ep->com);
2669 reject:
2670 	reject_cr(dev, hwtid, skb);
2671 out:
2672 	if (parent_ep)
2673 		c4iw_put_ep(&parent_ep->com);
2674 	return 0;
2675 }
2676 
2677 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2678 {
2679 	struct c4iw_ep *ep;
2680 	struct cpl_pass_establish *req = cplhdr(skb);
2681 	unsigned int tid = GET_TID(req);
2682 	int ret;
2683 	u16 tcp_opt = ntohs(req->tcp_opt);
2684 
2685 	ep = get_ep_from_tid(dev, tid);
2686 	if (!ep)
2687 		return 0;
2688 
2689 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2690 	ep->snd_seq = be32_to_cpu(req->snd_isn);
2691 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2692 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
2693 
2694 	pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt);
2695 
2696 	set_emss(ep, tcp_opt);
2697 
2698 	dst_confirm(ep->dst);
2699 	mutex_lock(&ep->com.mutex);
2700 	ep->com.state = MPA_REQ_WAIT;
2701 	start_ep_timer(ep);
2702 	set_bit(PASS_ESTAB, &ep->com.history);
2703 	ret = send_flowc(ep);
2704 	mutex_unlock(&ep->com.mutex);
2705 	if (ret)
2706 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2707 	c4iw_put_ep(&ep->com);
2708 
2709 	return 0;
2710 }
2711 
2712 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2713 {
2714 	struct cpl_peer_close *hdr = cplhdr(skb);
2715 	struct c4iw_ep *ep;
2716 	struct c4iw_qp_attributes attrs;
2717 	int disconnect = 1;
2718 	int release = 0;
2719 	unsigned int tid = GET_TID(hdr);
2720 	int ret;
2721 
2722 	ep = get_ep_from_tid(dev, tid);
2723 	if (!ep)
2724 		return 0;
2725 
2726 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2727 	dst_confirm(ep->dst);
2728 
2729 	set_bit(PEER_CLOSE, &ep->com.history);
2730 	mutex_lock(&ep->com.mutex);
2731 	switch (ep->com.state) {
2732 	case MPA_REQ_WAIT:
2733 		__state_set(&ep->com, CLOSING);
2734 		break;
2735 	case MPA_REQ_SENT:
2736 		__state_set(&ep->com, CLOSING);
2737 		connect_reply_upcall(ep, -ECONNRESET);
2738 		break;
2739 	case MPA_REQ_RCVD:
2740 
2741 		/*
2742 		 * We're gonna mark this puppy DEAD, but keep
2743 		 * the reference on it until the ULP accepts or
2744 		 * rejects the CR. Also wake up anyone waiting
2745 		 * in rdma connection migration (see c4iw_accept_cr()).
2746 		 */
2747 		__state_set(&ep->com, CLOSING);
2748 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2749 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2750 		break;
2751 	case MPA_REP_SENT:
2752 		__state_set(&ep->com, CLOSING);
2753 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2754 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2755 		break;
2756 	case FPDU_MODE:
2757 		start_ep_timer(ep);
2758 		__state_set(&ep->com, CLOSING);
2759 		attrs.next_state = C4IW_QP_STATE_CLOSING;
2760 		ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2761 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2762 		if (ret != -ECONNRESET) {
2763 			peer_close_upcall(ep);
2764 			disconnect = 1;
2765 		}
2766 		break;
2767 	case ABORTING:
2768 		disconnect = 0;
2769 		break;
2770 	case CLOSING:
2771 		__state_set(&ep->com, MORIBUND);
2772 		disconnect = 0;
2773 		break;
2774 	case MORIBUND:
2775 		(void)stop_ep_timer(ep);
2776 		if (ep->com.cm_id && ep->com.qp) {
2777 			attrs.next_state = C4IW_QP_STATE_IDLE;
2778 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2779 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2780 		}
2781 		close_complete_upcall(ep, 0);
2782 		__state_set(&ep->com, DEAD);
2783 		release = 1;
2784 		disconnect = 0;
2785 		break;
2786 	case DEAD:
2787 		disconnect = 0;
2788 		break;
2789 	default:
2790 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2791 	}
2792 	mutex_unlock(&ep->com.mutex);
2793 	if (disconnect)
2794 		c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2795 	if (release)
2796 		release_ep_resources(ep);
2797 	c4iw_put_ep(&ep->com);
2798 	return 0;
2799 }
2800 
2801 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep)
2802 {
2803 	complete_cached_srq_buffers(ep, ep->srqe_idx);
2804 	if (ep->com.cm_id && ep->com.qp) {
2805 		struct c4iw_qp_attributes attrs;
2806 
2807 		attrs.next_state = C4IW_QP_STATE_ERROR;
2808 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2809 			       C4IW_QP_ATTR_NEXT_STATE,	&attrs, 1);
2810 	}
2811 	peer_abort_upcall(ep);
2812 	release_ep_resources(ep);
2813 	c4iw_put_ep(&ep->com);
2814 }
2815 
2816 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2817 {
2818 	struct cpl_abort_req_rss6 *req = cplhdr(skb);
2819 	struct c4iw_ep *ep;
2820 	struct sk_buff *rpl_skb;
2821 	struct c4iw_qp_attributes attrs;
2822 	int ret;
2823 	int release = 0;
2824 	unsigned int tid = GET_TID(req);
2825 	u8 status;
2826 	u32 srqidx;
2827 
2828 	u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2829 
2830 	ep = get_ep_from_tid(dev, tid);
2831 	if (!ep)
2832 		return 0;
2833 
2834 	status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status));
2835 
2836 	if (cxgb_is_neg_adv(status)) {
2837 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
2838 			 ep->hwtid, status, neg_adv_str(status));
2839 		ep->stats.abort_neg_adv++;
2840 		mutex_lock(&dev->rdev.stats.lock);
2841 		dev->rdev.stats.neg_adv++;
2842 		mutex_unlock(&dev->rdev.stats.lock);
2843 		goto deref_ep;
2844 	}
2845 
2846 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid,
2847 		 ep->com.state);
2848 	set_bit(PEER_ABORT, &ep->com.history);
2849 
2850 	/*
2851 	 * Wake up any threads in rdma_init() or rdma_fini().
2852 	 * However, this is not needed if com state is just
2853 	 * MPA_REQ_SENT
2854 	 */
2855 	if (ep->com.state != MPA_REQ_SENT)
2856 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2857 
2858 	mutex_lock(&ep->com.mutex);
2859 	switch (ep->com.state) {
2860 	case CONNECTING:
2861 		c4iw_put_ep(&ep->parent_ep->com);
2862 		break;
2863 	case MPA_REQ_WAIT:
2864 		(void)stop_ep_timer(ep);
2865 		break;
2866 	case MPA_REQ_SENT:
2867 		(void)stop_ep_timer(ep);
2868 		if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 ||
2869 		    (mpa_rev == 2 && ep->tried_with_mpa_v1))
2870 			connect_reply_upcall(ep, -ECONNRESET);
2871 		else {
2872 			/*
2873 			 * we just don't send notification upwards because we
2874 			 * want to retry with mpa_v1 without upper layers even
2875 			 * knowing it.
2876 			 *
2877 			 * do some housekeeping so as to re-initiate the
2878 			 * connection
2879 			 */
2880 			pr_info("%s: mpa_rev=%d. Retrying with mpav1\n",
2881 				__func__, mpa_rev);
2882 			ep->retry_with_mpa_v1 = 1;
2883 		}
2884 		break;
2885 	case MPA_REP_SENT:
2886 		break;
2887 	case MPA_REQ_RCVD:
2888 		break;
2889 	case MORIBUND:
2890 	case CLOSING:
2891 		stop_ep_timer(ep);
2892 		fallthrough;
2893 	case FPDU_MODE:
2894 		if (ep->com.qp && ep->com.qp->srq) {
2895 			srqidx = ABORT_RSS_SRQIDX_G(
2896 					be32_to_cpu(req->srqidx_status));
2897 			if (srqidx) {
2898 				complete_cached_srq_buffers(ep, srqidx);
2899 			} else {
2900 				/* Hold ep ref until finish_peer_abort() */
2901 				c4iw_get_ep(&ep->com);
2902 				__state_set(&ep->com, ABORTING);
2903 				set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags);
2904 				read_tcb(ep);
2905 				break;
2906 
2907 			}
2908 		}
2909 
2910 		if (ep->com.cm_id && ep->com.qp) {
2911 			attrs.next_state = C4IW_QP_STATE_ERROR;
2912 			ret = c4iw_modify_qp(ep->com.qp->rhp,
2913 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2914 				     &attrs, 1);
2915 			if (ret)
2916 				pr_err("%s - qp <- error failed!\n", __func__);
2917 		}
2918 		peer_abort_upcall(ep);
2919 		break;
2920 	case ABORTING:
2921 		break;
2922 	case DEAD:
2923 		pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2924 		mutex_unlock(&ep->com.mutex);
2925 		goto deref_ep;
2926 	default:
2927 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2928 		break;
2929 	}
2930 	dst_confirm(ep->dst);
2931 	if (ep->com.state != ABORTING) {
2932 		__state_set(&ep->com, DEAD);
2933 		/* we don't release if we want to retry with mpa_v1 */
2934 		if (!ep->retry_with_mpa_v1)
2935 			release = 1;
2936 	}
2937 	mutex_unlock(&ep->com.mutex);
2938 
2939 	rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2940 	if (WARN_ON(!rpl_skb)) {
2941 		release = 1;
2942 		goto out;
2943 	}
2944 
2945 	cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2946 
2947 	c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2948 out:
2949 	if (release)
2950 		release_ep_resources(ep);
2951 	else if (ep->retry_with_mpa_v1) {
2952 		if (ep->com.remote_addr.ss_family == AF_INET6) {
2953 			struct sockaddr_in6 *sin6 =
2954 					(struct sockaddr_in6 *)
2955 					&ep->com.local_addr;
2956 			cxgb4_clip_release(
2957 					ep->com.dev->rdev.lldi.ports[0],
2958 					(const u32 *)&sin6->sin6_addr.s6_addr,
2959 					1);
2960 		}
2961 		xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid);
2962 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
2963 				 ep->com.local_addr.ss_family);
2964 		dst_release(ep->dst);
2965 		cxgb4_l2t_release(ep->l2t);
2966 		c4iw_reconnect(ep);
2967 	}
2968 
2969 deref_ep:
2970 	c4iw_put_ep(&ep->com);
2971 	/* Dereferencing ep, referenced in peer_abort_intr() */
2972 	c4iw_put_ep(&ep->com);
2973 	return 0;
2974 }
2975 
2976 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2977 {
2978 	struct c4iw_ep *ep;
2979 	struct c4iw_qp_attributes attrs;
2980 	struct cpl_close_con_rpl *rpl = cplhdr(skb);
2981 	int release = 0;
2982 	unsigned int tid = GET_TID(rpl);
2983 
2984 	ep = get_ep_from_tid(dev, tid);
2985 	if (!ep)
2986 		return 0;
2987 
2988 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2989 
2990 	/* The cm_id may be null if we failed to connect */
2991 	mutex_lock(&ep->com.mutex);
2992 	set_bit(CLOSE_CON_RPL, &ep->com.history);
2993 	switch (ep->com.state) {
2994 	case CLOSING:
2995 		__state_set(&ep->com, MORIBUND);
2996 		break;
2997 	case MORIBUND:
2998 		(void)stop_ep_timer(ep);
2999 		if ((ep->com.cm_id) && (ep->com.qp)) {
3000 			attrs.next_state = C4IW_QP_STATE_IDLE;
3001 			c4iw_modify_qp(ep->com.qp->rhp,
3002 					     ep->com.qp,
3003 					     C4IW_QP_ATTR_NEXT_STATE,
3004 					     &attrs, 1);
3005 		}
3006 		close_complete_upcall(ep, 0);
3007 		__state_set(&ep->com, DEAD);
3008 		release = 1;
3009 		break;
3010 	case ABORTING:
3011 	case DEAD:
3012 		break;
3013 	default:
3014 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3015 		break;
3016 	}
3017 	mutex_unlock(&ep->com.mutex);
3018 	if (release)
3019 		release_ep_resources(ep);
3020 	c4iw_put_ep(&ep->com);
3021 	return 0;
3022 }
3023 
3024 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3025 {
3026 	struct cpl_rdma_terminate *rpl = cplhdr(skb);
3027 	unsigned int tid = GET_TID(rpl);
3028 	struct c4iw_ep *ep;
3029 	struct c4iw_qp_attributes attrs;
3030 
3031 	ep = get_ep_from_tid(dev, tid);
3032 
3033 	if (ep) {
3034 		if (ep->com.qp) {
3035 			pr_warn("TERM received tid %u qpid %u\n", tid,
3036 				ep->com.qp->wq.sq.qid);
3037 			attrs.next_state = C4IW_QP_STATE_TERMINATE;
3038 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3039 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3040 		}
3041 
3042 		/* As per draft-hilland-iwarp-verbs-v1.0, sec 6.2.3,
3043 		 * when entering the TERM state the RNIC MUST initiate a CLOSE.
3044 		 */
3045 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3046 		c4iw_put_ep(&ep->com);
3047 	} else
3048 		pr_warn("TERM received tid %u no ep/qp\n", tid);
3049 
3050 	return 0;
3051 }
3052 
3053 /*
3054  * Upcall from the adapter indicating data has been transmitted.
3055  * For us its just the single MPA request or reply.  We can now free
3056  * the skb holding the mpa message.
3057  */
3058 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3059 {
3060 	struct c4iw_ep *ep;
3061 	struct cpl_fw4_ack *hdr = cplhdr(skb);
3062 	u8 credits = hdr->credits;
3063 	unsigned int tid = GET_TID(hdr);
3064 
3065 
3066 	ep = get_ep_from_tid(dev, tid);
3067 	if (!ep)
3068 		return 0;
3069 	pr_debug("ep %p tid %u credits %u\n",
3070 		 ep, ep->hwtid, credits);
3071 	if (credits == 0) {
3072 		pr_debug("0 credit ack ep %p tid %u state %u\n",
3073 			 ep, ep->hwtid, state_read(&ep->com));
3074 		goto out;
3075 	}
3076 
3077 	dst_confirm(ep->dst);
3078 	if (ep->mpa_skb) {
3079 		pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
3080 			 ep, ep->hwtid, state_read(&ep->com),
3081 			 ep->mpa_attr.initiator ? 1 : 0);
3082 		mutex_lock(&ep->com.mutex);
3083 		kfree_skb(ep->mpa_skb);
3084 		ep->mpa_skb = NULL;
3085 		if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3086 			stop_ep_timer(ep);
3087 		mutex_unlock(&ep->com.mutex);
3088 	}
3089 out:
3090 	c4iw_put_ep(&ep->com);
3091 	return 0;
3092 }
3093 
3094 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3095 {
3096 	int abort;
3097 	struct c4iw_ep *ep = to_ep(cm_id);
3098 
3099 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3100 
3101 	mutex_lock(&ep->com.mutex);
3102 	if (ep->com.state != MPA_REQ_RCVD) {
3103 		mutex_unlock(&ep->com.mutex);
3104 		c4iw_put_ep(&ep->com);
3105 		return -ECONNRESET;
3106 	}
3107 	set_bit(ULP_REJECT, &ep->com.history);
3108 	if (mpa_rev == 0)
3109 		abort = 1;
3110 	else
3111 		abort = send_mpa_reject(ep, pdata, pdata_len);
3112 	mutex_unlock(&ep->com.mutex);
3113 
3114 	stop_ep_timer(ep);
3115 	c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3116 	c4iw_put_ep(&ep->com);
3117 	return 0;
3118 }
3119 
3120 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3121 {
3122 	int err;
3123 	struct c4iw_qp_attributes attrs;
3124 	enum c4iw_qp_attr_mask mask;
3125 	struct c4iw_ep *ep = to_ep(cm_id);
3126 	struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3127 	struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3128 	int abort = 0;
3129 
3130 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3131 
3132 	mutex_lock(&ep->com.mutex);
3133 	if (ep->com.state != MPA_REQ_RCVD) {
3134 		err = -ECONNRESET;
3135 		goto err_out;
3136 	}
3137 
3138 	if (!qp) {
3139 		err = -EINVAL;
3140 		goto err_out;
3141 	}
3142 
3143 	set_bit(ULP_ACCEPT, &ep->com.history);
3144 	if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3145 	    (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3146 		err = -EINVAL;
3147 		goto err_abort;
3148 	}
3149 
3150 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3151 		if (conn_param->ord > ep->ird) {
3152 			if (RELAXED_IRD_NEGOTIATION) {
3153 				conn_param->ord = ep->ird;
3154 			} else {
3155 				ep->ird = conn_param->ird;
3156 				ep->ord = conn_param->ord;
3157 				send_mpa_reject(ep, conn_param->private_data,
3158 						conn_param->private_data_len);
3159 				err = -ENOMEM;
3160 				goto err_abort;
3161 			}
3162 		}
3163 		if (conn_param->ird < ep->ord) {
3164 			if (RELAXED_IRD_NEGOTIATION &&
3165 			    ep->ord <= h->rdev.lldi.max_ordird_qp) {
3166 				conn_param->ird = ep->ord;
3167 			} else {
3168 				err = -ENOMEM;
3169 				goto err_abort;
3170 			}
3171 		}
3172 	}
3173 	ep->ird = conn_param->ird;
3174 	ep->ord = conn_param->ord;
3175 
3176 	if (ep->mpa_attr.version == 1) {
3177 		if (peer2peer && ep->ird == 0)
3178 			ep->ird = 1;
3179 	} else {
3180 		if (peer2peer &&
3181 		    (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3182 		    (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3183 			ep->ird = 1;
3184 	}
3185 
3186 	pr_debug("ird %d ord %d\n", ep->ird, ep->ord);
3187 
3188 	ep->com.cm_id = cm_id;
3189 	ref_cm_id(&ep->com);
3190 	ep->com.qp = qp;
3191 	ref_qp(ep);
3192 
3193 	/* bind QP to EP and move to RTS */
3194 	attrs.mpa_attr = ep->mpa_attr;
3195 	attrs.max_ird = ep->ird;
3196 	attrs.max_ord = ep->ord;
3197 	attrs.llp_stream_handle = ep;
3198 	attrs.next_state = C4IW_QP_STATE_RTS;
3199 
3200 	/* bind QP and TID with INIT_WR */
3201 	mask = C4IW_QP_ATTR_NEXT_STATE |
3202 			     C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3203 			     C4IW_QP_ATTR_MPA_ATTR |
3204 			     C4IW_QP_ATTR_MAX_IRD |
3205 			     C4IW_QP_ATTR_MAX_ORD;
3206 
3207 	err = c4iw_modify_qp(ep->com.qp->rhp,
3208 			     ep->com.qp, mask, &attrs, 1);
3209 	if (err)
3210 		goto err_deref_cm_id;
3211 
3212 	set_bit(STOP_MPA_TIMER, &ep->com.flags);
3213 	err = send_mpa_reply(ep, conn_param->private_data,
3214 			     conn_param->private_data_len);
3215 	if (err)
3216 		goto err_deref_cm_id;
3217 
3218 	__state_set(&ep->com, FPDU_MODE);
3219 	established_upcall(ep);
3220 	mutex_unlock(&ep->com.mutex);
3221 	c4iw_put_ep(&ep->com);
3222 	return 0;
3223 err_deref_cm_id:
3224 	deref_cm_id(&ep->com);
3225 err_abort:
3226 	abort = 1;
3227 err_out:
3228 	mutex_unlock(&ep->com.mutex);
3229 	if (abort)
3230 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3231 	c4iw_put_ep(&ep->com);
3232 	return err;
3233 }
3234 
3235 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3236 {
3237 	struct in_device *ind;
3238 	int found = 0;
3239 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3240 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3241 	const struct in_ifaddr *ifa;
3242 
3243 	ind = in_dev_get(dev->rdev.lldi.ports[0]);
3244 	if (!ind)
3245 		return -EADDRNOTAVAIL;
3246 	rcu_read_lock();
3247 	in_dev_for_each_ifa_rcu(ifa, ind) {
3248 		if (ifa->ifa_flags & IFA_F_SECONDARY)
3249 			continue;
3250 		laddr->sin_addr.s_addr = ifa->ifa_address;
3251 		raddr->sin_addr.s_addr = ifa->ifa_address;
3252 		found = 1;
3253 		break;
3254 	}
3255 	rcu_read_unlock();
3256 
3257 	in_dev_put(ind);
3258 	return found ? 0 : -EADDRNOTAVAIL;
3259 }
3260 
3261 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3262 		      unsigned char banned_flags)
3263 {
3264 	struct inet6_dev *idev;
3265 	int err = -EADDRNOTAVAIL;
3266 
3267 	rcu_read_lock();
3268 	idev = __in6_dev_get(dev);
3269 	if (idev != NULL) {
3270 		struct inet6_ifaddr *ifp;
3271 
3272 		read_lock_bh(&idev->lock);
3273 		list_for_each_entry(ifp, &idev->addr_list, if_list) {
3274 			if (ifp->scope == IFA_LINK &&
3275 			    !(ifp->flags & banned_flags)) {
3276 				memcpy(addr, &ifp->addr, 16);
3277 				err = 0;
3278 				break;
3279 			}
3280 		}
3281 		read_unlock_bh(&idev->lock);
3282 	}
3283 	rcu_read_unlock();
3284 	return err;
3285 }
3286 
3287 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3288 {
3289 	struct in6_addr addr;
3290 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3291 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3292 
3293 	if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3294 		memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3295 		memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3296 		return 0;
3297 	}
3298 	return -EADDRNOTAVAIL;
3299 }
3300 
3301 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3302 {
3303 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3304 	struct c4iw_ep *ep;
3305 	int err = 0;
3306 	struct sockaddr_in *laddr;
3307 	struct sockaddr_in *raddr;
3308 	struct sockaddr_in6 *laddr6;
3309 	struct sockaddr_in6 *raddr6;
3310 	__u8 *ra;
3311 	int iptype;
3312 
3313 	if ((conn_param->ord > cur_max_read_depth(dev)) ||
3314 	    (conn_param->ird > cur_max_read_depth(dev))) {
3315 		err = -EINVAL;
3316 		goto out;
3317 	}
3318 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3319 	if (!ep) {
3320 		pr_err("%s - cannot alloc ep\n", __func__);
3321 		err = -ENOMEM;
3322 		goto out;
3323 	}
3324 
3325 	skb_queue_head_init(&ep->com.ep_skb_list);
3326 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3327 		err = -ENOMEM;
3328 		goto fail1;
3329 	}
3330 
3331 	timer_setup(&ep->timer, ep_timeout, 0);
3332 	ep->plen = conn_param->private_data_len;
3333 	if (ep->plen)
3334 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3335 		       conn_param->private_data, ep->plen);
3336 	ep->ird = conn_param->ird;
3337 	ep->ord = conn_param->ord;
3338 
3339 	if (peer2peer && ep->ord == 0)
3340 		ep->ord = 1;
3341 
3342 	ep->com.cm_id = cm_id;
3343 	ref_cm_id(&ep->com);
3344 	cm_id->provider_data = ep;
3345 	ep->com.dev = dev;
3346 	ep->com.qp = get_qhp(dev, conn_param->qpn);
3347 	if (!ep->com.qp) {
3348 		pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3349 		err = -EINVAL;
3350 		goto fail2;
3351 	}
3352 	ref_qp(ep);
3353 	pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn,
3354 		 ep->com.qp, cm_id);
3355 
3356 	/*
3357 	 * Allocate an active TID to initiate a TCP connection.
3358 	 */
3359 	ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3360 	if (ep->atid == -1) {
3361 		pr_err("%s - cannot alloc atid\n", __func__);
3362 		err = -ENOMEM;
3363 		goto fail2;
3364 	}
3365 	err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL);
3366 	if (err)
3367 		goto fail5;
3368 
3369 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3370 	       sizeof(ep->com.local_addr));
3371 	memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3372 	       sizeof(ep->com.remote_addr));
3373 
3374 	laddr = (struct sockaddr_in *)&ep->com.local_addr;
3375 	raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3376 	laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3377 	raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3378 
3379 	if (cm_id->m_remote_addr.ss_family == AF_INET) {
3380 		iptype = 4;
3381 		ra = (__u8 *)&raddr->sin_addr;
3382 
3383 		/*
3384 		 * Handle loopback requests to INADDR_ANY.
3385 		 */
3386 		if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3387 			err = pick_local_ipaddrs(dev, cm_id);
3388 			if (err)
3389 				goto fail3;
3390 		}
3391 
3392 		/* find a route */
3393 		pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3394 			 &laddr->sin_addr, ntohs(laddr->sin_port),
3395 			 ra, ntohs(raddr->sin_port));
3396 		ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3397 					  laddr->sin_addr.s_addr,
3398 					  raddr->sin_addr.s_addr,
3399 					  laddr->sin_port,
3400 					  raddr->sin_port, cm_id->tos);
3401 	} else {
3402 		iptype = 6;
3403 		ra = (__u8 *)&raddr6->sin6_addr;
3404 
3405 		/*
3406 		 * Handle loopback requests to INADDR_ANY.
3407 		 */
3408 		if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3409 			err = pick_local_ip6addrs(dev, cm_id);
3410 			if (err)
3411 				goto fail3;
3412 		}
3413 
3414 		/* find a route */
3415 		pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3416 			 laddr6->sin6_addr.s6_addr,
3417 			 ntohs(laddr6->sin6_port),
3418 			 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3419 		ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3420 					   laddr6->sin6_addr.s6_addr,
3421 					   raddr6->sin6_addr.s6_addr,
3422 					   laddr6->sin6_port,
3423 					   raddr6->sin6_port, cm_id->tos,
3424 					   raddr6->sin6_scope_id);
3425 	}
3426 	if (!ep->dst) {
3427 		pr_err("%s - cannot find route\n", __func__);
3428 		err = -EHOSTUNREACH;
3429 		goto fail3;
3430 	}
3431 
3432 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3433 			ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3434 	if (err) {
3435 		pr_err("%s - cannot alloc l2e\n", __func__);
3436 		goto fail4;
3437 	}
3438 
3439 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3440 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3441 		 ep->l2t->idx);
3442 
3443 	state_set(&ep->com, CONNECTING);
3444 	ep->tos = cm_id->tos;
3445 
3446 	/* send connect request to rnic */
3447 	err = send_connect(ep);
3448 	if (!err)
3449 		goto out;
3450 
3451 	cxgb4_l2t_release(ep->l2t);
3452 fail4:
3453 	dst_release(ep->dst);
3454 fail3:
3455 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
3456 fail5:
3457 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3458 fail2:
3459 	skb_queue_purge(&ep->com.ep_skb_list);
3460 	deref_cm_id(&ep->com);
3461 fail1:
3462 	c4iw_put_ep(&ep->com);
3463 out:
3464 	return err;
3465 }
3466 
3467 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3468 {
3469 	int err;
3470 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3471 				    &ep->com.local_addr;
3472 
3473 	if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3474 		err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3475 				     (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3476 		if (err)
3477 			return err;
3478 	}
3479 	c4iw_init_wr_wait(ep->com.wr_waitp);
3480 	err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3481 				   ep->stid, &sin6->sin6_addr,
3482 				   sin6->sin6_port,
3483 				   ep->com.dev->rdev.lldi.rxq_ids[0]);
3484 	if (!err)
3485 		err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3486 					  ep->com.wr_waitp,
3487 					  0, 0, __func__);
3488 	else if (err > 0)
3489 		err = net_xmit_errno(err);
3490 	if (err) {
3491 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3492 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3493 		pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3494 		       err, ep->stid,
3495 		       sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3496 	}
3497 	return err;
3498 }
3499 
3500 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3501 {
3502 	int err;
3503 	struct sockaddr_in *sin = (struct sockaddr_in *)
3504 				  &ep->com.local_addr;
3505 
3506 	if (dev->rdev.lldi.enable_fw_ofld_conn) {
3507 		do {
3508 			err = cxgb4_create_server_filter(
3509 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3510 				sin->sin_addr.s_addr, sin->sin_port, 0,
3511 				ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3512 			if (err == -EBUSY) {
3513 				if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3514 					err = -EIO;
3515 					break;
3516 				}
3517 				set_current_state(TASK_UNINTERRUPTIBLE);
3518 				schedule_timeout(usecs_to_jiffies(100));
3519 			}
3520 		} while (err == -EBUSY);
3521 	} else {
3522 		c4iw_init_wr_wait(ep->com.wr_waitp);
3523 		err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3524 				ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3525 				0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3526 		if (!err)
3527 			err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3528 						  ep->com.wr_waitp,
3529 						  0, 0, __func__);
3530 		else if (err > 0)
3531 			err = net_xmit_errno(err);
3532 	}
3533 	if (err)
3534 		pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3535 		       , err, ep->stid,
3536 		       &sin->sin_addr, ntohs(sin->sin_port));
3537 	return err;
3538 }
3539 
3540 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3541 {
3542 	int err = 0;
3543 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3544 	struct c4iw_listen_ep *ep;
3545 
3546 	might_sleep();
3547 
3548 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3549 	if (!ep) {
3550 		pr_err("%s - cannot alloc ep\n", __func__);
3551 		err = -ENOMEM;
3552 		goto fail1;
3553 	}
3554 	skb_queue_head_init(&ep->com.ep_skb_list);
3555 	pr_debug("ep %p\n", ep);
3556 	ep->com.cm_id = cm_id;
3557 	ref_cm_id(&ep->com);
3558 	ep->com.dev = dev;
3559 	ep->backlog = backlog;
3560 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3561 	       sizeof(ep->com.local_addr));
3562 
3563 	/*
3564 	 * Allocate a server TID.
3565 	 */
3566 	if (dev->rdev.lldi.enable_fw_ofld_conn &&
3567 	    ep->com.local_addr.ss_family == AF_INET)
3568 		ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3569 					     cm_id->m_local_addr.ss_family, ep);
3570 	else
3571 		ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3572 					    cm_id->m_local_addr.ss_family, ep);
3573 
3574 	if (ep->stid == -1) {
3575 		pr_err("%s - cannot alloc stid\n", __func__);
3576 		err = -ENOMEM;
3577 		goto fail2;
3578 	}
3579 	err = xa_insert_irq(&dev->stids, ep->stid, ep, GFP_KERNEL);
3580 	if (err)
3581 		goto fail3;
3582 
3583 	state_set(&ep->com, LISTEN);
3584 	if (ep->com.local_addr.ss_family == AF_INET)
3585 		err = create_server4(dev, ep);
3586 	else
3587 		err = create_server6(dev, ep);
3588 	if (!err) {
3589 		cm_id->provider_data = ep;
3590 		goto out;
3591 	}
3592 	xa_erase_irq(&ep->com.dev->stids, ep->stid);
3593 fail3:
3594 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3595 			ep->com.local_addr.ss_family);
3596 fail2:
3597 	deref_cm_id(&ep->com);
3598 	c4iw_put_ep(&ep->com);
3599 fail1:
3600 out:
3601 	return err;
3602 }
3603 
3604 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3605 {
3606 	int err;
3607 	struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3608 
3609 	pr_debug("ep %p\n", ep);
3610 
3611 	might_sleep();
3612 	state_set(&ep->com, DEAD);
3613 	if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3614 	    ep->com.local_addr.ss_family == AF_INET) {
3615 		err = cxgb4_remove_server_filter(
3616 			ep->com.dev->rdev.lldi.ports[0], ep->stid,
3617 			ep->com.dev->rdev.lldi.rxq_ids[0], false);
3618 	} else {
3619 		struct sockaddr_in6 *sin6;
3620 		c4iw_init_wr_wait(ep->com.wr_waitp);
3621 		err = cxgb4_remove_server(
3622 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3623 				ep->com.dev->rdev.lldi.rxq_ids[0],
3624 				ep->com.local_addr.ss_family == AF_INET6);
3625 		if (err)
3626 			goto done;
3627 		err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp,
3628 					  0, 0, __func__);
3629 		sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3630 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3631 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3632 	}
3633 	xa_erase_irq(&ep->com.dev->stids, ep->stid);
3634 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3635 			ep->com.local_addr.ss_family);
3636 done:
3637 	deref_cm_id(&ep->com);
3638 	c4iw_put_ep(&ep->com);
3639 	return err;
3640 }
3641 
3642 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3643 {
3644 	int ret = 0;
3645 	int close = 0;
3646 	int fatal = 0;
3647 	struct c4iw_rdev *rdev;
3648 
3649 	mutex_lock(&ep->com.mutex);
3650 
3651 	pr_debug("ep %p state %s, abrupt %d\n", ep,
3652 		 states[ep->com.state], abrupt);
3653 
3654 	/*
3655 	 * Ref the ep here in case we have fatal errors causing the
3656 	 * ep to be released and freed.
3657 	 */
3658 	c4iw_get_ep(&ep->com);
3659 
3660 	rdev = &ep->com.dev->rdev;
3661 	if (c4iw_fatal_error(rdev)) {
3662 		fatal = 1;
3663 		close_complete_upcall(ep, -EIO);
3664 		ep->com.state = DEAD;
3665 	}
3666 	switch (ep->com.state) {
3667 	case MPA_REQ_WAIT:
3668 	case MPA_REQ_SENT:
3669 	case MPA_REQ_RCVD:
3670 	case MPA_REP_SENT:
3671 	case FPDU_MODE:
3672 	case CONNECTING:
3673 		close = 1;
3674 		if (abrupt)
3675 			ep->com.state = ABORTING;
3676 		else {
3677 			ep->com.state = CLOSING;
3678 
3679 			/*
3680 			 * if we close before we see the fw4_ack() then we fix
3681 			 * up the timer state since we're reusing it.
3682 			 */
3683 			if (ep->mpa_skb &&
3684 			    test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3685 				clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3686 				stop_ep_timer(ep);
3687 			}
3688 			start_ep_timer(ep);
3689 		}
3690 		set_bit(CLOSE_SENT, &ep->com.flags);
3691 		break;
3692 	case CLOSING:
3693 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3694 			close = 1;
3695 			if (abrupt) {
3696 				(void)stop_ep_timer(ep);
3697 				ep->com.state = ABORTING;
3698 			} else
3699 				ep->com.state = MORIBUND;
3700 		}
3701 		break;
3702 	case MORIBUND:
3703 	case ABORTING:
3704 	case DEAD:
3705 		pr_debug("ignoring disconnect ep %p state %u\n",
3706 			 ep, ep->com.state);
3707 		break;
3708 	default:
3709 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3710 		break;
3711 	}
3712 
3713 	if (close) {
3714 		if (abrupt) {
3715 			set_bit(EP_DISC_ABORT, &ep->com.history);
3716 			ret = send_abort(ep);
3717 		} else {
3718 			set_bit(EP_DISC_CLOSE, &ep->com.history);
3719 			ret = send_halfclose(ep);
3720 		}
3721 		if (ret) {
3722 			set_bit(EP_DISC_FAIL, &ep->com.history);
3723 			if (!abrupt) {
3724 				stop_ep_timer(ep);
3725 				close_complete_upcall(ep, -EIO);
3726 			}
3727 			if (ep->com.qp) {
3728 				struct c4iw_qp_attributes attrs;
3729 
3730 				attrs.next_state = C4IW_QP_STATE_ERROR;
3731 				ret = c4iw_modify_qp(ep->com.qp->rhp,
3732 						     ep->com.qp,
3733 						     C4IW_QP_ATTR_NEXT_STATE,
3734 						     &attrs, 1);
3735 				if (ret)
3736 					pr_err("%s - qp <- error failed!\n",
3737 					       __func__);
3738 			}
3739 			fatal = 1;
3740 		}
3741 	}
3742 	mutex_unlock(&ep->com.mutex);
3743 	c4iw_put_ep(&ep->com);
3744 	if (fatal)
3745 		release_ep_resources(ep);
3746 	return ret;
3747 }
3748 
3749 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3750 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3751 {
3752 	struct c4iw_ep *ep;
3753 	int atid = be32_to_cpu(req->tid);
3754 
3755 	ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3756 					   (__force u32) req->tid);
3757 	if (!ep)
3758 		return;
3759 
3760 	switch (req->retval) {
3761 	case FW_ENOMEM:
3762 		set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3763 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3764 			send_fw_act_open_req(ep, atid);
3765 			return;
3766 		}
3767 		fallthrough;
3768 	case FW_EADDRINUSE:
3769 		set_bit(ACT_RETRY_INUSE, &ep->com.history);
3770 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3771 			send_fw_act_open_req(ep, atid);
3772 			return;
3773 		}
3774 		break;
3775 	default:
3776 		pr_info("%s unexpected ofld conn wr retval %d\n",
3777 		       __func__, req->retval);
3778 		break;
3779 	}
3780 	pr_err("active ofld_connect_wr failure %d atid %d\n",
3781 	       req->retval, atid);
3782 	mutex_lock(&dev->rdev.stats.lock);
3783 	dev->rdev.stats.act_ofld_conn_fails++;
3784 	mutex_unlock(&dev->rdev.stats.lock);
3785 	connect_reply_upcall(ep, status2errno(req->retval));
3786 	state_set(&ep->com, DEAD);
3787 	if (ep->com.remote_addr.ss_family == AF_INET6) {
3788 		struct sockaddr_in6 *sin6 =
3789 			(struct sockaddr_in6 *)&ep->com.local_addr;
3790 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3791 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3792 	}
3793 	xa_erase_irq(&dev->atids, atid);
3794 	cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3795 	dst_release(ep->dst);
3796 	cxgb4_l2t_release(ep->l2t);
3797 	c4iw_put_ep(&ep->com);
3798 }
3799 
3800 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3801 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3802 {
3803 	struct sk_buff *rpl_skb;
3804 	struct cpl_pass_accept_req *cpl;
3805 	int ret;
3806 
3807 	rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3808 	if (req->retval) {
3809 		pr_err("%s passive open failure %d\n", __func__, req->retval);
3810 		mutex_lock(&dev->rdev.stats.lock);
3811 		dev->rdev.stats.pas_ofld_conn_fails++;
3812 		mutex_unlock(&dev->rdev.stats.lock);
3813 		kfree_skb(rpl_skb);
3814 	} else {
3815 		cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3816 		OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3817 					(__force u32) htonl(
3818 					(__force u32) req->tid)));
3819 		ret = pass_accept_req(dev, rpl_skb);
3820 		if (!ret)
3821 			kfree_skb(rpl_skb);
3822 	}
3823 	return;
3824 }
3825 
3826 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word)
3827 {
3828 	u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]);
3829 	u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]);
3830 	u64 t;
3831 	u32 shift = 32;
3832 
3833 	t = (thi << shift) | (tlo >> shift);
3834 
3835 	return t;
3836 }
3837 
3838 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift)
3839 {
3840 	u32 v;
3841 	u64 t = be64_to_cpu(tcb[(31 - word) / 2]);
3842 
3843 	if (word & 0x1)
3844 		shift += 32;
3845 	v = (t >> shift) & mask;
3846 	return v;
3847 }
3848 
3849 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3850 {
3851 	struct cpl_get_tcb_rpl *rpl = cplhdr(skb);
3852 	__be64 *tcb = (__be64 *)(rpl + 1);
3853 	unsigned int tid = GET_TID(rpl);
3854 	struct c4iw_ep *ep;
3855 	u64 t_flags_64;
3856 	u32 rx_pdu_out;
3857 
3858 	ep = get_ep_from_tid(dev, tid);
3859 	if (!ep)
3860 		return 0;
3861 	/* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to
3862 	 * determine if there's a rx PDU feedback event pending.
3863 	 *
3864 	 * If that bit is set, it means we'll need to re-read the TCB's
3865 	 * rq_start value. The final value is the one present in a TCB
3866 	 * with the TF_RX_PDU_OUT bit cleared.
3867 	 */
3868 
3869 	t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W);
3870 	rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S;
3871 
3872 	c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */
3873 	c4iw_put_ep(&ep->com); /* from read_tcb() */
3874 
3875 	/* If TF_RX_PDU_OUT bit is set, re-read the TCB */
3876 	if (rx_pdu_out) {
3877 		if (++ep->rx_pdu_out_cnt >= 2) {
3878 			WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n");
3879 			goto cleanup;
3880 		}
3881 		read_tcb(ep);
3882 		return 0;
3883 	}
3884 
3885 	ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_M,
3886 					  TCB_RQ_START_S);
3887 cleanup:
3888 	pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx);
3889 
3890 	if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags))
3891 		finish_peer_abort(dev, ep);
3892 	else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags))
3893 		send_abort_req(ep);
3894 	else
3895 		WARN_ONCE(1, "unexpected state!");
3896 
3897 	return 0;
3898 }
3899 
3900 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3901 {
3902 	struct cpl_fw6_msg *rpl = cplhdr(skb);
3903 	struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3904 
3905 	switch (rpl->type) {
3906 	case FW6_TYPE_CQE:
3907 		c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3908 		break;
3909 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3910 		req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3911 		switch (req->t_state) {
3912 		case TCP_SYN_SENT:
3913 			active_ofld_conn_reply(dev, skb, req);
3914 			break;
3915 		case TCP_SYN_RECV:
3916 			passive_ofld_conn_reply(dev, skb, req);
3917 			break;
3918 		default:
3919 			pr_err("%s unexpected ofld conn wr state %d\n",
3920 			       __func__, req->t_state);
3921 			break;
3922 		}
3923 		break;
3924 	}
3925 	return 0;
3926 }
3927 
3928 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3929 {
3930 	__be32 l2info;
3931 	__be16 hdr_len, vlantag, len;
3932 	u16 eth_hdr_len;
3933 	int tcp_hdr_len, ip_hdr_len;
3934 	u8 intf;
3935 	struct cpl_rx_pkt *cpl = cplhdr(skb);
3936 	struct cpl_pass_accept_req *req;
3937 	struct tcp_options_received tmp_opt;
3938 	struct c4iw_dev *dev;
3939 	enum chip_type type;
3940 
3941 	dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3942 	/* Store values from cpl_rx_pkt in temporary location. */
3943 	vlantag = cpl->vlan;
3944 	len = cpl->len;
3945 	l2info  = cpl->l2info;
3946 	hdr_len = cpl->hdr_len;
3947 	intf = cpl->iff;
3948 
3949 	__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3950 
3951 	/*
3952 	 * We need to parse the TCP options from SYN packet.
3953 	 * to generate cpl_pass_accept_req.
3954 	 */
3955 	memset(&tmp_opt, 0, sizeof(tmp_opt));
3956 	tcp_clear_options(&tmp_opt);
3957 	tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL);
3958 
3959 	req = __skb_push(skb, sizeof(*req));
3960 	memset(req, 0, sizeof(*req));
3961 	req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3962 			 SYN_MAC_IDX_V(RX_MACIDX_G(
3963 			 be32_to_cpu(l2info))) |
3964 			 SYN_XACT_MATCH_F);
3965 	type = dev->rdev.lldi.adapter_type;
3966 	tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3967 	ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3968 	req->hdr_len =
3969 		cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3970 	if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3971 		eth_hdr_len = is_t4(type) ?
3972 				RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3973 				RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3974 		req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3975 					    IP_HDR_LEN_V(ip_hdr_len) |
3976 					    ETH_HDR_LEN_V(eth_hdr_len));
3977 	} else { /* T6 and later */
3978 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3979 		req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3980 					    T6_IP_HDR_LEN_V(ip_hdr_len) |
3981 					    T6_ETH_HDR_LEN_V(eth_hdr_len));
3982 	}
3983 	req->vlan = vlantag;
3984 	req->len = len;
3985 	req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3986 				    PASS_OPEN_TOS_V(tos));
3987 	req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3988 	if (tmp_opt.wscale_ok)
3989 		req->tcpopt.wsf = tmp_opt.snd_wscale;
3990 	req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3991 	if (tmp_opt.sack_ok)
3992 		req->tcpopt.sack = 1;
3993 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3994 	return;
3995 }
3996 
3997 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3998 				  __be32 laddr, __be16 lport,
3999 				  __be32 raddr, __be16 rport,
4000 				  u32 rcv_isn, u32 filter, u16 window,
4001 				  u32 rss_qid, u8 port_id)
4002 {
4003 	struct sk_buff *req_skb;
4004 	struct fw_ofld_connection_wr *req;
4005 	struct cpl_pass_accept_req *cpl = cplhdr(skb);
4006 	int ret;
4007 
4008 	req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
4009 	if (!req_skb)
4010 		return;
4011 	req = __skb_put_zero(req_skb, sizeof(*req));
4012 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
4013 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
4014 	req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
4015 	req->le.filter = (__force __be32) filter;
4016 	req->le.lport = lport;
4017 	req->le.pport = rport;
4018 	req->le.u.ipv4.lip = laddr;
4019 	req->le.u.ipv4.pip = raddr;
4020 	req->tcb.rcv_nxt = htonl(rcv_isn + 1);
4021 	req->tcb.rcv_adv = htons(window);
4022 	req->tcb.t_state_to_astid =
4023 		 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
4024 			FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
4025 			FW_OFLD_CONNECTION_WR_ASTID_V(
4026 			PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
4027 
4028 	/*
4029 	 * We store the qid in opt2 which will be used by the firmware
4030 	 * to send us the wr response.
4031 	 */
4032 	req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
4033 
4034 	/*
4035 	 * We initialize the MSS index in TCB to 0xF.
4036 	 * So that when driver sends cpl_pass_accept_rpl
4037 	 * TCB picks up the correct value. If this was 0
4038 	 * TP will ignore any value > 0 for MSS index.
4039 	 */
4040 	req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
4041 	req->cookie = (uintptr_t)skb;
4042 
4043 	set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
4044 	ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
4045 	if (ret < 0) {
4046 		pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
4047 		       ret);
4048 		kfree_skb(skb);
4049 		kfree_skb(req_skb);
4050 	}
4051 }
4052 
4053 /*
4054  * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
4055  * messages when a filter is being used instead of server to
4056  * redirect a syn packet. When packets hit filter they are redirected
4057  * to the offload queue and driver tries to establish the connection
4058  * using firmware work request.
4059  */
4060 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
4061 {
4062 	int stid;
4063 	unsigned int filter;
4064 	struct ethhdr *eh = NULL;
4065 	struct vlan_ethhdr *vlan_eh = NULL;
4066 	struct iphdr *iph;
4067 	struct tcphdr *tcph;
4068 	struct rss_header *rss = (void *)skb->data;
4069 	struct cpl_rx_pkt *cpl = (void *)skb->data;
4070 	struct cpl_pass_accept_req *req = (void *)(rss + 1);
4071 	struct l2t_entry *e;
4072 	struct dst_entry *dst;
4073 	struct c4iw_ep *lep = NULL;
4074 	u16 window;
4075 	struct port_info *pi;
4076 	struct net_device *pdev;
4077 	u16 rss_qid, eth_hdr_len;
4078 	int step;
4079 	struct neighbour *neigh;
4080 
4081 	/* Drop all non-SYN packets */
4082 	if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
4083 		goto reject;
4084 
4085 	/*
4086 	 * Drop all packets which did not hit the filter.
4087 	 * Unlikely to happen.
4088 	 */
4089 	if (!(rss->filter_hit && rss->filter_tid))
4090 		goto reject;
4091 
4092 	/*
4093 	 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4094 	 */
4095 	stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4096 
4097 	lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4098 	if (!lep) {
4099 		pr_warn("%s connect request on invalid stid %d\n",
4100 			__func__, stid);
4101 		goto reject;
4102 	}
4103 
4104 	switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4105 	case CHELSIO_T4:
4106 		eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4107 		break;
4108 	case CHELSIO_T5:
4109 		eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4110 		break;
4111 	case CHELSIO_T6:
4112 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4113 		break;
4114 	default:
4115 		pr_err("T%d Chip is not supported\n",
4116 		       CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4117 		goto reject;
4118 	}
4119 
4120 	if (eth_hdr_len == ETH_HLEN) {
4121 		eh = (struct ethhdr *)(req + 1);
4122 		iph = (struct iphdr *)(eh + 1);
4123 	} else {
4124 		vlan_eh = (struct vlan_ethhdr *)(req + 1);
4125 		iph = (struct iphdr *)(vlan_eh + 1);
4126 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
4127 	}
4128 
4129 	if (iph->version != 0x4)
4130 		goto reject;
4131 
4132 	tcph = (struct tcphdr *)(iph + 1);
4133 	skb_set_network_header(skb, (void *)iph - (void *)rss);
4134 	skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4135 	skb_get(skb);
4136 
4137 	pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n",
4138 		 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4139 		 ntohs(tcph->source), iph->tos);
4140 
4141 	dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
4142 			      iph->daddr, iph->saddr, tcph->dest,
4143 			      tcph->source, iph->tos);
4144 	if (!dst) {
4145 		pr_err("%s - failed to find dst entry!\n", __func__);
4146 		goto reject;
4147 	}
4148 	neigh = dst_neigh_lookup_skb(dst, skb);
4149 
4150 	if (!neigh) {
4151 		pr_err("%s - failed to allocate neigh!\n", __func__);
4152 		goto free_dst;
4153 	}
4154 
4155 	if (neigh->dev->flags & IFF_LOOPBACK) {
4156 		pdev = ip_dev_find(&init_net, iph->daddr);
4157 		if (!pdev) {
4158 			pr_err("%s - failed to find device!\n", __func__);
4159 			goto free_dst;
4160 		}
4161 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4162 				    pdev, 0);
4163 		pi = (struct port_info *)netdev_priv(pdev);
4164 		dev_put(pdev);
4165 	} else {
4166 		pdev = get_real_dev(neigh->dev);
4167 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4168 					pdev, 0);
4169 		pi = (struct port_info *)netdev_priv(pdev);
4170 	}
4171 	neigh_release(neigh);
4172 	if (!e) {
4173 		pr_err("%s - failed to allocate l2t entry!\n",
4174 		       __func__);
4175 		goto free_dst;
4176 	}
4177 
4178 	step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4179 	rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4180 	window = (__force u16) htons((__force u16)tcph->window);
4181 
4182 	/* Calcuate filter portion for LE region. */
4183 	filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4184 						    dev->rdev.lldi.ports[0],
4185 						    e));
4186 
4187 	/*
4188 	 * Synthesize the cpl_pass_accept_req. We have everything except the
4189 	 * TID. Once firmware sends a reply with TID we update the TID field
4190 	 * in cpl and pass it through the regular cpl_pass_accept_req path.
4191 	 */
4192 	build_cpl_pass_accept_req(skb, stid, iph->tos);
4193 	send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4194 			      tcph->source, ntohl(tcph->seq), filter, window,
4195 			      rss_qid, pi->port_id);
4196 	cxgb4_l2t_release(e);
4197 free_dst:
4198 	dst_release(dst);
4199 reject:
4200 	if (lep)
4201 		c4iw_put_ep(&lep->com);
4202 	return 0;
4203 }
4204 
4205 /*
4206  * These are the real handlers that are called from a
4207  * work queue.
4208  */
4209 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4210 	[CPL_ACT_ESTABLISH] = act_establish,
4211 	[CPL_ACT_OPEN_RPL] = act_open_rpl,
4212 	[CPL_RX_DATA] = rx_data,
4213 	[CPL_ABORT_RPL_RSS] = abort_rpl,
4214 	[CPL_ABORT_RPL] = abort_rpl,
4215 	[CPL_PASS_OPEN_RPL] = pass_open_rpl,
4216 	[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4217 	[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4218 	[CPL_PASS_ESTABLISH] = pass_establish,
4219 	[CPL_PEER_CLOSE] = peer_close,
4220 	[CPL_ABORT_REQ_RSS] = peer_abort,
4221 	[CPL_CLOSE_CON_RPL] = close_con_rpl,
4222 	[CPL_RDMA_TERMINATE] = terminate,
4223 	[CPL_FW4_ACK] = fw4_ack,
4224 	[CPL_GET_TCB_RPL] = read_tcb_rpl,
4225 	[CPL_FW6_MSG] = deferred_fw6_msg,
4226 	[CPL_RX_PKT] = rx_pkt,
4227 	[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4228 	[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4229 };
4230 
4231 static void process_timeout(struct c4iw_ep *ep)
4232 {
4233 	struct c4iw_qp_attributes attrs;
4234 	int abort = 1;
4235 
4236 	mutex_lock(&ep->com.mutex);
4237 	pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state);
4238 	set_bit(TIMEDOUT, &ep->com.history);
4239 	switch (ep->com.state) {
4240 	case MPA_REQ_SENT:
4241 		connect_reply_upcall(ep, -ETIMEDOUT);
4242 		break;
4243 	case MPA_REQ_WAIT:
4244 	case MPA_REQ_RCVD:
4245 	case MPA_REP_SENT:
4246 	case FPDU_MODE:
4247 		break;
4248 	case CLOSING:
4249 	case MORIBUND:
4250 		if (ep->com.cm_id && ep->com.qp) {
4251 			attrs.next_state = C4IW_QP_STATE_ERROR;
4252 			c4iw_modify_qp(ep->com.qp->rhp,
4253 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4254 				     &attrs, 1);
4255 		}
4256 		close_complete_upcall(ep, -ETIMEDOUT);
4257 		break;
4258 	case ABORTING:
4259 	case DEAD:
4260 
4261 		/*
4262 		 * These states are expected if the ep timed out at the same
4263 		 * time as another thread was calling stop_ep_timer().
4264 		 * So we silently do nothing for these states.
4265 		 */
4266 		abort = 0;
4267 		break;
4268 	default:
4269 		WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4270 			__func__, ep, ep->hwtid, ep->com.state);
4271 		abort = 0;
4272 	}
4273 	mutex_unlock(&ep->com.mutex);
4274 	if (abort)
4275 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4276 	c4iw_put_ep(&ep->com);
4277 }
4278 
4279 static void process_timedout_eps(void)
4280 {
4281 	struct c4iw_ep *ep;
4282 
4283 	spin_lock_irq(&timeout_lock);
4284 	while (!list_empty(&timeout_list)) {
4285 		struct list_head *tmp;
4286 
4287 		tmp = timeout_list.next;
4288 		list_del(tmp);
4289 		tmp->next = NULL;
4290 		tmp->prev = NULL;
4291 		spin_unlock_irq(&timeout_lock);
4292 		ep = list_entry(tmp, struct c4iw_ep, entry);
4293 		process_timeout(ep);
4294 		spin_lock_irq(&timeout_lock);
4295 	}
4296 	spin_unlock_irq(&timeout_lock);
4297 }
4298 
4299 static void process_work(struct work_struct *work)
4300 {
4301 	struct sk_buff *skb = NULL;
4302 	struct c4iw_dev *dev;
4303 	struct cpl_act_establish *rpl;
4304 	unsigned int opcode;
4305 	int ret;
4306 
4307 	process_timedout_eps();
4308 	while ((skb = skb_dequeue(&rxq))) {
4309 		rpl = cplhdr(skb);
4310 		dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4311 		opcode = rpl->ot.opcode;
4312 
4313 		if (opcode >= ARRAY_SIZE(work_handlers) ||
4314 		    !work_handlers[opcode]) {
4315 			pr_err("No handler for opcode 0x%x.\n", opcode);
4316 			kfree_skb(skb);
4317 		} else {
4318 			ret = work_handlers[opcode](dev, skb);
4319 			if (!ret)
4320 				kfree_skb(skb);
4321 		}
4322 		process_timedout_eps();
4323 	}
4324 }
4325 
4326 static DECLARE_WORK(skb_work, process_work);
4327 
4328 static void ep_timeout(struct timer_list *t)
4329 {
4330 	struct c4iw_ep *ep = from_timer(ep, t, timer);
4331 	int kickit = 0;
4332 
4333 	spin_lock(&timeout_lock);
4334 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4335 		/*
4336 		 * Only insert if it is not already on the list.
4337 		 */
4338 		if (!ep->entry.next) {
4339 			list_add_tail(&ep->entry, &timeout_list);
4340 			kickit = 1;
4341 		}
4342 	}
4343 	spin_unlock(&timeout_lock);
4344 	if (kickit)
4345 		queue_work(workq, &skb_work);
4346 }
4347 
4348 /*
4349  * All the CM events are handled on a work queue to have a safe context.
4350  */
4351 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4352 {
4353 
4354 	/*
4355 	 * Save dev in the skb->cb area.
4356 	 */
4357 	*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4358 
4359 	/*
4360 	 * Queue the skb and schedule the worker thread.
4361 	 */
4362 	skb_queue_tail(&rxq, skb);
4363 	queue_work(workq, &skb_work);
4364 	return 0;
4365 }
4366 
4367 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4368 {
4369 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4370 
4371 	if (rpl->status != CPL_ERR_NONE) {
4372 		pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4373 		       rpl->status, GET_TID(rpl));
4374 	}
4375 	kfree_skb(skb);
4376 	return 0;
4377 }
4378 
4379 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4380 {
4381 	struct cpl_fw6_msg *rpl = cplhdr(skb);
4382 	struct c4iw_wr_wait *wr_waitp;
4383 	int ret;
4384 
4385 	pr_debug("type %u\n", rpl->type);
4386 
4387 	switch (rpl->type) {
4388 	case FW6_TYPE_WR_RPL:
4389 		ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4390 		wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4391 		pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret);
4392 		if (wr_waitp)
4393 			c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0);
4394 		kfree_skb(skb);
4395 		break;
4396 	case FW6_TYPE_CQE:
4397 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4398 		sched(dev, skb);
4399 		break;
4400 	default:
4401 		pr_err("%s unexpected fw6 msg type %u\n",
4402 		       __func__, rpl->type);
4403 		kfree_skb(skb);
4404 		break;
4405 	}
4406 	return 0;
4407 }
4408 
4409 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4410 {
4411 	struct cpl_abort_req_rss *req = cplhdr(skb);
4412 	struct c4iw_ep *ep;
4413 	unsigned int tid = GET_TID(req);
4414 
4415 	ep = get_ep_from_tid(dev, tid);
4416 	/* This EP will be dereferenced in peer_abort() */
4417 	if (!ep) {
4418 		pr_warn("Abort on non-existent endpoint, tid %d\n", tid);
4419 		kfree_skb(skb);
4420 		return 0;
4421 	}
4422 	if (cxgb_is_neg_adv(req->status)) {
4423 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
4424 			 ep->hwtid, req->status,
4425 			 neg_adv_str(req->status));
4426 		goto out;
4427 	}
4428 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state);
4429 
4430 	c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
4431 out:
4432 	sched(dev, skb);
4433 	return 0;
4434 }
4435 
4436 /*
4437  * Most upcalls from the T4 Core go to sched() to
4438  * schedule the processing on a work queue.
4439  */
4440 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4441 	[CPL_ACT_ESTABLISH] = sched,
4442 	[CPL_ACT_OPEN_RPL] = sched,
4443 	[CPL_RX_DATA] = sched,
4444 	[CPL_ABORT_RPL_RSS] = sched,
4445 	[CPL_ABORT_RPL] = sched,
4446 	[CPL_PASS_OPEN_RPL] = sched,
4447 	[CPL_CLOSE_LISTSRV_RPL] = sched,
4448 	[CPL_PASS_ACCEPT_REQ] = sched,
4449 	[CPL_PASS_ESTABLISH] = sched,
4450 	[CPL_PEER_CLOSE] = sched,
4451 	[CPL_CLOSE_CON_RPL] = sched,
4452 	[CPL_ABORT_REQ_RSS] = peer_abort_intr,
4453 	[CPL_RDMA_TERMINATE] = sched,
4454 	[CPL_FW4_ACK] = sched,
4455 	[CPL_SET_TCB_RPL] = set_tcb_rpl,
4456 	[CPL_GET_TCB_RPL] = sched,
4457 	[CPL_FW6_MSG] = fw6_msg,
4458 	[CPL_RX_PKT] = sched
4459 };
4460 
4461 int __init c4iw_cm_init(void)
4462 {
4463 	skb_queue_head_init(&rxq);
4464 
4465 	workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4466 	if (!workq)
4467 		return -ENOMEM;
4468 
4469 	return 0;
4470 }
4471 
4472 void c4iw_cm_term(void)
4473 {
4474 	WARN_ON(!list_empty(&timeout_list));
4475 	destroy_workqueue(workq);
4476 }
4477