1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include "iw_cxgb4.h" 53 #include "clip_tbl.h" 54 55 static char *states[] = { 56 "idle", 57 "listen", 58 "connecting", 59 "mpa_wait_req", 60 "mpa_req_sent", 61 "mpa_req_rcvd", 62 "mpa_rep_sent", 63 "fpdu_mode", 64 "aborting", 65 "closing", 66 "moribund", 67 "dead", 68 NULL, 69 }; 70 71 static int nocong; 72 module_param(nocong, int, 0644); 73 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 74 75 static int enable_ecn; 76 module_param(enable_ecn, int, 0644); 77 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 78 79 static int dack_mode = 1; 80 module_param(dack_mode, int, 0644); 81 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 82 83 uint c4iw_max_read_depth = 32; 84 module_param(c4iw_max_read_depth, int, 0644); 85 MODULE_PARM_DESC(c4iw_max_read_depth, 86 "Per-connection max ORD/IRD (default=32)"); 87 88 static int enable_tcp_timestamps; 89 module_param(enable_tcp_timestamps, int, 0644); 90 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 91 92 static int enable_tcp_sack; 93 module_param(enable_tcp_sack, int, 0644); 94 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 95 96 static int enable_tcp_window_scaling = 1; 97 module_param(enable_tcp_window_scaling, int, 0644); 98 MODULE_PARM_DESC(enable_tcp_window_scaling, 99 "Enable tcp window scaling (default=1)"); 100 101 int c4iw_debug; 102 module_param(c4iw_debug, int, 0644); 103 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)"); 104 105 static int peer2peer = 1; 106 module_param(peer2peer, int, 0644); 107 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 108 109 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 110 module_param(p2p_type, int, 0644); 111 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 112 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 113 114 static int ep_timeout_secs = 60; 115 module_param(ep_timeout_secs, int, 0644); 116 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 117 "in seconds (default=60)"); 118 119 static int mpa_rev = 2; 120 module_param(mpa_rev, int, 0644); 121 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 122 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 123 " compliant (default=2)"); 124 125 static int markers_enabled; 126 module_param(markers_enabled, int, 0644); 127 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 128 129 static int crc_enabled = 1; 130 module_param(crc_enabled, int, 0644); 131 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 132 133 static int rcv_win = 256 * 1024; 134 module_param(rcv_win, int, 0644); 135 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 136 137 static int snd_win = 128 * 1024; 138 module_param(snd_win, int, 0644); 139 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 140 141 static struct workqueue_struct *workq; 142 143 static struct sk_buff_head rxq; 144 145 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 146 static void ep_timeout(unsigned long arg); 147 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 148 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 149 150 static LIST_HEAD(timeout_list); 151 static spinlock_t timeout_lock; 152 153 static void deref_cm_id(struct c4iw_ep_common *epc) 154 { 155 epc->cm_id->rem_ref(epc->cm_id); 156 epc->cm_id = NULL; 157 set_bit(CM_ID_DEREFED, &epc->history); 158 } 159 160 static void ref_cm_id(struct c4iw_ep_common *epc) 161 { 162 set_bit(CM_ID_REFED, &epc->history); 163 epc->cm_id->add_ref(epc->cm_id); 164 } 165 166 static void deref_qp(struct c4iw_ep *ep) 167 { 168 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 169 clear_bit(QP_REFERENCED, &ep->com.flags); 170 set_bit(QP_DEREFED, &ep->com.history); 171 } 172 173 static void ref_qp(struct c4iw_ep *ep) 174 { 175 set_bit(QP_REFERENCED, &ep->com.flags); 176 set_bit(QP_REFED, &ep->com.history); 177 c4iw_qp_add_ref(&ep->com.qp->ibqp); 178 } 179 180 static void start_ep_timer(struct c4iw_ep *ep) 181 { 182 PDBG("%s ep %p\n", __func__, ep); 183 if (timer_pending(&ep->timer)) { 184 pr_err("%s timer already started! ep %p\n", 185 __func__, ep); 186 return; 187 } 188 clear_bit(TIMEOUT, &ep->com.flags); 189 c4iw_get_ep(&ep->com); 190 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 191 ep->timer.data = (unsigned long)ep; 192 ep->timer.function = ep_timeout; 193 add_timer(&ep->timer); 194 } 195 196 static int stop_ep_timer(struct c4iw_ep *ep) 197 { 198 PDBG("%s ep %p stopping\n", __func__, ep); 199 del_timer_sync(&ep->timer); 200 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 201 c4iw_put_ep(&ep->com); 202 return 0; 203 } 204 return 1; 205 } 206 207 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 208 struct l2t_entry *l2e) 209 { 210 int error = 0; 211 212 if (c4iw_fatal_error(rdev)) { 213 kfree_skb(skb); 214 PDBG("%s - device in error state - dropping\n", __func__); 215 return -EIO; 216 } 217 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 218 if (error < 0) 219 kfree_skb(skb); 220 else if (error == NET_XMIT_DROP) 221 return -ENOMEM; 222 return error < 0 ? error : 0; 223 } 224 225 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 226 { 227 int error = 0; 228 229 if (c4iw_fatal_error(rdev)) { 230 kfree_skb(skb); 231 PDBG("%s - device in error state - dropping\n", __func__); 232 return -EIO; 233 } 234 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 235 if (error < 0) 236 kfree_skb(skb); 237 return error < 0 ? error : 0; 238 } 239 240 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 241 { 242 struct cpl_tid_release *req; 243 244 skb = get_skb(skb, sizeof *req, GFP_KERNEL); 245 if (!skb) 246 return; 247 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req)); 248 INIT_TP_WR(req, hwtid); 249 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid)); 250 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0); 251 c4iw_ofld_send(rdev, skb); 252 return; 253 } 254 255 static void set_emss(struct c4iw_ep *ep, u16 opt) 256 { 257 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 258 ((AF_INET == ep->com.remote_addr.ss_family) ? 259 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 260 sizeof(struct tcphdr); 261 ep->mss = ep->emss; 262 if (TCPOPT_TSTAMP_G(opt)) 263 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 264 if (ep->emss < 128) 265 ep->emss = 128; 266 if (ep->emss & 7) 267 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n", 268 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 269 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt), 270 ep->mss, ep->emss); 271 } 272 273 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 274 { 275 enum c4iw_ep_state state; 276 277 mutex_lock(&epc->mutex); 278 state = epc->state; 279 mutex_unlock(&epc->mutex); 280 return state; 281 } 282 283 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 284 { 285 epc->state = new; 286 } 287 288 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 289 { 290 mutex_lock(&epc->mutex); 291 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]); 292 __state_set(epc, new); 293 mutex_unlock(&epc->mutex); 294 return; 295 } 296 297 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 298 { 299 struct sk_buff *skb; 300 unsigned int i; 301 size_t len; 302 303 len = roundup(sizeof(union cpl_wr_size), 16); 304 for (i = 0; i < size; i++) { 305 skb = alloc_skb(len, GFP_KERNEL); 306 if (!skb) 307 goto fail; 308 skb_queue_tail(ep_skb_list, skb); 309 } 310 return 0; 311 fail: 312 skb_queue_purge(ep_skb_list); 313 return -ENOMEM; 314 } 315 316 static void *alloc_ep(int size, gfp_t gfp) 317 { 318 struct c4iw_ep_common *epc; 319 320 epc = kzalloc(size, gfp); 321 if (epc) { 322 kref_init(&epc->kref); 323 mutex_init(&epc->mutex); 324 c4iw_init_wr_wait(&epc->wr_wait); 325 } 326 PDBG("%s alloc ep %p\n", __func__, epc); 327 return epc; 328 } 329 330 static void remove_ep_tid(struct c4iw_ep *ep) 331 { 332 unsigned long flags; 333 334 spin_lock_irqsave(&ep->com.dev->lock, flags); 335 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0); 336 if (idr_is_empty(&ep->com.dev->hwtid_idr)) 337 wake_up(&ep->com.dev->wait); 338 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 339 } 340 341 static void insert_ep_tid(struct c4iw_ep *ep) 342 { 343 unsigned long flags; 344 345 spin_lock_irqsave(&ep->com.dev->lock, flags); 346 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0); 347 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 348 } 349 350 /* 351 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 352 */ 353 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 354 { 355 struct c4iw_ep *ep; 356 unsigned long flags; 357 358 spin_lock_irqsave(&dev->lock, flags); 359 ep = idr_find(&dev->hwtid_idr, tid); 360 if (ep) 361 c4iw_get_ep(&ep->com); 362 spin_unlock_irqrestore(&dev->lock, flags); 363 return ep; 364 } 365 366 /* 367 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 368 */ 369 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 370 unsigned int stid) 371 { 372 struct c4iw_listen_ep *ep; 373 unsigned long flags; 374 375 spin_lock_irqsave(&dev->lock, flags); 376 ep = idr_find(&dev->stid_idr, stid); 377 if (ep) 378 c4iw_get_ep(&ep->com); 379 spin_unlock_irqrestore(&dev->lock, flags); 380 return ep; 381 } 382 383 void _c4iw_free_ep(struct kref *kref) 384 { 385 struct c4iw_ep *ep; 386 387 ep = container_of(kref, struct c4iw_ep, com.kref); 388 PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]); 389 if (test_bit(QP_REFERENCED, &ep->com.flags)) 390 deref_qp(ep); 391 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 392 if (ep->com.remote_addr.ss_family == AF_INET6) { 393 struct sockaddr_in6 *sin6 = 394 (struct sockaddr_in6 *) 395 &ep->com.local_addr; 396 397 cxgb4_clip_release( 398 ep->com.dev->rdev.lldi.ports[0], 399 (const u32 *)&sin6->sin6_addr.s6_addr, 400 1); 401 } 402 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 403 dst_release(ep->dst); 404 cxgb4_l2t_release(ep->l2t); 405 if (ep->mpa_skb) 406 kfree_skb(ep->mpa_skb); 407 } 408 if (!skb_queue_empty(&ep->com.ep_skb_list)) 409 skb_queue_purge(&ep->com.ep_skb_list); 410 kfree(ep); 411 } 412 413 static void release_ep_resources(struct c4iw_ep *ep) 414 { 415 set_bit(RELEASE_RESOURCES, &ep->com.flags); 416 417 /* 418 * If we have a hwtid, then remove it from the idr table 419 * so lookups will no longer find this endpoint. Otherwise 420 * we have a race where one thread finds the ep ptr just 421 * before the other thread is freeing the ep memory. 422 */ 423 if (ep->hwtid != -1) 424 remove_ep_tid(ep); 425 c4iw_put_ep(&ep->com); 426 } 427 428 static int status2errno(int status) 429 { 430 switch (status) { 431 case CPL_ERR_NONE: 432 return 0; 433 case CPL_ERR_CONN_RESET: 434 return -ECONNRESET; 435 case CPL_ERR_ARP_MISS: 436 return -EHOSTUNREACH; 437 case CPL_ERR_CONN_TIMEDOUT: 438 return -ETIMEDOUT; 439 case CPL_ERR_TCAM_FULL: 440 return -ENOMEM; 441 case CPL_ERR_CONN_EXIST: 442 return -EADDRINUSE; 443 default: 444 return -EIO; 445 } 446 } 447 448 /* 449 * Try and reuse skbs already allocated... 450 */ 451 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 452 { 453 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 454 skb_trim(skb, 0); 455 skb_get(skb); 456 skb_reset_transport_header(skb); 457 } else { 458 skb = alloc_skb(len, gfp); 459 } 460 t4_set_arp_err_handler(skb, NULL, NULL); 461 return skb; 462 } 463 464 static struct net_device *get_real_dev(struct net_device *egress_dev) 465 { 466 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 467 } 468 469 static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev) 470 { 471 int i; 472 473 egress_dev = get_real_dev(egress_dev); 474 for (i = 0; i < dev->rdev.lldi.nports; i++) 475 if (dev->rdev.lldi.ports[i] == egress_dev) 476 return 1; 477 return 0; 478 } 479 480 static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip, 481 __u8 *peer_ip, __be16 local_port, 482 __be16 peer_port, u8 tos, 483 __u32 sin6_scope_id) 484 { 485 struct dst_entry *dst = NULL; 486 487 if (IS_ENABLED(CONFIG_IPV6)) { 488 struct flowi6 fl6; 489 490 memset(&fl6, 0, sizeof(fl6)); 491 memcpy(&fl6.daddr, peer_ip, 16); 492 memcpy(&fl6.saddr, local_ip, 16); 493 if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL) 494 fl6.flowi6_oif = sin6_scope_id; 495 dst = ip6_route_output(&init_net, NULL, &fl6); 496 if (!dst) 497 goto out; 498 if (!our_interface(dev, ip6_dst_idev(dst)->dev) && 499 !(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) { 500 dst_release(dst); 501 dst = NULL; 502 } 503 } 504 505 out: 506 return dst; 507 } 508 509 static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip, 510 __be32 peer_ip, __be16 local_port, 511 __be16 peer_port, u8 tos) 512 { 513 struct rtable *rt; 514 struct flowi4 fl4; 515 struct neighbour *n; 516 517 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip, 518 peer_port, local_port, IPPROTO_TCP, 519 tos, 0); 520 if (IS_ERR(rt)) 521 return NULL; 522 n = dst_neigh_lookup(&rt->dst, &peer_ip); 523 if (!n) 524 return NULL; 525 if (!our_interface(dev, n->dev) && 526 !(n->dev->flags & IFF_LOOPBACK)) { 527 neigh_release(n); 528 dst_release(&rt->dst); 529 return NULL; 530 } 531 neigh_release(n); 532 return &rt->dst; 533 } 534 535 static void arp_failure_discard(void *handle, struct sk_buff *skb) 536 { 537 pr_err(MOD "ARP failure\n"); 538 kfree_skb(skb); 539 } 540 541 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 542 { 543 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 544 } 545 546 enum { 547 NUM_FAKE_CPLS = 2, 548 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 549 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 550 }; 551 552 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 553 { 554 struct c4iw_ep *ep; 555 556 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 557 release_ep_resources(ep); 558 return 0; 559 } 560 561 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 562 { 563 struct c4iw_ep *ep; 564 565 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 566 c4iw_put_ep(&ep->parent_ep->com); 567 release_ep_resources(ep); 568 return 0; 569 } 570 571 /* 572 * Fake up a special CPL opcode and call sched() so process_work() will call 573 * _put_ep_safe() in a safe context to free the ep resources. This is needed 574 * because ARP error handlers are called in an ATOMIC context, and 575 * _c4iw_free_ep() needs to block. 576 */ 577 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 578 int cpl) 579 { 580 struct cpl_act_establish *rpl = cplhdr(skb); 581 582 /* Set our special ARP_FAILURE opcode */ 583 rpl->ot.opcode = cpl; 584 585 /* 586 * Save ep in the skb->cb area, after where sched() will save the dev 587 * ptr. 588 */ 589 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 590 sched(ep->com.dev, skb); 591 } 592 593 /* Handle an ARP failure for an accept */ 594 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 595 { 596 struct c4iw_ep *ep = handle; 597 598 pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n", 599 ep->hwtid); 600 601 __state_set(&ep->com, DEAD); 602 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 603 } 604 605 /* 606 * Handle an ARP failure for an active open. 607 */ 608 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 609 { 610 struct c4iw_ep *ep = handle; 611 612 printk(KERN_ERR MOD "ARP failure during connect\n"); 613 connect_reply_upcall(ep, -EHOSTUNREACH); 614 __state_set(&ep->com, DEAD); 615 if (ep->com.remote_addr.ss_family == AF_INET6) { 616 struct sockaddr_in6 *sin6 = 617 (struct sockaddr_in6 *)&ep->com.local_addr; 618 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 619 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 620 } 621 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 622 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 623 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 624 } 625 626 /* 627 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 628 * and send it along. 629 */ 630 static void abort_arp_failure(void *handle, struct sk_buff *skb) 631 { 632 int ret; 633 struct c4iw_ep *ep = handle; 634 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 635 struct cpl_abort_req *req = cplhdr(skb); 636 637 PDBG("%s rdev %p\n", __func__, rdev); 638 req->cmd = CPL_ABORT_NO_RST; 639 ret = c4iw_ofld_send(rdev, skb); 640 if (ret) { 641 __state_set(&ep->com, DEAD); 642 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 643 } 644 } 645 646 static int send_flowc(struct c4iw_ep *ep) 647 { 648 struct fw_flowc_wr *flowc; 649 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 650 int i; 651 u16 vlan = ep->l2t->vlan; 652 int nparams; 653 654 if (WARN_ON(!skb)) 655 return -ENOMEM; 656 657 if (vlan == CPL_L2T_VLAN_NONE) 658 nparams = 8; 659 else 660 nparams = 9; 661 662 flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN); 663 664 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 665 FW_FLOWC_WR_NPARAMS_V(nparams)); 666 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN, 667 16)) | FW_WR_FLOWID_V(ep->hwtid)); 668 669 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 670 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 671 (ep->com.dev->rdev.lldi.pf)); 672 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 673 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 674 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 675 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 676 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 677 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 678 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 679 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 680 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 681 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 682 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 683 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 684 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 685 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 686 if (nparams == 9) { 687 u16 pri; 688 689 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 690 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 691 flowc->mnemval[8].val = cpu_to_be32(pri); 692 } else { 693 /* Pad WR to 16 byte boundary */ 694 flowc->mnemval[8].mnemonic = 0; 695 flowc->mnemval[8].val = 0; 696 } 697 for (i = 0; i < 9; i++) { 698 flowc->mnemval[i].r4[0] = 0; 699 flowc->mnemval[i].r4[1] = 0; 700 flowc->mnemval[i].r4[2] = 0; 701 } 702 703 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 704 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 705 } 706 707 static int send_halfclose(struct c4iw_ep *ep) 708 { 709 struct cpl_close_con_req *req; 710 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 711 int wrlen = roundup(sizeof *req, 16); 712 713 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 714 if (WARN_ON(!skb)) 715 return -ENOMEM; 716 717 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 718 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 719 req = (struct cpl_close_con_req *) skb_put(skb, wrlen); 720 memset(req, 0, wrlen); 721 INIT_TP_WR(req, ep->hwtid); 722 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, 723 ep->hwtid)); 724 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 725 } 726 727 static int send_abort(struct c4iw_ep *ep) 728 { 729 struct cpl_abort_req *req; 730 int wrlen = roundup(sizeof *req, 16); 731 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 732 733 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 734 if (WARN_ON(!req_skb)) 735 return -ENOMEM; 736 737 set_wr_txq(req_skb, CPL_PRIORITY_DATA, ep->txq_idx); 738 t4_set_arp_err_handler(req_skb, ep, abort_arp_failure); 739 req = (struct cpl_abort_req *)skb_put(req_skb, wrlen); 740 memset(req, 0, wrlen); 741 INIT_TP_WR(req, ep->hwtid); 742 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid)); 743 req->cmd = CPL_ABORT_SEND_RST; 744 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 745 } 746 747 static void best_mtu(const unsigned short *mtus, unsigned short mtu, 748 unsigned int *idx, int use_ts, int ipv6) 749 { 750 unsigned short hdr_size = (ipv6 ? 751 sizeof(struct ipv6hdr) : 752 sizeof(struct iphdr)) + 753 sizeof(struct tcphdr) + 754 (use_ts ? 755 round_up(TCPOLEN_TIMESTAMP, 4) : 0); 756 unsigned short data_size = mtu - hdr_size; 757 758 cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx); 759 } 760 761 static int send_connect(struct c4iw_ep *ep) 762 { 763 struct cpl_act_open_req *req = NULL; 764 struct cpl_t5_act_open_req *t5req = NULL; 765 struct cpl_t6_act_open_req *t6req = NULL; 766 struct cpl_act_open_req6 *req6 = NULL; 767 struct cpl_t5_act_open_req6 *t5req6 = NULL; 768 struct cpl_t6_act_open_req6 *t6req6 = NULL; 769 struct sk_buff *skb; 770 u64 opt0; 771 u32 opt2; 772 unsigned int mtu_idx; 773 int wscale; 774 int win, sizev4, sizev6, wrlen; 775 struct sockaddr_in *la = (struct sockaddr_in *) 776 &ep->com.local_addr; 777 struct sockaddr_in *ra = (struct sockaddr_in *) 778 &ep->com.remote_addr; 779 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 780 &ep->com.local_addr; 781 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 782 &ep->com.remote_addr; 783 int ret; 784 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 785 u32 isn = (prandom_u32() & ~7UL) - 1; 786 787 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 788 case CHELSIO_T4: 789 sizev4 = sizeof(struct cpl_act_open_req); 790 sizev6 = sizeof(struct cpl_act_open_req6); 791 break; 792 case CHELSIO_T5: 793 sizev4 = sizeof(struct cpl_t5_act_open_req); 794 sizev6 = sizeof(struct cpl_t5_act_open_req6); 795 break; 796 case CHELSIO_T6: 797 sizev4 = sizeof(struct cpl_t6_act_open_req); 798 sizev6 = sizeof(struct cpl_t6_act_open_req6); 799 break; 800 default: 801 pr_err("T%d Chip is not supported\n", 802 CHELSIO_CHIP_VERSION(adapter_type)); 803 return -EINVAL; 804 } 805 806 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 807 roundup(sizev4, 16) : 808 roundup(sizev6, 16); 809 810 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid); 811 812 skb = get_skb(NULL, wrlen, GFP_KERNEL); 813 if (!skb) { 814 printk(KERN_ERR MOD "%s - failed to alloc skb.\n", 815 __func__); 816 return -ENOMEM; 817 } 818 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 819 820 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 821 enable_tcp_timestamps, 822 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1); 823 wscale = compute_wscale(rcv_win); 824 825 /* 826 * Specify the largest window that will fit in opt0. The 827 * remainder will be specified in the rx_data_ack. 828 */ 829 win = ep->rcv_win >> 10; 830 if (win > RCV_BUFSIZ_M) 831 win = RCV_BUFSIZ_M; 832 833 opt0 = (nocong ? NO_CONG_F : 0) | 834 KEEP_ALIVE_F | 835 DELACK_F | 836 WND_SCALE_V(wscale) | 837 MSS_IDX_V(mtu_idx) | 838 L2T_IDX_V(ep->l2t->idx) | 839 TX_CHAN_V(ep->tx_chan) | 840 SMAC_SEL_V(ep->smac_idx) | 841 DSCP_V(ep->tos >> 2) | 842 ULP_MODE_V(ULP_MODE_TCPDDP) | 843 RCV_BUFSIZ_V(win); 844 opt2 = RX_CHANNEL_V(0) | 845 CCTRL_ECN_V(enable_ecn) | 846 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 847 if (enable_tcp_timestamps) 848 opt2 |= TSTAMPS_EN_F; 849 if (enable_tcp_sack) 850 opt2 |= SACK_EN_F; 851 if (wscale && enable_tcp_window_scaling) 852 opt2 |= WND_SCALE_EN_F; 853 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 854 if (peer2peer) 855 isn += 4; 856 857 opt2 |= T5_OPT_2_VALID_F; 858 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 859 opt2 |= T5_ISS_F; 860 } 861 862 if (ep->com.remote_addr.ss_family == AF_INET6) 863 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 864 (const u32 *)&la6->sin6_addr.s6_addr, 1); 865 866 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 867 868 if (ep->com.remote_addr.ss_family == AF_INET) { 869 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 870 case CHELSIO_T4: 871 req = (struct cpl_act_open_req *)skb_put(skb, wrlen); 872 INIT_TP_WR(req, 0); 873 break; 874 case CHELSIO_T5: 875 t5req = (struct cpl_t5_act_open_req *)skb_put(skb, 876 wrlen); 877 INIT_TP_WR(t5req, 0); 878 req = (struct cpl_act_open_req *)t5req; 879 break; 880 case CHELSIO_T6: 881 t6req = (struct cpl_t6_act_open_req *)skb_put(skb, 882 wrlen); 883 INIT_TP_WR(t6req, 0); 884 req = (struct cpl_act_open_req *)t6req; 885 t5req = (struct cpl_t5_act_open_req *)t6req; 886 break; 887 default: 888 pr_err("T%d Chip is not supported\n", 889 CHELSIO_CHIP_VERSION(adapter_type)); 890 ret = -EINVAL; 891 goto clip_release; 892 } 893 894 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 895 ((ep->rss_qid<<14) | ep->atid))); 896 req->local_port = la->sin_port; 897 req->peer_port = ra->sin_port; 898 req->local_ip = la->sin_addr.s_addr; 899 req->peer_ip = ra->sin_addr.s_addr; 900 req->opt0 = cpu_to_be64(opt0); 901 902 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 903 req->params = cpu_to_be32(cxgb4_select_ntuple( 904 ep->com.dev->rdev.lldi.ports[0], 905 ep->l2t)); 906 req->opt2 = cpu_to_be32(opt2); 907 } else { 908 t5req->params = cpu_to_be64(FILTER_TUPLE_V( 909 cxgb4_select_ntuple( 910 ep->com.dev->rdev.lldi.ports[0], 911 ep->l2t))); 912 t5req->rsvd = cpu_to_be32(isn); 913 PDBG("%s snd_isn %u\n", __func__, t5req->rsvd); 914 t5req->opt2 = cpu_to_be32(opt2); 915 } 916 } else { 917 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 918 case CHELSIO_T4: 919 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen); 920 INIT_TP_WR(req6, 0); 921 break; 922 case CHELSIO_T5: 923 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb, 924 wrlen); 925 INIT_TP_WR(t5req6, 0); 926 req6 = (struct cpl_act_open_req6 *)t5req6; 927 break; 928 case CHELSIO_T6: 929 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb, 930 wrlen); 931 INIT_TP_WR(t6req6, 0); 932 req6 = (struct cpl_act_open_req6 *)t6req6; 933 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 934 break; 935 default: 936 pr_err("T%d Chip is not supported\n", 937 CHELSIO_CHIP_VERSION(adapter_type)); 938 ret = -EINVAL; 939 goto clip_release; 940 } 941 942 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 943 ((ep->rss_qid<<14)|ep->atid))); 944 req6->local_port = la6->sin6_port; 945 req6->peer_port = ra6->sin6_port; 946 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 947 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 948 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 949 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 950 req6->opt0 = cpu_to_be64(opt0); 951 952 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 953 req6->params = cpu_to_be32(cxgb4_select_ntuple( 954 ep->com.dev->rdev.lldi.ports[0], 955 ep->l2t)); 956 req6->opt2 = cpu_to_be32(opt2); 957 } else { 958 t5req6->params = cpu_to_be64(FILTER_TUPLE_V( 959 cxgb4_select_ntuple( 960 ep->com.dev->rdev.lldi.ports[0], 961 ep->l2t))); 962 t5req6->rsvd = cpu_to_be32(isn); 963 PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd); 964 t5req6->opt2 = cpu_to_be32(opt2); 965 } 966 } 967 968 set_bit(ACT_OPEN_REQ, &ep->com.history); 969 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 970 clip_release: 971 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 972 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 973 (const u32 *)&la6->sin6_addr.s6_addr, 1); 974 return ret; 975 } 976 977 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 978 u8 mpa_rev_to_use) 979 { 980 int mpalen, wrlen, ret; 981 struct fw_ofld_tx_data_wr *req; 982 struct mpa_message *mpa; 983 struct mpa_v2_conn_params mpa_v2_params; 984 985 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 986 987 BUG_ON(skb_cloned(skb)); 988 989 mpalen = sizeof(*mpa) + ep->plen; 990 if (mpa_rev_to_use == 2) 991 mpalen += sizeof(struct mpa_v2_conn_params); 992 wrlen = roundup(mpalen + sizeof *req, 16); 993 skb = get_skb(skb, wrlen, GFP_KERNEL); 994 if (!skb) { 995 connect_reply_upcall(ep, -ENOMEM); 996 return -ENOMEM; 997 } 998 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 999 1000 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 1001 memset(req, 0, wrlen); 1002 req->op_to_immdlen = cpu_to_be32( 1003 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1004 FW_WR_COMPL_F | 1005 FW_WR_IMMDLEN_V(mpalen)); 1006 req->flowid_len16 = cpu_to_be32( 1007 FW_WR_FLOWID_V(ep->hwtid) | 1008 FW_WR_LEN16_V(wrlen >> 4)); 1009 req->plen = cpu_to_be32(mpalen); 1010 req->tunnel_to_proxy = cpu_to_be32( 1011 FW_OFLD_TX_DATA_WR_FLUSH_F | 1012 FW_OFLD_TX_DATA_WR_SHOVE_F); 1013 1014 mpa = (struct mpa_message *)(req + 1); 1015 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 1016 1017 mpa->flags = 0; 1018 if (crc_enabled) 1019 mpa->flags |= MPA_CRC; 1020 if (markers_enabled) { 1021 mpa->flags |= MPA_MARKERS; 1022 ep->mpa_attr.recv_marker_enabled = 1; 1023 } else { 1024 ep->mpa_attr.recv_marker_enabled = 0; 1025 } 1026 if (mpa_rev_to_use == 2) 1027 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1028 1029 mpa->private_data_size = htons(ep->plen); 1030 mpa->revision = mpa_rev_to_use; 1031 if (mpa_rev_to_use == 1) { 1032 ep->tried_with_mpa_v1 = 1; 1033 ep->retry_with_mpa_v1 = 0; 1034 } 1035 1036 if (mpa_rev_to_use == 2) { 1037 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1038 sizeof (struct mpa_v2_conn_params)); 1039 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird, 1040 ep->ord); 1041 mpa_v2_params.ird = htons((u16)ep->ird); 1042 mpa_v2_params.ord = htons((u16)ep->ord); 1043 1044 if (peer2peer) { 1045 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1046 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1047 mpa_v2_params.ord |= 1048 htons(MPA_V2_RDMA_WRITE_RTR); 1049 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1050 mpa_v2_params.ord |= 1051 htons(MPA_V2_RDMA_READ_RTR); 1052 } 1053 memcpy(mpa->private_data, &mpa_v2_params, 1054 sizeof(struct mpa_v2_conn_params)); 1055 1056 if (ep->plen) 1057 memcpy(mpa->private_data + 1058 sizeof(struct mpa_v2_conn_params), 1059 ep->mpa_pkt + sizeof(*mpa), ep->plen); 1060 } else 1061 if (ep->plen) 1062 memcpy(mpa->private_data, 1063 ep->mpa_pkt + sizeof(*mpa), ep->plen); 1064 1065 /* 1066 * Reference the mpa skb. This ensures the data area 1067 * will remain in memory until the hw acks the tx. 1068 * Function fw4_ack() will deref it. 1069 */ 1070 skb_get(skb); 1071 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 1072 BUG_ON(ep->mpa_skb); 1073 ep->mpa_skb = skb; 1074 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1075 if (ret) 1076 return ret; 1077 start_ep_timer(ep); 1078 __state_set(&ep->com, MPA_REQ_SENT); 1079 ep->mpa_attr.initiator = 1; 1080 ep->snd_seq += mpalen; 1081 return ret; 1082 } 1083 1084 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1085 { 1086 int mpalen, wrlen; 1087 struct fw_ofld_tx_data_wr *req; 1088 struct mpa_message *mpa; 1089 struct sk_buff *skb; 1090 struct mpa_v2_conn_params mpa_v2_params; 1091 1092 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 1093 1094 mpalen = sizeof(*mpa) + plen; 1095 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1096 mpalen += sizeof(struct mpa_v2_conn_params); 1097 wrlen = roundup(mpalen + sizeof *req, 16); 1098 1099 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1100 if (!skb) { 1101 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); 1102 return -ENOMEM; 1103 } 1104 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1105 1106 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 1107 memset(req, 0, wrlen); 1108 req->op_to_immdlen = cpu_to_be32( 1109 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1110 FW_WR_COMPL_F | 1111 FW_WR_IMMDLEN_V(mpalen)); 1112 req->flowid_len16 = cpu_to_be32( 1113 FW_WR_FLOWID_V(ep->hwtid) | 1114 FW_WR_LEN16_V(wrlen >> 4)); 1115 req->plen = cpu_to_be32(mpalen); 1116 req->tunnel_to_proxy = cpu_to_be32( 1117 FW_OFLD_TX_DATA_WR_FLUSH_F | 1118 FW_OFLD_TX_DATA_WR_SHOVE_F); 1119 1120 mpa = (struct mpa_message *)(req + 1); 1121 memset(mpa, 0, sizeof(*mpa)); 1122 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1123 mpa->flags = MPA_REJECT; 1124 mpa->revision = ep->mpa_attr.version; 1125 mpa->private_data_size = htons(plen); 1126 1127 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1128 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1129 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1130 sizeof (struct mpa_v2_conn_params)); 1131 mpa_v2_params.ird = htons(((u16)ep->ird) | 1132 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1133 0)); 1134 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1135 (p2p_type == 1136 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1137 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1138 FW_RI_INIT_P2PTYPE_READ_REQ ? 1139 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1140 memcpy(mpa->private_data, &mpa_v2_params, 1141 sizeof(struct mpa_v2_conn_params)); 1142 1143 if (ep->plen) 1144 memcpy(mpa->private_data + 1145 sizeof(struct mpa_v2_conn_params), pdata, plen); 1146 } else 1147 if (plen) 1148 memcpy(mpa->private_data, pdata, plen); 1149 1150 /* 1151 * Reference the mpa skb again. This ensures the data area 1152 * will remain in memory until the hw acks the tx. 1153 * Function fw4_ack() will deref it. 1154 */ 1155 skb_get(skb); 1156 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1157 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1158 BUG_ON(ep->mpa_skb); 1159 ep->mpa_skb = skb; 1160 ep->snd_seq += mpalen; 1161 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1162 } 1163 1164 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1165 { 1166 int mpalen, wrlen; 1167 struct fw_ofld_tx_data_wr *req; 1168 struct mpa_message *mpa; 1169 struct sk_buff *skb; 1170 struct mpa_v2_conn_params mpa_v2_params; 1171 1172 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 1173 1174 mpalen = sizeof(*mpa) + plen; 1175 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1176 mpalen += sizeof(struct mpa_v2_conn_params); 1177 wrlen = roundup(mpalen + sizeof *req, 16); 1178 1179 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1180 if (!skb) { 1181 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); 1182 return -ENOMEM; 1183 } 1184 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1185 1186 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen); 1187 memset(req, 0, wrlen); 1188 req->op_to_immdlen = cpu_to_be32( 1189 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1190 FW_WR_COMPL_F | 1191 FW_WR_IMMDLEN_V(mpalen)); 1192 req->flowid_len16 = cpu_to_be32( 1193 FW_WR_FLOWID_V(ep->hwtid) | 1194 FW_WR_LEN16_V(wrlen >> 4)); 1195 req->plen = cpu_to_be32(mpalen); 1196 req->tunnel_to_proxy = cpu_to_be32( 1197 FW_OFLD_TX_DATA_WR_FLUSH_F | 1198 FW_OFLD_TX_DATA_WR_SHOVE_F); 1199 1200 mpa = (struct mpa_message *)(req + 1); 1201 memset(mpa, 0, sizeof(*mpa)); 1202 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1203 mpa->flags = 0; 1204 if (ep->mpa_attr.crc_enabled) 1205 mpa->flags |= MPA_CRC; 1206 if (ep->mpa_attr.recv_marker_enabled) 1207 mpa->flags |= MPA_MARKERS; 1208 mpa->revision = ep->mpa_attr.version; 1209 mpa->private_data_size = htons(plen); 1210 1211 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1212 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1213 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1214 sizeof (struct mpa_v2_conn_params)); 1215 mpa_v2_params.ird = htons((u16)ep->ird); 1216 mpa_v2_params.ord = htons((u16)ep->ord); 1217 if (peer2peer && (ep->mpa_attr.p2p_type != 1218 FW_RI_INIT_P2PTYPE_DISABLED)) { 1219 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1220 1221 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1222 mpa_v2_params.ord |= 1223 htons(MPA_V2_RDMA_WRITE_RTR); 1224 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1225 mpa_v2_params.ord |= 1226 htons(MPA_V2_RDMA_READ_RTR); 1227 } 1228 1229 memcpy(mpa->private_data, &mpa_v2_params, 1230 sizeof(struct mpa_v2_conn_params)); 1231 1232 if (ep->plen) 1233 memcpy(mpa->private_data + 1234 sizeof(struct mpa_v2_conn_params), pdata, plen); 1235 } else 1236 if (plen) 1237 memcpy(mpa->private_data, pdata, plen); 1238 1239 /* 1240 * Reference the mpa skb. This ensures the data area 1241 * will remain in memory until the hw acks the tx. 1242 * Function fw4_ack() will deref it. 1243 */ 1244 skb_get(skb); 1245 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1246 ep->mpa_skb = skb; 1247 __state_set(&ep->com, MPA_REP_SENT); 1248 ep->snd_seq += mpalen; 1249 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1250 } 1251 1252 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1253 { 1254 struct c4iw_ep *ep; 1255 struct cpl_act_establish *req = cplhdr(skb); 1256 unsigned int tid = GET_TID(req); 1257 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1258 struct tid_info *t = dev->rdev.lldi.tids; 1259 int ret; 1260 1261 ep = lookup_atid(t, atid); 1262 1263 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid, 1264 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1265 1266 mutex_lock(&ep->com.mutex); 1267 dst_confirm(ep->dst); 1268 1269 /* setup the hwtid for this connection */ 1270 ep->hwtid = tid; 1271 cxgb4_insert_tid(t, ep, tid); 1272 insert_ep_tid(ep); 1273 1274 ep->snd_seq = be32_to_cpu(req->snd_isn); 1275 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1276 1277 set_emss(ep, ntohs(req->tcp_opt)); 1278 1279 /* dealloc the atid */ 1280 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 1281 cxgb4_free_atid(t, atid); 1282 set_bit(ACT_ESTAB, &ep->com.history); 1283 1284 /* start MPA negotiation */ 1285 ret = send_flowc(ep); 1286 if (ret) 1287 goto err; 1288 if (ep->retry_with_mpa_v1) 1289 ret = send_mpa_req(ep, skb, 1); 1290 else 1291 ret = send_mpa_req(ep, skb, mpa_rev); 1292 if (ret) 1293 goto err; 1294 mutex_unlock(&ep->com.mutex); 1295 return 0; 1296 err: 1297 mutex_unlock(&ep->com.mutex); 1298 connect_reply_upcall(ep, -ENOMEM); 1299 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1300 return 0; 1301 } 1302 1303 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1304 { 1305 struct iw_cm_event event; 1306 1307 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1308 memset(&event, 0, sizeof(event)); 1309 event.event = IW_CM_EVENT_CLOSE; 1310 event.status = status; 1311 if (ep->com.cm_id) { 1312 PDBG("close complete delivered ep %p cm_id %p tid %u\n", 1313 ep, ep->com.cm_id, ep->hwtid); 1314 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1315 deref_cm_id(&ep->com); 1316 set_bit(CLOSE_UPCALL, &ep->com.history); 1317 } 1318 } 1319 1320 static void peer_close_upcall(struct c4iw_ep *ep) 1321 { 1322 struct iw_cm_event event; 1323 1324 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1325 memset(&event, 0, sizeof(event)); 1326 event.event = IW_CM_EVENT_DISCONNECT; 1327 if (ep->com.cm_id) { 1328 PDBG("peer close delivered ep %p cm_id %p tid %u\n", 1329 ep, ep->com.cm_id, ep->hwtid); 1330 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1331 set_bit(DISCONN_UPCALL, &ep->com.history); 1332 } 1333 } 1334 1335 static void peer_abort_upcall(struct c4iw_ep *ep) 1336 { 1337 struct iw_cm_event event; 1338 1339 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1340 memset(&event, 0, sizeof(event)); 1341 event.event = IW_CM_EVENT_CLOSE; 1342 event.status = -ECONNRESET; 1343 if (ep->com.cm_id) { 1344 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep, 1345 ep->com.cm_id, ep->hwtid); 1346 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1347 deref_cm_id(&ep->com); 1348 set_bit(ABORT_UPCALL, &ep->com.history); 1349 } 1350 } 1351 1352 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1353 { 1354 struct iw_cm_event event; 1355 1356 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status); 1357 memset(&event, 0, sizeof(event)); 1358 event.event = IW_CM_EVENT_CONNECT_REPLY; 1359 event.status = status; 1360 memcpy(&event.local_addr, &ep->com.local_addr, 1361 sizeof(ep->com.local_addr)); 1362 memcpy(&event.remote_addr, &ep->com.remote_addr, 1363 sizeof(ep->com.remote_addr)); 1364 1365 if ((status == 0) || (status == -ECONNREFUSED)) { 1366 if (!ep->tried_with_mpa_v1) { 1367 /* this means MPA_v2 is used */ 1368 event.ord = ep->ird; 1369 event.ird = ep->ord; 1370 event.private_data_len = ep->plen - 1371 sizeof(struct mpa_v2_conn_params); 1372 event.private_data = ep->mpa_pkt + 1373 sizeof(struct mpa_message) + 1374 sizeof(struct mpa_v2_conn_params); 1375 } else { 1376 /* this means MPA_v1 is used */ 1377 event.ord = cur_max_read_depth(ep->com.dev); 1378 event.ird = cur_max_read_depth(ep->com.dev); 1379 event.private_data_len = ep->plen; 1380 event.private_data = ep->mpa_pkt + 1381 sizeof(struct mpa_message); 1382 } 1383 } 1384 1385 PDBG("%s ep %p tid %u status %d\n", __func__, ep, 1386 ep->hwtid, status); 1387 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1388 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1389 1390 if (status < 0) 1391 deref_cm_id(&ep->com); 1392 } 1393 1394 static int connect_request_upcall(struct c4iw_ep *ep) 1395 { 1396 struct iw_cm_event event; 1397 int ret; 1398 1399 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1400 memset(&event, 0, sizeof(event)); 1401 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1402 memcpy(&event.local_addr, &ep->com.local_addr, 1403 sizeof(ep->com.local_addr)); 1404 memcpy(&event.remote_addr, &ep->com.remote_addr, 1405 sizeof(ep->com.remote_addr)); 1406 event.provider_data = ep; 1407 if (!ep->tried_with_mpa_v1) { 1408 /* this means MPA_v2 is used */ 1409 event.ord = ep->ord; 1410 event.ird = ep->ird; 1411 event.private_data_len = ep->plen - 1412 sizeof(struct mpa_v2_conn_params); 1413 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1414 sizeof(struct mpa_v2_conn_params); 1415 } else { 1416 /* this means MPA_v1 is used. Send max supported */ 1417 event.ord = cur_max_read_depth(ep->com.dev); 1418 event.ird = cur_max_read_depth(ep->com.dev); 1419 event.private_data_len = ep->plen; 1420 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1421 } 1422 c4iw_get_ep(&ep->com); 1423 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1424 &event); 1425 if (ret) 1426 c4iw_put_ep(&ep->com); 1427 set_bit(CONNREQ_UPCALL, &ep->com.history); 1428 c4iw_put_ep(&ep->parent_ep->com); 1429 return ret; 1430 } 1431 1432 static void established_upcall(struct c4iw_ep *ep) 1433 { 1434 struct iw_cm_event event; 1435 1436 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1437 memset(&event, 0, sizeof(event)); 1438 event.event = IW_CM_EVENT_ESTABLISHED; 1439 event.ird = ep->ord; 1440 event.ord = ep->ird; 1441 if (ep->com.cm_id) { 1442 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1443 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1444 set_bit(ESTAB_UPCALL, &ep->com.history); 1445 } 1446 } 1447 1448 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1449 { 1450 struct cpl_rx_data_ack *req; 1451 struct sk_buff *skb; 1452 int wrlen = roundup(sizeof *req, 16); 1453 1454 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); 1455 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1456 if (!skb) { 1457 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n"); 1458 return 0; 1459 } 1460 1461 /* 1462 * If we couldn't specify the entire rcv window at connection setup 1463 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1464 * then add the overage in to the credits returned. 1465 */ 1466 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1467 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1468 1469 req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen); 1470 memset(req, 0, wrlen); 1471 INIT_TP_WR(req, ep->hwtid); 1472 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK, 1473 ep->hwtid)); 1474 req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F | 1475 RX_DACK_CHANGE_F | 1476 RX_DACK_MODE_V(dack_mode)); 1477 set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx); 1478 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1479 return credits; 1480 } 1481 1482 #define RELAXED_IRD_NEGOTIATION 1 1483 1484 /* 1485 * process_mpa_reply - process streaming mode MPA reply 1486 * 1487 * Returns: 1488 * 1489 * 0 upon success indicating a connect request was delivered to the ULP 1490 * or the mpa request is incomplete but valid so far. 1491 * 1492 * 1 if a failure requires the caller to close the connection. 1493 * 1494 * 2 if a failure requires the caller to abort the connection. 1495 */ 1496 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1497 { 1498 struct mpa_message *mpa; 1499 struct mpa_v2_conn_params *mpa_v2_params; 1500 u16 plen; 1501 u16 resp_ird, resp_ord; 1502 u8 rtr_mismatch = 0, insuff_ird = 0; 1503 struct c4iw_qp_attributes attrs; 1504 enum c4iw_qp_attr_mask mask; 1505 int err; 1506 int disconnect = 0; 1507 1508 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1509 1510 /* 1511 * If we get more than the supported amount of private data 1512 * then we must fail this connection. 1513 */ 1514 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1515 err = -EINVAL; 1516 goto err_stop_timer; 1517 } 1518 1519 /* 1520 * copy the new data into our accumulation buffer. 1521 */ 1522 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1523 skb->len); 1524 ep->mpa_pkt_len += skb->len; 1525 1526 /* 1527 * if we don't even have the mpa message, then bail. 1528 */ 1529 if (ep->mpa_pkt_len < sizeof(*mpa)) 1530 return 0; 1531 mpa = (struct mpa_message *) ep->mpa_pkt; 1532 1533 /* Validate MPA header. */ 1534 if (mpa->revision > mpa_rev) { 1535 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," 1536 " Received = %d\n", __func__, mpa_rev, mpa->revision); 1537 err = -EPROTO; 1538 goto err_stop_timer; 1539 } 1540 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1541 err = -EPROTO; 1542 goto err_stop_timer; 1543 } 1544 1545 plen = ntohs(mpa->private_data_size); 1546 1547 /* 1548 * Fail if there's too much private data. 1549 */ 1550 if (plen > MPA_MAX_PRIVATE_DATA) { 1551 err = -EPROTO; 1552 goto err_stop_timer; 1553 } 1554 1555 /* 1556 * If plen does not account for pkt size 1557 */ 1558 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1559 err = -EPROTO; 1560 goto err_stop_timer; 1561 } 1562 1563 ep->plen = (u8) plen; 1564 1565 /* 1566 * If we don't have all the pdata yet, then bail. 1567 * We'll continue process when more data arrives. 1568 */ 1569 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1570 return 0; 1571 1572 if (mpa->flags & MPA_REJECT) { 1573 err = -ECONNREFUSED; 1574 goto err_stop_timer; 1575 } 1576 1577 /* 1578 * Stop mpa timer. If it expired, then 1579 * we ignore the MPA reply. process_timeout() 1580 * will abort the connection. 1581 */ 1582 if (stop_ep_timer(ep)) 1583 return 0; 1584 1585 /* 1586 * If we get here we have accumulated the entire mpa 1587 * start reply message including private data. And 1588 * the MPA header is valid. 1589 */ 1590 __state_set(&ep->com, FPDU_MODE); 1591 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1592 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1593 ep->mpa_attr.version = mpa->revision; 1594 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1595 1596 if (mpa->revision == 2) { 1597 ep->mpa_attr.enhanced_rdma_conn = 1598 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1599 if (ep->mpa_attr.enhanced_rdma_conn) { 1600 mpa_v2_params = (struct mpa_v2_conn_params *) 1601 (ep->mpa_pkt + sizeof(*mpa)); 1602 resp_ird = ntohs(mpa_v2_params->ird) & 1603 MPA_V2_IRD_ORD_MASK; 1604 resp_ord = ntohs(mpa_v2_params->ord) & 1605 MPA_V2_IRD_ORD_MASK; 1606 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n", 1607 __func__, resp_ird, resp_ord, ep->ird, ep->ord); 1608 1609 /* 1610 * This is a double-check. Ideally, below checks are 1611 * not required since ird/ord stuff has been taken 1612 * care of in c4iw_accept_cr 1613 */ 1614 if (ep->ird < resp_ord) { 1615 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1616 ep->com.dev->rdev.lldi.max_ordird_qp) 1617 ep->ird = resp_ord; 1618 else 1619 insuff_ird = 1; 1620 } else if (ep->ird > resp_ord) { 1621 ep->ird = resp_ord; 1622 } 1623 if (ep->ord > resp_ird) { 1624 if (RELAXED_IRD_NEGOTIATION) 1625 ep->ord = resp_ird; 1626 else 1627 insuff_ird = 1; 1628 } 1629 if (insuff_ird) { 1630 err = -ENOMEM; 1631 ep->ird = resp_ord; 1632 ep->ord = resp_ird; 1633 } 1634 1635 if (ntohs(mpa_v2_params->ird) & 1636 MPA_V2_PEER2PEER_MODEL) { 1637 if (ntohs(mpa_v2_params->ord) & 1638 MPA_V2_RDMA_WRITE_RTR) 1639 ep->mpa_attr.p2p_type = 1640 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1641 else if (ntohs(mpa_v2_params->ord) & 1642 MPA_V2_RDMA_READ_RTR) 1643 ep->mpa_attr.p2p_type = 1644 FW_RI_INIT_P2PTYPE_READ_REQ; 1645 } 1646 } 1647 } else if (mpa->revision == 1) 1648 if (peer2peer) 1649 ep->mpa_attr.p2p_type = p2p_type; 1650 1651 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " 1652 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = " 1653 "%d\n", __func__, ep->mpa_attr.crc_enabled, 1654 ep->mpa_attr.recv_marker_enabled, 1655 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1656 ep->mpa_attr.p2p_type, p2p_type); 1657 1658 /* 1659 * If responder's RTR does not match with that of initiator, assign 1660 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1661 * generated when moving QP to RTS state. 1662 * A TERM message will be sent after QP has moved to RTS state 1663 */ 1664 if ((ep->mpa_attr.version == 2) && peer2peer && 1665 (ep->mpa_attr.p2p_type != p2p_type)) { 1666 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1667 rtr_mismatch = 1; 1668 } 1669 1670 attrs.mpa_attr = ep->mpa_attr; 1671 attrs.max_ird = ep->ird; 1672 attrs.max_ord = ep->ord; 1673 attrs.llp_stream_handle = ep; 1674 attrs.next_state = C4IW_QP_STATE_RTS; 1675 1676 mask = C4IW_QP_ATTR_NEXT_STATE | 1677 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1678 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1679 1680 /* bind QP and TID with INIT_WR */ 1681 err = c4iw_modify_qp(ep->com.qp->rhp, 1682 ep->com.qp, mask, &attrs, 1); 1683 if (err) 1684 goto err; 1685 1686 /* 1687 * If responder's RTR requirement did not match with what initiator 1688 * supports, generate TERM message 1689 */ 1690 if (rtr_mismatch) { 1691 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__); 1692 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1693 attrs.ecode = MPA_NOMATCH_RTR; 1694 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1695 attrs.send_term = 1; 1696 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1697 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1698 err = -ENOMEM; 1699 disconnect = 1; 1700 goto out; 1701 } 1702 1703 /* 1704 * Generate TERM if initiator IRD is not sufficient for responder 1705 * provided ORD. Currently, we do the same behaviour even when 1706 * responder provided IRD is also not sufficient as regards to 1707 * initiator ORD. 1708 */ 1709 if (insuff_ird) { 1710 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n", 1711 __func__); 1712 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1713 attrs.ecode = MPA_INSUFF_IRD; 1714 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1715 attrs.send_term = 1; 1716 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1717 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1718 err = -ENOMEM; 1719 disconnect = 1; 1720 goto out; 1721 } 1722 goto out; 1723 err_stop_timer: 1724 stop_ep_timer(ep); 1725 err: 1726 disconnect = 2; 1727 out: 1728 connect_reply_upcall(ep, err); 1729 return disconnect; 1730 } 1731 1732 /* 1733 * process_mpa_request - process streaming mode MPA request 1734 * 1735 * Returns: 1736 * 1737 * 0 upon success indicating a connect request was delivered to the ULP 1738 * or the mpa request is incomplete but valid so far. 1739 * 1740 * 1 if a failure requires the caller to close the connection. 1741 * 1742 * 2 if a failure requires the caller to abort the connection. 1743 */ 1744 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1745 { 1746 struct mpa_message *mpa; 1747 struct mpa_v2_conn_params *mpa_v2_params; 1748 u16 plen; 1749 1750 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1751 1752 /* 1753 * If we get more than the supported amount of private data 1754 * then we must fail this connection. 1755 */ 1756 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1757 goto err_stop_timer; 1758 1759 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1760 1761 /* 1762 * Copy the new data into our accumulation buffer. 1763 */ 1764 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1765 skb->len); 1766 ep->mpa_pkt_len += skb->len; 1767 1768 /* 1769 * If we don't even have the mpa message, then bail. 1770 * We'll continue process when more data arrives. 1771 */ 1772 if (ep->mpa_pkt_len < sizeof(*mpa)) 1773 return 0; 1774 1775 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1776 mpa = (struct mpa_message *) ep->mpa_pkt; 1777 1778 /* 1779 * Validate MPA Header. 1780 */ 1781 if (mpa->revision > mpa_rev) { 1782 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," 1783 " Received = %d\n", __func__, mpa_rev, mpa->revision); 1784 goto err_stop_timer; 1785 } 1786 1787 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1788 goto err_stop_timer; 1789 1790 plen = ntohs(mpa->private_data_size); 1791 1792 /* 1793 * Fail if there's too much private data. 1794 */ 1795 if (plen > MPA_MAX_PRIVATE_DATA) 1796 goto err_stop_timer; 1797 1798 /* 1799 * If plen does not account for pkt size 1800 */ 1801 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1802 goto err_stop_timer; 1803 ep->plen = (u8) plen; 1804 1805 /* 1806 * If we don't have all the pdata yet, then bail. 1807 */ 1808 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1809 return 0; 1810 1811 /* 1812 * If we get here we have accumulated the entire mpa 1813 * start reply message including private data. 1814 */ 1815 ep->mpa_attr.initiator = 0; 1816 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1817 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1818 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1819 ep->mpa_attr.version = mpa->revision; 1820 if (mpa->revision == 1) 1821 ep->tried_with_mpa_v1 = 1; 1822 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1823 1824 if (mpa->revision == 2) { 1825 ep->mpa_attr.enhanced_rdma_conn = 1826 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1827 if (ep->mpa_attr.enhanced_rdma_conn) { 1828 mpa_v2_params = (struct mpa_v2_conn_params *) 1829 (ep->mpa_pkt + sizeof(*mpa)); 1830 ep->ird = ntohs(mpa_v2_params->ird) & 1831 MPA_V2_IRD_ORD_MASK; 1832 ep->ird = min_t(u32, ep->ird, 1833 cur_max_read_depth(ep->com.dev)); 1834 ep->ord = ntohs(mpa_v2_params->ord) & 1835 MPA_V2_IRD_ORD_MASK; 1836 ep->ord = min_t(u32, ep->ord, 1837 cur_max_read_depth(ep->com.dev)); 1838 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird, 1839 ep->ord); 1840 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1841 if (peer2peer) { 1842 if (ntohs(mpa_v2_params->ord) & 1843 MPA_V2_RDMA_WRITE_RTR) 1844 ep->mpa_attr.p2p_type = 1845 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1846 else if (ntohs(mpa_v2_params->ord) & 1847 MPA_V2_RDMA_READ_RTR) 1848 ep->mpa_attr.p2p_type = 1849 FW_RI_INIT_P2PTYPE_READ_REQ; 1850 } 1851 } 1852 } else if (mpa->revision == 1) 1853 if (peer2peer) 1854 ep->mpa_attr.p2p_type = p2p_type; 1855 1856 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " 1857 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__, 1858 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1859 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1860 ep->mpa_attr.p2p_type); 1861 1862 __state_set(&ep->com, MPA_REQ_RCVD); 1863 1864 /* drive upcall */ 1865 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1866 if (ep->parent_ep->com.state != DEAD) { 1867 if (connect_request_upcall(ep)) 1868 goto err_unlock_parent; 1869 } else { 1870 goto err_unlock_parent; 1871 } 1872 mutex_unlock(&ep->parent_ep->com.mutex); 1873 return 0; 1874 1875 err_unlock_parent: 1876 mutex_unlock(&ep->parent_ep->com.mutex); 1877 goto err_out; 1878 err_stop_timer: 1879 (void)stop_ep_timer(ep); 1880 err_out: 1881 return 2; 1882 } 1883 1884 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1885 { 1886 struct c4iw_ep *ep; 1887 struct cpl_rx_data *hdr = cplhdr(skb); 1888 unsigned int dlen = ntohs(hdr->len); 1889 unsigned int tid = GET_TID(hdr); 1890 __u8 status = hdr->status; 1891 int disconnect = 0; 1892 1893 ep = get_ep_from_tid(dev, tid); 1894 if (!ep) 1895 return 0; 1896 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen); 1897 skb_pull(skb, sizeof(*hdr)); 1898 skb_trim(skb, dlen); 1899 mutex_lock(&ep->com.mutex); 1900 1901 /* update RX credits */ 1902 update_rx_credits(ep, dlen); 1903 1904 switch (ep->com.state) { 1905 case MPA_REQ_SENT: 1906 ep->rcv_seq += dlen; 1907 disconnect = process_mpa_reply(ep, skb); 1908 break; 1909 case MPA_REQ_WAIT: 1910 ep->rcv_seq += dlen; 1911 disconnect = process_mpa_request(ep, skb); 1912 break; 1913 case FPDU_MODE: { 1914 struct c4iw_qp_attributes attrs; 1915 BUG_ON(!ep->com.qp); 1916 if (status) 1917 pr_err("%s Unexpected streaming data." \ 1918 " qpid %u ep %p state %d tid %u status %d\n", 1919 __func__, ep->com.qp->wq.sq.qid, ep, 1920 ep->com.state, ep->hwtid, status); 1921 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1922 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1923 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1924 disconnect = 1; 1925 break; 1926 } 1927 default: 1928 break; 1929 } 1930 mutex_unlock(&ep->com.mutex); 1931 if (disconnect) 1932 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1933 c4iw_put_ep(&ep->com); 1934 return 0; 1935 } 1936 1937 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1938 { 1939 struct c4iw_ep *ep; 1940 struct cpl_abort_rpl_rss *rpl = cplhdr(skb); 1941 int release = 0; 1942 unsigned int tid = GET_TID(rpl); 1943 1944 ep = get_ep_from_tid(dev, tid); 1945 if (!ep) { 1946 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n"); 1947 return 0; 1948 } 1949 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1950 mutex_lock(&ep->com.mutex); 1951 switch (ep->com.state) { 1952 case ABORTING: 1953 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 1954 __state_set(&ep->com, DEAD); 1955 release = 1; 1956 break; 1957 default: 1958 printk(KERN_ERR "%s ep %p state %d\n", 1959 __func__, ep, ep->com.state); 1960 break; 1961 } 1962 mutex_unlock(&ep->com.mutex); 1963 1964 if (release) 1965 release_ep_resources(ep); 1966 c4iw_put_ep(&ep->com); 1967 return 0; 1968 } 1969 1970 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1971 { 1972 struct sk_buff *skb; 1973 struct fw_ofld_connection_wr *req; 1974 unsigned int mtu_idx; 1975 int wscale; 1976 struct sockaddr_in *sin; 1977 int win; 1978 1979 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1980 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req)); 1981 memset(req, 0, sizeof(*req)); 1982 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1983 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1984 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1985 ep->com.dev->rdev.lldi.ports[0], 1986 ep->l2t)); 1987 sin = (struct sockaddr_in *)&ep->com.local_addr; 1988 req->le.lport = sin->sin_port; 1989 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1990 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1991 req->le.pport = sin->sin_port; 1992 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1993 req->tcb.t_state_to_astid = 1994 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1995 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1996 req->tcb.cplrxdataack_cplpassacceptrpl = 1997 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1998 req->tcb.tx_max = (__force __be32) jiffies; 1999 req->tcb.rcv_adv = htons(1); 2000 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2001 enable_tcp_timestamps, 2002 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1); 2003 wscale = compute_wscale(rcv_win); 2004 2005 /* 2006 * Specify the largest window that will fit in opt0. The 2007 * remainder will be specified in the rx_data_ack. 2008 */ 2009 win = ep->rcv_win >> 10; 2010 if (win > RCV_BUFSIZ_M) 2011 win = RCV_BUFSIZ_M; 2012 2013 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 2014 (nocong ? NO_CONG_F : 0) | 2015 KEEP_ALIVE_F | 2016 DELACK_F | 2017 WND_SCALE_V(wscale) | 2018 MSS_IDX_V(mtu_idx) | 2019 L2T_IDX_V(ep->l2t->idx) | 2020 TX_CHAN_V(ep->tx_chan) | 2021 SMAC_SEL_V(ep->smac_idx) | 2022 DSCP_V(ep->tos >> 2) | 2023 ULP_MODE_V(ULP_MODE_TCPDDP) | 2024 RCV_BUFSIZ_V(win)); 2025 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 2026 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 2027 RX_CHANNEL_V(0) | 2028 CCTRL_ECN_V(enable_ecn) | 2029 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 2030 if (enable_tcp_timestamps) 2031 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 2032 if (enable_tcp_sack) 2033 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 2034 if (wscale && enable_tcp_window_scaling) 2035 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 2036 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 2037 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 2038 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 2039 set_bit(ACT_OFLD_CONN, &ep->com.history); 2040 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2041 } 2042 2043 /* 2044 * Some of the error codes above implicitly indicate that there is no TID 2045 * allocated with the result of an ACT_OPEN. We use this predicate to make 2046 * that explicit. 2047 */ 2048 static inline int act_open_has_tid(int status) 2049 { 2050 return (status != CPL_ERR_TCAM_PARITY && 2051 status != CPL_ERR_TCAM_MISS && 2052 status != CPL_ERR_TCAM_FULL && 2053 status != CPL_ERR_CONN_EXIST_SYNRECV && 2054 status != CPL_ERR_CONN_EXIST); 2055 } 2056 2057 /* Returns whether a CPL status conveys negative advice. 2058 */ 2059 static int is_neg_adv(unsigned int status) 2060 { 2061 return status == CPL_ERR_RTX_NEG_ADVICE || 2062 status == CPL_ERR_PERSIST_NEG_ADVICE || 2063 status == CPL_ERR_KEEPALV_NEG_ADVICE; 2064 } 2065 2066 static char *neg_adv_str(unsigned int status) 2067 { 2068 switch (status) { 2069 case CPL_ERR_RTX_NEG_ADVICE: 2070 return "Retransmit timeout"; 2071 case CPL_ERR_PERSIST_NEG_ADVICE: 2072 return "Persist timeout"; 2073 case CPL_ERR_KEEPALV_NEG_ADVICE: 2074 return "Keepalive timeout"; 2075 default: 2076 return "Unknown"; 2077 } 2078 } 2079 2080 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 2081 { 2082 ep->snd_win = snd_win; 2083 ep->rcv_win = rcv_win; 2084 PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win); 2085 } 2086 2087 #define ACT_OPEN_RETRY_COUNT 2 2088 2089 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 2090 struct dst_entry *dst, struct c4iw_dev *cdev, 2091 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2092 { 2093 struct neighbour *n; 2094 int err, step; 2095 struct net_device *pdev; 2096 2097 n = dst_neigh_lookup(dst, peer_ip); 2098 if (!n) 2099 return -ENODEV; 2100 2101 rcu_read_lock(); 2102 err = -ENOMEM; 2103 if (n->dev->flags & IFF_LOOPBACK) { 2104 if (iptype == 4) 2105 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2106 else if (IS_ENABLED(CONFIG_IPV6)) 2107 for_each_netdev(&init_net, pdev) { 2108 if (ipv6_chk_addr(&init_net, 2109 (struct in6_addr *)peer_ip, 2110 pdev, 1)) 2111 break; 2112 } 2113 else 2114 pdev = NULL; 2115 2116 if (!pdev) { 2117 err = -ENODEV; 2118 goto out; 2119 } 2120 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2121 n, pdev, rt_tos2priority(tos)); 2122 if (!ep->l2t) { 2123 dev_put(pdev); 2124 goto out; 2125 } 2126 ep->mtu = pdev->mtu; 2127 ep->tx_chan = cxgb4_port_chan(pdev); 2128 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2129 cxgb4_port_viid(pdev)); 2130 step = cdev->rdev.lldi.ntxq / 2131 cdev->rdev.lldi.nchan; 2132 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2133 step = cdev->rdev.lldi.nrxq / 2134 cdev->rdev.lldi.nchan; 2135 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2136 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2137 cxgb4_port_idx(pdev) * step]; 2138 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2139 dev_put(pdev); 2140 } else { 2141 pdev = get_real_dev(n->dev); 2142 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2143 n, pdev, 0); 2144 if (!ep->l2t) 2145 goto out; 2146 ep->mtu = dst_mtu(dst); 2147 ep->tx_chan = cxgb4_port_chan(pdev); 2148 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2149 cxgb4_port_viid(pdev)); 2150 step = cdev->rdev.lldi.ntxq / 2151 cdev->rdev.lldi.nchan; 2152 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2153 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2154 step = cdev->rdev.lldi.nrxq / 2155 cdev->rdev.lldi.nchan; 2156 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2157 cxgb4_port_idx(pdev) * step]; 2158 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2159 2160 if (clear_mpa_v1) { 2161 ep->retry_with_mpa_v1 = 0; 2162 ep->tried_with_mpa_v1 = 0; 2163 } 2164 } 2165 err = 0; 2166 out: 2167 rcu_read_unlock(); 2168 2169 neigh_release(n); 2170 2171 return err; 2172 } 2173 2174 static int c4iw_reconnect(struct c4iw_ep *ep) 2175 { 2176 int err = 0; 2177 int size = 0; 2178 struct sockaddr_in *laddr = (struct sockaddr_in *) 2179 &ep->com.cm_id->m_local_addr; 2180 struct sockaddr_in *raddr = (struct sockaddr_in *) 2181 &ep->com.cm_id->m_remote_addr; 2182 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2183 &ep->com.cm_id->m_local_addr; 2184 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2185 &ep->com.cm_id->m_remote_addr; 2186 int iptype; 2187 __u8 *ra; 2188 2189 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id); 2190 init_timer(&ep->timer); 2191 c4iw_init_wr_wait(&ep->com.wr_wait); 2192 2193 /* When MPA revision is different on nodes, the node with MPA_rev=2 2194 * tries to reconnect with MPA_rev 1 for the same EP through 2195 * c4iw_reconnect(), where the same EP is assigned with new tid for 2196 * further connection establishment. As we are using the same EP pointer 2197 * for reconnect, few skbs are used during the previous c4iw_connect(), 2198 * which leaves the EP with inadequate skbs for further 2199 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty 2200 * skb_list() during peer_abort(). Allocate skbs which is already used. 2201 */ 2202 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2203 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2204 err = -ENOMEM; 2205 goto fail1; 2206 } 2207 2208 /* 2209 * Allocate an active TID to initiate a TCP connection. 2210 */ 2211 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2212 if (ep->atid == -1) { 2213 pr_err("%s - cannot alloc atid.\n", __func__); 2214 err = -ENOMEM; 2215 goto fail2; 2216 } 2217 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid); 2218 2219 /* find a route */ 2220 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2221 ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr, 2222 raddr->sin_addr.s_addr, laddr->sin_port, 2223 raddr->sin_port, ep->com.cm_id->tos); 2224 iptype = 4; 2225 ra = (__u8 *)&raddr->sin_addr; 2226 } else { 2227 ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr, 2228 raddr6->sin6_addr.s6_addr, 2229 laddr6->sin6_port, raddr6->sin6_port, 0, 2230 raddr6->sin6_scope_id); 2231 iptype = 6; 2232 ra = (__u8 *)&raddr6->sin6_addr; 2233 } 2234 if (!ep->dst) { 2235 pr_err("%s - cannot find route.\n", __func__); 2236 err = -EHOSTUNREACH; 2237 goto fail3; 2238 } 2239 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2240 ep->com.dev->rdev.lldi.adapter_type, 2241 ep->com.cm_id->tos); 2242 if (err) { 2243 pr_err("%s - cannot alloc l2e.\n", __func__); 2244 goto fail4; 2245 } 2246 2247 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2248 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2249 ep->l2t->idx); 2250 2251 state_set(&ep->com, CONNECTING); 2252 ep->tos = ep->com.cm_id->tos; 2253 2254 /* send connect request to rnic */ 2255 err = send_connect(ep); 2256 if (!err) 2257 goto out; 2258 2259 cxgb4_l2t_release(ep->l2t); 2260 fail4: 2261 dst_release(ep->dst); 2262 fail3: 2263 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 2264 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2265 fail2: 2266 /* 2267 * remember to send notification to upper layer. 2268 * We are in here so the upper layer is not aware that this is 2269 * re-connect attempt and so, upper layer is still waiting for 2270 * response of 1st connect request. 2271 */ 2272 connect_reply_upcall(ep, -ECONNRESET); 2273 fail1: 2274 c4iw_put_ep(&ep->com); 2275 out: 2276 return err; 2277 } 2278 2279 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2280 { 2281 struct c4iw_ep *ep; 2282 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2283 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2284 ntohl(rpl->atid_status))); 2285 struct tid_info *t = dev->rdev.lldi.tids; 2286 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2287 struct sockaddr_in *la; 2288 struct sockaddr_in *ra; 2289 struct sockaddr_in6 *la6; 2290 struct sockaddr_in6 *ra6; 2291 int ret = 0; 2292 2293 ep = lookup_atid(t, atid); 2294 la = (struct sockaddr_in *)&ep->com.local_addr; 2295 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2296 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2297 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2298 2299 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid, 2300 status, status2errno(status)); 2301 2302 if (is_neg_adv(status)) { 2303 PDBG("%s Connection problems for atid %u status %u (%s)\n", 2304 __func__, atid, status, neg_adv_str(status)); 2305 ep->stats.connect_neg_adv++; 2306 mutex_lock(&dev->rdev.stats.lock); 2307 dev->rdev.stats.neg_adv++; 2308 mutex_unlock(&dev->rdev.stats.lock); 2309 return 0; 2310 } 2311 2312 set_bit(ACT_OPEN_RPL, &ep->com.history); 2313 2314 /* 2315 * Log interesting failures. 2316 */ 2317 switch (status) { 2318 case CPL_ERR_CONN_RESET: 2319 case CPL_ERR_CONN_TIMEDOUT: 2320 break; 2321 case CPL_ERR_TCAM_FULL: 2322 mutex_lock(&dev->rdev.stats.lock); 2323 dev->rdev.stats.tcam_full++; 2324 mutex_unlock(&dev->rdev.stats.lock); 2325 if (ep->com.local_addr.ss_family == AF_INET && 2326 dev->rdev.lldi.enable_fw_ofld_conn) { 2327 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2328 ntohl(rpl->atid_status)))); 2329 if (ret) 2330 goto fail; 2331 return 0; 2332 } 2333 break; 2334 case CPL_ERR_CONN_EXIST: 2335 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2336 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2337 if (ep->com.remote_addr.ss_family == AF_INET6) { 2338 struct sockaddr_in6 *sin6 = 2339 (struct sockaddr_in6 *) 2340 &ep->com.local_addr; 2341 cxgb4_clip_release( 2342 ep->com.dev->rdev.lldi.ports[0], 2343 (const u32 *) 2344 &sin6->sin6_addr.s6_addr, 1); 2345 } 2346 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, 2347 atid); 2348 cxgb4_free_atid(t, atid); 2349 dst_release(ep->dst); 2350 cxgb4_l2t_release(ep->l2t); 2351 c4iw_reconnect(ep); 2352 return 0; 2353 } 2354 break; 2355 default: 2356 if (ep->com.local_addr.ss_family == AF_INET) { 2357 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2358 atid, status, status2errno(status), 2359 &la->sin_addr.s_addr, ntohs(la->sin_port), 2360 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2361 } else { 2362 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2363 atid, status, status2errno(status), 2364 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2365 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2366 } 2367 break; 2368 } 2369 2370 fail: 2371 connect_reply_upcall(ep, status2errno(status)); 2372 state_set(&ep->com, DEAD); 2373 2374 if (ep->com.remote_addr.ss_family == AF_INET6) { 2375 struct sockaddr_in6 *sin6 = 2376 (struct sockaddr_in6 *)&ep->com.local_addr; 2377 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2378 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2379 } 2380 if (status && act_open_has_tid(status)) 2381 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl)); 2382 2383 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 2384 cxgb4_free_atid(t, atid); 2385 dst_release(ep->dst); 2386 cxgb4_l2t_release(ep->l2t); 2387 c4iw_put_ep(&ep->com); 2388 2389 return 0; 2390 } 2391 2392 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2393 { 2394 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2395 unsigned int stid = GET_TID(rpl); 2396 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2397 2398 if (!ep) { 2399 PDBG("%s stid %d lookup failure!\n", __func__, stid); 2400 goto out; 2401 } 2402 PDBG("%s ep %p status %d error %d\n", __func__, ep, 2403 rpl->status, status2errno(rpl->status)); 2404 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2405 c4iw_put_ep(&ep->com); 2406 out: 2407 return 0; 2408 } 2409 2410 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2411 { 2412 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2413 unsigned int stid = GET_TID(rpl); 2414 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2415 2416 PDBG("%s ep %p\n", __func__, ep); 2417 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2418 c4iw_put_ep(&ep->com); 2419 return 0; 2420 } 2421 2422 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2423 struct cpl_pass_accept_req *req) 2424 { 2425 struct cpl_pass_accept_rpl *rpl; 2426 unsigned int mtu_idx; 2427 u64 opt0; 2428 u32 opt2; 2429 int wscale; 2430 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2431 int win; 2432 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2433 2434 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2435 BUG_ON(skb_cloned(skb)); 2436 2437 skb_get(skb); 2438 rpl = cplhdr(skb); 2439 if (!is_t4(adapter_type)) { 2440 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2441 rpl5 = (void *)rpl; 2442 INIT_TP_WR(rpl5, ep->hwtid); 2443 } else { 2444 skb_trim(skb, sizeof(*rpl)); 2445 INIT_TP_WR(rpl, ep->hwtid); 2446 } 2447 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2448 ep->hwtid)); 2449 2450 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2451 enable_tcp_timestamps && req->tcpopt.tstamp, 2452 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1); 2453 wscale = compute_wscale(rcv_win); 2454 2455 /* 2456 * Specify the largest window that will fit in opt0. The 2457 * remainder will be specified in the rx_data_ack. 2458 */ 2459 win = ep->rcv_win >> 10; 2460 if (win > RCV_BUFSIZ_M) 2461 win = RCV_BUFSIZ_M; 2462 opt0 = (nocong ? NO_CONG_F : 0) | 2463 KEEP_ALIVE_F | 2464 DELACK_F | 2465 WND_SCALE_V(wscale) | 2466 MSS_IDX_V(mtu_idx) | 2467 L2T_IDX_V(ep->l2t->idx) | 2468 TX_CHAN_V(ep->tx_chan) | 2469 SMAC_SEL_V(ep->smac_idx) | 2470 DSCP_V(ep->tos >> 2) | 2471 ULP_MODE_V(ULP_MODE_TCPDDP) | 2472 RCV_BUFSIZ_V(win); 2473 opt2 = RX_CHANNEL_V(0) | 2474 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2475 2476 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2477 opt2 |= TSTAMPS_EN_F; 2478 if (enable_tcp_sack && req->tcpopt.sack) 2479 opt2 |= SACK_EN_F; 2480 if (wscale && enable_tcp_window_scaling) 2481 opt2 |= WND_SCALE_EN_F; 2482 if (enable_ecn) { 2483 const struct tcphdr *tcph; 2484 u32 hlen = ntohl(req->hdr_len); 2485 2486 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2487 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2488 IP_HDR_LEN_G(hlen); 2489 else 2490 tcph = (const void *)(req + 1) + 2491 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2492 if (tcph->ece && tcph->cwr) 2493 opt2 |= CCTRL_ECN_V(1); 2494 } 2495 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2496 u32 isn = (prandom_u32() & ~7UL) - 1; 2497 opt2 |= T5_OPT_2_VALID_F; 2498 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2499 opt2 |= T5_ISS_F; 2500 rpl5 = (void *)rpl; 2501 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2502 if (peer2peer) 2503 isn += 4; 2504 rpl5->iss = cpu_to_be32(isn); 2505 PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss)); 2506 } 2507 2508 rpl->opt0 = cpu_to_be64(opt0); 2509 rpl->opt2 = cpu_to_be32(opt2); 2510 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2511 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2512 2513 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2514 } 2515 2516 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2517 { 2518 PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid); 2519 BUG_ON(skb_cloned(skb)); 2520 skb_trim(skb, sizeof(struct cpl_tid_release)); 2521 release_tid(&dev->rdev, hwtid, skb); 2522 return; 2523 } 2524 2525 static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type, 2526 int *iptype, __u8 *local_ip, __u8 *peer_ip, 2527 __be16 *local_port, __be16 *peer_port) 2528 { 2529 int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ? 2530 ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) : 2531 T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)); 2532 int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ? 2533 IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) : 2534 T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)); 2535 struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len); 2536 struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len); 2537 struct tcphdr *tcp = (struct tcphdr *) 2538 ((u8 *)(req + 1) + eth_len + ip_len); 2539 2540 if (ip->version == 4) { 2541 PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__, 2542 ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source), 2543 ntohs(tcp->dest)); 2544 *iptype = 4; 2545 memcpy(peer_ip, &ip->saddr, 4); 2546 memcpy(local_ip, &ip->daddr, 4); 2547 } else { 2548 PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__, 2549 ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source), 2550 ntohs(tcp->dest)); 2551 *iptype = 6; 2552 memcpy(peer_ip, ip6->saddr.s6_addr, 16); 2553 memcpy(local_ip, ip6->daddr.s6_addr, 16); 2554 } 2555 *peer_port = tcp->source; 2556 *local_port = tcp->dest; 2557 2558 return; 2559 } 2560 2561 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2562 { 2563 struct c4iw_ep *child_ep = NULL, *parent_ep; 2564 struct cpl_pass_accept_req *req = cplhdr(skb); 2565 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2566 struct tid_info *t = dev->rdev.lldi.tids; 2567 unsigned int hwtid = GET_TID(req); 2568 struct dst_entry *dst; 2569 __u8 local_ip[16], peer_ip[16]; 2570 __be16 local_port, peer_port; 2571 struct sockaddr_in6 *sin6; 2572 int err; 2573 u16 peer_mss = ntohs(req->tcpopt.mss); 2574 int iptype; 2575 unsigned short hdrs; 2576 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2577 2578 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2579 if (!parent_ep) { 2580 PDBG("%s connect request on invalid stid %d\n", __func__, stid); 2581 goto reject; 2582 } 2583 2584 if (state_read(&parent_ep->com) != LISTEN) { 2585 PDBG("%s - listening ep not in LISTEN\n", __func__); 2586 goto reject; 2587 } 2588 2589 get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype, 2590 local_ip, peer_ip, &local_port, &peer_port); 2591 2592 /* Find output route */ 2593 if (iptype == 4) { 2594 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2595 , __func__, parent_ep, hwtid, 2596 local_ip, peer_ip, ntohs(local_port), 2597 ntohs(peer_port), peer_mss); 2598 dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip, 2599 local_port, peer_port, 2600 tos); 2601 } else { 2602 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2603 , __func__, parent_ep, hwtid, 2604 local_ip, peer_ip, ntohs(local_port), 2605 ntohs(peer_port), peer_mss); 2606 dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port, 2607 PASS_OPEN_TOS_G(ntohl(req->tos_stid)), 2608 ((struct sockaddr_in6 *) 2609 &parent_ep->com.local_addr)->sin6_scope_id); 2610 } 2611 if (!dst) { 2612 printk(KERN_ERR MOD "%s - failed to find dst entry!\n", 2613 __func__); 2614 goto reject; 2615 } 2616 2617 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2618 if (!child_ep) { 2619 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n", 2620 __func__); 2621 dst_release(dst); 2622 goto reject; 2623 } 2624 2625 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2626 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2627 if (err) { 2628 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n", 2629 __func__); 2630 dst_release(dst); 2631 kfree(child_ep); 2632 goto reject; 2633 } 2634 2635 hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) + 2636 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2637 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2638 child_ep->mtu = peer_mss + hdrs; 2639 2640 skb_queue_head_init(&child_ep->com.ep_skb_list); 2641 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2642 goto fail; 2643 2644 state_set(&child_ep->com, CONNECTING); 2645 child_ep->com.dev = dev; 2646 child_ep->com.cm_id = NULL; 2647 2648 if (iptype == 4) { 2649 struct sockaddr_in *sin = (struct sockaddr_in *) 2650 &child_ep->com.local_addr; 2651 2652 sin->sin_family = PF_INET; 2653 sin->sin_port = local_port; 2654 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2655 2656 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2657 sin->sin_family = PF_INET; 2658 sin->sin_port = ((struct sockaddr_in *) 2659 &parent_ep->com.local_addr)->sin_port; 2660 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2661 2662 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2663 sin->sin_family = PF_INET; 2664 sin->sin_port = peer_port; 2665 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2666 } else { 2667 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2668 sin6->sin6_family = PF_INET6; 2669 sin6->sin6_port = local_port; 2670 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2671 2672 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2673 sin6->sin6_family = PF_INET6; 2674 sin6->sin6_port = ((struct sockaddr_in6 *) 2675 &parent_ep->com.local_addr)->sin6_port; 2676 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2677 2678 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2679 sin6->sin6_family = PF_INET6; 2680 sin6->sin6_port = peer_port; 2681 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2682 } 2683 2684 c4iw_get_ep(&parent_ep->com); 2685 child_ep->parent_ep = parent_ep; 2686 child_ep->tos = tos; 2687 child_ep->dst = dst; 2688 child_ep->hwtid = hwtid; 2689 2690 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__, 2691 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2692 2693 init_timer(&child_ep->timer); 2694 cxgb4_insert_tid(t, child_ep, hwtid); 2695 insert_ep_tid(child_ep); 2696 if (accept_cr(child_ep, skb, req)) { 2697 c4iw_put_ep(&parent_ep->com); 2698 release_ep_resources(child_ep); 2699 } else { 2700 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2701 } 2702 if (iptype == 6) { 2703 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2704 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2705 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2706 } 2707 goto out; 2708 fail: 2709 c4iw_put_ep(&child_ep->com); 2710 reject: 2711 reject_cr(dev, hwtid, skb); 2712 if (parent_ep) 2713 c4iw_put_ep(&parent_ep->com); 2714 out: 2715 return 0; 2716 } 2717 2718 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2719 { 2720 struct c4iw_ep *ep; 2721 struct cpl_pass_establish *req = cplhdr(skb); 2722 unsigned int tid = GET_TID(req); 2723 int ret; 2724 2725 ep = get_ep_from_tid(dev, tid); 2726 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2727 ep->snd_seq = be32_to_cpu(req->snd_isn); 2728 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2729 2730 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid, 2731 ntohs(req->tcp_opt)); 2732 2733 set_emss(ep, ntohs(req->tcp_opt)); 2734 2735 dst_confirm(ep->dst); 2736 mutex_lock(&ep->com.mutex); 2737 ep->com.state = MPA_REQ_WAIT; 2738 start_ep_timer(ep); 2739 set_bit(PASS_ESTAB, &ep->com.history); 2740 ret = send_flowc(ep); 2741 mutex_unlock(&ep->com.mutex); 2742 if (ret) 2743 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2744 c4iw_put_ep(&ep->com); 2745 2746 return 0; 2747 } 2748 2749 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2750 { 2751 struct cpl_peer_close *hdr = cplhdr(skb); 2752 struct c4iw_ep *ep; 2753 struct c4iw_qp_attributes attrs; 2754 int disconnect = 1; 2755 int release = 0; 2756 unsigned int tid = GET_TID(hdr); 2757 int ret; 2758 2759 ep = get_ep_from_tid(dev, tid); 2760 if (!ep) 2761 return 0; 2762 2763 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2764 dst_confirm(ep->dst); 2765 2766 set_bit(PEER_CLOSE, &ep->com.history); 2767 mutex_lock(&ep->com.mutex); 2768 switch (ep->com.state) { 2769 case MPA_REQ_WAIT: 2770 __state_set(&ep->com, CLOSING); 2771 break; 2772 case MPA_REQ_SENT: 2773 __state_set(&ep->com, CLOSING); 2774 connect_reply_upcall(ep, -ECONNRESET); 2775 break; 2776 case MPA_REQ_RCVD: 2777 2778 /* 2779 * We're gonna mark this puppy DEAD, but keep 2780 * the reference on it until the ULP accepts or 2781 * rejects the CR. Also wake up anyone waiting 2782 * in rdma connection migration (see c4iw_accept_cr()). 2783 */ 2784 __state_set(&ep->com, CLOSING); 2785 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); 2786 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2787 break; 2788 case MPA_REP_SENT: 2789 __state_set(&ep->com, CLOSING); 2790 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); 2791 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2792 break; 2793 case FPDU_MODE: 2794 start_ep_timer(ep); 2795 __state_set(&ep->com, CLOSING); 2796 attrs.next_state = C4IW_QP_STATE_CLOSING; 2797 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2798 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2799 if (ret != -ECONNRESET) { 2800 peer_close_upcall(ep); 2801 disconnect = 1; 2802 } 2803 break; 2804 case ABORTING: 2805 disconnect = 0; 2806 break; 2807 case CLOSING: 2808 __state_set(&ep->com, MORIBUND); 2809 disconnect = 0; 2810 break; 2811 case MORIBUND: 2812 (void)stop_ep_timer(ep); 2813 if (ep->com.cm_id && ep->com.qp) { 2814 attrs.next_state = C4IW_QP_STATE_IDLE; 2815 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2816 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2817 } 2818 close_complete_upcall(ep, 0); 2819 __state_set(&ep->com, DEAD); 2820 release = 1; 2821 disconnect = 0; 2822 break; 2823 case DEAD: 2824 disconnect = 0; 2825 break; 2826 default: 2827 BUG_ON(1); 2828 } 2829 mutex_unlock(&ep->com.mutex); 2830 if (disconnect) 2831 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2832 if (release) 2833 release_ep_resources(ep); 2834 c4iw_put_ep(&ep->com); 2835 return 0; 2836 } 2837 2838 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2839 { 2840 struct cpl_abort_req_rss *req = cplhdr(skb); 2841 struct c4iw_ep *ep; 2842 struct cpl_abort_rpl *rpl; 2843 struct sk_buff *rpl_skb; 2844 struct c4iw_qp_attributes attrs; 2845 int ret; 2846 int release = 0; 2847 unsigned int tid = GET_TID(req); 2848 2849 ep = get_ep_from_tid(dev, tid); 2850 if (!ep) 2851 return 0; 2852 2853 if (is_neg_adv(req->status)) { 2854 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n", 2855 __func__, ep->hwtid, req->status, 2856 neg_adv_str(req->status)); 2857 ep->stats.abort_neg_adv++; 2858 mutex_lock(&dev->rdev.stats.lock); 2859 dev->rdev.stats.neg_adv++; 2860 mutex_unlock(&dev->rdev.stats.lock); 2861 goto deref_ep; 2862 } 2863 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 2864 ep->com.state); 2865 set_bit(PEER_ABORT, &ep->com.history); 2866 2867 /* 2868 * Wake up any threads in rdma_init() or rdma_fini(). 2869 * However, this is not needed if com state is just 2870 * MPA_REQ_SENT 2871 */ 2872 if (ep->com.state != MPA_REQ_SENT) 2873 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2874 2875 mutex_lock(&ep->com.mutex); 2876 switch (ep->com.state) { 2877 case CONNECTING: 2878 c4iw_put_ep(&ep->parent_ep->com); 2879 break; 2880 case MPA_REQ_WAIT: 2881 (void)stop_ep_timer(ep); 2882 break; 2883 case MPA_REQ_SENT: 2884 (void)stop_ep_timer(ep); 2885 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2886 connect_reply_upcall(ep, -ECONNRESET); 2887 else { 2888 /* 2889 * we just don't send notification upwards because we 2890 * want to retry with mpa_v1 without upper layers even 2891 * knowing it. 2892 * 2893 * do some housekeeping so as to re-initiate the 2894 * connection 2895 */ 2896 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__, 2897 mpa_rev); 2898 ep->retry_with_mpa_v1 = 1; 2899 } 2900 break; 2901 case MPA_REP_SENT: 2902 break; 2903 case MPA_REQ_RCVD: 2904 break; 2905 case MORIBUND: 2906 case CLOSING: 2907 stop_ep_timer(ep); 2908 /*FALLTHROUGH*/ 2909 case FPDU_MODE: 2910 if (ep->com.cm_id && ep->com.qp) { 2911 attrs.next_state = C4IW_QP_STATE_ERROR; 2912 ret = c4iw_modify_qp(ep->com.qp->rhp, 2913 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2914 &attrs, 1); 2915 if (ret) 2916 printk(KERN_ERR MOD 2917 "%s - qp <- error failed!\n", 2918 __func__); 2919 } 2920 peer_abort_upcall(ep); 2921 break; 2922 case ABORTING: 2923 break; 2924 case DEAD: 2925 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2926 mutex_unlock(&ep->com.mutex); 2927 goto deref_ep; 2928 default: 2929 BUG_ON(1); 2930 break; 2931 } 2932 dst_confirm(ep->dst); 2933 if (ep->com.state != ABORTING) { 2934 __state_set(&ep->com, DEAD); 2935 /* we don't release if we want to retry with mpa_v1 */ 2936 if (!ep->retry_with_mpa_v1) 2937 release = 1; 2938 } 2939 mutex_unlock(&ep->com.mutex); 2940 2941 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2942 if (WARN_ON(!rpl_skb)) { 2943 release = 1; 2944 goto out; 2945 } 2946 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 2947 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl)); 2948 INIT_TP_WR(rpl, ep->hwtid); 2949 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid)); 2950 rpl->cmd = CPL_ABORT_NO_RST; 2951 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2952 out: 2953 if (release) 2954 release_ep_resources(ep); 2955 else if (ep->retry_with_mpa_v1) { 2956 if (ep->com.remote_addr.ss_family == AF_INET6) { 2957 struct sockaddr_in6 *sin6 = 2958 (struct sockaddr_in6 *) 2959 &ep->com.local_addr; 2960 cxgb4_clip_release( 2961 ep->com.dev->rdev.lldi.ports[0], 2962 (const u32 *)&sin6->sin6_addr.s6_addr, 2963 1); 2964 } 2965 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid); 2966 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 2967 dst_release(ep->dst); 2968 cxgb4_l2t_release(ep->l2t); 2969 c4iw_reconnect(ep); 2970 } 2971 2972 deref_ep: 2973 c4iw_put_ep(&ep->com); 2974 /* Dereferencing ep, referenced in peer_abort_intr() */ 2975 c4iw_put_ep(&ep->com); 2976 return 0; 2977 } 2978 2979 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2980 { 2981 struct c4iw_ep *ep; 2982 struct c4iw_qp_attributes attrs; 2983 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2984 int release = 0; 2985 unsigned int tid = GET_TID(rpl); 2986 2987 ep = get_ep_from_tid(dev, tid); 2988 if (!ep) 2989 return 0; 2990 2991 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2992 BUG_ON(!ep); 2993 2994 /* The cm_id may be null if we failed to connect */ 2995 mutex_lock(&ep->com.mutex); 2996 set_bit(CLOSE_CON_RPL, &ep->com.history); 2997 switch (ep->com.state) { 2998 case CLOSING: 2999 __state_set(&ep->com, MORIBUND); 3000 break; 3001 case MORIBUND: 3002 (void)stop_ep_timer(ep); 3003 if ((ep->com.cm_id) && (ep->com.qp)) { 3004 attrs.next_state = C4IW_QP_STATE_IDLE; 3005 c4iw_modify_qp(ep->com.qp->rhp, 3006 ep->com.qp, 3007 C4IW_QP_ATTR_NEXT_STATE, 3008 &attrs, 1); 3009 } 3010 close_complete_upcall(ep, 0); 3011 __state_set(&ep->com, DEAD); 3012 release = 1; 3013 break; 3014 case ABORTING: 3015 case DEAD: 3016 break; 3017 default: 3018 BUG_ON(1); 3019 break; 3020 } 3021 mutex_unlock(&ep->com.mutex); 3022 if (release) 3023 release_ep_resources(ep); 3024 c4iw_put_ep(&ep->com); 3025 return 0; 3026 } 3027 3028 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 3029 { 3030 struct cpl_rdma_terminate *rpl = cplhdr(skb); 3031 unsigned int tid = GET_TID(rpl); 3032 struct c4iw_ep *ep; 3033 struct c4iw_qp_attributes attrs; 3034 3035 ep = get_ep_from_tid(dev, tid); 3036 BUG_ON(!ep); 3037 3038 if (ep && ep->com.qp) { 3039 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid, 3040 ep->com.qp->wq.sq.qid); 3041 attrs.next_state = C4IW_QP_STATE_TERMINATE; 3042 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 3043 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 3044 } else 3045 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid); 3046 c4iw_put_ep(&ep->com); 3047 3048 return 0; 3049 } 3050 3051 /* 3052 * Upcall from the adapter indicating data has been transmitted. 3053 * For us its just the single MPA request or reply. We can now free 3054 * the skb holding the mpa message. 3055 */ 3056 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 3057 { 3058 struct c4iw_ep *ep; 3059 struct cpl_fw4_ack *hdr = cplhdr(skb); 3060 u8 credits = hdr->credits; 3061 unsigned int tid = GET_TID(hdr); 3062 3063 3064 ep = get_ep_from_tid(dev, tid); 3065 if (!ep) 3066 return 0; 3067 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); 3068 if (credits == 0) { 3069 PDBG("%s 0 credit ack ep %p tid %u state %u\n", 3070 __func__, ep, ep->hwtid, state_read(&ep->com)); 3071 goto out; 3072 } 3073 3074 dst_confirm(ep->dst); 3075 if (ep->mpa_skb) { 3076 PDBG("%s last streaming msg ack ep %p tid %u state %u " 3077 "initiator %u freeing skb\n", __func__, ep, ep->hwtid, 3078 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0); 3079 mutex_lock(&ep->com.mutex); 3080 kfree_skb(ep->mpa_skb); 3081 ep->mpa_skb = NULL; 3082 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 3083 stop_ep_timer(ep); 3084 mutex_unlock(&ep->com.mutex); 3085 } 3086 out: 3087 c4iw_put_ep(&ep->com); 3088 return 0; 3089 } 3090 3091 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 3092 { 3093 int abort; 3094 struct c4iw_ep *ep = to_ep(cm_id); 3095 3096 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 3097 3098 mutex_lock(&ep->com.mutex); 3099 if (ep->com.state != MPA_REQ_RCVD) { 3100 mutex_unlock(&ep->com.mutex); 3101 c4iw_put_ep(&ep->com); 3102 return -ECONNRESET; 3103 } 3104 set_bit(ULP_REJECT, &ep->com.history); 3105 if (mpa_rev == 0) 3106 abort = 1; 3107 else 3108 abort = send_mpa_reject(ep, pdata, pdata_len); 3109 mutex_unlock(&ep->com.mutex); 3110 3111 stop_ep_timer(ep); 3112 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 3113 c4iw_put_ep(&ep->com); 3114 return 0; 3115 } 3116 3117 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3118 { 3119 int err; 3120 struct c4iw_qp_attributes attrs; 3121 enum c4iw_qp_attr_mask mask; 3122 struct c4iw_ep *ep = to_ep(cm_id); 3123 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3124 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3125 int abort = 0; 3126 3127 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 3128 3129 mutex_lock(&ep->com.mutex); 3130 if (ep->com.state != MPA_REQ_RCVD) { 3131 err = -ECONNRESET; 3132 goto err_out; 3133 } 3134 3135 BUG_ON(!qp); 3136 3137 set_bit(ULP_ACCEPT, &ep->com.history); 3138 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3139 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3140 err = -EINVAL; 3141 goto err_abort; 3142 } 3143 3144 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3145 if (conn_param->ord > ep->ird) { 3146 if (RELAXED_IRD_NEGOTIATION) { 3147 conn_param->ord = ep->ird; 3148 } else { 3149 ep->ird = conn_param->ird; 3150 ep->ord = conn_param->ord; 3151 send_mpa_reject(ep, conn_param->private_data, 3152 conn_param->private_data_len); 3153 err = -ENOMEM; 3154 goto err_abort; 3155 } 3156 } 3157 if (conn_param->ird < ep->ord) { 3158 if (RELAXED_IRD_NEGOTIATION && 3159 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3160 conn_param->ird = ep->ord; 3161 } else { 3162 err = -ENOMEM; 3163 goto err_abort; 3164 } 3165 } 3166 } 3167 ep->ird = conn_param->ird; 3168 ep->ord = conn_param->ord; 3169 3170 if (ep->mpa_attr.version == 1) { 3171 if (peer2peer && ep->ird == 0) 3172 ep->ird = 1; 3173 } else { 3174 if (peer2peer && 3175 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3176 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3177 ep->ird = 1; 3178 } 3179 3180 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord); 3181 3182 ep->com.cm_id = cm_id; 3183 ref_cm_id(&ep->com); 3184 ep->com.qp = qp; 3185 ref_qp(ep); 3186 3187 /* bind QP to EP and move to RTS */ 3188 attrs.mpa_attr = ep->mpa_attr; 3189 attrs.max_ird = ep->ird; 3190 attrs.max_ord = ep->ord; 3191 attrs.llp_stream_handle = ep; 3192 attrs.next_state = C4IW_QP_STATE_RTS; 3193 3194 /* bind QP and TID with INIT_WR */ 3195 mask = C4IW_QP_ATTR_NEXT_STATE | 3196 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3197 C4IW_QP_ATTR_MPA_ATTR | 3198 C4IW_QP_ATTR_MAX_IRD | 3199 C4IW_QP_ATTR_MAX_ORD; 3200 3201 err = c4iw_modify_qp(ep->com.qp->rhp, 3202 ep->com.qp, mask, &attrs, 1); 3203 if (err) 3204 goto err_deref_cm_id; 3205 3206 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3207 err = send_mpa_reply(ep, conn_param->private_data, 3208 conn_param->private_data_len); 3209 if (err) 3210 goto err_deref_cm_id; 3211 3212 __state_set(&ep->com, FPDU_MODE); 3213 established_upcall(ep); 3214 mutex_unlock(&ep->com.mutex); 3215 c4iw_put_ep(&ep->com); 3216 return 0; 3217 err_deref_cm_id: 3218 deref_cm_id(&ep->com); 3219 err_abort: 3220 abort = 1; 3221 err_out: 3222 mutex_unlock(&ep->com.mutex); 3223 if (abort) 3224 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3225 c4iw_put_ep(&ep->com); 3226 return err; 3227 } 3228 3229 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3230 { 3231 struct in_device *ind; 3232 int found = 0; 3233 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3234 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3235 3236 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3237 if (!ind) 3238 return -EADDRNOTAVAIL; 3239 for_primary_ifa(ind) { 3240 laddr->sin_addr.s_addr = ifa->ifa_address; 3241 raddr->sin_addr.s_addr = ifa->ifa_address; 3242 found = 1; 3243 break; 3244 } 3245 endfor_ifa(ind); 3246 in_dev_put(ind); 3247 return found ? 0 : -EADDRNOTAVAIL; 3248 } 3249 3250 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3251 unsigned char banned_flags) 3252 { 3253 struct inet6_dev *idev; 3254 int err = -EADDRNOTAVAIL; 3255 3256 rcu_read_lock(); 3257 idev = __in6_dev_get(dev); 3258 if (idev != NULL) { 3259 struct inet6_ifaddr *ifp; 3260 3261 read_lock_bh(&idev->lock); 3262 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3263 if (ifp->scope == IFA_LINK && 3264 !(ifp->flags & banned_flags)) { 3265 memcpy(addr, &ifp->addr, 16); 3266 err = 0; 3267 break; 3268 } 3269 } 3270 read_unlock_bh(&idev->lock); 3271 } 3272 rcu_read_unlock(); 3273 return err; 3274 } 3275 3276 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3277 { 3278 struct in6_addr uninitialized_var(addr); 3279 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3280 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3281 3282 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3283 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3284 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3285 return 0; 3286 } 3287 return -EADDRNOTAVAIL; 3288 } 3289 3290 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3291 { 3292 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3293 struct c4iw_ep *ep; 3294 int err = 0; 3295 struct sockaddr_in *laddr; 3296 struct sockaddr_in *raddr; 3297 struct sockaddr_in6 *laddr6; 3298 struct sockaddr_in6 *raddr6; 3299 __u8 *ra; 3300 int iptype; 3301 3302 if ((conn_param->ord > cur_max_read_depth(dev)) || 3303 (conn_param->ird > cur_max_read_depth(dev))) { 3304 err = -EINVAL; 3305 goto out; 3306 } 3307 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3308 if (!ep) { 3309 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); 3310 err = -ENOMEM; 3311 goto out; 3312 } 3313 3314 skb_queue_head_init(&ep->com.ep_skb_list); 3315 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3316 err = -ENOMEM; 3317 goto fail1; 3318 } 3319 3320 init_timer(&ep->timer); 3321 ep->plen = conn_param->private_data_len; 3322 if (ep->plen) 3323 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3324 conn_param->private_data, ep->plen); 3325 ep->ird = conn_param->ird; 3326 ep->ord = conn_param->ord; 3327 3328 if (peer2peer && ep->ord == 0) 3329 ep->ord = 1; 3330 3331 ep->com.cm_id = cm_id; 3332 ref_cm_id(&ep->com); 3333 ep->com.dev = dev; 3334 ep->com.qp = get_qhp(dev, conn_param->qpn); 3335 if (!ep->com.qp) { 3336 PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3337 err = -EINVAL; 3338 goto fail2; 3339 } 3340 ref_qp(ep); 3341 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn, 3342 ep->com.qp, cm_id); 3343 3344 /* 3345 * Allocate an active TID to initiate a TCP connection. 3346 */ 3347 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3348 if (ep->atid == -1) { 3349 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__); 3350 err = -ENOMEM; 3351 goto fail2; 3352 } 3353 insert_handle(dev, &dev->atid_idr, ep, ep->atid); 3354 3355 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3356 sizeof(ep->com.local_addr)); 3357 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3358 sizeof(ep->com.remote_addr)); 3359 3360 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3361 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3362 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3363 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3364 3365 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3366 iptype = 4; 3367 ra = (__u8 *)&raddr->sin_addr; 3368 3369 /* 3370 * Handle loopback requests to INADDR_ANY. 3371 */ 3372 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3373 err = pick_local_ipaddrs(dev, cm_id); 3374 if (err) 3375 goto fail2; 3376 } 3377 3378 /* find a route */ 3379 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3380 __func__, &laddr->sin_addr, ntohs(laddr->sin_port), 3381 ra, ntohs(raddr->sin_port)); 3382 ep->dst = find_route(dev, laddr->sin_addr.s_addr, 3383 raddr->sin_addr.s_addr, laddr->sin_port, 3384 raddr->sin_port, cm_id->tos); 3385 } else { 3386 iptype = 6; 3387 ra = (__u8 *)&raddr6->sin6_addr; 3388 3389 /* 3390 * Handle loopback requests to INADDR_ANY. 3391 */ 3392 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3393 err = pick_local_ip6addrs(dev, cm_id); 3394 if (err) 3395 goto fail2; 3396 } 3397 3398 /* find a route */ 3399 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3400 __func__, laddr6->sin6_addr.s6_addr, 3401 ntohs(laddr6->sin6_port), 3402 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3403 ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr, 3404 raddr6->sin6_addr.s6_addr, 3405 laddr6->sin6_port, raddr6->sin6_port, 0, 3406 raddr6->sin6_scope_id); 3407 } 3408 if (!ep->dst) { 3409 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__); 3410 err = -EHOSTUNREACH; 3411 goto fail3; 3412 } 3413 3414 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3415 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3416 if (err) { 3417 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__); 3418 goto fail4; 3419 } 3420 3421 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3422 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3423 ep->l2t->idx); 3424 3425 state_set(&ep->com, CONNECTING); 3426 ep->tos = cm_id->tos; 3427 3428 /* send connect request to rnic */ 3429 err = send_connect(ep); 3430 if (!err) 3431 goto out; 3432 3433 cxgb4_l2t_release(ep->l2t); 3434 fail4: 3435 dst_release(ep->dst); 3436 fail3: 3437 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 3438 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3439 fail2: 3440 skb_queue_purge(&ep->com.ep_skb_list); 3441 deref_cm_id(&ep->com); 3442 fail1: 3443 c4iw_put_ep(&ep->com); 3444 out: 3445 return err; 3446 } 3447 3448 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3449 { 3450 int err; 3451 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3452 &ep->com.local_addr; 3453 3454 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3455 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3456 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3457 if (err) 3458 return err; 3459 } 3460 c4iw_init_wr_wait(&ep->com.wr_wait); 3461 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3462 ep->stid, &sin6->sin6_addr, 3463 sin6->sin6_port, 3464 ep->com.dev->rdev.lldi.rxq_ids[0]); 3465 if (!err) 3466 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3467 &ep->com.wr_wait, 3468 0, 0, __func__); 3469 else if (err > 0) 3470 err = net_xmit_errno(err); 3471 if (err) { 3472 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3473 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3474 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3475 err, ep->stid, 3476 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3477 } 3478 return err; 3479 } 3480 3481 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3482 { 3483 int err; 3484 struct sockaddr_in *sin = (struct sockaddr_in *) 3485 &ep->com.local_addr; 3486 3487 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3488 do { 3489 err = cxgb4_create_server_filter( 3490 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3491 sin->sin_addr.s_addr, sin->sin_port, 0, 3492 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3493 if (err == -EBUSY) { 3494 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3495 err = -EIO; 3496 break; 3497 } 3498 set_current_state(TASK_UNINTERRUPTIBLE); 3499 schedule_timeout(usecs_to_jiffies(100)); 3500 } 3501 } while (err == -EBUSY); 3502 } else { 3503 c4iw_init_wr_wait(&ep->com.wr_wait); 3504 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3505 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3506 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3507 if (!err) 3508 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3509 &ep->com.wr_wait, 3510 0, 0, __func__); 3511 else if (err > 0) 3512 err = net_xmit_errno(err); 3513 } 3514 if (err) 3515 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3516 , err, ep->stid, 3517 &sin->sin_addr, ntohs(sin->sin_port)); 3518 return err; 3519 } 3520 3521 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3522 { 3523 int err = 0; 3524 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3525 struct c4iw_listen_ep *ep; 3526 3527 might_sleep(); 3528 3529 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3530 if (!ep) { 3531 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); 3532 err = -ENOMEM; 3533 goto fail1; 3534 } 3535 skb_queue_head_init(&ep->com.ep_skb_list); 3536 PDBG("%s ep %p\n", __func__, ep); 3537 ep->com.cm_id = cm_id; 3538 ref_cm_id(&ep->com); 3539 ep->com.dev = dev; 3540 ep->backlog = backlog; 3541 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3542 sizeof(ep->com.local_addr)); 3543 3544 /* 3545 * Allocate a server TID. 3546 */ 3547 if (dev->rdev.lldi.enable_fw_ofld_conn && 3548 ep->com.local_addr.ss_family == AF_INET) 3549 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3550 cm_id->m_local_addr.ss_family, ep); 3551 else 3552 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3553 cm_id->m_local_addr.ss_family, ep); 3554 3555 if (ep->stid == -1) { 3556 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__); 3557 err = -ENOMEM; 3558 goto fail2; 3559 } 3560 insert_handle(dev, &dev->stid_idr, ep, ep->stid); 3561 3562 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3563 sizeof(ep->com.local_addr)); 3564 3565 state_set(&ep->com, LISTEN); 3566 if (ep->com.local_addr.ss_family == AF_INET) 3567 err = create_server4(dev, ep); 3568 else 3569 err = create_server6(dev, ep); 3570 if (!err) { 3571 cm_id->provider_data = ep; 3572 goto out; 3573 } 3574 3575 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3576 ep->com.local_addr.ss_family); 3577 fail2: 3578 deref_cm_id(&ep->com); 3579 c4iw_put_ep(&ep->com); 3580 fail1: 3581 out: 3582 return err; 3583 } 3584 3585 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3586 { 3587 int err; 3588 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3589 3590 PDBG("%s ep %p\n", __func__, ep); 3591 3592 might_sleep(); 3593 state_set(&ep->com, DEAD); 3594 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3595 ep->com.local_addr.ss_family == AF_INET) { 3596 err = cxgb4_remove_server_filter( 3597 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3598 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3599 } else { 3600 struct sockaddr_in6 *sin6; 3601 c4iw_init_wr_wait(&ep->com.wr_wait); 3602 err = cxgb4_remove_server( 3603 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3604 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3605 if (err) 3606 goto done; 3607 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 3608 0, 0, __func__); 3609 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3610 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3611 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3612 } 3613 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3614 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3615 ep->com.local_addr.ss_family); 3616 done: 3617 deref_cm_id(&ep->com); 3618 c4iw_put_ep(&ep->com); 3619 return err; 3620 } 3621 3622 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3623 { 3624 int ret = 0; 3625 int close = 0; 3626 int fatal = 0; 3627 struct c4iw_rdev *rdev; 3628 3629 mutex_lock(&ep->com.mutex); 3630 3631 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep, 3632 states[ep->com.state], abrupt); 3633 3634 /* 3635 * Ref the ep here in case we have fatal errors causing the 3636 * ep to be released and freed. 3637 */ 3638 c4iw_get_ep(&ep->com); 3639 3640 rdev = &ep->com.dev->rdev; 3641 if (c4iw_fatal_error(rdev)) { 3642 fatal = 1; 3643 close_complete_upcall(ep, -EIO); 3644 ep->com.state = DEAD; 3645 } 3646 switch (ep->com.state) { 3647 case MPA_REQ_WAIT: 3648 case MPA_REQ_SENT: 3649 case MPA_REQ_RCVD: 3650 case MPA_REP_SENT: 3651 case FPDU_MODE: 3652 case CONNECTING: 3653 close = 1; 3654 if (abrupt) 3655 ep->com.state = ABORTING; 3656 else { 3657 ep->com.state = CLOSING; 3658 3659 /* 3660 * if we close before we see the fw4_ack() then we fix 3661 * up the timer state since we're reusing it. 3662 */ 3663 if (ep->mpa_skb && 3664 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3665 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3666 stop_ep_timer(ep); 3667 } 3668 start_ep_timer(ep); 3669 } 3670 set_bit(CLOSE_SENT, &ep->com.flags); 3671 break; 3672 case CLOSING: 3673 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3674 close = 1; 3675 if (abrupt) { 3676 (void)stop_ep_timer(ep); 3677 ep->com.state = ABORTING; 3678 } else 3679 ep->com.state = MORIBUND; 3680 } 3681 break; 3682 case MORIBUND: 3683 case ABORTING: 3684 case DEAD: 3685 PDBG("%s ignoring disconnect ep %p state %u\n", 3686 __func__, ep, ep->com.state); 3687 break; 3688 default: 3689 BUG(); 3690 break; 3691 } 3692 3693 if (close) { 3694 if (abrupt) { 3695 set_bit(EP_DISC_ABORT, &ep->com.history); 3696 close_complete_upcall(ep, -ECONNRESET); 3697 ret = send_abort(ep); 3698 } else { 3699 set_bit(EP_DISC_CLOSE, &ep->com.history); 3700 ret = send_halfclose(ep); 3701 } 3702 if (ret) { 3703 set_bit(EP_DISC_FAIL, &ep->com.history); 3704 if (!abrupt) { 3705 stop_ep_timer(ep); 3706 close_complete_upcall(ep, -EIO); 3707 } 3708 if (ep->com.qp) { 3709 struct c4iw_qp_attributes attrs; 3710 3711 attrs.next_state = C4IW_QP_STATE_ERROR; 3712 ret = c4iw_modify_qp(ep->com.qp->rhp, 3713 ep->com.qp, 3714 C4IW_QP_ATTR_NEXT_STATE, 3715 &attrs, 1); 3716 if (ret) 3717 pr_err(MOD 3718 "%s - qp <- error failed!\n", 3719 __func__); 3720 } 3721 fatal = 1; 3722 } 3723 } 3724 mutex_unlock(&ep->com.mutex); 3725 c4iw_put_ep(&ep->com); 3726 if (fatal) 3727 release_ep_resources(ep); 3728 return ret; 3729 } 3730 3731 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3732 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3733 { 3734 struct c4iw_ep *ep; 3735 int atid = be32_to_cpu(req->tid); 3736 3737 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3738 (__force u32) req->tid); 3739 if (!ep) 3740 return; 3741 3742 switch (req->retval) { 3743 case FW_ENOMEM: 3744 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3745 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3746 send_fw_act_open_req(ep, atid); 3747 return; 3748 } 3749 case FW_EADDRINUSE: 3750 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3751 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3752 send_fw_act_open_req(ep, atid); 3753 return; 3754 } 3755 break; 3756 default: 3757 pr_info("%s unexpected ofld conn wr retval %d\n", 3758 __func__, req->retval); 3759 break; 3760 } 3761 pr_err("active ofld_connect_wr failure %d atid %d\n", 3762 req->retval, atid); 3763 mutex_lock(&dev->rdev.stats.lock); 3764 dev->rdev.stats.act_ofld_conn_fails++; 3765 mutex_unlock(&dev->rdev.stats.lock); 3766 connect_reply_upcall(ep, status2errno(req->retval)); 3767 state_set(&ep->com, DEAD); 3768 if (ep->com.remote_addr.ss_family == AF_INET6) { 3769 struct sockaddr_in6 *sin6 = 3770 (struct sockaddr_in6 *)&ep->com.local_addr; 3771 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3772 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3773 } 3774 remove_handle(dev, &dev->atid_idr, atid); 3775 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3776 dst_release(ep->dst); 3777 cxgb4_l2t_release(ep->l2t); 3778 c4iw_put_ep(&ep->com); 3779 } 3780 3781 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3782 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3783 { 3784 struct sk_buff *rpl_skb; 3785 struct cpl_pass_accept_req *cpl; 3786 int ret; 3787 3788 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3789 BUG_ON(!rpl_skb); 3790 if (req->retval) { 3791 PDBG("%s passive open failure %d\n", __func__, req->retval); 3792 mutex_lock(&dev->rdev.stats.lock); 3793 dev->rdev.stats.pas_ofld_conn_fails++; 3794 mutex_unlock(&dev->rdev.stats.lock); 3795 kfree_skb(rpl_skb); 3796 } else { 3797 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3798 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3799 (__force u32) htonl( 3800 (__force u32) req->tid))); 3801 ret = pass_accept_req(dev, rpl_skb); 3802 if (!ret) 3803 kfree_skb(rpl_skb); 3804 } 3805 return; 3806 } 3807 3808 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3809 { 3810 struct cpl_fw6_msg *rpl = cplhdr(skb); 3811 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3812 3813 switch (rpl->type) { 3814 case FW6_TYPE_CQE: 3815 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3816 break; 3817 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3818 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3819 switch (req->t_state) { 3820 case TCP_SYN_SENT: 3821 active_ofld_conn_reply(dev, skb, req); 3822 break; 3823 case TCP_SYN_RECV: 3824 passive_ofld_conn_reply(dev, skb, req); 3825 break; 3826 default: 3827 pr_err("%s unexpected ofld conn wr state %d\n", 3828 __func__, req->t_state); 3829 break; 3830 } 3831 break; 3832 } 3833 return 0; 3834 } 3835 3836 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3837 { 3838 __be32 l2info; 3839 __be16 hdr_len, vlantag, len; 3840 u16 eth_hdr_len; 3841 int tcp_hdr_len, ip_hdr_len; 3842 u8 intf; 3843 struct cpl_rx_pkt *cpl = cplhdr(skb); 3844 struct cpl_pass_accept_req *req; 3845 struct tcp_options_received tmp_opt; 3846 struct c4iw_dev *dev; 3847 enum chip_type type; 3848 3849 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3850 /* Store values from cpl_rx_pkt in temporary location. */ 3851 vlantag = cpl->vlan; 3852 len = cpl->len; 3853 l2info = cpl->l2info; 3854 hdr_len = cpl->hdr_len; 3855 intf = cpl->iff; 3856 3857 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3858 3859 /* 3860 * We need to parse the TCP options from SYN packet. 3861 * to generate cpl_pass_accept_req. 3862 */ 3863 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3864 tcp_clear_options(&tmp_opt); 3865 tcp_parse_options(skb, &tmp_opt, 0, NULL); 3866 3867 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req)); 3868 memset(req, 0, sizeof(*req)); 3869 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3870 SYN_MAC_IDX_V(RX_MACIDX_G( 3871 be32_to_cpu(l2info))) | 3872 SYN_XACT_MATCH_F); 3873 type = dev->rdev.lldi.adapter_type; 3874 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3875 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3876 req->hdr_len = 3877 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3878 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3879 eth_hdr_len = is_t4(type) ? 3880 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3881 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3882 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3883 IP_HDR_LEN_V(ip_hdr_len) | 3884 ETH_HDR_LEN_V(eth_hdr_len)); 3885 } else { /* T6 and later */ 3886 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3887 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3888 T6_IP_HDR_LEN_V(ip_hdr_len) | 3889 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3890 } 3891 req->vlan = vlantag; 3892 req->len = len; 3893 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3894 PASS_OPEN_TOS_V(tos)); 3895 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3896 if (tmp_opt.wscale_ok) 3897 req->tcpopt.wsf = tmp_opt.snd_wscale; 3898 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3899 if (tmp_opt.sack_ok) 3900 req->tcpopt.sack = 1; 3901 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3902 return; 3903 } 3904 3905 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3906 __be32 laddr, __be16 lport, 3907 __be32 raddr, __be16 rport, 3908 u32 rcv_isn, u32 filter, u16 window, 3909 u32 rss_qid, u8 port_id) 3910 { 3911 struct sk_buff *req_skb; 3912 struct fw_ofld_connection_wr *req; 3913 struct cpl_pass_accept_req *cpl = cplhdr(skb); 3914 int ret; 3915 3916 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 3917 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req)); 3918 memset(req, 0, sizeof(*req)); 3919 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 3920 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 3921 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 3922 req->le.filter = (__force __be32) filter; 3923 req->le.lport = lport; 3924 req->le.pport = rport; 3925 req->le.u.ipv4.lip = laddr; 3926 req->le.u.ipv4.pip = raddr; 3927 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 3928 req->tcb.rcv_adv = htons(window); 3929 req->tcb.t_state_to_astid = 3930 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 3931 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 3932 FW_OFLD_CONNECTION_WR_ASTID_V( 3933 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 3934 3935 /* 3936 * We store the qid in opt2 which will be used by the firmware 3937 * to send us the wr response. 3938 */ 3939 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 3940 3941 /* 3942 * We initialize the MSS index in TCB to 0xF. 3943 * So that when driver sends cpl_pass_accept_rpl 3944 * TCB picks up the correct value. If this was 0 3945 * TP will ignore any value > 0 for MSS index. 3946 */ 3947 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 3948 req->cookie = (uintptr_t)skb; 3949 3950 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 3951 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 3952 if (ret < 0) { 3953 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 3954 ret); 3955 kfree_skb(skb); 3956 kfree_skb(req_skb); 3957 } 3958 } 3959 3960 /* 3961 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 3962 * messages when a filter is being used instead of server to 3963 * redirect a syn packet. When packets hit filter they are redirected 3964 * to the offload queue and driver tries to establish the connection 3965 * using firmware work request. 3966 */ 3967 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 3968 { 3969 int stid; 3970 unsigned int filter; 3971 struct ethhdr *eh = NULL; 3972 struct vlan_ethhdr *vlan_eh = NULL; 3973 struct iphdr *iph; 3974 struct tcphdr *tcph; 3975 struct rss_header *rss = (void *)skb->data; 3976 struct cpl_rx_pkt *cpl = (void *)skb->data; 3977 struct cpl_pass_accept_req *req = (void *)(rss + 1); 3978 struct l2t_entry *e; 3979 struct dst_entry *dst; 3980 struct c4iw_ep *lep = NULL; 3981 u16 window; 3982 struct port_info *pi; 3983 struct net_device *pdev; 3984 u16 rss_qid, eth_hdr_len; 3985 int step; 3986 u32 tx_chan; 3987 struct neighbour *neigh; 3988 3989 /* Drop all non-SYN packets */ 3990 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 3991 goto reject; 3992 3993 /* 3994 * Drop all packets which did not hit the filter. 3995 * Unlikely to happen. 3996 */ 3997 if (!(rss->filter_hit && rss->filter_tid)) 3998 goto reject; 3999 4000 /* 4001 * Calculate the server tid from filter hit index from cpl_rx_pkt. 4002 */ 4003 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 4004 4005 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 4006 if (!lep) { 4007 PDBG("%s connect request on invalid stid %d\n", __func__, stid); 4008 goto reject; 4009 } 4010 4011 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 4012 case CHELSIO_T4: 4013 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4014 break; 4015 case CHELSIO_T5: 4016 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4017 break; 4018 case CHELSIO_T6: 4019 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4020 break; 4021 default: 4022 pr_err("T%d Chip is not supported\n", 4023 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 4024 goto reject; 4025 } 4026 4027 if (eth_hdr_len == ETH_HLEN) { 4028 eh = (struct ethhdr *)(req + 1); 4029 iph = (struct iphdr *)(eh + 1); 4030 } else { 4031 vlan_eh = (struct vlan_ethhdr *)(req + 1); 4032 iph = (struct iphdr *)(vlan_eh + 1); 4033 skb->vlan_tci = ntohs(cpl->vlan); 4034 } 4035 4036 if (iph->version != 0x4) 4037 goto reject; 4038 4039 tcph = (struct tcphdr *)(iph + 1); 4040 skb_set_network_header(skb, (void *)iph - (void *)rss); 4041 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 4042 skb_get(skb); 4043 4044 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__, 4045 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 4046 ntohs(tcph->source), iph->tos); 4047 4048 dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source, 4049 iph->tos); 4050 if (!dst) { 4051 pr_err("%s - failed to find dst entry!\n", 4052 __func__); 4053 goto reject; 4054 } 4055 neigh = dst_neigh_lookup_skb(dst, skb); 4056 4057 if (!neigh) { 4058 pr_err("%s - failed to allocate neigh!\n", 4059 __func__); 4060 goto free_dst; 4061 } 4062 4063 if (neigh->dev->flags & IFF_LOOPBACK) { 4064 pdev = ip_dev_find(&init_net, iph->daddr); 4065 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 4066 pdev, 0); 4067 pi = (struct port_info *)netdev_priv(pdev); 4068 tx_chan = cxgb4_port_chan(pdev); 4069 dev_put(pdev); 4070 } else { 4071 pdev = get_real_dev(neigh->dev); 4072 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 4073 pdev, 0); 4074 pi = (struct port_info *)netdev_priv(pdev); 4075 tx_chan = cxgb4_port_chan(pdev); 4076 } 4077 neigh_release(neigh); 4078 if (!e) { 4079 pr_err("%s - failed to allocate l2t entry!\n", 4080 __func__); 4081 goto free_dst; 4082 } 4083 4084 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 4085 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 4086 window = (__force u16) htons((__force u16)tcph->window); 4087 4088 /* Calcuate filter portion for LE region. */ 4089 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 4090 dev->rdev.lldi.ports[0], 4091 e)); 4092 4093 /* 4094 * Synthesize the cpl_pass_accept_req. We have everything except the 4095 * TID. Once firmware sends a reply with TID we update the TID field 4096 * in cpl and pass it through the regular cpl_pass_accept_req path. 4097 */ 4098 build_cpl_pass_accept_req(skb, stid, iph->tos); 4099 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 4100 tcph->source, ntohl(tcph->seq), filter, window, 4101 rss_qid, pi->port_id); 4102 cxgb4_l2t_release(e); 4103 free_dst: 4104 dst_release(dst); 4105 reject: 4106 if (lep) 4107 c4iw_put_ep(&lep->com); 4108 return 0; 4109 } 4110 4111 /* 4112 * These are the real handlers that are called from a 4113 * work queue. 4114 */ 4115 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 4116 [CPL_ACT_ESTABLISH] = act_establish, 4117 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4118 [CPL_RX_DATA] = rx_data, 4119 [CPL_ABORT_RPL_RSS] = abort_rpl, 4120 [CPL_ABORT_RPL] = abort_rpl, 4121 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4122 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4123 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4124 [CPL_PASS_ESTABLISH] = pass_establish, 4125 [CPL_PEER_CLOSE] = peer_close, 4126 [CPL_ABORT_REQ_RSS] = peer_abort, 4127 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4128 [CPL_RDMA_TERMINATE] = terminate, 4129 [CPL_FW4_ACK] = fw4_ack, 4130 [CPL_FW6_MSG] = deferred_fw6_msg, 4131 [CPL_RX_PKT] = rx_pkt, 4132 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4133 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4134 }; 4135 4136 static void process_timeout(struct c4iw_ep *ep) 4137 { 4138 struct c4iw_qp_attributes attrs; 4139 int abort = 1; 4140 4141 mutex_lock(&ep->com.mutex); 4142 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid, 4143 ep->com.state); 4144 set_bit(TIMEDOUT, &ep->com.history); 4145 switch (ep->com.state) { 4146 case MPA_REQ_SENT: 4147 connect_reply_upcall(ep, -ETIMEDOUT); 4148 break; 4149 case MPA_REQ_WAIT: 4150 case MPA_REQ_RCVD: 4151 case MPA_REP_SENT: 4152 case FPDU_MODE: 4153 break; 4154 case CLOSING: 4155 case MORIBUND: 4156 if (ep->com.cm_id && ep->com.qp) { 4157 attrs.next_state = C4IW_QP_STATE_ERROR; 4158 c4iw_modify_qp(ep->com.qp->rhp, 4159 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4160 &attrs, 1); 4161 } 4162 close_complete_upcall(ep, -ETIMEDOUT); 4163 break; 4164 case ABORTING: 4165 case DEAD: 4166 4167 /* 4168 * These states are expected if the ep timed out at the same 4169 * time as another thread was calling stop_ep_timer(). 4170 * So we silently do nothing for these states. 4171 */ 4172 abort = 0; 4173 break; 4174 default: 4175 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4176 __func__, ep, ep->hwtid, ep->com.state); 4177 abort = 0; 4178 } 4179 mutex_unlock(&ep->com.mutex); 4180 if (abort) 4181 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4182 c4iw_put_ep(&ep->com); 4183 } 4184 4185 static void process_timedout_eps(void) 4186 { 4187 struct c4iw_ep *ep; 4188 4189 spin_lock_irq(&timeout_lock); 4190 while (!list_empty(&timeout_list)) { 4191 struct list_head *tmp; 4192 4193 tmp = timeout_list.next; 4194 list_del(tmp); 4195 tmp->next = NULL; 4196 tmp->prev = NULL; 4197 spin_unlock_irq(&timeout_lock); 4198 ep = list_entry(tmp, struct c4iw_ep, entry); 4199 process_timeout(ep); 4200 spin_lock_irq(&timeout_lock); 4201 } 4202 spin_unlock_irq(&timeout_lock); 4203 } 4204 4205 static void process_work(struct work_struct *work) 4206 { 4207 struct sk_buff *skb = NULL; 4208 struct c4iw_dev *dev; 4209 struct cpl_act_establish *rpl; 4210 unsigned int opcode; 4211 int ret; 4212 4213 process_timedout_eps(); 4214 while ((skb = skb_dequeue(&rxq))) { 4215 rpl = cplhdr(skb); 4216 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4217 opcode = rpl->ot.opcode; 4218 4219 BUG_ON(!work_handlers[opcode]); 4220 ret = work_handlers[opcode](dev, skb); 4221 if (!ret) 4222 kfree_skb(skb); 4223 process_timedout_eps(); 4224 } 4225 } 4226 4227 static DECLARE_WORK(skb_work, process_work); 4228 4229 static void ep_timeout(unsigned long arg) 4230 { 4231 struct c4iw_ep *ep = (struct c4iw_ep *)arg; 4232 int kickit = 0; 4233 4234 spin_lock(&timeout_lock); 4235 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4236 /* 4237 * Only insert if it is not already on the list. 4238 */ 4239 if (!ep->entry.next) { 4240 list_add_tail(&ep->entry, &timeout_list); 4241 kickit = 1; 4242 } 4243 } 4244 spin_unlock(&timeout_lock); 4245 if (kickit) 4246 queue_work(workq, &skb_work); 4247 } 4248 4249 /* 4250 * All the CM events are handled on a work queue to have a safe context. 4251 */ 4252 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4253 { 4254 4255 /* 4256 * Save dev in the skb->cb area. 4257 */ 4258 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4259 4260 /* 4261 * Queue the skb and schedule the worker thread. 4262 */ 4263 skb_queue_tail(&rxq, skb); 4264 queue_work(workq, &skb_work); 4265 return 0; 4266 } 4267 4268 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4269 { 4270 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4271 4272 if (rpl->status != CPL_ERR_NONE) { 4273 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u " 4274 "for tid %u\n", rpl->status, GET_TID(rpl)); 4275 } 4276 kfree_skb(skb); 4277 return 0; 4278 } 4279 4280 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4281 { 4282 struct cpl_fw6_msg *rpl = cplhdr(skb); 4283 struct c4iw_wr_wait *wr_waitp; 4284 int ret; 4285 4286 PDBG("%s type %u\n", __func__, rpl->type); 4287 4288 switch (rpl->type) { 4289 case FW6_TYPE_WR_RPL: 4290 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4291 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4292 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret); 4293 if (wr_waitp) 4294 c4iw_wake_up(wr_waitp, ret ? -ret : 0); 4295 kfree_skb(skb); 4296 break; 4297 case FW6_TYPE_CQE: 4298 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4299 sched(dev, skb); 4300 break; 4301 default: 4302 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__, 4303 rpl->type); 4304 kfree_skb(skb); 4305 break; 4306 } 4307 return 0; 4308 } 4309 4310 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4311 { 4312 struct cpl_abort_req_rss *req = cplhdr(skb); 4313 struct c4iw_ep *ep; 4314 unsigned int tid = GET_TID(req); 4315 4316 ep = get_ep_from_tid(dev, tid); 4317 /* This EP will be dereferenced in peer_abort() */ 4318 if (!ep) { 4319 printk(KERN_WARNING MOD 4320 "Abort on non-existent endpoint, tid %d\n", tid); 4321 kfree_skb(skb); 4322 return 0; 4323 } 4324 if (is_neg_adv(req->status)) { 4325 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n", 4326 __func__, ep->hwtid, req->status, 4327 neg_adv_str(req->status)); 4328 goto out; 4329 } 4330 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 4331 ep->com.state); 4332 4333 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 4334 out: 4335 sched(dev, skb); 4336 return 0; 4337 } 4338 4339 /* 4340 * Most upcalls from the T4 Core go to sched() to 4341 * schedule the processing on a work queue. 4342 */ 4343 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4344 [CPL_ACT_ESTABLISH] = sched, 4345 [CPL_ACT_OPEN_RPL] = sched, 4346 [CPL_RX_DATA] = sched, 4347 [CPL_ABORT_RPL_RSS] = sched, 4348 [CPL_ABORT_RPL] = sched, 4349 [CPL_PASS_OPEN_RPL] = sched, 4350 [CPL_CLOSE_LISTSRV_RPL] = sched, 4351 [CPL_PASS_ACCEPT_REQ] = sched, 4352 [CPL_PASS_ESTABLISH] = sched, 4353 [CPL_PEER_CLOSE] = sched, 4354 [CPL_CLOSE_CON_RPL] = sched, 4355 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4356 [CPL_RDMA_TERMINATE] = sched, 4357 [CPL_FW4_ACK] = sched, 4358 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4359 [CPL_FW6_MSG] = fw6_msg, 4360 [CPL_RX_PKT] = sched 4361 }; 4362 4363 int __init c4iw_cm_init(void) 4364 { 4365 spin_lock_init(&timeout_lock); 4366 skb_queue_head_init(&rxq); 4367 4368 workq = create_singlethread_workqueue("iw_cxgb4"); 4369 if (!workq) 4370 return -ENOMEM; 4371 4372 return 0; 4373 } 4374 4375 void c4iw_cm_term(void) 4376 { 4377 WARN_ON(!list_empty(&timeout_list)); 4378 flush_workqueue(workq); 4379 destroy_workqueue(workq); 4380 } 4381