xref: /linux/drivers/infiniband/hw/cxgb4/cm.c (revision 38b8767462120c62a5046b529c80b06861f9ac85)
1 /*
2  * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42 
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49 
50 #include <rdma/ib_addr.h>
51 
52 #include "iw_cxgb4.h"
53 #include "clip_tbl.h"
54 
55 static char *states[] = {
56 	"idle",
57 	"listen",
58 	"connecting",
59 	"mpa_wait_req",
60 	"mpa_req_sent",
61 	"mpa_req_rcvd",
62 	"mpa_rep_sent",
63 	"fpdu_mode",
64 	"aborting",
65 	"closing",
66 	"moribund",
67 	"dead",
68 	NULL,
69 };
70 
71 static int nocong;
72 module_param(nocong, int, 0644);
73 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
74 
75 static int enable_ecn;
76 module_param(enable_ecn, int, 0644);
77 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
78 
79 static int dack_mode = 1;
80 module_param(dack_mode, int, 0644);
81 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
82 
83 uint c4iw_max_read_depth = 32;
84 module_param(c4iw_max_read_depth, int, 0644);
85 MODULE_PARM_DESC(c4iw_max_read_depth,
86 		 "Per-connection max ORD/IRD (default=32)");
87 
88 static int enable_tcp_timestamps;
89 module_param(enable_tcp_timestamps, int, 0644);
90 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
91 
92 static int enable_tcp_sack;
93 module_param(enable_tcp_sack, int, 0644);
94 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
95 
96 static int enable_tcp_window_scaling = 1;
97 module_param(enable_tcp_window_scaling, int, 0644);
98 MODULE_PARM_DESC(enable_tcp_window_scaling,
99 		 "Enable tcp window scaling (default=1)");
100 
101 int c4iw_debug;
102 module_param(c4iw_debug, int, 0644);
103 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
104 
105 static int peer2peer = 1;
106 module_param(peer2peer, int, 0644);
107 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
108 
109 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
110 module_param(p2p_type, int, 0644);
111 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
112 			   "1=RDMA_READ 0=RDMA_WRITE (default 1)");
113 
114 static int ep_timeout_secs = 60;
115 module_param(ep_timeout_secs, int, 0644);
116 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
117 				   "in seconds (default=60)");
118 
119 static int mpa_rev = 2;
120 module_param(mpa_rev, int, 0644);
121 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
122 		"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
123 		" compliant (default=2)");
124 
125 static int markers_enabled;
126 module_param(markers_enabled, int, 0644);
127 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
128 
129 static int crc_enabled = 1;
130 module_param(crc_enabled, int, 0644);
131 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
132 
133 static int rcv_win = 256 * 1024;
134 module_param(rcv_win, int, 0644);
135 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
136 
137 static int snd_win = 128 * 1024;
138 module_param(snd_win, int, 0644);
139 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
140 
141 static struct workqueue_struct *workq;
142 
143 static struct sk_buff_head rxq;
144 
145 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
146 static void ep_timeout(unsigned long arg);
147 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
148 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
149 
150 static LIST_HEAD(timeout_list);
151 static spinlock_t timeout_lock;
152 
153 static void deref_cm_id(struct c4iw_ep_common *epc)
154 {
155 	epc->cm_id->rem_ref(epc->cm_id);
156 	epc->cm_id = NULL;
157 	set_bit(CM_ID_DEREFED, &epc->history);
158 }
159 
160 static void ref_cm_id(struct c4iw_ep_common *epc)
161 {
162 	set_bit(CM_ID_REFED, &epc->history);
163 	epc->cm_id->add_ref(epc->cm_id);
164 }
165 
166 static void deref_qp(struct c4iw_ep *ep)
167 {
168 	c4iw_qp_rem_ref(&ep->com.qp->ibqp);
169 	clear_bit(QP_REFERENCED, &ep->com.flags);
170 	set_bit(QP_DEREFED, &ep->com.history);
171 }
172 
173 static void ref_qp(struct c4iw_ep *ep)
174 {
175 	set_bit(QP_REFERENCED, &ep->com.flags);
176 	set_bit(QP_REFED, &ep->com.history);
177 	c4iw_qp_add_ref(&ep->com.qp->ibqp);
178 }
179 
180 static void start_ep_timer(struct c4iw_ep *ep)
181 {
182 	PDBG("%s ep %p\n", __func__, ep);
183 	if (timer_pending(&ep->timer)) {
184 		pr_err("%s timer already started! ep %p\n",
185 		       __func__, ep);
186 		return;
187 	}
188 	clear_bit(TIMEOUT, &ep->com.flags);
189 	c4iw_get_ep(&ep->com);
190 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
191 	ep->timer.data = (unsigned long)ep;
192 	ep->timer.function = ep_timeout;
193 	add_timer(&ep->timer);
194 }
195 
196 static int stop_ep_timer(struct c4iw_ep *ep)
197 {
198 	PDBG("%s ep %p stopping\n", __func__, ep);
199 	del_timer_sync(&ep->timer);
200 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
201 		c4iw_put_ep(&ep->com);
202 		return 0;
203 	}
204 	return 1;
205 }
206 
207 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
208 		  struct l2t_entry *l2e)
209 {
210 	int	error = 0;
211 
212 	if (c4iw_fatal_error(rdev)) {
213 		kfree_skb(skb);
214 		PDBG("%s - device in error state - dropping\n", __func__);
215 		return -EIO;
216 	}
217 	error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
218 	if (error < 0)
219 		kfree_skb(skb);
220 	else if (error == NET_XMIT_DROP)
221 		return -ENOMEM;
222 	return error < 0 ? error : 0;
223 }
224 
225 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
226 {
227 	int	error = 0;
228 
229 	if (c4iw_fatal_error(rdev)) {
230 		kfree_skb(skb);
231 		PDBG("%s - device in error state - dropping\n", __func__);
232 		return -EIO;
233 	}
234 	error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
235 	if (error < 0)
236 		kfree_skb(skb);
237 	return error < 0 ? error : 0;
238 }
239 
240 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
241 {
242 	struct cpl_tid_release *req;
243 
244 	skb = get_skb(skb, sizeof *req, GFP_KERNEL);
245 	if (!skb)
246 		return;
247 	req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
248 	INIT_TP_WR(req, hwtid);
249 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
250 	set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
251 	c4iw_ofld_send(rdev, skb);
252 	return;
253 }
254 
255 static void set_emss(struct c4iw_ep *ep, u16 opt)
256 {
257 	ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
258 		   ((AF_INET == ep->com.remote_addr.ss_family) ?
259 		    sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
260 		   sizeof(struct tcphdr);
261 	ep->mss = ep->emss;
262 	if (TCPOPT_TSTAMP_G(opt))
263 		ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
264 	if (ep->emss < 128)
265 		ep->emss = 128;
266 	if (ep->emss & 7)
267 		PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
268 		     TCPOPT_MSS_G(opt), ep->mss, ep->emss);
269 	PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
270 	     ep->mss, ep->emss);
271 }
272 
273 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
274 {
275 	enum c4iw_ep_state state;
276 
277 	mutex_lock(&epc->mutex);
278 	state = epc->state;
279 	mutex_unlock(&epc->mutex);
280 	return state;
281 }
282 
283 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
284 {
285 	epc->state = new;
286 }
287 
288 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
289 {
290 	mutex_lock(&epc->mutex);
291 	PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
292 	__state_set(epc, new);
293 	mutex_unlock(&epc->mutex);
294 	return;
295 }
296 
297 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
298 {
299 	struct sk_buff *skb;
300 	unsigned int i;
301 	size_t len;
302 
303 	len = roundup(sizeof(union cpl_wr_size), 16);
304 	for (i = 0; i < size; i++) {
305 		skb = alloc_skb(len, GFP_KERNEL);
306 		if (!skb)
307 			goto fail;
308 		skb_queue_tail(ep_skb_list, skb);
309 	}
310 	return 0;
311 fail:
312 	skb_queue_purge(ep_skb_list);
313 	return -ENOMEM;
314 }
315 
316 static void *alloc_ep(int size, gfp_t gfp)
317 {
318 	struct c4iw_ep_common *epc;
319 
320 	epc = kzalloc(size, gfp);
321 	if (epc) {
322 		kref_init(&epc->kref);
323 		mutex_init(&epc->mutex);
324 		c4iw_init_wr_wait(&epc->wr_wait);
325 	}
326 	PDBG("%s alloc ep %p\n", __func__, epc);
327 	return epc;
328 }
329 
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&ep->com.dev->lock, flags);
335 	_remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
336 	if (idr_is_empty(&ep->com.dev->hwtid_idr))
337 		wake_up(&ep->com.dev->wait);
338 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
339 }
340 
341 static void insert_ep_tid(struct c4iw_ep *ep)
342 {
343 	unsigned long flags;
344 
345 	spin_lock_irqsave(&ep->com.dev->lock, flags);
346 	_insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
347 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
348 }
349 
350 /*
351  * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
352  */
353 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
354 {
355 	struct c4iw_ep *ep;
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&dev->lock, flags);
359 	ep = idr_find(&dev->hwtid_idr, tid);
360 	if (ep)
361 		c4iw_get_ep(&ep->com);
362 	spin_unlock_irqrestore(&dev->lock, flags);
363 	return ep;
364 }
365 
366 /*
367  * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
368  */
369 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
370 					       unsigned int stid)
371 {
372 	struct c4iw_listen_ep *ep;
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&dev->lock, flags);
376 	ep = idr_find(&dev->stid_idr, stid);
377 	if (ep)
378 		c4iw_get_ep(&ep->com);
379 	spin_unlock_irqrestore(&dev->lock, flags);
380 	return ep;
381 }
382 
383 void _c4iw_free_ep(struct kref *kref)
384 {
385 	struct c4iw_ep *ep;
386 
387 	ep = container_of(kref, struct c4iw_ep, com.kref);
388 	PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
389 	if (test_bit(QP_REFERENCED, &ep->com.flags))
390 		deref_qp(ep);
391 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
392 		if (ep->com.remote_addr.ss_family == AF_INET6) {
393 			struct sockaddr_in6 *sin6 =
394 					(struct sockaddr_in6 *)
395 					&ep->com.local_addr;
396 
397 			cxgb4_clip_release(
398 					ep->com.dev->rdev.lldi.ports[0],
399 					(const u32 *)&sin6->sin6_addr.s6_addr,
400 					1);
401 		}
402 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
403 		dst_release(ep->dst);
404 		cxgb4_l2t_release(ep->l2t);
405 		if (ep->mpa_skb)
406 			kfree_skb(ep->mpa_skb);
407 	}
408 	if (!skb_queue_empty(&ep->com.ep_skb_list))
409 		skb_queue_purge(&ep->com.ep_skb_list);
410 	kfree(ep);
411 }
412 
413 static void release_ep_resources(struct c4iw_ep *ep)
414 {
415 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
416 
417 	/*
418 	 * If we have a hwtid, then remove it from the idr table
419 	 * so lookups will no longer find this endpoint.  Otherwise
420 	 * we have a race where one thread finds the ep ptr just
421 	 * before the other thread is freeing the ep memory.
422 	 */
423 	if (ep->hwtid != -1)
424 		remove_ep_tid(ep);
425 	c4iw_put_ep(&ep->com);
426 }
427 
428 static int status2errno(int status)
429 {
430 	switch (status) {
431 	case CPL_ERR_NONE:
432 		return 0;
433 	case CPL_ERR_CONN_RESET:
434 		return -ECONNRESET;
435 	case CPL_ERR_ARP_MISS:
436 		return -EHOSTUNREACH;
437 	case CPL_ERR_CONN_TIMEDOUT:
438 		return -ETIMEDOUT;
439 	case CPL_ERR_TCAM_FULL:
440 		return -ENOMEM;
441 	case CPL_ERR_CONN_EXIST:
442 		return -EADDRINUSE;
443 	default:
444 		return -EIO;
445 	}
446 }
447 
448 /*
449  * Try and reuse skbs already allocated...
450  */
451 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
452 {
453 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
454 		skb_trim(skb, 0);
455 		skb_get(skb);
456 		skb_reset_transport_header(skb);
457 	} else {
458 		skb = alloc_skb(len, gfp);
459 	}
460 	t4_set_arp_err_handler(skb, NULL, NULL);
461 	return skb;
462 }
463 
464 static struct net_device *get_real_dev(struct net_device *egress_dev)
465 {
466 	return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
467 }
468 
469 static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev)
470 {
471 	int i;
472 
473 	egress_dev = get_real_dev(egress_dev);
474 	for (i = 0; i < dev->rdev.lldi.nports; i++)
475 		if (dev->rdev.lldi.ports[i] == egress_dev)
476 			return 1;
477 	return 0;
478 }
479 
480 static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip,
481 				     __u8 *peer_ip, __be16 local_port,
482 				     __be16 peer_port, u8 tos,
483 				     __u32 sin6_scope_id)
484 {
485 	struct dst_entry *dst = NULL;
486 
487 	if (IS_ENABLED(CONFIG_IPV6)) {
488 		struct flowi6 fl6;
489 
490 		memset(&fl6, 0, sizeof(fl6));
491 		memcpy(&fl6.daddr, peer_ip, 16);
492 		memcpy(&fl6.saddr, local_ip, 16);
493 		if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
494 			fl6.flowi6_oif = sin6_scope_id;
495 		dst = ip6_route_output(&init_net, NULL, &fl6);
496 		if (!dst)
497 			goto out;
498 		if (!our_interface(dev, ip6_dst_idev(dst)->dev) &&
499 		    !(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
500 			dst_release(dst);
501 			dst = NULL;
502 		}
503 	}
504 
505 out:
506 	return dst;
507 }
508 
509 static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip,
510 				 __be32 peer_ip, __be16 local_port,
511 				 __be16 peer_port, u8 tos)
512 {
513 	struct rtable *rt;
514 	struct flowi4 fl4;
515 	struct neighbour *n;
516 
517 	rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
518 				   peer_port, local_port, IPPROTO_TCP,
519 				   tos, 0);
520 	if (IS_ERR(rt))
521 		return NULL;
522 	n = dst_neigh_lookup(&rt->dst, &peer_ip);
523 	if (!n)
524 		return NULL;
525 	if (!our_interface(dev, n->dev) &&
526 	    !(n->dev->flags & IFF_LOOPBACK)) {
527 		neigh_release(n);
528 		dst_release(&rt->dst);
529 		return NULL;
530 	}
531 	neigh_release(n);
532 	return &rt->dst;
533 }
534 
535 static void arp_failure_discard(void *handle, struct sk_buff *skb)
536 {
537 	pr_err(MOD "ARP failure\n");
538 	kfree_skb(skb);
539 }
540 
541 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
542 {
543 	pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
544 }
545 
546 enum {
547 	NUM_FAKE_CPLS = 2,
548 	FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
549 	FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
550 };
551 
552 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
553 {
554 	struct c4iw_ep *ep;
555 
556 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
557 	release_ep_resources(ep);
558 	return 0;
559 }
560 
561 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
562 {
563 	struct c4iw_ep *ep;
564 
565 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
566 	c4iw_put_ep(&ep->parent_ep->com);
567 	release_ep_resources(ep);
568 	return 0;
569 }
570 
571 /*
572  * Fake up a special CPL opcode and call sched() so process_work() will call
573  * _put_ep_safe() in a safe context to free the ep resources.  This is needed
574  * because ARP error handlers are called in an ATOMIC context, and
575  * _c4iw_free_ep() needs to block.
576  */
577 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
578 				  int cpl)
579 {
580 	struct cpl_act_establish *rpl = cplhdr(skb);
581 
582 	/* Set our special ARP_FAILURE opcode */
583 	rpl->ot.opcode = cpl;
584 
585 	/*
586 	 * Save ep in the skb->cb area, after where sched() will save the dev
587 	 * ptr.
588 	 */
589 	*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
590 	sched(ep->com.dev, skb);
591 }
592 
593 /* Handle an ARP failure for an accept */
594 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
595 {
596 	struct c4iw_ep *ep = handle;
597 
598 	pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n",
599 	       ep->hwtid);
600 
601 	__state_set(&ep->com, DEAD);
602 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
603 }
604 
605 /*
606  * Handle an ARP failure for an active open.
607  */
608 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
609 {
610 	struct c4iw_ep *ep = handle;
611 
612 	printk(KERN_ERR MOD "ARP failure during connect\n");
613 	connect_reply_upcall(ep, -EHOSTUNREACH);
614 	__state_set(&ep->com, DEAD);
615 	if (ep->com.remote_addr.ss_family == AF_INET6) {
616 		struct sockaddr_in6 *sin6 =
617 			(struct sockaddr_in6 *)&ep->com.local_addr;
618 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
619 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
620 	}
621 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
622 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
623 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
624 }
625 
626 /*
627  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
628  * and send it along.
629  */
630 static void abort_arp_failure(void *handle, struct sk_buff *skb)
631 {
632 	int ret;
633 	struct c4iw_ep *ep = handle;
634 	struct c4iw_rdev *rdev = &ep->com.dev->rdev;
635 	struct cpl_abort_req *req = cplhdr(skb);
636 
637 	PDBG("%s rdev %p\n", __func__, rdev);
638 	req->cmd = CPL_ABORT_NO_RST;
639 	ret = c4iw_ofld_send(rdev, skb);
640 	if (ret) {
641 		__state_set(&ep->com, DEAD);
642 		queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
643 	}
644 }
645 
646 static int send_flowc(struct c4iw_ep *ep)
647 {
648 	struct fw_flowc_wr *flowc;
649 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
650 	int i;
651 	u16 vlan = ep->l2t->vlan;
652 	int nparams;
653 
654 	if (WARN_ON(!skb))
655 		return -ENOMEM;
656 
657 	if (vlan == CPL_L2T_VLAN_NONE)
658 		nparams = 8;
659 	else
660 		nparams = 9;
661 
662 	flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN);
663 
664 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
665 					   FW_FLOWC_WR_NPARAMS_V(nparams));
666 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN,
667 					  16)) | FW_WR_FLOWID_V(ep->hwtid));
668 
669 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
670 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
671 					    (ep->com.dev->rdev.lldi.pf));
672 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
673 	flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
674 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
675 	flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
676 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
677 	flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
678 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
679 	flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
680 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
681 	flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
682 	flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
683 	flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
684 	flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
685 	flowc->mnemval[7].val = cpu_to_be32(ep->emss);
686 	if (nparams == 9) {
687 		u16 pri;
688 
689 		pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
690 		flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
691 		flowc->mnemval[8].val = cpu_to_be32(pri);
692 	} else {
693 		/* Pad WR to 16 byte boundary */
694 		flowc->mnemval[8].mnemonic = 0;
695 		flowc->mnemval[8].val = 0;
696 	}
697 	for (i = 0; i < 9; i++) {
698 		flowc->mnemval[i].r4[0] = 0;
699 		flowc->mnemval[i].r4[1] = 0;
700 		flowc->mnemval[i].r4[2] = 0;
701 	}
702 
703 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
704 	return c4iw_ofld_send(&ep->com.dev->rdev, skb);
705 }
706 
707 static int send_halfclose(struct c4iw_ep *ep)
708 {
709 	struct cpl_close_con_req *req;
710 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
711 	int wrlen = roundup(sizeof *req, 16);
712 
713 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
714 	if (WARN_ON(!skb))
715 		return -ENOMEM;
716 
717 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
718 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
719 	req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
720 	memset(req, 0, wrlen);
721 	INIT_TP_WR(req, ep->hwtid);
722 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
723 						    ep->hwtid));
724 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
725 }
726 
727 static int send_abort(struct c4iw_ep *ep)
728 {
729 	struct cpl_abort_req *req;
730 	int wrlen = roundup(sizeof *req, 16);
731 	struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
732 
733 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
734 	if (WARN_ON(!req_skb))
735 		return -ENOMEM;
736 
737 	set_wr_txq(req_skb, CPL_PRIORITY_DATA, ep->txq_idx);
738 	t4_set_arp_err_handler(req_skb, ep, abort_arp_failure);
739 	req = (struct cpl_abort_req *)skb_put(req_skb, wrlen);
740 	memset(req, 0, wrlen);
741 	INIT_TP_WR(req, ep->hwtid);
742 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
743 	req->cmd = CPL_ABORT_SEND_RST;
744 	return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
745 }
746 
747 static void best_mtu(const unsigned short *mtus, unsigned short mtu,
748 		     unsigned int *idx, int use_ts, int ipv6)
749 {
750 	unsigned short hdr_size = (ipv6 ?
751 				   sizeof(struct ipv6hdr) :
752 				   sizeof(struct iphdr)) +
753 				  sizeof(struct tcphdr) +
754 				  (use_ts ?
755 				   round_up(TCPOLEN_TIMESTAMP, 4) : 0);
756 	unsigned short data_size = mtu - hdr_size;
757 
758 	cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
759 }
760 
761 static int send_connect(struct c4iw_ep *ep)
762 {
763 	struct cpl_act_open_req *req = NULL;
764 	struct cpl_t5_act_open_req *t5req = NULL;
765 	struct cpl_t6_act_open_req *t6req = NULL;
766 	struct cpl_act_open_req6 *req6 = NULL;
767 	struct cpl_t5_act_open_req6 *t5req6 = NULL;
768 	struct cpl_t6_act_open_req6 *t6req6 = NULL;
769 	struct sk_buff *skb;
770 	u64 opt0;
771 	u32 opt2;
772 	unsigned int mtu_idx;
773 	int wscale;
774 	int win, sizev4, sizev6, wrlen;
775 	struct sockaddr_in *la = (struct sockaddr_in *)
776 				 &ep->com.local_addr;
777 	struct sockaddr_in *ra = (struct sockaddr_in *)
778 				 &ep->com.remote_addr;
779 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
780 				   &ep->com.local_addr;
781 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
782 				   &ep->com.remote_addr;
783 	int ret;
784 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
785 	u32 isn = (prandom_u32() & ~7UL) - 1;
786 
787 	switch (CHELSIO_CHIP_VERSION(adapter_type)) {
788 	case CHELSIO_T4:
789 		sizev4 = sizeof(struct cpl_act_open_req);
790 		sizev6 = sizeof(struct cpl_act_open_req6);
791 		break;
792 	case CHELSIO_T5:
793 		sizev4 = sizeof(struct cpl_t5_act_open_req);
794 		sizev6 = sizeof(struct cpl_t5_act_open_req6);
795 		break;
796 	case CHELSIO_T6:
797 		sizev4 = sizeof(struct cpl_t6_act_open_req);
798 		sizev6 = sizeof(struct cpl_t6_act_open_req6);
799 		break;
800 	default:
801 		pr_err("T%d Chip is not supported\n",
802 		       CHELSIO_CHIP_VERSION(adapter_type));
803 		return -EINVAL;
804 	}
805 
806 	wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
807 			roundup(sizev4, 16) :
808 			roundup(sizev6, 16);
809 
810 	PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
811 
812 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
813 	if (!skb) {
814 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
815 		       __func__);
816 		return -ENOMEM;
817 	}
818 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
819 
820 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
821 		 enable_tcp_timestamps,
822 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
823 	wscale = compute_wscale(rcv_win);
824 
825 	/*
826 	 * Specify the largest window that will fit in opt0. The
827 	 * remainder will be specified in the rx_data_ack.
828 	 */
829 	win = ep->rcv_win >> 10;
830 	if (win > RCV_BUFSIZ_M)
831 		win = RCV_BUFSIZ_M;
832 
833 	opt0 = (nocong ? NO_CONG_F : 0) |
834 	       KEEP_ALIVE_F |
835 	       DELACK_F |
836 	       WND_SCALE_V(wscale) |
837 	       MSS_IDX_V(mtu_idx) |
838 	       L2T_IDX_V(ep->l2t->idx) |
839 	       TX_CHAN_V(ep->tx_chan) |
840 	       SMAC_SEL_V(ep->smac_idx) |
841 	       DSCP_V(ep->tos >> 2) |
842 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
843 	       RCV_BUFSIZ_V(win);
844 	opt2 = RX_CHANNEL_V(0) |
845 	       CCTRL_ECN_V(enable_ecn) |
846 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
847 	if (enable_tcp_timestamps)
848 		opt2 |= TSTAMPS_EN_F;
849 	if (enable_tcp_sack)
850 		opt2 |= SACK_EN_F;
851 	if (wscale && enable_tcp_window_scaling)
852 		opt2 |= WND_SCALE_EN_F;
853 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
854 		if (peer2peer)
855 			isn += 4;
856 
857 		opt2 |= T5_OPT_2_VALID_F;
858 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
859 		opt2 |= T5_ISS_F;
860 	}
861 
862 	if (ep->com.remote_addr.ss_family == AF_INET6)
863 		cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
864 			       (const u32 *)&la6->sin6_addr.s6_addr, 1);
865 
866 	t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
867 
868 	if (ep->com.remote_addr.ss_family == AF_INET) {
869 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
870 		case CHELSIO_T4:
871 			req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
872 			INIT_TP_WR(req, 0);
873 			break;
874 		case CHELSIO_T5:
875 			t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
876 					wrlen);
877 			INIT_TP_WR(t5req, 0);
878 			req = (struct cpl_act_open_req *)t5req;
879 			break;
880 		case CHELSIO_T6:
881 			t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
882 					wrlen);
883 			INIT_TP_WR(t6req, 0);
884 			req = (struct cpl_act_open_req *)t6req;
885 			t5req = (struct cpl_t5_act_open_req *)t6req;
886 			break;
887 		default:
888 			pr_err("T%d Chip is not supported\n",
889 			       CHELSIO_CHIP_VERSION(adapter_type));
890 			ret = -EINVAL;
891 			goto clip_release;
892 		}
893 
894 		OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
895 					((ep->rss_qid<<14) | ep->atid)));
896 		req->local_port = la->sin_port;
897 		req->peer_port = ra->sin_port;
898 		req->local_ip = la->sin_addr.s_addr;
899 		req->peer_ip = ra->sin_addr.s_addr;
900 		req->opt0 = cpu_to_be64(opt0);
901 
902 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
903 			req->params = cpu_to_be32(cxgb4_select_ntuple(
904 						ep->com.dev->rdev.lldi.ports[0],
905 						ep->l2t));
906 			req->opt2 = cpu_to_be32(opt2);
907 		} else {
908 			t5req->params = cpu_to_be64(FILTER_TUPLE_V(
909 						cxgb4_select_ntuple(
910 						ep->com.dev->rdev.lldi.ports[0],
911 						ep->l2t)));
912 			t5req->rsvd = cpu_to_be32(isn);
913 			PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
914 			t5req->opt2 = cpu_to_be32(opt2);
915 		}
916 	} else {
917 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
918 		case CHELSIO_T4:
919 			req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
920 			INIT_TP_WR(req6, 0);
921 			break;
922 		case CHELSIO_T5:
923 			t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
924 					wrlen);
925 			INIT_TP_WR(t5req6, 0);
926 			req6 = (struct cpl_act_open_req6 *)t5req6;
927 			break;
928 		case CHELSIO_T6:
929 			t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
930 					wrlen);
931 			INIT_TP_WR(t6req6, 0);
932 			req6 = (struct cpl_act_open_req6 *)t6req6;
933 			t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
934 			break;
935 		default:
936 			pr_err("T%d Chip is not supported\n",
937 			       CHELSIO_CHIP_VERSION(adapter_type));
938 			ret = -EINVAL;
939 			goto clip_release;
940 		}
941 
942 		OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
943 					((ep->rss_qid<<14)|ep->atid)));
944 		req6->local_port = la6->sin6_port;
945 		req6->peer_port = ra6->sin6_port;
946 		req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
947 		req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
948 		req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
949 		req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
950 		req6->opt0 = cpu_to_be64(opt0);
951 
952 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
953 			req6->params = cpu_to_be32(cxgb4_select_ntuple(
954 						ep->com.dev->rdev.lldi.ports[0],
955 						ep->l2t));
956 			req6->opt2 = cpu_to_be32(opt2);
957 		} else {
958 			t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
959 						cxgb4_select_ntuple(
960 						ep->com.dev->rdev.lldi.ports[0],
961 						ep->l2t)));
962 			t5req6->rsvd = cpu_to_be32(isn);
963 			PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
964 			t5req6->opt2 = cpu_to_be32(opt2);
965 		}
966 	}
967 
968 	set_bit(ACT_OPEN_REQ, &ep->com.history);
969 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
970 clip_release:
971 	if (ret && ep->com.remote_addr.ss_family == AF_INET6)
972 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
973 				   (const u32 *)&la6->sin6_addr.s6_addr, 1);
974 	return ret;
975 }
976 
977 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
978 			u8 mpa_rev_to_use)
979 {
980 	int mpalen, wrlen, ret;
981 	struct fw_ofld_tx_data_wr *req;
982 	struct mpa_message *mpa;
983 	struct mpa_v2_conn_params mpa_v2_params;
984 
985 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
986 
987 	BUG_ON(skb_cloned(skb));
988 
989 	mpalen = sizeof(*mpa) + ep->plen;
990 	if (mpa_rev_to_use == 2)
991 		mpalen += sizeof(struct mpa_v2_conn_params);
992 	wrlen = roundup(mpalen + sizeof *req, 16);
993 	skb = get_skb(skb, wrlen, GFP_KERNEL);
994 	if (!skb) {
995 		connect_reply_upcall(ep, -ENOMEM);
996 		return -ENOMEM;
997 	}
998 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
999 
1000 	req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
1001 	memset(req, 0, wrlen);
1002 	req->op_to_immdlen = cpu_to_be32(
1003 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1004 		FW_WR_COMPL_F |
1005 		FW_WR_IMMDLEN_V(mpalen));
1006 	req->flowid_len16 = cpu_to_be32(
1007 		FW_WR_FLOWID_V(ep->hwtid) |
1008 		FW_WR_LEN16_V(wrlen >> 4));
1009 	req->plen = cpu_to_be32(mpalen);
1010 	req->tunnel_to_proxy = cpu_to_be32(
1011 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1012 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1013 
1014 	mpa = (struct mpa_message *)(req + 1);
1015 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
1016 
1017 	mpa->flags = 0;
1018 	if (crc_enabled)
1019 		mpa->flags |= MPA_CRC;
1020 	if (markers_enabled) {
1021 		mpa->flags |= MPA_MARKERS;
1022 		ep->mpa_attr.recv_marker_enabled = 1;
1023 	} else {
1024 		ep->mpa_attr.recv_marker_enabled = 0;
1025 	}
1026 	if (mpa_rev_to_use == 2)
1027 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1028 
1029 	mpa->private_data_size = htons(ep->plen);
1030 	mpa->revision = mpa_rev_to_use;
1031 	if (mpa_rev_to_use == 1) {
1032 		ep->tried_with_mpa_v1 = 1;
1033 		ep->retry_with_mpa_v1 = 0;
1034 	}
1035 
1036 	if (mpa_rev_to_use == 2) {
1037 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1038 					       sizeof (struct mpa_v2_conn_params));
1039 		PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1040 		     ep->ord);
1041 		mpa_v2_params.ird = htons((u16)ep->ird);
1042 		mpa_v2_params.ord = htons((u16)ep->ord);
1043 
1044 		if (peer2peer) {
1045 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1046 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1047 				mpa_v2_params.ord |=
1048 					htons(MPA_V2_RDMA_WRITE_RTR);
1049 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1050 				mpa_v2_params.ord |=
1051 					htons(MPA_V2_RDMA_READ_RTR);
1052 		}
1053 		memcpy(mpa->private_data, &mpa_v2_params,
1054 		       sizeof(struct mpa_v2_conn_params));
1055 
1056 		if (ep->plen)
1057 			memcpy(mpa->private_data +
1058 			       sizeof(struct mpa_v2_conn_params),
1059 			       ep->mpa_pkt + sizeof(*mpa), ep->plen);
1060 	} else
1061 		if (ep->plen)
1062 			memcpy(mpa->private_data,
1063 					ep->mpa_pkt + sizeof(*mpa), ep->plen);
1064 
1065 	/*
1066 	 * Reference the mpa skb.  This ensures the data area
1067 	 * will remain in memory until the hw acks the tx.
1068 	 * Function fw4_ack() will deref it.
1069 	 */
1070 	skb_get(skb);
1071 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1072 	BUG_ON(ep->mpa_skb);
1073 	ep->mpa_skb = skb;
1074 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1075 	if (ret)
1076 		return ret;
1077 	start_ep_timer(ep);
1078 	__state_set(&ep->com, MPA_REQ_SENT);
1079 	ep->mpa_attr.initiator = 1;
1080 	ep->snd_seq += mpalen;
1081 	return ret;
1082 }
1083 
1084 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1085 {
1086 	int mpalen, wrlen;
1087 	struct fw_ofld_tx_data_wr *req;
1088 	struct mpa_message *mpa;
1089 	struct sk_buff *skb;
1090 	struct mpa_v2_conn_params mpa_v2_params;
1091 
1092 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1093 
1094 	mpalen = sizeof(*mpa) + plen;
1095 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1096 		mpalen += sizeof(struct mpa_v2_conn_params);
1097 	wrlen = roundup(mpalen + sizeof *req, 16);
1098 
1099 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1100 	if (!skb) {
1101 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1102 		return -ENOMEM;
1103 	}
1104 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1105 
1106 	req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
1107 	memset(req, 0, wrlen);
1108 	req->op_to_immdlen = cpu_to_be32(
1109 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1110 		FW_WR_COMPL_F |
1111 		FW_WR_IMMDLEN_V(mpalen));
1112 	req->flowid_len16 = cpu_to_be32(
1113 		FW_WR_FLOWID_V(ep->hwtid) |
1114 		FW_WR_LEN16_V(wrlen >> 4));
1115 	req->plen = cpu_to_be32(mpalen);
1116 	req->tunnel_to_proxy = cpu_to_be32(
1117 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1118 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1119 
1120 	mpa = (struct mpa_message *)(req + 1);
1121 	memset(mpa, 0, sizeof(*mpa));
1122 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1123 	mpa->flags = MPA_REJECT;
1124 	mpa->revision = ep->mpa_attr.version;
1125 	mpa->private_data_size = htons(plen);
1126 
1127 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1128 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1129 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1130 					       sizeof (struct mpa_v2_conn_params));
1131 		mpa_v2_params.ird = htons(((u16)ep->ird) |
1132 					  (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1133 					   0));
1134 		mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1135 					  (p2p_type ==
1136 					   FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1137 					   MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1138 					   FW_RI_INIT_P2PTYPE_READ_REQ ?
1139 					   MPA_V2_RDMA_READ_RTR : 0) : 0));
1140 		memcpy(mpa->private_data, &mpa_v2_params,
1141 		       sizeof(struct mpa_v2_conn_params));
1142 
1143 		if (ep->plen)
1144 			memcpy(mpa->private_data +
1145 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1146 	} else
1147 		if (plen)
1148 			memcpy(mpa->private_data, pdata, plen);
1149 
1150 	/*
1151 	 * Reference the mpa skb again.  This ensures the data area
1152 	 * will remain in memory until the hw acks the tx.
1153 	 * Function fw4_ack() will deref it.
1154 	 */
1155 	skb_get(skb);
1156 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1157 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1158 	BUG_ON(ep->mpa_skb);
1159 	ep->mpa_skb = skb;
1160 	ep->snd_seq += mpalen;
1161 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1162 }
1163 
1164 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1165 {
1166 	int mpalen, wrlen;
1167 	struct fw_ofld_tx_data_wr *req;
1168 	struct mpa_message *mpa;
1169 	struct sk_buff *skb;
1170 	struct mpa_v2_conn_params mpa_v2_params;
1171 
1172 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1173 
1174 	mpalen = sizeof(*mpa) + plen;
1175 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1176 		mpalen += sizeof(struct mpa_v2_conn_params);
1177 	wrlen = roundup(mpalen + sizeof *req, 16);
1178 
1179 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1180 	if (!skb) {
1181 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1182 		return -ENOMEM;
1183 	}
1184 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1185 
1186 	req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
1187 	memset(req, 0, wrlen);
1188 	req->op_to_immdlen = cpu_to_be32(
1189 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1190 		FW_WR_COMPL_F |
1191 		FW_WR_IMMDLEN_V(mpalen));
1192 	req->flowid_len16 = cpu_to_be32(
1193 		FW_WR_FLOWID_V(ep->hwtid) |
1194 		FW_WR_LEN16_V(wrlen >> 4));
1195 	req->plen = cpu_to_be32(mpalen);
1196 	req->tunnel_to_proxy = cpu_to_be32(
1197 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1198 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1199 
1200 	mpa = (struct mpa_message *)(req + 1);
1201 	memset(mpa, 0, sizeof(*mpa));
1202 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1203 	mpa->flags = 0;
1204 	if (ep->mpa_attr.crc_enabled)
1205 		mpa->flags |= MPA_CRC;
1206 	if (ep->mpa_attr.recv_marker_enabled)
1207 		mpa->flags |= MPA_MARKERS;
1208 	mpa->revision = ep->mpa_attr.version;
1209 	mpa->private_data_size = htons(plen);
1210 
1211 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1212 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1213 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1214 					       sizeof (struct mpa_v2_conn_params));
1215 		mpa_v2_params.ird = htons((u16)ep->ird);
1216 		mpa_v2_params.ord = htons((u16)ep->ord);
1217 		if (peer2peer && (ep->mpa_attr.p2p_type !=
1218 					FW_RI_INIT_P2PTYPE_DISABLED)) {
1219 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1220 
1221 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1222 				mpa_v2_params.ord |=
1223 					htons(MPA_V2_RDMA_WRITE_RTR);
1224 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1225 				mpa_v2_params.ord |=
1226 					htons(MPA_V2_RDMA_READ_RTR);
1227 		}
1228 
1229 		memcpy(mpa->private_data, &mpa_v2_params,
1230 		       sizeof(struct mpa_v2_conn_params));
1231 
1232 		if (ep->plen)
1233 			memcpy(mpa->private_data +
1234 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1235 	} else
1236 		if (plen)
1237 			memcpy(mpa->private_data, pdata, plen);
1238 
1239 	/*
1240 	 * Reference the mpa skb.  This ensures the data area
1241 	 * will remain in memory until the hw acks the tx.
1242 	 * Function fw4_ack() will deref it.
1243 	 */
1244 	skb_get(skb);
1245 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1246 	ep->mpa_skb = skb;
1247 	__state_set(&ep->com, MPA_REP_SENT);
1248 	ep->snd_seq += mpalen;
1249 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1250 }
1251 
1252 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1253 {
1254 	struct c4iw_ep *ep;
1255 	struct cpl_act_establish *req = cplhdr(skb);
1256 	unsigned int tid = GET_TID(req);
1257 	unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1258 	struct tid_info *t = dev->rdev.lldi.tids;
1259 	int ret;
1260 
1261 	ep = lookup_atid(t, atid);
1262 
1263 	PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1264 	     be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1265 
1266 	mutex_lock(&ep->com.mutex);
1267 	dst_confirm(ep->dst);
1268 
1269 	/* setup the hwtid for this connection */
1270 	ep->hwtid = tid;
1271 	cxgb4_insert_tid(t, ep, tid);
1272 	insert_ep_tid(ep);
1273 
1274 	ep->snd_seq = be32_to_cpu(req->snd_isn);
1275 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1276 
1277 	set_emss(ep, ntohs(req->tcp_opt));
1278 
1279 	/* dealloc the atid */
1280 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1281 	cxgb4_free_atid(t, atid);
1282 	set_bit(ACT_ESTAB, &ep->com.history);
1283 
1284 	/* start MPA negotiation */
1285 	ret = send_flowc(ep);
1286 	if (ret)
1287 		goto err;
1288 	if (ep->retry_with_mpa_v1)
1289 		ret = send_mpa_req(ep, skb, 1);
1290 	else
1291 		ret = send_mpa_req(ep, skb, mpa_rev);
1292 	if (ret)
1293 		goto err;
1294 	mutex_unlock(&ep->com.mutex);
1295 	return 0;
1296 err:
1297 	mutex_unlock(&ep->com.mutex);
1298 	connect_reply_upcall(ep, -ENOMEM);
1299 	c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1300 	return 0;
1301 }
1302 
1303 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1304 {
1305 	struct iw_cm_event event;
1306 
1307 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1308 	memset(&event, 0, sizeof(event));
1309 	event.event = IW_CM_EVENT_CLOSE;
1310 	event.status = status;
1311 	if (ep->com.cm_id) {
1312 		PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1313 		     ep, ep->com.cm_id, ep->hwtid);
1314 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1315 		deref_cm_id(&ep->com);
1316 		set_bit(CLOSE_UPCALL, &ep->com.history);
1317 	}
1318 }
1319 
1320 static void peer_close_upcall(struct c4iw_ep *ep)
1321 {
1322 	struct iw_cm_event event;
1323 
1324 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1325 	memset(&event, 0, sizeof(event));
1326 	event.event = IW_CM_EVENT_DISCONNECT;
1327 	if (ep->com.cm_id) {
1328 		PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1329 		     ep, ep->com.cm_id, ep->hwtid);
1330 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1331 		set_bit(DISCONN_UPCALL, &ep->com.history);
1332 	}
1333 }
1334 
1335 static void peer_abort_upcall(struct c4iw_ep *ep)
1336 {
1337 	struct iw_cm_event event;
1338 
1339 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1340 	memset(&event, 0, sizeof(event));
1341 	event.event = IW_CM_EVENT_CLOSE;
1342 	event.status = -ECONNRESET;
1343 	if (ep->com.cm_id) {
1344 		PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
1345 		     ep->com.cm_id, ep->hwtid);
1346 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1347 		deref_cm_id(&ep->com);
1348 		set_bit(ABORT_UPCALL, &ep->com.history);
1349 	}
1350 }
1351 
1352 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1353 {
1354 	struct iw_cm_event event;
1355 
1356 	PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
1357 	memset(&event, 0, sizeof(event));
1358 	event.event = IW_CM_EVENT_CONNECT_REPLY;
1359 	event.status = status;
1360 	memcpy(&event.local_addr, &ep->com.local_addr,
1361 	       sizeof(ep->com.local_addr));
1362 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1363 	       sizeof(ep->com.remote_addr));
1364 
1365 	if ((status == 0) || (status == -ECONNREFUSED)) {
1366 		if (!ep->tried_with_mpa_v1) {
1367 			/* this means MPA_v2 is used */
1368 			event.ord = ep->ird;
1369 			event.ird = ep->ord;
1370 			event.private_data_len = ep->plen -
1371 				sizeof(struct mpa_v2_conn_params);
1372 			event.private_data = ep->mpa_pkt +
1373 				sizeof(struct mpa_message) +
1374 				sizeof(struct mpa_v2_conn_params);
1375 		} else {
1376 			/* this means MPA_v1 is used */
1377 			event.ord = cur_max_read_depth(ep->com.dev);
1378 			event.ird = cur_max_read_depth(ep->com.dev);
1379 			event.private_data_len = ep->plen;
1380 			event.private_data = ep->mpa_pkt +
1381 				sizeof(struct mpa_message);
1382 		}
1383 	}
1384 
1385 	PDBG("%s ep %p tid %u status %d\n", __func__, ep,
1386 	     ep->hwtid, status);
1387 	set_bit(CONN_RPL_UPCALL, &ep->com.history);
1388 	ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1389 
1390 	if (status < 0)
1391 		deref_cm_id(&ep->com);
1392 }
1393 
1394 static int connect_request_upcall(struct c4iw_ep *ep)
1395 {
1396 	struct iw_cm_event event;
1397 	int ret;
1398 
1399 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1400 	memset(&event, 0, sizeof(event));
1401 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
1402 	memcpy(&event.local_addr, &ep->com.local_addr,
1403 	       sizeof(ep->com.local_addr));
1404 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1405 	       sizeof(ep->com.remote_addr));
1406 	event.provider_data = ep;
1407 	if (!ep->tried_with_mpa_v1) {
1408 		/* this means MPA_v2 is used */
1409 		event.ord = ep->ord;
1410 		event.ird = ep->ird;
1411 		event.private_data_len = ep->plen -
1412 			sizeof(struct mpa_v2_conn_params);
1413 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1414 			sizeof(struct mpa_v2_conn_params);
1415 	} else {
1416 		/* this means MPA_v1 is used. Send max supported */
1417 		event.ord = cur_max_read_depth(ep->com.dev);
1418 		event.ird = cur_max_read_depth(ep->com.dev);
1419 		event.private_data_len = ep->plen;
1420 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1421 	}
1422 	c4iw_get_ep(&ep->com);
1423 	ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1424 						      &event);
1425 	if (ret)
1426 		c4iw_put_ep(&ep->com);
1427 	set_bit(CONNREQ_UPCALL, &ep->com.history);
1428 	c4iw_put_ep(&ep->parent_ep->com);
1429 	return ret;
1430 }
1431 
1432 static void established_upcall(struct c4iw_ep *ep)
1433 {
1434 	struct iw_cm_event event;
1435 
1436 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1437 	memset(&event, 0, sizeof(event));
1438 	event.event = IW_CM_EVENT_ESTABLISHED;
1439 	event.ird = ep->ord;
1440 	event.ord = ep->ird;
1441 	if (ep->com.cm_id) {
1442 		PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1443 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1444 		set_bit(ESTAB_UPCALL, &ep->com.history);
1445 	}
1446 }
1447 
1448 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1449 {
1450 	struct cpl_rx_data_ack *req;
1451 	struct sk_buff *skb;
1452 	int wrlen = roundup(sizeof *req, 16);
1453 
1454 	PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1455 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1456 	if (!skb) {
1457 		printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1458 		return 0;
1459 	}
1460 
1461 	/*
1462 	 * If we couldn't specify the entire rcv window at connection setup
1463 	 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1464 	 * then add the overage in to the credits returned.
1465 	 */
1466 	if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1467 		credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1468 
1469 	req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
1470 	memset(req, 0, wrlen);
1471 	INIT_TP_WR(req, ep->hwtid);
1472 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
1473 						    ep->hwtid));
1474 	req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F |
1475 				       RX_DACK_CHANGE_F |
1476 				       RX_DACK_MODE_V(dack_mode));
1477 	set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
1478 	c4iw_ofld_send(&ep->com.dev->rdev, skb);
1479 	return credits;
1480 }
1481 
1482 #define RELAXED_IRD_NEGOTIATION 1
1483 
1484 /*
1485  * process_mpa_reply - process streaming mode MPA reply
1486  *
1487  * Returns:
1488  *
1489  * 0 upon success indicating a connect request was delivered to the ULP
1490  * or the mpa request is incomplete but valid so far.
1491  *
1492  * 1 if a failure requires the caller to close the connection.
1493  *
1494  * 2 if a failure requires the caller to abort the connection.
1495  */
1496 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1497 {
1498 	struct mpa_message *mpa;
1499 	struct mpa_v2_conn_params *mpa_v2_params;
1500 	u16 plen;
1501 	u16 resp_ird, resp_ord;
1502 	u8 rtr_mismatch = 0, insuff_ird = 0;
1503 	struct c4iw_qp_attributes attrs;
1504 	enum c4iw_qp_attr_mask mask;
1505 	int err;
1506 	int disconnect = 0;
1507 
1508 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1509 
1510 	/*
1511 	 * If we get more than the supported amount of private data
1512 	 * then we must fail this connection.
1513 	 */
1514 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1515 		err = -EINVAL;
1516 		goto err_stop_timer;
1517 	}
1518 
1519 	/*
1520 	 * copy the new data into our accumulation buffer.
1521 	 */
1522 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1523 				  skb->len);
1524 	ep->mpa_pkt_len += skb->len;
1525 
1526 	/*
1527 	 * if we don't even have the mpa message, then bail.
1528 	 */
1529 	if (ep->mpa_pkt_len < sizeof(*mpa))
1530 		return 0;
1531 	mpa = (struct mpa_message *) ep->mpa_pkt;
1532 
1533 	/* Validate MPA header. */
1534 	if (mpa->revision > mpa_rev) {
1535 		printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1536 		       " Received = %d\n", __func__, mpa_rev, mpa->revision);
1537 		err = -EPROTO;
1538 		goto err_stop_timer;
1539 	}
1540 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1541 		err = -EPROTO;
1542 		goto err_stop_timer;
1543 	}
1544 
1545 	plen = ntohs(mpa->private_data_size);
1546 
1547 	/*
1548 	 * Fail if there's too much private data.
1549 	 */
1550 	if (plen > MPA_MAX_PRIVATE_DATA) {
1551 		err = -EPROTO;
1552 		goto err_stop_timer;
1553 	}
1554 
1555 	/*
1556 	 * If plen does not account for pkt size
1557 	 */
1558 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1559 		err = -EPROTO;
1560 		goto err_stop_timer;
1561 	}
1562 
1563 	ep->plen = (u8) plen;
1564 
1565 	/*
1566 	 * If we don't have all the pdata yet, then bail.
1567 	 * We'll continue process when more data arrives.
1568 	 */
1569 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1570 		return 0;
1571 
1572 	if (mpa->flags & MPA_REJECT) {
1573 		err = -ECONNREFUSED;
1574 		goto err_stop_timer;
1575 	}
1576 
1577 	/*
1578 	 * Stop mpa timer.  If it expired, then
1579 	 * we ignore the MPA reply.  process_timeout()
1580 	 * will abort the connection.
1581 	 */
1582 	if (stop_ep_timer(ep))
1583 		return 0;
1584 
1585 	/*
1586 	 * If we get here we have accumulated the entire mpa
1587 	 * start reply message including private data. And
1588 	 * the MPA header is valid.
1589 	 */
1590 	__state_set(&ep->com, FPDU_MODE);
1591 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1592 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1593 	ep->mpa_attr.version = mpa->revision;
1594 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1595 
1596 	if (mpa->revision == 2) {
1597 		ep->mpa_attr.enhanced_rdma_conn =
1598 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1599 		if (ep->mpa_attr.enhanced_rdma_conn) {
1600 			mpa_v2_params = (struct mpa_v2_conn_params *)
1601 				(ep->mpa_pkt + sizeof(*mpa));
1602 			resp_ird = ntohs(mpa_v2_params->ird) &
1603 				MPA_V2_IRD_ORD_MASK;
1604 			resp_ord = ntohs(mpa_v2_params->ord) &
1605 				MPA_V2_IRD_ORD_MASK;
1606 			PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1607 			     __func__, resp_ird, resp_ord, ep->ird, ep->ord);
1608 
1609 			/*
1610 			 * This is a double-check. Ideally, below checks are
1611 			 * not required since ird/ord stuff has been taken
1612 			 * care of in c4iw_accept_cr
1613 			 */
1614 			if (ep->ird < resp_ord) {
1615 				if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1616 				    ep->com.dev->rdev.lldi.max_ordird_qp)
1617 					ep->ird = resp_ord;
1618 				else
1619 					insuff_ird = 1;
1620 			} else if (ep->ird > resp_ord) {
1621 				ep->ird = resp_ord;
1622 			}
1623 			if (ep->ord > resp_ird) {
1624 				if (RELAXED_IRD_NEGOTIATION)
1625 					ep->ord = resp_ird;
1626 				else
1627 					insuff_ird = 1;
1628 			}
1629 			if (insuff_ird) {
1630 				err = -ENOMEM;
1631 				ep->ird = resp_ord;
1632 				ep->ord = resp_ird;
1633 			}
1634 
1635 			if (ntohs(mpa_v2_params->ird) &
1636 					MPA_V2_PEER2PEER_MODEL) {
1637 				if (ntohs(mpa_v2_params->ord) &
1638 						MPA_V2_RDMA_WRITE_RTR)
1639 					ep->mpa_attr.p2p_type =
1640 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1641 				else if (ntohs(mpa_v2_params->ord) &
1642 						MPA_V2_RDMA_READ_RTR)
1643 					ep->mpa_attr.p2p_type =
1644 						FW_RI_INIT_P2PTYPE_READ_REQ;
1645 			}
1646 		}
1647 	} else if (mpa->revision == 1)
1648 		if (peer2peer)
1649 			ep->mpa_attr.p2p_type = p2p_type;
1650 
1651 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1652 	     "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1653 	     "%d\n", __func__, ep->mpa_attr.crc_enabled,
1654 	     ep->mpa_attr.recv_marker_enabled,
1655 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1656 	     ep->mpa_attr.p2p_type, p2p_type);
1657 
1658 	/*
1659 	 * If responder's RTR does not match with that of initiator, assign
1660 	 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1661 	 * generated when moving QP to RTS state.
1662 	 * A TERM message will be sent after QP has moved to RTS state
1663 	 */
1664 	if ((ep->mpa_attr.version == 2) && peer2peer &&
1665 			(ep->mpa_attr.p2p_type != p2p_type)) {
1666 		ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1667 		rtr_mismatch = 1;
1668 	}
1669 
1670 	attrs.mpa_attr = ep->mpa_attr;
1671 	attrs.max_ird = ep->ird;
1672 	attrs.max_ord = ep->ord;
1673 	attrs.llp_stream_handle = ep;
1674 	attrs.next_state = C4IW_QP_STATE_RTS;
1675 
1676 	mask = C4IW_QP_ATTR_NEXT_STATE |
1677 	    C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1678 	    C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1679 
1680 	/* bind QP and TID with INIT_WR */
1681 	err = c4iw_modify_qp(ep->com.qp->rhp,
1682 			     ep->com.qp, mask, &attrs, 1);
1683 	if (err)
1684 		goto err;
1685 
1686 	/*
1687 	 * If responder's RTR requirement did not match with what initiator
1688 	 * supports, generate TERM message
1689 	 */
1690 	if (rtr_mismatch) {
1691 		printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1692 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1693 		attrs.ecode = MPA_NOMATCH_RTR;
1694 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1695 		attrs.send_term = 1;
1696 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1697 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1698 		err = -ENOMEM;
1699 		disconnect = 1;
1700 		goto out;
1701 	}
1702 
1703 	/*
1704 	 * Generate TERM if initiator IRD is not sufficient for responder
1705 	 * provided ORD. Currently, we do the same behaviour even when
1706 	 * responder provided IRD is also not sufficient as regards to
1707 	 * initiator ORD.
1708 	 */
1709 	if (insuff_ird) {
1710 		printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1711 				__func__);
1712 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1713 		attrs.ecode = MPA_INSUFF_IRD;
1714 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1715 		attrs.send_term = 1;
1716 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1717 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1718 		err = -ENOMEM;
1719 		disconnect = 1;
1720 		goto out;
1721 	}
1722 	goto out;
1723 err_stop_timer:
1724 	stop_ep_timer(ep);
1725 err:
1726 	disconnect = 2;
1727 out:
1728 	connect_reply_upcall(ep, err);
1729 	return disconnect;
1730 }
1731 
1732 /*
1733  * process_mpa_request - process streaming mode MPA request
1734  *
1735  * Returns:
1736  *
1737  * 0 upon success indicating a connect request was delivered to the ULP
1738  * or the mpa request is incomplete but valid so far.
1739  *
1740  * 1 if a failure requires the caller to close the connection.
1741  *
1742  * 2 if a failure requires the caller to abort the connection.
1743  */
1744 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1745 {
1746 	struct mpa_message *mpa;
1747 	struct mpa_v2_conn_params *mpa_v2_params;
1748 	u16 plen;
1749 
1750 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1751 
1752 	/*
1753 	 * If we get more than the supported amount of private data
1754 	 * then we must fail this connection.
1755 	 */
1756 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1757 		goto err_stop_timer;
1758 
1759 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1760 
1761 	/*
1762 	 * Copy the new data into our accumulation buffer.
1763 	 */
1764 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1765 				  skb->len);
1766 	ep->mpa_pkt_len += skb->len;
1767 
1768 	/*
1769 	 * If we don't even have the mpa message, then bail.
1770 	 * We'll continue process when more data arrives.
1771 	 */
1772 	if (ep->mpa_pkt_len < sizeof(*mpa))
1773 		return 0;
1774 
1775 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1776 	mpa = (struct mpa_message *) ep->mpa_pkt;
1777 
1778 	/*
1779 	 * Validate MPA Header.
1780 	 */
1781 	if (mpa->revision > mpa_rev) {
1782 		printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1783 		       " Received = %d\n", __func__, mpa_rev, mpa->revision);
1784 		goto err_stop_timer;
1785 	}
1786 
1787 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1788 		goto err_stop_timer;
1789 
1790 	plen = ntohs(mpa->private_data_size);
1791 
1792 	/*
1793 	 * Fail if there's too much private data.
1794 	 */
1795 	if (plen > MPA_MAX_PRIVATE_DATA)
1796 		goto err_stop_timer;
1797 
1798 	/*
1799 	 * If plen does not account for pkt size
1800 	 */
1801 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1802 		goto err_stop_timer;
1803 	ep->plen = (u8) plen;
1804 
1805 	/*
1806 	 * If we don't have all the pdata yet, then bail.
1807 	 */
1808 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1809 		return 0;
1810 
1811 	/*
1812 	 * If we get here we have accumulated the entire mpa
1813 	 * start reply message including private data.
1814 	 */
1815 	ep->mpa_attr.initiator = 0;
1816 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1817 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1818 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1819 	ep->mpa_attr.version = mpa->revision;
1820 	if (mpa->revision == 1)
1821 		ep->tried_with_mpa_v1 = 1;
1822 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1823 
1824 	if (mpa->revision == 2) {
1825 		ep->mpa_attr.enhanced_rdma_conn =
1826 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1827 		if (ep->mpa_attr.enhanced_rdma_conn) {
1828 			mpa_v2_params = (struct mpa_v2_conn_params *)
1829 				(ep->mpa_pkt + sizeof(*mpa));
1830 			ep->ird = ntohs(mpa_v2_params->ird) &
1831 				MPA_V2_IRD_ORD_MASK;
1832 			ep->ird = min_t(u32, ep->ird,
1833 					cur_max_read_depth(ep->com.dev));
1834 			ep->ord = ntohs(mpa_v2_params->ord) &
1835 				MPA_V2_IRD_ORD_MASK;
1836 			ep->ord = min_t(u32, ep->ord,
1837 					cur_max_read_depth(ep->com.dev));
1838 			PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1839 			     ep->ord);
1840 			if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1841 				if (peer2peer) {
1842 					if (ntohs(mpa_v2_params->ord) &
1843 							MPA_V2_RDMA_WRITE_RTR)
1844 						ep->mpa_attr.p2p_type =
1845 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1846 					else if (ntohs(mpa_v2_params->ord) &
1847 							MPA_V2_RDMA_READ_RTR)
1848 						ep->mpa_attr.p2p_type =
1849 						FW_RI_INIT_P2PTYPE_READ_REQ;
1850 				}
1851 		}
1852 	} else if (mpa->revision == 1)
1853 		if (peer2peer)
1854 			ep->mpa_attr.p2p_type = p2p_type;
1855 
1856 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1857 	     "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1858 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1859 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1860 	     ep->mpa_attr.p2p_type);
1861 
1862 	__state_set(&ep->com, MPA_REQ_RCVD);
1863 
1864 	/* drive upcall */
1865 	mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1866 	if (ep->parent_ep->com.state != DEAD) {
1867 		if (connect_request_upcall(ep))
1868 			goto err_unlock_parent;
1869 	} else {
1870 		goto err_unlock_parent;
1871 	}
1872 	mutex_unlock(&ep->parent_ep->com.mutex);
1873 	return 0;
1874 
1875 err_unlock_parent:
1876 	mutex_unlock(&ep->parent_ep->com.mutex);
1877 	goto err_out;
1878 err_stop_timer:
1879 	(void)stop_ep_timer(ep);
1880 err_out:
1881 	return 2;
1882 }
1883 
1884 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1885 {
1886 	struct c4iw_ep *ep;
1887 	struct cpl_rx_data *hdr = cplhdr(skb);
1888 	unsigned int dlen = ntohs(hdr->len);
1889 	unsigned int tid = GET_TID(hdr);
1890 	__u8 status = hdr->status;
1891 	int disconnect = 0;
1892 
1893 	ep = get_ep_from_tid(dev, tid);
1894 	if (!ep)
1895 		return 0;
1896 	PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1897 	skb_pull(skb, sizeof(*hdr));
1898 	skb_trim(skb, dlen);
1899 	mutex_lock(&ep->com.mutex);
1900 
1901 	/* update RX credits */
1902 	update_rx_credits(ep, dlen);
1903 
1904 	switch (ep->com.state) {
1905 	case MPA_REQ_SENT:
1906 		ep->rcv_seq += dlen;
1907 		disconnect = process_mpa_reply(ep, skb);
1908 		break;
1909 	case MPA_REQ_WAIT:
1910 		ep->rcv_seq += dlen;
1911 		disconnect = process_mpa_request(ep, skb);
1912 		break;
1913 	case FPDU_MODE: {
1914 		struct c4iw_qp_attributes attrs;
1915 		BUG_ON(!ep->com.qp);
1916 		if (status)
1917 			pr_err("%s Unexpected streaming data." \
1918 			       " qpid %u ep %p state %d tid %u status %d\n",
1919 			       __func__, ep->com.qp->wq.sq.qid, ep,
1920 			       ep->com.state, ep->hwtid, status);
1921 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1922 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1923 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1924 		disconnect = 1;
1925 		break;
1926 	}
1927 	default:
1928 		break;
1929 	}
1930 	mutex_unlock(&ep->com.mutex);
1931 	if (disconnect)
1932 		c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1933 	c4iw_put_ep(&ep->com);
1934 	return 0;
1935 }
1936 
1937 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1938 {
1939 	struct c4iw_ep *ep;
1940 	struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1941 	int release = 0;
1942 	unsigned int tid = GET_TID(rpl);
1943 
1944 	ep = get_ep_from_tid(dev, tid);
1945 	if (!ep) {
1946 		printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1947 		return 0;
1948 	}
1949 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1950 	mutex_lock(&ep->com.mutex);
1951 	switch (ep->com.state) {
1952 	case ABORTING:
1953 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1954 		__state_set(&ep->com, DEAD);
1955 		release = 1;
1956 		break;
1957 	default:
1958 		printk(KERN_ERR "%s ep %p state %d\n",
1959 		     __func__, ep, ep->com.state);
1960 		break;
1961 	}
1962 	mutex_unlock(&ep->com.mutex);
1963 
1964 	if (release)
1965 		release_ep_resources(ep);
1966 	c4iw_put_ep(&ep->com);
1967 	return 0;
1968 }
1969 
1970 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1971 {
1972 	struct sk_buff *skb;
1973 	struct fw_ofld_connection_wr *req;
1974 	unsigned int mtu_idx;
1975 	int wscale;
1976 	struct sockaddr_in *sin;
1977 	int win;
1978 
1979 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1980 	req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1981 	memset(req, 0, sizeof(*req));
1982 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1983 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1984 	req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1985 				     ep->com.dev->rdev.lldi.ports[0],
1986 				     ep->l2t));
1987 	sin = (struct sockaddr_in *)&ep->com.local_addr;
1988 	req->le.lport = sin->sin_port;
1989 	req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1990 	sin = (struct sockaddr_in *)&ep->com.remote_addr;
1991 	req->le.pport = sin->sin_port;
1992 	req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1993 	req->tcb.t_state_to_astid =
1994 			htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1995 			FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1996 	req->tcb.cplrxdataack_cplpassacceptrpl =
1997 			htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1998 	req->tcb.tx_max = (__force __be32) jiffies;
1999 	req->tcb.rcv_adv = htons(1);
2000 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2001 		 enable_tcp_timestamps,
2002 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2003 	wscale = compute_wscale(rcv_win);
2004 
2005 	/*
2006 	 * Specify the largest window that will fit in opt0. The
2007 	 * remainder will be specified in the rx_data_ack.
2008 	 */
2009 	win = ep->rcv_win >> 10;
2010 	if (win > RCV_BUFSIZ_M)
2011 		win = RCV_BUFSIZ_M;
2012 
2013 	req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2014 		(nocong ? NO_CONG_F : 0) |
2015 		KEEP_ALIVE_F |
2016 		DELACK_F |
2017 		WND_SCALE_V(wscale) |
2018 		MSS_IDX_V(mtu_idx) |
2019 		L2T_IDX_V(ep->l2t->idx) |
2020 		TX_CHAN_V(ep->tx_chan) |
2021 		SMAC_SEL_V(ep->smac_idx) |
2022 		DSCP_V(ep->tos >> 2) |
2023 		ULP_MODE_V(ULP_MODE_TCPDDP) |
2024 		RCV_BUFSIZ_V(win));
2025 	req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2026 		TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2027 		RX_CHANNEL_V(0) |
2028 		CCTRL_ECN_V(enable_ecn) |
2029 		RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2030 	if (enable_tcp_timestamps)
2031 		req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2032 	if (enable_tcp_sack)
2033 		req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2034 	if (wscale && enable_tcp_window_scaling)
2035 		req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2036 	req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2037 	req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2038 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2039 	set_bit(ACT_OFLD_CONN, &ep->com.history);
2040 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2041 }
2042 
2043 /*
2044  * Some of the error codes above implicitly indicate that there is no TID
2045  * allocated with the result of an ACT_OPEN.  We use this predicate to make
2046  * that explicit.
2047  */
2048 static inline int act_open_has_tid(int status)
2049 {
2050 	return (status != CPL_ERR_TCAM_PARITY &&
2051 		status != CPL_ERR_TCAM_MISS &&
2052 		status != CPL_ERR_TCAM_FULL &&
2053 		status != CPL_ERR_CONN_EXIST_SYNRECV &&
2054 		status != CPL_ERR_CONN_EXIST);
2055 }
2056 
2057 /* Returns whether a CPL status conveys negative advice.
2058  */
2059 static int is_neg_adv(unsigned int status)
2060 {
2061 	return status == CPL_ERR_RTX_NEG_ADVICE ||
2062 	       status == CPL_ERR_PERSIST_NEG_ADVICE ||
2063 	       status == CPL_ERR_KEEPALV_NEG_ADVICE;
2064 }
2065 
2066 static char *neg_adv_str(unsigned int status)
2067 {
2068 	switch (status) {
2069 	case CPL_ERR_RTX_NEG_ADVICE:
2070 		return "Retransmit timeout";
2071 	case CPL_ERR_PERSIST_NEG_ADVICE:
2072 		return "Persist timeout";
2073 	case CPL_ERR_KEEPALV_NEG_ADVICE:
2074 		return "Keepalive timeout";
2075 	default:
2076 		return "Unknown";
2077 	}
2078 }
2079 
2080 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2081 {
2082 	ep->snd_win = snd_win;
2083 	ep->rcv_win = rcv_win;
2084 	PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
2085 }
2086 
2087 #define ACT_OPEN_RETRY_COUNT 2
2088 
2089 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2090 		     struct dst_entry *dst, struct c4iw_dev *cdev,
2091 		     bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2092 {
2093 	struct neighbour *n;
2094 	int err, step;
2095 	struct net_device *pdev;
2096 
2097 	n = dst_neigh_lookup(dst, peer_ip);
2098 	if (!n)
2099 		return -ENODEV;
2100 
2101 	rcu_read_lock();
2102 	err = -ENOMEM;
2103 	if (n->dev->flags & IFF_LOOPBACK) {
2104 		if (iptype == 4)
2105 			pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2106 		else if (IS_ENABLED(CONFIG_IPV6))
2107 			for_each_netdev(&init_net, pdev) {
2108 				if (ipv6_chk_addr(&init_net,
2109 						  (struct in6_addr *)peer_ip,
2110 						  pdev, 1))
2111 					break;
2112 			}
2113 		else
2114 			pdev = NULL;
2115 
2116 		if (!pdev) {
2117 			err = -ENODEV;
2118 			goto out;
2119 		}
2120 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2121 					n, pdev, rt_tos2priority(tos));
2122 		if (!ep->l2t) {
2123 			dev_put(pdev);
2124 			goto out;
2125 		}
2126 		ep->mtu = pdev->mtu;
2127 		ep->tx_chan = cxgb4_port_chan(pdev);
2128 		ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2129 						cxgb4_port_viid(pdev));
2130 		step = cdev->rdev.lldi.ntxq /
2131 			cdev->rdev.lldi.nchan;
2132 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2133 		step = cdev->rdev.lldi.nrxq /
2134 			cdev->rdev.lldi.nchan;
2135 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2136 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2137 			cxgb4_port_idx(pdev) * step];
2138 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2139 		dev_put(pdev);
2140 	} else {
2141 		pdev = get_real_dev(n->dev);
2142 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2143 					n, pdev, 0);
2144 		if (!ep->l2t)
2145 			goto out;
2146 		ep->mtu = dst_mtu(dst);
2147 		ep->tx_chan = cxgb4_port_chan(pdev);
2148 		ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2149 						cxgb4_port_viid(pdev));
2150 		step = cdev->rdev.lldi.ntxq /
2151 			cdev->rdev.lldi.nchan;
2152 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2153 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2154 		step = cdev->rdev.lldi.nrxq /
2155 			cdev->rdev.lldi.nchan;
2156 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2157 			cxgb4_port_idx(pdev) * step];
2158 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2159 
2160 		if (clear_mpa_v1) {
2161 			ep->retry_with_mpa_v1 = 0;
2162 			ep->tried_with_mpa_v1 = 0;
2163 		}
2164 	}
2165 	err = 0;
2166 out:
2167 	rcu_read_unlock();
2168 
2169 	neigh_release(n);
2170 
2171 	return err;
2172 }
2173 
2174 static int c4iw_reconnect(struct c4iw_ep *ep)
2175 {
2176 	int err = 0;
2177 	int size = 0;
2178 	struct sockaddr_in *laddr = (struct sockaddr_in *)
2179 				    &ep->com.cm_id->m_local_addr;
2180 	struct sockaddr_in *raddr = (struct sockaddr_in *)
2181 				    &ep->com.cm_id->m_remote_addr;
2182 	struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2183 				      &ep->com.cm_id->m_local_addr;
2184 	struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2185 				      &ep->com.cm_id->m_remote_addr;
2186 	int iptype;
2187 	__u8 *ra;
2188 
2189 	PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
2190 	init_timer(&ep->timer);
2191 	c4iw_init_wr_wait(&ep->com.wr_wait);
2192 
2193 	/* When MPA revision is different on nodes, the node with MPA_rev=2
2194 	 * tries to reconnect with MPA_rev 1 for the same EP through
2195 	 * c4iw_reconnect(), where the same EP is assigned with new tid for
2196 	 * further connection establishment. As we are using the same EP pointer
2197 	 * for reconnect, few skbs are used during the previous c4iw_connect(),
2198 	 * which leaves the EP with inadequate skbs for further
2199 	 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty
2200 	 * skb_list() during peer_abort(). Allocate skbs which is already used.
2201 	 */
2202 	size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2203 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2204 		err = -ENOMEM;
2205 		goto fail1;
2206 	}
2207 
2208 	/*
2209 	 * Allocate an active TID to initiate a TCP connection.
2210 	 */
2211 	ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2212 	if (ep->atid == -1) {
2213 		pr_err("%s - cannot alloc atid.\n", __func__);
2214 		err = -ENOMEM;
2215 		goto fail2;
2216 	}
2217 	insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2218 
2219 	/* find a route */
2220 	if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2221 		ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr,
2222 				     raddr->sin_addr.s_addr, laddr->sin_port,
2223 				     raddr->sin_port, ep->com.cm_id->tos);
2224 		iptype = 4;
2225 		ra = (__u8 *)&raddr->sin_addr;
2226 	} else {
2227 		ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr,
2228 				      raddr6->sin6_addr.s6_addr,
2229 				      laddr6->sin6_port, raddr6->sin6_port, 0,
2230 				      raddr6->sin6_scope_id);
2231 		iptype = 6;
2232 		ra = (__u8 *)&raddr6->sin6_addr;
2233 	}
2234 	if (!ep->dst) {
2235 		pr_err("%s - cannot find route.\n", __func__);
2236 		err = -EHOSTUNREACH;
2237 		goto fail3;
2238 	}
2239 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2240 			ep->com.dev->rdev.lldi.adapter_type,
2241 			ep->com.cm_id->tos);
2242 	if (err) {
2243 		pr_err("%s - cannot alloc l2e.\n", __func__);
2244 		goto fail4;
2245 	}
2246 
2247 	PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2248 	     __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2249 	     ep->l2t->idx);
2250 
2251 	state_set(&ep->com, CONNECTING);
2252 	ep->tos = ep->com.cm_id->tos;
2253 
2254 	/* send connect request to rnic */
2255 	err = send_connect(ep);
2256 	if (!err)
2257 		goto out;
2258 
2259 	cxgb4_l2t_release(ep->l2t);
2260 fail4:
2261 	dst_release(ep->dst);
2262 fail3:
2263 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2264 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2265 fail2:
2266 	/*
2267 	 * remember to send notification to upper layer.
2268 	 * We are in here so the upper layer is not aware that this is
2269 	 * re-connect attempt and so, upper layer is still waiting for
2270 	 * response of 1st connect request.
2271 	 */
2272 	connect_reply_upcall(ep, -ECONNRESET);
2273 fail1:
2274 	c4iw_put_ep(&ep->com);
2275 out:
2276 	return err;
2277 }
2278 
2279 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2280 {
2281 	struct c4iw_ep *ep;
2282 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
2283 	unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2284 				      ntohl(rpl->atid_status)));
2285 	struct tid_info *t = dev->rdev.lldi.tids;
2286 	int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2287 	struct sockaddr_in *la;
2288 	struct sockaddr_in *ra;
2289 	struct sockaddr_in6 *la6;
2290 	struct sockaddr_in6 *ra6;
2291 	int ret = 0;
2292 
2293 	ep = lookup_atid(t, atid);
2294 	la = (struct sockaddr_in *)&ep->com.local_addr;
2295 	ra = (struct sockaddr_in *)&ep->com.remote_addr;
2296 	la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2297 	ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2298 
2299 	PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2300 	     status, status2errno(status));
2301 
2302 	if (is_neg_adv(status)) {
2303 		PDBG("%s Connection problems for atid %u status %u (%s)\n",
2304 		     __func__, atid, status, neg_adv_str(status));
2305 		ep->stats.connect_neg_adv++;
2306 		mutex_lock(&dev->rdev.stats.lock);
2307 		dev->rdev.stats.neg_adv++;
2308 		mutex_unlock(&dev->rdev.stats.lock);
2309 		return 0;
2310 	}
2311 
2312 	set_bit(ACT_OPEN_RPL, &ep->com.history);
2313 
2314 	/*
2315 	 * Log interesting failures.
2316 	 */
2317 	switch (status) {
2318 	case CPL_ERR_CONN_RESET:
2319 	case CPL_ERR_CONN_TIMEDOUT:
2320 		break;
2321 	case CPL_ERR_TCAM_FULL:
2322 		mutex_lock(&dev->rdev.stats.lock);
2323 		dev->rdev.stats.tcam_full++;
2324 		mutex_unlock(&dev->rdev.stats.lock);
2325 		if (ep->com.local_addr.ss_family == AF_INET &&
2326 		    dev->rdev.lldi.enable_fw_ofld_conn) {
2327 			ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2328 						   ntohl(rpl->atid_status))));
2329 			if (ret)
2330 				goto fail;
2331 			return 0;
2332 		}
2333 		break;
2334 	case CPL_ERR_CONN_EXIST:
2335 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2336 			set_bit(ACT_RETRY_INUSE, &ep->com.history);
2337 			if (ep->com.remote_addr.ss_family == AF_INET6) {
2338 				struct sockaddr_in6 *sin6 =
2339 						(struct sockaddr_in6 *)
2340 						&ep->com.local_addr;
2341 				cxgb4_clip_release(
2342 						ep->com.dev->rdev.lldi.ports[0],
2343 						(const u32 *)
2344 						&sin6->sin6_addr.s6_addr, 1);
2345 			}
2346 			remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2347 					atid);
2348 			cxgb4_free_atid(t, atid);
2349 			dst_release(ep->dst);
2350 			cxgb4_l2t_release(ep->l2t);
2351 			c4iw_reconnect(ep);
2352 			return 0;
2353 		}
2354 		break;
2355 	default:
2356 		if (ep->com.local_addr.ss_family == AF_INET) {
2357 			pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2358 				atid, status, status2errno(status),
2359 				&la->sin_addr.s_addr, ntohs(la->sin_port),
2360 				&ra->sin_addr.s_addr, ntohs(ra->sin_port));
2361 		} else {
2362 			pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2363 				atid, status, status2errno(status),
2364 				la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2365 				ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2366 		}
2367 		break;
2368 	}
2369 
2370 fail:
2371 	connect_reply_upcall(ep, status2errno(status));
2372 	state_set(&ep->com, DEAD);
2373 
2374 	if (ep->com.remote_addr.ss_family == AF_INET6) {
2375 		struct sockaddr_in6 *sin6 =
2376 			(struct sockaddr_in6 *)&ep->com.local_addr;
2377 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2378 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2379 	}
2380 	if (status && act_open_has_tid(status))
2381 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
2382 
2383 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2384 	cxgb4_free_atid(t, atid);
2385 	dst_release(ep->dst);
2386 	cxgb4_l2t_release(ep->l2t);
2387 	c4iw_put_ep(&ep->com);
2388 
2389 	return 0;
2390 }
2391 
2392 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2393 {
2394 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2395 	unsigned int stid = GET_TID(rpl);
2396 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2397 
2398 	if (!ep) {
2399 		PDBG("%s stid %d lookup failure!\n", __func__, stid);
2400 		goto out;
2401 	}
2402 	PDBG("%s ep %p status %d error %d\n", __func__, ep,
2403 	     rpl->status, status2errno(rpl->status));
2404 	c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2405 	c4iw_put_ep(&ep->com);
2406 out:
2407 	return 0;
2408 }
2409 
2410 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2411 {
2412 	struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2413 	unsigned int stid = GET_TID(rpl);
2414 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2415 
2416 	PDBG("%s ep %p\n", __func__, ep);
2417 	c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2418 	c4iw_put_ep(&ep->com);
2419 	return 0;
2420 }
2421 
2422 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2423 		     struct cpl_pass_accept_req *req)
2424 {
2425 	struct cpl_pass_accept_rpl *rpl;
2426 	unsigned int mtu_idx;
2427 	u64 opt0;
2428 	u32 opt2;
2429 	int wscale;
2430 	struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2431 	int win;
2432 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2433 
2434 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2435 	BUG_ON(skb_cloned(skb));
2436 
2437 	skb_get(skb);
2438 	rpl = cplhdr(skb);
2439 	if (!is_t4(adapter_type)) {
2440 		skb_trim(skb, roundup(sizeof(*rpl5), 16));
2441 		rpl5 = (void *)rpl;
2442 		INIT_TP_WR(rpl5, ep->hwtid);
2443 	} else {
2444 		skb_trim(skb, sizeof(*rpl));
2445 		INIT_TP_WR(rpl, ep->hwtid);
2446 	}
2447 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2448 						    ep->hwtid));
2449 
2450 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2451 		 enable_tcp_timestamps && req->tcpopt.tstamp,
2452 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2453 	wscale = compute_wscale(rcv_win);
2454 
2455 	/*
2456 	 * Specify the largest window that will fit in opt0. The
2457 	 * remainder will be specified in the rx_data_ack.
2458 	 */
2459 	win = ep->rcv_win >> 10;
2460 	if (win > RCV_BUFSIZ_M)
2461 		win = RCV_BUFSIZ_M;
2462 	opt0 = (nocong ? NO_CONG_F : 0) |
2463 	       KEEP_ALIVE_F |
2464 	       DELACK_F |
2465 	       WND_SCALE_V(wscale) |
2466 	       MSS_IDX_V(mtu_idx) |
2467 	       L2T_IDX_V(ep->l2t->idx) |
2468 	       TX_CHAN_V(ep->tx_chan) |
2469 	       SMAC_SEL_V(ep->smac_idx) |
2470 	       DSCP_V(ep->tos >> 2) |
2471 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
2472 	       RCV_BUFSIZ_V(win);
2473 	opt2 = RX_CHANNEL_V(0) |
2474 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2475 
2476 	if (enable_tcp_timestamps && req->tcpopt.tstamp)
2477 		opt2 |= TSTAMPS_EN_F;
2478 	if (enable_tcp_sack && req->tcpopt.sack)
2479 		opt2 |= SACK_EN_F;
2480 	if (wscale && enable_tcp_window_scaling)
2481 		opt2 |= WND_SCALE_EN_F;
2482 	if (enable_ecn) {
2483 		const struct tcphdr *tcph;
2484 		u32 hlen = ntohl(req->hdr_len);
2485 
2486 		if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2487 			tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2488 				IP_HDR_LEN_G(hlen);
2489 		else
2490 			tcph = (const void *)(req + 1) +
2491 				T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2492 		if (tcph->ece && tcph->cwr)
2493 			opt2 |= CCTRL_ECN_V(1);
2494 	}
2495 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2496 		u32 isn = (prandom_u32() & ~7UL) - 1;
2497 		opt2 |= T5_OPT_2_VALID_F;
2498 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2499 		opt2 |= T5_ISS_F;
2500 		rpl5 = (void *)rpl;
2501 		memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2502 		if (peer2peer)
2503 			isn += 4;
2504 		rpl5->iss = cpu_to_be32(isn);
2505 		PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2506 	}
2507 
2508 	rpl->opt0 = cpu_to_be64(opt0);
2509 	rpl->opt2 = cpu_to_be32(opt2);
2510 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2511 	t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2512 
2513 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2514 }
2515 
2516 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2517 {
2518 	PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2519 	BUG_ON(skb_cloned(skb));
2520 	skb_trim(skb, sizeof(struct cpl_tid_release));
2521 	release_tid(&dev->rdev, hwtid, skb);
2522 	return;
2523 }
2524 
2525 static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type,
2526 		       int *iptype, __u8 *local_ip, __u8 *peer_ip,
2527 		       __be16 *local_port, __be16 *peer_port)
2528 {
2529 	int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2530 		      ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2531 		      T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2532 	int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2533 		     IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2534 		     T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2535 	struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
2536 	struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
2537 	struct tcphdr *tcp = (struct tcphdr *)
2538 			     ((u8 *)(req + 1) + eth_len + ip_len);
2539 
2540 	if (ip->version == 4) {
2541 		PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
2542 		     ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
2543 		     ntohs(tcp->dest));
2544 		*iptype = 4;
2545 		memcpy(peer_ip, &ip->saddr, 4);
2546 		memcpy(local_ip, &ip->daddr, 4);
2547 	} else {
2548 		PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__,
2549 		     ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source),
2550 		     ntohs(tcp->dest));
2551 		*iptype = 6;
2552 		memcpy(peer_ip, ip6->saddr.s6_addr, 16);
2553 		memcpy(local_ip, ip6->daddr.s6_addr, 16);
2554 	}
2555 	*peer_port = tcp->source;
2556 	*local_port = tcp->dest;
2557 
2558 	return;
2559 }
2560 
2561 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2562 {
2563 	struct c4iw_ep *child_ep = NULL, *parent_ep;
2564 	struct cpl_pass_accept_req *req = cplhdr(skb);
2565 	unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2566 	struct tid_info *t = dev->rdev.lldi.tids;
2567 	unsigned int hwtid = GET_TID(req);
2568 	struct dst_entry *dst;
2569 	__u8 local_ip[16], peer_ip[16];
2570 	__be16 local_port, peer_port;
2571 	struct sockaddr_in6 *sin6;
2572 	int err;
2573 	u16 peer_mss = ntohs(req->tcpopt.mss);
2574 	int iptype;
2575 	unsigned short hdrs;
2576 	u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2577 
2578 	parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2579 	if (!parent_ep) {
2580 		PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2581 		goto reject;
2582 	}
2583 
2584 	if (state_read(&parent_ep->com) != LISTEN) {
2585 		PDBG("%s - listening ep not in LISTEN\n", __func__);
2586 		goto reject;
2587 	}
2588 
2589 	get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype,
2590 		   local_ip, peer_ip, &local_port, &peer_port);
2591 
2592 	/* Find output route */
2593 	if (iptype == 4)  {
2594 		PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2595 		     , __func__, parent_ep, hwtid,
2596 		     local_ip, peer_ip, ntohs(local_port),
2597 		     ntohs(peer_port), peer_mss);
2598 		dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip,
2599 				 local_port, peer_port,
2600 				 tos);
2601 	} else {
2602 		PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2603 		     , __func__, parent_ep, hwtid,
2604 		     local_ip, peer_ip, ntohs(local_port),
2605 		     ntohs(peer_port), peer_mss);
2606 		dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port,
2607 				  PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2608 				  ((struct sockaddr_in6 *)
2609 				  &parent_ep->com.local_addr)->sin6_scope_id);
2610 	}
2611 	if (!dst) {
2612 		printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
2613 		       __func__);
2614 		goto reject;
2615 	}
2616 
2617 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2618 	if (!child_ep) {
2619 		printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
2620 		       __func__);
2621 		dst_release(dst);
2622 		goto reject;
2623 	}
2624 
2625 	err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2626 			parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2627 	if (err) {
2628 		printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
2629 		       __func__);
2630 		dst_release(dst);
2631 		kfree(child_ep);
2632 		goto reject;
2633 	}
2634 
2635 	hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
2636 	       ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2637 	if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2638 		child_ep->mtu = peer_mss + hdrs;
2639 
2640 	skb_queue_head_init(&child_ep->com.ep_skb_list);
2641 	if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2642 		goto fail;
2643 
2644 	state_set(&child_ep->com, CONNECTING);
2645 	child_ep->com.dev = dev;
2646 	child_ep->com.cm_id = NULL;
2647 
2648 	if (iptype == 4) {
2649 		struct sockaddr_in *sin = (struct sockaddr_in *)
2650 			&child_ep->com.local_addr;
2651 
2652 		sin->sin_family = PF_INET;
2653 		sin->sin_port = local_port;
2654 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2655 
2656 		sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2657 		sin->sin_family = PF_INET;
2658 		sin->sin_port = ((struct sockaddr_in *)
2659 				 &parent_ep->com.local_addr)->sin_port;
2660 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2661 
2662 		sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2663 		sin->sin_family = PF_INET;
2664 		sin->sin_port = peer_port;
2665 		sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2666 	} else {
2667 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2668 		sin6->sin6_family = PF_INET6;
2669 		sin6->sin6_port = local_port;
2670 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2671 
2672 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2673 		sin6->sin6_family = PF_INET6;
2674 		sin6->sin6_port = ((struct sockaddr_in6 *)
2675 				   &parent_ep->com.local_addr)->sin6_port;
2676 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2677 
2678 		sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2679 		sin6->sin6_family = PF_INET6;
2680 		sin6->sin6_port = peer_port;
2681 		memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2682 	}
2683 
2684 	c4iw_get_ep(&parent_ep->com);
2685 	child_ep->parent_ep = parent_ep;
2686 	child_ep->tos = tos;
2687 	child_ep->dst = dst;
2688 	child_ep->hwtid = hwtid;
2689 
2690 	PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2691 	     child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2692 
2693 	init_timer(&child_ep->timer);
2694 	cxgb4_insert_tid(t, child_ep, hwtid);
2695 	insert_ep_tid(child_ep);
2696 	if (accept_cr(child_ep, skb, req)) {
2697 		c4iw_put_ep(&parent_ep->com);
2698 		release_ep_resources(child_ep);
2699 	} else {
2700 		set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2701 	}
2702 	if (iptype == 6) {
2703 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2704 		cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2705 			       (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2706 	}
2707 	goto out;
2708 fail:
2709 	c4iw_put_ep(&child_ep->com);
2710 reject:
2711 	reject_cr(dev, hwtid, skb);
2712 	if (parent_ep)
2713 		c4iw_put_ep(&parent_ep->com);
2714 out:
2715 	return 0;
2716 }
2717 
2718 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2719 {
2720 	struct c4iw_ep *ep;
2721 	struct cpl_pass_establish *req = cplhdr(skb);
2722 	unsigned int tid = GET_TID(req);
2723 	int ret;
2724 
2725 	ep = get_ep_from_tid(dev, tid);
2726 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2727 	ep->snd_seq = be32_to_cpu(req->snd_isn);
2728 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2729 
2730 	PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2731 	     ntohs(req->tcp_opt));
2732 
2733 	set_emss(ep, ntohs(req->tcp_opt));
2734 
2735 	dst_confirm(ep->dst);
2736 	mutex_lock(&ep->com.mutex);
2737 	ep->com.state = MPA_REQ_WAIT;
2738 	start_ep_timer(ep);
2739 	set_bit(PASS_ESTAB, &ep->com.history);
2740 	ret = send_flowc(ep);
2741 	mutex_unlock(&ep->com.mutex);
2742 	if (ret)
2743 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2744 	c4iw_put_ep(&ep->com);
2745 
2746 	return 0;
2747 }
2748 
2749 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2750 {
2751 	struct cpl_peer_close *hdr = cplhdr(skb);
2752 	struct c4iw_ep *ep;
2753 	struct c4iw_qp_attributes attrs;
2754 	int disconnect = 1;
2755 	int release = 0;
2756 	unsigned int tid = GET_TID(hdr);
2757 	int ret;
2758 
2759 	ep = get_ep_from_tid(dev, tid);
2760 	if (!ep)
2761 		return 0;
2762 
2763 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2764 	dst_confirm(ep->dst);
2765 
2766 	set_bit(PEER_CLOSE, &ep->com.history);
2767 	mutex_lock(&ep->com.mutex);
2768 	switch (ep->com.state) {
2769 	case MPA_REQ_WAIT:
2770 		__state_set(&ep->com, CLOSING);
2771 		break;
2772 	case MPA_REQ_SENT:
2773 		__state_set(&ep->com, CLOSING);
2774 		connect_reply_upcall(ep, -ECONNRESET);
2775 		break;
2776 	case MPA_REQ_RCVD:
2777 
2778 		/*
2779 		 * We're gonna mark this puppy DEAD, but keep
2780 		 * the reference on it until the ULP accepts or
2781 		 * rejects the CR. Also wake up anyone waiting
2782 		 * in rdma connection migration (see c4iw_accept_cr()).
2783 		 */
2784 		__state_set(&ep->com, CLOSING);
2785 		PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2786 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2787 		break;
2788 	case MPA_REP_SENT:
2789 		__state_set(&ep->com, CLOSING);
2790 		PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2791 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2792 		break;
2793 	case FPDU_MODE:
2794 		start_ep_timer(ep);
2795 		__state_set(&ep->com, CLOSING);
2796 		attrs.next_state = C4IW_QP_STATE_CLOSING;
2797 		ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2798 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2799 		if (ret != -ECONNRESET) {
2800 			peer_close_upcall(ep);
2801 			disconnect = 1;
2802 		}
2803 		break;
2804 	case ABORTING:
2805 		disconnect = 0;
2806 		break;
2807 	case CLOSING:
2808 		__state_set(&ep->com, MORIBUND);
2809 		disconnect = 0;
2810 		break;
2811 	case MORIBUND:
2812 		(void)stop_ep_timer(ep);
2813 		if (ep->com.cm_id && ep->com.qp) {
2814 			attrs.next_state = C4IW_QP_STATE_IDLE;
2815 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2816 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2817 		}
2818 		close_complete_upcall(ep, 0);
2819 		__state_set(&ep->com, DEAD);
2820 		release = 1;
2821 		disconnect = 0;
2822 		break;
2823 	case DEAD:
2824 		disconnect = 0;
2825 		break;
2826 	default:
2827 		BUG_ON(1);
2828 	}
2829 	mutex_unlock(&ep->com.mutex);
2830 	if (disconnect)
2831 		c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2832 	if (release)
2833 		release_ep_resources(ep);
2834 	c4iw_put_ep(&ep->com);
2835 	return 0;
2836 }
2837 
2838 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2839 {
2840 	struct cpl_abort_req_rss *req = cplhdr(skb);
2841 	struct c4iw_ep *ep;
2842 	struct cpl_abort_rpl *rpl;
2843 	struct sk_buff *rpl_skb;
2844 	struct c4iw_qp_attributes attrs;
2845 	int ret;
2846 	int release = 0;
2847 	unsigned int tid = GET_TID(req);
2848 
2849 	ep = get_ep_from_tid(dev, tid);
2850 	if (!ep)
2851 		return 0;
2852 
2853 	if (is_neg_adv(req->status)) {
2854 		PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2855 		     __func__, ep->hwtid, req->status,
2856 		     neg_adv_str(req->status));
2857 		ep->stats.abort_neg_adv++;
2858 		mutex_lock(&dev->rdev.stats.lock);
2859 		dev->rdev.stats.neg_adv++;
2860 		mutex_unlock(&dev->rdev.stats.lock);
2861 		goto deref_ep;
2862 	}
2863 	PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2864 	     ep->com.state);
2865 	set_bit(PEER_ABORT, &ep->com.history);
2866 
2867 	/*
2868 	 * Wake up any threads in rdma_init() or rdma_fini().
2869 	 * However, this is not needed if com state is just
2870 	 * MPA_REQ_SENT
2871 	 */
2872 	if (ep->com.state != MPA_REQ_SENT)
2873 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2874 
2875 	mutex_lock(&ep->com.mutex);
2876 	switch (ep->com.state) {
2877 	case CONNECTING:
2878 		c4iw_put_ep(&ep->parent_ep->com);
2879 		break;
2880 	case MPA_REQ_WAIT:
2881 		(void)stop_ep_timer(ep);
2882 		break;
2883 	case MPA_REQ_SENT:
2884 		(void)stop_ep_timer(ep);
2885 		if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2886 			connect_reply_upcall(ep, -ECONNRESET);
2887 		else {
2888 			/*
2889 			 * we just don't send notification upwards because we
2890 			 * want to retry with mpa_v1 without upper layers even
2891 			 * knowing it.
2892 			 *
2893 			 * do some housekeeping so as to re-initiate the
2894 			 * connection
2895 			 */
2896 			PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2897 			     mpa_rev);
2898 			ep->retry_with_mpa_v1 = 1;
2899 		}
2900 		break;
2901 	case MPA_REP_SENT:
2902 		break;
2903 	case MPA_REQ_RCVD:
2904 		break;
2905 	case MORIBUND:
2906 	case CLOSING:
2907 		stop_ep_timer(ep);
2908 		/*FALLTHROUGH*/
2909 	case FPDU_MODE:
2910 		if (ep->com.cm_id && ep->com.qp) {
2911 			attrs.next_state = C4IW_QP_STATE_ERROR;
2912 			ret = c4iw_modify_qp(ep->com.qp->rhp,
2913 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2914 				     &attrs, 1);
2915 			if (ret)
2916 				printk(KERN_ERR MOD
2917 				       "%s - qp <- error failed!\n",
2918 				       __func__);
2919 		}
2920 		peer_abort_upcall(ep);
2921 		break;
2922 	case ABORTING:
2923 		break;
2924 	case DEAD:
2925 		PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2926 		mutex_unlock(&ep->com.mutex);
2927 		goto deref_ep;
2928 	default:
2929 		BUG_ON(1);
2930 		break;
2931 	}
2932 	dst_confirm(ep->dst);
2933 	if (ep->com.state != ABORTING) {
2934 		__state_set(&ep->com, DEAD);
2935 		/* we don't release if we want to retry with mpa_v1 */
2936 		if (!ep->retry_with_mpa_v1)
2937 			release = 1;
2938 	}
2939 	mutex_unlock(&ep->com.mutex);
2940 
2941 	rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2942 	if (WARN_ON(!rpl_skb)) {
2943 		release = 1;
2944 		goto out;
2945 	}
2946 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2947 	rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2948 	INIT_TP_WR(rpl, ep->hwtid);
2949 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2950 	rpl->cmd = CPL_ABORT_NO_RST;
2951 	c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2952 out:
2953 	if (release)
2954 		release_ep_resources(ep);
2955 	else if (ep->retry_with_mpa_v1) {
2956 		if (ep->com.remote_addr.ss_family == AF_INET6) {
2957 			struct sockaddr_in6 *sin6 =
2958 					(struct sockaddr_in6 *)
2959 					&ep->com.local_addr;
2960 			cxgb4_clip_release(
2961 					ep->com.dev->rdev.lldi.ports[0],
2962 					(const u32 *)&sin6->sin6_addr.s6_addr,
2963 					1);
2964 		}
2965 		remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2966 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2967 		dst_release(ep->dst);
2968 		cxgb4_l2t_release(ep->l2t);
2969 		c4iw_reconnect(ep);
2970 	}
2971 
2972 deref_ep:
2973 	c4iw_put_ep(&ep->com);
2974 	/* Dereferencing ep, referenced in peer_abort_intr() */
2975 	c4iw_put_ep(&ep->com);
2976 	return 0;
2977 }
2978 
2979 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2980 {
2981 	struct c4iw_ep *ep;
2982 	struct c4iw_qp_attributes attrs;
2983 	struct cpl_close_con_rpl *rpl = cplhdr(skb);
2984 	int release = 0;
2985 	unsigned int tid = GET_TID(rpl);
2986 
2987 	ep = get_ep_from_tid(dev, tid);
2988 	if (!ep)
2989 		return 0;
2990 
2991 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2992 	BUG_ON(!ep);
2993 
2994 	/* The cm_id may be null if we failed to connect */
2995 	mutex_lock(&ep->com.mutex);
2996 	set_bit(CLOSE_CON_RPL, &ep->com.history);
2997 	switch (ep->com.state) {
2998 	case CLOSING:
2999 		__state_set(&ep->com, MORIBUND);
3000 		break;
3001 	case MORIBUND:
3002 		(void)stop_ep_timer(ep);
3003 		if ((ep->com.cm_id) && (ep->com.qp)) {
3004 			attrs.next_state = C4IW_QP_STATE_IDLE;
3005 			c4iw_modify_qp(ep->com.qp->rhp,
3006 					     ep->com.qp,
3007 					     C4IW_QP_ATTR_NEXT_STATE,
3008 					     &attrs, 1);
3009 		}
3010 		close_complete_upcall(ep, 0);
3011 		__state_set(&ep->com, DEAD);
3012 		release = 1;
3013 		break;
3014 	case ABORTING:
3015 	case DEAD:
3016 		break;
3017 	default:
3018 		BUG_ON(1);
3019 		break;
3020 	}
3021 	mutex_unlock(&ep->com.mutex);
3022 	if (release)
3023 		release_ep_resources(ep);
3024 	c4iw_put_ep(&ep->com);
3025 	return 0;
3026 }
3027 
3028 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3029 {
3030 	struct cpl_rdma_terminate *rpl = cplhdr(skb);
3031 	unsigned int tid = GET_TID(rpl);
3032 	struct c4iw_ep *ep;
3033 	struct c4iw_qp_attributes attrs;
3034 
3035 	ep = get_ep_from_tid(dev, tid);
3036 	BUG_ON(!ep);
3037 
3038 	if (ep && ep->com.qp) {
3039 		printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
3040 		       ep->com.qp->wq.sq.qid);
3041 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
3042 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3043 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3044 	} else
3045 		printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
3046 	c4iw_put_ep(&ep->com);
3047 
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Upcall from the adapter indicating data has been transmitted.
3053  * For us its just the single MPA request or reply.  We can now free
3054  * the skb holding the mpa message.
3055  */
3056 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3057 {
3058 	struct c4iw_ep *ep;
3059 	struct cpl_fw4_ack *hdr = cplhdr(skb);
3060 	u8 credits = hdr->credits;
3061 	unsigned int tid = GET_TID(hdr);
3062 
3063 
3064 	ep = get_ep_from_tid(dev, tid);
3065 	if (!ep)
3066 		return 0;
3067 	PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
3068 	if (credits == 0) {
3069 		PDBG("%s 0 credit ack ep %p tid %u state %u\n",
3070 		     __func__, ep, ep->hwtid, state_read(&ep->com));
3071 		goto out;
3072 	}
3073 
3074 	dst_confirm(ep->dst);
3075 	if (ep->mpa_skb) {
3076 		PDBG("%s last streaming msg ack ep %p tid %u state %u "
3077 		     "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
3078 		     state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
3079 		mutex_lock(&ep->com.mutex);
3080 		kfree_skb(ep->mpa_skb);
3081 		ep->mpa_skb = NULL;
3082 		if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3083 			stop_ep_timer(ep);
3084 		mutex_unlock(&ep->com.mutex);
3085 	}
3086 out:
3087 	c4iw_put_ep(&ep->com);
3088 	return 0;
3089 }
3090 
3091 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3092 {
3093 	int abort;
3094 	struct c4iw_ep *ep = to_ep(cm_id);
3095 
3096 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3097 
3098 	mutex_lock(&ep->com.mutex);
3099 	if (ep->com.state != MPA_REQ_RCVD) {
3100 		mutex_unlock(&ep->com.mutex);
3101 		c4iw_put_ep(&ep->com);
3102 		return -ECONNRESET;
3103 	}
3104 	set_bit(ULP_REJECT, &ep->com.history);
3105 	if (mpa_rev == 0)
3106 		abort = 1;
3107 	else
3108 		abort = send_mpa_reject(ep, pdata, pdata_len);
3109 	mutex_unlock(&ep->com.mutex);
3110 
3111 	stop_ep_timer(ep);
3112 	c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3113 	c4iw_put_ep(&ep->com);
3114 	return 0;
3115 }
3116 
3117 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3118 {
3119 	int err;
3120 	struct c4iw_qp_attributes attrs;
3121 	enum c4iw_qp_attr_mask mask;
3122 	struct c4iw_ep *ep = to_ep(cm_id);
3123 	struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3124 	struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3125 	int abort = 0;
3126 
3127 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3128 
3129 	mutex_lock(&ep->com.mutex);
3130 	if (ep->com.state != MPA_REQ_RCVD) {
3131 		err = -ECONNRESET;
3132 		goto err_out;
3133 	}
3134 
3135 	BUG_ON(!qp);
3136 
3137 	set_bit(ULP_ACCEPT, &ep->com.history);
3138 	if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3139 	    (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3140 		err = -EINVAL;
3141 		goto err_abort;
3142 	}
3143 
3144 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3145 		if (conn_param->ord > ep->ird) {
3146 			if (RELAXED_IRD_NEGOTIATION) {
3147 				conn_param->ord = ep->ird;
3148 			} else {
3149 				ep->ird = conn_param->ird;
3150 				ep->ord = conn_param->ord;
3151 				send_mpa_reject(ep, conn_param->private_data,
3152 						conn_param->private_data_len);
3153 				err = -ENOMEM;
3154 				goto err_abort;
3155 			}
3156 		}
3157 		if (conn_param->ird < ep->ord) {
3158 			if (RELAXED_IRD_NEGOTIATION &&
3159 			    ep->ord <= h->rdev.lldi.max_ordird_qp) {
3160 				conn_param->ird = ep->ord;
3161 			} else {
3162 				err = -ENOMEM;
3163 				goto err_abort;
3164 			}
3165 		}
3166 	}
3167 	ep->ird = conn_param->ird;
3168 	ep->ord = conn_param->ord;
3169 
3170 	if (ep->mpa_attr.version == 1) {
3171 		if (peer2peer && ep->ird == 0)
3172 			ep->ird = 1;
3173 	} else {
3174 		if (peer2peer &&
3175 		    (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3176 		    (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3177 			ep->ird = 1;
3178 	}
3179 
3180 	PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
3181 
3182 	ep->com.cm_id = cm_id;
3183 	ref_cm_id(&ep->com);
3184 	ep->com.qp = qp;
3185 	ref_qp(ep);
3186 
3187 	/* bind QP to EP and move to RTS */
3188 	attrs.mpa_attr = ep->mpa_attr;
3189 	attrs.max_ird = ep->ird;
3190 	attrs.max_ord = ep->ord;
3191 	attrs.llp_stream_handle = ep;
3192 	attrs.next_state = C4IW_QP_STATE_RTS;
3193 
3194 	/* bind QP and TID with INIT_WR */
3195 	mask = C4IW_QP_ATTR_NEXT_STATE |
3196 			     C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3197 			     C4IW_QP_ATTR_MPA_ATTR |
3198 			     C4IW_QP_ATTR_MAX_IRD |
3199 			     C4IW_QP_ATTR_MAX_ORD;
3200 
3201 	err = c4iw_modify_qp(ep->com.qp->rhp,
3202 			     ep->com.qp, mask, &attrs, 1);
3203 	if (err)
3204 		goto err_deref_cm_id;
3205 
3206 	set_bit(STOP_MPA_TIMER, &ep->com.flags);
3207 	err = send_mpa_reply(ep, conn_param->private_data,
3208 			     conn_param->private_data_len);
3209 	if (err)
3210 		goto err_deref_cm_id;
3211 
3212 	__state_set(&ep->com, FPDU_MODE);
3213 	established_upcall(ep);
3214 	mutex_unlock(&ep->com.mutex);
3215 	c4iw_put_ep(&ep->com);
3216 	return 0;
3217 err_deref_cm_id:
3218 	deref_cm_id(&ep->com);
3219 err_abort:
3220 	abort = 1;
3221 err_out:
3222 	mutex_unlock(&ep->com.mutex);
3223 	if (abort)
3224 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3225 	c4iw_put_ep(&ep->com);
3226 	return err;
3227 }
3228 
3229 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3230 {
3231 	struct in_device *ind;
3232 	int found = 0;
3233 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3234 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3235 
3236 	ind = in_dev_get(dev->rdev.lldi.ports[0]);
3237 	if (!ind)
3238 		return -EADDRNOTAVAIL;
3239 	for_primary_ifa(ind) {
3240 		laddr->sin_addr.s_addr = ifa->ifa_address;
3241 		raddr->sin_addr.s_addr = ifa->ifa_address;
3242 		found = 1;
3243 		break;
3244 	}
3245 	endfor_ifa(ind);
3246 	in_dev_put(ind);
3247 	return found ? 0 : -EADDRNOTAVAIL;
3248 }
3249 
3250 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3251 		      unsigned char banned_flags)
3252 {
3253 	struct inet6_dev *idev;
3254 	int err = -EADDRNOTAVAIL;
3255 
3256 	rcu_read_lock();
3257 	idev = __in6_dev_get(dev);
3258 	if (idev != NULL) {
3259 		struct inet6_ifaddr *ifp;
3260 
3261 		read_lock_bh(&idev->lock);
3262 		list_for_each_entry(ifp, &idev->addr_list, if_list) {
3263 			if (ifp->scope == IFA_LINK &&
3264 			    !(ifp->flags & banned_flags)) {
3265 				memcpy(addr, &ifp->addr, 16);
3266 				err = 0;
3267 				break;
3268 			}
3269 		}
3270 		read_unlock_bh(&idev->lock);
3271 	}
3272 	rcu_read_unlock();
3273 	return err;
3274 }
3275 
3276 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3277 {
3278 	struct in6_addr uninitialized_var(addr);
3279 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3280 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3281 
3282 	if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3283 		memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3284 		memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3285 		return 0;
3286 	}
3287 	return -EADDRNOTAVAIL;
3288 }
3289 
3290 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3291 {
3292 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3293 	struct c4iw_ep *ep;
3294 	int err = 0;
3295 	struct sockaddr_in *laddr;
3296 	struct sockaddr_in *raddr;
3297 	struct sockaddr_in6 *laddr6;
3298 	struct sockaddr_in6 *raddr6;
3299 	__u8 *ra;
3300 	int iptype;
3301 
3302 	if ((conn_param->ord > cur_max_read_depth(dev)) ||
3303 	    (conn_param->ird > cur_max_read_depth(dev))) {
3304 		err = -EINVAL;
3305 		goto out;
3306 	}
3307 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3308 	if (!ep) {
3309 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3310 		err = -ENOMEM;
3311 		goto out;
3312 	}
3313 
3314 	skb_queue_head_init(&ep->com.ep_skb_list);
3315 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3316 		err = -ENOMEM;
3317 		goto fail1;
3318 	}
3319 
3320 	init_timer(&ep->timer);
3321 	ep->plen = conn_param->private_data_len;
3322 	if (ep->plen)
3323 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3324 		       conn_param->private_data, ep->plen);
3325 	ep->ird = conn_param->ird;
3326 	ep->ord = conn_param->ord;
3327 
3328 	if (peer2peer && ep->ord == 0)
3329 		ep->ord = 1;
3330 
3331 	ep->com.cm_id = cm_id;
3332 	ref_cm_id(&ep->com);
3333 	ep->com.dev = dev;
3334 	ep->com.qp = get_qhp(dev, conn_param->qpn);
3335 	if (!ep->com.qp) {
3336 		PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3337 		err = -EINVAL;
3338 		goto fail2;
3339 	}
3340 	ref_qp(ep);
3341 	PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3342 	     ep->com.qp, cm_id);
3343 
3344 	/*
3345 	 * Allocate an active TID to initiate a TCP connection.
3346 	 */
3347 	ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3348 	if (ep->atid == -1) {
3349 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
3350 		err = -ENOMEM;
3351 		goto fail2;
3352 	}
3353 	insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3354 
3355 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3356 	       sizeof(ep->com.local_addr));
3357 	memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3358 	       sizeof(ep->com.remote_addr));
3359 
3360 	laddr = (struct sockaddr_in *)&ep->com.local_addr;
3361 	raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3362 	laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3363 	raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3364 
3365 	if (cm_id->m_remote_addr.ss_family == AF_INET) {
3366 		iptype = 4;
3367 		ra = (__u8 *)&raddr->sin_addr;
3368 
3369 		/*
3370 		 * Handle loopback requests to INADDR_ANY.
3371 		 */
3372 		if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3373 			err = pick_local_ipaddrs(dev, cm_id);
3374 			if (err)
3375 				goto fail2;
3376 		}
3377 
3378 		/* find a route */
3379 		PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3380 		     __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3381 		     ra, ntohs(raddr->sin_port));
3382 		ep->dst = find_route(dev, laddr->sin_addr.s_addr,
3383 				     raddr->sin_addr.s_addr, laddr->sin_port,
3384 				     raddr->sin_port, cm_id->tos);
3385 	} else {
3386 		iptype = 6;
3387 		ra = (__u8 *)&raddr6->sin6_addr;
3388 
3389 		/*
3390 		 * Handle loopback requests to INADDR_ANY.
3391 		 */
3392 		if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3393 			err = pick_local_ip6addrs(dev, cm_id);
3394 			if (err)
3395 				goto fail2;
3396 		}
3397 
3398 		/* find a route */
3399 		PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3400 		     __func__, laddr6->sin6_addr.s6_addr,
3401 		     ntohs(laddr6->sin6_port),
3402 		     raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3403 		ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr,
3404 				      raddr6->sin6_addr.s6_addr,
3405 				      laddr6->sin6_port, raddr6->sin6_port, 0,
3406 				      raddr6->sin6_scope_id);
3407 	}
3408 	if (!ep->dst) {
3409 		printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
3410 		err = -EHOSTUNREACH;
3411 		goto fail3;
3412 	}
3413 
3414 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3415 			ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3416 	if (err) {
3417 		printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
3418 		goto fail4;
3419 	}
3420 
3421 	PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3422 		__func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3423 		ep->l2t->idx);
3424 
3425 	state_set(&ep->com, CONNECTING);
3426 	ep->tos = cm_id->tos;
3427 
3428 	/* send connect request to rnic */
3429 	err = send_connect(ep);
3430 	if (!err)
3431 		goto out;
3432 
3433 	cxgb4_l2t_release(ep->l2t);
3434 fail4:
3435 	dst_release(ep->dst);
3436 fail3:
3437 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3438 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3439 fail2:
3440 	skb_queue_purge(&ep->com.ep_skb_list);
3441 	deref_cm_id(&ep->com);
3442 fail1:
3443 	c4iw_put_ep(&ep->com);
3444 out:
3445 	return err;
3446 }
3447 
3448 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3449 {
3450 	int err;
3451 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3452 				    &ep->com.local_addr;
3453 
3454 	if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3455 		err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3456 				     (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3457 		if (err)
3458 			return err;
3459 	}
3460 	c4iw_init_wr_wait(&ep->com.wr_wait);
3461 	err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3462 				   ep->stid, &sin6->sin6_addr,
3463 				   sin6->sin6_port,
3464 				   ep->com.dev->rdev.lldi.rxq_ids[0]);
3465 	if (!err)
3466 		err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3467 					  &ep->com.wr_wait,
3468 					  0, 0, __func__);
3469 	else if (err > 0)
3470 		err = net_xmit_errno(err);
3471 	if (err) {
3472 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3473 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3474 		pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3475 		       err, ep->stid,
3476 		       sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3477 	}
3478 	return err;
3479 }
3480 
3481 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3482 {
3483 	int err;
3484 	struct sockaddr_in *sin = (struct sockaddr_in *)
3485 				  &ep->com.local_addr;
3486 
3487 	if (dev->rdev.lldi.enable_fw_ofld_conn) {
3488 		do {
3489 			err = cxgb4_create_server_filter(
3490 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3491 				sin->sin_addr.s_addr, sin->sin_port, 0,
3492 				ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3493 			if (err == -EBUSY) {
3494 				if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3495 					err = -EIO;
3496 					break;
3497 				}
3498 				set_current_state(TASK_UNINTERRUPTIBLE);
3499 				schedule_timeout(usecs_to_jiffies(100));
3500 			}
3501 		} while (err == -EBUSY);
3502 	} else {
3503 		c4iw_init_wr_wait(&ep->com.wr_wait);
3504 		err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3505 				ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3506 				0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3507 		if (!err)
3508 			err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3509 						  &ep->com.wr_wait,
3510 						  0, 0, __func__);
3511 		else if (err > 0)
3512 			err = net_xmit_errno(err);
3513 	}
3514 	if (err)
3515 		pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3516 		       , err, ep->stid,
3517 		       &sin->sin_addr, ntohs(sin->sin_port));
3518 	return err;
3519 }
3520 
3521 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3522 {
3523 	int err = 0;
3524 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3525 	struct c4iw_listen_ep *ep;
3526 
3527 	might_sleep();
3528 
3529 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3530 	if (!ep) {
3531 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3532 		err = -ENOMEM;
3533 		goto fail1;
3534 	}
3535 	skb_queue_head_init(&ep->com.ep_skb_list);
3536 	PDBG("%s ep %p\n", __func__, ep);
3537 	ep->com.cm_id = cm_id;
3538 	ref_cm_id(&ep->com);
3539 	ep->com.dev = dev;
3540 	ep->backlog = backlog;
3541 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3542 	       sizeof(ep->com.local_addr));
3543 
3544 	/*
3545 	 * Allocate a server TID.
3546 	 */
3547 	if (dev->rdev.lldi.enable_fw_ofld_conn &&
3548 	    ep->com.local_addr.ss_family == AF_INET)
3549 		ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3550 					     cm_id->m_local_addr.ss_family, ep);
3551 	else
3552 		ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3553 					    cm_id->m_local_addr.ss_family, ep);
3554 
3555 	if (ep->stid == -1) {
3556 		printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
3557 		err = -ENOMEM;
3558 		goto fail2;
3559 	}
3560 	insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3561 
3562 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3563 	       sizeof(ep->com.local_addr));
3564 
3565 	state_set(&ep->com, LISTEN);
3566 	if (ep->com.local_addr.ss_family == AF_INET)
3567 		err = create_server4(dev, ep);
3568 	else
3569 		err = create_server6(dev, ep);
3570 	if (!err) {
3571 		cm_id->provider_data = ep;
3572 		goto out;
3573 	}
3574 
3575 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3576 			ep->com.local_addr.ss_family);
3577 fail2:
3578 	deref_cm_id(&ep->com);
3579 	c4iw_put_ep(&ep->com);
3580 fail1:
3581 out:
3582 	return err;
3583 }
3584 
3585 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3586 {
3587 	int err;
3588 	struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3589 
3590 	PDBG("%s ep %p\n", __func__, ep);
3591 
3592 	might_sleep();
3593 	state_set(&ep->com, DEAD);
3594 	if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3595 	    ep->com.local_addr.ss_family == AF_INET) {
3596 		err = cxgb4_remove_server_filter(
3597 			ep->com.dev->rdev.lldi.ports[0], ep->stid,
3598 			ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3599 	} else {
3600 		struct sockaddr_in6 *sin6;
3601 		c4iw_init_wr_wait(&ep->com.wr_wait);
3602 		err = cxgb4_remove_server(
3603 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3604 				ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3605 		if (err)
3606 			goto done;
3607 		err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3608 					  0, 0, __func__);
3609 		sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3610 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3611 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3612 	}
3613 	remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3614 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3615 			ep->com.local_addr.ss_family);
3616 done:
3617 	deref_cm_id(&ep->com);
3618 	c4iw_put_ep(&ep->com);
3619 	return err;
3620 }
3621 
3622 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3623 {
3624 	int ret = 0;
3625 	int close = 0;
3626 	int fatal = 0;
3627 	struct c4iw_rdev *rdev;
3628 
3629 	mutex_lock(&ep->com.mutex);
3630 
3631 	PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
3632 	     states[ep->com.state], abrupt);
3633 
3634 	/*
3635 	 * Ref the ep here in case we have fatal errors causing the
3636 	 * ep to be released and freed.
3637 	 */
3638 	c4iw_get_ep(&ep->com);
3639 
3640 	rdev = &ep->com.dev->rdev;
3641 	if (c4iw_fatal_error(rdev)) {
3642 		fatal = 1;
3643 		close_complete_upcall(ep, -EIO);
3644 		ep->com.state = DEAD;
3645 	}
3646 	switch (ep->com.state) {
3647 	case MPA_REQ_WAIT:
3648 	case MPA_REQ_SENT:
3649 	case MPA_REQ_RCVD:
3650 	case MPA_REP_SENT:
3651 	case FPDU_MODE:
3652 	case CONNECTING:
3653 		close = 1;
3654 		if (abrupt)
3655 			ep->com.state = ABORTING;
3656 		else {
3657 			ep->com.state = CLOSING;
3658 
3659 			/*
3660 			 * if we close before we see the fw4_ack() then we fix
3661 			 * up the timer state since we're reusing it.
3662 			 */
3663 			if (ep->mpa_skb &&
3664 			    test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3665 				clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3666 				stop_ep_timer(ep);
3667 			}
3668 			start_ep_timer(ep);
3669 		}
3670 		set_bit(CLOSE_SENT, &ep->com.flags);
3671 		break;
3672 	case CLOSING:
3673 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3674 			close = 1;
3675 			if (abrupt) {
3676 				(void)stop_ep_timer(ep);
3677 				ep->com.state = ABORTING;
3678 			} else
3679 				ep->com.state = MORIBUND;
3680 		}
3681 		break;
3682 	case MORIBUND:
3683 	case ABORTING:
3684 	case DEAD:
3685 		PDBG("%s ignoring disconnect ep %p state %u\n",
3686 		     __func__, ep, ep->com.state);
3687 		break;
3688 	default:
3689 		BUG();
3690 		break;
3691 	}
3692 
3693 	if (close) {
3694 		if (abrupt) {
3695 			set_bit(EP_DISC_ABORT, &ep->com.history);
3696 			close_complete_upcall(ep, -ECONNRESET);
3697 			ret = send_abort(ep);
3698 		} else {
3699 			set_bit(EP_DISC_CLOSE, &ep->com.history);
3700 			ret = send_halfclose(ep);
3701 		}
3702 		if (ret) {
3703 			set_bit(EP_DISC_FAIL, &ep->com.history);
3704 			if (!abrupt) {
3705 				stop_ep_timer(ep);
3706 				close_complete_upcall(ep, -EIO);
3707 			}
3708 			if (ep->com.qp) {
3709 				struct c4iw_qp_attributes attrs;
3710 
3711 				attrs.next_state = C4IW_QP_STATE_ERROR;
3712 				ret = c4iw_modify_qp(ep->com.qp->rhp,
3713 						     ep->com.qp,
3714 						     C4IW_QP_ATTR_NEXT_STATE,
3715 						     &attrs, 1);
3716 				if (ret)
3717 					pr_err(MOD
3718 					       "%s - qp <- error failed!\n",
3719 					       __func__);
3720 			}
3721 			fatal = 1;
3722 		}
3723 	}
3724 	mutex_unlock(&ep->com.mutex);
3725 	c4iw_put_ep(&ep->com);
3726 	if (fatal)
3727 		release_ep_resources(ep);
3728 	return ret;
3729 }
3730 
3731 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3732 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3733 {
3734 	struct c4iw_ep *ep;
3735 	int atid = be32_to_cpu(req->tid);
3736 
3737 	ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3738 					   (__force u32) req->tid);
3739 	if (!ep)
3740 		return;
3741 
3742 	switch (req->retval) {
3743 	case FW_ENOMEM:
3744 		set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3745 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3746 			send_fw_act_open_req(ep, atid);
3747 			return;
3748 		}
3749 	case FW_EADDRINUSE:
3750 		set_bit(ACT_RETRY_INUSE, &ep->com.history);
3751 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3752 			send_fw_act_open_req(ep, atid);
3753 			return;
3754 		}
3755 		break;
3756 	default:
3757 		pr_info("%s unexpected ofld conn wr retval %d\n",
3758 		       __func__, req->retval);
3759 		break;
3760 	}
3761 	pr_err("active ofld_connect_wr failure %d atid %d\n",
3762 	       req->retval, atid);
3763 	mutex_lock(&dev->rdev.stats.lock);
3764 	dev->rdev.stats.act_ofld_conn_fails++;
3765 	mutex_unlock(&dev->rdev.stats.lock);
3766 	connect_reply_upcall(ep, status2errno(req->retval));
3767 	state_set(&ep->com, DEAD);
3768 	if (ep->com.remote_addr.ss_family == AF_INET6) {
3769 		struct sockaddr_in6 *sin6 =
3770 			(struct sockaddr_in6 *)&ep->com.local_addr;
3771 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3772 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3773 	}
3774 	remove_handle(dev, &dev->atid_idr, atid);
3775 	cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3776 	dst_release(ep->dst);
3777 	cxgb4_l2t_release(ep->l2t);
3778 	c4iw_put_ep(&ep->com);
3779 }
3780 
3781 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3782 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3783 {
3784 	struct sk_buff *rpl_skb;
3785 	struct cpl_pass_accept_req *cpl;
3786 	int ret;
3787 
3788 	rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3789 	BUG_ON(!rpl_skb);
3790 	if (req->retval) {
3791 		PDBG("%s passive open failure %d\n", __func__, req->retval);
3792 		mutex_lock(&dev->rdev.stats.lock);
3793 		dev->rdev.stats.pas_ofld_conn_fails++;
3794 		mutex_unlock(&dev->rdev.stats.lock);
3795 		kfree_skb(rpl_skb);
3796 	} else {
3797 		cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3798 		OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3799 					(__force u32) htonl(
3800 					(__force u32) req->tid)));
3801 		ret = pass_accept_req(dev, rpl_skb);
3802 		if (!ret)
3803 			kfree_skb(rpl_skb);
3804 	}
3805 	return;
3806 }
3807 
3808 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3809 {
3810 	struct cpl_fw6_msg *rpl = cplhdr(skb);
3811 	struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3812 
3813 	switch (rpl->type) {
3814 	case FW6_TYPE_CQE:
3815 		c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3816 		break;
3817 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3818 		req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3819 		switch (req->t_state) {
3820 		case TCP_SYN_SENT:
3821 			active_ofld_conn_reply(dev, skb, req);
3822 			break;
3823 		case TCP_SYN_RECV:
3824 			passive_ofld_conn_reply(dev, skb, req);
3825 			break;
3826 		default:
3827 			pr_err("%s unexpected ofld conn wr state %d\n",
3828 			       __func__, req->t_state);
3829 			break;
3830 		}
3831 		break;
3832 	}
3833 	return 0;
3834 }
3835 
3836 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3837 {
3838 	__be32 l2info;
3839 	__be16 hdr_len, vlantag, len;
3840 	u16 eth_hdr_len;
3841 	int tcp_hdr_len, ip_hdr_len;
3842 	u8 intf;
3843 	struct cpl_rx_pkt *cpl = cplhdr(skb);
3844 	struct cpl_pass_accept_req *req;
3845 	struct tcp_options_received tmp_opt;
3846 	struct c4iw_dev *dev;
3847 	enum chip_type type;
3848 
3849 	dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3850 	/* Store values from cpl_rx_pkt in temporary location. */
3851 	vlantag = cpl->vlan;
3852 	len = cpl->len;
3853 	l2info  = cpl->l2info;
3854 	hdr_len = cpl->hdr_len;
3855 	intf = cpl->iff;
3856 
3857 	__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3858 
3859 	/*
3860 	 * We need to parse the TCP options from SYN packet.
3861 	 * to generate cpl_pass_accept_req.
3862 	 */
3863 	memset(&tmp_opt, 0, sizeof(tmp_opt));
3864 	tcp_clear_options(&tmp_opt);
3865 	tcp_parse_options(skb, &tmp_opt, 0, NULL);
3866 
3867 	req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
3868 	memset(req, 0, sizeof(*req));
3869 	req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3870 			 SYN_MAC_IDX_V(RX_MACIDX_G(
3871 			 be32_to_cpu(l2info))) |
3872 			 SYN_XACT_MATCH_F);
3873 	type = dev->rdev.lldi.adapter_type;
3874 	tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3875 	ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3876 	req->hdr_len =
3877 		cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3878 	if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3879 		eth_hdr_len = is_t4(type) ?
3880 				RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3881 				RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3882 		req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3883 					    IP_HDR_LEN_V(ip_hdr_len) |
3884 					    ETH_HDR_LEN_V(eth_hdr_len));
3885 	} else { /* T6 and later */
3886 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3887 		req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3888 					    T6_IP_HDR_LEN_V(ip_hdr_len) |
3889 					    T6_ETH_HDR_LEN_V(eth_hdr_len));
3890 	}
3891 	req->vlan = vlantag;
3892 	req->len = len;
3893 	req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3894 				    PASS_OPEN_TOS_V(tos));
3895 	req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3896 	if (tmp_opt.wscale_ok)
3897 		req->tcpopt.wsf = tmp_opt.snd_wscale;
3898 	req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3899 	if (tmp_opt.sack_ok)
3900 		req->tcpopt.sack = 1;
3901 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3902 	return;
3903 }
3904 
3905 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3906 				  __be32 laddr, __be16 lport,
3907 				  __be32 raddr, __be16 rport,
3908 				  u32 rcv_isn, u32 filter, u16 window,
3909 				  u32 rss_qid, u8 port_id)
3910 {
3911 	struct sk_buff *req_skb;
3912 	struct fw_ofld_connection_wr *req;
3913 	struct cpl_pass_accept_req *cpl = cplhdr(skb);
3914 	int ret;
3915 
3916 	req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3917 	req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
3918 	memset(req, 0, sizeof(*req));
3919 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3920 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3921 	req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3922 	req->le.filter = (__force __be32) filter;
3923 	req->le.lport = lport;
3924 	req->le.pport = rport;
3925 	req->le.u.ipv4.lip = laddr;
3926 	req->le.u.ipv4.pip = raddr;
3927 	req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3928 	req->tcb.rcv_adv = htons(window);
3929 	req->tcb.t_state_to_astid =
3930 		 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3931 			FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3932 			FW_OFLD_CONNECTION_WR_ASTID_V(
3933 			PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3934 
3935 	/*
3936 	 * We store the qid in opt2 which will be used by the firmware
3937 	 * to send us the wr response.
3938 	 */
3939 	req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3940 
3941 	/*
3942 	 * We initialize the MSS index in TCB to 0xF.
3943 	 * So that when driver sends cpl_pass_accept_rpl
3944 	 * TCB picks up the correct value. If this was 0
3945 	 * TP will ignore any value > 0 for MSS index.
3946 	 */
3947 	req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3948 	req->cookie = (uintptr_t)skb;
3949 
3950 	set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3951 	ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3952 	if (ret < 0) {
3953 		pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3954 		       ret);
3955 		kfree_skb(skb);
3956 		kfree_skb(req_skb);
3957 	}
3958 }
3959 
3960 /*
3961  * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3962  * messages when a filter is being used instead of server to
3963  * redirect a syn packet. When packets hit filter they are redirected
3964  * to the offload queue and driver tries to establish the connection
3965  * using firmware work request.
3966  */
3967 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3968 {
3969 	int stid;
3970 	unsigned int filter;
3971 	struct ethhdr *eh = NULL;
3972 	struct vlan_ethhdr *vlan_eh = NULL;
3973 	struct iphdr *iph;
3974 	struct tcphdr *tcph;
3975 	struct rss_header *rss = (void *)skb->data;
3976 	struct cpl_rx_pkt *cpl = (void *)skb->data;
3977 	struct cpl_pass_accept_req *req = (void *)(rss + 1);
3978 	struct l2t_entry *e;
3979 	struct dst_entry *dst;
3980 	struct c4iw_ep *lep = NULL;
3981 	u16 window;
3982 	struct port_info *pi;
3983 	struct net_device *pdev;
3984 	u16 rss_qid, eth_hdr_len;
3985 	int step;
3986 	u32 tx_chan;
3987 	struct neighbour *neigh;
3988 
3989 	/* Drop all non-SYN packets */
3990 	if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3991 		goto reject;
3992 
3993 	/*
3994 	 * Drop all packets which did not hit the filter.
3995 	 * Unlikely to happen.
3996 	 */
3997 	if (!(rss->filter_hit && rss->filter_tid))
3998 		goto reject;
3999 
4000 	/*
4001 	 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4002 	 */
4003 	stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4004 
4005 	lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4006 	if (!lep) {
4007 		PDBG("%s connect request on invalid stid %d\n", __func__, stid);
4008 		goto reject;
4009 	}
4010 
4011 	switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4012 	case CHELSIO_T4:
4013 		eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4014 		break;
4015 	case CHELSIO_T5:
4016 		eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4017 		break;
4018 	case CHELSIO_T6:
4019 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4020 		break;
4021 	default:
4022 		pr_err("T%d Chip is not supported\n",
4023 		       CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4024 		goto reject;
4025 	}
4026 
4027 	if (eth_hdr_len == ETH_HLEN) {
4028 		eh = (struct ethhdr *)(req + 1);
4029 		iph = (struct iphdr *)(eh + 1);
4030 	} else {
4031 		vlan_eh = (struct vlan_ethhdr *)(req + 1);
4032 		iph = (struct iphdr *)(vlan_eh + 1);
4033 		skb->vlan_tci = ntohs(cpl->vlan);
4034 	}
4035 
4036 	if (iph->version != 0x4)
4037 		goto reject;
4038 
4039 	tcph = (struct tcphdr *)(iph + 1);
4040 	skb_set_network_header(skb, (void *)iph - (void *)rss);
4041 	skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4042 	skb_get(skb);
4043 
4044 	PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
4045 	     ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4046 	     ntohs(tcph->source), iph->tos);
4047 
4048 	dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
4049 			 iph->tos);
4050 	if (!dst) {
4051 		pr_err("%s - failed to find dst entry!\n",
4052 		       __func__);
4053 		goto reject;
4054 	}
4055 	neigh = dst_neigh_lookup_skb(dst, skb);
4056 
4057 	if (!neigh) {
4058 		pr_err("%s - failed to allocate neigh!\n",
4059 		       __func__);
4060 		goto free_dst;
4061 	}
4062 
4063 	if (neigh->dev->flags & IFF_LOOPBACK) {
4064 		pdev = ip_dev_find(&init_net, iph->daddr);
4065 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4066 				    pdev, 0);
4067 		pi = (struct port_info *)netdev_priv(pdev);
4068 		tx_chan = cxgb4_port_chan(pdev);
4069 		dev_put(pdev);
4070 	} else {
4071 		pdev = get_real_dev(neigh->dev);
4072 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4073 					pdev, 0);
4074 		pi = (struct port_info *)netdev_priv(pdev);
4075 		tx_chan = cxgb4_port_chan(pdev);
4076 	}
4077 	neigh_release(neigh);
4078 	if (!e) {
4079 		pr_err("%s - failed to allocate l2t entry!\n",
4080 		       __func__);
4081 		goto free_dst;
4082 	}
4083 
4084 	step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4085 	rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4086 	window = (__force u16) htons((__force u16)tcph->window);
4087 
4088 	/* Calcuate filter portion for LE region. */
4089 	filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4090 						    dev->rdev.lldi.ports[0],
4091 						    e));
4092 
4093 	/*
4094 	 * Synthesize the cpl_pass_accept_req. We have everything except the
4095 	 * TID. Once firmware sends a reply with TID we update the TID field
4096 	 * in cpl and pass it through the regular cpl_pass_accept_req path.
4097 	 */
4098 	build_cpl_pass_accept_req(skb, stid, iph->tos);
4099 	send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4100 			      tcph->source, ntohl(tcph->seq), filter, window,
4101 			      rss_qid, pi->port_id);
4102 	cxgb4_l2t_release(e);
4103 free_dst:
4104 	dst_release(dst);
4105 reject:
4106 	if (lep)
4107 		c4iw_put_ep(&lep->com);
4108 	return 0;
4109 }
4110 
4111 /*
4112  * These are the real handlers that are called from a
4113  * work queue.
4114  */
4115 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4116 	[CPL_ACT_ESTABLISH] = act_establish,
4117 	[CPL_ACT_OPEN_RPL] = act_open_rpl,
4118 	[CPL_RX_DATA] = rx_data,
4119 	[CPL_ABORT_RPL_RSS] = abort_rpl,
4120 	[CPL_ABORT_RPL] = abort_rpl,
4121 	[CPL_PASS_OPEN_RPL] = pass_open_rpl,
4122 	[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4123 	[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4124 	[CPL_PASS_ESTABLISH] = pass_establish,
4125 	[CPL_PEER_CLOSE] = peer_close,
4126 	[CPL_ABORT_REQ_RSS] = peer_abort,
4127 	[CPL_CLOSE_CON_RPL] = close_con_rpl,
4128 	[CPL_RDMA_TERMINATE] = terminate,
4129 	[CPL_FW4_ACK] = fw4_ack,
4130 	[CPL_FW6_MSG] = deferred_fw6_msg,
4131 	[CPL_RX_PKT] = rx_pkt,
4132 	[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4133 	[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4134 };
4135 
4136 static void process_timeout(struct c4iw_ep *ep)
4137 {
4138 	struct c4iw_qp_attributes attrs;
4139 	int abort = 1;
4140 
4141 	mutex_lock(&ep->com.mutex);
4142 	PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
4143 	     ep->com.state);
4144 	set_bit(TIMEDOUT, &ep->com.history);
4145 	switch (ep->com.state) {
4146 	case MPA_REQ_SENT:
4147 		connect_reply_upcall(ep, -ETIMEDOUT);
4148 		break;
4149 	case MPA_REQ_WAIT:
4150 	case MPA_REQ_RCVD:
4151 	case MPA_REP_SENT:
4152 	case FPDU_MODE:
4153 		break;
4154 	case CLOSING:
4155 	case MORIBUND:
4156 		if (ep->com.cm_id && ep->com.qp) {
4157 			attrs.next_state = C4IW_QP_STATE_ERROR;
4158 			c4iw_modify_qp(ep->com.qp->rhp,
4159 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4160 				     &attrs, 1);
4161 		}
4162 		close_complete_upcall(ep, -ETIMEDOUT);
4163 		break;
4164 	case ABORTING:
4165 	case DEAD:
4166 
4167 		/*
4168 		 * These states are expected if the ep timed out at the same
4169 		 * time as another thread was calling stop_ep_timer().
4170 		 * So we silently do nothing for these states.
4171 		 */
4172 		abort = 0;
4173 		break;
4174 	default:
4175 		WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4176 			__func__, ep, ep->hwtid, ep->com.state);
4177 		abort = 0;
4178 	}
4179 	mutex_unlock(&ep->com.mutex);
4180 	if (abort)
4181 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4182 	c4iw_put_ep(&ep->com);
4183 }
4184 
4185 static void process_timedout_eps(void)
4186 {
4187 	struct c4iw_ep *ep;
4188 
4189 	spin_lock_irq(&timeout_lock);
4190 	while (!list_empty(&timeout_list)) {
4191 		struct list_head *tmp;
4192 
4193 		tmp = timeout_list.next;
4194 		list_del(tmp);
4195 		tmp->next = NULL;
4196 		tmp->prev = NULL;
4197 		spin_unlock_irq(&timeout_lock);
4198 		ep = list_entry(tmp, struct c4iw_ep, entry);
4199 		process_timeout(ep);
4200 		spin_lock_irq(&timeout_lock);
4201 	}
4202 	spin_unlock_irq(&timeout_lock);
4203 }
4204 
4205 static void process_work(struct work_struct *work)
4206 {
4207 	struct sk_buff *skb = NULL;
4208 	struct c4iw_dev *dev;
4209 	struct cpl_act_establish *rpl;
4210 	unsigned int opcode;
4211 	int ret;
4212 
4213 	process_timedout_eps();
4214 	while ((skb = skb_dequeue(&rxq))) {
4215 		rpl = cplhdr(skb);
4216 		dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4217 		opcode = rpl->ot.opcode;
4218 
4219 		BUG_ON(!work_handlers[opcode]);
4220 		ret = work_handlers[opcode](dev, skb);
4221 		if (!ret)
4222 			kfree_skb(skb);
4223 		process_timedout_eps();
4224 	}
4225 }
4226 
4227 static DECLARE_WORK(skb_work, process_work);
4228 
4229 static void ep_timeout(unsigned long arg)
4230 {
4231 	struct c4iw_ep *ep = (struct c4iw_ep *)arg;
4232 	int kickit = 0;
4233 
4234 	spin_lock(&timeout_lock);
4235 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4236 		/*
4237 		 * Only insert if it is not already on the list.
4238 		 */
4239 		if (!ep->entry.next) {
4240 			list_add_tail(&ep->entry, &timeout_list);
4241 			kickit = 1;
4242 		}
4243 	}
4244 	spin_unlock(&timeout_lock);
4245 	if (kickit)
4246 		queue_work(workq, &skb_work);
4247 }
4248 
4249 /*
4250  * All the CM events are handled on a work queue to have a safe context.
4251  */
4252 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4253 {
4254 
4255 	/*
4256 	 * Save dev in the skb->cb area.
4257 	 */
4258 	*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4259 
4260 	/*
4261 	 * Queue the skb and schedule the worker thread.
4262 	 */
4263 	skb_queue_tail(&rxq, skb);
4264 	queue_work(workq, &skb_work);
4265 	return 0;
4266 }
4267 
4268 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4269 {
4270 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4271 
4272 	if (rpl->status != CPL_ERR_NONE) {
4273 		printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
4274 		       "for tid %u\n", rpl->status, GET_TID(rpl));
4275 	}
4276 	kfree_skb(skb);
4277 	return 0;
4278 }
4279 
4280 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4281 {
4282 	struct cpl_fw6_msg *rpl = cplhdr(skb);
4283 	struct c4iw_wr_wait *wr_waitp;
4284 	int ret;
4285 
4286 	PDBG("%s type %u\n", __func__, rpl->type);
4287 
4288 	switch (rpl->type) {
4289 	case FW6_TYPE_WR_RPL:
4290 		ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4291 		wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4292 		PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
4293 		if (wr_waitp)
4294 			c4iw_wake_up(wr_waitp, ret ? -ret : 0);
4295 		kfree_skb(skb);
4296 		break;
4297 	case FW6_TYPE_CQE:
4298 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4299 		sched(dev, skb);
4300 		break;
4301 	default:
4302 		printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
4303 		       rpl->type);
4304 		kfree_skb(skb);
4305 		break;
4306 	}
4307 	return 0;
4308 }
4309 
4310 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4311 {
4312 	struct cpl_abort_req_rss *req = cplhdr(skb);
4313 	struct c4iw_ep *ep;
4314 	unsigned int tid = GET_TID(req);
4315 
4316 	ep = get_ep_from_tid(dev, tid);
4317 	/* This EP will be dereferenced in peer_abort() */
4318 	if (!ep) {
4319 		printk(KERN_WARNING MOD
4320 		       "Abort on non-existent endpoint, tid %d\n", tid);
4321 		kfree_skb(skb);
4322 		return 0;
4323 	}
4324 	if (is_neg_adv(req->status)) {
4325 		PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4326 		     __func__, ep->hwtid, req->status,
4327 		     neg_adv_str(req->status));
4328 		goto out;
4329 	}
4330 	PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4331 	     ep->com.state);
4332 
4333 	c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4334 out:
4335 	sched(dev, skb);
4336 	return 0;
4337 }
4338 
4339 /*
4340  * Most upcalls from the T4 Core go to sched() to
4341  * schedule the processing on a work queue.
4342  */
4343 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4344 	[CPL_ACT_ESTABLISH] = sched,
4345 	[CPL_ACT_OPEN_RPL] = sched,
4346 	[CPL_RX_DATA] = sched,
4347 	[CPL_ABORT_RPL_RSS] = sched,
4348 	[CPL_ABORT_RPL] = sched,
4349 	[CPL_PASS_OPEN_RPL] = sched,
4350 	[CPL_CLOSE_LISTSRV_RPL] = sched,
4351 	[CPL_PASS_ACCEPT_REQ] = sched,
4352 	[CPL_PASS_ESTABLISH] = sched,
4353 	[CPL_PEER_CLOSE] = sched,
4354 	[CPL_CLOSE_CON_RPL] = sched,
4355 	[CPL_ABORT_REQ_RSS] = peer_abort_intr,
4356 	[CPL_RDMA_TERMINATE] = sched,
4357 	[CPL_FW4_ACK] = sched,
4358 	[CPL_SET_TCB_RPL] = set_tcb_rpl,
4359 	[CPL_FW6_MSG] = fw6_msg,
4360 	[CPL_RX_PKT] = sched
4361 };
4362 
4363 int __init c4iw_cm_init(void)
4364 {
4365 	spin_lock_init(&timeout_lock);
4366 	skb_queue_head_init(&rxq);
4367 
4368 	workq = create_singlethread_workqueue("iw_cxgb4");
4369 	if (!workq)
4370 		return -ENOMEM;
4371 
4372 	return 0;
4373 }
4374 
4375 void c4iw_cm_term(void)
4376 {
4377 	WARN_ON(!list_empty(&timeout_list));
4378 	flush_workqueue(workq);
4379 	destroy_workqueue(workq);
4380 }
4381