xref: /linux/drivers/infiniband/hw/cxgb4/cm.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 /*
2  * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42 
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49 
50 #include <rdma/ib_addr.h>
51 
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
55 
56 static char *states[] = {
57 	"idle",
58 	"listen",
59 	"connecting",
60 	"mpa_wait_req",
61 	"mpa_req_sent",
62 	"mpa_req_rcvd",
63 	"mpa_rep_sent",
64 	"fpdu_mode",
65 	"aborting",
66 	"closing",
67 	"moribund",
68 	"dead",
69 	NULL,
70 };
71 
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
75 
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
79 
80 static int dack_mode;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=0)");
83 
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 		 "Per-connection max ORD/IRD (default=32)");
88 
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
92 
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
96 
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 		 "Enable tcp window scaling (default=1)");
101 
102 static int peer2peer = 1;
103 module_param(peer2peer, int, 0644);
104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
105 
106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
107 module_param(p2p_type, int, 0644);
108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
109 			   "1=RDMA_READ 0=RDMA_WRITE (default 1)");
110 
111 static int ep_timeout_secs = 60;
112 module_param(ep_timeout_secs, int, 0644);
113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
114 				   "in seconds (default=60)");
115 
116 static int mpa_rev = 2;
117 module_param(mpa_rev, int, 0644);
118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
119 		"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
120 		" compliant (default=2)");
121 
122 static int markers_enabled;
123 module_param(markers_enabled, int, 0644);
124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
125 
126 static int crc_enabled = 1;
127 module_param(crc_enabled, int, 0644);
128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
129 
130 static int rcv_win = 256 * 1024;
131 module_param(rcv_win, int, 0644);
132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
133 
134 static int snd_win = 128 * 1024;
135 module_param(snd_win, int, 0644);
136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
137 
138 static struct workqueue_struct *workq;
139 
140 static struct sk_buff_head rxq;
141 
142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
143 static void ep_timeout(struct timer_list *t);
144 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
146 
147 static LIST_HEAD(timeout_list);
148 static DEFINE_SPINLOCK(timeout_lock);
149 
150 static void deref_cm_id(struct c4iw_ep_common *epc)
151 {
152 	epc->cm_id->rem_ref(epc->cm_id);
153 	epc->cm_id = NULL;
154 	set_bit(CM_ID_DEREFED, &epc->history);
155 }
156 
157 static void ref_cm_id(struct c4iw_ep_common *epc)
158 {
159 	set_bit(CM_ID_REFED, &epc->history);
160 	epc->cm_id->add_ref(epc->cm_id);
161 }
162 
163 static void deref_qp(struct c4iw_ep *ep)
164 {
165 	c4iw_qp_rem_ref(&ep->com.qp->ibqp);
166 	clear_bit(QP_REFERENCED, &ep->com.flags);
167 	set_bit(QP_DEREFED, &ep->com.history);
168 }
169 
170 static void ref_qp(struct c4iw_ep *ep)
171 {
172 	set_bit(QP_REFERENCED, &ep->com.flags);
173 	set_bit(QP_REFED, &ep->com.history);
174 	c4iw_qp_add_ref(&ep->com.qp->ibqp);
175 }
176 
177 static void start_ep_timer(struct c4iw_ep *ep)
178 {
179 	pr_debug("ep %p\n", ep);
180 	if (timer_pending(&ep->timer)) {
181 		pr_err("%s timer already started! ep %p\n",
182 		       __func__, ep);
183 		return;
184 	}
185 	clear_bit(TIMEOUT, &ep->com.flags);
186 	c4iw_get_ep(&ep->com);
187 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
188 	add_timer(&ep->timer);
189 }
190 
191 static int stop_ep_timer(struct c4iw_ep *ep)
192 {
193 	pr_debug("ep %p stopping\n", ep);
194 	del_timer_sync(&ep->timer);
195 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
196 		c4iw_put_ep(&ep->com);
197 		return 0;
198 	}
199 	return 1;
200 }
201 
202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
203 		  struct l2t_entry *l2e)
204 {
205 	int	error = 0;
206 
207 	if (c4iw_fatal_error(rdev)) {
208 		kfree_skb(skb);
209 		pr_err("%s - device in error state - dropping\n", __func__);
210 		return -EIO;
211 	}
212 	error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
213 	if (error < 0)
214 		kfree_skb(skb);
215 	else if (error == NET_XMIT_DROP)
216 		return -ENOMEM;
217 	return error < 0 ? error : 0;
218 }
219 
220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
221 {
222 	int	error = 0;
223 
224 	if (c4iw_fatal_error(rdev)) {
225 		kfree_skb(skb);
226 		pr_err("%s - device in error state - dropping\n", __func__);
227 		return -EIO;
228 	}
229 	error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
230 	if (error < 0)
231 		kfree_skb(skb);
232 	return error < 0 ? error : 0;
233 }
234 
235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
236 {
237 	u32 len = roundup(sizeof(struct cpl_tid_release), 16);
238 
239 	skb = get_skb(skb, len, GFP_KERNEL);
240 	if (!skb)
241 		return;
242 
243 	cxgb_mk_tid_release(skb, len, hwtid, 0);
244 	c4iw_ofld_send(rdev, skb);
245 	return;
246 }
247 
248 static void set_emss(struct c4iw_ep *ep, u16 opt)
249 {
250 	ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
251 		   ((AF_INET == ep->com.remote_addr.ss_family) ?
252 		    sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
253 		   sizeof(struct tcphdr);
254 	ep->mss = ep->emss;
255 	if (TCPOPT_TSTAMP_G(opt))
256 		ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
257 	if (ep->emss < 128)
258 		ep->emss = 128;
259 	if (ep->emss & 7)
260 		pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
261 			 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
262 	pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss,
263 		 ep->emss);
264 }
265 
266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
267 {
268 	enum c4iw_ep_state state;
269 
270 	mutex_lock(&epc->mutex);
271 	state = epc->state;
272 	mutex_unlock(&epc->mutex);
273 	return state;
274 }
275 
276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
277 {
278 	epc->state = new;
279 }
280 
281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
282 {
283 	mutex_lock(&epc->mutex);
284 	pr_debug("%s -> %s\n", states[epc->state], states[new]);
285 	__state_set(epc, new);
286 	mutex_unlock(&epc->mutex);
287 	return;
288 }
289 
290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
291 {
292 	struct sk_buff *skb;
293 	unsigned int i;
294 	size_t len;
295 
296 	len = roundup(sizeof(union cpl_wr_size), 16);
297 	for (i = 0; i < size; i++) {
298 		skb = alloc_skb(len, GFP_KERNEL);
299 		if (!skb)
300 			goto fail;
301 		skb_queue_tail(ep_skb_list, skb);
302 	}
303 	return 0;
304 fail:
305 	skb_queue_purge(ep_skb_list);
306 	return -ENOMEM;
307 }
308 
309 static void *alloc_ep(int size, gfp_t gfp)
310 {
311 	struct c4iw_ep_common *epc;
312 
313 	epc = kzalloc(size, gfp);
314 	if (epc) {
315 		epc->wr_waitp = c4iw_alloc_wr_wait(gfp);
316 		if (!epc->wr_waitp) {
317 			kfree(epc);
318 			epc = NULL;
319 			goto out;
320 		}
321 		kref_init(&epc->kref);
322 		mutex_init(&epc->mutex);
323 		c4iw_init_wr_wait(epc->wr_waitp);
324 	}
325 	pr_debug("alloc ep %p\n", epc);
326 out:
327 	return epc;
328 }
329 
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 	unsigned long flags;
333 
334 	xa_lock_irqsave(&ep->com.dev->hwtids, flags);
335 	__xa_erase(&ep->com.dev->hwtids, ep->hwtid);
336 	if (xa_empty(&ep->com.dev->hwtids))
337 		wake_up(&ep->com.dev->wait);
338 	xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
339 }
340 
341 static int insert_ep_tid(struct c4iw_ep *ep)
342 {
343 	unsigned long flags;
344 	int err;
345 
346 	xa_lock_irqsave(&ep->com.dev->hwtids, flags);
347 	err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL);
348 	xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
349 
350 	return err;
351 }
352 
353 /*
354  * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
355  */
356 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
357 {
358 	struct c4iw_ep *ep;
359 	unsigned long flags;
360 
361 	xa_lock_irqsave(&dev->hwtids, flags);
362 	ep = xa_load(&dev->hwtids, tid);
363 	if (ep)
364 		c4iw_get_ep(&ep->com);
365 	xa_unlock_irqrestore(&dev->hwtids, flags);
366 	return ep;
367 }
368 
369 /*
370  * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
371  */
372 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
373 					       unsigned int stid)
374 {
375 	struct c4iw_listen_ep *ep;
376 	unsigned long flags;
377 
378 	xa_lock_irqsave(&dev->stids, flags);
379 	ep = xa_load(&dev->stids, stid);
380 	if (ep)
381 		c4iw_get_ep(&ep->com);
382 	xa_unlock_irqrestore(&dev->stids, flags);
383 	return ep;
384 }
385 
386 void _c4iw_free_ep(struct kref *kref)
387 {
388 	struct c4iw_ep *ep;
389 
390 	ep = container_of(kref, struct c4iw_ep, com.kref);
391 	pr_debug("ep %p state %s\n", ep, states[ep->com.state]);
392 	if (test_bit(QP_REFERENCED, &ep->com.flags))
393 		deref_qp(ep);
394 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
395 		if (ep->com.remote_addr.ss_family == AF_INET6) {
396 			struct sockaddr_in6 *sin6 =
397 					(struct sockaddr_in6 *)
398 					&ep->com.local_addr;
399 
400 			cxgb4_clip_release(
401 					ep->com.dev->rdev.lldi.ports[0],
402 					(const u32 *)&sin6->sin6_addr.s6_addr,
403 					1);
404 		}
405 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
406 				 ep->com.local_addr.ss_family);
407 		dst_release(ep->dst);
408 		cxgb4_l2t_release(ep->l2t);
409 		kfree_skb(ep->mpa_skb);
410 	}
411 	if (!skb_queue_empty(&ep->com.ep_skb_list))
412 		skb_queue_purge(&ep->com.ep_skb_list);
413 	c4iw_put_wr_wait(ep->com.wr_waitp);
414 	kfree(ep);
415 }
416 
417 static void release_ep_resources(struct c4iw_ep *ep)
418 {
419 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
420 
421 	/*
422 	 * If we have a hwtid, then remove it from the idr table
423 	 * so lookups will no longer find this endpoint.  Otherwise
424 	 * we have a race where one thread finds the ep ptr just
425 	 * before the other thread is freeing the ep memory.
426 	 */
427 	if (ep->hwtid != -1)
428 		remove_ep_tid(ep);
429 	c4iw_put_ep(&ep->com);
430 }
431 
432 static int status2errno(int status)
433 {
434 	switch (status) {
435 	case CPL_ERR_NONE:
436 		return 0;
437 	case CPL_ERR_CONN_RESET:
438 		return -ECONNRESET;
439 	case CPL_ERR_ARP_MISS:
440 		return -EHOSTUNREACH;
441 	case CPL_ERR_CONN_TIMEDOUT:
442 		return -ETIMEDOUT;
443 	case CPL_ERR_TCAM_FULL:
444 		return -ENOMEM;
445 	case CPL_ERR_CONN_EXIST:
446 		return -EADDRINUSE;
447 	default:
448 		return -EIO;
449 	}
450 }
451 
452 /*
453  * Try and reuse skbs already allocated...
454  */
455 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
456 {
457 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
458 		skb_trim(skb, 0);
459 		skb_get(skb);
460 		skb_reset_transport_header(skb);
461 	} else {
462 		skb = alloc_skb(len, gfp);
463 		if (!skb)
464 			return NULL;
465 	}
466 	t4_set_arp_err_handler(skb, NULL, NULL);
467 	return skb;
468 }
469 
470 static struct net_device *get_real_dev(struct net_device *egress_dev)
471 {
472 	return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
473 }
474 
475 static void arp_failure_discard(void *handle, struct sk_buff *skb)
476 {
477 	pr_err("ARP failure\n");
478 	kfree_skb(skb);
479 }
480 
481 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
482 {
483 	pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
484 }
485 
486 enum {
487 	NUM_FAKE_CPLS = 2,
488 	FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
489 	FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
490 };
491 
492 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
493 {
494 	struct c4iw_ep *ep;
495 
496 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
497 	release_ep_resources(ep);
498 	return 0;
499 }
500 
501 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
502 {
503 	struct c4iw_ep *ep;
504 
505 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
506 	c4iw_put_ep(&ep->parent_ep->com);
507 	release_ep_resources(ep);
508 	return 0;
509 }
510 
511 /*
512  * Fake up a special CPL opcode and call sched() so process_work() will call
513  * _put_ep_safe() in a safe context to free the ep resources.  This is needed
514  * because ARP error handlers are called in an ATOMIC context, and
515  * _c4iw_free_ep() needs to block.
516  */
517 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
518 				  int cpl)
519 {
520 	struct cpl_act_establish *rpl = cplhdr(skb);
521 
522 	/* Set our special ARP_FAILURE opcode */
523 	rpl->ot.opcode = cpl;
524 
525 	/*
526 	 * Save ep in the skb->cb area, after where sched() will save the dev
527 	 * ptr.
528 	 */
529 	*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
530 	sched(ep->com.dev, skb);
531 }
532 
533 /* Handle an ARP failure for an accept */
534 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
535 {
536 	struct c4iw_ep *ep = handle;
537 
538 	pr_err("ARP failure during accept - tid %u - dropping connection\n",
539 	       ep->hwtid);
540 
541 	__state_set(&ep->com, DEAD);
542 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
543 }
544 
545 /*
546  * Handle an ARP failure for an active open.
547  */
548 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
549 {
550 	struct c4iw_ep *ep = handle;
551 
552 	pr_err("ARP failure during connect\n");
553 	connect_reply_upcall(ep, -EHOSTUNREACH);
554 	__state_set(&ep->com, DEAD);
555 	if (ep->com.remote_addr.ss_family == AF_INET6) {
556 		struct sockaddr_in6 *sin6 =
557 			(struct sockaddr_in6 *)&ep->com.local_addr;
558 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
559 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
560 	}
561 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
562 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
563 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
564 }
565 
566 /*
567  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
568  * and send it along.
569  */
570 static void abort_arp_failure(void *handle, struct sk_buff *skb)
571 {
572 	int ret;
573 	struct c4iw_ep *ep = handle;
574 	struct c4iw_rdev *rdev = &ep->com.dev->rdev;
575 	struct cpl_abort_req *req = cplhdr(skb);
576 
577 	pr_debug("rdev %p\n", rdev);
578 	req->cmd = CPL_ABORT_NO_RST;
579 	skb_get(skb);
580 	ret = c4iw_ofld_send(rdev, skb);
581 	if (ret) {
582 		__state_set(&ep->com, DEAD);
583 		queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
584 	} else
585 		kfree_skb(skb);
586 }
587 
588 static int send_flowc(struct c4iw_ep *ep)
589 {
590 	struct fw_flowc_wr *flowc;
591 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
592 	u16 vlan = ep->l2t->vlan;
593 	int nparams;
594 	int flowclen, flowclen16;
595 
596 	if (WARN_ON(!skb))
597 		return -ENOMEM;
598 
599 	if (vlan == CPL_L2T_VLAN_NONE)
600 		nparams = 9;
601 	else
602 		nparams = 10;
603 
604 	flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
605 	flowclen16 = DIV_ROUND_UP(flowclen, 16);
606 	flowclen = flowclen16 * 16;
607 
608 	flowc = __skb_put(skb, flowclen);
609 	memset(flowc, 0, flowclen);
610 
611 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
612 					   FW_FLOWC_WR_NPARAMS_V(nparams));
613 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
614 					  FW_WR_FLOWID_V(ep->hwtid));
615 
616 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
617 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
618 					    (ep->com.dev->rdev.lldi.pf));
619 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
620 	flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
621 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
622 	flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
623 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
624 	flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
625 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
626 	flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
627 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
628 	flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
629 	flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
630 	flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
631 	flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
632 	flowc->mnemval[7].val = cpu_to_be32(ep->emss);
633 	flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
634 	flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale);
635 	if (nparams == 10) {
636 		u16 pri;
637 		pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
638 		flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
639 		flowc->mnemval[9].val = cpu_to_be32(pri);
640 	}
641 
642 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
643 	return c4iw_ofld_send(&ep->com.dev->rdev, skb);
644 }
645 
646 static int send_halfclose(struct c4iw_ep *ep)
647 {
648 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
649 	u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
650 
651 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
652 	if (WARN_ON(!skb))
653 		return -ENOMEM;
654 
655 	cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
656 			      NULL, arp_failure_discard);
657 
658 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
659 }
660 
661 static void read_tcb(struct c4iw_ep *ep)
662 {
663 	struct sk_buff *skb;
664 	struct cpl_get_tcb *req;
665 	int wrlen = roundup(sizeof(*req), 16);
666 
667 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
668 	if (WARN_ON(!skb))
669 		return;
670 
671 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
672 	req = (struct cpl_get_tcb *) skb_put(skb, wrlen);
673 	memset(req, 0, wrlen);
674 	INIT_TP_WR(req, ep->hwtid);
675 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid));
676 	req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid));
677 
678 	/*
679 	 * keep a ref on the ep so the tcb is not unlocked before this
680 	 * cpl completes. The ref is released in read_tcb_rpl().
681 	 */
682 	c4iw_get_ep(&ep->com);
683 	if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb)))
684 		c4iw_put_ep(&ep->com);
685 }
686 
687 static int send_abort_req(struct c4iw_ep *ep)
688 {
689 	u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
690 	struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
691 
692 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
693 	if (WARN_ON(!req_skb))
694 		return -ENOMEM;
695 
696 	cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
697 			  ep, abort_arp_failure);
698 
699 	return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
700 }
701 
702 static int send_abort(struct c4iw_ep *ep)
703 {
704 	if (!ep->com.qp || !ep->com.qp->srq) {
705 		send_abort_req(ep);
706 		return 0;
707 	}
708 	set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags);
709 	read_tcb(ep);
710 	return 0;
711 }
712 
713 static int send_connect(struct c4iw_ep *ep)
714 {
715 	struct cpl_act_open_req *req = NULL;
716 	struct cpl_t5_act_open_req *t5req = NULL;
717 	struct cpl_t6_act_open_req *t6req = NULL;
718 	struct cpl_act_open_req6 *req6 = NULL;
719 	struct cpl_t5_act_open_req6 *t5req6 = NULL;
720 	struct cpl_t6_act_open_req6 *t6req6 = NULL;
721 	struct sk_buff *skb;
722 	u64 opt0;
723 	u32 opt2;
724 	unsigned int mtu_idx;
725 	u32 wscale;
726 	int win, sizev4, sizev6, wrlen;
727 	struct sockaddr_in *la = (struct sockaddr_in *)
728 				 &ep->com.local_addr;
729 	struct sockaddr_in *ra = (struct sockaddr_in *)
730 				 &ep->com.remote_addr;
731 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
732 				   &ep->com.local_addr;
733 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
734 				   &ep->com.remote_addr;
735 	int ret;
736 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
737 	u32 isn = (get_random_u32() & ~7UL) - 1;
738 	struct net_device *netdev;
739 	u64 params;
740 
741 	netdev = ep->com.dev->rdev.lldi.ports[0];
742 
743 	switch (CHELSIO_CHIP_VERSION(adapter_type)) {
744 	case CHELSIO_T4:
745 		sizev4 = sizeof(struct cpl_act_open_req);
746 		sizev6 = sizeof(struct cpl_act_open_req6);
747 		break;
748 	case CHELSIO_T5:
749 		sizev4 = sizeof(struct cpl_t5_act_open_req);
750 		sizev6 = sizeof(struct cpl_t5_act_open_req6);
751 		break;
752 	case CHELSIO_T6:
753 		sizev4 = sizeof(struct cpl_t6_act_open_req);
754 		sizev6 = sizeof(struct cpl_t6_act_open_req6);
755 		break;
756 	default:
757 		pr_err("T%d Chip is not supported\n",
758 		       CHELSIO_CHIP_VERSION(adapter_type));
759 		return -EINVAL;
760 	}
761 
762 	wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
763 			roundup(sizev4, 16) :
764 			roundup(sizev6, 16);
765 
766 	pr_debug("ep %p atid %u\n", ep, ep->atid);
767 
768 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
769 	if (!skb) {
770 		pr_err("%s - failed to alloc skb\n", __func__);
771 		return -ENOMEM;
772 	}
773 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
774 
775 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
776 		      enable_tcp_timestamps,
777 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
778 	wscale = cxgb_compute_wscale(rcv_win);
779 
780 	/*
781 	 * Specify the largest window that will fit in opt0. The
782 	 * remainder will be specified in the rx_data_ack.
783 	 */
784 	win = ep->rcv_win >> 10;
785 	if (win > RCV_BUFSIZ_M)
786 		win = RCV_BUFSIZ_M;
787 
788 	opt0 = (nocong ? NO_CONG_F : 0) |
789 	       KEEP_ALIVE_F |
790 	       DELACK_F |
791 	       WND_SCALE_V(wscale) |
792 	       MSS_IDX_V(mtu_idx) |
793 	       L2T_IDX_V(ep->l2t->idx) |
794 	       TX_CHAN_V(ep->tx_chan) |
795 	       SMAC_SEL_V(ep->smac_idx) |
796 	       DSCP_V(ep->tos >> 2) |
797 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
798 	       RCV_BUFSIZ_V(win);
799 	opt2 = RX_CHANNEL_V(0) |
800 	       CCTRL_ECN_V(enable_ecn) |
801 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
802 	if (enable_tcp_timestamps)
803 		opt2 |= TSTAMPS_EN_F;
804 	if (enable_tcp_sack)
805 		opt2 |= SACK_EN_F;
806 	if (wscale && enable_tcp_window_scaling)
807 		opt2 |= WND_SCALE_EN_F;
808 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
809 		if (peer2peer)
810 			isn += 4;
811 
812 		opt2 |= T5_OPT_2_VALID_F;
813 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
814 		opt2 |= T5_ISS_F;
815 	}
816 
817 	params = cxgb4_select_ntuple(netdev, ep->l2t);
818 
819 	if (ep->com.remote_addr.ss_family == AF_INET6)
820 		cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
821 			       (const u32 *)&la6->sin6_addr.s6_addr, 1);
822 
823 	t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
824 
825 	if (ep->com.remote_addr.ss_family == AF_INET) {
826 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
827 		case CHELSIO_T4:
828 			req = skb_put(skb, wrlen);
829 			INIT_TP_WR(req, 0);
830 			break;
831 		case CHELSIO_T5:
832 			t5req = skb_put(skb, wrlen);
833 			INIT_TP_WR(t5req, 0);
834 			req = (struct cpl_act_open_req *)t5req;
835 			break;
836 		case CHELSIO_T6:
837 			t6req = skb_put(skb, wrlen);
838 			INIT_TP_WR(t6req, 0);
839 			req = (struct cpl_act_open_req *)t6req;
840 			t5req = (struct cpl_t5_act_open_req *)t6req;
841 			break;
842 		default:
843 			pr_err("T%d Chip is not supported\n",
844 			       CHELSIO_CHIP_VERSION(adapter_type));
845 			ret = -EINVAL;
846 			goto clip_release;
847 		}
848 
849 		OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
850 					((ep->rss_qid<<14) | ep->atid)));
851 		req->local_port = la->sin_port;
852 		req->peer_port = ra->sin_port;
853 		req->local_ip = la->sin_addr.s_addr;
854 		req->peer_ip = ra->sin_addr.s_addr;
855 		req->opt0 = cpu_to_be64(opt0);
856 
857 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
858 			req->params = cpu_to_be32(params);
859 			req->opt2 = cpu_to_be32(opt2);
860 		} else {
861 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
862 				t5req->params =
863 					  cpu_to_be64(FILTER_TUPLE_V(params));
864 				t5req->rsvd = cpu_to_be32(isn);
865 				pr_debug("snd_isn %u\n", t5req->rsvd);
866 				t5req->opt2 = cpu_to_be32(opt2);
867 			} else {
868 				t6req->params =
869 					  cpu_to_be64(FILTER_TUPLE_V(params));
870 				t6req->rsvd = cpu_to_be32(isn);
871 				pr_debug("snd_isn %u\n", t6req->rsvd);
872 				t6req->opt2 = cpu_to_be32(opt2);
873 			}
874 		}
875 	} else {
876 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
877 		case CHELSIO_T4:
878 			req6 = skb_put(skb, wrlen);
879 			INIT_TP_WR(req6, 0);
880 			break;
881 		case CHELSIO_T5:
882 			t5req6 = skb_put(skb, wrlen);
883 			INIT_TP_WR(t5req6, 0);
884 			req6 = (struct cpl_act_open_req6 *)t5req6;
885 			break;
886 		case CHELSIO_T6:
887 			t6req6 = skb_put(skb, wrlen);
888 			INIT_TP_WR(t6req6, 0);
889 			req6 = (struct cpl_act_open_req6 *)t6req6;
890 			t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
891 			break;
892 		default:
893 			pr_err("T%d Chip is not supported\n",
894 			       CHELSIO_CHIP_VERSION(adapter_type));
895 			ret = -EINVAL;
896 			goto clip_release;
897 		}
898 
899 		OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
900 					((ep->rss_qid<<14)|ep->atid)));
901 		req6->local_port = la6->sin6_port;
902 		req6->peer_port = ra6->sin6_port;
903 		req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
904 		req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
905 		req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
906 		req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
907 		req6->opt0 = cpu_to_be64(opt0);
908 
909 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
910 			req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev,
911 								      ep->l2t));
912 			req6->opt2 = cpu_to_be32(opt2);
913 		} else {
914 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
915 				t5req6->params =
916 					    cpu_to_be64(FILTER_TUPLE_V(params));
917 				t5req6->rsvd = cpu_to_be32(isn);
918 				pr_debug("snd_isn %u\n", t5req6->rsvd);
919 				t5req6->opt2 = cpu_to_be32(opt2);
920 			} else {
921 				t6req6->params =
922 					    cpu_to_be64(FILTER_TUPLE_V(params));
923 				t6req6->rsvd = cpu_to_be32(isn);
924 				pr_debug("snd_isn %u\n", t6req6->rsvd);
925 				t6req6->opt2 = cpu_to_be32(opt2);
926 			}
927 
928 		}
929 	}
930 
931 	set_bit(ACT_OPEN_REQ, &ep->com.history);
932 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
933 clip_release:
934 	if (ret && ep->com.remote_addr.ss_family == AF_INET6)
935 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
936 				   (const u32 *)&la6->sin6_addr.s6_addr, 1);
937 	return ret;
938 }
939 
940 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
941 			u8 mpa_rev_to_use)
942 {
943 	int mpalen, wrlen, ret;
944 	struct fw_ofld_tx_data_wr *req;
945 	struct mpa_message *mpa;
946 	struct mpa_v2_conn_params mpa_v2_params;
947 
948 	pr_debug("ep %p tid %u pd_len %d\n",
949 		 ep, ep->hwtid, ep->plen);
950 
951 	mpalen = sizeof(*mpa) + ep->plen;
952 	if (mpa_rev_to_use == 2)
953 		mpalen += sizeof(struct mpa_v2_conn_params);
954 	wrlen = roundup(mpalen + sizeof(*req), 16);
955 	skb = get_skb(skb, wrlen, GFP_KERNEL);
956 	if (!skb) {
957 		connect_reply_upcall(ep, -ENOMEM);
958 		return -ENOMEM;
959 	}
960 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
961 
962 	req = skb_put_zero(skb, wrlen);
963 	req->op_to_immdlen = cpu_to_be32(
964 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
965 		FW_WR_COMPL_F |
966 		FW_WR_IMMDLEN_V(mpalen));
967 	req->flowid_len16 = cpu_to_be32(
968 		FW_WR_FLOWID_V(ep->hwtid) |
969 		FW_WR_LEN16_V(wrlen >> 4));
970 	req->plen = cpu_to_be32(mpalen);
971 	req->tunnel_to_proxy = cpu_to_be32(
972 		FW_OFLD_TX_DATA_WR_FLUSH_F |
973 		FW_OFLD_TX_DATA_WR_SHOVE_F);
974 
975 	mpa = (struct mpa_message *)(req + 1);
976 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
977 
978 	mpa->flags = 0;
979 	if (crc_enabled)
980 		mpa->flags |= MPA_CRC;
981 	if (markers_enabled) {
982 		mpa->flags |= MPA_MARKERS;
983 		ep->mpa_attr.recv_marker_enabled = 1;
984 	} else {
985 		ep->mpa_attr.recv_marker_enabled = 0;
986 	}
987 	if (mpa_rev_to_use == 2)
988 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
989 
990 	mpa->private_data_size = htons(ep->plen);
991 	mpa->revision = mpa_rev_to_use;
992 	if (mpa_rev_to_use == 1) {
993 		ep->tried_with_mpa_v1 = 1;
994 		ep->retry_with_mpa_v1 = 0;
995 	}
996 
997 	if (mpa_rev_to_use == 2) {
998 		mpa->private_data_size =
999 			htons(ntohs(mpa->private_data_size) +
1000 			      sizeof(struct mpa_v2_conn_params));
1001 		pr_debug("initiator ird %u ord %u\n", ep->ird,
1002 			 ep->ord);
1003 		mpa_v2_params.ird = htons((u16)ep->ird);
1004 		mpa_v2_params.ord = htons((u16)ep->ord);
1005 
1006 		if (peer2peer) {
1007 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1008 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1009 				mpa_v2_params.ord |=
1010 					htons(MPA_V2_RDMA_WRITE_RTR);
1011 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1012 				mpa_v2_params.ord |=
1013 					htons(MPA_V2_RDMA_READ_RTR);
1014 		}
1015 		memcpy(mpa->private_data, &mpa_v2_params,
1016 		       sizeof(struct mpa_v2_conn_params));
1017 
1018 		if (ep->plen)
1019 			memcpy(mpa->private_data +
1020 			       sizeof(struct mpa_v2_conn_params),
1021 			       ep->mpa_pkt + sizeof(*mpa), ep->plen);
1022 	} else
1023 		if (ep->plen)
1024 			memcpy(mpa->private_data,
1025 					ep->mpa_pkt + sizeof(*mpa), ep->plen);
1026 
1027 	/*
1028 	 * Reference the mpa skb.  This ensures the data area
1029 	 * will remain in memory until the hw acks the tx.
1030 	 * Function fw4_ack() will deref it.
1031 	 */
1032 	skb_get(skb);
1033 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1034 	ep->mpa_skb = skb;
1035 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1036 	if (ret)
1037 		return ret;
1038 	start_ep_timer(ep);
1039 	__state_set(&ep->com, MPA_REQ_SENT);
1040 	ep->mpa_attr.initiator = 1;
1041 	ep->snd_seq += mpalen;
1042 	return ret;
1043 }
1044 
1045 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1046 {
1047 	int mpalen, wrlen;
1048 	struct fw_ofld_tx_data_wr *req;
1049 	struct mpa_message *mpa;
1050 	struct sk_buff *skb;
1051 	struct mpa_v2_conn_params mpa_v2_params;
1052 
1053 	pr_debug("ep %p tid %u pd_len %d\n",
1054 		 ep, ep->hwtid, ep->plen);
1055 
1056 	mpalen = sizeof(*mpa) + plen;
1057 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1058 		mpalen += sizeof(struct mpa_v2_conn_params);
1059 	wrlen = roundup(mpalen + sizeof(*req), 16);
1060 
1061 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1062 	if (!skb) {
1063 		pr_err("%s - cannot alloc skb!\n", __func__);
1064 		return -ENOMEM;
1065 	}
1066 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1067 
1068 	req = skb_put_zero(skb, wrlen);
1069 	req->op_to_immdlen = cpu_to_be32(
1070 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1071 		FW_WR_COMPL_F |
1072 		FW_WR_IMMDLEN_V(mpalen));
1073 	req->flowid_len16 = cpu_to_be32(
1074 		FW_WR_FLOWID_V(ep->hwtid) |
1075 		FW_WR_LEN16_V(wrlen >> 4));
1076 	req->plen = cpu_to_be32(mpalen);
1077 	req->tunnel_to_proxy = cpu_to_be32(
1078 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1079 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1080 
1081 	mpa = (struct mpa_message *)(req + 1);
1082 	memset(mpa, 0, sizeof(*mpa));
1083 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1084 	mpa->flags = MPA_REJECT;
1085 	mpa->revision = ep->mpa_attr.version;
1086 	mpa->private_data_size = htons(plen);
1087 
1088 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1089 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1090 		mpa->private_data_size =
1091 			htons(ntohs(mpa->private_data_size) +
1092 			      sizeof(struct mpa_v2_conn_params));
1093 		mpa_v2_params.ird = htons(((u16)ep->ird) |
1094 					  (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1095 					   0));
1096 		mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1097 					  (p2p_type ==
1098 					   FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1099 					   MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1100 					   FW_RI_INIT_P2PTYPE_READ_REQ ?
1101 					   MPA_V2_RDMA_READ_RTR : 0) : 0));
1102 		memcpy(mpa->private_data, &mpa_v2_params,
1103 		       sizeof(struct mpa_v2_conn_params));
1104 
1105 		if (ep->plen)
1106 			memcpy(mpa->private_data +
1107 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1108 	} else
1109 		if (plen)
1110 			memcpy(mpa->private_data, pdata, plen);
1111 
1112 	/*
1113 	 * Reference the mpa skb again.  This ensures the data area
1114 	 * will remain in memory until the hw acks the tx.
1115 	 * Function fw4_ack() will deref it.
1116 	 */
1117 	skb_get(skb);
1118 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1119 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1120 	ep->mpa_skb = skb;
1121 	ep->snd_seq += mpalen;
1122 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1123 }
1124 
1125 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1126 {
1127 	int mpalen, wrlen;
1128 	struct fw_ofld_tx_data_wr *req;
1129 	struct mpa_message *mpa;
1130 	struct sk_buff *skb;
1131 	struct mpa_v2_conn_params mpa_v2_params;
1132 
1133 	pr_debug("ep %p tid %u pd_len %d\n",
1134 		 ep, ep->hwtid, ep->plen);
1135 
1136 	mpalen = sizeof(*mpa) + plen;
1137 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1138 		mpalen += sizeof(struct mpa_v2_conn_params);
1139 	wrlen = roundup(mpalen + sizeof(*req), 16);
1140 
1141 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1142 	if (!skb) {
1143 		pr_err("%s - cannot alloc skb!\n", __func__);
1144 		return -ENOMEM;
1145 	}
1146 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1147 
1148 	req = skb_put_zero(skb, wrlen);
1149 	req->op_to_immdlen = cpu_to_be32(
1150 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1151 		FW_WR_COMPL_F |
1152 		FW_WR_IMMDLEN_V(mpalen));
1153 	req->flowid_len16 = cpu_to_be32(
1154 		FW_WR_FLOWID_V(ep->hwtid) |
1155 		FW_WR_LEN16_V(wrlen >> 4));
1156 	req->plen = cpu_to_be32(mpalen);
1157 	req->tunnel_to_proxy = cpu_to_be32(
1158 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1159 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1160 
1161 	mpa = (struct mpa_message *)(req + 1);
1162 	memset(mpa, 0, sizeof(*mpa));
1163 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1164 	mpa->flags = 0;
1165 	if (ep->mpa_attr.crc_enabled)
1166 		mpa->flags |= MPA_CRC;
1167 	if (ep->mpa_attr.recv_marker_enabled)
1168 		mpa->flags |= MPA_MARKERS;
1169 	mpa->revision = ep->mpa_attr.version;
1170 	mpa->private_data_size = htons(plen);
1171 
1172 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1173 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1174 		mpa->private_data_size =
1175 			htons(ntohs(mpa->private_data_size) +
1176 			      sizeof(struct mpa_v2_conn_params));
1177 		mpa_v2_params.ird = htons((u16)ep->ird);
1178 		mpa_v2_params.ord = htons((u16)ep->ord);
1179 		if (peer2peer && (ep->mpa_attr.p2p_type !=
1180 					FW_RI_INIT_P2PTYPE_DISABLED)) {
1181 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1182 
1183 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1184 				mpa_v2_params.ord |=
1185 					htons(MPA_V2_RDMA_WRITE_RTR);
1186 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1187 				mpa_v2_params.ord |=
1188 					htons(MPA_V2_RDMA_READ_RTR);
1189 		}
1190 
1191 		memcpy(mpa->private_data, &mpa_v2_params,
1192 		       sizeof(struct mpa_v2_conn_params));
1193 
1194 		if (ep->plen)
1195 			memcpy(mpa->private_data +
1196 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1197 	} else
1198 		if (plen)
1199 			memcpy(mpa->private_data, pdata, plen);
1200 
1201 	/*
1202 	 * Reference the mpa skb.  This ensures the data area
1203 	 * will remain in memory until the hw acks the tx.
1204 	 * Function fw4_ack() will deref it.
1205 	 */
1206 	skb_get(skb);
1207 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1208 	ep->mpa_skb = skb;
1209 	__state_set(&ep->com, MPA_REP_SENT);
1210 	ep->snd_seq += mpalen;
1211 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1212 }
1213 
1214 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1215 {
1216 	struct c4iw_ep *ep;
1217 	struct cpl_act_establish *req = cplhdr(skb);
1218 	unsigned short tcp_opt = ntohs(req->tcp_opt);
1219 	unsigned int tid = GET_TID(req);
1220 	unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1221 	struct tid_info *t = dev->rdev.lldi.tids;
1222 	int ret;
1223 
1224 	ep = lookup_atid(t, atid);
1225 
1226 	pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid,
1227 		 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1228 
1229 	mutex_lock(&ep->com.mutex);
1230 	dst_confirm(ep->dst);
1231 
1232 	/* setup the hwtid for this connection */
1233 	ep->hwtid = tid;
1234 	cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family);
1235 	insert_ep_tid(ep);
1236 
1237 	ep->snd_seq = be32_to_cpu(req->snd_isn);
1238 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1239 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
1240 
1241 	set_emss(ep, tcp_opt);
1242 
1243 	/* dealloc the atid */
1244 	xa_erase_irq(&ep->com.dev->atids, atid);
1245 	cxgb4_free_atid(t, atid);
1246 	set_bit(ACT_ESTAB, &ep->com.history);
1247 
1248 	/* start MPA negotiation */
1249 	ret = send_flowc(ep);
1250 	if (ret)
1251 		goto err;
1252 	if (ep->retry_with_mpa_v1)
1253 		ret = send_mpa_req(ep, skb, 1);
1254 	else
1255 		ret = send_mpa_req(ep, skb, mpa_rev);
1256 	if (ret)
1257 		goto err;
1258 	mutex_unlock(&ep->com.mutex);
1259 	return 0;
1260 err:
1261 	mutex_unlock(&ep->com.mutex);
1262 	connect_reply_upcall(ep, -ENOMEM);
1263 	c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1264 	return 0;
1265 }
1266 
1267 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1268 {
1269 	struct iw_cm_event event;
1270 
1271 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1272 	memset(&event, 0, sizeof(event));
1273 	event.event = IW_CM_EVENT_CLOSE;
1274 	event.status = status;
1275 	if (ep->com.cm_id) {
1276 		pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1277 			 ep, ep->com.cm_id, ep->hwtid);
1278 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1279 		deref_cm_id(&ep->com);
1280 		set_bit(CLOSE_UPCALL, &ep->com.history);
1281 	}
1282 }
1283 
1284 static void peer_close_upcall(struct c4iw_ep *ep)
1285 {
1286 	struct iw_cm_event event;
1287 
1288 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1289 	memset(&event, 0, sizeof(event));
1290 	event.event = IW_CM_EVENT_DISCONNECT;
1291 	if (ep->com.cm_id) {
1292 		pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1293 			 ep, ep->com.cm_id, ep->hwtid);
1294 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1295 		set_bit(DISCONN_UPCALL, &ep->com.history);
1296 	}
1297 }
1298 
1299 static void peer_abort_upcall(struct c4iw_ep *ep)
1300 {
1301 	struct iw_cm_event event;
1302 
1303 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1304 	memset(&event, 0, sizeof(event));
1305 	event.event = IW_CM_EVENT_CLOSE;
1306 	event.status = -ECONNRESET;
1307 	if (ep->com.cm_id) {
1308 		pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep,
1309 			 ep->com.cm_id, ep->hwtid);
1310 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1311 		deref_cm_id(&ep->com);
1312 		set_bit(ABORT_UPCALL, &ep->com.history);
1313 	}
1314 }
1315 
1316 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1317 {
1318 	struct iw_cm_event event;
1319 
1320 	pr_debug("ep %p tid %u status %d\n",
1321 		 ep, ep->hwtid, status);
1322 	memset(&event, 0, sizeof(event));
1323 	event.event = IW_CM_EVENT_CONNECT_REPLY;
1324 	event.status = status;
1325 	memcpy(&event.local_addr, &ep->com.local_addr,
1326 	       sizeof(ep->com.local_addr));
1327 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1328 	       sizeof(ep->com.remote_addr));
1329 
1330 	if ((status == 0) || (status == -ECONNREFUSED)) {
1331 		if (!ep->tried_with_mpa_v1) {
1332 			/* this means MPA_v2 is used */
1333 			event.ord = ep->ird;
1334 			event.ird = ep->ord;
1335 			event.private_data_len = ep->plen -
1336 				sizeof(struct mpa_v2_conn_params);
1337 			event.private_data = ep->mpa_pkt +
1338 				sizeof(struct mpa_message) +
1339 				sizeof(struct mpa_v2_conn_params);
1340 		} else {
1341 			/* this means MPA_v1 is used */
1342 			event.ord = cur_max_read_depth(ep->com.dev);
1343 			event.ird = cur_max_read_depth(ep->com.dev);
1344 			event.private_data_len = ep->plen;
1345 			event.private_data = ep->mpa_pkt +
1346 				sizeof(struct mpa_message);
1347 		}
1348 	}
1349 
1350 	pr_debug("ep %p tid %u status %d\n", ep,
1351 		 ep->hwtid, status);
1352 	set_bit(CONN_RPL_UPCALL, &ep->com.history);
1353 	ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1354 
1355 	if (status < 0)
1356 		deref_cm_id(&ep->com);
1357 }
1358 
1359 static int connect_request_upcall(struct c4iw_ep *ep)
1360 {
1361 	struct iw_cm_event event;
1362 	int ret;
1363 
1364 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1365 	memset(&event, 0, sizeof(event));
1366 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
1367 	memcpy(&event.local_addr, &ep->com.local_addr,
1368 	       sizeof(ep->com.local_addr));
1369 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1370 	       sizeof(ep->com.remote_addr));
1371 	event.provider_data = ep;
1372 	if (!ep->tried_with_mpa_v1) {
1373 		/* this means MPA_v2 is used */
1374 		event.ord = ep->ord;
1375 		event.ird = ep->ird;
1376 		event.private_data_len = ep->plen -
1377 			sizeof(struct mpa_v2_conn_params);
1378 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1379 			sizeof(struct mpa_v2_conn_params);
1380 	} else {
1381 		/* this means MPA_v1 is used. Send max supported */
1382 		event.ord = cur_max_read_depth(ep->com.dev);
1383 		event.ird = cur_max_read_depth(ep->com.dev);
1384 		event.private_data_len = ep->plen;
1385 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1386 	}
1387 	c4iw_get_ep(&ep->com);
1388 	ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1389 						      &event);
1390 	if (ret)
1391 		c4iw_put_ep(&ep->com);
1392 	set_bit(CONNREQ_UPCALL, &ep->com.history);
1393 	c4iw_put_ep(&ep->parent_ep->com);
1394 	return ret;
1395 }
1396 
1397 static void established_upcall(struct c4iw_ep *ep)
1398 {
1399 	struct iw_cm_event event;
1400 
1401 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1402 	memset(&event, 0, sizeof(event));
1403 	event.event = IW_CM_EVENT_ESTABLISHED;
1404 	event.ird = ep->ord;
1405 	event.ord = ep->ird;
1406 	if (ep->com.cm_id) {
1407 		pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1408 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1409 		set_bit(ESTAB_UPCALL, &ep->com.history);
1410 	}
1411 }
1412 
1413 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1414 {
1415 	struct sk_buff *skb;
1416 	u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1417 	u32 credit_dack;
1418 
1419 	pr_debug("ep %p tid %u credits %u\n",
1420 		 ep, ep->hwtid, credits);
1421 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1422 	if (!skb) {
1423 		pr_err("update_rx_credits - cannot alloc skb!\n");
1424 		return 0;
1425 	}
1426 
1427 	/*
1428 	 * If we couldn't specify the entire rcv window at connection setup
1429 	 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1430 	 * then add the overage in to the credits returned.
1431 	 */
1432 	if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1433 		credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1434 
1435 	credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1436 		      RX_DACK_MODE_V(dack_mode);
1437 
1438 	cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1439 			    credit_dack);
1440 
1441 	c4iw_ofld_send(&ep->com.dev->rdev, skb);
1442 	return credits;
1443 }
1444 
1445 #define RELAXED_IRD_NEGOTIATION 1
1446 
1447 /*
1448  * process_mpa_reply - process streaming mode MPA reply
1449  *
1450  * Returns:
1451  *
1452  * 0 upon success indicating a connect request was delivered to the ULP
1453  * or the mpa request is incomplete but valid so far.
1454  *
1455  * 1 if a failure requires the caller to close the connection.
1456  *
1457  * 2 if a failure requires the caller to abort the connection.
1458  */
1459 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1460 {
1461 	struct mpa_message *mpa;
1462 	struct mpa_v2_conn_params *mpa_v2_params;
1463 	u16 plen;
1464 	u16 resp_ird, resp_ord;
1465 	u8 rtr_mismatch = 0, insuff_ird = 0;
1466 	struct c4iw_qp_attributes attrs;
1467 	enum c4iw_qp_attr_mask mask;
1468 	int err;
1469 	int disconnect = 0;
1470 
1471 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1472 
1473 	/*
1474 	 * If we get more than the supported amount of private data
1475 	 * then we must fail this connection.
1476 	 */
1477 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1478 		err = -EINVAL;
1479 		goto err_stop_timer;
1480 	}
1481 
1482 	/*
1483 	 * copy the new data into our accumulation buffer.
1484 	 */
1485 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1486 				  skb->len);
1487 	ep->mpa_pkt_len += skb->len;
1488 
1489 	/*
1490 	 * if we don't even have the mpa message, then bail.
1491 	 */
1492 	if (ep->mpa_pkt_len < sizeof(*mpa))
1493 		return 0;
1494 	mpa = (struct mpa_message *) ep->mpa_pkt;
1495 
1496 	/* Validate MPA header. */
1497 	if (mpa->revision > mpa_rev) {
1498 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1499 		       __func__, mpa_rev, mpa->revision);
1500 		err = -EPROTO;
1501 		goto err_stop_timer;
1502 	}
1503 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1504 		err = -EPROTO;
1505 		goto err_stop_timer;
1506 	}
1507 
1508 	plen = ntohs(mpa->private_data_size);
1509 
1510 	/*
1511 	 * Fail if there's too much private data.
1512 	 */
1513 	if (plen > MPA_MAX_PRIVATE_DATA) {
1514 		err = -EPROTO;
1515 		goto err_stop_timer;
1516 	}
1517 
1518 	/*
1519 	 * If plen does not account for pkt size
1520 	 */
1521 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1522 		err = -EPROTO;
1523 		goto err_stop_timer;
1524 	}
1525 
1526 	ep->plen = (u8) plen;
1527 
1528 	/*
1529 	 * If we don't have all the pdata yet, then bail.
1530 	 * We'll continue process when more data arrives.
1531 	 */
1532 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1533 		return 0;
1534 
1535 	if (mpa->flags & MPA_REJECT) {
1536 		err = -ECONNREFUSED;
1537 		goto err_stop_timer;
1538 	}
1539 
1540 	/*
1541 	 * Stop mpa timer.  If it expired, then
1542 	 * we ignore the MPA reply.  process_timeout()
1543 	 * will abort the connection.
1544 	 */
1545 	if (stop_ep_timer(ep))
1546 		return 0;
1547 
1548 	/*
1549 	 * If we get here we have accumulated the entire mpa
1550 	 * start reply message including private data. And
1551 	 * the MPA header is valid.
1552 	 */
1553 	__state_set(&ep->com, FPDU_MODE);
1554 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1555 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1556 	ep->mpa_attr.version = mpa->revision;
1557 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1558 
1559 	if (mpa->revision == 2) {
1560 		ep->mpa_attr.enhanced_rdma_conn =
1561 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1562 		if (ep->mpa_attr.enhanced_rdma_conn) {
1563 			mpa_v2_params = (struct mpa_v2_conn_params *)
1564 				(ep->mpa_pkt + sizeof(*mpa));
1565 			resp_ird = ntohs(mpa_v2_params->ird) &
1566 				MPA_V2_IRD_ORD_MASK;
1567 			resp_ord = ntohs(mpa_v2_params->ord) &
1568 				MPA_V2_IRD_ORD_MASK;
1569 			pr_debug("responder ird %u ord %u ep ird %u ord %u\n",
1570 				 resp_ird, resp_ord, ep->ird, ep->ord);
1571 
1572 			/*
1573 			 * This is a double-check. Ideally, below checks are
1574 			 * not required since ird/ord stuff has been taken
1575 			 * care of in c4iw_accept_cr
1576 			 */
1577 			if (ep->ird < resp_ord) {
1578 				if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1579 				    ep->com.dev->rdev.lldi.max_ordird_qp)
1580 					ep->ird = resp_ord;
1581 				else
1582 					insuff_ird = 1;
1583 			} else if (ep->ird > resp_ord) {
1584 				ep->ird = resp_ord;
1585 			}
1586 			if (ep->ord > resp_ird) {
1587 				if (RELAXED_IRD_NEGOTIATION)
1588 					ep->ord = resp_ird;
1589 				else
1590 					insuff_ird = 1;
1591 			}
1592 			if (insuff_ird) {
1593 				err = -ENOMEM;
1594 				ep->ird = resp_ord;
1595 				ep->ord = resp_ird;
1596 			}
1597 
1598 			if (ntohs(mpa_v2_params->ird) &
1599 					MPA_V2_PEER2PEER_MODEL) {
1600 				if (ntohs(mpa_v2_params->ord) &
1601 						MPA_V2_RDMA_WRITE_RTR)
1602 					ep->mpa_attr.p2p_type =
1603 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1604 				else if (ntohs(mpa_v2_params->ord) &
1605 						MPA_V2_RDMA_READ_RTR)
1606 					ep->mpa_attr.p2p_type =
1607 						FW_RI_INIT_P2PTYPE_READ_REQ;
1608 			}
1609 		}
1610 	} else if (mpa->revision == 1)
1611 		if (peer2peer)
1612 			ep->mpa_attr.p2p_type = p2p_type;
1613 
1614 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1615 		 ep->mpa_attr.crc_enabled,
1616 		 ep->mpa_attr.recv_marker_enabled,
1617 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1618 		 ep->mpa_attr.p2p_type, p2p_type);
1619 
1620 	/*
1621 	 * If responder's RTR does not match with that of initiator, assign
1622 	 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1623 	 * generated when moving QP to RTS state.
1624 	 * A TERM message will be sent after QP has moved to RTS state
1625 	 */
1626 	if ((ep->mpa_attr.version == 2) && peer2peer &&
1627 			(ep->mpa_attr.p2p_type != p2p_type)) {
1628 		ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1629 		rtr_mismatch = 1;
1630 	}
1631 
1632 	attrs.mpa_attr = ep->mpa_attr;
1633 	attrs.max_ird = ep->ird;
1634 	attrs.max_ord = ep->ord;
1635 	attrs.llp_stream_handle = ep;
1636 	attrs.next_state = C4IW_QP_STATE_RTS;
1637 
1638 	mask = C4IW_QP_ATTR_NEXT_STATE |
1639 	    C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1640 	    C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1641 
1642 	/* bind QP and TID with INIT_WR */
1643 	err = c4iw_modify_qp(ep->com.qp->rhp,
1644 			     ep->com.qp, mask, &attrs, 1);
1645 	if (err)
1646 		goto err;
1647 
1648 	/*
1649 	 * If responder's RTR requirement did not match with what initiator
1650 	 * supports, generate TERM message
1651 	 */
1652 	if (rtr_mismatch) {
1653 		pr_err("%s: RTR mismatch, sending TERM\n", __func__);
1654 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1655 		attrs.ecode = MPA_NOMATCH_RTR;
1656 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1657 		attrs.send_term = 1;
1658 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1659 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1660 		err = -ENOMEM;
1661 		disconnect = 1;
1662 		goto out;
1663 	}
1664 
1665 	/*
1666 	 * Generate TERM if initiator IRD is not sufficient for responder
1667 	 * provided ORD. Currently, we do the same behaviour even when
1668 	 * responder provided IRD is also not sufficient as regards to
1669 	 * initiator ORD.
1670 	 */
1671 	if (insuff_ird) {
1672 		pr_err("%s: Insufficient IRD, sending TERM\n", __func__);
1673 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1674 		attrs.ecode = MPA_INSUFF_IRD;
1675 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1676 		attrs.send_term = 1;
1677 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1678 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1679 		err = -ENOMEM;
1680 		disconnect = 1;
1681 		goto out;
1682 	}
1683 	goto out;
1684 err_stop_timer:
1685 	stop_ep_timer(ep);
1686 err:
1687 	disconnect = 2;
1688 out:
1689 	connect_reply_upcall(ep, err);
1690 	return disconnect;
1691 }
1692 
1693 /*
1694  * process_mpa_request - process streaming mode MPA request
1695  *
1696  * Returns:
1697  *
1698  * 0 upon success indicating a connect request was delivered to the ULP
1699  * or the mpa request is incomplete but valid so far.
1700  *
1701  * 1 if a failure requires the caller to close the connection.
1702  *
1703  * 2 if a failure requires the caller to abort the connection.
1704  */
1705 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1706 {
1707 	struct mpa_message *mpa;
1708 	struct mpa_v2_conn_params *mpa_v2_params;
1709 	u16 plen;
1710 
1711 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1712 
1713 	/*
1714 	 * If we get more than the supported amount of private data
1715 	 * then we must fail this connection.
1716 	 */
1717 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1718 		goto err_stop_timer;
1719 
1720 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1721 
1722 	/*
1723 	 * Copy the new data into our accumulation buffer.
1724 	 */
1725 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1726 				  skb->len);
1727 	ep->mpa_pkt_len += skb->len;
1728 
1729 	/*
1730 	 * If we don't even have the mpa message, then bail.
1731 	 * We'll continue process when more data arrives.
1732 	 */
1733 	if (ep->mpa_pkt_len < sizeof(*mpa))
1734 		return 0;
1735 
1736 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1737 	mpa = (struct mpa_message *) ep->mpa_pkt;
1738 
1739 	/*
1740 	 * Validate MPA Header.
1741 	 */
1742 	if (mpa->revision > mpa_rev) {
1743 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1744 		       __func__, mpa_rev, mpa->revision);
1745 		goto err_stop_timer;
1746 	}
1747 
1748 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1749 		goto err_stop_timer;
1750 
1751 	plen = ntohs(mpa->private_data_size);
1752 
1753 	/*
1754 	 * Fail if there's too much private data.
1755 	 */
1756 	if (plen > MPA_MAX_PRIVATE_DATA)
1757 		goto err_stop_timer;
1758 
1759 	/*
1760 	 * If plen does not account for pkt size
1761 	 */
1762 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1763 		goto err_stop_timer;
1764 	ep->plen = (u8) plen;
1765 
1766 	/*
1767 	 * If we don't have all the pdata yet, then bail.
1768 	 */
1769 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1770 		return 0;
1771 
1772 	/*
1773 	 * If we get here we have accumulated the entire mpa
1774 	 * start reply message including private data.
1775 	 */
1776 	ep->mpa_attr.initiator = 0;
1777 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1778 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1779 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1780 	ep->mpa_attr.version = mpa->revision;
1781 	if (mpa->revision == 1)
1782 		ep->tried_with_mpa_v1 = 1;
1783 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1784 
1785 	if (mpa->revision == 2) {
1786 		ep->mpa_attr.enhanced_rdma_conn =
1787 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1788 		if (ep->mpa_attr.enhanced_rdma_conn) {
1789 			mpa_v2_params = (struct mpa_v2_conn_params *)
1790 				(ep->mpa_pkt + sizeof(*mpa));
1791 			ep->ird = ntohs(mpa_v2_params->ird) &
1792 				MPA_V2_IRD_ORD_MASK;
1793 			ep->ird = min_t(u32, ep->ird,
1794 					cur_max_read_depth(ep->com.dev));
1795 			ep->ord = ntohs(mpa_v2_params->ord) &
1796 				MPA_V2_IRD_ORD_MASK;
1797 			ep->ord = min_t(u32, ep->ord,
1798 					cur_max_read_depth(ep->com.dev));
1799 			pr_debug("initiator ird %u ord %u\n",
1800 				 ep->ird, ep->ord);
1801 			if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1802 				if (peer2peer) {
1803 					if (ntohs(mpa_v2_params->ord) &
1804 							MPA_V2_RDMA_WRITE_RTR)
1805 						ep->mpa_attr.p2p_type =
1806 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1807 					else if (ntohs(mpa_v2_params->ord) &
1808 							MPA_V2_RDMA_READ_RTR)
1809 						ep->mpa_attr.p2p_type =
1810 						FW_RI_INIT_P2PTYPE_READ_REQ;
1811 				}
1812 		}
1813 	} else if (mpa->revision == 1)
1814 		if (peer2peer)
1815 			ep->mpa_attr.p2p_type = p2p_type;
1816 
1817 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1818 		 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1819 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1820 		 ep->mpa_attr.p2p_type);
1821 
1822 	__state_set(&ep->com, MPA_REQ_RCVD);
1823 
1824 	/* drive upcall */
1825 	mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1826 	if (ep->parent_ep->com.state != DEAD) {
1827 		if (connect_request_upcall(ep))
1828 			goto err_unlock_parent;
1829 	} else {
1830 		goto err_unlock_parent;
1831 	}
1832 	mutex_unlock(&ep->parent_ep->com.mutex);
1833 	return 0;
1834 
1835 err_unlock_parent:
1836 	mutex_unlock(&ep->parent_ep->com.mutex);
1837 	goto err_out;
1838 err_stop_timer:
1839 	(void)stop_ep_timer(ep);
1840 err_out:
1841 	return 2;
1842 }
1843 
1844 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1845 {
1846 	struct c4iw_ep *ep;
1847 	struct cpl_rx_data *hdr = cplhdr(skb);
1848 	unsigned int dlen = ntohs(hdr->len);
1849 	unsigned int tid = GET_TID(hdr);
1850 	__u8 status = hdr->status;
1851 	int disconnect = 0;
1852 
1853 	ep = get_ep_from_tid(dev, tid);
1854 	if (!ep)
1855 		return 0;
1856 	pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen);
1857 	skb_pull(skb, sizeof(*hdr));
1858 	skb_trim(skb, dlen);
1859 	mutex_lock(&ep->com.mutex);
1860 
1861 	switch (ep->com.state) {
1862 	case MPA_REQ_SENT:
1863 		update_rx_credits(ep, dlen);
1864 		ep->rcv_seq += dlen;
1865 		disconnect = process_mpa_reply(ep, skb);
1866 		break;
1867 	case MPA_REQ_WAIT:
1868 		update_rx_credits(ep, dlen);
1869 		ep->rcv_seq += dlen;
1870 		disconnect = process_mpa_request(ep, skb);
1871 		break;
1872 	case FPDU_MODE: {
1873 		struct c4iw_qp_attributes attrs;
1874 
1875 		update_rx_credits(ep, dlen);
1876 		if (status)
1877 			pr_err("%s Unexpected streaming data." \
1878 			       " qpid %u ep %p state %d tid %u status %d\n",
1879 			       __func__, ep->com.qp->wq.sq.qid, ep,
1880 			       ep->com.state, ep->hwtid, status);
1881 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1882 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1883 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1884 		disconnect = 1;
1885 		break;
1886 	}
1887 	default:
1888 		break;
1889 	}
1890 	mutex_unlock(&ep->com.mutex);
1891 	if (disconnect)
1892 		c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1893 	c4iw_put_ep(&ep->com);
1894 	return 0;
1895 }
1896 
1897 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx)
1898 {
1899 	enum chip_type adapter_type;
1900 
1901 	adapter_type = ep->com.dev->rdev.lldi.adapter_type;
1902 
1903 	/*
1904 	 * If this TCB had a srq buffer cached, then we must complete
1905 	 * it. For user mode, that means saving the srqidx in the
1906 	 * user/kernel status page for this qp.  For kernel mode, just
1907 	 * synthesize the CQE now.
1908 	 */
1909 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) {
1910 		if (ep->com.qp->ibqp.uobject)
1911 			t4_set_wq_in_error(&ep->com.qp->wq, srqidx);
1912 		else
1913 			c4iw_flush_srqidx(ep->com.qp, srqidx);
1914 	}
1915 }
1916 
1917 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1918 {
1919 	u32 srqidx;
1920 	struct c4iw_ep *ep;
1921 	struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb);
1922 	int release = 0;
1923 	unsigned int tid = GET_TID(rpl);
1924 
1925 	ep = get_ep_from_tid(dev, tid);
1926 	if (!ep) {
1927 		pr_warn("Abort rpl to freed endpoint\n");
1928 		return 0;
1929 	}
1930 
1931 	if (ep->com.qp && ep->com.qp->srq) {
1932 		srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status));
1933 		complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx);
1934 	}
1935 
1936 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1937 	mutex_lock(&ep->com.mutex);
1938 	switch (ep->com.state) {
1939 	case ABORTING:
1940 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
1941 		__state_set(&ep->com, DEAD);
1942 		release = 1;
1943 		break;
1944 	default:
1945 		pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state);
1946 		break;
1947 	}
1948 	mutex_unlock(&ep->com.mutex);
1949 
1950 	if (release) {
1951 		close_complete_upcall(ep, -ECONNRESET);
1952 		release_ep_resources(ep);
1953 	}
1954 	c4iw_put_ep(&ep->com);
1955 	return 0;
1956 }
1957 
1958 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1959 {
1960 	struct sk_buff *skb;
1961 	struct fw_ofld_connection_wr *req;
1962 	unsigned int mtu_idx;
1963 	u32 wscale;
1964 	struct sockaddr_in *sin;
1965 	int win;
1966 
1967 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1968 	if (!skb)
1969 		return -ENOMEM;
1970 
1971 	req = __skb_put_zero(skb, sizeof(*req));
1972 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1973 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1974 	req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1975 				     ep->com.dev->rdev.lldi.ports[0],
1976 				     ep->l2t));
1977 	sin = (struct sockaddr_in *)&ep->com.local_addr;
1978 	req->le.lport = sin->sin_port;
1979 	req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1980 	sin = (struct sockaddr_in *)&ep->com.remote_addr;
1981 	req->le.pport = sin->sin_port;
1982 	req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1983 	req->tcb.t_state_to_astid =
1984 			htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1985 			FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1986 	req->tcb.cplrxdataack_cplpassacceptrpl =
1987 			htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1988 	req->tcb.tx_max = (__force __be32) jiffies;
1989 	req->tcb.rcv_adv = htons(1);
1990 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1991 		      enable_tcp_timestamps,
1992 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1993 	wscale = cxgb_compute_wscale(rcv_win);
1994 
1995 	/*
1996 	 * Specify the largest window that will fit in opt0. The
1997 	 * remainder will be specified in the rx_data_ack.
1998 	 */
1999 	win = ep->rcv_win >> 10;
2000 	if (win > RCV_BUFSIZ_M)
2001 		win = RCV_BUFSIZ_M;
2002 
2003 	req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2004 		(nocong ? NO_CONG_F : 0) |
2005 		KEEP_ALIVE_F |
2006 		DELACK_F |
2007 		WND_SCALE_V(wscale) |
2008 		MSS_IDX_V(mtu_idx) |
2009 		L2T_IDX_V(ep->l2t->idx) |
2010 		TX_CHAN_V(ep->tx_chan) |
2011 		SMAC_SEL_V(ep->smac_idx) |
2012 		DSCP_V(ep->tos >> 2) |
2013 		ULP_MODE_V(ULP_MODE_TCPDDP) |
2014 		RCV_BUFSIZ_V(win));
2015 	req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2016 		TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2017 		RX_CHANNEL_V(0) |
2018 		CCTRL_ECN_V(enable_ecn) |
2019 		RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2020 	if (enable_tcp_timestamps)
2021 		req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2022 	if (enable_tcp_sack)
2023 		req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2024 	if (wscale && enable_tcp_window_scaling)
2025 		req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2026 	req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2027 	req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2028 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2029 	set_bit(ACT_OFLD_CONN, &ep->com.history);
2030 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2031 }
2032 
2033 /*
2034  * Some of the error codes above implicitly indicate that there is no TID
2035  * allocated with the result of an ACT_OPEN.  We use this predicate to make
2036  * that explicit.
2037  */
2038 static inline int act_open_has_tid(int status)
2039 {
2040 	return (status != CPL_ERR_TCAM_PARITY &&
2041 		status != CPL_ERR_TCAM_MISS &&
2042 		status != CPL_ERR_TCAM_FULL &&
2043 		status != CPL_ERR_CONN_EXIST_SYNRECV &&
2044 		status != CPL_ERR_CONN_EXIST);
2045 }
2046 
2047 static char *neg_adv_str(unsigned int status)
2048 {
2049 	switch (status) {
2050 	case CPL_ERR_RTX_NEG_ADVICE:
2051 		return "Retransmit timeout";
2052 	case CPL_ERR_PERSIST_NEG_ADVICE:
2053 		return "Persist timeout";
2054 	case CPL_ERR_KEEPALV_NEG_ADVICE:
2055 		return "Keepalive timeout";
2056 	default:
2057 		return "Unknown";
2058 	}
2059 }
2060 
2061 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2062 {
2063 	ep->snd_win = snd_win;
2064 	ep->rcv_win = rcv_win;
2065 	pr_debug("snd_win %d rcv_win %d\n",
2066 		 ep->snd_win, ep->rcv_win);
2067 }
2068 
2069 #define ACT_OPEN_RETRY_COUNT 2
2070 
2071 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2072 		     struct dst_entry *dst, struct c4iw_dev *cdev,
2073 		     bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2074 {
2075 	struct neighbour *n;
2076 	int err, step;
2077 	struct net_device *pdev;
2078 
2079 	n = dst_neigh_lookup(dst, peer_ip);
2080 	if (!n)
2081 		return -ENODEV;
2082 
2083 	rcu_read_lock();
2084 	err = -ENOMEM;
2085 	if (n->dev->flags & IFF_LOOPBACK) {
2086 		if (iptype == 4)
2087 			pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2088 		else if (IS_ENABLED(CONFIG_IPV6))
2089 			for_each_netdev(&init_net, pdev) {
2090 				if (ipv6_chk_addr(&init_net,
2091 						  (struct in6_addr *)peer_ip,
2092 						  pdev, 1))
2093 					break;
2094 			}
2095 		else
2096 			pdev = NULL;
2097 
2098 		if (!pdev) {
2099 			err = -ENODEV;
2100 			goto out;
2101 		}
2102 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2103 					n, pdev, rt_tos2priority(tos));
2104 		if (!ep->l2t) {
2105 			dev_put(pdev);
2106 			goto out;
2107 		}
2108 		ep->mtu = pdev->mtu;
2109 		ep->tx_chan = cxgb4_port_chan(pdev);
2110 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2111 		step = cdev->rdev.lldi.ntxq /
2112 			cdev->rdev.lldi.nchan;
2113 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2114 		step = cdev->rdev.lldi.nrxq /
2115 			cdev->rdev.lldi.nchan;
2116 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2117 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2118 			cxgb4_port_idx(pdev) * step];
2119 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2120 		dev_put(pdev);
2121 	} else {
2122 		pdev = get_real_dev(n->dev);
2123 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2124 					n, pdev, rt_tos2priority(tos));
2125 		if (!ep->l2t)
2126 			goto out;
2127 		ep->mtu = dst_mtu(dst);
2128 		ep->tx_chan = cxgb4_port_chan(pdev);
2129 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2130 		step = cdev->rdev.lldi.ntxq /
2131 			cdev->rdev.lldi.nchan;
2132 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2133 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2134 		step = cdev->rdev.lldi.nrxq /
2135 			cdev->rdev.lldi.nchan;
2136 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2137 			cxgb4_port_idx(pdev) * step];
2138 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2139 
2140 		if (clear_mpa_v1) {
2141 			ep->retry_with_mpa_v1 = 0;
2142 			ep->tried_with_mpa_v1 = 0;
2143 		}
2144 	}
2145 	err = 0;
2146 out:
2147 	rcu_read_unlock();
2148 
2149 	neigh_release(n);
2150 
2151 	return err;
2152 }
2153 
2154 static int c4iw_reconnect(struct c4iw_ep *ep)
2155 {
2156 	int err = 0;
2157 	int size = 0;
2158 	struct sockaddr_in *laddr = (struct sockaddr_in *)
2159 				    &ep->com.cm_id->m_local_addr;
2160 	struct sockaddr_in *raddr = (struct sockaddr_in *)
2161 				    &ep->com.cm_id->m_remote_addr;
2162 	struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2163 				      &ep->com.cm_id->m_local_addr;
2164 	struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2165 				      &ep->com.cm_id->m_remote_addr;
2166 	int iptype;
2167 	__u8 *ra;
2168 
2169 	pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id);
2170 	c4iw_init_wr_wait(ep->com.wr_waitp);
2171 
2172 	/* When MPA revision is different on nodes, the node with MPA_rev=2
2173 	 * tries to reconnect with MPA_rev 1 for the same EP through
2174 	 * c4iw_reconnect(), where the same EP is assigned with new tid for
2175 	 * further connection establishment. As we are using the same EP pointer
2176 	 * for reconnect, few skbs are used during the previous c4iw_connect(),
2177 	 * which leaves the EP with inadequate skbs for further
2178 	 * c4iw_reconnect(), Further causing a crash due to an empty
2179 	 * skb_list() during peer_abort(). Allocate skbs which is already used.
2180 	 */
2181 	size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2182 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2183 		err = -ENOMEM;
2184 		goto fail1;
2185 	}
2186 
2187 	/*
2188 	 * Allocate an active TID to initiate a TCP connection.
2189 	 */
2190 	ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2191 	if (ep->atid == -1) {
2192 		pr_err("%s - cannot alloc atid\n", __func__);
2193 		err = -ENOMEM;
2194 		goto fail2;
2195 	}
2196 	err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL);
2197 	if (err)
2198 		goto fail2a;
2199 
2200 	/* find a route */
2201 	if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2202 		ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2203 					  laddr->sin_addr.s_addr,
2204 					  raddr->sin_addr.s_addr,
2205 					  laddr->sin_port,
2206 					  raddr->sin_port, ep->com.cm_id->tos);
2207 		iptype = 4;
2208 		ra = (__u8 *)&raddr->sin_addr;
2209 	} else {
2210 		ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2211 					   get_real_dev,
2212 					   laddr6->sin6_addr.s6_addr,
2213 					   raddr6->sin6_addr.s6_addr,
2214 					   laddr6->sin6_port,
2215 					   raddr6->sin6_port,
2216 					   ep->com.cm_id->tos,
2217 					   raddr6->sin6_scope_id);
2218 		iptype = 6;
2219 		ra = (__u8 *)&raddr6->sin6_addr;
2220 	}
2221 	if (!ep->dst) {
2222 		pr_err("%s - cannot find route\n", __func__);
2223 		err = -EHOSTUNREACH;
2224 		goto fail3;
2225 	}
2226 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2227 			ep->com.dev->rdev.lldi.adapter_type,
2228 			ep->com.cm_id->tos);
2229 	if (err) {
2230 		pr_err("%s - cannot alloc l2e\n", __func__);
2231 		goto fail4;
2232 	}
2233 
2234 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2235 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2236 		 ep->l2t->idx);
2237 
2238 	state_set(&ep->com, CONNECTING);
2239 	ep->tos = ep->com.cm_id->tos;
2240 
2241 	/* send connect request to rnic */
2242 	err = send_connect(ep);
2243 	if (!err)
2244 		goto out;
2245 
2246 	cxgb4_l2t_release(ep->l2t);
2247 fail4:
2248 	dst_release(ep->dst);
2249 fail3:
2250 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
2251 fail2a:
2252 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2253 fail2:
2254 	/*
2255 	 * remember to send notification to upper layer.
2256 	 * We are in here so the upper layer is not aware that this is
2257 	 * re-connect attempt and so, upper layer is still waiting for
2258 	 * response of 1st connect request.
2259 	 */
2260 	connect_reply_upcall(ep, -ECONNRESET);
2261 fail1:
2262 	c4iw_put_ep(&ep->com);
2263 out:
2264 	return err;
2265 }
2266 
2267 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2268 {
2269 	struct c4iw_ep *ep;
2270 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
2271 	unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2272 				      ntohl(rpl->atid_status)));
2273 	struct tid_info *t = dev->rdev.lldi.tids;
2274 	int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2275 	struct sockaddr_in *la;
2276 	struct sockaddr_in *ra;
2277 	struct sockaddr_in6 *la6;
2278 	struct sockaddr_in6 *ra6;
2279 	int ret = 0;
2280 
2281 	ep = lookup_atid(t, atid);
2282 	la = (struct sockaddr_in *)&ep->com.local_addr;
2283 	ra = (struct sockaddr_in *)&ep->com.remote_addr;
2284 	la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2285 	ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2286 
2287 	pr_debug("ep %p atid %u status %u errno %d\n", ep, atid,
2288 		 status, status2errno(status));
2289 
2290 	if (cxgb_is_neg_adv(status)) {
2291 		pr_debug("Connection problems for atid %u status %u (%s)\n",
2292 			 atid, status, neg_adv_str(status));
2293 		ep->stats.connect_neg_adv++;
2294 		mutex_lock(&dev->rdev.stats.lock);
2295 		dev->rdev.stats.neg_adv++;
2296 		mutex_unlock(&dev->rdev.stats.lock);
2297 		return 0;
2298 	}
2299 
2300 	set_bit(ACT_OPEN_RPL, &ep->com.history);
2301 
2302 	/*
2303 	 * Log interesting failures.
2304 	 */
2305 	switch (status) {
2306 	case CPL_ERR_CONN_RESET:
2307 	case CPL_ERR_CONN_TIMEDOUT:
2308 		break;
2309 	case CPL_ERR_TCAM_FULL:
2310 		mutex_lock(&dev->rdev.stats.lock);
2311 		dev->rdev.stats.tcam_full++;
2312 		mutex_unlock(&dev->rdev.stats.lock);
2313 		if (ep->com.local_addr.ss_family == AF_INET &&
2314 		    dev->rdev.lldi.enable_fw_ofld_conn) {
2315 			ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2316 						   ntohl(rpl->atid_status))));
2317 			if (ret)
2318 				goto fail;
2319 			return 0;
2320 		}
2321 		break;
2322 	case CPL_ERR_CONN_EXIST:
2323 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2324 			set_bit(ACT_RETRY_INUSE, &ep->com.history);
2325 			if (ep->com.remote_addr.ss_family == AF_INET6) {
2326 				struct sockaddr_in6 *sin6 =
2327 						(struct sockaddr_in6 *)
2328 						&ep->com.local_addr;
2329 				cxgb4_clip_release(
2330 						ep->com.dev->rdev.lldi.ports[0],
2331 						(const u32 *)
2332 						&sin6->sin6_addr.s6_addr, 1);
2333 			}
2334 			xa_erase_irq(&ep->com.dev->atids, atid);
2335 			cxgb4_free_atid(t, atid);
2336 			dst_release(ep->dst);
2337 			cxgb4_l2t_release(ep->l2t);
2338 			c4iw_reconnect(ep);
2339 			return 0;
2340 		}
2341 		break;
2342 	default:
2343 		if (ep->com.local_addr.ss_family == AF_INET) {
2344 			pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2345 				atid, status, status2errno(status),
2346 				&la->sin_addr.s_addr, ntohs(la->sin_port),
2347 				&ra->sin_addr.s_addr, ntohs(ra->sin_port));
2348 		} else {
2349 			pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2350 				atid, status, status2errno(status),
2351 				la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2352 				ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2353 		}
2354 		break;
2355 	}
2356 
2357 fail:
2358 	connect_reply_upcall(ep, status2errno(status));
2359 	state_set(&ep->com, DEAD);
2360 
2361 	if (ep->com.remote_addr.ss_family == AF_INET6) {
2362 		struct sockaddr_in6 *sin6 =
2363 			(struct sockaddr_in6 *)&ep->com.local_addr;
2364 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2365 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2366 	}
2367 	if (status && act_open_has_tid(status))
2368 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl),
2369 				 ep->com.local_addr.ss_family);
2370 
2371 	xa_erase_irq(&ep->com.dev->atids, atid);
2372 	cxgb4_free_atid(t, atid);
2373 	dst_release(ep->dst);
2374 	cxgb4_l2t_release(ep->l2t);
2375 	c4iw_put_ep(&ep->com);
2376 
2377 	return 0;
2378 }
2379 
2380 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2381 {
2382 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2383 	unsigned int stid = GET_TID(rpl);
2384 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2385 
2386 	if (!ep) {
2387 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2388 		goto out;
2389 	}
2390 	pr_debug("ep %p status %d error %d\n", ep,
2391 		 rpl->status, status2errno(rpl->status));
2392 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2393 	c4iw_put_ep(&ep->com);
2394 out:
2395 	return 0;
2396 }
2397 
2398 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2399 {
2400 	struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2401 	unsigned int stid = GET_TID(rpl);
2402 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2403 
2404 	if (!ep) {
2405 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2406 		goto out;
2407 	}
2408 	pr_debug("ep %p\n", ep);
2409 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2410 	c4iw_put_ep(&ep->com);
2411 out:
2412 	return 0;
2413 }
2414 
2415 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2416 		     struct cpl_pass_accept_req *req)
2417 {
2418 	struct cpl_pass_accept_rpl *rpl;
2419 	unsigned int mtu_idx;
2420 	u64 opt0;
2421 	u32 opt2;
2422 	u32 wscale;
2423 	struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2424 	int win;
2425 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2426 
2427 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2428 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2429 		      enable_tcp_timestamps && req->tcpopt.tstamp,
2430 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2431 	wscale = cxgb_compute_wscale(rcv_win);
2432 
2433 	/*
2434 	 * Specify the largest window that will fit in opt0. The
2435 	 * remainder will be specified in the rx_data_ack.
2436 	 */
2437 	win = ep->rcv_win >> 10;
2438 	if (win > RCV_BUFSIZ_M)
2439 		win = RCV_BUFSIZ_M;
2440 	opt0 = (nocong ? NO_CONG_F : 0) |
2441 	       KEEP_ALIVE_F |
2442 	       DELACK_F |
2443 	       WND_SCALE_V(wscale) |
2444 	       MSS_IDX_V(mtu_idx) |
2445 	       L2T_IDX_V(ep->l2t->idx) |
2446 	       TX_CHAN_V(ep->tx_chan) |
2447 	       SMAC_SEL_V(ep->smac_idx) |
2448 	       DSCP_V(ep->tos >> 2) |
2449 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
2450 	       RCV_BUFSIZ_V(win);
2451 	opt2 = RX_CHANNEL_V(0) |
2452 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2453 
2454 	if (enable_tcp_timestamps && req->tcpopt.tstamp)
2455 		opt2 |= TSTAMPS_EN_F;
2456 	if (enable_tcp_sack && req->tcpopt.sack)
2457 		opt2 |= SACK_EN_F;
2458 	if (wscale && enable_tcp_window_scaling)
2459 		opt2 |= WND_SCALE_EN_F;
2460 	if (enable_ecn) {
2461 		const struct tcphdr *tcph;
2462 		u32 hlen = ntohl(req->hdr_len);
2463 
2464 		if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2465 			tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2466 				IP_HDR_LEN_G(hlen);
2467 		else
2468 			tcph = (const void *)(req + 1) +
2469 				T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2470 		if (tcph->ece && tcph->cwr)
2471 			opt2 |= CCTRL_ECN_V(1);
2472 	}
2473 
2474 	if (!is_t4(adapter_type)) {
2475 		u32 isn = (get_random_u32() & ~7UL) - 1;
2476 
2477 		skb = get_skb(skb, roundup(sizeof(*rpl5), 16), GFP_KERNEL);
2478 		rpl5 = __skb_put_zero(skb, roundup(sizeof(*rpl5), 16));
2479 		rpl = (void *)rpl5;
2480 		INIT_TP_WR_CPL(rpl5, CPL_PASS_ACCEPT_RPL, ep->hwtid);
2481 		opt2 |= T5_OPT_2_VALID_F;
2482 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2483 		opt2 |= T5_ISS_F;
2484 		if (peer2peer)
2485 			isn += 4;
2486 		rpl5->iss = cpu_to_be32(isn);
2487 		pr_debug("iss %u\n", be32_to_cpu(rpl5->iss));
2488 	} else {
2489 		skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
2490 		rpl = __skb_put_zero(skb, sizeof(*rpl));
2491 		INIT_TP_WR_CPL(rpl, CPL_PASS_ACCEPT_RPL, ep->hwtid);
2492 	}
2493 
2494 	rpl->opt0 = cpu_to_be64(opt0);
2495 	rpl->opt2 = cpu_to_be32(opt2);
2496 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2497 	t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2498 
2499 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2500 }
2501 
2502 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2503 {
2504 	pr_debug("c4iw_dev %p tid %u\n", dev, hwtid);
2505 	skb_trim(skb, sizeof(struct cpl_tid_release));
2506 	release_tid(&dev->rdev, hwtid, skb);
2507 	return;
2508 }
2509 
2510 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2511 {
2512 	struct c4iw_ep *child_ep = NULL, *parent_ep;
2513 	struct cpl_pass_accept_req *req = cplhdr(skb);
2514 	unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2515 	struct tid_info *t = dev->rdev.lldi.tids;
2516 	unsigned int hwtid = GET_TID(req);
2517 	struct dst_entry *dst;
2518 	__u8 local_ip[16], peer_ip[16];
2519 	__be16 local_port, peer_port;
2520 	struct sockaddr_in6 *sin6;
2521 	int err;
2522 	u16 peer_mss = ntohs(req->tcpopt.mss);
2523 	int iptype;
2524 	unsigned short hdrs;
2525 	u8 tos;
2526 
2527 	parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2528 	if (!parent_ep) {
2529 		pr_err("%s connect request on invalid stid %d\n",
2530 		       __func__, stid);
2531 		goto reject;
2532 	}
2533 
2534 	if (state_read(&parent_ep->com) != LISTEN) {
2535 		pr_err("%s - listening ep not in LISTEN\n", __func__);
2536 		goto reject;
2537 	}
2538 
2539 	if (parent_ep->com.cm_id->tos_set)
2540 		tos = parent_ep->com.cm_id->tos;
2541 	else
2542 		tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2543 
2544 	cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2545 			&iptype, local_ip, peer_ip, &local_port, &peer_port);
2546 
2547 	/* Find output route */
2548 	if (iptype == 4)  {
2549 		pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2550 			 , parent_ep, hwtid,
2551 			 local_ip, peer_ip, ntohs(local_port),
2552 			 ntohs(peer_port), peer_mss);
2553 		dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2554 				      *(__be32 *)local_ip, *(__be32 *)peer_ip,
2555 				      local_port, peer_port, tos);
2556 	} else {
2557 		pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2558 			 , parent_ep, hwtid,
2559 			 local_ip, peer_ip, ntohs(local_port),
2560 			 ntohs(peer_port), peer_mss);
2561 		dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2562 				local_ip, peer_ip, local_port, peer_port,
2563 				tos,
2564 				((struct sockaddr_in6 *)
2565 				 &parent_ep->com.local_addr)->sin6_scope_id);
2566 	}
2567 	if (!dst) {
2568 		pr_err("%s - failed to find dst entry!\n", __func__);
2569 		goto reject;
2570 	}
2571 
2572 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2573 	if (!child_ep) {
2574 		pr_err("%s - failed to allocate ep entry!\n", __func__);
2575 		dst_release(dst);
2576 		goto reject;
2577 	}
2578 
2579 	err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2580 			parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2581 	if (err) {
2582 		pr_err("%s - failed to allocate l2t entry!\n", __func__);
2583 		dst_release(dst);
2584 		kfree(child_ep);
2585 		goto reject;
2586 	}
2587 
2588 	hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
2589 	       sizeof(struct tcphdr) +
2590 	       ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2591 	if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2592 		child_ep->mtu = peer_mss + hdrs;
2593 
2594 	skb_queue_head_init(&child_ep->com.ep_skb_list);
2595 	if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2596 		goto fail;
2597 
2598 	state_set(&child_ep->com, CONNECTING);
2599 	child_ep->com.dev = dev;
2600 	child_ep->com.cm_id = NULL;
2601 
2602 	if (iptype == 4) {
2603 		struct sockaddr_in *sin = (struct sockaddr_in *)
2604 			&child_ep->com.local_addr;
2605 
2606 		sin->sin_family = AF_INET;
2607 		sin->sin_port = local_port;
2608 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2609 
2610 		sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2611 		sin->sin_family = AF_INET;
2612 		sin->sin_port = ((struct sockaddr_in *)
2613 				 &parent_ep->com.local_addr)->sin_port;
2614 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2615 
2616 		sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2617 		sin->sin_family = AF_INET;
2618 		sin->sin_port = peer_port;
2619 		sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2620 	} else {
2621 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2622 		sin6->sin6_family = PF_INET6;
2623 		sin6->sin6_port = local_port;
2624 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2625 
2626 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2627 		sin6->sin6_family = PF_INET6;
2628 		sin6->sin6_port = ((struct sockaddr_in6 *)
2629 				   &parent_ep->com.local_addr)->sin6_port;
2630 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2631 
2632 		sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2633 		sin6->sin6_family = PF_INET6;
2634 		sin6->sin6_port = peer_port;
2635 		memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2636 	}
2637 
2638 	c4iw_get_ep(&parent_ep->com);
2639 	child_ep->parent_ep = parent_ep;
2640 	child_ep->tos = tos;
2641 	child_ep->dst = dst;
2642 	child_ep->hwtid = hwtid;
2643 
2644 	pr_debug("tx_chan %u smac_idx %u rss_qid %u\n",
2645 		 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2646 
2647 	timer_setup(&child_ep->timer, ep_timeout, 0);
2648 	cxgb4_insert_tid(t, child_ep, hwtid,
2649 			 child_ep->com.local_addr.ss_family);
2650 	insert_ep_tid(child_ep);
2651 	if (accept_cr(child_ep, skb, req)) {
2652 		c4iw_put_ep(&parent_ep->com);
2653 		release_ep_resources(child_ep);
2654 	} else {
2655 		set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2656 	}
2657 	if (iptype == 6) {
2658 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2659 		cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2660 			       (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2661 	}
2662 	goto out;
2663 fail:
2664 	c4iw_put_ep(&child_ep->com);
2665 reject:
2666 	reject_cr(dev, hwtid, skb);
2667 out:
2668 	if (parent_ep)
2669 		c4iw_put_ep(&parent_ep->com);
2670 	return 0;
2671 }
2672 
2673 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2674 {
2675 	struct c4iw_ep *ep;
2676 	struct cpl_pass_establish *req = cplhdr(skb);
2677 	unsigned int tid = GET_TID(req);
2678 	int ret;
2679 	u16 tcp_opt = ntohs(req->tcp_opt);
2680 
2681 	ep = get_ep_from_tid(dev, tid);
2682 	if (!ep)
2683 		return 0;
2684 
2685 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2686 	ep->snd_seq = be32_to_cpu(req->snd_isn);
2687 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2688 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
2689 
2690 	pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt);
2691 
2692 	set_emss(ep, tcp_opt);
2693 
2694 	dst_confirm(ep->dst);
2695 	mutex_lock(&ep->com.mutex);
2696 	ep->com.state = MPA_REQ_WAIT;
2697 	start_ep_timer(ep);
2698 	set_bit(PASS_ESTAB, &ep->com.history);
2699 	ret = send_flowc(ep);
2700 	mutex_unlock(&ep->com.mutex);
2701 	if (ret)
2702 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2703 	c4iw_put_ep(&ep->com);
2704 
2705 	return 0;
2706 }
2707 
2708 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2709 {
2710 	struct cpl_peer_close *hdr = cplhdr(skb);
2711 	struct c4iw_ep *ep;
2712 	struct c4iw_qp_attributes attrs;
2713 	int disconnect = 1;
2714 	int release = 0;
2715 	unsigned int tid = GET_TID(hdr);
2716 	int ret;
2717 
2718 	ep = get_ep_from_tid(dev, tid);
2719 	if (!ep)
2720 		return 0;
2721 
2722 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2723 	dst_confirm(ep->dst);
2724 
2725 	set_bit(PEER_CLOSE, &ep->com.history);
2726 	mutex_lock(&ep->com.mutex);
2727 	switch (ep->com.state) {
2728 	case MPA_REQ_WAIT:
2729 		__state_set(&ep->com, CLOSING);
2730 		break;
2731 	case MPA_REQ_SENT:
2732 		__state_set(&ep->com, CLOSING);
2733 		connect_reply_upcall(ep, -ECONNRESET);
2734 		break;
2735 	case MPA_REQ_RCVD:
2736 
2737 		/*
2738 		 * We're gonna mark this puppy DEAD, but keep
2739 		 * the reference on it until the ULP accepts or
2740 		 * rejects the CR. Also wake up anyone waiting
2741 		 * in rdma connection migration (see c4iw_accept_cr()).
2742 		 */
2743 		__state_set(&ep->com, CLOSING);
2744 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2745 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2746 		break;
2747 	case MPA_REP_SENT:
2748 		__state_set(&ep->com, CLOSING);
2749 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2750 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2751 		break;
2752 	case FPDU_MODE:
2753 		start_ep_timer(ep);
2754 		__state_set(&ep->com, CLOSING);
2755 		attrs.next_state = C4IW_QP_STATE_CLOSING;
2756 		ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2757 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2758 		if (ret != -ECONNRESET) {
2759 			peer_close_upcall(ep);
2760 			disconnect = 1;
2761 		}
2762 		break;
2763 	case ABORTING:
2764 		disconnect = 0;
2765 		break;
2766 	case CLOSING:
2767 		__state_set(&ep->com, MORIBUND);
2768 		disconnect = 0;
2769 		break;
2770 	case MORIBUND:
2771 		(void)stop_ep_timer(ep);
2772 		if (ep->com.cm_id && ep->com.qp) {
2773 			attrs.next_state = C4IW_QP_STATE_IDLE;
2774 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2775 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2776 		}
2777 		close_complete_upcall(ep, 0);
2778 		__state_set(&ep->com, DEAD);
2779 		release = 1;
2780 		disconnect = 0;
2781 		break;
2782 	case DEAD:
2783 		disconnect = 0;
2784 		break;
2785 	default:
2786 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2787 	}
2788 	mutex_unlock(&ep->com.mutex);
2789 	if (disconnect)
2790 		c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2791 	if (release)
2792 		release_ep_resources(ep);
2793 	c4iw_put_ep(&ep->com);
2794 	return 0;
2795 }
2796 
2797 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep)
2798 {
2799 	complete_cached_srq_buffers(ep, ep->srqe_idx);
2800 	if (ep->com.cm_id && ep->com.qp) {
2801 		struct c4iw_qp_attributes attrs;
2802 
2803 		attrs.next_state = C4IW_QP_STATE_ERROR;
2804 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2805 			       C4IW_QP_ATTR_NEXT_STATE,	&attrs, 1);
2806 	}
2807 	peer_abort_upcall(ep);
2808 	release_ep_resources(ep);
2809 	c4iw_put_ep(&ep->com);
2810 }
2811 
2812 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2813 {
2814 	struct cpl_abort_req_rss6 *req = cplhdr(skb);
2815 	struct c4iw_ep *ep;
2816 	struct sk_buff *rpl_skb;
2817 	struct c4iw_qp_attributes attrs;
2818 	int ret;
2819 	int release = 0;
2820 	unsigned int tid = GET_TID(req);
2821 	u8 status;
2822 	u32 srqidx;
2823 
2824 	u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2825 
2826 	ep = get_ep_from_tid(dev, tid);
2827 	if (!ep)
2828 		return 0;
2829 
2830 	status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status));
2831 
2832 	if (cxgb_is_neg_adv(status)) {
2833 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
2834 			 ep->hwtid, status, neg_adv_str(status));
2835 		ep->stats.abort_neg_adv++;
2836 		mutex_lock(&dev->rdev.stats.lock);
2837 		dev->rdev.stats.neg_adv++;
2838 		mutex_unlock(&dev->rdev.stats.lock);
2839 		goto deref_ep;
2840 	}
2841 
2842 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid,
2843 		 ep->com.state);
2844 	set_bit(PEER_ABORT, &ep->com.history);
2845 
2846 	/*
2847 	 * Wake up any threads in rdma_init() or rdma_fini().
2848 	 * However, this is not needed if com state is just
2849 	 * MPA_REQ_SENT
2850 	 */
2851 	if (ep->com.state != MPA_REQ_SENT)
2852 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2853 
2854 	mutex_lock(&ep->com.mutex);
2855 	switch (ep->com.state) {
2856 	case CONNECTING:
2857 		c4iw_put_ep(&ep->parent_ep->com);
2858 		break;
2859 	case MPA_REQ_WAIT:
2860 		(void)stop_ep_timer(ep);
2861 		break;
2862 	case MPA_REQ_SENT:
2863 		(void)stop_ep_timer(ep);
2864 		if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 ||
2865 		    (mpa_rev == 2 && ep->tried_with_mpa_v1))
2866 			connect_reply_upcall(ep, -ECONNRESET);
2867 		else {
2868 			/*
2869 			 * we just don't send notification upwards because we
2870 			 * want to retry with mpa_v1 without upper layers even
2871 			 * knowing it.
2872 			 *
2873 			 * do some housekeeping so as to re-initiate the
2874 			 * connection
2875 			 */
2876 			pr_info("%s: mpa_rev=%d. Retrying with mpav1\n",
2877 				__func__, mpa_rev);
2878 			ep->retry_with_mpa_v1 = 1;
2879 		}
2880 		break;
2881 	case MPA_REP_SENT:
2882 		break;
2883 	case MPA_REQ_RCVD:
2884 		break;
2885 	case MORIBUND:
2886 	case CLOSING:
2887 		stop_ep_timer(ep);
2888 		fallthrough;
2889 	case FPDU_MODE:
2890 		if (ep->com.qp && ep->com.qp->srq) {
2891 			srqidx = ABORT_RSS_SRQIDX_G(
2892 					be32_to_cpu(req->srqidx_status));
2893 			if (srqidx) {
2894 				complete_cached_srq_buffers(ep, srqidx);
2895 			} else {
2896 				/* Hold ep ref until finish_peer_abort() */
2897 				c4iw_get_ep(&ep->com);
2898 				__state_set(&ep->com, ABORTING);
2899 				set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags);
2900 				read_tcb(ep);
2901 				break;
2902 
2903 			}
2904 		}
2905 
2906 		if (ep->com.cm_id && ep->com.qp) {
2907 			attrs.next_state = C4IW_QP_STATE_ERROR;
2908 			ret = c4iw_modify_qp(ep->com.qp->rhp,
2909 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2910 				     &attrs, 1);
2911 			if (ret)
2912 				pr_err("%s - qp <- error failed!\n", __func__);
2913 		}
2914 		peer_abort_upcall(ep);
2915 		break;
2916 	case ABORTING:
2917 		break;
2918 	case DEAD:
2919 		pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2920 		mutex_unlock(&ep->com.mutex);
2921 		goto deref_ep;
2922 	default:
2923 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2924 		break;
2925 	}
2926 	dst_confirm(ep->dst);
2927 	if (ep->com.state != ABORTING) {
2928 		__state_set(&ep->com, DEAD);
2929 		/* we don't release if we want to retry with mpa_v1 */
2930 		if (!ep->retry_with_mpa_v1)
2931 			release = 1;
2932 	}
2933 	mutex_unlock(&ep->com.mutex);
2934 
2935 	rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2936 	if (WARN_ON(!rpl_skb)) {
2937 		release = 1;
2938 		goto out;
2939 	}
2940 
2941 	cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2942 
2943 	c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2944 out:
2945 	if (release)
2946 		release_ep_resources(ep);
2947 	else if (ep->retry_with_mpa_v1) {
2948 		if (ep->com.remote_addr.ss_family == AF_INET6) {
2949 			struct sockaddr_in6 *sin6 =
2950 					(struct sockaddr_in6 *)
2951 					&ep->com.local_addr;
2952 			cxgb4_clip_release(
2953 					ep->com.dev->rdev.lldi.ports[0],
2954 					(const u32 *)&sin6->sin6_addr.s6_addr,
2955 					1);
2956 		}
2957 		xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid);
2958 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
2959 				 ep->com.local_addr.ss_family);
2960 		dst_release(ep->dst);
2961 		cxgb4_l2t_release(ep->l2t);
2962 		c4iw_reconnect(ep);
2963 	}
2964 
2965 deref_ep:
2966 	c4iw_put_ep(&ep->com);
2967 	/* Dereferencing ep, referenced in peer_abort_intr() */
2968 	c4iw_put_ep(&ep->com);
2969 	return 0;
2970 }
2971 
2972 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2973 {
2974 	struct c4iw_ep *ep;
2975 	struct c4iw_qp_attributes attrs;
2976 	struct cpl_close_con_rpl *rpl = cplhdr(skb);
2977 	int release = 0;
2978 	unsigned int tid = GET_TID(rpl);
2979 
2980 	ep = get_ep_from_tid(dev, tid);
2981 	if (!ep)
2982 		return 0;
2983 
2984 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2985 
2986 	/* The cm_id may be null if we failed to connect */
2987 	mutex_lock(&ep->com.mutex);
2988 	set_bit(CLOSE_CON_RPL, &ep->com.history);
2989 	switch (ep->com.state) {
2990 	case CLOSING:
2991 		__state_set(&ep->com, MORIBUND);
2992 		break;
2993 	case MORIBUND:
2994 		(void)stop_ep_timer(ep);
2995 		if ((ep->com.cm_id) && (ep->com.qp)) {
2996 			attrs.next_state = C4IW_QP_STATE_IDLE;
2997 			c4iw_modify_qp(ep->com.qp->rhp,
2998 					     ep->com.qp,
2999 					     C4IW_QP_ATTR_NEXT_STATE,
3000 					     &attrs, 1);
3001 		}
3002 		close_complete_upcall(ep, 0);
3003 		__state_set(&ep->com, DEAD);
3004 		release = 1;
3005 		break;
3006 	case ABORTING:
3007 	case DEAD:
3008 		break;
3009 	default:
3010 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3011 		break;
3012 	}
3013 	mutex_unlock(&ep->com.mutex);
3014 	if (release)
3015 		release_ep_resources(ep);
3016 	c4iw_put_ep(&ep->com);
3017 	return 0;
3018 }
3019 
3020 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3021 {
3022 	struct cpl_rdma_terminate *rpl = cplhdr(skb);
3023 	unsigned int tid = GET_TID(rpl);
3024 	struct c4iw_ep *ep;
3025 	struct c4iw_qp_attributes attrs;
3026 
3027 	ep = get_ep_from_tid(dev, tid);
3028 
3029 	if (ep) {
3030 		if (ep->com.qp) {
3031 			pr_warn("TERM received tid %u qpid %u\n", tid,
3032 				ep->com.qp->wq.sq.qid);
3033 			attrs.next_state = C4IW_QP_STATE_TERMINATE;
3034 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3035 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3036 		}
3037 
3038 		/* As per draft-hilland-iwarp-verbs-v1.0, sec 6.2.3,
3039 		 * when entering the TERM state the RNIC MUST initiate a CLOSE.
3040 		 */
3041 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3042 		c4iw_put_ep(&ep->com);
3043 	} else
3044 		pr_warn("TERM received tid %u no ep/qp\n", tid);
3045 
3046 	return 0;
3047 }
3048 
3049 /*
3050  * Upcall from the adapter indicating data has been transmitted.
3051  * For us its just the single MPA request or reply.  We can now free
3052  * the skb holding the mpa message.
3053  */
3054 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3055 {
3056 	struct c4iw_ep *ep;
3057 	struct cpl_fw4_ack *hdr = cplhdr(skb);
3058 	u8 credits = hdr->credits;
3059 	unsigned int tid = GET_TID(hdr);
3060 
3061 
3062 	ep = get_ep_from_tid(dev, tid);
3063 	if (!ep)
3064 		return 0;
3065 	pr_debug("ep %p tid %u credits %u\n",
3066 		 ep, ep->hwtid, credits);
3067 	if (credits == 0) {
3068 		pr_debug("0 credit ack ep %p tid %u state %u\n",
3069 			 ep, ep->hwtid, state_read(&ep->com));
3070 		goto out;
3071 	}
3072 
3073 	dst_confirm(ep->dst);
3074 	if (ep->mpa_skb) {
3075 		pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
3076 			 ep, ep->hwtid, state_read(&ep->com),
3077 			 ep->mpa_attr.initiator ? 1 : 0);
3078 		mutex_lock(&ep->com.mutex);
3079 		kfree_skb(ep->mpa_skb);
3080 		ep->mpa_skb = NULL;
3081 		if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3082 			stop_ep_timer(ep);
3083 		mutex_unlock(&ep->com.mutex);
3084 	}
3085 out:
3086 	c4iw_put_ep(&ep->com);
3087 	return 0;
3088 }
3089 
3090 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3091 {
3092 	int abort;
3093 	struct c4iw_ep *ep = to_ep(cm_id);
3094 
3095 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3096 
3097 	mutex_lock(&ep->com.mutex);
3098 	if (ep->com.state != MPA_REQ_RCVD) {
3099 		mutex_unlock(&ep->com.mutex);
3100 		c4iw_put_ep(&ep->com);
3101 		return -ECONNRESET;
3102 	}
3103 	set_bit(ULP_REJECT, &ep->com.history);
3104 	if (mpa_rev == 0)
3105 		abort = 1;
3106 	else
3107 		abort = send_mpa_reject(ep, pdata, pdata_len);
3108 	mutex_unlock(&ep->com.mutex);
3109 
3110 	stop_ep_timer(ep);
3111 	c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3112 	c4iw_put_ep(&ep->com);
3113 	return 0;
3114 }
3115 
3116 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3117 {
3118 	int err;
3119 	struct c4iw_qp_attributes attrs;
3120 	enum c4iw_qp_attr_mask mask;
3121 	struct c4iw_ep *ep = to_ep(cm_id);
3122 	struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3123 	struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3124 	int abort = 0;
3125 
3126 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3127 
3128 	mutex_lock(&ep->com.mutex);
3129 	if (ep->com.state != MPA_REQ_RCVD) {
3130 		err = -ECONNRESET;
3131 		goto err_out;
3132 	}
3133 
3134 	if (!qp) {
3135 		err = -EINVAL;
3136 		goto err_out;
3137 	}
3138 
3139 	set_bit(ULP_ACCEPT, &ep->com.history);
3140 	if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3141 	    (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3142 		err = -EINVAL;
3143 		goto err_abort;
3144 	}
3145 
3146 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3147 		if (conn_param->ord > ep->ird) {
3148 			if (RELAXED_IRD_NEGOTIATION) {
3149 				conn_param->ord = ep->ird;
3150 			} else {
3151 				ep->ird = conn_param->ird;
3152 				ep->ord = conn_param->ord;
3153 				send_mpa_reject(ep, conn_param->private_data,
3154 						conn_param->private_data_len);
3155 				err = -ENOMEM;
3156 				goto err_abort;
3157 			}
3158 		}
3159 		if (conn_param->ird < ep->ord) {
3160 			if (RELAXED_IRD_NEGOTIATION &&
3161 			    ep->ord <= h->rdev.lldi.max_ordird_qp) {
3162 				conn_param->ird = ep->ord;
3163 			} else {
3164 				err = -ENOMEM;
3165 				goto err_abort;
3166 			}
3167 		}
3168 	}
3169 	ep->ird = conn_param->ird;
3170 	ep->ord = conn_param->ord;
3171 
3172 	if (ep->mpa_attr.version == 1) {
3173 		if (peer2peer && ep->ird == 0)
3174 			ep->ird = 1;
3175 	} else {
3176 		if (peer2peer &&
3177 		    (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3178 		    (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3179 			ep->ird = 1;
3180 	}
3181 
3182 	pr_debug("ird %d ord %d\n", ep->ird, ep->ord);
3183 
3184 	ep->com.cm_id = cm_id;
3185 	ref_cm_id(&ep->com);
3186 	ep->com.qp = qp;
3187 	ref_qp(ep);
3188 
3189 	/* bind QP to EP and move to RTS */
3190 	attrs.mpa_attr = ep->mpa_attr;
3191 	attrs.max_ird = ep->ird;
3192 	attrs.max_ord = ep->ord;
3193 	attrs.llp_stream_handle = ep;
3194 	attrs.next_state = C4IW_QP_STATE_RTS;
3195 
3196 	/* bind QP and TID with INIT_WR */
3197 	mask = C4IW_QP_ATTR_NEXT_STATE |
3198 			     C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3199 			     C4IW_QP_ATTR_MPA_ATTR |
3200 			     C4IW_QP_ATTR_MAX_IRD |
3201 			     C4IW_QP_ATTR_MAX_ORD;
3202 
3203 	err = c4iw_modify_qp(ep->com.qp->rhp,
3204 			     ep->com.qp, mask, &attrs, 1);
3205 	if (err)
3206 		goto err_deref_cm_id;
3207 
3208 	set_bit(STOP_MPA_TIMER, &ep->com.flags);
3209 	err = send_mpa_reply(ep, conn_param->private_data,
3210 			     conn_param->private_data_len);
3211 	if (err)
3212 		goto err_deref_cm_id;
3213 
3214 	__state_set(&ep->com, FPDU_MODE);
3215 	established_upcall(ep);
3216 	mutex_unlock(&ep->com.mutex);
3217 	c4iw_put_ep(&ep->com);
3218 	return 0;
3219 err_deref_cm_id:
3220 	deref_cm_id(&ep->com);
3221 err_abort:
3222 	abort = 1;
3223 err_out:
3224 	mutex_unlock(&ep->com.mutex);
3225 	if (abort)
3226 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3227 	c4iw_put_ep(&ep->com);
3228 	return err;
3229 }
3230 
3231 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3232 {
3233 	struct in_device *ind;
3234 	int found = 0;
3235 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3236 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3237 	const struct in_ifaddr *ifa;
3238 
3239 	ind = in_dev_get(dev->rdev.lldi.ports[0]);
3240 	if (!ind)
3241 		return -EADDRNOTAVAIL;
3242 	rcu_read_lock();
3243 	in_dev_for_each_ifa_rcu(ifa, ind) {
3244 		if (ifa->ifa_flags & IFA_F_SECONDARY)
3245 			continue;
3246 		laddr->sin_addr.s_addr = ifa->ifa_address;
3247 		raddr->sin_addr.s_addr = ifa->ifa_address;
3248 		found = 1;
3249 		break;
3250 	}
3251 	rcu_read_unlock();
3252 
3253 	in_dev_put(ind);
3254 	return found ? 0 : -EADDRNOTAVAIL;
3255 }
3256 
3257 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3258 		      unsigned char banned_flags)
3259 {
3260 	struct inet6_dev *idev;
3261 	int err = -EADDRNOTAVAIL;
3262 
3263 	rcu_read_lock();
3264 	idev = __in6_dev_get(dev);
3265 	if (idev != NULL) {
3266 		struct inet6_ifaddr *ifp;
3267 
3268 		read_lock_bh(&idev->lock);
3269 		list_for_each_entry(ifp, &idev->addr_list, if_list) {
3270 			if (ifp->scope == IFA_LINK &&
3271 			    !(ifp->flags & banned_flags)) {
3272 				memcpy(addr, &ifp->addr, 16);
3273 				err = 0;
3274 				break;
3275 			}
3276 		}
3277 		read_unlock_bh(&idev->lock);
3278 	}
3279 	rcu_read_unlock();
3280 	return err;
3281 }
3282 
3283 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3284 {
3285 	struct in6_addr addr;
3286 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3287 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3288 
3289 	if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3290 		memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3291 		memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3292 		return 0;
3293 	}
3294 	return -EADDRNOTAVAIL;
3295 }
3296 
3297 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3298 {
3299 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3300 	struct c4iw_ep *ep;
3301 	int err = 0;
3302 	struct sockaddr_in *laddr;
3303 	struct sockaddr_in *raddr;
3304 	struct sockaddr_in6 *laddr6;
3305 	struct sockaddr_in6 *raddr6;
3306 	__u8 *ra;
3307 	int iptype;
3308 
3309 	if ((conn_param->ord > cur_max_read_depth(dev)) ||
3310 	    (conn_param->ird > cur_max_read_depth(dev))) {
3311 		err = -EINVAL;
3312 		goto out;
3313 	}
3314 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3315 	if (!ep) {
3316 		pr_err("%s - cannot alloc ep\n", __func__);
3317 		err = -ENOMEM;
3318 		goto out;
3319 	}
3320 
3321 	skb_queue_head_init(&ep->com.ep_skb_list);
3322 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3323 		err = -ENOMEM;
3324 		goto fail1;
3325 	}
3326 
3327 	timer_setup(&ep->timer, ep_timeout, 0);
3328 	ep->plen = conn_param->private_data_len;
3329 	if (ep->plen)
3330 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3331 		       conn_param->private_data, ep->plen);
3332 	ep->ird = conn_param->ird;
3333 	ep->ord = conn_param->ord;
3334 
3335 	if (peer2peer && ep->ord == 0)
3336 		ep->ord = 1;
3337 
3338 	ep->com.cm_id = cm_id;
3339 	ref_cm_id(&ep->com);
3340 	cm_id->provider_data = ep;
3341 	ep->com.dev = dev;
3342 	ep->com.qp = get_qhp(dev, conn_param->qpn);
3343 	if (!ep->com.qp) {
3344 		pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3345 		err = -EINVAL;
3346 		goto fail2;
3347 	}
3348 	ref_qp(ep);
3349 	pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn,
3350 		 ep->com.qp, cm_id);
3351 
3352 	/*
3353 	 * Allocate an active TID to initiate a TCP connection.
3354 	 */
3355 	ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3356 	if (ep->atid == -1) {
3357 		pr_err("%s - cannot alloc atid\n", __func__);
3358 		err = -ENOMEM;
3359 		goto fail2;
3360 	}
3361 	err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL);
3362 	if (err)
3363 		goto fail5;
3364 
3365 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3366 	       sizeof(ep->com.local_addr));
3367 	memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3368 	       sizeof(ep->com.remote_addr));
3369 
3370 	laddr = (struct sockaddr_in *)&ep->com.local_addr;
3371 	raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3372 	laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3373 	raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3374 
3375 	if (cm_id->m_remote_addr.ss_family == AF_INET) {
3376 		iptype = 4;
3377 		ra = (__u8 *)&raddr->sin_addr;
3378 
3379 		/*
3380 		 * Handle loopback requests to INADDR_ANY.
3381 		 */
3382 		if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3383 			err = pick_local_ipaddrs(dev, cm_id);
3384 			if (err)
3385 				goto fail3;
3386 		}
3387 
3388 		/* find a route */
3389 		pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3390 			 &laddr->sin_addr, ntohs(laddr->sin_port),
3391 			 ra, ntohs(raddr->sin_port));
3392 		ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3393 					  laddr->sin_addr.s_addr,
3394 					  raddr->sin_addr.s_addr,
3395 					  laddr->sin_port,
3396 					  raddr->sin_port, cm_id->tos);
3397 	} else {
3398 		iptype = 6;
3399 		ra = (__u8 *)&raddr6->sin6_addr;
3400 
3401 		/*
3402 		 * Handle loopback requests to INADDR_ANY.
3403 		 */
3404 		if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3405 			err = pick_local_ip6addrs(dev, cm_id);
3406 			if (err)
3407 				goto fail3;
3408 		}
3409 
3410 		/* find a route */
3411 		pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3412 			 laddr6->sin6_addr.s6_addr,
3413 			 ntohs(laddr6->sin6_port),
3414 			 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3415 		ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3416 					   laddr6->sin6_addr.s6_addr,
3417 					   raddr6->sin6_addr.s6_addr,
3418 					   laddr6->sin6_port,
3419 					   raddr6->sin6_port, cm_id->tos,
3420 					   raddr6->sin6_scope_id);
3421 	}
3422 	if (!ep->dst) {
3423 		pr_err("%s - cannot find route\n", __func__);
3424 		err = -EHOSTUNREACH;
3425 		goto fail3;
3426 	}
3427 
3428 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3429 			ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3430 	if (err) {
3431 		pr_err("%s - cannot alloc l2e\n", __func__);
3432 		goto fail4;
3433 	}
3434 
3435 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3436 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3437 		 ep->l2t->idx);
3438 
3439 	state_set(&ep->com, CONNECTING);
3440 	ep->tos = cm_id->tos;
3441 
3442 	/* send connect request to rnic */
3443 	err = send_connect(ep);
3444 	if (!err)
3445 		goto out;
3446 
3447 	cxgb4_l2t_release(ep->l2t);
3448 fail4:
3449 	dst_release(ep->dst);
3450 fail3:
3451 	xa_erase_irq(&ep->com.dev->atids, ep->atid);
3452 fail5:
3453 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3454 fail2:
3455 	skb_queue_purge(&ep->com.ep_skb_list);
3456 	deref_cm_id(&ep->com);
3457 fail1:
3458 	c4iw_put_ep(&ep->com);
3459 out:
3460 	return err;
3461 }
3462 
3463 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3464 {
3465 	int err;
3466 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3467 				    &ep->com.local_addr;
3468 
3469 	if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3470 		err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3471 				     (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3472 		if (err)
3473 			return err;
3474 	}
3475 	c4iw_init_wr_wait(ep->com.wr_waitp);
3476 	err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3477 				   ep->stid, &sin6->sin6_addr,
3478 				   sin6->sin6_port,
3479 				   ep->com.dev->rdev.lldi.rxq_ids[0]);
3480 	if (!err)
3481 		err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3482 					  ep->com.wr_waitp,
3483 					  0, 0, __func__);
3484 	else if (err > 0)
3485 		err = net_xmit_errno(err);
3486 	if (err) {
3487 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3488 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3489 		pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3490 		       err, ep->stid,
3491 		       sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3492 	}
3493 	return err;
3494 }
3495 
3496 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3497 {
3498 	int err;
3499 	struct sockaddr_in *sin = (struct sockaddr_in *)
3500 				  &ep->com.local_addr;
3501 
3502 	if (dev->rdev.lldi.enable_fw_ofld_conn) {
3503 		do {
3504 			err = cxgb4_create_server_filter(
3505 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3506 				sin->sin_addr.s_addr, sin->sin_port, 0,
3507 				ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3508 			if (err == -EBUSY) {
3509 				if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3510 					err = -EIO;
3511 					break;
3512 				}
3513 				set_current_state(TASK_UNINTERRUPTIBLE);
3514 				schedule_timeout(usecs_to_jiffies(100));
3515 			}
3516 		} while (err == -EBUSY);
3517 	} else {
3518 		c4iw_init_wr_wait(ep->com.wr_waitp);
3519 		err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3520 				ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3521 				0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3522 		if (!err)
3523 			err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3524 						  ep->com.wr_waitp,
3525 						  0, 0, __func__);
3526 		else if (err > 0)
3527 			err = net_xmit_errno(err);
3528 	}
3529 	if (err)
3530 		pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3531 		       , err, ep->stid,
3532 		       &sin->sin_addr, ntohs(sin->sin_port));
3533 	return err;
3534 }
3535 
3536 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3537 {
3538 	int err = 0;
3539 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3540 	struct c4iw_listen_ep *ep;
3541 
3542 	might_sleep();
3543 
3544 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3545 	if (!ep) {
3546 		pr_err("%s - cannot alloc ep\n", __func__);
3547 		err = -ENOMEM;
3548 		goto fail1;
3549 	}
3550 	skb_queue_head_init(&ep->com.ep_skb_list);
3551 	pr_debug("ep %p\n", ep);
3552 	ep->com.cm_id = cm_id;
3553 	ref_cm_id(&ep->com);
3554 	ep->com.dev = dev;
3555 	ep->backlog = backlog;
3556 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3557 	       sizeof(ep->com.local_addr));
3558 
3559 	/*
3560 	 * Allocate a server TID.
3561 	 */
3562 	if (dev->rdev.lldi.enable_fw_ofld_conn &&
3563 	    ep->com.local_addr.ss_family == AF_INET)
3564 		ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3565 					     cm_id->m_local_addr.ss_family, ep);
3566 	else
3567 		ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3568 					    cm_id->m_local_addr.ss_family, ep);
3569 
3570 	if (ep->stid == -1) {
3571 		pr_err("%s - cannot alloc stid\n", __func__);
3572 		err = -ENOMEM;
3573 		goto fail2;
3574 	}
3575 	err = xa_insert_irq(&dev->stids, ep->stid, ep, GFP_KERNEL);
3576 	if (err)
3577 		goto fail3;
3578 
3579 	state_set(&ep->com, LISTEN);
3580 	if (ep->com.local_addr.ss_family == AF_INET)
3581 		err = create_server4(dev, ep);
3582 	else
3583 		err = create_server6(dev, ep);
3584 	if (!err) {
3585 		cm_id->provider_data = ep;
3586 		goto out;
3587 	}
3588 	xa_erase_irq(&ep->com.dev->stids, ep->stid);
3589 fail3:
3590 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3591 			ep->com.local_addr.ss_family);
3592 fail2:
3593 	deref_cm_id(&ep->com);
3594 	c4iw_put_ep(&ep->com);
3595 fail1:
3596 out:
3597 	return err;
3598 }
3599 
3600 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3601 {
3602 	int err;
3603 	struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3604 
3605 	pr_debug("ep %p\n", ep);
3606 
3607 	might_sleep();
3608 	state_set(&ep->com, DEAD);
3609 	if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3610 	    ep->com.local_addr.ss_family == AF_INET) {
3611 		err = cxgb4_remove_server_filter(
3612 			ep->com.dev->rdev.lldi.ports[0], ep->stid,
3613 			ep->com.dev->rdev.lldi.rxq_ids[0], false);
3614 	} else {
3615 		struct sockaddr_in6 *sin6;
3616 		c4iw_init_wr_wait(ep->com.wr_waitp);
3617 		err = cxgb4_remove_server(
3618 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3619 				ep->com.dev->rdev.lldi.rxq_ids[0],
3620 				ep->com.local_addr.ss_family == AF_INET6);
3621 		if (err)
3622 			goto done;
3623 		err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp,
3624 					  0, 0, __func__);
3625 		sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3626 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3627 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3628 	}
3629 	xa_erase_irq(&ep->com.dev->stids, ep->stid);
3630 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3631 			ep->com.local_addr.ss_family);
3632 done:
3633 	deref_cm_id(&ep->com);
3634 	c4iw_put_ep(&ep->com);
3635 	return err;
3636 }
3637 
3638 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3639 {
3640 	int ret = 0;
3641 	int close = 0;
3642 	int fatal = 0;
3643 	struct c4iw_rdev *rdev;
3644 
3645 	mutex_lock(&ep->com.mutex);
3646 
3647 	pr_debug("ep %p state %s, abrupt %d\n", ep,
3648 		 states[ep->com.state], abrupt);
3649 
3650 	/*
3651 	 * Ref the ep here in case we have fatal errors causing the
3652 	 * ep to be released and freed.
3653 	 */
3654 	c4iw_get_ep(&ep->com);
3655 
3656 	rdev = &ep->com.dev->rdev;
3657 	if (c4iw_fatal_error(rdev)) {
3658 		fatal = 1;
3659 		close_complete_upcall(ep, -EIO);
3660 		ep->com.state = DEAD;
3661 	}
3662 	switch (ep->com.state) {
3663 	case MPA_REQ_WAIT:
3664 	case MPA_REQ_SENT:
3665 	case MPA_REQ_RCVD:
3666 	case MPA_REP_SENT:
3667 	case FPDU_MODE:
3668 	case CONNECTING:
3669 		close = 1;
3670 		if (abrupt)
3671 			ep->com.state = ABORTING;
3672 		else {
3673 			ep->com.state = CLOSING;
3674 
3675 			/*
3676 			 * if we close before we see the fw4_ack() then we fix
3677 			 * up the timer state since we're reusing it.
3678 			 */
3679 			if (ep->mpa_skb &&
3680 			    test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3681 				clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3682 				stop_ep_timer(ep);
3683 			}
3684 			start_ep_timer(ep);
3685 		}
3686 		set_bit(CLOSE_SENT, &ep->com.flags);
3687 		break;
3688 	case CLOSING:
3689 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3690 			close = 1;
3691 			if (abrupt) {
3692 				(void)stop_ep_timer(ep);
3693 				ep->com.state = ABORTING;
3694 			} else
3695 				ep->com.state = MORIBUND;
3696 		}
3697 		break;
3698 	case MORIBUND:
3699 	case ABORTING:
3700 	case DEAD:
3701 		pr_debug("ignoring disconnect ep %p state %u\n",
3702 			 ep, ep->com.state);
3703 		break;
3704 	default:
3705 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3706 		break;
3707 	}
3708 
3709 	if (close) {
3710 		if (abrupt) {
3711 			set_bit(EP_DISC_ABORT, &ep->com.history);
3712 			ret = send_abort(ep);
3713 		} else {
3714 			set_bit(EP_DISC_CLOSE, &ep->com.history);
3715 			ret = send_halfclose(ep);
3716 		}
3717 		if (ret) {
3718 			set_bit(EP_DISC_FAIL, &ep->com.history);
3719 			if (!abrupt) {
3720 				stop_ep_timer(ep);
3721 				close_complete_upcall(ep, -EIO);
3722 			}
3723 			if (ep->com.qp) {
3724 				struct c4iw_qp_attributes attrs;
3725 
3726 				attrs.next_state = C4IW_QP_STATE_ERROR;
3727 				ret = c4iw_modify_qp(ep->com.qp->rhp,
3728 						     ep->com.qp,
3729 						     C4IW_QP_ATTR_NEXT_STATE,
3730 						     &attrs, 1);
3731 				if (ret)
3732 					pr_err("%s - qp <- error failed!\n",
3733 					       __func__);
3734 			}
3735 			fatal = 1;
3736 		}
3737 	}
3738 	mutex_unlock(&ep->com.mutex);
3739 	c4iw_put_ep(&ep->com);
3740 	if (fatal)
3741 		release_ep_resources(ep);
3742 	return ret;
3743 }
3744 
3745 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3746 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3747 {
3748 	struct c4iw_ep *ep;
3749 	int atid = be32_to_cpu(req->tid);
3750 
3751 	ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3752 					   (__force u32) req->tid);
3753 	if (!ep)
3754 		return;
3755 
3756 	switch (req->retval) {
3757 	case FW_ENOMEM:
3758 		set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3759 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3760 			send_fw_act_open_req(ep, atid);
3761 			return;
3762 		}
3763 		fallthrough;
3764 	case FW_EADDRINUSE:
3765 		set_bit(ACT_RETRY_INUSE, &ep->com.history);
3766 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3767 			send_fw_act_open_req(ep, atid);
3768 			return;
3769 		}
3770 		break;
3771 	default:
3772 		pr_info("%s unexpected ofld conn wr retval %d\n",
3773 		       __func__, req->retval);
3774 		break;
3775 	}
3776 	pr_err("active ofld_connect_wr failure %d atid %d\n",
3777 	       req->retval, atid);
3778 	mutex_lock(&dev->rdev.stats.lock);
3779 	dev->rdev.stats.act_ofld_conn_fails++;
3780 	mutex_unlock(&dev->rdev.stats.lock);
3781 	connect_reply_upcall(ep, status2errno(req->retval));
3782 	state_set(&ep->com, DEAD);
3783 	if (ep->com.remote_addr.ss_family == AF_INET6) {
3784 		struct sockaddr_in6 *sin6 =
3785 			(struct sockaddr_in6 *)&ep->com.local_addr;
3786 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3787 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3788 	}
3789 	xa_erase_irq(&dev->atids, atid);
3790 	cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3791 	dst_release(ep->dst);
3792 	cxgb4_l2t_release(ep->l2t);
3793 	c4iw_put_ep(&ep->com);
3794 }
3795 
3796 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3797 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3798 {
3799 	struct sk_buff *rpl_skb;
3800 	struct cpl_pass_accept_req *cpl;
3801 	int ret;
3802 
3803 	rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3804 	if (req->retval) {
3805 		pr_err("%s passive open failure %d\n", __func__, req->retval);
3806 		mutex_lock(&dev->rdev.stats.lock);
3807 		dev->rdev.stats.pas_ofld_conn_fails++;
3808 		mutex_unlock(&dev->rdev.stats.lock);
3809 		kfree_skb(rpl_skb);
3810 	} else {
3811 		cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3812 		OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3813 					(__force u32) htonl(
3814 					(__force u32) req->tid)));
3815 		ret = pass_accept_req(dev, rpl_skb);
3816 		if (!ret)
3817 			kfree_skb(rpl_skb);
3818 	}
3819 	return;
3820 }
3821 
3822 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word)
3823 {
3824 	u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]);
3825 	u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]);
3826 	u64 t;
3827 	u32 shift = 32;
3828 
3829 	t = (thi << shift) | (tlo >> shift);
3830 
3831 	return t;
3832 }
3833 
3834 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift)
3835 {
3836 	u32 v;
3837 	u64 t = be64_to_cpu(tcb[(31 - word) / 2]);
3838 
3839 	if (word & 0x1)
3840 		shift += 32;
3841 	v = (t >> shift) & mask;
3842 	return v;
3843 }
3844 
3845 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3846 {
3847 	struct cpl_get_tcb_rpl *rpl = cplhdr(skb);
3848 	__be64 *tcb = (__be64 *)(rpl + 1);
3849 	unsigned int tid = GET_TID(rpl);
3850 	struct c4iw_ep *ep;
3851 	u64 t_flags_64;
3852 	u32 rx_pdu_out;
3853 
3854 	ep = get_ep_from_tid(dev, tid);
3855 	if (!ep)
3856 		return 0;
3857 	/* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to
3858 	 * determine if there's a rx PDU feedback event pending.
3859 	 *
3860 	 * If that bit is set, it means we'll need to re-read the TCB's
3861 	 * rq_start value. The final value is the one present in a TCB
3862 	 * with the TF_RX_PDU_OUT bit cleared.
3863 	 */
3864 
3865 	t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W);
3866 	rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S;
3867 
3868 	c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */
3869 	c4iw_put_ep(&ep->com); /* from read_tcb() */
3870 
3871 	/* If TF_RX_PDU_OUT bit is set, re-read the TCB */
3872 	if (rx_pdu_out) {
3873 		if (++ep->rx_pdu_out_cnt >= 2) {
3874 			WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n");
3875 			goto cleanup;
3876 		}
3877 		read_tcb(ep);
3878 		return 0;
3879 	}
3880 
3881 	ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_M,
3882 					  TCB_RQ_START_S);
3883 cleanup:
3884 	pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx);
3885 
3886 	if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags))
3887 		finish_peer_abort(dev, ep);
3888 	else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags))
3889 		send_abort_req(ep);
3890 	else
3891 		WARN_ONCE(1, "unexpected state!");
3892 
3893 	return 0;
3894 }
3895 
3896 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3897 {
3898 	struct cpl_fw6_msg *rpl = cplhdr(skb);
3899 	struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3900 
3901 	switch (rpl->type) {
3902 	case FW6_TYPE_CQE:
3903 		c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3904 		break;
3905 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3906 		req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3907 		switch (req->t_state) {
3908 		case TCP_SYN_SENT:
3909 			active_ofld_conn_reply(dev, skb, req);
3910 			break;
3911 		case TCP_SYN_RECV:
3912 			passive_ofld_conn_reply(dev, skb, req);
3913 			break;
3914 		default:
3915 			pr_err("%s unexpected ofld conn wr state %d\n",
3916 			       __func__, req->t_state);
3917 			break;
3918 		}
3919 		break;
3920 	}
3921 	return 0;
3922 }
3923 
3924 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3925 {
3926 	__be32 l2info;
3927 	__be16 hdr_len, vlantag, len;
3928 	u16 eth_hdr_len;
3929 	int tcp_hdr_len, ip_hdr_len;
3930 	u8 intf;
3931 	struct cpl_rx_pkt *cpl = cplhdr(skb);
3932 	struct cpl_pass_accept_req *req;
3933 	struct tcp_options_received tmp_opt;
3934 	struct c4iw_dev *dev;
3935 	enum chip_type type;
3936 
3937 	dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3938 	/* Store values from cpl_rx_pkt in temporary location. */
3939 	vlantag = cpl->vlan;
3940 	len = cpl->len;
3941 	l2info  = cpl->l2info;
3942 	hdr_len = cpl->hdr_len;
3943 	intf = cpl->iff;
3944 
3945 	__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3946 
3947 	/*
3948 	 * We need to parse the TCP options from SYN packet.
3949 	 * to generate cpl_pass_accept_req.
3950 	 */
3951 	memset(&tmp_opt, 0, sizeof(tmp_opt));
3952 	tcp_clear_options(&tmp_opt);
3953 	tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL);
3954 
3955 	req = __skb_push(skb, sizeof(*req));
3956 	memset(req, 0, sizeof(*req));
3957 	req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3958 			 SYN_MAC_IDX_V(RX_MACIDX_G(
3959 			 be32_to_cpu(l2info))) |
3960 			 SYN_XACT_MATCH_F);
3961 	type = dev->rdev.lldi.adapter_type;
3962 	tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3963 	ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3964 	req->hdr_len =
3965 		cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3966 	if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3967 		eth_hdr_len = is_t4(type) ?
3968 				RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3969 				RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3970 		req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3971 					    IP_HDR_LEN_V(ip_hdr_len) |
3972 					    ETH_HDR_LEN_V(eth_hdr_len));
3973 	} else { /* T6 and later */
3974 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3975 		req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3976 					    T6_IP_HDR_LEN_V(ip_hdr_len) |
3977 					    T6_ETH_HDR_LEN_V(eth_hdr_len));
3978 	}
3979 	req->vlan = vlantag;
3980 	req->len = len;
3981 	req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3982 				    PASS_OPEN_TOS_V(tos));
3983 	req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3984 	if (tmp_opt.wscale_ok)
3985 		req->tcpopt.wsf = tmp_opt.snd_wscale;
3986 	req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3987 	if (tmp_opt.sack_ok)
3988 		req->tcpopt.sack = 1;
3989 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3990 	return;
3991 }
3992 
3993 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3994 				  __be32 laddr, __be16 lport,
3995 				  __be32 raddr, __be16 rport,
3996 				  u32 rcv_isn, u32 filter, u16 window,
3997 				  u32 rss_qid, u8 port_id)
3998 {
3999 	struct sk_buff *req_skb;
4000 	struct fw_ofld_connection_wr *req;
4001 	struct cpl_pass_accept_req *cpl = cplhdr(skb);
4002 	int ret;
4003 
4004 	req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
4005 	if (!req_skb)
4006 		return;
4007 	req = __skb_put_zero(req_skb, sizeof(*req));
4008 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
4009 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
4010 	req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
4011 	req->le.filter = (__force __be32) filter;
4012 	req->le.lport = lport;
4013 	req->le.pport = rport;
4014 	req->le.u.ipv4.lip = laddr;
4015 	req->le.u.ipv4.pip = raddr;
4016 	req->tcb.rcv_nxt = htonl(rcv_isn + 1);
4017 	req->tcb.rcv_adv = htons(window);
4018 	req->tcb.t_state_to_astid =
4019 		 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
4020 			FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
4021 			FW_OFLD_CONNECTION_WR_ASTID_V(
4022 			PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
4023 
4024 	/*
4025 	 * We store the qid in opt2 which will be used by the firmware
4026 	 * to send us the wr response.
4027 	 */
4028 	req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
4029 
4030 	/*
4031 	 * We initialize the MSS index in TCB to 0xF.
4032 	 * So that when driver sends cpl_pass_accept_rpl
4033 	 * TCB picks up the correct value. If this was 0
4034 	 * TP will ignore any value > 0 for MSS index.
4035 	 */
4036 	req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
4037 	req->cookie = (uintptr_t)skb;
4038 
4039 	set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
4040 	ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
4041 	if (ret < 0) {
4042 		pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
4043 		       ret);
4044 		kfree_skb(skb);
4045 		kfree_skb(req_skb);
4046 	}
4047 }
4048 
4049 /*
4050  * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
4051  * messages when a filter is being used instead of server to
4052  * redirect a syn packet. When packets hit filter they are redirected
4053  * to the offload queue and driver tries to establish the connection
4054  * using firmware work request.
4055  */
4056 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
4057 {
4058 	int stid;
4059 	unsigned int filter;
4060 	struct ethhdr *eh = NULL;
4061 	struct vlan_ethhdr *vlan_eh = NULL;
4062 	struct iphdr *iph;
4063 	struct tcphdr *tcph;
4064 	struct rss_header *rss = (void *)skb->data;
4065 	struct cpl_rx_pkt *cpl = (void *)skb->data;
4066 	struct cpl_pass_accept_req *req = (void *)(rss + 1);
4067 	struct l2t_entry *e;
4068 	struct dst_entry *dst;
4069 	struct c4iw_ep *lep = NULL;
4070 	u16 window;
4071 	struct port_info *pi;
4072 	struct net_device *pdev;
4073 	u16 rss_qid, eth_hdr_len;
4074 	int step;
4075 	struct neighbour *neigh;
4076 
4077 	/* Drop all non-SYN packets */
4078 	if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
4079 		goto reject;
4080 
4081 	/*
4082 	 * Drop all packets which did not hit the filter.
4083 	 * Unlikely to happen.
4084 	 */
4085 	if (!(rss->filter_hit && rss->filter_tid))
4086 		goto reject;
4087 
4088 	/*
4089 	 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4090 	 */
4091 	stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4092 
4093 	lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4094 	if (!lep) {
4095 		pr_warn("%s connect request on invalid stid %d\n",
4096 			__func__, stid);
4097 		goto reject;
4098 	}
4099 
4100 	switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4101 	case CHELSIO_T4:
4102 		eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4103 		break;
4104 	case CHELSIO_T5:
4105 		eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4106 		break;
4107 	case CHELSIO_T6:
4108 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4109 		break;
4110 	default:
4111 		pr_err("T%d Chip is not supported\n",
4112 		       CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4113 		goto reject;
4114 	}
4115 
4116 	if (eth_hdr_len == ETH_HLEN) {
4117 		eh = (struct ethhdr *)(req + 1);
4118 		iph = (struct iphdr *)(eh + 1);
4119 	} else {
4120 		vlan_eh = (struct vlan_ethhdr *)(req + 1);
4121 		iph = (struct iphdr *)(vlan_eh + 1);
4122 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
4123 	}
4124 
4125 	if (iph->version != 0x4)
4126 		goto reject;
4127 
4128 	tcph = (struct tcphdr *)(iph + 1);
4129 	skb_set_network_header(skb, (void *)iph - (void *)rss);
4130 	skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4131 	skb_get(skb);
4132 
4133 	pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n",
4134 		 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4135 		 ntohs(tcph->source), iph->tos);
4136 
4137 	dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
4138 			      iph->daddr, iph->saddr, tcph->dest,
4139 			      tcph->source, iph->tos);
4140 	if (!dst) {
4141 		pr_err("%s - failed to find dst entry!\n", __func__);
4142 		goto reject;
4143 	}
4144 	neigh = dst_neigh_lookup_skb(dst, skb);
4145 
4146 	if (!neigh) {
4147 		pr_err("%s - failed to allocate neigh!\n", __func__);
4148 		goto free_dst;
4149 	}
4150 
4151 	if (neigh->dev->flags & IFF_LOOPBACK) {
4152 		pdev = ip_dev_find(&init_net, iph->daddr);
4153 		if (!pdev) {
4154 			pr_err("%s - failed to find device!\n", __func__);
4155 			goto free_dst;
4156 		}
4157 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4158 				    pdev, 0);
4159 		pi = (struct port_info *)netdev_priv(pdev);
4160 		dev_put(pdev);
4161 	} else {
4162 		pdev = get_real_dev(neigh->dev);
4163 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4164 					pdev, 0);
4165 		pi = (struct port_info *)netdev_priv(pdev);
4166 	}
4167 	neigh_release(neigh);
4168 	if (!e) {
4169 		pr_err("%s - failed to allocate l2t entry!\n",
4170 		       __func__);
4171 		goto free_dst;
4172 	}
4173 
4174 	step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4175 	rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4176 	window = (__force u16) htons((__force u16)tcph->window);
4177 
4178 	/* Calcuate filter portion for LE region. */
4179 	filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4180 						    dev->rdev.lldi.ports[0],
4181 						    e));
4182 
4183 	/*
4184 	 * Synthesize the cpl_pass_accept_req. We have everything except the
4185 	 * TID. Once firmware sends a reply with TID we update the TID field
4186 	 * in cpl and pass it through the regular cpl_pass_accept_req path.
4187 	 */
4188 	build_cpl_pass_accept_req(skb, stid, iph->tos);
4189 	send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4190 			      tcph->source, ntohl(tcph->seq), filter, window,
4191 			      rss_qid, pi->port_id);
4192 	cxgb4_l2t_release(e);
4193 free_dst:
4194 	dst_release(dst);
4195 reject:
4196 	if (lep)
4197 		c4iw_put_ep(&lep->com);
4198 	return 0;
4199 }
4200 
4201 /*
4202  * These are the real handlers that are called from a
4203  * work queue.
4204  */
4205 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4206 	[CPL_ACT_ESTABLISH] = act_establish,
4207 	[CPL_ACT_OPEN_RPL] = act_open_rpl,
4208 	[CPL_RX_DATA] = rx_data,
4209 	[CPL_ABORT_RPL_RSS] = abort_rpl,
4210 	[CPL_ABORT_RPL] = abort_rpl,
4211 	[CPL_PASS_OPEN_RPL] = pass_open_rpl,
4212 	[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4213 	[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4214 	[CPL_PASS_ESTABLISH] = pass_establish,
4215 	[CPL_PEER_CLOSE] = peer_close,
4216 	[CPL_ABORT_REQ_RSS] = peer_abort,
4217 	[CPL_CLOSE_CON_RPL] = close_con_rpl,
4218 	[CPL_RDMA_TERMINATE] = terminate,
4219 	[CPL_FW4_ACK] = fw4_ack,
4220 	[CPL_GET_TCB_RPL] = read_tcb_rpl,
4221 	[CPL_FW6_MSG] = deferred_fw6_msg,
4222 	[CPL_RX_PKT] = rx_pkt,
4223 	[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4224 	[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4225 };
4226 
4227 static void process_timeout(struct c4iw_ep *ep)
4228 {
4229 	struct c4iw_qp_attributes attrs;
4230 	int abort = 1;
4231 
4232 	mutex_lock(&ep->com.mutex);
4233 	pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state);
4234 	set_bit(TIMEDOUT, &ep->com.history);
4235 	switch (ep->com.state) {
4236 	case MPA_REQ_SENT:
4237 		connect_reply_upcall(ep, -ETIMEDOUT);
4238 		break;
4239 	case MPA_REQ_WAIT:
4240 	case MPA_REQ_RCVD:
4241 	case MPA_REP_SENT:
4242 	case FPDU_MODE:
4243 		break;
4244 	case CLOSING:
4245 	case MORIBUND:
4246 		if (ep->com.cm_id && ep->com.qp) {
4247 			attrs.next_state = C4IW_QP_STATE_ERROR;
4248 			c4iw_modify_qp(ep->com.qp->rhp,
4249 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4250 				     &attrs, 1);
4251 		}
4252 		close_complete_upcall(ep, -ETIMEDOUT);
4253 		break;
4254 	case ABORTING:
4255 	case DEAD:
4256 
4257 		/*
4258 		 * These states are expected if the ep timed out at the same
4259 		 * time as another thread was calling stop_ep_timer().
4260 		 * So we silently do nothing for these states.
4261 		 */
4262 		abort = 0;
4263 		break;
4264 	default:
4265 		WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4266 			__func__, ep, ep->hwtid, ep->com.state);
4267 		abort = 0;
4268 	}
4269 	mutex_unlock(&ep->com.mutex);
4270 	if (abort)
4271 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4272 	c4iw_put_ep(&ep->com);
4273 }
4274 
4275 static void process_timedout_eps(void)
4276 {
4277 	struct c4iw_ep *ep;
4278 
4279 	spin_lock_irq(&timeout_lock);
4280 	while (!list_empty(&timeout_list)) {
4281 		struct list_head *tmp;
4282 
4283 		tmp = timeout_list.next;
4284 		list_del(tmp);
4285 		tmp->next = NULL;
4286 		tmp->prev = NULL;
4287 		spin_unlock_irq(&timeout_lock);
4288 		ep = list_entry(tmp, struct c4iw_ep, entry);
4289 		process_timeout(ep);
4290 		spin_lock_irq(&timeout_lock);
4291 	}
4292 	spin_unlock_irq(&timeout_lock);
4293 }
4294 
4295 static void process_work(struct work_struct *work)
4296 {
4297 	struct sk_buff *skb = NULL;
4298 	struct c4iw_dev *dev;
4299 	struct cpl_act_establish *rpl;
4300 	unsigned int opcode;
4301 	int ret;
4302 
4303 	process_timedout_eps();
4304 	while ((skb = skb_dequeue(&rxq))) {
4305 		rpl = cplhdr(skb);
4306 		dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4307 		opcode = rpl->ot.opcode;
4308 
4309 		if (opcode >= ARRAY_SIZE(work_handlers) ||
4310 		    !work_handlers[opcode]) {
4311 			pr_err("No handler for opcode 0x%x.\n", opcode);
4312 			kfree_skb(skb);
4313 		} else {
4314 			ret = work_handlers[opcode](dev, skb);
4315 			if (!ret)
4316 				kfree_skb(skb);
4317 		}
4318 		process_timedout_eps();
4319 	}
4320 }
4321 
4322 static DECLARE_WORK(skb_work, process_work);
4323 
4324 static void ep_timeout(struct timer_list *t)
4325 {
4326 	struct c4iw_ep *ep = from_timer(ep, t, timer);
4327 	int kickit = 0;
4328 
4329 	spin_lock(&timeout_lock);
4330 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4331 		/*
4332 		 * Only insert if it is not already on the list.
4333 		 */
4334 		if (!ep->entry.next) {
4335 			list_add_tail(&ep->entry, &timeout_list);
4336 			kickit = 1;
4337 		}
4338 	}
4339 	spin_unlock(&timeout_lock);
4340 	if (kickit)
4341 		queue_work(workq, &skb_work);
4342 }
4343 
4344 /*
4345  * All the CM events are handled on a work queue to have a safe context.
4346  */
4347 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4348 {
4349 
4350 	/*
4351 	 * Save dev in the skb->cb area.
4352 	 */
4353 	*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4354 
4355 	/*
4356 	 * Queue the skb and schedule the worker thread.
4357 	 */
4358 	skb_queue_tail(&rxq, skb);
4359 	queue_work(workq, &skb_work);
4360 	return 0;
4361 }
4362 
4363 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4364 {
4365 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4366 
4367 	if (rpl->status != CPL_ERR_NONE) {
4368 		pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4369 		       rpl->status, GET_TID(rpl));
4370 	}
4371 	kfree_skb(skb);
4372 	return 0;
4373 }
4374 
4375 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4376 {
4377 	struct cpl_fw6_msg *rpl = cplhdr(skb);
4378 	struct c4iw_wr_wait *wr_waitp;
4379 	int ret;
4380 
4381 	pr_debug("type %u\n", rpl->type);
4382 
4383 	switch (rpl->type) {
4384 	case FW6_TYPE_WR_RPL:
4385 		ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4386 		wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4387 		pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret);
4388 		if (wr_waitp)
4389 			c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0);
4390 		kfree_skb(skb);
4391 		break;
4392 	case FW6_TYPE_CQE:
4393 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4394 		sched(dev, skb);
4395 		break;
4396 	default:
4397 		pr_err("%s unexpected fw6 msg type %u\n",
4398 		       __func__, rpl->type);
4399 		kfree_skb(skb);
4400 		break;
4401 	}
4402 	return 0;
4403 }
4404 
4405 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4406 {
4407 	struct cpl_abort_req_rss *req = cplhdr(skb);
4408 	struct c4iw_ep *ep;
4409 	unsigned int tid = GET_TID(req);
4410 
4411 	ep = get_ep_from_tid(dev, tid);
4412 	/* This EP will be dereferenced in peer_abort() */
4413 	if (!ep) {
4414 		pr_warn("Abort on non-existent endpoint, tid %d\n", tid);
4415 		kfree_skb(skb);
4416 		return 0;
4417 	}
4418 	if (cxgb_is_neg_adv(req->status)) {
4419 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
4420 			 ep->hwtid, req->status,
4421 			 neg_adv_str(req->status));
4422 		goto out;
4423 	}
4424 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state);
4425 
4426 	c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
4427 out:
4428 	sched(dev, skb);
4429 	return 0;
4430 }
4431 
4432 /*
4433  * Most upcalls from the T4 Core go to sched() to
4434  * schedule the processing on a work queue.
4435  */
4436 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4437 	[CPL_ACT_ESTABLISH] = sched,
4438 	[CPL_ACT_OPEN_RPL] = sched,
4439 	[CPL_RX_DATA] = sched,
4440 	[CPL_ABORT_RPL_RSS] = sched,
4441 	[CPL_ABORT_RPL] = sched,
4442 	[CPL_PASS_OPEN_RPL] = sched,
4443 	[CPL_CLOSE_LISTSRV_RPL] = sched,
4444 	[CPL_PASS_ACCEPT_REQ] = sched,
4445 	[CPL_PASS_ESTABLISH] = sched,
4446 	[CPL_PEER_CLOSE] = sched,
4447 	[CPL_CLOSE_CON_RPL] = sched,
4448 	[CPL_ABORT_REQ_RSS] = peer_abort_intr,
4449 	[CPL_RDMA_TERMINATE] = sched,
4450 	[CPL_FW4_ACK] = sched,
4451 	[CPL_SET_TCB_RPL] = set_tcb_rpl,
4452 	[CPL_GET_TCB_RPL] = sched,
4453 	[CPL_FW6_MSG] = fw6_msg,
4454 	[CPL_RX_PKT] = sched
4455 };
4456 
4457 int __init c4iw_cm_init(void)
4458 {
4459 	skb_queue_head_init(&rxq);
4460 
4461 	workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4462 	if (!workq)
4463 		return -ENOMEM;
4464 
4465 	return 0;
4466 }
4467 
4468 void c4iw_cm_term(void)
4469 {
4470 	WARN_ON(!list_empty(&timeout_list));
4471 	destroy_workqueue(workq);
4472 }
4473