xref: /linux/drivers/infiniband/hw/cxgb4/cm.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42 
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49 
50 #include <rdma/ib_addr.h>
51 
52 #include "iw_cxgb4.h"
53 #include "clip_tbl.h"
54 
55 static char *states[] = {
56 	"idle",
57 	"listen",
58 	"connecting",
59 	"mpa_wait_req",
60 	"mpa_req_sent",
61 	"mpa_req_rcvd",
62 	"mpa_rep_sent",
63 	"fpdu_mode",
64 	"aborting",
65 	"closing",
66 	"moribund",
67 	"dead",
68 	NULL,
69 };
70 
71 static int nocong;
72 module_param(nocong, int, 0644);
73 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
74 
75 static int enable_ecn;
76 module_param(enable_ecn, int, 0644);
77 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
78 
79 static int dack_mode = 1;
80 module_param(dack_mode, int, 0644);
81 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
82 
83 uint c4iw_max_read_depth = 32;
84 module_param(c4iw_max_read_depth, int, 0644);
85 MODULE_PARM_DESC(c4iw_max_read_depth,
86 		 "Per-connection max ORD/IRD (default=32)");
87 
88 static int enable_tcp_timestamps;
89 module_param(enable_tcp_timestamps, int, 0644);
90 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
91 
92 static int enable_tcp_sack;
93 module_param(enable_tcp_sack, int, 0644);
94 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
95 
96 static int enable_tcp_window_scaling = 1;
97 module_param(enable_tcp_window_scaling, int, 0644);
98 MODULE_PARM_DESC(enable_tcp_window_scaling,
99 		 "Enable tcp window scaling (default=1)");
100 
101 int c4iw_debug;
102 module_param(c4iw_debug, int, 0644);
103 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
104 
105 static int peer2peer = 1;
106 module_param(peer2peer, int, 0644);
107 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
108 
109 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
110 module_param(p2p_type, int, 0644);
111 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
112 			   "1=RDMA_READ 0=RDMA_WRITE (default 1)");
113 
114 static int ep_timeout_secs = 60;
115 module_param(ep_timeout_secs, int, 0644);
116 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
117 				   "in seconds (default=60)");
118 
119 static int mpa_rev = 2;
120 module_param(mpa_rev, int, 0644);
121 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
122 		"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
123 		" compliant (default=2)");
124 
125 static int markers_enabled;
126 module_param(markers_enabled, int, 0644);
127 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
128 
129 static int crc_enabled = 1;
130 module_param(crc_enabled, int, 0644);
131 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
132 
133 static int rcv_win = 256 * 1024;
134 module_param(rcv_win, int, 0644);
135 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
136 
137 static int snd_win = 128 * 1024;
138 module_param(snd_win, int, 0644);
139 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
140 
141 static struct workqueue_struct *workq;
142 
143 static struct sk_buff_head rxq;
144 
145 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
146 static void ep_timeout(unsigned long arg);
147 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
148 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
149 
150 static LIST_HEAD(timeout_list);
151 static spinlock_t timeout_lock;
152 
153 static void deref_cm_id(struct c4iw_ep_common *epc)
154 {
155 	epc->cm_id->rem_ref(epc->cm_id);
156 	epc->cm_id = NULL;
157 	set_bit(CM_ID_DEREFED, &epc->history);
158 }
159 
160 static void ref_cm_id(struct c4iw_ep_common *epc)
161 {
162 	set_bit(CM_ID_REFED, &epc->history);
163 	epc->cm_id->add_ref(epc->cm_id);
164 }
165 
166 static void deref_qp(struct c4iw_ep *ep)
167 {
168 	c4iw_qp_rem_ref(&ep->com.qp->ibqp);
169 	clear_bit(QP_REFERENCED, &ep->com.flags);
170 	set_bit(QP_DEREFED, &ep->com.history);
171 }
172 
173 static void ref_qp(struct c4iw_ep *ep)
174 {
175 	set_bit(QP_REFERENCED, &ep->com.flags);
176 	set_bit(QP_REFED, &ep->com.history);
177 	c4iw_qp_add_ref(&ep->com.qp->ibqp);
178 }
179 
180 static void start_ep_timer(struct c4iw_ep *ep)
181 {
182 	PDBG("%s ep %p\n", __func__, ep);
183 	if (timer_pending(&ep->timer)) {
184 		pr_err("%s timer already started! ep %p\n",
185 		       __func__, ep);
186 		return;
187 	}
188 	clear_bit(TIMEOUT, &ep->com.flags);
189 	c4iw_get_ep(&ep->com);
190 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
191 	ep->timer.data = (unsigned long)ep;
192 	ep->timer.function = ep_timeout;
193 	add_timer(&ep->timer);
194 }
195 
196 static int stop_ep_timer(struct c4iw_ep *ep)
197 {
198 	PDBG("%s ep %p stopping\n", __func__, ep);
199 	del_timer_sync(&ep->timer);
200 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
201 		c4iw_put_ep(&ep->com);
202 		return 0;
203 	}
204 	return 1;
205 }
206 
207 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
208 		  struct l2t_entry *l2e)
209 {
210 	int	error = 0;
211 
212 	if (c4iw_fatal_error(rdev)) {
213 		kfree_skb(skb);
214 		PDBG("%s - device in error state - dropping\n", __func__);
215 		return -EIO;
216 	}
217 	error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
218 	if (error < 0)
219 		kfree_skb(skb);
220 	else if (error == NET_XMIT_DROP)
221 		return -ENOMEM;
222 	return error < 0 ? error : 0;
223 }
224 
225 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
226 {
227 	int	error = 0;
228 
229 	if (c4iw_fatal_error(rdev)) {
230 		kfree_skb(skb);
231 		PDBG("%s - device in error state - dropping\n", __func__);
232 		return -EIO;
233 	}
234 	error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
235 	if (error < 0)
236 		kfree_skb(skb);
237 	return error < 0 ? error : 0;
238 }
239 
240 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
241 {
242 	struct cpl_tid_release *req;
243 
244 	skb = get_skb(skb, sizeof *req, GFP_KERNEL);
245 	if (!skb)
246 		return;
247 	req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
248 	INIT_TP_WR(req, hwtid);
249 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
250 	set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
251 	c4iw_ofld_send(rdev, skb);
252 	return;
253 }
254 
255 static void set_emss(struct c4iw_ep *ep, u16 opt)
256 {
257 	ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
258 		   ((AF_INET == ep->com.remote_addr.ss_family) ?
259 		    sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
260 		   sizeof(struct tcphdr);
261 	ep->mss = ep->emss;
262 	if (TCPOPT_TSTAMP_G(opt))
263 		ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
264 	if (ep->emss < 128)
265 		ep->emss = 128;
266 	if (ep->emss & 7)
267 		PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
268 		     TCPOPT_MSS_G(opt), ep->mss, ep->emss);
269 	PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
270 	     ep->mss, ep->emss);
271 }
272 
273 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
274 {
275 	enum c4iw_ep_state state;
276 
277 	mutex_lock(&epc->mutex);
278 	state = epc->state;
279 	mutex_unlock(&epc->mutex);
280 	return state;
281 }
282 
283 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
284 {
285 	epc->state = new;
286 }
287 
288 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
289 {
290 	mutex_lock(&epc->mutex);
291 	PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
292 	__state_set(epc, new);
293 	mutex_unlock(&epc->mutex);
294 	return;
295 }
296 
297 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
298 {
299 	struct sk_buff *skb;
300 	unsigned int i;
301 	size_t len;
302 
303 	len = roundup(sizeof(union cpl_wr_size), 16);
304 	for (i = 0; i < size; i++) {
305 		skb = alloc_skb(len, GFP_KERNEL);
306 		if (!skb)
307 			goto fail;
308 		skb_queue_tail(ep_skb_list, skb);
309 	}
310 	return 0;
311 fail:
312 	skb_queue_purge(ep_skb_list);
313 	return -ENOMEM;
314 }
315 
316 static void *alloc_ep(int size, gfp_t gfp)
317 {
318 	struct c4iw_ep_common *epc;
319 
320 	epc = kzalloc(size, gfp);
321 	if (epc) {
322 		kref_init(&epc->kref);
323 		mutex_init(&epc->mutex);
324 		c4iw_init_wr_wait(&epc->wr_wait);
325 	}
326 	PDBG("%s alloc ep %p\n", __func__, epc);
327 	return epc;
328 }
329 
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&ep->com.dev->lock, flags);
335 	_remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
336 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
337 }
338 
339 static void insert_ep_tid(struct c4iw_ep *ep)
340 {
341 	unsigned long flags;
342 
343 	spin_lock_irqsave(&ep->com.dev->lock, flags);
344 	_insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
345 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
346 }
347 
348 /*
349  * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
350  */
351 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
352 {
353 	struct c4iw_ep *ep;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&dev->lock, flags);
357 	ep = idr_find(&dev->hwtid_idr, tid);
358 	if (ep)
359 		c4iw_get_ep(&ep->com);
360 	spin_unlock_irqrestore(&dev->lock, flags);
361 	return ep;
362 }
363 
364 /*
365  * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
366  */
367 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
368 					       unsigned int stid)
369 {
370 	struct c4iw_listen_ep *ep;
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(&dev->lock, flags);
374 	ep = idr_find(&dev->stid_idr, stid);
375 	if (ep)
376 		c4iw_get_ep(&ep->com);
377 	spin_unlock_irqrestore(&dev->lock, flags);
378 	return ep;
379 }
380 
381 void _c4iw_free_ep(struct kref *kref)
382 {
383 	struct c4iw_ep *ep;
384 
385 	ep = container_of(kref, struct c4iw_ep, com.kref);
386 	PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
387 	if (test_bit(QP_REFERENCED, &ep->com.flags))
388 		deref_qp(ep);
389 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
390 		if (ep->com.remote_addr.ss_family == AF_INET6) {
391 			struct sockaddr_in6 *sin6 =
392 					(struct sockaddr_in6 *)
393 					&ep->com.local_addr;
394 
395 			cxgb4_clip_release(
396 					ep->com.dev->rdev.lldi.ports[0],
397 					(const u32 *)&sin6->sin6_addr.s6_addr,
398 					1);
399 		}
400 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
401 		dst_release(ep->dst);
402 		cxgb4_l2t_release(ep->l2t);
403 		if (ep->mpa_skb)
404 			kfree_skb(ep->mpa_skb);
405 	}
406 	if (!skb_queue_empty(&ep->com.ep_skb_list))
407 		skb_queue_purge(&ep->com.ep_skb_list);
408 	kfree(ep);
409 }
410 
411 static void release_ep_resources(struct c4iw_ep *ep)
412 {
413 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
414 
415 	/*
416 	 * If we have a hwtid, then remove it from the idr table
417 	 * so lookups will no longer find this endpoint.  Otherwise
418 	 * we have a race where one thread finds the ep ptr just
419 	 * before the other thread is freeing the ep memory.
420 	 */
421 	if (ep->hwtid != -1)
422 		remove_ep_tid(ep);
423 	c4iw_put_ep(&ep->com);
424 }
425 
426 static int status2errno(int status)
427 {
428 	switch (status) {
429 	case CPL_ERR_NONE:
430 		return 0;
431 	case CPL_ERR_CONN_RESET:
432 		return -ECONNRESET;
433 	case CPL_ERR_ARP_MISS:
434 		return -EHOSTUNREACH;
435 	case CPL_ERR_CONN_TIMEDOUT:
436 		return -ETIMEDOUT;
437 	case CPL_ERR_TCAM_FULL:
438 		return -ENOMEM;
439 	case CPL_ERR_CONN_EXIST:
440 		return -EADDRINUSE;
441 	default:
442 		return -EIO;
443 	}
444 }
445 
446 /*
447  * Try and reuse skbs already allocated...
448  */
449 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
450 {
451 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
452 		skb_trim(skb, 0);
453 		skb_get(skb);
454 		skb_reset_transport_header(skb);
455 	} else {
456 		skb = alloc_skb(len, gfp);
457 	}
458 	t4_set_arp_err_handler(skb, NULL, NULL);
459 	return skb;
460 }
461 
462 static struct net_device *get_real_dev(struct net_device *egress_dev)
463 {
464 	return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
465 }
466 
467 static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev)
468 {
469 	int i;
470 
471 	egress_dev = get_real_dev(egress_dev);
472 	for (i = 0; i < dev->rdev.lldi.nports; i++)
473 		if (dev->rdev.lldi.ports[i] == egress_dev)
474 			return 1;
475 	return 0;
476 }
477 
478 static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip,
479 				     __u8 *peer_ip, __be16 local_port,
480 				     __be16 peer_port, u8 tos,
481 				     __u32 sin6_scope_id)
482 {
483 	struct dst_entry *dst = NULL;
484 
485 	if (IS_ENABLED(CONFIG_IPV6)) {
486 		struct flowi6 fl6;
487 
488 		memset(&fl6, 0, sizeof(fl6));
489 		memcpy(&fl6.daddr, peer_ip, 16);
490 		memcpy(&fl6.saddr, local_ip, 16);
491 		if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
492 			fl6.flowi6_oif = sin6_scope_id;
493 		dst = ip6_route_output(&init_net, NULL, &fl6);
494 		if (!dst)
495 			goto out;
496 		if (!our_interface(dev, ip6_dst_idev(dst)->dev) &&
497 		    !(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
498 			dst_release(dst);
499 			dst = NULL;
500 		}
501 	}
502 
503 out:
504 	return dst;
505 }
506 
507 static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip,
508 				 __be32 peer_ip, __be16 local_port,
509 				 __be16 peer_port, u8 tos)
510 {
511 	struct rtable *rt;
512 	struct flowi4 fl4;
513 	struct neighbour *n;
514 
515 	rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
516 				   peer_port, local_port, IPPROTO_TCP,
517 				   tos, 0);
518 	if (IS_ERR(rt))
519 		return NULL;
520 	n = dst_neigh_lookup(&rt->dst, &peer_ip);
521 	if (!n)
522 		return NULL;
523 	if (!our_interface(dev, n->dev) &&
524 	    !(n->dev->flags & IFF_LOOPBACK)) {
525 		neigh_release(n);
526 		dst_release(&rt->dst);
527 		return NULL;
528 	}
529 	neigh_release(n);
530 	return &rt->dst;
531 }
532 
533 static void arp_failure_discard(void *handle, struct sk_buff *skb)
534 {
535 	pr_err(MOD "ARP failure\n");
536 	kfree_skb(skb);
537 }
538 
539 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
540 {
541 	pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
542 }
543 
544 enum {
545 	NUM_FAKE_CPLS = 2,
546 	FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
547 	FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
548 };
549 
550 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
551 {
552 	struct c4iw_ep *ep;
553 
554 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
555 	release_ep_resources(ep);
556 	return 0;
557 }
558 
559 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
560 {
561 	struct c4iw_ep *ep;
562 
563 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
564 	c4iw_put_ep(&ep->parent_ep->com);
565 	release_ep_resources(ep);
566 	return 0;
567 }
568 
569 /*
570  * Fake up a special CPL opcode and call sched() so process_work() will call
571  * _put_ep_safe() in a safe context to free the ep resources.  This is needed
572  * because ARP error handlers are called in an ATOMIC context, and
573  * _c4iw_free_ep() needs to block.
574  */
575 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
576 				  int cpl)
577 {
578 	struct cpl_act_establish *rpl = cplhdr(skb);
579 
580 	/* Set our special ARP_FAILURE opcode */
581 	rpl->ot.opcode = cpl;
582 
583 	/*
584 	 * Save ep in the skb->cb area, after where sched() will save the dev
585 	 * ptr.
586 	 */
587 	*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
588 	sched(ep->com.dev, skb);
589 }
590 
591 /* Handle an ARP failure for an accept */
592 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
593 {
594 	struct c4iw_ep *ep = handle;
595 
596 	pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n",
597 	       ep->hwtid);
598 
599 	__state_set(&ep->com, DEAD);
600 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
601 }
602 
603 /*
604  * Handle an ARP failure for an active open.
605  */
606 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
607 {
608 	struct c4iw_ep *ep = handle;
609 
610 	printk(KERN_ERR MOD "ARP failure during connect\n");
611 	connect_reply_upcall(ep, -EHOSTUNREACH);
612 	__state_set(&ep->com, DEAD);
613 	if (ep->com.remote_addr.ss_family == AF_INET6) {
614 		struct sockaddr_in6 *sin6 =
615 			(struct sockaddr_in6 *)&ep->com.local_addr;
616 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
617 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
618 	}
619 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
620 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
621 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
622 }
623 
624 /*
625  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
626  * and send it along.
627  */
628 static void abort_arp_failure(void *handle, struct sk_buff *skb)
629 {
630 	int ret;
631 	struct c4iw_ep *ep = handle;
632 	struct c4iw_rdev *rdev = &ep->com.dev->rdev;
633 	struct cpl_abort_req *req = cplhdr(skb);
634 
635 	PDBG("%s rdev %p\n", __func__, rdev);
636 	req->cmd = CPL_ABORT_NO_RST;
637 	ret = c4iw_ofld_send(rdev, skb);
638 	if (ret) {
639 		__state_set(&ep->com, DEAD);
640 		queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
641 	}
642 }
643 
644 static int send_flowc(struct c4iw_ep *ep)
645 {
646 	struct fw_flowc_wr *flowc;
647 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
648 	int i;
649 	u16 vlan = ep->l2t->vlan;
650 	int nparams;
651 
652 	if (WARN_ON(!skb))
653 		return -ENOMEM;
654 
655 	if (vlan == CPL_L2T_VLAN_NONE)
656 		nparams = 8;
657 	else
658 		nparams = 9;
659 
660 	flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN);
661 
662 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
663 					   FW_FLOWC_WR_NPARAMS_V(nparams));
664 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN,
665 					  16)) | FW_WR_FLOWID_V(ep->hwtid));
666 
667 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
668 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
669 					    (ep->com.dev->rdev.lldi.pf));
670 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
671 	flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
672 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
673 	flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
674 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
675 	flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
676 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
677 	flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
678 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
679 	flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
680 	flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
681 	flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
682 	flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
683 	flowc->mnemval[7].val = cpu_to_be32(ep->emss);
684 	if (nparams == 9) {
685 		u16 pri;
686 
687 		pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
688 		flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
689 		flowc->mnemval[8].val = cpu_to_be32(pri);
690 	} else {
691 		/* Pad WR to 16 byte boundary */
692 		flowc->mnemval[8].mnemonic = 0;
693 		flowc->mnemval[8].val = 0;
694 	}
695 	for (i = 0; i < 9; i++) {
696 		flowc->mnemval[i].r4[0] = 0;
697 		flowc->mnemval[i].r4[1] = 0;
698 		flowc->mnemval[i].r4[2] = 0;
699 	}
700 
701 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
702 	return c4iw_ofld_send(&ep->com.dev->rdev, skb);
703 }
704 
705 static int send_halfclose(struct c4iw_ep *ep)
706 {
707 	struct cpl_close_con_req *req;
708 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
709 	int wrlen = roundup(sizeof *req, 16);
710 
711 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
712 	if (WARN_ON(!skb))
713 		return -ENOMEM;
714 
715 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
716 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
717 	req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
718 	memset(req, 0, wrlen);
719 	INIT_TP_WR(req, ep->hwtid);
720 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
721 						    ep->hwtid));
722 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
723 }
724 
725 static int send_abort(struct c4iw_ep *ep)
726 {
727 	struct cpl_abort_req *req;
728 	int wrlen = roundup(sizeof *req, 16);
729 	struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
730 
731 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
732 	if (WARN_ON(!req_skb))
733 		return -ENOMEM;
734 
735 	set_wr_txq(req_skb, CPL_PRIORITY_DATA, ep->txq_idx);
736 	t4_set_arp_err_handler(req_skb, ep, abort_arp_failure);
737 	req = (struct cpl_abort_req *)skb_put(req_skb, wrlen);
738 	memset(req, 0, wrlen);
739 	INIT_TP_WR(req, ep->hwtid);
740 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
741 	req->cmd = CPL_ABORT_SEND_RST;
742 	return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
743 }
744 
745 static void best_mtu(const unsigned short *mtus, unsigned short mtu,
746 		     unsigned int *idx, int use_ts, int ipv6)
747 {
748 	unsigned short hdr_size = (ipv6 ?
749 				   sizeof(struct ipv6hdr) :
750 				   sizeof(struct iphdr)) +
751 				  sizeof(struct tcphdr) +
752 				  (use_ts ?
753 				   round_up(TCPOLEN_TIMESTAMP, 4) : 0);
754 	unsigned short data_size = mtu - hdr_size;
755 
756 	cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
757 }
758 
759 static int send_connect(struct c4iw_ep *ep)
760 {
761 	struct cpl_act_open_req *req = NULL;
762 	struct cpl_t5_act_open_req *t5req = NULL;
763 	struct cpl_t6_act_open_req *t6req = NULL;
764 	struct cpl_act_open_req6 *req6 = NULL;
765 	struct cpl_t5_act_open_req6 *t5req6 = NULL;
766 	struct cpl_t6_act_open_req6 *t6req6 = NULL;
767 	struct sk_buff *skb;
768 	u64 opt0;
769 	u32 opt2;
770 	unsigned int mtu_idx;
771 	int wscale;
772 	int win, sizev4, sizev6, wrlen;
773 	struct sockaddr_in *la = (struct sockaddr_in *)
774 				 &ep->com.local_addr;
775 	struct sockaddr_in *ra = (struct sockaddr_in *)
776 				 &ep->com.remote_addr;
777 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
778 				   &ep->com.local_addr;
779 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
780 				   &ep->com.remote_addr;
781 	int ret;
782 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
783 	u32 isn = (prandom_u32() & ~7UL) - 1;
784 
785 	switch (CHELSIO_CHIP_VERSION(adapter_type)) {
786 	case CHELSIO_T4:
787 		sizev4 = sizeof(struct cpl_act_open_req);
788 		sizev6 = sizeof(struct cpl_act_open_req6);
789 		break;
790 	case CHELSIO_T5:
791 		sizev4 = sizeof(struct cpl_t5_act_open_req);
792 		sizev6 = sizeof(struct cpl_t5_act_open_req6);
793 		break;
794 	case CHELSIO_T6:
795 		sizev4 = sizeof(struct cpl_t6_act_open_req);
796 		sizev6 = sizeof(struct cpl_t6_act_open_req6);
797 		break;
798 	default:
799 		pr_err("T%d Chip is not supported\n",
800 		       CHELSIO_CHIP_VERSION(adapter_type));
801 		return -EINVAL;
802 	}
803 
804 	wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
805 			roundup(sizev4, 16) :
806 			roundup(sizev6, 16);
807 
808 	PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
809 
810 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
811 	if (!skb) {
812 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
813 		       __func__);
814 		return -ENOMEM;
815 	}
816 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
817 
818 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
819 		 enable_tcp_timestamps,
820 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
821 	wscale = compute_wscale(rcv_win);
822 
823 	/*
824 	 * Specify the largest window that will fit in opt0. The
825 	 * remainder will be specified in the rx_data_ack.
826 	 */
827 	win = ep->rcv_win >> 10;
828 	if (win > RCV_BUFSIZ_M)
829 		win = RCV_BUFSIZ_M;
830 
831 	opt0 = (nocong ? NO_CONG_F : 0) |
832 	       KEEP_ALIVE_F |
833 	       DELACK_F |
834 	       WND_SCALE_V(wscale) |
835 	       MSS_IDX_V(mtu_idx) |
836 	       L2T_IDX_V(ep->l2t->idx) |
837 	       TX_CHAN_V(ep->tx_chan) |
838 	       SMAC_SEL_V(ep->smac_idx) |
839 	       DSCP_V(ep->tos >> 2) |
840 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
841 	       RCV_BUFSIZ_V(win);
842 	opt2 = RX_CHANNEL_V(0) |
843 	       CCTRL_ECN_V(enable_ecn) |
844 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
845 	if (enable_tcp_timestamps)
846 		opt2 |= TSTAMPS_EN_F;
847 	if (enable_tcp_sack)
848 		opt2 |= SACK_EN_F;
849 	if (wscale && enable_tcp_window_scaling)
850 		opt2 |= WND_SCALE_EN_F;
851 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
852 		if (peer2peer)
853 			isn += 4;
854 
855 		opt2 |= T5_OPT_2_VALID_F;
856 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
857 		opt2 |= T5_ISS_F;
858 	}
859 
860 	if (ep->com.remote_addr.ss_family == AF_INET6)
861 		cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
862 			       (const u32 *)&la6->sin6_addr.s6_addr, 1);
863 
864 	t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
865 
866 	if (ep->com.remote_addr.ss_family == AF_INET) {
867 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
868 		case CHELSIO_T4:
869 			req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
870 			INIT_TP_WR(req, 0);
871 			break;
872 		case CHELSIO_T5:
873 			t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
874 					wrlen);
875 			INIT_TP_WR(t5req, 0);
876 			req = (struct cpl_act_open_req *)t5req;
877 			break;
878 		case CHELSIO_T6:
879 			t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
880 					wrlen);
881 			INIT_TP_WR(t6req, 0);
882 			req = (struct cpl_act_open_req *)t6req;
883 			t5req = (struct cpl_t5_act_open_req *)t6req;
884 			break;
885 		default:
886 			pr_err("T%d Chip is not supported\n",
887 			       CHELSIO_CHIP_VERSION(adapter_type));
888 			ret = -EINVAL;
889 			goto clip_release;
890 		}
891 
892 		OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
893 					((ep->rss_qid<<14) | ep->atid)));
894 		req->local_port = la->sin_port;
895 		req->peer_port = ra->sin_port;
896 		req->local_ip = la->sin_addr.s_addr;
897 		req->peer_ip = ra->sin_addr.s_addr;
898 		req->opt0 = cpu_to_be64(opt0);
899 
900 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
901 			req->params = cpu_to_be32(cxgb4_select_ntuple(
902 						ep->com.dev->rdev.lldi.ports[0],
903 						ep->l2t));
904 			req->opt2 = cpu_to_be32(opt2);
905 		} else {
906 			t5req->params = cpu_to_be64(FILTER_TUPLE_V(
907 						cxgb4_select_ntuple(
908 						ep->com.dev->rdev.lldi.ports[0],
909 						ep->l2t)));
910 			t5req->rsvd = cpu_to_be32(isn);
911 			PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
912 			t5req->opt2 = cpu_to_be32(opt2);
913 		}
914 	} else {
915 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
916 		case CHELSIO_T4:
917 			req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
918 			INIT_TP_WR(req6, 0);
919 			break;
920 		case CHELSIO_T5:
921 			t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
922 					wrlen);
923 			INIT_TP_WR(t5req6, 0);
924 			req6 = (struct cpl_act_open_req6 *)t5req6;
925 			break;
926 		case CHELSIO_T6:
927 			t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
928 					wrlen);
929 			INIT_TP_WR(t6req6, 0);
930 			req6 = (struct cpl_act_open_req6 *)t6req6;
931 			t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
932 			break;
933 		default:
934 			pr_err("T%d Chip is not supported\n",
935 			       CHELSIO_CHIP_VERSION(adapter_type));
936 			ret = -EINVAL;
937 			goto clip_release;
938 		}
939 
940 		OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
941 					((ep->rss_qid<<14)|ep->atid)));
942 		req6->local_port = la6->sin6_port;
943 		req6->peer_port = ra6->sin6_port;
944 		req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
945 		req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
946 		req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
947 		req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
948 		req6->opt0 = cpu_to_be64(opt0);
949 
950 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
951 			req6->params = cpu_to_be32(cxgb4_select_ntuple(
952 						ep->com.dev->rdev.lldi.ports[0],
953 						ep->l2t));
954 			req6->opt2 = cpu_to_be32(opt2);
955 		} else {
956 			t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
957 						cxgb4_select_ntuple(
958 						ep->com.dev->rdev.lldi.ports[0],
959 						ep->l2t)));
960 			t5req6->rsvd = cpu_to_be32(isn);
961 			PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
962 			t5req6->opt2 = cpu_to_be32(opt2);
963 		}
964 	}
965 
966 	set_bit(ACT_OPEN_REQ, &ep->com.history);
967 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
968 clip_release:
969 	if (ret && ep->com.remote_addr.ss_family == AF_INET6)
970 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
971 				   (const u32 *)&la6->sin6_addr.s6_addr, 1);
972 	return ret;
973 }
974 
975 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
976 			u8 mpa_rev_to_use)
977 {
978 	int mpalen, wrlen, ret;
979 	struct fw_ofld_tx_data_wr *req;
980 	struct mpa_message *mpa;
981 	struct mpa_v2_conn_params mpa_v2_params;
982 
983 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
984 
985 	BUG_ON(skb_cloned(skb));
986 
987 	mpalen = sizeof(*mpa) + ep->plen;
988 	if (mpa_rev_to_use == 2)
989 		mpalen += sizeof(struct mpa_v2_conn_params);
990 	wrlen = roundup(mpalen + sizeof *req, 16);
991 	skb = get_skb(skb, wrlen, GFP_KERNEL);
992 	if (!skb) {
993 		connect_reply_upcall(ep, -ENOMEM);
994 		return -ENOMEM;
995 	}
996 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
997 
998 	req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
999 	memset(req, 0, wrlen);
1000 	req->op_to_immdlen = cpu_to_be32(
1001 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1002 		FW_WR_COMPL_F |
1003 		FW_WR_IMMDLEN_V(mpalen));
1004 	req->flowid_len16 = cpu_to_be32(
1005 		FW_WR_FLOWID_V(ep->hwtid) |
1006 		FW_WR_LEN16_V(wrlen >> 4));
1007 	req->plen = cpu_to_be32(mpalen);
1008 	req->tunnel_to_proxy = cpu_to_be32(
1009 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1010 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1011 
1012 	mpa = (struct mpa_message *)(req + 1);
1013 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
1014 
1015 	mpa->flags = 0;
1016 	if (crc_enabled)
1017 		mpa->flags |= MPA_CRC;
1018 	if (markers_enabled) {
1019 		mpa->flags |= MPA_MARKERS;
1020 		ep->mpa_attr.recv_marker_enabled = 1;
1021 	} else {
1022 		ep->mpa_attr.recv_marker_enabled = 0;
1023 	}
1024 	if (mpa_rev_to_use == 2)
1025 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1026 
1027 	mpa->private_data_size = htons(ep->plen);
1028 	mpa->revision = mpa_rev_to_use;
1029 	if (mpa_rev_to_use == 1) {
1030 		ep->tried_with_mpa_v1 = 1;
1031 		ep->retry_with_mpa_v1 = 0;
1032 	}
1033 
1034 	if (mpa_rev_to_use == 2) {
1035 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1036 					       sizeof (struct mpa_v2_conn_params));
1037 		PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1038 		     ep->ord);
1039 		mpa_v2_params.ird = htons((u16)ep->ird);
1040 		mpa_v2_params.ord = htons((u16)ep->ord);
1041 
1042 		if (peer2peer) {
1043 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1044 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1045 				mpa_v2_params.ord |=
1046 					htons(MPA_V2_RDMA_WRITE_RTR);
1047 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1048 				mpa_v2_params.ord |=
1049 					htons(MPA_V2_RDMA_READ_RTR);
1050 		}
1051 		memcpy(mpa->private_data, &mpa_v2_params,
1052 		       sizeof(struct mpa_v2_conn_params));
1053 
1054 		if (ep->plen)
1055 			memcpy(mpa->private_data +
1056 			       sizeof(struct mpa_v2_conn_params),
1057 			       ep->mpa_pkt + sizeof(*mpa), ep->plen);
1058 	} else
1059 		if (ep->plen)
1060 			memcpy(mpa->private_data,
1061 					ep->mpa_pkt + sizeof(*mpa), ep->plen);
1062 
1063 	/*
1064 	 * Reference the mpa skb.  This ensures the data area
1065 	 * will remain in memory until the hw acks the tx.
1066 	 * Function fw4_ack() will deref it.
1067 	 */
1068 	skb_get(skb);
1069 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1070 	BUG_ON(ep->mpa_skb);
1071 	ep->mpa_skb = skb;
1072 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1073 	if (ret)
1074 		return ret;
1075 	start_ep_timer(ep);
1076 	__state_set(&ep->com, MPA_REQ_SENT);
1077 	ep->mpa_attr.initiator = 1;
1078 	ep->snd_seq += mpalen;
1079 	return ret;
1080 }
1081 
1082 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1083 {
1084 	int mpalen, wrlen;
1085 	struct fw_ofld_tx_data_wr *req;
1086 	struct mpa_message *mpa;
1087 	struct sk_buff *skb;
1088 	struct mpa_v2_conn_params mpa_v2_params;
1089 
1090 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1091 
1092 	mpalen = sizeof(*mpa) + plen;
1093 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1094 		mpalen += sizeof(struct mpa_v2_conn_params);
1095 	wrlen = roundup(mpalen + sizeof *req, 16);
1096 
1097 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1098 	if (!skb) {
1099 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1100 		return -ENOMEM;
1101 	}
1102 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1103 
1104 	req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
1105 	memset(req, 0, wrlen);
1106 	req->op_to_immdlen = cpu_to_be32(
1107 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1108 		FW_WR_COMPL_F |
1109 		FW_WR_IMMDLEN_V(mpalen));
1110 	req->flowid_len16 = cpu_to_be32(
1111 		FW_WR_FLOWID_V(ep->hwtid) |
1112 		FW_WR_LEN16_V(wrlen >> 4));
1113 	req->plen = cpu_to_be32(mpalen);
1114 	req->tunnel_to_proxy = cpu_to_be32(
1115 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1116 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1117 
1118 	mpa = (struct mpa_message *)(req + 1);
1119 	memset(mpa, 0, sizeof(*mpa));
1120 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1121 	mpa->flags = MPA_REJECT;
1122 	mpa->revision = ep->mpa_attr.version;
1123 	mpa->private_data_size = htons(plen);
1124 
1125 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1126 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1127 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1128 					       sizeof (struct mpa_v2_conn_params));
1129 		mpa_v2_params.ird = htons(((u16)ep->ird) |
1130 					  (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1131 					   0));
1132 		mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1133 					  (p2p_type ==
1134 					   FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1135 					   MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1136 					   FW_RI_INIT_P2PTYPE_READ_REQ ?
1137 					   MPA_V2_RDMA_READ_RTR : 0) : 0));
1138 		memcpy(mpa->private_data, &mpa_v2_params,
1139 		       sizeof(struct mpa_v2_conn_params));
1140 
1141 		if (ep->plen)
1142 			memcpy(mpa->private_data +
1143 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1144 	} else
1145 		if (plen)
1146 			memcpy(mpa->private_data, pdata, plen);
1147 
1148 	/*
1149 	 * Reference the mpa skb again.  This ensures the data area
1150 	 * will remain in memory until the hw acks the tx.
1151 	 * Function fw4_ack() will deref it.
1152 	 */
1153 	skb_get(skb);
1154 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1155 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1156 	BUG_ON(ep->mpa_skb);
1157 	ep->mpa_skb = skb;
1158 	ep->snd_seq += mpalen;
1159 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1160 }
1161 
1162 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1163 {
1164 	int mpalen, wrlen;
1165 	struct fw_ofld_tx_data_wr *req;
1166 	struct mpa_message *mpa;
1167 	struct sk_buff *skb;
1168 	struct mpa_v2_conn_params mpa_v2_params;
1169 
1170 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1171 
1172 	mpalen = sizeof(*mpa) + plen;
1173 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1174 		mpalen += sizeof(struct mpa_v2_conn_params);
1175 	wrlen = roundup(mpalen + sizeof *req, 16);
1176 
1177 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1178 	if (!skb) {
1179 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1180 		return -ENOMEM;
1181 	}
1182 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1183 
1184 	req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
1185 	memset(req, 0, wrlen);
1186 	req->op_to_immdlen = cpu_to_be32(
1187 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1188 		FW_WR_COMPL_F |
1189 		FW_WR_IMMDLEN_V(mpalen));
1190 	req->flowid_len16 = cpu_to_be32(
1191 		FW_WR_FLOWID_V(ep->hwtid) |
1192 		FW_WR_LEN16_V(wrlen >> 4));
1193 	req->plen = cpu_to_be32(mpalen);
1194 	req->tunnel_to_proxy = cpu_to_be32(
1195 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1196 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1197 
1198 	mpa = (struct mpa_message *)(req + 1);
1199 	memset(mpa, 0, sizeof(*mpa));
1200 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1201 	mpa->flags = 0;
1202 	if (ep->mpa_attr.crc_enabled)
1203 		mpa->flags |= MPA_CRC;
1204 	if (ep->mpa_attr.recv_marker_enabled)
1205 		mpa->flags |= MPA_MARKERS;
1206 	mpa->revision = ep->mpa_attr.version;
1207 	mpa->private_data_size = htons(plen);
1208 
1209 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1210 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1211 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1212 					       sizeof (struct mpa_v2_conn_params));
1213 		mpa_v2_params.ird = htons((u16)ep->ird);
1214 		mpa_v2_params.ord = htons((u16)ep->ord);
1215 		if (peer2peer && (ep->mpa_attr.p2p_type !=
1216 					FW_RI_INIT_P2PTYPE_DISABLED)) {
1217 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1218 
1219 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1220 				mpa_v2_params.ord |=
1221 					htons(MPA_V2_RDMA_WRITE_RTR);
1222 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1223 				mpa_v2_params.ord |=
1224 					htons(MPA_V2_RDMA_READ_RTR);
1225 		}
1226 
1227 		memcpy(mpa->private_data, &mpa_v2_params,
1228 		       sizeof(struct mpa_v2_conn_params));
1229 
1230 		if (ep->plen)
1231 			memcpy(mpa->private_data +
1232 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1233 	} else
1234 		if (plen)
1235 			memcpy(mpa->private_data, pdata, plen);
1236 
1237 	/*
1238 	 * Reference the mpa skb.  This ensures the data area
1239 	 * will remain in memory until the hw acks the tx.
1240 	 * Function fw4_ack() will deref it.
1241 	 */
1242 	skb_get(skb);
1243 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1244 	ep->mpa_skb = skb;
1245 	__state_set(&ep->com, MPA_REP_SENT);
1246 	ep->snd_seq += mpalen;
1247 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1248 }
1249 
1250 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1251 {
1252 	struct c4iw_ep *ep;
1253 	struct cpl_act_establish *req = cplhdr(skb);
1254 	unsigned int tid = GET_TID(req);
1255 	unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1256 	struct tid_info *t = dev->rdev.lldi.tids;
1257 	int ret;
1258 
1259 	ep = lookup_atid(t, atid);
1260 
1261 	PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1262 	     be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1263 
1264 	mutex_lock(&ep->com.mutex);
1265 	dst_confirm(ep->dst);
1266 
1267 	/* setup the hwtid for this connection */
1268 	ep->hwtid = tid;
1269 	cxgb4_insert_tid(t, ep, tid);
1270 	insert_ep_tid(ep);
1271 
1272 	ep->snd_seq = be32_to_cpu(req->snd_isn);
1273 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1274 
1275 	set_emss(ep, ntohs(req->tcp_opt));
1276 
1277 	/* dealloc the atid */
1278 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1279 	cxgb4_free_atid(t, atid);
1280 	set_bit(ACT_ESTAB, &ep->com.history);
1281 
1282 	/* start MPA negotiation */
1283 	ret = send_flowc(ep);
1284 	if (ret)
1285 		goto err;
1286 	if (ep->retry_with_mpa_v1)
1287 		ret = send_mpa_req(ep, skb, 1);
1288 	else
1289 		ret = send_mpa_req(ep, skb, mpa_rev);
1290 	if (ret)
1291 		goto err;
1292 	mutex_unlock(&ep->com.mutex);
1293 	return 0;
1294 err:
1295 	mutex_unlock(&ep->com.mutex);
1296 	connect_reply_upcall(ep, -ENOMEM);
1297 	c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1298 	return 0;
1299 }
1300 
1301 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1302 {
1303 	struct iw_cm_event event;
1304 
1305 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1306 	memset(&event, 0, sizeof(event));
1307 	event.event = IW_CM_EVENT_CLOSE;
1308 	event.status = status;
1309 	if (ep->com.cm_id) {
1310 		PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1311 		     ep, ep->com.cm_id, ep->hwtid);
1312 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 		deref_cm_id(&ep->com);
1314 		set_bit(CLOSE_UPCALL, &ep->com.history);
1315 	}
1316 }
1317 
1318 static void peer_close_upcall(struct c4iw_ep *ep)
1319 {
1320 	struct iw_cm_event event;
1321 
1322 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1323 	memset(&event, 0, sizeof(event));
1324 	event.event = IW_CM_EVENT_DISCONNECT;
1325 	if (ep->com.cm_id) {
1326 		PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1327 		     ep, ep->com.cm_id, ep->hwtid);
1328 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1329 		set_bit(DISCONN_UPCALL, &ep->com.history);
1330 	}
1331 }
1332 
1333 static void peer_abort_upcall(struct c4iw_ep *ep)
1334 {
1335 	struct iw_cm_event event;
1336 
1337 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1338 	memset(&event, 0, sizeof(event));
1339 	event.event = IW_CM_EVENT_CLOSE;
1340 	event.status = -ECONNRESET;
1341 	if (ep->com.cm_id) {
1342 		PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
1343 		     ep->com.cm_id, ep->hwtid);
1344 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1345 		deref_cm_id(&ep->com);
1346 		set_bit(ABORT_UPCALL, &ep->com.history);
1347 	}
1348 }
1349 
1350 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1351 {
1352 	struct iw_cm_event event;
1353 
1354 	PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
1355 	memset(&event, 0, sizeof(event));
1356 	event.event = IW_CM_EVENT_CONNECT_REPLY;
1357 	event.status = status;
1358 	memcpy(&event.local_addr, &ep->com.local_addr,
1359 	       sizeof(ep->com.local_addr));
1360 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1361 	       sizeof(ep->com.remote_addr));
1362 
1363 	if ((status == 0) || (status == -ECONNREFUSED)) {
1364 		if (!ep->tried_with_mpa_v1) {
1365 			/* this means MPA_v2 is used */
1366 			event.ord = ep->ird;
1367 			event.ird = ep->ord;
1368 			event.private_data_len = ep->plen -
1369 				sizeof(struct mpa_v2_conn_params);
1370 			event.private_data = ep->mpa_pkt +
1371 				sizeof(struct mpa_message) +
1372 				sizeof(struct mpa_v2_conn_params);
1373 		} else {
1374 			/* this means MPA_v1 is used */
1375 			event.ord = cur_max_read_depth(ep->com.dev);
1376 			event.ird = cur_max_read_depth(ep->com.dev);
1377 			event.private_data_len = ep->plen;
1378 			event.private_data = ep->mpa_pkt +
1379 				sizeof(struct mpa_message);
1380 		}
1381 	}
1382 
1383 	PDBG("%s ep %p tid %u status %d\n", __func__, ep,
1384 	     ep->hwtid, status);
1385 	set_bit(CONN_RPL_UPCALL, &ep->com.history);
1386 	ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1387 
1388 	if (status < 0)
1389 		deref_cm_id(&ep->com);
1390 }
1391 
1392 static int connect_request_upcall(struct c4iw_ep *ep)
1393 {
1394 	struct iw_cm_event event;
1395 	int ret;
1396 
1397 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1398 	memset(&event, 0, sizeof(event));
1399 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
1400 	memcpy(&event.local_addr, &ep->com.local_addr,
1401 	       sizeof(ep->com.local_addr));
1402 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1403 	       sizeof(ep->com.remote_addr));
1404 	event.provider_data = ep;
1405 	if (!ep->tried_with_mpa_v1) {
1406 		/* this means MPA_v2 is used */
1407 		event.ord = ep->ord;
1408 		event.ird = ep->ird;
1409 		event.private_data_len = ep->plen -
1410 			sizeof(struct mpa_v2_conn_params);
1411 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1412 			sizeof(struct mpa_v2_conn_params);
1413 	} else {
1414 		/* this means MPA_v1 is used. Send max supported */
1415 		event.ord = cur_max_read_depth(ep->com.dev);
1416 		event.ird = cur_max_read_depth(ep->com.dev);
1417 		event.private_data_len = ep->plen;
1418 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1419 	}
1420 	c4iw_get_ep(&ep->com);
1421 	ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1422 						      &event);
1423 	if (ret)
1424 		c4iw_put_ep(&ep->com);
1425 	set_bit(CONNREQ_UPCALL, &ep->com.history);
1426 	c4iw_put_ep(&ep->parent_ep->com);
1427 	return ret;
1428 }
1429 
1430 static void established_upcall(struct c4iw_ep *ep)
1431 {
1432 	struct iw_cm_event event;
1433 
1434 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1435 	memset(&event, 0, sizeof(event));
1436 	event.event = IW_CM_EVENT_ESTABLISHED;
1437 	event.ird = ep->ord;
1438 	event.ord = ep->ird;
1439 	if (ep->com.cm_id) {
1440 		PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1441 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1442 		set_bit(ESTAB_UPCALL, &ep->com.history);
1443 	}
1444 }
1445 
1446 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1447 {
1448 	struct cpl_rx_data_ack *req;
1449 	struct sk_buff *skb;
1450 	int wrlen = roundup(sizeof *req, 16);
1451 
1452 	PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1453 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1454 	if (!skb) {
1455 		printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1456 		return 0;
1457 	}
1458 
1459 	/*
1460 	 * If we couldn't specify the entire rcv window at connection setup
1461 	 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1462 	 * then add the overage in to the credits returned.
1463 	 */
1464 	if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1465 		credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1466 
1467 	req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
1468 	memset(req, 0, wrlen);
1469 	INIT_TP_WR(req, ep->hwtid);
1470 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
1471 						    ep->hwtid));
1472 	req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F |
1473 				       RX_DACK_CHANGE_F |
1474 				       RX_DACK_MODE_V(dack_mode));
1475 	set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
1476 	c4iw_ofld_send(&ep->com.dev->rdev, skb);
1477 	return credits;
1478 }
1479 
1480 #define RELAXED_IRD_NEGOTIATION 1
1481 
1482 /*
1483  * process_mpa_reply - process streaming mode MPA reply
1484  *
1485  * Returns:
1486  *
1487  * 0 upon success indicating a connect request was delivered to the ULP
1488  * or the mpa request is incomplete but valid so far.
1489  *
1490  * 1 if a failure requires the caller to close the connection.
1491  *
1492  * 2 if a failure requires the caller to abort the connection.
1493  */
1494 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1495 {
1496 	struct mpa_message *mpa;
1497 	struct mpa_v2_conn_params *mpa_v2_params;
1498 	u16 plen;
1499 	u16 resp_ird, resp_ord;
1500 	u8 rtr_mismatch = 0, insuff_ird = 0;
1501 	struct c4iw_qp_attributes attrs;
1502 	enum c4iw_qp_attr_mask mask;
1503 	int err;
1504 	int disconnect = 0;
1505 
1506 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1507 
1508 	/*
1509 	 * If we get more than the supported amount of private data
1510 	 * then we must fail this connection.
1511 	 */
1512 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1513 		err = -EINVAL;
1514 		goto err_stop_timer;
1515 	}
1516 
1517 	/*
1518 	 * copy the new data into our accumulation buffer.
1519 	 */
1520 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1521 				  skb->len);
1522 	ep->mpa_pkt_len += skb->len;
1523 
1524 	/*
1525 	 * if we don't even have the mpa message, then bail.
1526 	 */
1527 	if (ep->mpa_pkt_len < sizeof(*mpa))
1528 		return 0;
1529 	mpa = (struct mpa_message *) ep->mpa_pkt;
1530 
1531 	/* Validate MPA header. */
1532 	if (mpa->revision > mpa_rev) {
1533 		printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1534 		       " Received = %d\n", __func__, mpa_rev, mpa->revision);
1535 		err = -EPROTO;
1536 		goto err_stop_timer;
1537 	}
1538 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1539 		err = -EPROTO;
1540 		goto err_stop_timer;
1541 	}
1542 
1543 	plen = ntohs(mpa->private_data_size);
1544 
1545 	/*
1546 	 * Fail if there's too much private data.
1547 	 */
1548 	if (plen > MPA_MAX_PRIVATE_DATA) {
1549 		err = -EPROTO;
1550 		goto err_stop_timer;
1551 	}
1552 
1553 	/*
1554 	 * If plen does not account for pkt size
1555 	 */
1556 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1557 		err = -EPROTO;
1558 		goto err_stop_timer;
1559 	}
1560 
1561 	ep->plen = (u8) plen;
1562 
1563 	/*
1564 	 * If we don't have all the pdata yet, then bail.
1565 	 * We'll continue process when more data arrives.
1566 	 */
1567 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1568 		return 0;
1569 
1570 	if (mpa->flags & MPA_REJECT) {
1571 		err = -ECONNREFUSED;
1572 		goto err_stop_timer;
1573 	}
1574 
1575 	/*
1576 	 * Stop mpa timer.  If it expired, then
1577 	 * we ignore the MPA reply.  process_timeout()
1578 	 * will abort the connection.
1579 	 */
1580 	if (stop_ep_timer(ep))
1581 		return 0;
1582 
1583 	/*
1584 	 * If we get here we have accumulated the entire mpa
1585 	 * start reply message including private data. And
1586 	 * the MPA header is valid.
1587 	 */
1588 	__state_set(&ep->com, FPDU_MODE);
1589 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1590 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1591 	ep->mpa_attr.version = mpa->revision;
1592 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1593 
1594 	if (mpa->revision == 2) {
1595 		ep->mpa_attr.enhanced_rdma_conn =
1596 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1597 		if (ep->mpa_attr.enhanced_rdma_conn) {
1598 			mpa_v2_params = (struct mpa_v2_conn_params *)
1599 				(ep->mpa_pkt + sizeof(*mpa));
1600 			resp_ird = ntohs(mpa_v2_params->ird) &
1601 				MPA_V2_IRD_ORD_MASK;
1602 			resp_ord = ntohs(mpa_v2_params->ord) &
1603 				MPA_V2_IRD_ORD_MASK;
1604 			PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1605 			     __func__, resp_ird, resp_ord, ep->ird, ep->ord);
1606 
1607 			/*
1608 			 * This is a double-check. Ideally, below checks are
1609 			 * not required since ird/ord stuff has been taken
1610 			 * care of in c4iw_accept_cr
1611 			 */
1612 			if (ep->ird < resp_ord) {
1613 				if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1614 				    ep->com.dev->rdev.lldi.max_ordird_qp)
1615 					ep->ird = resp_ord;
1616 				else
1617 					insuff_ird = 1;
1618 			} else if (ep->ird > resp_ord) {
1619 				ep->ird = resp_ord;
1620 			}
1621 			if (ep->ord > resp_ird) {
1622 				if (RELAXED_IRD_NEGOTIATION)
1623 					ep->ord = resp_ird;
1624 				else
1625 					insuff_ird = 1;
1626 			}
1627 			if (insuff_ird) {
1628 				err = -ENOMEM;
1629 				ep->ird = resp_ord;
1630 				ep->ord = resp_ird;
1631 			}
1632 
1633 			if (ntohs(mpa_v2_params->ird) &
1634 					MPA_V2_PEER2PEER_MODEL) {
1635 				if (ntohs(mpa_v2_params->ord) &
1636 						MPA_V2_RDMA_WRITE_RTR)
1637 					ep->mpa_attr.p2p_type =
1638 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1639 				else if (ntohs(mpa_v2_params->ord) &
1640 						MPA_V2_RDMA_READ_RTR)
1641 					ep->mpa_attr.p2p_type =
1642 						FW_RI_INIT_P2PTYPE_READ_REQ;
1643 			}
1644 		}
1645 	} else if (mpa->revision == 1)
1646 		if (peer2peer)
1647 			ep->mpa_attr.p2p_type = p2p_type;
1648 
1649 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1650 	     "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1651 	     "%d\n", __func__, ep->mpa_attr.crc_enabled,
1652 	     ep->mpa_attr.recv_marker_enabled,
1653 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1654 	     ep->mpa_attr.p2p_type, p2p_type);
1655 
1656 	/*
1657 	 * If responder's RTR does not match with that of initiator, assign
1658 	 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1659 	 * generated when moving QP to RTS state.
1660 	 * A TERM message will be sent after QP has moved to RTS state
1661 	 */
1662 	if ((ep->mpa_attr.version == 2) && peer2peer &&
1663 			(ep->mpa_attr.p2p_type != p2p_type)) {
1664 		ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1665 		rtr_mismatch = 1;
1666 	}
1667 
1668 	attrs.mpa_attr = ep->mpa_attr;
1669 	attrs.max_ird = ep->ird;
1670 	attrs.max_ord = ep->ord;
1671 	attrs.llp_stream_handle = ep;
1672 	attrs.next_state = C4IW_QP_STATE_RTS;
1673 
1674 	mask = C4IW_QP_ATTR_NEXT_STATE |
1675 	    C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1676 	    C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1677 
1678 	/* bind QP and TID with INIT_WR */
1679 	err = c4iw_modify_qp(ep->com.qp->rhp,
1680 			     ep->com.qp, mask, &attrs, 1);
1681 	if (err)
1682 		goto err;
1683 
1684 	/*
1685 	 * If responder's RTR requirement did not match with what initiator
1686 	 * supports, generate TERM message
1687 	 */
1688 	if (rtr_mismatch) {
1689 		printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1690 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1691 		attrs.ecode = MPA_NOMATCH_RTR;
1692 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1693 		attrs.send_term = 1;
1694 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1695 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1696 		err = -ENOMEM;
1697 		disconnect = 1;
1698 		goto out;
1699 	}
1700 
1701 	/*
1702 	 * Generate TERM if initiator IRD is not sufficient for responder
1703 	 * provided ORD. Currently, we do the same behaviour even when
1704 	 * responder provided IRD is also not sufficient as regards to
1705 	 * initiator ORD.
1706 	 */
1707 	if (insuff_ird) {
1708 		printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1709 				__func__);
1710 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1711 		attrs.ecode = MPA_INSUFF_IRD;
1712 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1713 		attrs.send_term = 1;
1714 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1715 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1716 		err = -ENOMEM;
1717 		disconnect = 1;
1718 		goto out;
1719 	}
1720 	goto out;
1721 err_stop_timer:
1722 	stop_ep_timer(ep);
1723 err:
1724 	disconnect = 2;
1725 out:
1726 	connect_reply_upcall(ep, err);
1727 	return disconnect;
1728 }
1729 
1730 /*
1731  * process_mpa_request - process streaming mode MPA request
1732  *
1733  * Returns:
1734  *
1735  * 0 upon success indicating a connect request was delivered to the ULP
1736  * or the mpa request is incomplete but valid so far.
1737  *
1738  * 1 if a failure requires the caller to close the connection.
1739  *
1740  * 2 if a failure requires the caller to abort the connection.
1741  */
1742 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1743 {
1744 	struct mpa_message *mpa;
1745 	struct mpa_v2_conn_params *mpa_v2_params;
1746 	u16 plen;
1747 
1748 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1749 
1750 	/*
1751 	 * If we get more than the supported amount of private data
1752 	 * then we must fail this connection.
1753 	 */
1754 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1755 		goto err_stop_timer;
1756 
1757 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1758 
1759 	/*
1760 	 * Copy the new data into our accumulation buffer.
1761 	 */
1762 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1763 				  skb->len);
1764 	ep->mpa_pkt_len += skb->len;
1765 
1766 	/*
1767 	 * If we don't even have the mpa message, then bail.
1768 	 * We'll continue process when more data arrives.
1769 	 */
1770 	if (ep->mpa_pkt_len < sizeof(*mpa))
1771 		return 0;
1772 
1773 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1774 	mpa = (struct mpa_message *) ep->mpa_pkt;
1775 
1776 	/*
1777 	 * Validate MPA Header.
1778 	 */
1779 	if (mpa->revision > mpa_rev) {
1780 		printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1781 		       " Received = %d\n", __func__, mpa_rev, mpa->revision);
1782 		goto err_stop_timer;
1783 	}
1784 
1785 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1786 		goto err_stop_timer;
1787 
1788 	plen = ntohs(mpa->private_data_size);
1789 
1790 	/*
1791 	 * Fail if there's too much private data.
1792 	 */
1793 	if (plen > MPA_MAX_PRIVATE_DATA)
1794 		goto err_stop_timer;
1795 
1796 	/*
1797 	 * If plen does not account for pkt size
1798 	 */
1799 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1800 		goto err_stop_timer;
1801 	ep->plen = (u8) plen;
1802 
1803 	/*
1804 	 * If we don't have all the pdata yet, then bail.
1805 	 */
1806 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1807 		return 0;
1808 
1809 	/*
1810 	 * If we get here we have accumulated the entire mpa
1811 	 * start reply message including private data.
1812 	 */
1813 	ep->mpa_attr.initiator = 0;
1814 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1815 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1816 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1817 	ep->mpa_attr.version = mpa->revision;
1818 	if (mpa->revision == 1)
1819 		ep->tried_with_mpa_v1 = 1;
1820 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1821 
1822 	if (mpa->revision == 2) {
1823 		ep->mpa_attr.enhanced_rdma_conn =
1824 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1825 		if (ep->mpa_attr.enhanced_rdma_conn) {
1826 			mpa_v2_params = (struct mpa_v2_conn_params *)
1827 				(ep->mpa_pkt + sizeof(*mpa));
1828 			ep->ird = ntohs(mpa_v2_params->ird) &
1829 				MPA_V2_IRD_ORD_MASK;
1830 			ep->ord = ntohs(mpa_v2_params->ord) &
1831 				MPA_V2_IRD_ORD_MASK;
1832 			PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1833 			     ep->ord);
1834 			if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1835 				if (peer2peer) {
1836 					if (ntohs(mpa_v2_params->ord) &
1837 							MPA_V2_RDMA_WRITE_RTR)
1838 						ep->mpa_attr.p2p_type =
1839 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1840 					else if (ntohs(mpa_v2_params->ord) &
1841 							MPA_V2_RDMA_READ_RTR)
1842 						ep->mpa_attr.p2p_type =
1843 						FW_RI_INIT_P2PTYPE_READ_REQ;
1844 				}
1845 		}
1846 	} else if (mpa->revision == 1)
1847 		if (peer2peer)
1848 			ep->mpa_attr.p2p_type = p2p_type;
1849 
1850 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1851 	     "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1852 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1853 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1854 	     ep->mpa_attr.p2p_type);
1855 
1856 	__state_set(&ep->com, MPA_REQ_RCVD);
1857 
1858 	/* drive upcall */
1859 	mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1860 	if (ep->parent_ep->com.state != DEAD) {
1861 		if (connect_request_upcall(ep))
1862 			goto err_unlock_parent;
1863 	} else {
1864 		goto err_unlock_parent;
1865 	}
1866 	mutex_unlock(&ep->parent_ep->com.mutex);
1867 	return 0;
1868 
1869 err_unlock_parent:
1870 	mutex_unlock(&ep->parent_ep->com.mutex);
1871 	goto err_out;
1872 err_stop_timer:
1873 	(void)stop_ep_timer(ep);
1874 err_out:
1875 	return 2;
1876 }
1877 
1878 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1879 {
1880 	struct c4iw_ep *ep;
1881 	struct cpl_rx_data *hdr = cplhdr(skb);
1882 	unsigned int dlen = ntohs(hdr->len);
1883 	unsigned int tid = GET_TID(hdr);
1884 	__u8 status = hdr->status;
1885 	int disconnect = 0;
1886 
1887 	ep = get_ep_from_tid(dev, tid);
1888 	if (!ep)
1889 		return 0;
1890 	PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1891 	skb_pull(skb, sizeof(*hdr));
1892 	skb_trim(skb, dlen);
1893 	mutex_lock(&ep->com.mutex);
1894 
1895 	/* update RX credits */
1896 	update_rx_credits(ep, dlen);
1897 
1898 	switch (ep->com.state) {
1899 	case MPA_REQ_SENT:
1900 		ep->rcv_seq += dlen;
1901 		disconnect = process_mpa_reply(ep, skb);
1902 		break;
1903 	case MPA_REQ_WAIT:
1904 		ep->rcv_seq += dlen;
1905 		disconnect = process_mpa_request(ep, skb);
1906 		break;
1907 	case FPDU_MODE: {
1908 		struct c4iw_qp_attributes attrs;
1909 		BUG_ON(!ep->com.qp);
1910 		if (status)
1911 			pr_err("%s Unexpected streaming data." \
1912 			       " qpid %u ep %p state %d tid %u status %d\n",
1913 			       __func__, ep->com.qp->wq.sq.qid, ep,
1914 			       ep->com.state, ep->hwtid, status);
1915 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1916 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1917 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1918 		disconnect = 1;
1919 		break;
1920 	}
1921 	default:
1922 		break;
1923 	}
1924 	mutex_unlock(&ep->com.mutex);
1925 	if (disconnect)
1926 		c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1927 	c4iw_put_ep(&ep->com);
1928 	return 0;
1929 }
1930 
1931 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1932 {
1933 	struct c4iw_ep *ep;
1934 	struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1935 	int release = 0;
1936 	unsigned int tid = GET_TID(rpl);
1937 
1938 	ep = get_ep_from_tid(dev, tid);
1939 	if (!ep) {
1940 		printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1941 		return 0;
1942 	}
1943 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1944 	mutex_lock(&ep->com.mutex);
1945 	switch (ep->com.state) {
1946 	case ABORTING:
1947 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1948 		__state_set(&ep->com, DEAD);
1949 		release = 1;
1950 		break;
1951 	default:
1952 		printk(KERN_ERR "%s ep %p state %d\n",
1953 		     __func__, ep, ep->com.state);
1954 		break;
1955 	}
1956 	mutex_unlock(&ep->com.mutex);
1957 
1958 	if (release)
1959 		release_ep_resources(ep);
1960 	c4iw_put_ep(&ep->com);
1961 	return 0;
1962 }
1963 
1964 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1965 {
1966 	struct sk_buff *skb;
1967 	struct fw_ofld_connection_wr *req;
1968 	unsigned int mtu_idx;
1969 	int wscale;
1970 	struct sockaddr_in *sin;
1971 	int win;
1972 
1973 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1974 	req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1975 	memset(req, 0, sizeof(*req));
1976 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1977 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1978 	req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1979 				     ep->com.dev->rdev.lldi.ports[0],
1980 				     ep->l2t));
1981 	sin = (struct sockaddr_in *)&ep->com.local_addr;
1982 	req->le.lport = sin->sin_port;
1983 	req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1984 	sin = (struct sockaddr_in *)&ep->com.remote_addr;
1985 	req->le.pport = sin->sin_port;
1986 	req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1987 	req->tcb.t_state_to_astid =
1988 			htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1989 			FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1990 	req->tcb.cplrxdataack_cplpassacceptrpl =
1991 			htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1992 	req->tcb.tx_max = (__force __be32) jiffies;
1993 	req->tcb.rcv_adv = htons(1);
1994 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1995 		 enable_tcp_timestamps,
1996 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
1997 	wscale = compute_wscale(rcv_win);
1998 
1999 	/*
2000 	 * Specify the largest window that will fit in opt0. The
2001 	 * remainder will be specified in the rx_data_ack.
2002 	 */
2003 	win = ep->rcv_win >> 10;
2004 	if (win > RCV_BUFSIZ_M)
2005 		win = RCV_BUFSIZ_M;
2006 
2007 	req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2008 		(nocong ? NO_CONG_F : 0) |
2009 		KEEP_ALIVE_F |
2010 		DELACK_F |
2011 		WND_SCALE_V(wscale) |
2012 		MSS_IDX_V(mtu_idx) |
2013 		L2T_IDX_V(ep->l2t->idx) |
2014 		TX_CHAN_V(ep->tx_chan) |
2015 		SMAC_SEL_V(ep->smac_idx) |
2016 		DSCP_V(ep->tos >> 2) |
2017 		ULP_MODE_V(ULP_MODE_TCPDDP) |
2018 		RCV_BUFSIZ_V(win));
2019 	req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2020 		TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2021 		RX_CHANNEL_V(0) |
2022 		CCTRL_ECN_V(enable_ecn) |
2023 		RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2024 	if (enable_tcp_timestamps)
2025 		req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2026 	if (enable_tcp_sack)
2027 		req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2028 	if (wscale && enable_tcp_window_scaling)
2029 		req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2030 	req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2031 	req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2032 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2033 	set_bit(ACT_OFLD_CONN, &ep->com.history);
2034 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2035 }
2036 
2037 /*
2038  * Some of the error codes above implicitly indicate that there is no TID
2039  * allocated with the result of an ACT_OPEN.  We use this predicate to make
2040  * that explicit.
2041  */
2042 static inline int act_open_has_tid(int status)
2043 {
2044 	return (status != CPL_ERR_TCAM_PARITY &&
2045 		status != CPL_ERR_TCAM_MISS &&
2046 		status != CPL_ERR_TCAM_FULL &&
2047 		status != CPL_ERR_CONN_EXIST_SYNRECV &&
2048 		status != CPL_ERR_CONN_EXIST);
2049 }
2050 
2051 /* Returns whether a CPL status conveys negative advice.
2052  */
2053 static int is_neg_adv(unsigned int status)
2054 {
2055 	return status == CPL_ERR_RTX_NEG_ADVICE ||
2056 	       status == CPL_ERR_PERSIST_NEG_ADVICE ||
2057 	       status == CPL_ERR_KEEPALV_NEG_ADVICE;
2058 }
2059 
2060 static char *neg_adv_str(unsigned int status)
2061 {
2062 	switch (status) {
2063 	case CPL_ERR_RTX_NEG_ADVICE:
2064 		return "Retransmit timeout";
2065 	case CPL_ERR_PERSIST_NEG_ADVICE:
2066 		return "Persist timeout";
2067 	case CPL_ERR_KEEPALV_NEG_ADVICE:
2068 		return "Keepalive timeout";
2069 	default:
2070 		return "Unknown";
2071 	}
2072 }
2073 
2074 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2075 {
2076 	ep->snd_win = snd_win;
2077 	ep->rcv_win = rcv_win;
2078 	PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
2079 }
2080 
2081 #define ACT_OPEN_RETRY_COUNT 2
2082 
2083 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2084 		     struct dst_entry *dst, struct c4iw_dev *cdev,
2085 		     bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2086 {
2087 	struct neighbour *n;
2088 	int err, step;
2089 	struct net_device *pdev;
2090 
2091 	n = dst_neigh_lookup(dst, peer_ip);
2092 	if (!n)
2093 		return -ENODEV;
2094 
2095 	rcu_read_lock();
2096 	err = -ENOMEM;
2097 	if (n->dev->flags & IFF_LOOPBACK) {
2098 		if (iptype == 4)
2099 			pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2100 		else if (IS_ENABLED(CONFIG_IPV6))
2101 			for_each_netdev(&init_net, pdev) {
2102 				if (ipv6_chk_addr(&init_net,
2103 						  (struct in6_addr *)peer_ip,
2104 						  pdev, 1))
2105 					break;
2106 			}
2107 		else
2108 			pdev = NULL;
2109 
2110 		if (!pdev) {
2111 			err = -ENODEV;
2112 			goto out;
2113 		}
2114 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2115 					n, pdev, rt_tos2priority(tos));
2116 		if (!ep->l2t)
2117 			goto out;
2118 		ep->mtu = pdev->mtu;
2119 		ep->tx_chan = cxgb4_port_chan(pdev);
2120 		ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2121 						cxgb4_port_viid(pdev));
2122 		step = cdev->rdev.lldi.ntxq /
2123 			cdev->rdev.lldi.nchan;
2124 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2125 		step = cdev->rdev.lldi.nrxq /
2126 			cdev->rdev.lldi.nchan;
2127 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2128 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2129 			cxgb4_port_idx(pdev) * step];
2130 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2131 		dev_put(pdev);
2132 	} else {
2133 		pdev = get_real_dev(n->dev);
2134 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2135 					n, pdev, 0);
2136 		if (!ep->l2t)
2137 			goto out;
2138 		ep->mtu = dst_mtu(dst);
2139 		ep->tx_chan = cxgb4_port_chan(pdev);
2140 		ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2141 						cxgb4_port_viid(pdev));
2142 		step = cdev->rdev.lldi.ntxq /
2143 			cdev->rdev.lldi.nchan;
2144 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2145 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2146 		step = cdev->rdev.lldi.nrxq /
2147 			cdev->rdev.lldi.nchan;
2148 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2149 			cxgb4_port_idx(pdev) * step];
2150 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2151 
2152 		if (clear_mpa_v1) {
2153 			ep->retry_with_mpa_v1 = 0;
2154 			ep->tried_with_mpa_v1 = 0;
2155 		}
2156 	}
2157 	err = 0;
2158 out:
2159 	rcu_read_unlock();
2160 
2161 	neigh_release(n);
2162 
2163 	return err;
2164 }
2165 
2166 static int c4iw_reconnect(struct c4iw_ep *ep)
2167 {
2168 	int err = 0;
2169 	int size = 0;
2170 	struct sockaddr_in *laddr = (struct sockaddr_in *)
2171 				    &ep->com.cm_id->m_local_addr;
2172 	struct sockaddr_in *raddr = (struct sockaddr_in *)
2173 				    &ep->com.cm_id->m_remote_addr;
2174 	struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2175 				      &ep->com.cm_id->m_local_addr;
2176 	struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2177 				      &ep->com.cm_id->m_remote_addr;
2178 	int iptype;
2179 	__u8 *ra;
2180 
2181 	PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
2182 	init_timer(&ep->timer);
2183 	c4iw_init_wr_wait(&ep->com.wr_wait);
2184 
2185 	/* When MPA revision is different on nodes, the node with MPA_rev=2
2186 	 * tries to reconnect with MPA_rev 1 for the same EP through
2187 	 * c4iw_reconnect(), where the same EP is assigned with new tid for
2188 	 * further connection establishment. As we are using the same EP pointer
2189 	 * for reconnect, few skbs are used during the previous c4iw_connect(),
2190 	 * which leaves the EP with inadequate skbs for further
2191 	 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty
2192 	 * skb_list() during peer_abort(). Allocate skbs which is already used.
2193 	 */
2194 	size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2195 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2196 		err = -ENOMEM;
2197 		goto fail1;
2198 	}
2199 
2200 	/*
2201 	 * Allocate an active TID to initiate a TCP connection.
2202 	 */
2203 	ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2204 	if (ep->atid == -1) {
2205 		pr_err("%s - cannot alloc atid.\n", __func__);
2206 		err = -ENOMEM;
2207 		goto fail2;
2208 	}
2209 	insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2210 
2211 	/* find a route */
2212 	if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2213 		ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr,
2214 				     raddr->sin_addr.s_addr, laddr->sin_port,
2215 				     raddr->sin_port, ep->com.cm_id->tos);
2216 		iptype = 4;
2217 		ra = (__u8 *)&raddr->sin_addr;
2218 	} else {
2219 		ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr,
2220 				      raddr6->sin6_addr.s6_addr,
2221 				      laddr6->sin6_port, raddr6->sin6_port, 0,
2222 				      raddr6->sin6_scope_id);
2223 		iptype = 6;
2224 		ra = (__u8 *)&raddr6->sin6_addr;
2225 	}
2226 	if (!ep->dst) {
2227 		pr_err("%s - cannot find route.\n", __func__);
2228 		err = -EHOSTUNREACH;
2229 		goto fail3;
2230 	}
2231 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2232 			ep->com.dev->rdev.lldi.adapter_type,
2233 			ep->com.cm_id->tos);
2234 	if (err) {
2235 		pr_err("%s - cannot alloc l2e.\n", __func__);
2236 		goto fail4;
2237 	}
2238 
2239 	PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2240 	     __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2241 	     ep->l2t->idx);
2242 
2243 	state_set(&ep->com, CONNECTING);
2244 	ep->tos = ep->com.cm_id->tos;
2245 
2246 	/* send connect request to rnic */
2247 	err = send_connect(ep);
2248 	if (!err)
2249 		goto out;
2250 
2251 	cxgb4_l2t_release(ep->l2t);
2252 fail4:
2253 	dst_release(ep->dst);
2254 fail3:
2255 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2256 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2257 fail2:
2258 	/*
2259 	 * remember to send notification to upper layer.
2260 	 * We are in here so the upper layer is not aware that this is
2261 	 * re-connect attempt and so, upper layer is still waiting for
2262 	 * response of 1st connect request.
2263 	 */
2264 	connect_reply_upcall(ep, -ECONNRESET);
2265 fail1:
2266 	c4iw_put_ep(&ep->com);
2267 out:
2268 	return err;
2269 }
2270 
2271 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2272 {
2273 	struct c4iw_ep *ep;
2274 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
2275 	unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2276 				      ntohl(rpl->atid_status)));
2277 	struct tid_info *t = dev->rdev.lldi.tids;
2278 	int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2279 	struct sockaddr_in *la;
2280 	struct sockaddr_in *ra;
2281 	struct sockaddr_in6 *la6;
2282 	struct sockaddr_in6 *ra6;
2283 	int ret = 0;
2284 
2285 	ep = lookup_atid(t, atid);
2286 	la = (struct sockaddr_in *)&ep->com.local_addr;
2287 	ra = (struct sockaddr_in *)&ep->com.remote_addr;
2288 	la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2289 	ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2290 
2291 	PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2292 	     status, status2errno(status));
2293 
2294 	if (is_neg_adv(status)) {
2295 		PDBG("%s Connection problems for atid %u status %u (%s)\n",
2296 		     __func__, atid, status, neg_adv_str(status));
2297 		ep->stats.connect_neg_adv++;
2298 		mutex_lock(&dev->rdev.stats.lock);
2299 		dev->rdev.stats.neg_adv++;
2300 		mutex_unlock(&dev->rdev.stats.lock);
2301 		return 0;
2302 	}
2303 
2304 	set_bit(ACT_OPEN_RPL, &ep->com.history);
2305 
2306 	/*
2307 	 * Log interesting failures.
2308 	 */
2309 	switch (status) {
2310 	case CPL_ERR_CONN_RESET:
2311 	case CPL_ERR_CONN_TIMEDOUT:
2312 		break;
2313 	case CPL_ERR_TCAM_FULL:
2314 		mutex_lock(&dev->rdev.stats.lock);
2315 		dev->rdev.stats.tcam_full++;
2316 		mutex_unlock(&dev->rdev.stats.lock);
2317 		if (ep->com.local_addr.ss_family == AF_INET &&
2318 		    dev->rdev.lldi.enable_fw_ofld_conn) {
2319 			ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2320 						   ntohl(rpl->atid_status))));
2321 			if (ret)
2322 				goto fail;
2323 			return 0;
2324 		}
2325 		break;
2326 	case CPL_ERR_CONN_EXIST:
2327 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2328 			set_bit(ACT_RETRY_INUSE, &ep->com.history);
2329 			if (ep->com.remote_addr.ss_family == AF_INET6) {
2330 				struct sockaddr_in6 *sin6 =
2331 						(struct sockaddr_in6 *)
2332 						&ep->com.local_addr;
2333 				cxgb4_clip_release(
2334 						ep->com.dev->rdev.lldi.ports[0],
2335 						(const u32 *)
2336 						&sin6->sin6_addr.s6_addr, 1);
2337 			}
2338 			remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2339 					atid);
2340 			cxgb4_free_atid(t, atid);
2341 			dst_release(ep->dst);
2342 			cxgb4_l2t_release(ep->l2t);
2343 			c4iw_reconnect(ep);
2344 			return 0;
2345 		}
2346 		break;
2347 	default:
2348 		if (ep->com.local_addr.ss_family == AF_INET) {
2349 			pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2350 				atid, status, status2errno(status),
2351 				&la->sin_addr.s_addr, ntohs(la->sin_port),
2352 				&ra->sin_addr.s_addr, ntohs(ra->sin_port));
2353 		} else {
2354 			pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2355 				atid, status, status2errno(status),
2356 				la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2357 				ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2358 		}
2359 		break;
2360 	}
2361 
2362 fail:
2363 	connect_reply_upcall(ep, status2errno(status));
2364 	state_set(&ep->com, DEAD);
2365 
2366 	if (ep->com.remote_addr.ss_family == AF_INET6) {
2367 		struct sockaddr_in6 *sin6 =
2368 			(struct sockaddr_in6 *)&ep->com.local_addr;
2369 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2370 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2371 	}
2372 	if (status && act_open_has_tid(status))
2373 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
2374 
2375 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2376 	cxgb4_free_atid(t, atid);
2377 	dst_release(ep->dst);
2378 	cxgb4_l2t_release(ep->l2t);
2379 	c4iw_put_ep(&ep->com);
2380 
2381 	return 0;
2382 }
2383 
2384 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2385 {
2386 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2387 	unsigned int stid = GET_TID(rpl);
2388 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2389 
2390 	if (!ep) {
2391 		PDBG("%s stid %d lookup failure!\n", __func__, stid);
2392 		goto out;
2393 	}
2394 	PDBG("%s ep %p status %d error %d\n", __func__, ep,
2395 	     rpl->status, status2errno(rpl->status));
2396 	c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2397 	c4iw_put_ep(&ep->com);
2398 out:
2399 	return 0;
2400 }
2401 
2402 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2403 {
2404 	struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2405 	unsigned int stid = GET_TID(rpl);
2406 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2407 
2408 	PDBG("%s ep %p\n", __func__, ep);
2409 	c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2410 	c4iw_put_ep(&ep->com);
2411 	return 0;
2412 }
2413 
2414 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2415 		     struct cpl_pass_accept_req *req)
2416 {
2417 	struct cpl_pass_accept_rpl *rpl;
2418 	unsigned int mtu_idx;
2419 	u64 opt0;
2420 	u32 opt2;
2421 	int wscale;
2422 	struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2423 	int win;
2424 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2425 
2426 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2427 	BUG_ON(skb_cloned(skb));
2428 
2429 	skb_get(skb);
2430 	rpl = cplhdr(skb);
2431 	if (!is_t4(adapter_type)) {
2432 		skb_trim(skb, roundup(sizeof(*rpl5), 16));
2433 		rpl5 = (void *)rpl;
2434 		INIT_TP_WR(rpl5, ep->hwtid);
2435 	} else {
2436 		skb_trim(skb, sizeof(*rpl));
2437 		INIT_TP_WR(rpl, ep->hwtid);
2438 	}
2439 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2440 						    ep->hwtid));
2441 
2442 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2443 		 enable_tcp_timestamps && req->tcpopt.tstamp,
2444 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2445 	wscale = compute_wscale(rcv_win);
2446 
2447 	/*
2448 	 * Specify the largest window that will fit in opt0. The
2449 	 * remainder will be specified in the rx_data_ack.
2450 	 */
2451 	win = ep->rcv_win >> 10;
2452 	if (win > RCV_BUFSIZ_M)
2453 		win = RCV_BUFSIZ_M;
2454 	opt0 = (nocong ? NO_CONG_F : 0) |
2455 	       KEEP_ALIVE_F |
2456 	       DELACK_F |
2457 	       WND_SCALE_V(wscale) |
2458 	       MSS_IDX_V(mtu_idx) |
2459 	       L2T_IDX_V(ep->l2t->idx) |
2460 	       TX_CHAN_V(ep->tx_chan) |
2461 	       SMAC_SEL_V(ep->smac_idx) |
2462 	       DSCP_V(ep->tos >> 2) |
2463 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
2464 	       RCV_BUFSIZ_V(win);
2465 	opt2 = RX_CHANNEL_V(0) |
2466 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2467 
2468 	if (enable_tcp_timestamps && req->tcpopt.tstamp)
2469 		opt2 |= TSTAMPS_EN_F;
2470 	if (enable_tcp_sack && req->tcpopt.sack)
2471 		opt2 |= SACK_EN_F;
2472 	if (wscale && enable_tcp_window_scaling)
2473 		opt2 |= WND_SCALE_EN_F;
2474 	if (enable_ecn) {
2475 		const struct tcphdr *tcph;
2476 		u32 hlen = ntohl(req->hdr_len);
2477 
2478 		if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2479 			tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2480 				IP_HDR_LEN_G(hlen);
2481 		else
2482 			tcph = (const void *)(req + 1) +
2483 				T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2484 		if (tcph->ece && tcph->cwr)
2485 			opt2 |= CCTRL_ECN_V(1);
2486 	}
2487 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2488 		u32 isn = (prandom_u32() & ~7UL) - 1;
2489 		opt2 |= T5_OPT_2_VALID_F;
2490 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2491 		opt2 |= T5_ISS_F;
2492 		rpl5 = (void *)rpl;
2493 		memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2494 		if (peer2peer)
2495 			isn += 4;
2496 		rpl5->iss = cpu_to_be32(isn);
2497 		PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2498 	}
2499 
2500 	rpl->opt0 = cpu_to_be64(opt0);
2501 	rpl->opt2 = cpu_to_be32(opt2);
2502 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2503 	t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2504 
2505 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2506 }
2507 
2508 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2509 {
2510 	PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2511 	BUG_ON(skb_cloned(skb));
2512 	skb_trim(skb, sizeof(struct cpl_tid_release));
2513 	release_tid(&dev->rdev, hwtid, skb);
2514 	return;
2515 }
2516 
2517 static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type,
2518 		       int *iptype, __u8 *local_ip, __u8 *peer_ip,
2519 		       __be16 *local_port, __be16 *peer_port)
2520 {
2521 	int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2522 		      ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2523 		      T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2524 	int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2525 		     IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2526 		     T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2527 	struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
2528 	struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
2529 	struct tcphdr *tcp = (struct tcphdr *)
2530 			     ((u8 *)(req + 1) + eth_len + ip_len);
2531 
2532 	if (ip->version == 4) {
2533 		PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
2534 		     ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
2535 		     ntohs(tcp->dest));
2536 		*iptype = 4;
2537 		memcpy(peer_ip, &ip->saddr, 4);
2538 		memcpy(local_ip, &ip->daddr, 4);
2539 	} else {
2540 		PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__,
2541 		     ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source),
2542 		     ntohs(tcp->dest));
2543 		*iptype = 6;
2544 		memcpy(peer_ip, ip6->saddr.s6_addr, 16);
2545 		memcpy(local_ip, ip6->daddr.s6_addr, 16);
2546 	}
2547 	*peer_port = tcp->source;
2548 	*local_port = tcp->dest;
2549 
2550 	return;
2551 }
2552 
2553 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2554 {
2555 	struct c4iw_ep *child_ep = NULL, *parent_ep;
2556 	struct cpl_pass_accept_req *req = cplhdr(skb);
2557 	unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2558 	struct tid_info *t = dev->rdev.lldi.tids;
2559 	unsigned int hwtid = GET_TID(req);
2560 	struct dst_entry *dst;
2561 	__u8 local_ip[16], peer_ip[16];
2562 	__be16 local_port, peer_port;
2563 	struct sockaddr_in6 *sin6;
2564 	int err;
2565 	u16 peer_mss = ntohs(req->tcpopt.mss);
2566 	int iptype;
2567 	unsigned short hdrs;
2568 	u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2569 
2570 	parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2571 	if (!parent_ep) {
2572 		PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2573 		goto reject;
2574 	}
2575 
2576 	if (state_read(&parent_ep->com) != LISTEN) {
2577 		PDBG("%s - listening ep not in LISTEN\n", __func__);
2578 		goto reject;
2579 	}
2580 
2581 	get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype,
2582 		   local_ip, peer_ip, &local_port, &peer_port);
2583 
2584 	/* Find output route */
2585 	if (iptype == 4)  {
2586 		PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2587 		     , __func__, parent_ep, hwtid,
2588 		     local_ip, peer_ip, ntohs(local_port),
2589 		     ntohs(peer_port), peer_mss);
2590 		dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip,
2591 				 local_port, peer_port,
2592 				 tos);
2593 	} else {
2594 		PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2595 		     , __func__, parent_ep, hwtid,
2596 		     local_ip, peer_ip, ntohs(local_port),
2597 		     ntohs(peer_port), peer_mss);
2598 		dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port,
2599 				  PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2600 				  ((struct sockaddr_in6 *)
2601 				  &parent_ep->com.local_addr)->sin6_scope_id);
2602 	}
2603 	if (!dst) {
2604 		printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
2605 		       __func__);
2606 		goto reject;
2607 	}
2608 
2609 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2610 	if (!child_ep) {
2611 		printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
2612 		       __func__);
2613 		dst_release(dst);
2614 		goto reject;
2615 	}
2616 
2617 	err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2618 			parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2619 	if (err) {
2620 		printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
2621 		       __func__);
2622 		dst_release(dst);
2623 		kfree(child_ep);
2624 		goto reject;
2625 	}
2626 
2627 	hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
2628 	       ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2629 	if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2630 		child_ep->mtu = peer_mss + hdrs;
2631 
2632 	skb_queue_head_init(&child_ep->com.ep_skb_list);
2633 	if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2634 		goto fail;
2635 
2636 	state_set(&child_ep->com, CONNECTING);
2637 	child_ep->com.dev = dev;
2638 	child_ep->com.cm_id = NULL;
2639 
2640 	if (iptype == 4) {
2641 		struct sockaddr_in *sin = (struct sockaddr_in *)
2642 			&child_ep->com.local_addr;
2643 
2644 		sin->sin_family = PF_INET;
2645 		sin->sin_port = local_port;
2646 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2647 
2648 		sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2649 		sin->sin_family = PF_INET;
2650 		sin->sin_port = ((struct sockaddr_in *)
2651 				 &parent_ep->com.local_addr)->sin_port;
2652 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2653 
2654 		sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2655 		sin->sin_family = PF_INET;
2656 		sin->sin_port = peer_port;
2657 		sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2658 	} else {
2659 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2660 		sin6->sin6_family = PF_INET6;
2661 		sin6->sin6_port = local_port;
2662 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2663 
2664 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2665 		sin6->sin6_family = PF_INET6;
2666 		sin6->sin6_port = ((struct sockaddr_in6 *)
2667 				   &parent_ep->com.local_addr)->sin6_port;
2668 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2669 
2670 		sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2671 		sin6->sin6_family = PF_INET6;
2672 		sin6->sin6_port = peer_port;
2673 		memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2674 	}
2675 
2676 	c4iw_get_ep(&parent_ep->com);
2677 	child_ep->parent_ep = parent_ep;
2678 	child_ep->tos = tos;
2679 	child_ep->dst = dst;
2680 	child_ep->hwtid = hwtid;
2681 
2682 	PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2683 	     child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2684 
2685 	init_timer(&child_ep->timer);
2686 	cxgb4_insert_tid(t, child_ep, hwtid);
2687 	insert_ep_tid(child_ep);
2688 	if (accept_cr(child_ep, skb, req)) {
2689 		c4iw_put_ep(&parent_ep->com);
2690 		release_ep_resources(child_ep);
2691 	} else {
2692 		set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2693 	}
2694 	if (iptype == 6) {
2695 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2696 		cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2697 			       (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2698 	}
2699 	goto out;
2700 fail:
2701 	c4iw_put_ep(&child_ep->com);
2702 reject:
2703 	reject_cr(dev, hwtid, skb);
2704 	if (parent_ep)
2705 		c4iw_put_ep(&parent_ep->com);
2706 out:
2707 	return 0;
2708 }
2709 
2710 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2711 {
2712 	struct c4iw_ep *ep;
2713 	struct cpl_pass_establish *req = cplhdr(skb);
2714 	unsigned int tid = GET_TID(req);
2715 	int ret;
2716 
2717 	ep = get_ep_from_tid(dev, tid);
2718 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2719 	ep->snd_seq = be32_to_cpu(req->snd_isn);
2720 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2721 
2722 	PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2723 	     ntohs(req->tcp_opt));
2724 
2725 	set_emss(ep, ntohs(req->tcp_opt));
2726 
2727 	dst_confirm(ep->dst);
2728 	mutex_lock(&ep->com.mutex);
2729 	ep->com.state = MPA_REQ_WAIT;
2730 	start_ep_timer(ep);
2731 	set_bit(PASS_ESTAB, &ep->com.history);
2732 	ret = send_flowc(ep);
2733 	mutex_unlock(&ep->com.mutex);
2734 	if (ret)
2735 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2736 	c4iw_put_ep(&ep->com);
2737 
2738 	return 0;
2739 }
2740 
2741 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2742 {
2743 	struct cpl_peer_close *hdr = cplhdr(skb);
2744 	struct c4iw_ep *ep;
2745 	struct c4iw_qp_attributes attrs;
2746 	int disconnect = 1;
2747 	int release = 0;
2748 	unsigned int tid = GET_TID(hdr);
2749 	int ret;
2750 
2751 	ep = get_ep_from_tid(dev, tid);
2752 	if (!ep)
2753 		return 0;
2754 
2755 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2756 	dst_confirm(ep->dst);
2757 
2758 	set_bit(PEER_CLOSE, &ep->com.history);
2759 	mutex_lock(&ep->com.mutex);
2760 	switch (ep->com.state) {
2761 	case MPA_REQ_WAIT:
2762 		__state_set(&ep->com, CLOSING);
2763 		break;
2764 	case MPA_REQ_SENT:
2765 		__state_set(&ep->com, CLOSING);
2766 		connect_reply_upcall(ep, -ECONNRESET);
2767 		break;
2768 	case MPA_REQ_RCVD:
2769 
2770 		/*
2771 		 * We're gonna mark this puppy DEAD, but keep
2772 		 * the reference on it until the ULP accepts or
2773 		 * rejects the CR. Also wake up anyone waiting
2774 		 * in rdma connection migration (see c4iw_accept_cr()).
2775 		 */
2776 		__state_set(&ep->com, CLOSING);
2777 		PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2778 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2779 		break;
2780 	case MPA_REP_SENT:
2781 		__state_set(&ep->com, CLOSING);
2782 		PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2783 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2784 		break;
2785 	case FPDU_MODE:
2786 		start_ep_timer(ep);
2787 		__state_set(&ep->com, CLOSING);
2788 		attrs.next_state = C4IW_QP_STATE_CLOSING;
2789 		ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2790 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2791 		if (ret != -ECONNRESET) {
2792 			peer_close_upcall(ep);
2793 			disconnect = 1;
2794 		}
2795 		break;
2796 	case ABORTING:
2797 		disconnect = 0;
2798 		break;
2799 	case CLOSING:
2800 		__state_set(&ep->com, MORIBUND);
2801 		disconnect = 0;
2802 		break;
2803 	case MORIBUND:
2804 		(void)stop_ep_timer(ep);
2805 		if (ep->com.cm_id && ep->com.qp) {
2806 			attrs.next_state = C4IW_QP_STATE_IDLE;
2807 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2808 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2809 		}
2810 		close_complete_upcall(ep, 0);
2811 		__state_set(&ep->com, DEAD);
2812 		release = 1;
2813 		disconnect = 0;
2814 		break;
2815 	case DEAD:
2816 		disconnect = 0;
2817 		break;
2818 	default:
2819 		BUG_ON(1);
2820 	}
2821 	mutex_unlock(&ep->com.mutex);
2822 	if (disconnect)
2823 		c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2824 	if (release)
2825 		release_ep_resources(ep);
2826 	c4iw_put_ep(&ep->com);
2827 	return 0;
2828 }
2829 
2830 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2831 {
2832 	struct cpl_abort_req_rss *req = cplhdr(skb);
2833 	struct c4iw_ep *ep;
2834 	struct cpl_abort_rpl *rpl;
2835 	struct sk_buff *rpl_skb;
2836 	struct c4iw_qp_attributes attrs;
2837 	int ret;
2838 	int release = 0;
2839 	unsigned int tid = GET_TID(req);
2840 
2841 	ep = get_ep_from_tid(dev, tid);
2842 	if (!ep)
2843 		return 0;
2844 
2845 	if (is_neg_adv(req->status)) {
2846 		PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2847 		     __func__, ep->hwtid, req->status,
2848 		     neg_adv_str(req->status));
2849 		ep->stats.abort_neg_adv++;
2850 		mutex_lock(&dev->rdev.stats.lock);
2851 		dev->rdev.stats.neg_adv++;
2852 		mutex_unlock(&dev->rdev.stats.lock);
2853 		goto deref_ep;
2854 	}
2855 	PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2856 	     ep->com.state);
2857 	set_bit(PEER_ABORT, &ep->com.history);
2858 
2859 	/*
2860 	 * Wake up any threads in rdma_init() or rdma_fini().
2861 	 * However, this is not needed if com state is just
2862 	 * MPA_REQ_SENT
2863 	 */
2864 	if (ep->com.state != MPA_REQ_SENT)
2865 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2866 
2867 	mutex_lock(&ep->com.mutex);
2868 	switch (ep->com.state) {
2869 	case CONNECTING:
2870 		c4iw_put_ep(&ep->parent_ep->com);
2871 		break;
2872 	case MPA_REQ_WAIT:
2873 		(void)stop_ep_timer(ep);
2874 		break;
2875 	case MPA_REQ_SENT:
2876 		(void)stop_ep_timer(ep);
2877 		if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2878 			connect_reply_upcall(ep, -ECONNRESET);
2879 		else {
2880 			/*
2881 			 * we just don't send notification upwards because we
2882 			 * want to retry with mpa_v1 without upper layers even
2883 			 * knowing it.
2884 			 *
2885 			 * do some housekeeping so as to re-initiate the
2886 			 * connection
2887 			 */
2888 			PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2889 			     mpa_rev);
2890 			ep->retry_with_mpa_v1 = 1;
2891 		}
2892 		break;
2893 	case MPA_REP_SENT:
2894 		break;
2895 	case MPA_REQ_RCVD:
2896 		break;
2897 	case MORIBUND:
2898 	case CLOSING:
2899 		stop_ep_timer(ep);
2900 		/*FALLTHROUGH*/
2901 	case FPDU_MODE:
2902 		if (ep->com.cm_id && ep->com.qp) {
2903 			attrs.next_state = C4IW_QP_STATE_ERROR;
2904 			ret = c4iw_modify_qp(ep->com.qp->rhp,
2905 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2906 				     &attrs, 1);
2907 			if (ret)
2908 				printk(KERN_ERR MOD
2909 				       "%s - qp <- error failed!\n",
2910 				       __func__);
2911 		}
2912 		peer_abort_upcall(ep);
2913 		break;
2914 	case ABORTING:
2915 		break;
2916 	case DEAD:
2917 		PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2918 		mutex_unlock(&ep->com.mutex);
2919 		goto deref_ep;
2920 	default:
2921 		BUG_ON(1);
2922 		break;
2923 	}
2924 	dst_confirm(ep->dst);
2925 	if (ep->com.state != ABORTING) {
2926 		__state_set(&ep->com, DEAD);
2927 		/* we don't release if we want to retry with mpa_v1 */
2928 		if (!ep->retry_with_mpa_v1)
2929 			release = 1;
2930 	}
2931 	mutex_unlock(&ep->com.mutex);
2932 
2933 	rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2934 	if (WARN_ON(!rpl_skb)) {
2935 		release = 1;
2936 		goto out;
2937 	}
2938 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2939 	rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2940 	INIT_TP_WR(rpl, ep->hwtid);
2941 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2942 	rpl->cmd = CPL_ABORT_NO_RST;
2943 	c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2944 out:
2945 	if (release)
2946 		release_ep_resources(ep);
2947 	else if (ep->retry_with_mpa_v1) {
2948 		if (ep->com.remote_addr.ss_family == AF_INET6) {
2949 			struct sockaddr_in6 *sin6 =
2950 					(struct sockaddr_in6 *)
2951 					&ep->com.local_addr;
2952 			cxgb4_clip_release(
2953 					ep->com.dev->rdev.lldi.ports[0],
2954 					(const u32 *)&sin6->sin6_addr.s6_addr,
2955 					1);
2956 		}
2957 		remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2958 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2959 		dst_release(ep->dst);
2960 		cxgb4_l2t_release(ep->l2t);
2961 		c4iw_reconnect(ep);
2962 	}
2963 
2964 deref_ep:
2965 	c4iw_put_ep(&ep->com);
2966 	/* Dereferencing ep, referenced in peer_abort_intr() */
2967 	c4iw_put_ep(&ep->com);
2968 	return 0;
2969 }
2970 
2971 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2972 {
2973 	struct c4iw_ep *ep;
2974 	struct c4iw_qp_attributes attrs;
2975 	struct cpl_close_con_rpl *rpl = cplhdr(skb);
2976 	int release = 0;
2977 	unsigned int tid = GET_TID(rpl);
2978 
2979 	ep = get_ep_from_tid(dev, tid);
2980 	if (!ep)
2981 		return 0;
2982 
2983 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2984 	BUG_ON(!ep);
2985 
2986 	/* The cm_id may be null if we failed to connect */
2987 	mutex_lock(&ep->com.mutex);
2988 	set_bit(CLOSE_CON_RPL, &ep->com.history);
2989 	switch (ep->com.state) {
2990 	case CLOSING:
2991 		__state_set(&ep->com, MORIBUND);
2992 		break;
2993 	case MORIBUND:
2994 		(void)stop_ep_timer(ep);
2995 		if ((ep->com.cm_id) && (ep->com.qp)) {
2996 			attrs.next_state = C4IW_QP_STATE_IDLE;
2997 			c4iw_modify_qp(ep->com.qp->rhp,
2998 					     ep->com.qp,
2999 					     C4IW_QP_ATTR_NEXT_STATE,
3000 					     &attrs, 1);
3001 		}
3002 		close_complete_upcall(ep, 0);
3003 		__state_set(&ep->com, DEAD);
3004 		release = 1;
3005 		break;
3006 	case ABORTING:
3007 	case DEAD:
3008 		break;
3009 	default:
3010 		BUG_ON(1);
3011 		break;
3012 	}
3013 	mutex_unlock(&ep->com.mutex);
3014 	if (release)
3015 		release_ep_resources(ep);
3016 	c4iw_put_ep(&ep->com);
3017 	return 0;
3018 }
3019 
3020 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3021 {
3022 	struct cpl_rdma_terminate *rpl = cplhdr(skb);
3023 	unsigned int tid = GET_TID(rpl);
3024 	struct c4iw_ep *ep;
3025 	struct c4iw_qp_attributes attrs;
3026 
3027 	ep = get_ep_from_tid(dev, tid);
3028 	BUG_ON(!ep);
3029 
3030 	if (ep && ep->com.qp) {
3031 		printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
3032 		       ep->com.qp->wq.sq.qid);
3033 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
3034 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3035 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3036 	} else
3037 		printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
3038 	c4iw_put_ep(&ep->com);
3039 
3040 	return 0;
3041 }
3042 
3043 /*
3044  * Upcall from the adapter indicating data has been transmitted.
3045  * For us its just the single MPA request or reply.  We can now free
3046  * the skb holding the mpa message.
3047  */
3048 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3049 {
3050 	struct c4iw_ep *ep;
3051 	struct cpl_fw4_ack *hdr = cplhdr(skb);
3052 	u8 credits = hdr->credits;
3053 	unsigned int tid = GET_TID(hdr);
3054 
3055 
3056 	ep = get_ep_from_tid(dev, tid);
3057 	if (!ep)
3058 		return 0;
3059 	PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
3060 	if (credits == 0) {
3061 		PDBG("%s 0 credit ack ep %p tid %u state %u\n",
3062 		     __func__, ep, ep->hwtid, state_read(&ep->com));
3063 		goto out;
3064 	}
3065 
3066 	dst_confirm(ep->dst);
3067 	if (ep->mpa_skb) {
3068 		PDBG("%s last streaming msg ack ep %p tid %u state %u "
3069 		     "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
3070 		     state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
3071 		mutex_lock(&ep->com.mutex);
3072 		kfree_skb(ep->mpa_skb);
3073 		ep->mpa_skb = NULL;
3074 		if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3075 			stop_ep_timer(ep);
3076 		mutex_unlock(&ep->com.mutex);
3077 	}
3078 out:
3079 	c4iw_put_ep(&ep->com);
3080 	return 0;
3081 }
3082 
3083 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3084 {
3085 	int abort;
3086 	struct c4iw_ep *ep = to_ep(cm_id);
3087 
3088 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3089 
3090 	mutex_lock(&ep->com.mutex);
3091 	if (ep->com.state != MPA_REQ_RCVD) {
3092 		mutex_unlock(&ep->com.mutex);
3093 		c4iw_put_ep(&ep->com);
3094 		return -ECONNRESET;
3095 	}
3096 	set_bit(ULP_REJECT, &ep->com.history);
3097 	if (mpa_rev == 0)
3098 		abort = 1;
3099 	else
3100 		abort = send_mpa_reject(ep, pdata, pdata_len);
3101 	mutex_unlock(&ep->com.mutex);
3102 
3103 	stop_ep_timer(ep);
3104 	c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3105 	c4iw_put_ep(&ep->com);
3106 	return 0;
3107 }
3108 
3109 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3110 {
3111 	int err;
3112 	struct c4iw_qp_attributes attrs;
3113 	enum c4iw_qp_attr_mask mask;
3114 	struct c4iw_ep *ep = to_ep(cm_id);
3115 	struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3116 	struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3117 	int abort = 0;
3118 
3119 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3120 
3121 	mutex_lock(&ep->com.mutex);
3122 	if (ep->com.state != MPA_REQ_RCVD) {
3123 		err = -ECONNRESET;
3124 		goto err_out;
3125 	}
3126 
3127 	BUG_ON(!qp);
3128 
3129 	set_bit(ULP_ACCEPT, &ep->com.history);
3130 	if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3131 	    (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3132 		err = -EINVAL;
3133 		goto err_abort;
3134 	}
3135 
3136 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3137 		if (conn_param->ord > ep->ird) {
3138 			if (RELAXED_IRD_NEGOTIATION) {
3139 				ep->ord = ep->ird;
3140 			} else {
3141 				ep->ird = conn_param->ird;
3142 				ep->ord = conn_param->ord;
3143 				send_mpa_reject(ep, conn_param->private_data,
3144 						conn_param->private_data_len);
3145 				err = -ENOMEM;
3146 				goto err_abort;
3147 			}
3148 		}
3149 		if (conn_param->ird < ep->ord) {
3150 			if (RELAXED_IRD_NEGOTIATION &&
3151 			    ep->ord <= h->rdev.lldi.max_ordird_qp) {
3152 				conn_param->ird = ep->ord;
3153 			} else {
3154 				err = -ENOMEM;
3155 				goto err_abort;
3156 			}
3157 		}
3158 	}
3159 	ep->ird = conn_param->ird;
3160 	ep->ord = conn_param->ord;
3161 
3162 	if (ep->mpa_attr.version == 1) {
3163 		if (peer2peer && ep->ird == 0)
3164 			ep->ird = 1;
3165 	} else {
3166 		if (peer2peer &&
3167 		    (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3168 		    (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3169 			ep->ird = 1;
3170 	}
3171 
3172 	PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
3173 
3174 	ep->com.cm_id = cm_id;
3175 	ref_cm_id(&ep->com);
3176 	ep->com.qp = qp;
3177 	ref_qp(ep);
3178 
3179 	/* bind QP to EP and move to RTS */
3180 	attrs.mpa_attr = ep->mpa_attr;
3181 	attrs.max_ird = ep->ird;
3182 	attrs.max_ord = ep->ord;
3183 	attrs.llp_stream_handle = ep;
3184 	attrs.next_state = C4IW_QP_STATE_RTS;
3185 
3186 	/* bind QP and TID with INIT_WR */
3187 	mask = C4IW_QP_ATTR_NEXT_STATE |
3188 			     C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3189 			     C4IW_QP_ATTR_MPA_ATTR |
3190 			     C4IW_QP_ATTR_MAX_IRD |
3191 			     C4IW_QP_ATTR_MAX_ORD;
3192 
3193 	err = c4iw_modify_qp(ep->com.qp->rhp,
3194 			     ep->com.qp, mask, &attrs, 1);
3195 	if (err)
3196 		goto err_deref_cm_id;
3197 
3198 	set_bit(STOP_MPA_TIMER, &ep->com.flags);
3199 	err = send_mpa_reply(ep, conn_param->private_data,
3200 			     conn_param->private_data_len);
3201 	if (err)
3202 		goto err_deref_cm_id;
3203 
3204 	__state_set(&ep->com, FPDU_MODE);
3205 	established_upcall(ep);
3206 	mutex_unlock(&ep->com.mutex);
3207 	c4iw_put_ep(&ep->com);
3208 	return 0;
3209 err_deref_cm_id:
3210 	deref_cm_id(&ep->com);
3211 err_abort:
3212 	abort = 1;
3213 err_out:
3214 	mutex_unlock(&ep->com.mutex);
3215 	if (abort)
3216 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3217 	c4iw_put_ep(&ep->com);
3218 	return err;
3219 }
3220 
3221 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3222 {
3223 	struct in_device *ind;
3224 	int found = 0;
3225 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3226 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3227 
3228 	ind = in_dev_get(dev->rdev.lldi.ports[0]);
3229 	if (!ind)
3230 		return -EADDRNOTAVAIL;
3231 	for_primary_ifa(ind) {
3232 		laddr->sin_addr.s_addr = ifa->ifa_address;
3233 		raddr->sin_addr.s_addr = ifa->ifa_address;
3234 		found = 1;
3235 		break;
3236 	}
3237 	endfor_ifa(ind);
3238 	in_dev_put(ind);
3239 	return found ? 0 : -EADDRNOTAVAIL;
3240 }
3241 
3242 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3243 		      unsigned char banned_flags)
3244 {
3245 	struct inet6_dev *idev;
3246 	int err = -EADDRNOTAVAIL;
3247 
3248 	rcu_read_lock();
3249 	idev = __in6_dev_get(dev);
3250 	if (idev != NULL) {
3251 		struct inet6_ifaddr *ifp;
3252 
3253 		read_lock_bh(&idev->lock);
3254 		list_for_each_entry(ifp, &idev->addr_list, if_list) {
3255 			if (ifp->scope == IFA_LINK &&
3256 			    !(ifp->flags & banned_flags)) {
3257 				memcpy(addr, &ifp->addr, 16);
3258 				err = 0;
3259 				break;
3260 			}
3261 		}
3262 		read_unlock_bh(&idev->lock);
3263 	}
3264 	rcu_read_unlock();
3265 	return err;
3266 }
3267 
3268 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3269 {
3270 	struct in6_addr uninitialized_var(addr);
3271 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3272 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3273 
3274 	if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3275 		memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3276 		memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3277 		return 0;
3278 	}
3279 	return -EADDRNOTAVAIL;
3280 }
3281 
3282 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3283 {
3284 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3285 	struct c4iw_ep *ep;
3286 	int err = 0;
3287 	struct sockaddr_in *laddr;
3288 	struct sockaddr_in *raddr;
3289 	struct sockaddr_in6 *laddr6;
3290 	struct sockaddr_in6 *raddr6;
3291 	__u8 *ra;
3292 	int iptype;
3293 
3294 	if ((conn_param->ord > cur_max_read_depth(dev)) ||
3295 	    (conn_param->ird > cur_max_read_depth(dev))) {
3296 		err = -EINVAL;
3297 		goto out;
3298 	}
3299 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3300 	if (!ep) {
3301 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3302 		err = -ENOMEM;
3303 		goto out;
3304 	}
3305 
3306 	skb_queue_head_init(&ep->com.ep_skb_list);
3307 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3308 		err = -ENOMEM;
3309 		goto fail1;
3310 	}
3311 
3312 	init_timer(&ep->timer);
3313 	ep->plen = conn_param->private_data_len;
3314 	if (ep->plen)
3315 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3316 		       conn_param->private_data, ep->plen);
3317 	ep->ird = conn_param->ird;
3318 	ep->ord = conn_param->ord;
3319 
3320 	if (peer2peer && ep->ord == 0)
3321 		ep->ord = 1;
3322 
3323 	ep->com.cm_id = cm_id;
3324 	ref_cm_id(&ep->com);
3325 	ep->com.dev = dev;
3326 	ep->com.qp = get_qhp(dev, conn_param->qpn);
3327 	if (!ep->com.qp) {
3328 		PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3329 		err = -EINVAL;
3330 		goto fail2;
3331 	}
3332 	ref_qp(ep);
3333 	PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3334 	     ep->com.qp, cm_id);
3335 
3336 	/*
3337 	 * Allocate an active TID to initiate a TCP connection.
3338 	 */
3339 	ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3340 	if (ep->atid == -1) {
3341 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
3342 		err = -ENOMEM;
3343 		goto fail2;
3344 	}
3345 	insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3346 
3347 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3348 	       sizeof(ep->com.local_addr));
3349 	memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3350 	       sizeof(ep->com.remote_addr));
3351 
3352 	laddr = (struct sockaddr_in *)&ep->com.local_addr;
3353 	raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3354 	laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3355 	raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3356 
3357 	if (cm_id->m_remote_addr.ss_family == AF_INET) {
3358 		iptype = 4;
3359 		ra = (__u8 *)&raddr->sin_addr;
3360 
3361 		/*
3362 		 * Handle loopback requests to INADDR_ANY.
3363 		 */
3364 		if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3365 			err = pick_local_ipaddrs(dev, cm_id);
3366 			if (err)
3367 				goto fail2;
3368 		}
3369 
3370 		/* find a route */
3371 		PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3372 		     __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3373 		     ra, ntohs(raddr->sin_port));
3374 		ep->dst = find_route(dev, laddr->sin_addr.s_addr,
3375 				     raddr->sin_addr.s_addr, laddr->sin_port,
3376 				     raddr->sin_port, cm_id->tos);
3377 	} else {
3378 		iptype = 6;
3379 		ra = (__u8 *)&raddr6->sin6_addr;
3380 
3381 		/*
3382 		 * Handle loopback requests to INADDR_ANY.
3383 		 */
3384 		if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3385 			err = pick_local_ip6addrs(dev, cm_id);
3386 			if (err)
3387 				goto fail2;
3388 		}
3389 
3390 		/* find a route */
3391 		PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3392 		     __func__, laddr6->sin6_addr.s6_addr,
3393 		     ntohs(laddr6->sin6_port),
3394 		     raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3395 		ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr,
3396 				      raddr6->sin6_addr.s6_addr,
3397 				      laddr6->sin6_port, raddr6->sin6_port, 0,
3398 				      raddr6->sin6_scope_id);
3399 	}
3400 	if (!ep->dst) {
3401 		printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
3402 		err = -EHOSTUNREACH;
3403 		goto fail3;
3404 	}
3405 
3406 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3407 			ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3408 	if (err) {
3409 		printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
3410 		goto fail4;
3411 	}
3412 
3413 	PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3414 		__func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3415 		ep->l2t->idx);
3416 
3417 	state_set(&ep->com, CONNECTING);
3418 	ep->tos = cm_id->tos;
3419 
3420 	/* send connect request to rnic */
3421 	err = send_connect(ep);
3422 	if (!err)
3423 		goto out;
3424 
3425 	cxgb4_l2t_release(ep->l2t);
3426 fail4:
3427 	dst_release(ep->dst);
3428 fail3:
3429 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3430 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3431 fail2:
3432 	skb_queue_purge(&ep->com.ep_skb_list);
3433 	deref_cm_id(&ep->com);
3434 fail1:
3435 	c4iw_put_ep(&ep->com);
3436 out:
3437 	return err;
3438 }
3439 
3440 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3441 {
3442 	int err;
3443 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3444 				    &ep->com.local_addr;
3445 
3446 	if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3447 		err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3448 				     (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3449 		if (err)
3450 			return err;
3451 	}
3452 	c4iw_init_wr_wait(&ep->com.wr_wait);
3453 	err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3454 				   ep->stid, &sin6->sin6_addr,
3455 				   sin6->sin6_port,
3456 				   ep->com.dev->rdev.lldi.rxq_ids[0]);
3457 	if (!err)
3458 		err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3459 					  &ep->com.wr_wait,
3460 					  0, 0, __func__);
3461 	else if (err > 0)
3462 		err = net_xmit_errno(err);
3463 	if (err) {
3464 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3465 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3466 		pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3467 		       err, ep->stid,
3468 		       sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3469 	}
3470 	return err;
3471 }
3472 
3473 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3474 {
3475 	int err;
3476 	struct sockaddr_in *sin = (struct sockaddr_in *)
3477 				  &ep->com.local_addr;
3478 
3479 	if (dev->rdev.lldi.enable_fw_ofld_conn) {
3480 		do {
3481 			err = cxgb4_create_server_filter(
3482 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3483 				sin->sin_addr.s_addr, sin->sin_port, 0,
3484 				ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3485 			if (err == -EBUSY) {
3486 				if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3487 					err = -EIO;
3488 					break;
3489 				}
3490 				set_current_state(TASK_UNINTERRUPTIBLE);
3491 				schedule_timeout(usecs_to_jiffies(100));
3492 			}
3493 		} while (err == -EBUSY);
3494 	} else {
3495 		c4iw_init_wr_wait(&ep->com.wr_wait);
3496 		err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3497 				ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3498 				0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3499 		if (!err)
3500 			err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3501 						  &ep->com.wr_wait,
3502 						  0, 0, __func__);
3503 		else if (err > 0)
3504 			err = net_xmit_errno(err);
3505 	}
3506 	if (err)
3507 		pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3508 		       , err, ep->stid,
3509 		       &sin->sin_addr, ntohs(sin->sin_port));
3510 	return err;
3511 }
3512 
3513 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3514 {
3515 	int err = 0;
3516 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3517 	struct c4iw_listen_ep *ep;
3518 
3519 	might_sleep();
3520 
3521 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3522 	if (!ep) {
3523 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3524 		err = -ENOMEM;
3525 		goto fail1;
3526 	}
3527 	skb_queue_head_init(&ep->com.ep_skb_list);
3528 	PDBG("%s ep %p\n", __func__, ep);
3529 	ep->com.cm_id = cm_id;
3530 	ref_cm_id(&ep->com);
3531 	ep->com.dev = dev;
3532 	ep->backlog = backlog;
3533 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3534 	       sizeof(ep->com.local_addr));
3535 
3536 	/*
3537 	 * Allocate a server TID.
3538 	 */
3539 	if (dev->rdev.lldi.enable_fw_ofld_conn &&
3540 	    ep->com.local_addr.ss_family == AF_INET)
3541 		ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3542 					     cm_id->m_local_addr.ss_family, ep);
3543 	else
3544 		ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3545 					    cm_id->m_local_addr.ss_family, ep);
3546 
3547 	if (ep->stid == -1) {
3548 		printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
3549 		err = -ENOMEM;
3550 		goto fail2;
3551 	}
3552 	insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3553 
3554 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3555 	       sizeof(ep->com.local_addr));
3556 
3557 	state_set(&ep->com, LISTEN);
3558 	if (ep->com.local_addr.ss_family == AF_INET)
3559 		err = create_server4(dev, ep);
3560 	else
3561 		err = create_server6(dev, ep);
3562 	if (!err) {
3563 		cm_id->provider_data = ep;
3564 		goto out;
3565 	}
3566 
3567 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3568 			ep->com.local_addr.ss_family);
3569 fail2:
3570 	deref_cm_id(&ep->com);
3571 	c4iw_put_ep(&ep->com);
3572 fail1:
3573 out:
3574 	return err;
3575 }
3576 
3577 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3578 {
3579 	int err;
3580 	struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3581 
3582 	PDBG("%s ep %p\n", __func__, ep);
3583 
3584 	might_sleep();
3585 	state_set(&ep->com, DEAD);
3586 	if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3587 	    ep->com.local_addr.ss_family == AF_INET) {
3588 		err = cxgb4_remove_server_filter(
3589 			ep->com.dev->rdev.lldi.ports[0], ep->stid,
3590 			ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3591 	} else {
3592 		struct sockaddr_in6 *sin6;
3593 		c4iw_init_wr_wait(&ep->com.wr_wait);
3594 		err = cxgb4_remove_server(
3595 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3596 				ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3597 		if (err)
3598 			goto done;
3599 		err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3600 					  0, 0, __func__);
3601 		sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3602 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3603 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3604 	}
3605 	remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3606 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3607 			ep->com.local_addr.ss_family);
3608 done:
3609 	deref_cm_id(&ep->com);
3610 	c4iw_put_ep(&ep->com);
3611 	return err;
3612 }
3613 
3614 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3615 {
3616 	int ret = 0;
3617 	int close = 0;
3618 	int fatal = 0;
3619 	struct c4iw_rdev *rdev;
3620 
3621 	mutex_lock(&ep->com.mutex);
3622 
3623 	PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
3624 	     states[ep->com.state], abrupt);
3625 
3626 	/*
3627 	 * Ref the ep here in case we have fatal errors causing the
3628 	 * ep to be released and freed.
3629 	 */
3630 	c4iw_get_ep(&ep->com);
3631 
3632 	rdev = &ep->com.dev->rdev;
3633 	if (c4iw_fatal_error(rdev)) {
3634 		fatal = 1;
3635 		close_complete_upcall(ep, -EIO);
3636 		ep->com.state = DEAD;
3637 	}
3638 	switch (ep->com.state) {
3639 	case MPA_REQ_WAIT:
3640 	case MPA_REQ_SENT:
3641 	case MPA_REQ_RCVD:
3642 	case MPA_REP_SENT:
3643 	case FPDU_MODE:
3644 	case CONNECTING:
3645 		close = 1;
3646 		if (abrupt)
3647 			ep->com.state = ABORTING;
3648 		else {
3649 			ep->com.state = CLOSING;
3650 
3651 			/*
3652 			 * if we close before we see the fw4_ack() then we fix
3653 			 * up the timer state since we're reusing it.
3654 			 */
3655 			if (ep->mpa_skb &&
3656 			    test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3657 				clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3658 				stop_ep_timer(ep);
3659 			}
3660 			start_ep_timer(ep);
3661 		}
3662 		set_bit(CLOSE_SENT, &ep->com.flags);
3663 		break;
3664 	case CLOSING:
3665 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3666 			close = 1;
3667 			if (abrupt) {
3668 				(void)stop_ep_timer(ep);
3669 				ep->com.state = ABORTING;
3670 			} else
3671 				ep->com.state = MORIBUND;
3672 		}
3673 		break;
3674 	case MORIBUND:
3675 	case ABORTING:
3676 	case DEAD:
3677 		PDBG("%s ignoring disconnect ep %p state %u\n",
3678 		     __func__, ep, ep->com.state);
3679 		break;
3680 	default:
3681 		BUG();
3682 		break;
3683 	}
3684 
3685 	if (close) {
3686 		if (abrupt) {
3687 			set_bit(EP_DISC_ABORT, &ep->com.history);
3688 			close_complete_upcall(ep, -ECONNRESET);
3689 			ret = send_abort(ep);
3690 		} else {
3691 			set_bit(EP_DISC_CLOSE, &ep->com.history);
3692 			ret = send_halfclose(ep);
3693 		}
3694 		if (ret) {
3695 			set_bit(EP_DISC_FAIL, &ep->com.history);
3696 			if (!abrupt) {
3697 				stop_ep_timer(ep);
3698 				close_complete_upcall(ep, -EIO);
3699 			}
3700 			if (ep->com.qp) {
3701 				struct c4iw_qp_attributes attrs;
3702 
3703 				attrs.next_state = C4IW_QP_STATE_ERROR;
3704 				ret = c4iw_modify_qp(ep->com.qp->rhp,
3705 						     ep->com.qp,
3706 						     C4IW_QP_ATTR_NEXT_STATE,
3707 						     &attrs, 1);
3708 				if (ret)
3709 					pr_err(MOD
3710 					       "%s - qp <- error failed!\n",
3711 					       __func__);
3712 			}
3713 			fatal = 1;
3714 		}
3715 	}
3716 	mutex_unlock(&ep->com.mutex);
3717 	c4iw_put_ep(&ep->com);
3718 	if (fatal)
3719 		release_ep_resources(ep);
3720 	return ret;
3721 }
3722 
3723 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3724 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3725 {
3726 	struct c4iw_ep *ep;
3727 	int atid = be32_to_cpu(req->tid);
3728 
3729 	ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3730 					   (__force u32) req->tid);
3731 	if (!ep)
3732 		return;
3733 
3734 	switch (req->retval) {
3735 	case FW_ENOMEM:
3736 		set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3737 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3738 			send_fw_act_open_req(ep, atid);
3739 			return;
3740 		}
3741 	case FW_EADDRINUSE:
3742 		set_bit(ACT_RETRY_INUSE, &ep->com.history);
3743 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3744 			send_fw_act_open_req(ep, atid);
3745 			return;
3746 		}
3747 		break;
3748 	default:
3749 		pr_info("%s unexpected ofld conn wr retval %d\n",
3750 		       __func__, req->retval);
3751 		break;
3752 	}
3753 	pr_err("active ofld_connect_wr failure %d atid %d\n",
3754 	       req->retval, atid);
3755 	mutex_lock(&dev->rdev.stats.lock);
3756 	dev->rdev.stats.act_ofld_conn_fails++;
3757 	mutex_unlock(&dev->rdev.stats.lock);
3758 	connect_reply_upcall(ep, status2errno(req->retval));
3759 	state_set(&ep->com, DEAD);
3760 	if (ep->com.remote_addr.ss_family == AF_INET6) {
3761 		struct sockaddr_in6 *sin6 =
3762 			(struct sockaddr_in6 *)&ep->com.local_addr;
3763 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3764 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3765 	}
3766 	remove_handle(dev, &dev->atid_idr, atid);
3767 	cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3768 	dst_release(ep->dst);
3769 	cxgb4_l2t_release(ep->l2t);
3770 	c4iw_put_ep(&ep->com);
3771 }
3772 
3773 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3774 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3775 {
3776 	struct sk_buff *rpl_skb;
3777 	struct cpl_pass_accept_req *cpl;
3778 	int ret;
3779 
3780 	rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3781 	BUG_ON(!rpl_skb);
3782 	if (req->retval) {
3783 		PDBG("%s passive open failure %d\n", __func__, req->retval);
3784 		mutex_lock(&dev->rdev.stats.lock);
3785 		dev->rdev.stats.pas_ofld_conn_fails++;
3786 		mutex_unlock(&dev->rdev.stats.lock);
3787 		kfree_skb(rpl_skb);
3788 	} else {
3789 		cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3790 		OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3791 					(__force u32) htonl(
3792 					(__force u32) req->tid)));
3793 		ret = pass_accept_req(dev, rpl_skb);
3794 		if (!ret)
3795 			kfree_skb(rpl_skb);
3796 	}
3797 	return;
3798 }
3799 
3800 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3801 {
3802 	struct cpl_fw6_msg *rpl = cplhdr(skb);
3803 	struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3804 
3805 	switch (rpl->type) {
3806 	case FW6_TYPE_CQE:
3807 		c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3808 		break;
3809 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3810 		req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3811 		switch (req->t_state) {
3812 		case TCP_SYN_SENT:
3813 			active_ofld_conn_reply(dev, skb, req);
3814 			break;
3815 		case TCP_SYN_RECV:
3816 			passive_ofld_conn_reply(dev, skb, req);
3817 			break;
3818 		default:
3819 			pr_err("%s unexpected ofld conn wr state %d\n",
3820 			       __func__, req->t_state);
3821 			break;
3822 		}
3823 		break;
3824 	}
3825 	return 0;
3826 }
3827 
3828 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3829 {
3830 	__be32 l2info;
3831 	__be16 hdr_len, vlantag, len;
3832 	u16 eth_hdr_len;
3833 	int tcp_hdr_len, ip_hdr_len;
3834 	u8 intf;
3835 	struct cpl_rx_pkt *cpl = cplhdr(skb);
3836 	struct cpl_pass_accept_req *req;
3837 	struct tcp_options_received tmp_opt;
3838 	struct c4iw_dev *dev;
3839 	enum chip_type type;
3840 
3841 	dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3842 	/* Store values from cpl_rx_pkt in temporary location. */
3843 	vlantag = cpl->vlan;
3844 	len = cpl->len;
3845 	l2info  = cpl->l2info;
3846 	hdr_len = cpl->hdr_len;
3847 	intf = cpl->iff;
3848 
3849 	__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3850 
3851 	/*
3852 	 * We need to parse the TCP options from SYN packet.
3853 	 * to generate cpl_pass_accept_req.
3854 	 */
3855 	memset(&tmp_opt, 0, sizeof(tmp_opt));
3856 	tcp_clear_options(&tmp_opt);
3857 	tcp_parse_options(skb, &tmp_opt, 0, NULL);
3858 
3859 	req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
3860 	memset(req, 0, sizeof(*req));
3861 	req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3862 			 SYN_MAC_IDX_V(RX_MACIDX_G(
3863 			 be32_to_cpu(l2info))) |
3864 			 SYN_XACT_MATCH_F);
3865 	type = dev->rdev.lldi.adapter_type;
3866 	tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3867 	ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3868 	req->hdr_len =
3869 		cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3870 	if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3871 		eth_hdr_len = is_t4(type) ?
3872 				RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3873 				RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3874 		req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3875 					    IP_HDR_LEN_V(ip_hdr_len) |
3876 					    ETH_HDR_LEN_V(eth_hdr_len));
3877 	} else { /* T6 and later */
3878 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3879 		req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3880 					    T6_IP_HDR_LEN_V(ip_hdr_len) |
3881 					    T6_ETH_HDR_LEN_V(eth_hdr_len));
3882 	}
3883 	req->vlan = vlantag;
3884 	req->len = len;
3885 	req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3886 				    PASS_OPEN_TOS_V(tos));
3887 	req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3888 	if (tmp_opt.wscale_ok)
3889 		req->tcpopt.wsf = tmp_opt.snd_wscale;
3890 	req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3891 	if (tmp_opt.sack_ok)
3892 		req->tcpopt.sack = 1;
3893 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3894 	return;
3895 }
3896 
3897 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3898 				  __be32 laddr, __be16 lport,
3899 				  __be32 raddr, __be16 rport,
3900 				  u32 rcv_isn, u32 filter, u16 window,
3901 				  u32 rss_qid, u8 port_id)
3902 {
3903 	struct sk_buff *req_skb;
3904 	struct fw_ofld_connection_wr *req;
3905 	struct cpl_pass_accept_req *cpl = cplhdr(skb);
3906 	int ret;
3907 
3908 	req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3909 	req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
3910 	memset(req, 0, sizeof(*req));
3911 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3912 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3913 	req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3914 	req->le.filter = (__force __be32) filter;
3915 	req->le.lport = lport;
3916 	req->le.pport = rport;
3917 	req->le.u.ipv4.lip = laddr;
3918 	req->le.u.ipv4.pip = raddr;
3919 	req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3920 	req->tcb.rcv_adv = htons(window);
3921 	req->tcb.t_state_to_astid =
3922 		 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3923 			FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3924 			FW_OFLD_CONNECTION_WR_ASTID_V(
3925 			PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3926 
3927 	/*
3928 	 * We store the qid in opt2 which will be used by the firmware
3929 	 * to send us the wr response.
3930 	 */
3931 	req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3932 
3933 	/*
3934 	 * We initialize the MSS index in TCB to 0xF.
3935 	 * So that when driver sends cpl_pass_accept_rpl
3936 	 * TCB picks up the correct value. If this was 0
3937 	 * TP will ignore any value > 0 for MSS index.
3938 	 */
3939 	req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3940 	req->cookie = (uintptr_t)skb;
3941 
3942 	set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3943 	ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3944 	if (ret < 0) {
3945 		pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3946 		       ret);
3947 		kfree_skb(skb);
3948 		kfree_skb(req_skb);
3949 	}
3950 }
3951 
3952 /*
3953  * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3954  * messages when a filter is being used instead of server to
3955  * redirect a syn packet. When packets hit filter they are redirected
3956  * to the offload queue and driver tries to establish the connection
3957  * using firmware work request.
3958  */
3959 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3960 {
3961 	int stid;
3962 	unsigned int filter;
3963 	struct ethhdr *eh = NULL;
3964 	struct vlan_ethhdr *vlan_eh = NULL;
3965 	struct iphdr *iph;
3966 	struct tcphdr *tcph;
3967 	struct rss_header *rss = (void *)skb->data;
3968 	struct cpl_rx_pkt *cpl = (void *)skb->data;
3969 	struct cpl_pass_accept_req *req = (void *)(rss + 1);
3970 	struct l2t_entry *e;
3971 	struct dst_entry *dst;
3972 	struct c4iw_ep *lep = NULL;
3973 	u16 window;
3974 	struct port_info *pi;
3975 	struct net_device *pdev;
3976 	u16 rss_qid, eth_hdr_len;
3977 	int step;
3978 	u32 tx_chan;
3979 	struct neighbour *neigh;
3980 
3981 	/* Drop all non-SYN packets */
3982 	if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3983 		goto reject;
3984 
3985 	/*
3986 	 * Drop all packets which did not hit the filter.
3987 	 * Unlikely to happen.
3988 	 */
3989 	if (!(rss->filter_hit && rss->filter_tid))
3990 		goto reject;
3991 
3992 	/*
3993 	 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3994 	 */
3995 	stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
3996 
3997 	lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
3998 	if (!lep) {
3999 		PDBG("%s connect request on invalid stid %d\n", __func__, stid);
4000 		goto reject;
4001 	}
4002 
4003 	switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4004 	case CHELSIO_T4:
4005 		eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4006 		break;
4007 	case CHELSIO_T5:
4008 		eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4009 		break;
4010 	case CHELSIO_T6:
4011 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4012 		break;
4013 	default:
4014 		pr_err("T%d Chip is not supported\n",
4015 		       CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4016 		goto reject;
4017 	}
4018 
4019 	if (eth_hdr_len == ETH_HLEN) {
4020 		eh = (struct ethhdr *)(req + 1);
4021 		iph = (struct iphdr *)(eh + 1);
4022 	} else {
4023 		vlan_eh = (struct vlan_ethhdr *)(req + 1);
4024 		iph = (struct iphdr *)(vlan_eh + 1);
4025 		skb->vlan_tci = ntohs(cpl->vlan);
4026 	}
4027 
4028 	if (iph->version != 0x4)
4029 		goto reject;
4030 
4031 	tcph = (struct tcphdr *)(iph + 1);
4032 	skb_set_network_header(skb, (void *)iph - (void *)rss);
4033 	skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4034 	skb_get(skb);
4035 
4036 	PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
4037 	     ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4038 	     ntohs(tcph->source), iph->tos);
4039 
4040 	dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
4041 			 iph->tos);
4042 	if (!dst) {
4043 		pr_err("%s - failed to find dst entry!\n",
4044 		       __func__);
4045 		goto reject;
4046 	}
4047 	neigh = dst_neigh_lookup_skb(dst, skb);
4048 
4049 	if (!neigh) {
4050 		pr_err("%s - failed to allocate neigh!\n",
4051 		       __func__);
4052 		goto free_dst;
4053 	}
4054 
4055 	if (neigh->dev->flags & IFF_LOOPBACK) {
4056 		pdev = ip_dev_find(&init_net, iph->daddr);
4057 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4058 				    pdev, 0);
4059 		pi = (struct port_info *)netdev_priv(pdev);
4060 		tx_chan = cxgb4_port_chan(pdev);
4061 		dev_put(pdev);
4062 	} else {
4063 		pdev = get_real_dev(neigh->dev);
4064 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4065 					pdev, 0);
4066 		pi = (struct port_info *)netdev_priv(pdev);
4067 		tx_chan = cxgb4_port_chan(pdev);
4068 	}
4069 	neigh_release(neigh);
4070 	if (!e) {
4071 		pr_err("%s - failed to allocate l2t entry!\n",
4072 		       __func__);
4073 		goto free_dst;
4074 	}
4075 
4076 	step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4077 	rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4078 	window = (__force u16) htons((__force u16)tcph->window);
4079 
4080 	/* Calcuate filter portion for LE region. */
4081 	filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4082 						    dev->rdev.lldi.ports[0],
4083 						    e));
4084 
4085 	/*
4086 	 * Synthesize the cpl_pass_accept_req. We have everything except the
4087 	 * TID. Once firmware sends a reply with TID we update the TID field
4088 	 * in cpl and pass it through the regular cpl_pass_accept_req path.
4089 	 */
4090 	build_cpl_pass_accept_req(skb, stid, iph->tos);
4091 	send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4092 			      tcph->source, ntohl(tcph->seq), filter, window,
4093 			      rss_qid, pi->port_id);
4094 	cxgb4_l2t_release(e);
4095 free_dst:
4096 	dst_release(dst);
4097 reject:
4098 	if (lep)
4099 		c4iw_put_ep(&lep->com);
4100 	return 0;
4101 }
4102 
4103 /*
4104  * These are the real handlers that are called from a
4105  * work queue.
4106  */
4107 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4108 	[CPL_ACT_ESTABLISH] = act_establish,
4109 	[CPL_ACT_OPEN_RPL] = act_open_rpl,
4110 	[CPL_RX_DATA] = rx_data,
4111 	[CPL_ABORT_RPL_RSS] = abort_rpl,
4112 	[CPL_ABORT_RPL] = abort_rpl,
4113 	[CPL_PASS_OPEN_RPL] = pass_open_rpl,
4114 	[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4115 	[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4116 	[CPL_PASS_ESTABLISH] = pass_establish,
4117 	[CPL_PEER_CLOSE] = peer_close,
4118 	[CPL_ABORT_REQ_RSS] = peer_abort,
4119 	[CPL_CLOSE_CON_RPL] = close_con_rpl,
4120 	[CPL_RDMA_TERMINATE] = terminate,
4121 	[CPL_FW4_ACK] = fw4_ack,
4122 	[CPL_FW6_MSG] = deferred_fw6_msg,
4123 	[CPL_RX_PKT] = rx_pkt,
4124 	[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4125 	[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4126 };
4127 
4128 static void process_timeout(struct c4iw_ep *ep)
4129 {
4130 	struct c4iw_qp_attributes attrs;
4131 	int abort = 1;
4132 
4133 	mutex_lock(&ep->com.mutex);
4134 	PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
4135 	     ep->com.state);
4136 	set_bit(TIMEDOUT, &ep->com.history);
4137 	switch (ep->com.state) {
4138 	case MPA_REQ_SENT:
4139 		connect_reply_upcall(ep, -ETIMEDOUT);
4140 		break;
4141 	case MPA_REQ_WAIT:
4142 	case MPA_REQ_RCVD:
4143 	case MPA_REP_SENT:
4144 	case FPDU_MODE:
4145 		break;
4146 	case CLOSING:
4147 	case MORIBUND:
4148 		if (ep->com.cm_id && ep->com.qp) {
4149 			attrs.next_state = C4IW_QP_STATE_ERROR;
4150 			c4iw_modify_qp(ep->com.qp->rhp,
4151 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4152 				     &attrs, 1);
4153 		}
4154 		close_complete_upcall(ep, -ETIMEDOUT);
4155 		break;
4156 	case ABORTING:
4157 	case DEAD:
4158 
4159 		/*
4160 		 * These states are expected if the ep timed out at the same
4161 		 * time as another thread was calling stop_ep_timer().
4162 		 * So we silently do nothing for these states.
4163 		 */
4164 		abort = 0;
4165 		break;
4166 	default:
4167 		WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4168 			__func__, ep, ep->hwtid, ep->com.state);
4169 		abort = 0;
4170 	}
4171 	mutex_unlock(&ep->com.mutex);
4172 	if (abort)
4173 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4174 	c4iw_put_ep(&ep->com);
4175 }
4176 
4177 static void process_timedout_eps(void)
4178 {
4179 	struct c4iw_ep *ep;
4180 
4181 	spin_lock_irq(&timeout_lock);
4182 	while (!list_empty(&timeout_list)) {
4183 		struct list_head *tmp;
4184 
4185 		tmp = timeout_list.next;
4186 		list_del(tmp);
4187 		tmp->next = NULL;
4188 		tmp->prev = NULL;
4189 		spin_unlock_irq(&timeout_lock);
4190 		ep = list_entry(tmp, struct c4iw_ep, entry);
4191 		process_timeout(ep);
4192 		spin_lock_irq(&timeout_lock);
4193 	}
4194 	spin_unlock_irq(&timeout_lock);
4195 }
4196 
4197 static void process_work(struct work_struct *work)
4198 {
4199 	struct sk_buff *skb = NULL;
4200 	struct c4iw_dev *dev;
4201 	struct cpl_act_establish *rpl;
4202 	unsigned int opcode;
4203 	int ret;
4204 
4205 	process_timedout_eps();
4206 	while ((skb = skb_dequeue(&rxq))) {
4207 		rpl = cplhdr(skb);
4208 		dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4209 		opcode = rpl->ot.opcode;
4210 
4211 		BUG_ON(!work_handlers[opcode]);
4212 		ret = work_handlers[opcode](dev, skb);
4213 		if (!ret)
4214 			kfree_skb(skb);
4215 		process_timedout_eps();
4216 	}
4217 }
4218 
4219 static DECLARE_WORK(skb_work, process_work);
4220 
4221 static void ep_timeout(unsigned long arg)
4222 {
4223 	struct c4iw_ep *ep = (struct c4iw_ep *)arg;
4224 	int kickit = 0;
4225 
4226 	spin_lock(&timeout_lock);
4227 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4228 		/*
4229 		 * Only insert if it is not already on the list.
4230 		 */
4231 		if (!ep->entry.next) {
4232 			list_add_tail(&ep->entry, &timeout_list);
4233 			kickit = 1;
4234 		}
4235 	}
4236 	spin_unlock(&timeout_lock);
4237 	if (kickit)
4238 		queue_work(workq, &skb_work);
4239 }
4240 
4241 /*
4242  * All the CM events are handled on a work queue to have a safe context.
4243  */
4244 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4245 {
4246 
4247 	/*
4248 	 * Save dev in the skb->cb area.
4249 	 */
4250 	*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4251 
4252 	/*
4253 	 * Queue the skb and schedule the worker thread.
4254 	 */
4255 	skb_queue_tail(&rxq, skb);
4256 	queue_work(workq, &skb_work);
4257 	return 0;
4258 }
4259 
4260 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4261 {
4262 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4263 
4264 	if (rpl->status != CPL_ERR_NONE) {
4265 		printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
4266 		       "for tid %u\n", rpl->status, GET_TID(rpl));
4267 	}
4268 	kfree_skb(skb);
4269 	return 0;
4270 }
4271 
4272 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4273 {
4274 	struct cpl_fw6_msg *rpl = cplhdr(skb);
4275 	struct c4iw_wr_wait *wr_waitp;
4276 	int ret;
4277 
4278 	PDBG("%s type %u\n", __func__, rpl->type);
4279 
4280 	switch (rpl->type) {
4281 	case FW6_TYPE_WR_RPL:
4282 		ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4283 		wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4284 		PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
4285 		if (wr_waitp)
4286 			c4iw_wake_up(wr_waitp, ret ? -ret : 0);
4287 		kfree_skb(skb);
4288 		break;
4289 	case FW6_TYPE_CQE:
4290 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4291 		sched(dev, skb);
4292 		break;
4293 	default:
4294 		printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
4295 		       rpl->type);
4296 		kfree_skb(skb);
4297 		break;
4298 	}
4299 	return 0;
4300 }
4301 
4302 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4303 {
4304 	struct cpl_abort_req_rss *req = cplhdr(skb);
4305 	struct c4iw_ep *ep;
4306 	unsigned int tid = GET_TID(req);
4307 
4308 	ep = get_ep_from_tid(dev, tid);
4309 	/* This EP will be dereferenced in peer_abort() */
4310 	if (!ep) {
4311 		printk(KERN_WARNING MOD
4312 		       "Abort on non-existent endpoint, tid %d\n", tid);
4313 		kfree_skb(skb);
4314 		return 0;
4315 	}
4316 	if (is_neg_adv(req->status)) {
4317 		PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4318 		     __func__, ep->hwtid, req->status,
4319 		     neg_adv_str(req->status));
4320 		goto out;
4321 	}
4322 	PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4323 	     ep->com.state);
4324 
4325 	c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4326 out:
4327 	sched(dev, skb);
4328 	return 0;
4329 }
4330 
4331 /*
4332  * Most upcalls from the T4 Core go to sched() to
4333  * schedule the processing on a work queue.
4334  */
4335 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4336 	[CPL_ACT_ESTABLISH] = sched,
4337 	[CPL_ACT_OPEN_RPL] = sched,
4338 	[CPL_RX_DATA] = sched,
4339 	[CPL_ABORT_RPL_RSS] = sched,
4340 	[CPL_ABORT_RPL] = sched,
4341 	[CPL_PASS_OPEN_RPL] = sched,
4342 	[CPL_CLOSE_LISTSRV_RPL] = sched,
4343 	[CPL_PASS_ACCEPT_REQ] = sched,
4344 	[CPL_PASS_ESTABLISH] = sched,
4345 	[CPL_PEER_CLOSE] = sched,
4346 	[CPL_CLOSE_CON_RPL] = sched,
4347 	[CPL_ABORT_REQ_RSS] = peer_abort_intr,
4348 	[CPL_RDMA_TERMINATE] = sched,
4349 	[CPL_FW4_ACK] = sched,
4350 	[CPL_SET_TCB_RPL] = set_tcb_rpl,
4351 	[CPL_FW6_MSG] = fw6_msg,
4352 	[CPL_RX_PKT] = sched
4353 };
4354 
4355 int __init c4iw_cm_init(void)
4356 {
4357 	spin_lock_init(&timeout_lock);
4358 	skb_queue_head_init(&rxq);
4359 
4360 	workq = create_singlethread_workqueue("iw_cxgb4");
4361 	if (!workq)
4362 		return -ENOMEM;
4363 
4364 	return 0;
4365 }
4366 
4367 void c4iw_cm_term(void)
4368 {
4369 	WARN_ON(!list_empty(&timeout_list));
4370 	flush_workqueue(workq);
4371 	destroy_workqueue(workq);
4372 }
4373