1 /* 2 * Broadcom NetXtreme-E RoCE driver. 3 * 4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term 5 * Broadcom refers to Broadcom Limited and/or its subsidiaries. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in 21 * the documentation and/or other materials provided with the 22 * distribution. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN 34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 * Description: Slow Path Operators 37 */ 38 39 #define dev_fmt(fmt) "QPLIB: " fmt 40 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/sched.h> 44 #include <linux/pci.h> 45 46 #include "roce_hsi.h" 47 48 #include "qplib_res.h" 49 #include "qplib_rcfw.h" 50 #include "qplib_sp.h" 51 #include "qplib_tlv.h" 52 53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0, 54 0, 0, 0, 0, 0, 0, 0, 0 } }; 55 56 /* Device */ 57 58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw) 59 { 60 u16 pcie_ctl2 = 0; 61 62 if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx)) 63 return false; 64 65 pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2); 66 return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ); 67 } 68 69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw, 70 char *fw_ver) 71 { 72 struct creq_query_version_resp resp = {}; 73 struct bnxt_qplib_cmdqmsg msg = {}; 74 struct cmdq_query_version req = {}; 75 int rc; 76 77 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 78 CMDQ_BASE_OPCODE_QUERY_VERSION, 79 sizeof(req)); 80 81 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0); 82 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 83 if (rc) 84 return; 85 fw_ver[0] = resp.fw_maj; 86 fw_ver[1] = resp.fw_minor; 87 fw_ver[2] = resp.fw_bld; 88 fw_ver[3] = resp.fw_rsvd; 89 } 90 91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw, 92 struct bnxt_qplib_dev_attr *attr) 93 { 94 struct creq_query_func_resp resp = {}; 95 struct bnxt_qplib_cmdqmsg msg = {}; 96 struct creq_query_func_resp_sb *sb; 97 struct bnxt_qplib_rcfw_sbuf sbuf; 98 struct cmdq_query_func req = {}; 99 u8 *tqm_alloc; 100 int i, rc; 101 u32 temp; 102 103 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 104 CMDQ_BASE_OPCODE_QUERY_FUNC, 105 sizeof(req)); 106 107 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS); 108 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size, 109 &sbuf.dma_addr, GFP_KERNEL); 110 if (!sbuf.sb) 111 return -ENOMEM; 112 sb = sbuf.sb; 113 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS; 114 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req), 115 sizeof(resp), 0); 116 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 117 if (rc) 118 goto bail; 119 120 /* Extract the context from the side buffer */ 121 attr->max_qp = le32_to_cpu(sb->max_qp); 122 /* max_qp value reported by FW doesn't include the QP1 */ 123 attr->max_qp += 1; 124 attr->max_qp_rd_atom = 125 sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ? 126 BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom; 127 attr->max_qp_init_rd_atom = 128 sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ? 129 BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom; 130 attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr); 131 /* 132 * 128 WQEs needs to be reserved for the HW (8916). Prevent 133 * reporting the max number 134 */ 135 attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1; 136 attr->max_qp_sges = bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx) ? 137 6 : sb->max_sge; 138 attr->max_cq = le32_to_cpu(sb->max_cq); 139 attr->max_cq_wqes = le32_to_cpu(sb->max_cqe); 140 attr->max_cq_sges = attr->max_qp_sges; 141 attr->max_mr = le32_to_cpu(sb->max_mr); 142 attr->max_mw = le32_to_cpu(sb->max_mw); 143 144 attr->max_mr_size = le64_to_cpu(sb->max_mr_size); 145 attr->max_pd = 64 * 1024; 146 attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp); 147 attr->max_ah = le32_to_cpu(sb->max_ah); 148 149 attr->max_srq = le16_to_cpu(sb->max_srq); 150 attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1; 151 attr->max_srq_sges = sb->max_srq_sge; 152 attr->max_pkey = 1; 153 attr->max_inline_data = le32_to_cpu(sb->max_inline_data); 154 if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx)) 155 attr->l2_db_size = (sb->l2_db_space_size + 1) * 156 (0x01 << RCFW_DBR_BASE_PAGE_SHIFT); 157 attr->max_sgid = BNXT_QPLIB_NUM_GIDS_SUPPORTED; 158 attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags); 159 160 bnxt_qplib_query_version(rcfw, attr->fw_ver); 161 162 for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) { 163 temp = le32_to_cpu(sb->tqm_alloc_reqs[i]); 164 tqm_alloc = (u8 *)&temp; 165 attr->tqm_alloc_reqs[i * 4] = *tqm_alloc; 166 attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc); 167 attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc); 168 attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc); 169 } 170 171 if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI) 172 attr->max_dpi = le32_to_cpu(sb->max_dpi); 173 174 attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw); 175 bail: 176 dma_free_coherent(&rcfw->pdev->dev, sbuf.size, 177 sbuf.sb, sbuf.dma_addr); 178 return rc; 179 } 180 181 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res, 182 struct bnxt_qplib_rcfw *rcfw, 183 struct bnxt_qplib_ctx *ctx) 184 { 185 struct creq_set_func_resources_resp resp = {}; 186 struct cmdq_set_func_resources req = {}; 187 struct bnxt_qplib_cmdqmsg msg = {}; 188 int rc; 189 190 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 191 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES, 192 sizeof(req)); 193 194 req.number_of_qp = cpu_to_le32(ctx->qpc_count); 195 req.number_of_mrw = cpu_to_le32(ctx->mrw_count); 196 req.number_of_srq = cpu_to_le32(ctx->srqc_count); 197 req.number_of_cq = cpu_to_le32(ctx->cq_count); 198 199 req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf); 200 req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf); 201 req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf); 202 req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf); 203 req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf); 204 205 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 206 sizeof(resp), 0); 207 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 208 if (rc) { 209 dev_err(&res->pdev->dev, "Failed to set function resources\n"); 210 } 211 return rc; 212 } 213 214 /* SGID */ 215 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res, 216 struct bnxt_qplib_sgid_tbl *sgid_tbl, int index, 217 struct bnxt_qplib_gid *gid) 218 { 219 if (index >= sgid_tbl->max) { 220 dev_err(&res->pdev->dev, 221 "Index %d exceeded SGID table max (%d)\n", 222 index, sgid_tbl->max); 223 return -EINVAL; 224 } 225 memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid)); 226 return 0; 227 } 228 229 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, 230 struct bnxt_qplib_gid *gid, u16 vlan_id, bool update) 231 { 232 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, 233 struct bnxt_qplib_res, 234 sgid_tbl); 235 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 236 int index; 237 238 /* Do we need a sgid_lock here? */ 239 if (!sgid_tbl->active) { 240 dev_err(&res->pdev->dev, "SGID table has no active entries\n"); 241 return -ENOMEM; 242 } 243 for (index = 0; index < sgid_tbl->max; index++) { 244 if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) && 245 vlan_id == sgid_tbl->tbl[index].vlan_id) 246 break; 247 } 248 if (index == sgid_tbl->max) { 249 dev_warn(&res->pdev->dev, "GID not found in the SGID table\n"); 250 return 0; 251 } 252 /* Remove GID from the SGID table */ 253 if (update) { 254 struct creq_delete_gid_resp resp = {}; 255 struct bnxt_qplib_cmdqmsg msg = {}; 256 struct cmdq_delete_gid req = {}; 257 int rc; 258 259 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 260 CMDQ_BASE_OPCODE_DELETE_GID, 261 sizeof(req)); 262 if (sgid_tbl->hw_id[index] == 0xFFFF) { 263 dev_err(&res->pdev->dev, 264 "GID entry contains an invalid HW id\n"); 265 return -EINVAL; 266 } 267 req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]); 268 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 269 sizeof(resp), 0); 270 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 271 if (rc) 272 return rc; 273 } 274 memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero, 275 sizeof(bnxt_qplib_gid_zero)); 276 sgid_tbl->tbl[index].vlan_id = 0xFFFF; 277 sgid_tbl->vlan[index] = 0; 278 sgid_tbl->active--; 279 dev_dbg(&res->pdev->dev, 280 "SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n", 281 index, sgid_tbl->hw_id[index], sgid_tbl->active); 282 sgid_tbl->hw_id[index] = (u16)-1; 283 284 /* unlock */ 285 return 0; 286 } 287 288 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, 289 struct bnxt_qplib_gid *gid, const u8 *smac, 290 u16 vlan_id, bool update, u32 *index) 291 { 292 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, 293 struct bnxt_qplib_res, 294 sgid_tbl); 295 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 296 int i, free_idx; 297 298 /* Do we need a sgid_lock here? */ 299 if (sgid_tbl->active == sgid_tbl->max) { 300 dev_err(&res->pdev->dev, "SGID table is full\n"); 301 return -ENOMEM; 302 } 303 free_idx = sgid_tbl->max; 304 for (i = 0; i < sgid_tbl->max; i++) { 305 if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) && 306 sgid_tbl->tbl[i].vlan_id == vlan_id) { 307 dev_dbg(&res->pdev->dev, 308 "SGID entry already exist in entry %d!\n", i); 309 *index = i; 310 return -EALREADY; 311 } else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero, 312 sizeof(bnxt_qplib_gid_zero)) && 313 free_idx == sgid_tbl->max) { 314 free_idx = i; 315 } 316 } 317 if (free_idx == sgid_tbl->max) { 318 dev_err(&res->pdev->dev, 319 "SGID table is FULL but count is not MAX??\n"); 320 return -ENOMEM; 321 } 322 if (update) { 323 struct creq_add_gid_resp resp = {}; 324 struct bnxt_qplib_cmdqmsg msg = {}; 325 struct cmdq_add_gid req = {}; 326 int rc; 327 328 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 329 CMDQ_BASE_OPCODE_ADD_GID, 330 sizeof(req)); 331 332 req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]); 333 req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]); 334 req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]); 335 req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]); 336 /* 337 * driver should ensure that all RoCE traffic is always VLAN 338 * tagged if RoCE traffic is running on non-zero VLAN ID or 339 * RoCE traffic is running on non-zero Priority. 340 */ 341 if ((vlan_id != 0xFFFF) || res->prio) { 342 if (vlan_id != 0xFFFF) 343 req.vlan = cpu_to_le16 344 (vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK); 345 req.vlan |= cpu_to_le16 346 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 | 347 CMDQ_ADD_GID_VLAN_VLAN_EN); 348 } 349 350 /* MAC in network format */ 351 req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]); 352 req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]); 353 req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]); 354 355 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 356 sizeof(resp), 0); 357 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 358 if (rc) 359 return rc; 360 sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid); 361 } 362 /* Add GID to the sgid_tbl */ 363 memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid)); 364 sgid_tbl->tbl[free_idx].vlan_id = vlan_id; 365 sgid_tbl->active++; 366 if (vlan_id != 0xFFFF) 367 sgid_tbl->vlan[free_idx] = 1; 368 369 dev_dbg(&res->pdev->dev, 370 "SGID added hw_id[0x%x] = 0x%x active = 0x%x\n", 371 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active); 372 373 *index = free_idx; 374 /* unlock */ 375 return 0; 376 } 377 378 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, 379 struct bnxt_qplib_gid *gid, u16 gid_idx, 380 const u8 *smac) 381 { 382 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, 383 struct bnxt_qplib_res, 384 sgid_tbl); 385 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 386 struct creq_modify_gid_resp resp = {}; 387 struct bnxt_qplib_cmdqmsg msg = {}; 388 struct cmdq_modify_gid req = {}; 389 int rc; 390 391 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 392 CMDQ_BASE_OPCODE_MODIFY_GID, 393 sizeof(req)); 394 395 req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]); 396 req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]); 397 req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]); 398 req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]); 399 if (res->prio) { 400 req.vlan |= cpu_to_le16 401 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 | 402 CMDQ_ADD_GID_VLAN_VLAN_EN); 403 } 404 405 /* MAC in network format */ 406 req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]); 407 req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]); 408 req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]); 409 410 req.gid_index = cpu_to_le16(gid_idx); 411 412 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 413 sizeof(resp), 0); 414 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 415 return rc; 416 } 417 418 /* AH */ 419 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah, 420 bool block) 421 { 422 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 423 struct creq_create_ah_resp resp = {}; 424 struct bnxt_qplib_cmdqmsg msg = {}; 425 struct cmdq_create_ah req = {}; 426 u32 temp32[4]; 427 u16 temp16[3]; 428 int rc; 429 430 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 431 CMDQ_BASE_OPCODE_CREATE_AH, 432 sizeof(req)); 433 434 memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid)); 435 req.dgid[0] = cpu_to_le32(temp32[0]); 436 req.dgid[1] = cpu_to_le32(temp32[1]); 437 req.dgid[2] = cpu_to_le32(temp32[2]); 438 req.dgid[3] = cpu_to_le32(temp32[3]); 439 440 req.type = ah->nw_type; 441 req.hop_limit = ah->hop_limit; 442 req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]); 443 req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label & 444 CMDQ_CREATE_AH_FLOW_LABEL_MASK) | 445 CMDQ_CREATE_AH_DEST_VLAN_ID_MASK); 446 req.pd_id = cpu_to_le32(ah->pd->id); 447 req.traffic_class = ah->traffic_class; 448 449 /* MAC in network format */ 450 memcpy(temp16, ah->dmac, 6); 451 req.dest_mac[0] = cpu_to_le16(temp16[0]); 452 req.dest_mac[1] = cpu_to_le16(temp16[1]); 453 req.dest_mac[2] = cpu_to_le16(temp16[2]); 454 455 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 456 sizeof(resp), block); 457 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 458 if (rc) 459 return rc; 460 461 ah->id = le32_to_cpu(resp.xid); 462 return 0; 463 } 464 465 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah, 466 bool block) 467 { 468 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 469 struct creq_destroy_ah_resp resp = {}; 470 struct bnxt_qplib_cmdqmsg msg = {}; 471 struct cmdq_destroy_ah req = {}; 472 int rc; 473 474 /* Clean up the AH table in the device */ 475 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 476 CMDQ_BASE_OPCODE_DESTROY_AH, 477 sizeof(req)); 478 479 req.ah_cid = cpu_to_le32(ah->id); 480 481 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 482 sizeof(resp), block); 483 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 484 return rc; 485 } 486 487 /* MRW */ 488 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw) 489 { 490 struct creq_deallocate_key_resp resp = {}; 491 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 492 struct cmdq_deallocate_key req = {}; 493 struct bnxt_qplib_cmdqmsg msg = {}; 494 int rc; 495 496 if (mrw->lkey == 0xFFFFFFFF) { 497 dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n"); 498 return 0; 499 } 500 501 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 502 CMDQ_BASE_OPCODE_DEALLOCATE_KEY, 503 sizeof(req)); 504 505 req.mrw_flags = mrw->type; 506 507 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) || 508 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) || 509 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)) 510 req.key = cpu_to_le32(mrw->rkey); 511 else 512 req.key = cpu_to_le32(mrw->lkey); 513 514 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 515 sizeof(resp), 0); 516 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 517 if (rc) 518 return rc; 519 520 /* Free the qplib's MRW memory */ 521 if (mrw->hwq.max_elements) 522 bnxt_qplib_free_hwq(res, &mrw->hwq); 523 524 return 0; 525 } 526 527 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw) 528 { 529 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 530 struct creq_allocate_mrw_resp resp = {}; 531 struct bnxt_qplib_cmdqmsg msg = {}; 532 struct cmdq_allocate_mrw req = {}; 533 unsigned long tmp; 534 int rc; 535 536 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 537 CMDQ_BASE_OPCODE_ALLOCATE_MRW, 538 sizeof(req)); 539 540 req.pd_id = cpu_to_le32(mrw->pd->id); 541 req.mrw_flags = mrw->type; 542 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR && 543 mrw->flags & BNXT_QPLIB_FR_PMR) || 544 mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A || 545 mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B) 546 req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY; 547 tmp = (unsigned long)mrw; 548 req.mrw_handle = cpu_to_le64(tmp); 549 550 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 551 sizeof(resp), 0); 552 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 553 if (rc) 554 return rc; 555 556 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) || 557 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) || 558 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)) 559 mrw->rkey = le32_to_cpu(resp.xid); 560 else 561 mrw->lkey = le32_to_cpu(resp.xid); 562 return 0; 563 } 564 565 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw, 566 bool block) 567 { 568 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 569 struct creq_deregister_mr_resp resp = {}; 570 struct bnxt_qplib_cmdqmsg msg = {}; 571 struct cmdq_deregister_mr req = {}; 572 int rc; 573 574 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 575 CMDQ_BASE_OPCODE_DEREGISTER_MR, 576 sizeof(req)); 577 578 req.lkey = cpu_to_le32(mrw->lkey); 579 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 580 sizeof(resp), block); 581 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 582 if (rc) 583 return rc; 584 585 /* Free the qplib's MR memory */ 586 if (mrw->hwq.max_elements) { 587 mrw->va = 0; 588 mrw->total_size = 0; 589 bnxt_qplib_free_hwq(res, &mrw->hwq); 590 } 591 592 return 0; 593 } 594 595 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr, 596 struct ib_umem *umem, int num_pbls, u32 buf_pg_size) 597 { 598 struct bnxt_qplib_rcfw *rcfw = res->rcfw; 599 struct bnxt_qplib_hwq_attr hwq_attr = {}; 600 struct bnxt_qplib_sg_info sginfo = {}; 601 struct creq_register_mr_resp resp = {}; 602 struct bnxt_qplib_cmdqmsg msg = {}; 603 struct cmdq_register_mr req = {}; 604 int pages, rc; 605 u32 pg_size; 606 u16 level; 607 608 if (num_pbls) { 609 pages = roundup_pow_of_two(num_pbls); 610 /* Allocate memory for the non-leaf pages to store buf ptrs. 611 * Non-leaf pages always uses system PAGE_SIZE 612 */ 613 /* Free the hwq if it already exist, must be a rereg */ 614 if (mr->hwq.max_elements) 615 bnxt_qplib_free_hwq(res, &mr->hwq); 616 hwq_attr.res = res; 617 hwq_attr.depth = pages; 618 hwq_attr.stride = sizeof(dma_addr_t); 619 hwq_attr.type = HWQ_TYPE_MR; 620 hwq_attr.sginfo = &sginfo; 621 hwq_attr.sginfo->umem = umem; 622 hwq_attr.sginfo->npages = pages; 623 hwq_attr.sginfo->pgsize = buf_pg_size; 624 hwq_attr.sginfo->pgshft = ilog2(buf_pg_size); 625 rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr); 626 if (rc) { 627 dev_err(&res->pdev->dev, 628 "SP: Reg MR memory allocation failed\n"); 629 return -ENOMEM; 630 } 631 } 632 633 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 634 CMDQ_BASE_OPCODE_REGISTER_MR, 635 sizeof(req)); 636 637 /* Configure the request */ 638 if (mr->hwq.level == PBL_LVL_MAX) { 639 /* No PBL provided, just use system PAGE_SIZE */ 640 level = 0; 641 req.pbl = 0; 642 pg_size = PAGE_SIZE; 643 } else { 644 level = mr->hwq.level; 645 req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]); 646 } 647 pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE; 648 req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) | 649 ((ilog2(pg_size) << 650 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) & 651 CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK); 652 req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) << 653 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) & 654 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK)); 655 req.access = (mr->flags & 0xFFFF); 656 req.va = cpu_to_le64(mr->va); 657 req.key = cpu_to_le32(mr->lkey); 658 req.mr_size = cpu_to_le64(mr->total_size); 659 660 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), 661 sizeof(resp), 0); 662 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 663 if (rc) 664 goto fail; 665 666 return 0; 667 668 fail: 669 if (mr->hwq.max_elements) 670 bnxt_qplib_free_hwq(res, &mr->hwq); 671 return rc; 672 } 673 674 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res, 675 struct bnxt_qplib_frpl *frpl, 676 int max_pg_ptrs) 677 { 678 struct bnxt_qplib_hwq_attr hwq_attr = {}; 679 struct bnxt_qplib_sg_info sginfo = {}; 680 int pg_ptrs, pages, rc; 681 682 /* Re-calculate the max to fit the HWQ allocation model */ 683 pg_ptrs = roundup_pow_of_two(max_pg_ptrs); 684 pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT; 685 if (!pages) 686 pages++; 687 688 if (pages > MAX_PBL_LVL_1_PGS) 689 return -ENOMEM; 690 691 sginfo.pgsize = PAGE_SIZE; 692 sginfo.nopte = true; 693 694 hwq_attr.res = res; 695 hwq_attr.depth = pg_ptrs; 696 hwq_attr.stride = PAGE_SIZE; 697 hwq_attr.sginfo = &sginfo; 698 hwq_attr.type = HWQ_TYPE_CTX; 699 rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr); 700 if (!rc) 701 frpl->max_pg_ptrs = pg_ptrs; 702 703 return rc; 704 } 705 706 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res, 707 struct bnxt_qplib_frpl *frpl) 708 { 709 bnxt_qplib_free_hwq(res, &frpl->hwq); 710 return 0; 711 } 712 713 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw, 714 struct bnxt_qplib_roce_stats *stats) 715 { 716 struct creq_query_roce_stats_resp resp = {}; 717 struct creq_query_roce_stats_resp_sb *sb; 718 struct cmdq_query_roce_stats req = {}; 719 struct bnxt_qplib_cmdqmsg msg = {}; 720 struct bnxt_qplib_rcfw_sbuf sbuf; 721 int rc; 722 723 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 724 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS, 725 sizeof(req)); 726 727 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS); 728 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size, 729 &sbuf.dma_addr, GFP_KERNEL); 730 if (!sbuf.sb) 731 return -ENOMEM; 732 sb = sbuf.sb; 733 734 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS; 735 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req), 736 sizeof(resp), 0); 737 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 738 if (rc) 739 goto bail; 740 /* Extract the context from the side buffer */ 741 stats->to_retransmits = le64_to_cpu(sb->to_retransmits); 742 stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd); 743 stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded); 744 stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd); 745 stats->missing_resp = le64_to_cpu(sb->missing_resp); 746 stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err); 747 stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err); 748 stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err); 749 stats->local_protection_err = le64_to_cpu(sb->local_protection_err); 750 stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err); 751 stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err); 752 stats->remote_access_err = le64_to_cpu(sb->remote_access_err); 753 stats->remote_op_err = le64_to_cpu(sb->remote_op_err); 754 stats->dup_req = le64_to_cpu(sb->dup_req); 755 stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max); 756 stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch); 757 stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe); 758 stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err); 759 stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey); 760 stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err); 761 stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm); 762 stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err); 763 stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey); 764 stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err); 765 stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm); 766 stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err); 767 stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow); 768 stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode); 769 stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic); 770 stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err); 771 stats->res_mem_error = le64_to_cpu(sb->res_mem_error); 772 stats->res_srq_err = le64_to_cpu(sb->res_srq_err); 773 stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err); 774 stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey); 775 stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err); 776 stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err); 777 stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err); 778 stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err); 779 stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err); 780 if (!rcfw->init_oos_stats) { 781 rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count); 782 rcfw->init_oos_stats = 1; 783 } else { 784 stats->res_oos_drop_count += 785 (le64_to_cpu(sb->res_oos_drop_count) - 786 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK; 787 rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count); 788 } 789 790 bail: 791 dma_free_coherent(&rcfw->pdev->dev, sbuf.size, 792 sbuf.sb, sbuf.dma_addr); 793 return rc; 794 } 795 796 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid, 797 struct bnxt_qplib_ext_stat *estat) 798 { 799 struct creq_query_roce_stats_ext_resp resp = {}; 800 struct creq_query_roce_stats_ext_resp_sb *sb; 801 struct cmdq_query_roce_stats_ext req = {}; 802 struct bnxt_qplib_cmdqmsg msg = {}; 803 struct bnxt_qplib_rcfw_sbuf sbuf; 804 int rc; 805 806 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS); 807 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size, 808 &sbuf.dma_addr, GFP_KERNEL); 809 if (!sbuf.sb) 810 return -ENOMEM; 811 812 sb = sbuf.sb; 813 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, 814 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS, 815 sizeof(req)); 816 817 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS; 818 req.resp_addr = cpu_to_le64(sbuf.dma_addr); 819 req.function_id = cpu_to_le32(fid); 820 req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID); 821 822 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req), 823 sizeof(resp), 0); 824 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg); 825 if (rc) 826 goto bail; 827 828 estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts); 829 estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts); 830 estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts); 831 estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts); 832 estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts); 833 estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts); 834 estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes); 835 estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts); 836 estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts); 837 estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts); 838 estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts); 839 estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts); 840 estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts); 841 estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes); 842 estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts); 843 estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes); 844 estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts); 845 estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts); 846 estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts); 847 estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts); 848 estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts); 849 850 bail: 851 dma_free_coherent(&rcfw->pdev->dev, sbuf.size, 852 sbuf.sb, sbuf.dma_addr); 853 return rc; 854 } 855 856 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req, 857 struct bnxt_qplib_cc_param_ext *cc_ext) 858 { 859 ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask); 860 cc_ext->ext_mask = 0; 861 ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi); 862 ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp); 863 ext_req->init_cp = cpu_to_le16(cc_ext->init_cp); 864 ext_req->tr_update_mode = cc_ext->tr_update_mode; 865 ext_req->tr_update_cycles = cc_ext->tr_update_cyls; 866 ext_req->fr_num_rtts = cc_ext->fr_rtt; 867 ext_req->ai_rate_increase = cc_ext->ai_rate_incr; 868 ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th); 869 ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th); 870 ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th); 871 ext_req->bw_avg_weight = cc_ext->bw_avg_weight; 872 ext_req->actual_cr_factor = cc_ext->cr_factor; 873 ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp); 874 ext_req->cp_bias_en = cc_ext->cp_bias_en; 875 ext_req->cp_bias = cc_ext->cp_bias; 876 ext_req->cnp_ecn = cc_ext->cnp_ecn; 877 ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en; 878 ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec); 879 ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th); 880 ext_req->cr_width = cc_ext->cr_width; 881 ext_req->quota_period_min = cc_ext->min_quota; 882 ext_req->quota_period_max = cc_ext->max_quota; 883 ext_req->quota_period_abs_max = cc_ext->abs_max_quota; 884 ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb); 885 ext_req->cr_prob_factor = cc_ext->cr_prob_fac; 886 ext_req->tr_prob_factor = cc_ext->tr_prob_fac; 887 ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th); 888 ext_req->red_div = cc_ext->red_div; 889 ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th; 890 ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt); 891 ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio; 892 ext_req->use_rate_table = cc_ext->low_rate_en; 893 ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th); 894 ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1); 895 ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2); 896 ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th); 897 ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1); 898 ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2); 899 ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt); 900 ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes; 901 } 902 903 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res, 904 struct bnxt_qplib_cc_param *cc_param) 905 { 906 struct bnxt_qplib_tlv_modify_cc_req tlv_req = {}; 907 struct creq_modify_roce_cc_resp resp = {}; 908 struct bnxt_qplib_cmdqmsg msg = {}; 909 struct cmdq_modify_roce_cc *req; 910 int req_size; 911 void *cmd; 912 int rc; 913 914 /* Prepare the older base command */ 915 req = &tlv_req.base_req; 916 cmd = req; 917 req_size = sizeof(*req); 918 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC, 919 sizeof(*req)); 920 req->modify_mask = cpu_to_le32(cc_param->mask); 921 req->enable_cc = cc_param->enable; 922 req->g = cc_param->g; 923 req->num_phases_per_state = cc_param->nph_per_state; 924 req->time_per_phase = cc_param->time_pph; 925 req->pkts_per_phase = cc_param->pkts_pph; 926 req->init_cr = cpu_to_le16(cc_param->init_cr); 927 req->init_tr = cpu_to_le16(cc_param->init_tr); 928 req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) | 929 (cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK); 930 req->alt_vlan_pcp = cc_param->alt_vlan_pcp; 931 req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp); 932 req->rtt = cpu_to_le16(cc_param->rtt); 933 req->tcp_cp = cpu_to_le16(cc_param->tcp_cp); 934 req->cc_mode = cc_param->cc_mode; 935 req->inactivity_th = cpu_to_le16(cc_param->inact_th); 936 937 /* For chip gen P5 onwards fill extended cmd and header */ 938 if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) { 939 struct roce_tlv *hdr; 940 u32 payload; 941 u32 chunks; 942 943 cmd = &tlv_req; 944 req_size = sizeof(tlv_req); 945 /* Prepare primary tlv header */ 946 hdr = &tlv_req.tlv_hdr; 947 chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req)); 948 payload = sizeof(struct cmdq_modify_roce_cc); 949 __roce_1st_tlv_prep(hdr, chunks, payload, true); 950 /* Prepare secondary tlv header */ 951 hdr = (struct roce_tlv *)&tlv_req.ext_req; 952 payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) - 953 sizeof(struct roce_tlv); 954 __roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true); 955 bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext); 956 } 957 958 bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size, 959 sizeof(resp), 0); 960 rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg); 961 return rc; 962 } 963