xref: /linux/drivers/infiniband/hw/bnxt_re/qplib_sp.c (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Slow Path Operators
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
45 
46 #include "roce_hsi.h"
47 
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
52 
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 						     0, 0, 0, 0, 0, 0, 0, 0 } };
55 
56 /* Device */
57 
58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59 {
60 	u16 pcie_ctl2 = 0;
61 
62 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 		return false;
64 
65 	pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 	return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67 }
68 
69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70 				     char *fw_ver)
71 {
72 	struct creq_query_version_resp resp = {};
73 	struct bnxt_qplib_cmdqmsg msg = {};
74 	struct cmdq_query_version req = {};
75 	int rc;
76 
77 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78 				 CMDQ_BASE_OPCODE_QUERY_VERSION,
79 				 sizeof(req));
80 
81 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83 	if (rc)
84 		return;
85 	fw_ver[0] = resp.fw_maj;
86 	fw_ver[1] = resp.fw_minor;
87 	fw_ver[2] = resp.fw_bld;
88 	fw_ver[3] = resp.fw_rsvd;
89 }
90 
91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
92 			    struct bnxt_qplib_dev_attr *attr)
93 {
94 	struct creq_query_func_resp resp = {};
95 	struct bnxt_qplib_cmdqmsg msg = {};
96 	struct creq_query_func_resp_sb *sb;
97 	struct bnxt_qplib_rcfw_sbuf sbuf;
98 	struct bnxt_qplib_chip_ctx *cctx;
99 	struct cmdq_query_func req = {};
100 	u8 *tqm_alloc;
101 	int i, rc;
102 	u32 temp;
103 
104 	cctx = rcfw->res->cctx;
105 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
106 				 CMDQ_BASE_OPCODE_QUERY_FUNC,
107 				 sizeof(req));
108 
109 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
110 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
111 				     &sbuf.dma_addr, GFP_KERNEL);
112 	if (!sbuf.sb)
113 		return -ENOMEM;
114 	sb = sbuf.sb;
115 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
116 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
117 				sizeof(resp), 0);
118 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
119 	if (rc)
120 		goto bail;
121 
122 	/* Extract the context from the side buffer */
123 	attr->max_qp = le32_to_cpu(sb->max_qp);
124 	/* max_qp value reported by FW doesn't include the QP1 */
125 	attr->max_qp += 1;
126 	attr->max_qp_rd_atom =
127 		sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
128 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
129 	attr->max_qp_init_rd_atom =
130 		sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
131 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
132 	attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr);
133 	/*
134 	 * 128 WQEs needs to be reserved for the HW (8916). Prevent
135 	 * reporting the max number
136 	 */
137 	attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
138 
139 	attr->max_qp_sges = cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE ?
140 			    min_t(u32, sb->max_sge_var_wqe, BNXT_VAR_MAX_SGE) : 6;
141 	attr->max_cq = le32_to_cpu(sb->max_cq);
142 	attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
143 	attr->max_cq_sges = attr->max_qp_sges;
144 	attr->max_mr = le32_to_cpu(sb->max_mr);
145 	attr->max_mw = le32_to_cpu(sb->max_mw);
146 
147 	attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
148 	attr->max_pd = 64 * 1024;
149 	attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
150 	attr->max_ah = le32_to_cpu(sb->max_ah);
151 
152 	attr->max_srq = le16_to_cpu(sb->max_srq);
153 	attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
154 	attr->max_srq_sges = sb->max_srq_sge;
155 	attr->max_pkey = 1;
156 	attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
157 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
158 		attr->l2_db_size = (sb->l2_db_space_size + 1) *
159 				    (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
160 	attr->max_sgid = BNXT_QPLIB_NUM_GIDS_SUPPORTED;
161 	attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
162 	attr->dev_cap_flags2 = le16_to_cpu(sb->dev_cap_ext_flags_2);
163 
164 	bnxt_qplib_query_version(rcfw, attr->fw_ver);
165 
166 	for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
167 		temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
168 		tqm_alloc = (u8 *)&temp;
169 		attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
170 		attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
171 		attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
172 		attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
173 	}
174 
175 	if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
176 		attr->max_dpi = le32_to_cpu(sb->max_dpi);
177 
178 	attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
179 bail:
180 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
181 			  sbuf.sb, sbuf.dma_addr);
182 	return rc;
183 }
184 
185 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
186 				  struct bnxt_qplib_rcfw *rcfw,
187 				  struct bnxt_qplib_ctx *ctx)
188 {
189 	struct creq_set_func_resources_resp resp = {};
190 	struct cmdq_set_func_resources req = {};
191 	struct bnxt_qplib_cmdqmsg msg = {};
192 	int rc;
193 
194 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
195 				 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
196 				 sizeof(req));
197 
198 	req.number_of_qp = cpu_to_le32(ctx->qpc_count);
199 	req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
200 	req.number_of_srq =  cpu_to_le32(ctx->srqc_count);
201 	req.number_of_cq = cpu_to_le32(ctx->cq_count);
202 
203 	req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
204 	req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
205 	req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
206 	req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
207 	req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
208 
209 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
210 				sizeof(resp), 0);
211 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
212 	if (rc) {
213 		dev_err(&res->pdev->dev, "Failed to set function resources\n");
214 	}
215 	return rc;
216 }
217 
218 /* SGID */
219 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
220 			struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
221 			struct bnxt_qplib_gid *gid)
222 {
223 	if (index >= sgid_tbl->max) {
224 		dev_err(&res->pdev->dev,
225 			"Index %d exceeded SGID table max (%d)\n",
226 			index, sgid_tbl->max);
227 		return -EINVAL;
228 	}
229 	memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
230 	return 0;
231 }
232 
233 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
234 			struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
235 {
236 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
237 						   struct bnxt_qplib_res,
238 						   sgid_tbl);
239 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
240 	int index;
241 
242 	/* Do we need a sgid_lock here? */
243 	if (!sgid_tbl->active) {
244 		dev_err(&res->pdev->dev, "SGID table has no active entries\n");
245 		return -ENOMEM;
246 	}
247 	for (index = 0; index < sgid_tbl->max; index++) {
248 		if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
249 		    vlan_id == sgid_tbl->tbl[index].vlan_id)
250 			break;
251 	}
252 	if (index == sgid_tbl->max) {
253 		dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
254 		return 0;
255 	}
256 	/* Remove GID from the SGID table */
257 	if (update) {
258 		struct creq_delete_gid_resp resp = {};
259 		struct bnxt_qplib_cmdqmsg msg = {};
260 		struct cmdq_delete_gid req = {};
261 		int rc;
262 
263 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
264 					 CMDQ_BASE_OPCODE_DELETE_GID,
265 					 sizeof(req));
266 		if (sgid_tbl->hw_id[index] == 0xFFFF) {
267 			dev_err(&res->pdev->dev,
268 				"GID entry contains an invalid HW id\n");
269 			return -EINVAL;
270 		}
271 		req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
272 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
273 					sizeof(resp), 0);
274 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
275 		if (rc)
276 			return rc;
277 	}
278 	memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
279 	       sizeof(bnxt_qplib_gid_zero));
280 	sgid_tbl->tbl[index].vlan_id = 0xFFFF;
281 	sgid_tbl->vlan[index] = 0;
282 	sgid_tbl->active--;
283 	dev_dbg(&res->pdev->dev,
284 		"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
285 		 index, sgid_tbl->hw_id[index], sgid_tbl->active);
286 	sgid_tbl->hw_id[index] = (u16)-1;
287 
288 	/* unlock */
289 	return 0;
290 }
291 
292 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
293 			struct bnxt_qplib_gid *gid, const u8 *smac,
294 			u16 vlan_id, bool update, u32 *index)
295 {
296 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
297 						   struct bnxt_qplib_res,
298 						   sgid_tbl);
299 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
300 	int i, free_idx;
301 
302 	/* Do we need a sgid_lock here? */
303 	if (sgid_tbl->active == sgid_tbl->max) {
304 		dev_err(&res->pdev->dev, "SGID table is full\n");
305 		return -ENOMEM;
306 	}
307 	free_idx = sgid_tbl->max;
308 	for (i = 0; i < sgid_tbl->max; i++) {
309 		if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
310 		    sgid_tbl->tbl[i].vlan_id == vlan_id) {
311 			dev_dbg(&res->pdev->dev,
312 				"SGID entry already exist in entry %d!\n", i);
313 			*index = i;
314 			return -EALREADY;
315 		} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
316 				   sizeof(bnxt_qplib_gid_zero)) &&
317 			   free_idx == sgid_tbl->max) {
318 			free_idx = i;
319 		}
320 	}
321 	if (free_idx == sgid_tbl->max) {
322 		dev_err(&res->pdev->dev,
323 			"SGID table is FULL but count is not MAX??\n");
324 		return -ENOMEM;
325 	}
326 	if (update) {
327 		struct creq_add_gid_resp resp = {};
328 		struct bnxt_qplib_cmdqmsg msg = {};
329 		struct cmdq_add_gid req = {};
330 		int rc;
331 
332 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
333 					 CMDQ_BASE_OPCODE_ADD_GID,
334 					 sizeof(req));
335 
336 		req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
337 		req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
338 		req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
339 		req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
340 		/*
341 		 * driver should ensure that all RoCE traffic is always VLAN
342 		 * tagged if RoCE traffic is running on non-zero VLAN ID or
343 		 * RoCE traffic is running on non-zero Priority.
344 		 */
345 		if ((vlan_id != 0xFFFF) || res->prio) {
346 			if (vlan_id != 0xFFFF)
347 				req.vlan = cpu_to_le16
348 				(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
349 			req.vlan |= cpu_to_le16
350 					(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
351 					 CMDQ_ADD_GID_VLAN_VLAN_EN);
352 		}
353 
354 		/* MAC in network format */
355 		req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
356 		req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
357 		req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
358 
359 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
360 					sizeof(resp), 0);
361 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
362 		if (rc)
363 			return rc;
364 		sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
365 	}
366 	/* Add GID to the sgid_tbl */
367 	memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
368 	sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
369 	sgid_tbl->active++;
370 	if (vlan_id != 0xFFFF)
371 		sgid_tbl->vlan[free_idx] = 1;
372 
373 	dev_dbg(&res->pdev->dev,
374 		"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
375 		 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
376 
377 	*index = free_idx;
378 	/* unlock */
379 	return 0;
380 }
381 
382 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
383 			   struct bnxt_qplib_gid *gid, u16 gid_idx,
384 			   const u8 *smac)
385 {
386 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
387 						   struct bnxt_qplib_res,
388 						   sgid_tbl);
389 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
390 	struct creq_modify_gid_resp resp = {};
391 	struct bnxt_qplib_cmdqmsg msg = {};
392 	struct cmdq_modify_gid req = {};
393 	int rc;
394 
395 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
396 				 CMDQ_BASE_OPCODE_MODIFY_GID,
397 				 sizeof(req));
398 
399 	req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
400 	req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
401 	req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
402 	req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
403 	if (res->prio) {
404 		req.vlan |= cpu_to_le16
405 			(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
406 			 CMDQ_ADD_GID_VLAN_VLAN_EN);
407 	}
408 
409 	/* MAC in network format */
410 	req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
411 	req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
412 	req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
413 
414 	req.gid_index = cpu_to_le16(gid_idx);
415 
416 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
417 				sizeof(resp), 0);
418 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
419 	return rc;
420 }
421 
422 /* AH */
423 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
424 			 bool block)
425 {
426 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
427 	struct creq_create_ah_resp resp = {};
428 	struct bnxt_qplib_cmdqmsg msg = {};
429 	struct cmdq_create_ah req = {};
430 	u32 temp32[4];
431 	u16 temp16[3];
432 	int rc;
433 
434 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
435 				 CMDQ_BASE_OPCODE_CREATE_AH,
436 				 sizeof(req));
437 
438 	memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
439 	req.dgid[0] = cpu_to_le32(temp32[0]);
440 	req.dgid[1] = cpu_to_le32(temp32[1]);
441 	req.dgid[2] = cpu_to_le32(temp32[2]);
442 	req.dgid[3] = cpu_to_le32(temp32[3]);
443 
444 	req.type = ah->nw_type;
445 	req.hop_limit = ah->hop_limit;
446 	req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
447 	req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
448 					CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
449 					CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
450 	req.pd_id = cpu_to_le32(ah->pd->id);
451 	req.traffic_class = ah->traffic_class;
452 
453 	/* MAC in network format */
454 	memcpy(temp16, ah->dmac, 6);
455 	req.dest_mac[0] = cpu_to_le16(temp16[0]);
456 	req.dest_mac[1] = cpu_to_le16(temp16[1]);
457 	req.dest_mac[2] = cpu_to_le16(temp16[2]);
458 
459 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
460 				sizeof(resp), block);
461 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
462 	if (rc)
463 		return rc;
464 
465 	ah->id = le32_to_cpu(resp.xid);
466 	return 0;
467 }
468 
469 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
470 			  bool block)
471 {
472 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
473 	struct creq_destroy_ah_resp resp = {};
474 	struct bnxt_qplib_cmdqmsg msg = {};
475 	struct cmdq_destroy_ah req = {};
476 	int rc;
477 
478 	/* Clean up the AH table in the device */
479 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
480 				 CMDQ_BASE_OPCODE_DESTROY_AH,
481 				 sizeof(req));
482 
483 	req.ah_cid = cpu_to_le32(ah->id);
484 
485 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
486 				sizeof(resp), block);
487 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
488 	return rc;
489 }
490 
491 /* MRW */
492 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
493 {
494 	struct creq_deallocate_key_resp resp = {};
495 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
496 	struct cmdq_deallocate_key req = {};
497 	struct bnxt_qplib_cmdqmsg msg = {};
498 	int rc;
499 
500 	if (mrw->lkey == 0xFFFFFFFF) {
501 		dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
502 		return 0;
503 	}
504 
505 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
506 				 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
507 				 sizeof(req));
508 
509 	req.mrw_flags = mrw->type;
510 
511 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
512 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
513 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
514 		req.key = cpu_to_le32(mrw->rkey);
515 	else
516 		req.key = cpu_to_le32(mrw->lkey);
517 
518 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
519 				sizeof(resp), 0);
520 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
521 	if (rc)
522 		return rc;
523 
524 	/* Free the qplib's MRW memory */
525 	if (mrw->hwq.max_elements)
526 		bnxt_qplib_free_hwq(res, &mrw->hwq);
527 
528 	return 0;
529 }
530 
531 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
532 {
533 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
534 	struct creq_allocate_mrw_resp resp = {};
535 	struct bnxt_qplib_cmdqmsg msg = {};
536 	struct cmdq_allocate_mrw req = {};
537 	unsigned long tmp;
538 	int rc;
539 
540 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
541 				 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
542 				 sizeof(req));
543 
544 	req.pd_id = cpu_to_le32(mrw->pd->id);
545 	req.mrw_flags = mrw->type;
546 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
547 	     mrw->access_flags & BNXT_QPLIB_FR_PMR) ||
548 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
549 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
550 		req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
551 	tmp = (unsigned long)mrw;
552 	req.mrw_handle = cpu_to_le64(tmp);
553 
554 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
555 				sizeof(resp), 0);
556 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
557 	if (rc)
558 		return rc;
559 
560 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
561 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
562 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
563 		mrw->rkey = le32_to_cpu(resp.xid);
564 	else
565 		mrw->lkey = le32_to_cpu(resp.xid);
566 	return 0;
567 }
568 
569 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
570 			 bool block)
571 {
572 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
573 	struct creq_deregister_mr_resp resp = {};
574 	struct bnxt_qplib_cmdqmsg msg = {};
575 	struct cmdq_deregister_mr req = {};
576 	int rc;
577 
578 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
579 				 CMDQ_BASE_OPCODE_DEREGISTER_MR,
580 				 sizeof(req));
581 
582 	req.lkey = cpu_to_le32(mrw->lkey);
583 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
584 				sizeof(resp), block);
585 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
586 	if (rc)
587 		return rc;
588 
589 	/* Free the qplib's MR memory */
590 	if (mrw->hwq.max_elements) {
591 		mrw->va = 0;
592 		mrw->total_size = 0;
593 		bnxt_qplib_free_hwq(res, &mrw->hwq);
594 	}
595 
596 	return 0;
597 }
598 
599 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
600 		      struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
601 {
602 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
603 	struct bnxt_qplib_hwq_attr hwq_attr = {};
604 	struct bnxt_qplib_sg_info sginfo = {};
605 	struct creq_register_mr_resp resp = {};
606 	struct bnxt_qplib_cmdqmsg msg = {};
607 	struct cmdq_register_mr req = {};
608 	int pages, rc;
609 	u32 pg_size;
610 	u16 level;
611 
612 	if (num_pbls) {
613 		pages = roundup_pow_of_two(num_pbls);
614 		/* Allocate memory for the non-leaf pages to store buf ptrs.
615 		 * Non-leaf pages always uses system PAGE_SIZE
616 		 */
617 		/* Free the hwq if it already exist, must be a rereg */
618 		if (mr->hwq.max_elements)
619 			bnxt_qplib_free_hwq(res, &mr->hwq);
620 		hwq_attr.res = res;
621 		hwq_attr.depth = pages;
622 		hwq_attr.stride = sizeof(dma_addr_t);
623 		hwq_attr.type = HWQ_TYPE_MR;
624 		hwq_attr.sginfo = &sginfo;
625 		hwq_attr.sginfo->umem = umem;
626 		hwq_attr.sginfo->npages = pages;
627 		hwq_attr.sginfo->pgsize = buf_pg_size;
628 		hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
629 		rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
630 		if (rc) {
631 			dev_err(&res->pdev->dev,
632 				"SP: Reg MR memory allocation failed\n");
633 			return -ENOMEM;
634 		}
635 	}
636 
637 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
638 				 CMDQ_BASE_OPCODE_REGISTER_MR,
639 				 sizeof(req));
640 
641 	/* Configure the request */
642 	if (mr->hwq.level == PBL_LVL_MAX) {
643 		/* No PBL provided, just use system PAGE_SIZE */
644 		level = 0;
645 		req.pbl = 0;
646 		pg_size = PAGE_SIZE;
647 	} else {
648 		level = mr->hwq.level;
649 		req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
650 	}
651 	pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
652 	req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
653 			       ((ilog2(pg_size) <<
654 				 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
655 				CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
656 	req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
657 				 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
658 				CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
659 	req.access = (mr->access_flags & 0xFFFF);
660 	req.va = cpu_to_le64(mr->va);
661 	req.key = cpu_to_le32(mr->lkey);
662 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags))
663 		req.key = cpu_to_le32(mr->pd->id);
664 	req.flags = cpu_to_le16(mr->flags);
665 	req.mr_size = cpu_to_le64(mr->total_size);
666 
667 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
668 				sizeof(resp), 0);
669 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
670 	if (rc)
671 		goto fail;
672 
673 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags)) {
674 		mr->lkey = le32_to_cpu(resp.xid);
675 		mr->rkey = mr->lkey;
676 	}
677 
678 	return 0;
679 
680 fail:
681 	if (mr->hwq.max_elements)
682 		bnxt_qplib_free_hwq(res, &mr->hwq);
683 	return rc;
684 }
685 
686 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
687 					struct bnxt_qplib_frpl *frpl,
688 					int max_pg_ptrs)
689 {
690 	struct bnxt_qplib_hwq_attr hwq_attr = {};
691 	struct bnxt_qplib_sg_info sginfo = {};
692 	int pg_ptrs, pages, rc;
693 
694 	/* Re-calculate the max to fit the HWQ allocation model */
695 	pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
696 	pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
697 	if (!pages)
698 		pages++;
699 
700 	if (pages > MAX_PBL_LVL_1_PGS)
701 		return -ENOMEM;
702 
703 	sginfo.pgsize = PAGE_SIZE;
704 	sginfo.nopte = true;
705 
706 	hwq_attr.res = res;
707 	hwq_attr.depth = pg_ptrs;
708 	hwq_attr.stride = PAGE_SIZE;
709 	hwq_attr.sginfo = &sginfo;
710 	hwq_attr.type = HWQ_TYPE_CTX;
711 	rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
712 	if (!rc)
713 		frpl->max_pg_ptrs = pg_ptrs;
714 
715 	return rc;
716 }
717 
718 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
719 				       struct bnxt_qplib_frpl *frpl)
720 {
721 	bnxt_qplib_free_hwq(res, &frpl->hwq);
722 	return 0;
723 }
724 
725 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
726 			      struct bnxt_qplib_roce_stats *stats)
727 {
728 	struct creq_query_roce_stats_resp resp = {};
729 	struct creq_query_roce_stats_resp_sb *sb;
730 	struct cmdq_query_roce_stats req = {};
731 	struct bnxt_qplib_cmdqmsg msg = {};
732 	struct bnxt_qplib_rcfw_sbuf sbuf;
733 	int rc;
734 
735 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
736 				 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
737 				 sizeof(req));
738 
739 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
740 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
741 				     &sbuf.dma_addr, GFP_KERNEL);
742 	if (!sbuf.sb)
743 		return -ENOMEM;
744 	sb = sbuf.sb;
745 
746 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
747 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
748 				sizeof(resp), 0);
749 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
750 	if (rc)
751 		goto bail;
752 	/* Extract the context from the side buffer */
753 	stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
754 	stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
755 	stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
756 	stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
757 	stats->missing_resp = le64_to_cpu(sb->missing_resp);
758 	stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
759 	stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
760 	stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
761 	stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
762 	stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
763 	stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
764 	stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
765 	stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
766 	stats->dup_req = le64_to_cpu(sb->dup_req);
767 	stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
768 	stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
769 	stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
770 	stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
771 	stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
772 	stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
773 	stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
774 	stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
775 	stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
776 	stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
777 	stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
778 	stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
779 	stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
780 	stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
781 	stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
782 	stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
783 	stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
784 	stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
785 	stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
786 	stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
787 	stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
788 	stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
789 	stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
790 	stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
791 	stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
792 	if (!rcfw->init_oos_stats) {
793 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
794 		rcfw->init_oos_stats = 1;
795 	} else {
796 		stats->res_oos_drop_count +=
797 				(le64_to_cpu(sb->res_oos_drop_count) -
798 				 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
799 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
800 	}
801 
802 bail:
803 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
804 			  sbuf.sb, sbuf.dma_addr);
805 	return rc;
806 }
807 
808 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
809 			 struct bnxt_qplib_ext_stat *estat)
810 {
811 	struct creq_query_roce_stats_ext_resp resp = {};
812 	struct creq_query_roce_stats_ext_resp_sb *sb;
813 	struct cmdq_query_roce_stats_ext req = {};
814 	struct bnxt_qplib_cmdqmsg msg = {};
815 	struct bnxt_qplib_rcfw_sbuf sbuf;
816 	int rc;
817 
818 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
819 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
820 				     &sbuf.dma_addr, GFP_KERNEL);
821 	if (!sbuf.sb)
822 		return -ENOMEM;
823 
824 	sb = sbuf.sb;
825 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
826 				 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
827 				 sizeof(req));
828 
829 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
830 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
831 	req.function_id = cpu_to_le32(fid);
832 	req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
833 
834 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
835 				sizeof(resp), 0);
836 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
837 	if (rc)
838 		goto bail;
839 
840 	estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
841 	estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
842 	estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
843 	estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
844 	estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
845 	estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
846 	estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
847 	estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
848 	estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
849 	estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
850 	estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
851 	estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
852 	estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
853 	estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
854 	estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
855 	estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
856 	estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
857 	estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
858 	estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
859 	estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
860 	estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
861 
862 bail:
863 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
864 			  sbuf.sb, sbuf.dma_addr);
865 	return rc;
866 }
867 
868 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
869 				    struct bnxt_qplib_cc_param_ext *cc_ext)
870 {
871 	ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
872 	cc_ext->ext_mask = 0;
873 	ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
874 	ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
875 	ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
876 	ext_req->tr_update_mode = cc_ext->tr_update_mode;
877 	ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
878 	ext_req->fr_num_rtts = cc_ext->fr_rtt;
879 	ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
880 	ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
881 	ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
882 	ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
883 	ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
884 	ext_req->actual_cr_factor = cc_ext->cr_factor;
885 	ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
886 	ext_req->cp_bias_en = cc_ext->cp_bias_en;
887 	ext_req->cp_bias = cc_ext->cp_bias;
888 	ext_req->cnp_ecn = cc_ext->cnp_ecn;
889 	ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
890 	ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
891 	ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
892 	ext_req->cr_width = cc_ext->cr_width;
893 	ext_req->quota_period_min = cc_ext->min_quota;
894 	ext_req->quota_period_max = cc_ext->max_quota;
895 	ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
896 	ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
897 	ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
898 	ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
899 	ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
900 	ext_req->red_div = cc_ext->red_div;
901 	ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
902 	ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
903 	ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
904 	ext_req->use_rate_table = cc_ext->low_rate_en;
905 	ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
906 	ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
907 	ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
908 	ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
909 	ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
910 	ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
911 	ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
912 	ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
913 }
914 
915 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
916 			 struct bnxt_qplib_cc_param *cc_param)
917 {
918 	struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
919 	struct creq_modify_roce_cc_resp resp = {};
920 	struct bnxt_qplib_cmdqmsg msg = {};
921 	struct cmdq_modify_roce_cc *req;
922 	int req_size;
923 	void *cmd;
924 	int rc;
925 
926 	/* Prepare the older base command */
927 	req = &tlv_req.base_req;
928 	cmd = req;
929 	req_size = sizeof(*req);
930 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
931 				 sizeof(*req));
932 	req->modify_mask = cpu_to_le32(cc_param->mask);
933 	req->enable_cc = cc_param->enable;
934 	req->g = cc_param->g;
935 	req->num_phases_per_state = cc_param->nph_per_state;
936 	req->time_per_phase = cc_param->time_pph;
937 	req->pkts_per_phase = cc_param->pkts_pph;
938 	req->init_cr = cpu_to_le16(cc_param->init_cr);
939 	req->init_tr = cpu_to_le16(cc_param->init_tr);
940 	req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
941 				(cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
942 	req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
943 	req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
944 	req->rtt = cpu_to_le16(cc_param->rtt);
945 	req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
946 	req->cc_mode = cc_param->cc_mode;
947 	req->inactivity_th = cpu_to_le16(cc_param->inact_th);
948 
949 	/* For chip gen P5 onwards fill extended cmd and header */
950 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
951 		struct roce_tlv *hdr;
952 		u32 payload;
953 		u32 chunks;
954 
955 		cmd = &tlv_req;
956 		req_size = sizeof(tlv_req);
957 		/* Prepare primary tlv header */
958 		hdr = &tlv_req.tlv_hdr;
959 		chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
960 		payload = sizeof(struct cmdq_modify_roce_cc);
961 		__roce_1st_tlv_prep(hdr, chunks, payload, true);
962 		/* Prepare secondary tlv header */
963 		hdr = (struct roce_tlv *)&tlv_req.ext_req;
964 		payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
965 			  sizeof(struct roce_tlv);
966 		__roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
967 		bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
968 	}
969 
970 	bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
971 				sizeof(resp), 0);
972 	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
973 	return rc;
974 }
975