xref: /linux/drivers/infiniband/hw/bnxt_re/qplib_sp.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Slow Path Operators
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
45 
46 #include "roce_hsi.h"
47 
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
52 
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 						     0, 0, 0, 0, 0, 0, 0, 0 } };
55 
56 /* Device */
57 
58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59 {
60 	u16 pcie_ctl2 = 0;
61 
62 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 		return false;
64 
65 	pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 	return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67 }
68 
69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70 				     char *fw_ver)
71 {
72 	struct creq_query_version_resp resp = {};
73 	struct bnxt_qplib_cmdqmsg msg = {};
74 	struct cmdq_query_version req = {};
75 	int rc;
76 
77 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78 				 CMDQ_BASE_OPCODE_QUERY_VERSION,
79 				 sizeof(req));
80 
81 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83 	if (rc)
84 		return;
85 	fw_ver[0] = resp.fw_maj;
86 	fw_ver[1] = resp.fw_minor;
87 	fw_ver[2] = resp.fw_bld;
88 	fw_ver[3] = resp.fw_rsvd;
89 }
90 
91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
92 			    struct bnxt_qplib_dev_attr *attr)
93 {
94 	struct creq_query_func_resp resp = {};
95 	struct bnxt_qplib_cmdqmsg msg = {};
96 	struct creq_query_func_resp_sb *sb;
97 	struct bnxt_qplib_rcfw_sbuf sbuf;
98 	struct bnxt_qplib_chip_ctx *cctx;
99 	struct cmdq_query_func req = {};
100 	u8 *tqm_alloc;
101 	int i, rc;
102 	u32 temp;
103 
104 	cctx = rcfw->res->cctx;
105 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
106 				 CMDQ_BASE_OPCODE_QUERY_FUNC,
107 				 sizeof(req));
108 
109 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
110 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
111 				     &sbuf.dma_addr, GFP_KERNEL);
112 	if (!sbuf.sb)
113 		return -ENOMEM;
114 	sb = sbuf.sb;
115 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
116 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
117 				sizeof(resp), 0);
118 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
119 	if (rc)
120 		goto bail;
121 
122 	/* Extract the context from the side buffer */
123 	attr->max_qp = le32_to_cpu(sb->max_qp);
124 	/* max_qp value reported by FW doesn't include the QP1 */
125 	attr->max_qp += 1;
126 	attr->max_qp_rd_atom =
127 		sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
128 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
129 	attr->max_qp_init_rd_atom =
130 		sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
131 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
132 	attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr) - 1;
133 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx)) {
134 		/*
135 		 * 128 WQEs needs to be reserved for the HW (8916). Prevent
136 		 * reporting the max number on legacy devices
137 		 */
138 		attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
139 	}
140 
141 	/* Adjust for max_qp_wqes for variable wqe */
142 	if (cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE)
143 		attr->max_qp_wqes = BNXT_VAR_MAX_WQE - 1;
144 
145 	attr->max_qp_sges = cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE ?
146 			    min_t(u32, sb->max_sge_var_wqe, BNXT_VAR_MAX_SGE) : 6;
147 	attr->max_cq = le32_to_cpu(sb->max_cq);
148 	attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
149 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
150 		attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes);
151 	attr->max_cq_sges = attr->max_qp_sges;
152 	attr->max_mr = le32_to_cpu(sb->max_mr);
153 	attr->max_mw = le32_to_cpu(sb->max_mw);
154 
155 	attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
156 	attr->max_pd = 64 * 1024;
157 	attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
158 	attr->max_ah = le32_to_cpu(sb->max_ah);
159 
160 	attr->max_srq = le16_to_cpu(sb->max_srq);
161 	attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
162 	attr->max_srq_sges = sb->max_srq_sge;
163 	attr->max_pkey = 1;
164 	attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
165 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
166 		attr->l2_db_size = (sb->l2_db_space_size + 1) *
167 				    (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
168 	/*
169 	 * Read the max gid supported by HW.
170 	 * For each entry in HW  GID in HW table, we consume 2
171 	 * GID entries in the kernel GID table.  So max_gid reported
172 	 * to stack can be up to twice the value reported by the HW, up to 256 gids.
173 	 */
174 	attr->max_sgid = le32_to_cpu(sb->max_gid);
175 	attr->max_sgid = min_t(u32, BNXT_QPLIB_NUM_GIDS_SUPPORTED, 2 * attr->max_sgid);
176 	attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
177 	attr->dev_cap_flags2 = le16_to_cpu(sb->dev_cap_ext_flags_2);
178 
179 	bnxt_qplib_query_version(rcfw, attr->fw_ver);
180 
181 	for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
182 		temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
183 		tqm_alloc = (u8 *)&temp;
184 		attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
185 		attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
186 		attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
187 		attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
188 	}
189 
190 	if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
191 		attr->max_dpi = le32_to_cpu(sb->max_dpi);
192 
193 	attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
194 bail:
195 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
196 			  sbuf.sb, sbuf.dma_addr);
197 	return rc;
198 }
199 
200 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
201 				  struct bnxt_qplib_rcfw *rcfw,
202 				  struct bnxt_qplib_ctx *ctx)
203 {
204 	struct creq_set_func_resources_resp resp = {};
205 	struct cmdq_set_func_resources req = {};
206 	struct bnxt_qplib_cmdqmsg msg = {};
207 	int rc;
208 
209 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
210 				 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
211 				 sizeof(req));
212 
213 	req.number_of_qp = cpu_to_le32(ctx->qpc_count);
214 	req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
215 	req.number_of_srq =  cpu_to_le32(ctx->srqc_count);
216 	req.number_of_cq = cpu_to_le32(ctx->cq_count);
217 
218 	req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
219 	req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
220 	req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
221 	req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
222 	req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
223 
224 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
225 				sizeof(resp), 0);
226 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
227 	if (rc) {
228 		dev_err(&res->pdev->dev, "Failed to set function resources\n");
229 	}
230 	return rc;
231 }
232 
233 /* SGID */
234 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
235 			struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
236 			struct bnxt_qplib_gid *gid)
237 {
238 	if (index >= sgid_tbl->max) {
239 		dev_err(&res->pdev->dev,
240 			"Index %d exceeded SGID table max (%d)\n",
241 			index, sgid_tbl->max);
242 		return -EINVAL;
243 	}
244 	memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
245 	return 0;
246 }
247 
248 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
249 			struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
250 {
251 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
252 						   struct bnxt_qplib_res,
253 						   sgid_tbl);
254 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
255 	int index;
256 
257 	/* Do we need a sgid_lock here? */
258 	if (!sgid_tbl->active) {
259 		dev_err(&res->pdev->dev, "SGID table has no active entries\n");
260 		return -ENOMEM;
261 	}
262 	for (index = 0; index < sgid_tbl->max; index++) {
263 		if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
264 		    vlan_id == sgid_tbl->tbl[index].vlan_id)
265 			break;
266 	}
267 	if (index == sgid_tbl->max) {
268 		dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
269 		return 0;
270 	}
271 	/* Remove GID from the SGID table */
272 	if (update) {
273 		struct creq_delete_gid_resp resp = {};
274 		struct bnxt_qplib_cmdqmsg msg = {};
275 		struct cmdq_delete_gid req = {};
276 		int rc;
277 
278 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
279 					 CMDQ_BASE_OPCODE_DELETE_GID,
280 					 sizeof(req));
281 		if (sgid_tbl->hw_id[index] == 0xFFFF) {
282 			dev_err(&res->pdev->dev,
283 				"GID entry contains an invalid HW id\n");
284 			return -EINVAL;
285 		}
286 		req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
287 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
288 					sizeof(resp), 0);
289 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
290 		if (rc)
291 			return rc;
292 	}
293 	memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
294 	       sizeof(bnxt_qplib_gid_zero));
295 	sgid_tbl->tbl[index].vlan_id = 0xFFFF;
296 	sgid_tbl->vlan[index] = 0;
297 	sgid_tbl->active--;
298 	dev_dbg(&res->pdev->dev,
299 		"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
300 		 index, sgid_tbl->hw_id[index], sgid_tbl->active);
301 	sgid_tbl->hw_id[index] = (u16)-1;
302 
303 	/* unlock */
304 	return 0;
305 }
306 
307 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
308 			struct bnxt_qplib_gid *gid, const u8 *smac,
309 			u16 vlan_id, bool update, u32 *index)
310 {
311 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
312 						   struct bnxt_qplib_res,
313 						   sgid_tbl);
314 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
315 	int i, free_idx;
316 
317 	/* Do we need a sgid_lock here? */
318 	if (sgid_tbl->active == sgid_tbl->max) {
319 		dev_err(&res->pdev->dev, "SGID table is full\n");
320 		return -ENOMEM;
321 	}
322 	free_idx = sgid_tbl->max;
323 	for (i = 0; i < sgid_tbl->max; i++) {
324 		if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
325 		    sgid_tbl->tbl[i].vlan_id == vlan_id) {
326 			dev_dbg(&res->pdev->dev,
327 				"SGID entry already exist in entry %d!\n", i);
328 			*index = i;
329 			return -EALREADY;
330 		} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
331 				   sizeof(bnxt_qplib_gid_zero)) &&
332 			   free_idx == sgid_tbl->max) {
333 			free_idx = i;
334 		}
335 	}
336 	if (free_idx == sgid_tbl->max) {
337 		dev_err(&res->pdev->dev,
338 			"SGID table is FULL but count is not MAX??\n");
339 		return -ENOMEM;
340 	}
341 	if (update) {
342 		struct creq_add_gid_resp resp = {};
343 		struct bnxt_qplib_cmdqmsg msg = {};
344 		struct cmdq_add_gid req = {};
345 		int rc;
346 
347 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
348 					 CMDQ_BASE_OPCODE_ADD_GID,
349 					 sizeof(req));
350 
351 		req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
352 		req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
353 		req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
354 		req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
355 		/*
356 		 * driver should ensure that all RoCE traffic is always VLAN
357 		 * tagged if RoCE traffic is running on non-zero VLAN ID or
358 		 * RoCE traffic is running on non-zero Priority.
359 		 */
360 		if ((vlan_id != 0xFFFF) || res->prio) {
361 			if (vlan_id != 0xFFFF)
362 				req.vlan = cpu_to_le16
363 				(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
364 			req.vlan |= cpu_to_le16
365 					(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
366 					 CMDQ_ADD_GID_VLAN_VLAN_EN);
367 		}
368 
369 		/* MAC in network format */
370 		req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
371 		req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
372 		req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
373 
374 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
375 					sizeof(resp), 0);
376 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
377 		if (rc)
378 			return rc;
379 		sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
380 	}
381 	/* Add GID to the sgid_tbl */
382 	memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
383 	sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
384 	sgid_tbl->active++;
385 	if (vlan_id != 0xFFFF)
386 		sgid_tbl->vlan[free_idx] = 1;
387 
388 	dev_dbg(&res->pdev->dev,
389 		"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
390 		 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
391 
392 	*index = free_idx;
393 	/* unlock */
394 	return 0;
395 }
396 
397 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
398 			   struct bnxt_qplib_gid *gid, u16 gid_idx,
399 			   const u8 *smac)
400 {
401 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
402 						   struct bnxt_qplib_res,
403 						   sgid_tbl);
404 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
405 	struct creq_modify_gid_resp resp = {};
406 	struct bnxt_qplib_cmdqmsg msg = {};
407 	struct cmdq_modify_gid req = {};
408 	int rc;
409 
410 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
411 				 CMDQ_BASE_OPCODE_MODIFY_GID,
412 				 sizeof(req));
413 
414 	req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
415 	req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
416 	req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
417 	req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
418 	if (res->prio) {
419 		req.vlan |= cpu_to_le16
420 			(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
421 			 CMDQ_ADD_GID_VLAN_VLAN_EN);
422 	}
423 
424 	/* MAC in network format */
425 	req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
426 	req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
427 	req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
428 
429 	req.gid_index = cpu_to_le16(gid_idx);
430 
431 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
432 				sizeof(resp), 0);
433 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
434 	return rc;
435 }
436 
437 /* AH */
438 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
439 			 bool block)
440 {
441 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
442 	struct creq_create_ah_resp resp = {};
443 	struct bnxt_qplib_cmdqmsg msg = {};
444 	struct cmdq_create_ah req = {};
445 	u32 temp32[4];
446 	u16 temp16[3];
447 	int rc;
448 
449 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
450 				 CMDQ_BASE_OPCODE_CREATE_AH,
451 				 sizeof(req));
452 
453 	memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
454 	req.dgid[0] = cpu_to_le32(temp32[0]);
455 	req.dgid[1] = cpu_to_le32(temp32[1]);
456 	req.dgid[2] = cpu_to_le32(temp32[2]);
457 	req.dgid[3] = cpu_to_le32(temp32[3]);
458 
459 	req.type = ah->nw_type;
460 	req.hop_limit = ah->hop_limit;
461 	req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
462 	req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
463 					CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
464 					CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
465 	req.pd_id = cpu_to_le32(ah->pd->id);
466 	req.traffic_class = ah->traffic_class;
467 
468 	/* MAC in network format */
469 	memcpy(temp16, ah->dmac, 6);
470 	req.dest_mac[0] = cpu_to_le16(temp16[0]);
471 	req.dest_mac[1] = cpu_to_le16(temp16[1]);
472 	req.dest_mac[2] = cpu_to_le16(temp16[2]);
473 
474 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
475 				sizeof(resp), block);
476 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
477 	if (rc)
478 		return rc;
479 
480 	ah->id = le32_to_cpu(resp.xid);
481 	return 0;
482 }
483 
484 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
485 			  bool block)
486 {
487 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
488 	struct creq_destroy_ah_resp resp = {};
489 	struct bnxt_qplib_cmdqmsg msg = {};
490 	struct cmdq_destroy_ah req = {};
491 	int rc;
492 
493 	/* Clean up the AH table in the device */
494 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
495 				 CMDQ_BASE_OPCODE_DESTROY_AH,
496 				 sizeof(req));
497 
498 	req.ah_cid = cpu_to_le32(ah->id);
499 
500 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
501 				sizeof(resp), block);
502 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
503 	return rc;
504 }
505 
506 /* MRW */
507 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
508 {
509 	struct creq_deallocate_key_resp resp = {};
510 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
511 	struct cmdq_deallocate_key req = {};
512 	struct bnxt_qplib_cmdqmsg msg = {};
513 	int rc;
514 
515 	if (mrw->lkey == 0xFFFFFFFF) {
516 		dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
517 		return 0;
518 	}
519 
520 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
521 				 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
522 				 sizeof(req));
523 
524 	req.mrw_flags = mrw->type;
525 
526 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
527 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
528 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
529 		req.key = cpu_to_le32(mrw->rkey);
530 	else
531 		req.key = cpu_to_le32(mrw->lkey);
532 
533 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
534 				sizeof(resp), 0);
535 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
536 	if (rc)
537 		return rc;
538 
539 	/* Free the qplib's MRW memory */
540 	if (mrw->hwq.max_elements)
541 		bnxt_qplib_free_hwq(res, &mrw->hwq);
542 
543 	return 0;
544 }
545 
546 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
547 {
548 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
549 	struct creq_allocate_mrw_resp resp = {};
550 	struct bnxt_qplib_cmdqmsg msg = {};
551 	struct cmdq_allocate_mrw req = {};
552 	unsigned long tmp;
553 	int rc;
554 
555 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
556 				 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
557 				 sizeof(req));
558 
559 	req.pd_id = cpu_to_le32(mrw->pd->id);
560 	req.mrw_flags = mrw->type;
561 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
562 	     mrw->access_flags & BNXT_QPLIB_FR_PMR) ||
563 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
564 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
565 		req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
566 	tmp = (unsigned long)mrw;
567 	req.mrw_handle = cpu_to_le64(tmp);
568 
569 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
570 				sizeof(resp), 0);
571 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
572 	if (rc)
573 		return rc;
574 
575 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
576 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
577 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
578 		mrw->rkey = le32_to_cpu(resp.xid);
579 	else
580 		mrw->lkey = le32_to_cpu(resp.xid);
581 	return 0;
582 }
583 
584 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
585 			 bool block)
586 {
587 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
588 	struct creq_deregister_mr_resp resp = {};
589 	struct bnxt_qplib_cmdqmsg msg = {};
590 	struct cmdq_deregister_mr req = {};
591 	int rc;
592 
593 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
594 				 CMDQ_BASE_OPCODE_DEREGISTER_MR,
595 				 sizeof(req));
596 
597 	req.lkey = cpu_to_le32(mrw->lkey);
598 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
599 				sizeof(resp), block);
600 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
601 	if (rc)
602 		return rc;
603 
604 	/* Free the qplib's MR memory */
605 	if (mrw->hwq.max_elements) {
606 		mrw->va = 0;
607 		mrw->total_size = 0;
608 		bnxt_qplib_free_hwq(res, &mrw->hwq);
609 	}
610 
611 	return 0;
612 }
613 
614 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
615 		      struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
616 {
617 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
618 	struct bnxt_qplib_hwq_attr hwq_attr = {};
619 	struct bnxt_qplib_sg_info sginfo = {};
620 	struct creq_register_mr_resp resp = {};
621 	struct bnxt_qplib_cmdqmsg msg = {};
622 	struct cmdq_register_mr req = {};
623 	int pages, rc;
624 	u32 pg_size;
625 	u16 level;
626 
627 	if (num_pbls) {
628 		pages = roundup_pow_of_two(num_pbls);
629 		/* Allocate memory for the non-leaf pages to store buf ptrs.
630 		 * Non-leaf pages always uses system PAGE_SIZE
631 		 */
632 		/* Free the hwq if it already exist, must be a rereg */
633 		if (mr->hwq.max_elements)
634 			bnxt_qplib_free_hwq(res, &mr->hwq);
635 		hwq_attr.res = res;
636 		hwq_attr.depth = pages;
637 		hwq_attr.stride = sizeof(dma_addr_t);
638 		hwq_attr.type = HWQ_TYPE_MR;
639 		hwq_attr.sginfo = &sginfo;
640 		hwq_attr.sginfo->umem = umem;
641 		hwq_attr.sginfo->npages = pages;
642 		hwq_attr.sginfo->pgsize = buf_pg_size;
643 		hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
644 		rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
645 		if (rc) {
646 			dev_err(&res->pdev->dev,
647 				"SP: Reg MR memory allocation failed\n");
648 			return -ENOMEM;
649 		}
650 	}
651 
652 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
653 				 CMDQ_BASE_OPCODE_REGISTER_MR,
654 				 sizeof(req));
655 
656 	/* Configure the request */
657 	if (mr->hwq.level == PBL_LVL_MAX) {
658 		/* No PBL provided, just use system PAGE_SIZE */
659 		level = 0;
660 		req.pbl = 0;
661 		pg_size = PAGE_SIZE;
662 	} else {
663 		level = mr->hwq.level;
664 		req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
665 	}
666 	pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
667 	req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
668 			       ((ilog2(pg_size) <<
669 				 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
670 				CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
671 	req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
672 				 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
673 				CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
674 	req.access = (mr->access_flags & 0xFFFF);
675 	req.va = cpu_to_le64(mr->va);
676 	req.key = cpu_to_le32(mr->lkey);
677 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags))
678 		req.key = cpu_to_le32(mr->pd->id);
679 	req.flags = cpu_to_le16(mr->flags);
680 	req.mr_size = cpu_to_le64(mr->total_size);
681 
682 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
683 				sizeof(resp), 0);
684 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
685 	if (rc)
686 		goto fail;
687 
688 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags)) {
689 		mr->lkey = le32_to_cpu(resp.xid);
690 		mr->rkey = mr->lkey;
691 	}
692 
693 	return 0;
694 
695 fail:
696 	if (mr->hwq.max_elements)
697 		bnxt_qplib_free_hwq(res, &mr->hwq);
698 	return rc;
699 }
700 
701 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
702 					struct bnxt_qplib_frpl *frpl,
703 					int max_pg_ptrs)
704 {
705 	struct bnxt_qplib_hwq_attr hwq_attr = {};
706 	struct bnxt_qplib_sg_info sginfo = {};
707 	int pg_ptrs, pages, rc;
708 
709 	/* Re-calculate the max to fit the HWQ allocation model */
710 	pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
711 	pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
712 	if (!pages)
713 		pages++;
714 
715 	if (pages > MAX_PBL_LVL_1_PGS)
716 		return -ENOMEM;
717 
718 	sginfo.pgsize = PAGE_SIZE;
719 	sginfo.nopte = true;
720 
721 	hwq_attr.res = res;
722 	hwq_attr.depth = pg_ptrs;
723 	hwq_attr.stride = PAGE_SIZE;
724 	hwq_attr.sginfo = &sginfo;
725 	hwq_attr.type = HWQ_TYPE_CTX;
726 	rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
727 	if (!rc)
728 		frpl->max_pg_ptrs = pg_ptrs;
729 
730 	return rc;
731 }
732 
733 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
734 				       struct bnxt_qplib_frpl *frpl)
735 {
736 	bnxt_qplib_free_hwq(res, &frpl->hwq);
737 	return 0;
738 }
739 
740 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
741 			      struct bnxt_qplib_roce_stats *stats)
742 {
743 	struct creq_query_roce_stats_resp resp = {};
744 	struct creq_query_roce_stats_resp_sb *sb;
745 	struct cmdq_query_roce_stats req = {};
746 	struct bnxt_qplib_cmdqmsg msg = {};
747 	struct bnxt_qplib_rcfw_sbuf sbuf;
748 	int rc;
749 
750 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
751 				 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
752 				 sizeof(req));
753 
754 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
755 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
756 				     &sbuf.dma_addr, GFP_KERNEL);
757 	if (!sbuf.sb)
758 		return -ENOMEM;
759 	sb = sbuf.sb;
760 
761 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
762 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
763 				sizeof(resp), 0);
764 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
765 	if (rc)
766 		goto bail;
767 	/* Extract the context from the side buffer */
768 	stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
769 	stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
770 	stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
771 	stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
772 	stats->missing_resp = le64_to_cpu(sb->missing_resp);
773 	stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
774 	stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
775 	stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
776 	stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
777 	stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
778 	stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
779 	stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
780 	stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
781 	stats->dup_req = le64_to_cpu(sb->dup_req);
782 	stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
783 	stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
784 	stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
785 	stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
786 	stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
787 	stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
788 	stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
789 	stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
790 	stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
791 	stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
792 	stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
793 	stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
794 	stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
795 	stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
796 	stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
797 	stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
798 	stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
799 	stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
800 	stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
801 	stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
802 	stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
803 	stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
804 	stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
805 	stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
806 	stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
807 	if (!rcfw->init_oos_stats) {
808 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
809 		rcfw->init_oos_stats = 1;
810 	} else {
811 		stats->res_oos_drop_count +=
812 				(le64_to_cpu(sb->res_oos_drop_count) -
813 				 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
814 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
815 	}
816 
817 bail:
818 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
819 			  sbuf.sb, sbuf.dma_addr);
820 	return rc;
821 }
822 
823 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
824 			 struct bnxt_qplib_ext_stat *estat)
825 {
826 	struct creq_query_roce_stats_ext_resp resp = {};
827 	struct creq_query_roce_stats_ext_resp_sb *sb;
828 	struct cmdq_query_roce_stats_ext req = {};
829 	struct bnxt_qplib_cmdqmsg msg = {};
830 	struct bnxt_qplib_rcfw_sbuf sbuf;
831 	int rc;
832 
833 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
834 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
835 				     &sbuf.dma_addr, GFP_KERNEL);
836 	if (!sbuf.sb)
837 		return -ENOMEM;
838 
839 	sb = sbuf.sb;
840 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
841 				 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
842 				 sizeof(req));
843 
844 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
845 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
846 	req.function_id = cpu_to_le32(fid);
847 	req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
848 
849 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
850 				sizeof(resp), 0);
851 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
852 	if (rc)
853 		goto bail;
854 
855 	estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
856 	estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
857 	estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
858 	estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
859 	estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
860 	estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
861 	estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
862 	estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
863 	estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
864 	estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
865 	estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
866 	estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
867 	estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
868 	estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
869 	estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
870 	estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
871 	estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
872 	estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
873 	estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
874 	estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
875 	estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
876 
877 bail:
878 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
879 			  sbuf.sb, sbuf.dma_addr);
880 	return rc;
881 }
882 
883 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
884 				    struct bnxt_qplib_cc_param_ext *cc_ext)
885 {
886 	ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
887 	cc_ext->ext_mask = 0;
888 	ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
889 	ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
890 	ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
891 	ext_req->tr_update_mode = cc_ext->tr_update_mode;
892 	ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
893 	ext_req->fr_num_rtts = cc_ext->fr_rtt;
894 	ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
895 	ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
896 	ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
897 	ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
898 	ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
899 	ext_req->actual_cr_factor = cc_ext->cr_factor;
900 	ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
901 	ext_req->cp_bias_en = cc_ext->cp_bias_en;
902 	ext_req->cp_bias = cc_ext->cp_bias;
903 	ext_req->cnp_ecn = cc_ext->cnp_ecn;
904 	ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
905 	ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
906 	ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
907 	ext_req->cr_width = cc_ext->cr_width;
908 	ext_req->quota_period_min = cc_ext->min_quota;
909 	ext_req->quota_period_max = cc_ext->max_quota;
910 	ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
911 	ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
912 	ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
913 	ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
914 	ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
915 	ext_req->red_div = cc_ext->red_div;
916 	ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
917 	ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
918 	ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
919 	ext_req->use_rate_table = cc_ext->low_rate_en;
920 	ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
921 	ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
922 	ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
923 	ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
924 	ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
925 	ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
926 	ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
927 	ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
928 }
929 
930 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
931 			 struct bnxt_qplib_cc_param *cc_param)
932 {
933 	struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
934 	struct creq_modify_roce_cc_resp resp = {};
935 	struct bnxt_qplib_cmdqmsg msg = {};
936 	struct cmdq_modify_roce_cc *req;
937 	int req_size;
938 	void *cmd;
939 	int rc;
940 
941 	/* Prepare the older base command */
942 	req = &tlv_req.base_req;
943 	cmd = req;
944 	req_size = sizeof(*req);
945 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
946 				 sizeof(*req));
947 	req->modify_mask = cpu_to_le32(cc_param->mask);
948 	req->enable_cc = cc_param->enable;
949 	req->g = cc_param->g;
950 	req->num_phases_per_state = cc_param->nph_per_state;
951 	req->time_per_phase = cc_param->time_pph;
952 	req->pkts_per_phase = cc_param->pkts_pph;
953 	req->init_cr = cpu_to_le16(cc_param->init_cr);
954 	req->init_tr = cpu_to_le16(cc_param->init_tr);
955 	req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
956 				(cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
957 	req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
958 	req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
959 	req->rtt = cpu_to_le16(cc_param->rtt);
960 	req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
961 	req->cc_mode = cc_param->cc_mode;
962 	req->inactivity_th = cpu_to_le16(cc_param->inact_th);
963 
964 	/* For chip gen P5 onwards fill extended cmd and header */
965 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
966 		struct roce_tlv *hdr;
967 		u32 payload;
968 		u32 chunks;
969 
970 		cmd = &tlv_req;
971 		req_size = sizeof(tlv_req);
972 		/* Prepare primary tlv header */
973 		hdr = &tlv_req.tlv_hdr;
974 		chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
975 		payload = sizeof(struct cmdq_modify_roce_cc);
976 		__roce_1st_tlv_prep(hdr, chunks, payload, true);
977 		/* Prepare secondary tlv header */
978 		hdr = (struct roce_tlv *)&tlv_req.ext_req;
979 		payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
980 			  sizeof(struct roce_tlv);
981 		__roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
982 		bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
983 	}
984 
985 	bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
986 				sizeof(resp), 0);
987 	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
988 	return rc;
989 }
990 
991 int bnxt_qplib_read_context(struct bnxt_qplib_rcfw *rcfw, u8 res_type,
992 			    u32 xid, u32 resp_size, void *resp_va)
993 {
994 	struct creq_read_context resp = {};
995 	struct bnxt_qplib_cmdqmsg msg = {};
996 	struct cmdq_read_context req = {};
997 	struct bnxt_qplib_rcfw_sbuf sbuf;
998 	int rc;
999 
1000 	sbuf.size = resp_size;
1001 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
1002 				     &sbuf.dma_addr, GFP_KERNEL);
1003 	if (!sbuf.sb)
1004 		return -ENOMEM;
1005 
1006 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
1007 				 CMDQ_BASE_OPCODE_READ_CONTEXT, sizeof(req));
1008 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
1009 	req.resp_size = resp_size / BNXT_QPLIB_CMDQE_UNITS;
1010 
1011 	req.xid = cpu_to_le32(xid);
1012 	req.type = res_type;
1013 
1014 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
1015 				sizeof(resp), 0);
1016 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
1017 	if (rc)
1018 		goto free_mem;
1019 
1020 	memcpy(resp_va, sbuf.sb, resp_size);
1021 free_mem:
1022 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr);
1023 	return rc;
1024 }
1025