xref: /linux/drivers/infiniband/hw/bnxt_re/qplib_res.c (revision 666ed8bfd1de3b091cf32ca03b651757dd86cfff)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: QPLib resource manager
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/spinlock.h>
42 #include <linux/pci.h>
43 #include <linux/interrupt.h>
44 #include <linux/inetdevice.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/if_vlan.h>
47 #include <linux/vmalloc.h>
48 #include "roce_hsi.h"
49 #include "qplib_res.h"
50 #include "qplib_sp.h"
51 #include "qplib_rcfw.h"
52 
53 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
54 				      struct bnxt_qplib_stats *stats);
55 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
56 				      struct bnxt_qplib_stats *stats);
57 
58 /* PBL */
59 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
60 		       bool is_umem)
61 {
62 	struct pci_dev *pdev = res->pdev;
63 	int i;
64 
65 	if (!is_umem) {
66 		for (i = 0; i < pbl->pg_count; i++) {
67 			if (pbl->pg_arr[i])
68 				dma_free_coherent(&pdev->dev, pbl->pg_size,
69 						  (void *)((unsigned long)
70 						   pbl->pg_arr[i] &
71 						  PAGE_MASK),
72 						  pbl->pg_map_arr[i]);
73 			else
74 				dev_warn(&pdev->dev,
75 					 "PBL free pg_arr[%d] empty?!\n", i);
76 			pbl->pg_arr[i] = NULL;
77 		}
78 	}
79 	vfree(pbl->pg_arr);
80 	pbl->pg_arr = NULL;
81 	vfree(pbl->pg_map_arr);
82 	pbl->pg_map_arr = NULL;
83 	pbl->pg_count = 0;
84 	pbl->pg_size = 0;
85 }
86 
87 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
88 					   struct bnxt_qplib_sg_info *sginfo)
89 {
90 	struct scatterlist *sghead = sginfo->sghead;
91 	struct sg_dma_page_iter sg_iter;
92 	int i = 0;
93 
94 	for_each_sg_dma_page(sghead, &sg_iter, sginfo->nmap, 0) {
95 		pbl->pg_map_arr[i] = sg_page_iter_dma_address(&sg_iter);
96 		pbl->pg_arr[i] = NULL;
97 		pbl->pg_count++;
98 		i++;
99 	}
100 }
101 
102 static int __alloc_pbl(struct bnxt_qplib_res *res,
103 		       struct bnxt_qplib_pbl *pbl,
104 		       struct bnxt_qplib_sg_info *sginfo)
105 {
106 	struct pci_dev *pdev = res->pdev;
107 	struct scatterlist *sghead;
108 	bool is_umem = false;
109 	u32 pages;
110 	int i;
111 
112 	if (sginfo->nopte)
113 		return 0;
114 	pages = sginfo->npages;
115 	sghead = sginfo->sghead;
116 	/* page ptr arrays */
117 	pbl->pg_arr = vmalloc(pages * sizeof(void *));
118 	if (!pbl->pg_arr)
119 		return -ENOMEM;
120 
121 	pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t));
122 	if (!pbl->pg_map_arr) {
123 		vfree(pbl->pg_arr);
124 		pbl->pg_arr = NULL;
125 		return -ENOMEM;
126 	}
127 	pbl->pg_count = 0;
128 	pbl->pg_size = sginfo->pgsize;
129 
130 	if (!sghead) {
131 		for (i = 0; i < pages; i++) {
132 			pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
133 							    pbl->pg_size,
134 							    &pbl->pg_map_arr[i],
135 							    GFP_KERNEL);
136 			if (!pbl->pg_arr[i])
137 				goto fail;
138 			pbl->pg_count++;
139 		}
140 	} else {
141 		is_umem = true;
142 		bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
143 	}
144 
145 	return 0;
146 fail:
147 	__free_pbl(res, pbl, is_umem);
148 	return -ENOMEM;
149 }
150 
151 /* HWQ */
152 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
153 			 struct bnxt_qplib_hwq *hwq)
154 {
155 	int i;
156 
157 	if (!hwq->max_elements)
158 		return;
159 	if (hwq->level >= PBL_LVL_MAX)
160 		return;
161 
162 	for (i = 0; i < hwq->level + 1; i++) {
163 		if (i == hwq->level)
164 			__free_pbl(res, &hwq->pbl[i], hwq->is_user);
165 		else
166 			__free_pbl(res, &hwq->pbl[i], false);
167 	}
168 
169 	hwq->level = PBL_LVL_MAX;
170 	hwq->max_elements = 0;
171 	hwq->element_size = 0;
172 	hwq->prod = 0;
173 	hwq->cons = 0;
174 	hwq->cp_bit = 0;
175 }
176 
177 /* All HWQs are power of 2 in size */
178 
179 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
180 			      struct bnxt_qplib_hwq_attr *hwq_attr)
181 {
182 	u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
183 	struct bnxt_qplib_sg_info sginfo = {};
184 	u32 depth, stride, npbl, npde;
185 	dma_addr_t *src_phys_ptr, **dst_virt_ptr;
186 	struct scatterlist *sghead = NULL;
187 	struct bnxt_qplib_res *res;
188 	struct pci_dev *pdev;
189 	int i, rc, lvl;
190 
191 	res = hwq_attr->res;
192 	pdev = res->pdev;
193 	sghead = hwq_attr->sginfo->sghead;
194 	pg_size = hwq_attr->sginfo->pgsize;
195 	hwq->level = PBL_LVL_MAX;
196 
197 	depth = roundup_pow_of_two(hwq_attr->depth);
198 	stride = roundup_pow_of_two(hwq_attr->stride);
199 	if (hwq_attr->aux_depth) {
200 		aux_slots = hwq_attr->aux_depth;
201 		aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
202 		aux_pages = (aux_slots * aux_size) / pg_size;
203 		if ((aux_slots * aux_size) % pg_size)
204 			aux_pages++;
205 	}
206 
207 	if (!sghead) {
208 		hwq->is_user = false;
209 		npages = (depth * stride) / pg_size + aux_pages;
210 		if ((depth * stride) % pg_size)
211 			npages++;
212 		if (!npages)
213 			return -EINVAL;
214 		hwq_attr->sginfo->npages = npages;
215 	} else {
216 		hwq->is_user = true;
217 		npages = hwq_attr->sginfo->npages;
218 		npages = (npages * PAGE_SIZE) /
219 			  BIT_ULL(hwq_attr->sginfo->pgshft);
220 		if ((hwq_attr->sginfo->npages * PAGE_SIZE) %
221 		     BIT_ULL(hwq_attr->sginfo->pgshft))
222 			if (!npages)
223 				npages++;
224 	}
225 
226 	if (npages == MAX_PBL_LVL_0_PGS) {
227 		/* This request is Level 0, map PTE */
228 		rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
229 		if (rc)
230 			goto fail;
231 		hwq->level = PBL_LVL_0;
232 	}
233 
234 	if (npages > MAX_PBL_LVL_0_PGS) {
235 		if (npages > MAX_PBL_LVL_1_PGS) {
236 			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
237 				    0 : PTU_PTE_VALID;
238 			/* 2 levels of indirection */
239 			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
240 			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
241 				npbl++;
242 			npde = npbl >> MAX_PDL_LVL_SHIFT;
243 			if (npbl % BIT(MAX_PDL_LVL_SHIFT))
244 				npde++;
245 			/* Alloc PDE pages */
246 			sginfo.pgsize = npde * pg_size;
247 			sginfo.npages = 1;
248 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
249 
250 			/* Alloc PBL pages */
251 			sginfo.npages = npbl;
252 			sginfo.pgsize = PAGE_SIZE;
253 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
254 			if (rc)
255 				goto fail;
256 			/* Fill PDL with PBL page pointers */
257 			dst_virt_ptr =
258 				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
259 			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
260 			if (hwq_attr->type == HWQ_TYPE_MR) {
261 			/* For MR it is expected that we supply only 1 contigous
262 			 * page i.e only 1 entry in the PDL that will contain
263 			 * all the PBLs for the user supplied memory region
264 			 */
265 				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
266 				     i++)
267 					dst_virt_ptr[0][i] = src_phys_ptr[i] |
268 						flag;
269 			} else {
270 				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
271 				     i++)
272 					dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
273 						src_phys_ptr[i] |
274 						PTU_PDE_VALID;
275 			}
276 			/* Alloc or init PTEs */
277 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
278 					 hwq_attr->sginfo);
279 			if (rc)
280 				goto fail;
281 			hwq->level = PBL_LVL_2;
282 			if (hwq_attr->sginfo->nopte)
283 				goto done;
284 			/* Fill PBLs with PTE pointers */
285 			dst_virt_ptr =
286 				(dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
287 			src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
288 			for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
289 				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
290 					src_phys_ptr[i] | PTU_PTE_VALID;
291 			}
292 			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
293 				/* Find the last pg of the size */
294 				i = hwq->pbl[PBL_LVL_2].pg_count;
295 				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
296 								  PTU_PTE_LAST;
297 				if (i > 1)
298 					dst_virt_ptr[PTR_PG(i - 2)]
299 						    [PTR_IDX(i - 2)] |=
300 						    PTU_PTE_NEXT_TO_LAST;
301 			}
302 		} else { /* pages < 512 npbl = 1, npde = 0 */
303 			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
304 				    0 : PTU_PTE_VALID;
305 
306 			/* 1 level of indirection */
307 			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
308 			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
309 				npbl++;
310 			sginfo.npages = npbl;
311 			sginfo.pgsize = PAGE_SIZE;
312 			/* Alloc PBL page */
313 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
314 			if (rc)
315 				goto fail;
316 			/* Alloc or init  PTEs */
317 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
318 					 hwq_attr->sginfo);
319 			if (rc)
320 				goto fail;
321 			hwq->level = PBL_LVL_1;
322 			if (hwq_attr->sginfo->nopte)
323 				goto done;
324 			/* Fill PBL with PTE pointers */
325 			dst_virt_ptr =
326 				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
327 			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
328 			for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
329 				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
330 					src_phys_ptr[i] | flag;
331 			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
332 				/* Find the last pg of the size */
333 				i = hwq->pbl[PBL_LVL_1].pg_count;
334 				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
335 								  PTU_PTE_LAST;
336 				if (i > 1)
337 					dst_virt_ptr[PTR_PG(i - 2)]
338 						    [PTR_IDX(i - 2)] |=
339 						    PTU_PTE_NEXT_TO_LAST;
340 			}
341 		}
342 	}
343 done:
344 	hwq->prod = 0;
345 	hwq->cons = 0;
346 	hwq->pdev = pdev;
347 	hwq->depth = hwq_attr->depth;
348 	hwq->max_elements = depth;
349 	hwq->element_size = stride;
350 	/* For direct access to the elements */
351 	lvl = hwq->level;
352 	if (hwq_attr->sginfo->nopte && hwq->level)
353 		lvl = hwq->level - 1;
354 	hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
355 	hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
356 	spin_lock_init(&hwq->lock);
357 
358 	return 0;
359 fail:
360 	bnxt_qplib_free_hwq(res, hwq);
361 	return -ENOMEM;
362 }
363 
364 /* Context Tables */
365 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
366 			 struct bnxt_qplib_ctx *ctx)
367 {
368 	int i;
369 
370 	bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
371 	bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
372 	bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
373 	bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
374 	bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
375 	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
376 		bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
377 	/* restore original pde level before destroy */
378 	ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
379 	bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
380 	bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
381 }
382 
383 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
384 				      struct bnxt_qplib_ctx *ctx)
385 {
386 	struct bnxt_qplib_hwq_attr hwq_attr = {};
387 	struct bnxt_qplib_sg_info sginfo = {};
388 	struct bnxt_qplib_tqm_ctx *tqmctx;
389 	int rc = 0;
390 	int i;
391 
392 	tqmctx = &ctx->tqm_ctx;
393 
394 	sginfo.pgsize = PAGE_SIZE;
395 	sginfo.pgshft = PAGE_SHIFT;
396 	hwq_attr.sginfo = &sginfo;
397 	hwq_attr.res = res;
398 	hwq_attr.type = HWQ_TYPE_CTX;
399 	hwq_attr.depth = 512;
400 	hwq_attr.stride = sizeof(u64);
401 	/* Alloc pdl buffer */
402 	rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
403 	if (rc)
404 		goto out;
405 	/* Save original pdl level */
406 	tqmctx->pde_level = tqmctx->pde.level;
407 
408 	hwq_attr.stride = 1;
409 	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
410 		if (!tqmctx->qcount[i])
411 			continue;
412 		hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
413 		rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
414 		if (rc)
415 			goto out;
416 	}
417 out:
418 	return rc;
419 }
420 
421 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
422 {
423 	struct bnxt_qplib_hwq *tbl;
424 	dma_addr_t *dma_ptr;
425 	__le64 **pbl_ptr, *ptr;
426 	int i, j, k;
427 	int fnz_idx = -1;
428 	int pg_count;
429 
430 	pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
431 
432 	for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
433 	     i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
434 		tbl = &ctx->qtbl[i];
435 		if (!tbl->max_elements)
436 			continue;
437 		if (fnz_idx == -1)
438 			fnz_idx = i; /* first non-zero index */
439 		switch (tbl->level) {
440 		case PBL_LVL_2:
441 			pg_count = tbl->pbl[PBL_LVL_1].pg_count;
442 			for (k = 0; k < pg_count; k++) {
443 				ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
444 				dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
445 				*ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
446 			}
447 			break;
448 		case PBL_LVL_1:
449 		case PBL_LVL_0:
450 		default:
451 			ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
452 			*ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
453 					   PTU_PTE_VALID);
454 			break;
455 		}
456 	}
457 	if (fnz_idx == -1)
458 		fnz_idx = 0;
459 	/* update pde level as per page table programming */
460 	ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
461 			  ctx->qtbl[fnz_idx].level + 1;
462 }
463 
464 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
465 				      struct bnxt_qplib_ctx *ctx)
466 {
467 	int rc = 0;
468 
469 	rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
470 	if (rc)
471 		goto fail;
472 
473 	bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
474 fail:
475 	return rc;
476 }
477 
478 /*
479  * Routine: bnxt_qplib_alloc_ctx
480  * Description:
481  *     Context tables are memories which are used by the chip fw.
482  *     The 6 tables defined are:
483  *             QPC ctx - holds QP states
484  *             MRW ctx - holds memory region and window
485  *             SRQ ctx - holds shared RQ states
486  *             CQ ctx - holds completion queue states
487  *             TQM ctx - holds Tx Queue Manager context
488  *             TIM ctx - holds timer context
489  *     Depending on the size of the tbl requested, either a 1 Page Buffer List
490  *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
491  *     instead.
492  *     Table might be employed as follows:
493  *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
494  *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
495  *             For 512    < ctx size <= MAX, 2 levels of ind is used
496  * Returns:
497  *     0 if success, else -ERRORS
498  */
499 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
500 			 struct bnxt_qplib_ctx *ctx,
501 			 bool virt_fn, bool is_p5)
502 {
503 	struct bnxt_qplib_hwq_attr hwq_attr = {};
504 	struct bnxt_qplib_sg_info sginfo = {};
505 	int rc = 0;
506 
507 	if (virt_fn || is_p5)
508 		goto stats_alloc;
509 
510 	/* QPC Tables */
511 	sginfo.pgsize = PAGE_SIZE;
512 	sginfo.pgshft = PAGE_SHIFT;
513 	hwq_attr.sginfo = &sginfo;
514 
515 	hwq_attr.res = res;
516 	hwq_attr.depth = ctx->qpc_count;
517 	hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
518 	hwq_attr.type = HWQ_TYPE_CTX;
519 	rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
520 	if (rc)
521 		goto fail;
522 
523 	/* MRW Tables */
524 	hwq_attr.depth = ctx->mrw_count;
525 	hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
526 	rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
527 	if (rc)
528 		goto fail;
529 
530 	/* SRQ Tables */
531 	hwq_attr.depth = ctx->srqc_count;
532 	hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
533 	rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
534 	if (rc)
535 		goto fail;
536 
537 	/* CQ Tables */
538 	hwq_attr.depth = ctx->cq_count;
539 	hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
540 	rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
541 	if (rc)
542 		goto fail;
543 
544 	/* TQM Buffer */
545 	rc = bnxt_qplib_setup_tqm_rings(res, ctx);
546 	if (rc)
547 		goto fail;
548 	/* TIM Buffer */
549 	ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
550 	hwq_attr.depth = ctx->qpc_count * 16;
551 	hwq_attr.stride = 1;
552 	rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
553 	if (rc)
554 		goto fail;
555 stats_alloc:
556 	/* Stats */
557 	rc = bnxt_qplib_alloc_stats_ctx(res->pdev, &ctx->stats);
558 	if (rc)
559 		goto fail;
560 
561 	return 0;
562 
563 fail:
564 	bnxt_qplib_free_ctx(res, ctx);
565 	return rc;
566 }
567 
568 /* GUID */
569 void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid)
570 {
571 	u8 mac[ETH_ALEN];
572 
573 	/* MAC-48 to EUI-64 mapping */
574 	memcpy(mac, dev_addr, ETH_ALEN);
575 	guid[0] = mac[0] ^ 2;
576 	guid[1] = mac[1];
577 	guid[2] = mac[2];
578 	guid[3] = 0xff;
579 	guid[4] = 0xfe;
580 	guid[5] = mac[3];
581 	guid[6] = mac[4];
582 	guid[7] = mac[5];
583 }
584 
585 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
586 				     struct bnxt_qplib_sgid_tbl *sgid_tbl)
587 {
588 	kfree(sgid_tbl->tbl);
589 	kfree(sgid_tbl->hw_id);
590 	kfree(sgid_tbl->ctx);
591 	kfree(sgid_tbl->vlan);
592 	sgid_tbl->tbl = NULL;
593 	sgid_tbl->hw_id = NULL;
594 	sgid_tbl->ctx = NULL;
595 	sgid_tbl->vlan = NULL;
596 	sgid_tbl->max = 0;
597 	sgid_tbl->active = 0;
598 }
599 
600 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
601 				     struct bnxt_qplib_sgid_tbl *sgid_tbl,
602 				     u16 max)
603 {
604 	sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
605 	if (!sgid_tbl->tbl)
606 		return -ENOMEM;
607 
608 	sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
609 	if (!sgid_tbl->hw_id)
610 		goto out_free1;
611 
612 	sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
613 	if (!sgid_tbl->ctx)
614 		goto out_free2;
615 
616 	sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
617 	if (!sgid_tbl->vlan)
618 		goto out_free3;
619 
620 	sgid_tbl->max = max;
621 	return 0;
622 out_free3:
623 	kfree(sgid_tbl->ctx);
624 	sgid_tbl->ctx = NULL;
625 out_free2:
626 	kfree(sgid_tbl->hw_id);
627 	sgid_tbl->hw_id = NULL;
628 out_free1:
629 	kfree(sgid_tbl->tbl);
630 	sgid_tbl->tbl = NULL;
631 	return -ENOMEM;
632 };
633 
634 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
635 					struct bnxt_qplib_sgid_tbl *sgid_tbl)
636 {
637 	int i;
638 
639 	for (i = 0; i < sgid_tbl->max; i++) {
640 		if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
641 			   sizeof(bnxt_qplib_gid_zero)))
642 			bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
643 					    sgid_tbl->tbl[i].vlan_id, true);
644 	}
645 	memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
646 	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
647 	memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
648 	sgid_tbl->active = 0;
649 }
650 
651 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
652 				     struct net_device *netdev)
653 {
654 	u32 i;
655 
656 	for (i = 0; i < sgid_tbl->max; i++)
657 		sgid_tbl->tbl[i].vlan_id = 0xffff;
658 
659 	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
660 }
661 
662 static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res,
663 				     struct bnxt_qplib_pkey_tbl *pkey_tbl)
664 {
665 	if (!pkey_tbl->tbl)
666 		dev_dbg(&res->pdev->dev, "PKEY tbl not present\n");
667 	else
668 		kfree(pkey_tbl->tbl);
669 
670 	pkey_tbl->tbl = NULL;
671 	pkey_tbl->max = 0;
672 	pkey_tbl->active = 0;
673 }
674 
675 static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res,
676 				     struct bnxt_qplib_pkey_tbl *pkey_tbl,
677 				     u16 max)
678 {
679 	pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL);
680 	if (!pkey_tbl->tbl)
681 		return -ENOMEM;
682 
683 	pkey_tbl->max = max;
684 	return 0;
685 };
686 
687 /* PDs */
688 int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
689 {
690 	u32 bit_num;
691 
692 	bit_num = find_first_bit(pdt->tbl, pdt->max);
693 	if (bit_num == pdt->max)
694 		return -ENOMEM;
695 
696 	/* Found unused PD */
697 	clear_bit(bit_num, pdt->tbl);
698 	pd->id = bit_num;
699 	return 0;
700 }
701 
702 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
703 			  struct bnxt_qplib_pd_tbl *pdt,
704 			  struct bnxt_qplib_pd *pd)
705 {
706 	if (test_and_set_bit(pd->id, pdt->tbl)) {
707 		dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
708 			 pd->id);
709 		return -EINVAL;
710 	}
711 	pd->id = 0;
712 	return 0;
713 }
714 
715 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
716 {
717 	kfree(pdt->tbl);
718 	pdt->tbl = NULL;
719 	pdt->max = 0;
720 }
721 
722 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
723 				   struct bnxt_qplib_pd_tbl *pdt,
724 				   u32 max)
725 {
726 	u32 bytes;
727 
728 	bytes = max >> 3;
729 	if (!bytes)
730 		bytes = 1;
731 	pdt->tbl = kmalloc(bytes, GFP_KERNEL);
732 	if (!pdt->tbl)
733 		return -ENOMEM;
734 
735 	pdt->max = max;
736 	memset((u8 *)pdt->tbl, 0xFF, bytes);
737 
738 	return 0;
739 }
740 
741 /* DPIs */
742 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
743 			 struct bnxt_qplib_dpi     *dpi,
744 			 void                      *app)
745 {
746 	u32 bit_num;
747 
748 	bit_num = find_first_bit(dpit->tbl, dpit->max);
749 	if (bit_num == dpit->max)
750 		return -ENOMEM;
751 
752 	/* Found unused DPI */
753 	clear_bit(bit_num, dpit->tbl);
754 	dpit->app_tbl[bit_num] = app;
755 
756 	dpi->dpi = bit_num;
757 	dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
758 	dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);
759 
760 	return 0;
761 }
762 
763 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
764 			   struct bnxt_qplib_dpi_tbl *dpit,
765 			   struct bnxt_qplib_dpi     *dpi)
766 {
767 	if (dpi->dpi >= dpit->max) {
768 		dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
769 		return -EINVAL;
770 	}
771 	if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
772 		dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
773 			 dpi->dpi);
774 		return -EINVAL;
775 	}
776 	if (dpit->app_tbl)
777 		dpit->app_tbl[dpi->dpi] = NULL;
778 	memset(dpi, 0, sizeof(*dpi));
779 
780 	return 0;
781 }
782 
783 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
784 				    struct bnxt_qplib_dpi_tbl *dpit)
785 {
786 	kfree(dpit->tbl);
787 	kfree(dpit->app_tbl);
788 	if (dpit->dbr_bar_reg_iomem)
789 		pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
790 	memset(dpit, 0, sizeof(*dpit));
791 }
792 
793 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res     *res,
794 				    struct bnxt_qplib_dpi_tbl *dpit,
795 				    u32                       dbr_offset)
796 {
797 	u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
798 	resource_size_t bar_reg_base;
799 	u32 dbr_len, bytes;
800 
801 	if (dpit->dbr_bar_reg_iomem) {
802 		dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
803 			dbr_bar_reg);
804 		return -EALREADY;
805 	}
806 
807 	bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
808 	if (!bar_reg_base) {
809 		dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
810 			dbr_bar_reg);
811 		return -ENOMEM;
812 	}
813 
814 	dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
815 	if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
816 		dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
817 		return -ENOMEM;
818 	}
819 
820 	dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset,
821 						  dbr_len);
822 	if (!dpit->dbr_bar_reg_iomem) {
823 		dev_err(&res->pdev->dev,
824 			"FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
825 		return -ENOMEM;
826 	}
827 
828 	dpit->unmapped_dbr = bar_reg_base + dbr_offset;
829 	dpit->max = dbr_len / PAGE_SIZE;
830 
831 	dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
832 	if (!dpit->app_tbl)
833 		goto unmap_io;
834 
835 	bytes = dpit->max >> 3;
836 	if (!bytes)
837 		bytes = 1;
838 
839 	dpit->tbl = kmalloc(bytes, GFP_KERNEL);
840 	if (!dpit->tbl) {
841 		kfree(dpit->app_tbl);
842 		dpit->app_tbl = NULL;
843 		goto unmap_io;
844 	}
845 
846 	memset((u8 *)dpit->tbl, 0xFF, bytes);
847 
848 	return 0;
849 
850 unmap_io:
851 	pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
852 	return -ENOMEM;
853 }
854 
855 /* PKEYs */
856 static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl)
857 {
858 	memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
859 	pkey_tbl->active = 0;
860 }
861 
862 static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res,
863 				     struct bnxt_qplib_pkey_tbl *pkey_tbl)
864 {
865 	u16 pkey = 0xFFFF;
866 
867 	memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
868 
869 	/* pkey default = 0xFFFF */
870 	bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false);
871 }
872 
873 /* Stats */
874 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
875 				      struct bnxt_qplib_stats *stats)
876 {
877 	if (stats->dma) {
878 		dma_free_coherent(&pdev->dev, stats->size,
879 				  stats->dma, stats->dma_map);
880 	}
881 	memset(stats, 0, sizeof(*stats));
882 	stats->fw_id = -1;
883 }
884 
885 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
886 				      struct bnxt_qplib_stats *stats)
887 {
888 	memset(stats, 0, sizeof(*stats));
889 	stats->fw_id = -1;
890 	/* 128 byte aligned context memory is required only for 57500.
891 	 * However making this unconditional, it does not harm previous
892 	 * generation.
893 	 */
894 	stats->size = ALIGN(sizeof(struct ctx_hw_stats), 128);
895 	stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
896 					&stats->dma_map, GFP_KERNEL);
897 	if (!stats->dma) {
898 		dev_err(&pdev->dev, "Stats DMA allocation failed\n");
899 		return -ENOMEM;
900 	}
901 	return 0;
902 }
903 
904 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
905 {
906 	bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl);
907 	bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
908 }
909 
910 int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
911 {
912 	bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
913 	bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl);
914 
915 	return 0;
916 }
917 
918 void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
919 {
920 	bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl);
921 	bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
922 	bnxt_qplib_free_pd_tbl(&res->pd_tbl);
923 	bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
924 }
925 
926 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
927 			 struct net_device *netdev,
928 			 struct bnxt_qplib_dev_attr *dev_attr)
929 {
930 	int rc = 0;
931 
932 	res->pdev = pdev;
933 	res->netdev = netdev;
934 
935 	rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
936 	if (rc)
937 		goto fail;
938 
939 	rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey);
940 	if (rc)
941 		goto fail;
942 
943 	rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
944 	if (rc)
945 		goto fail;
946 
947 	rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
948 	if (rc)
949 		goto fail;
950 
951 	return 0;
952 fail:
953 	bnxt_qplib_free_res(res);
954 	return rc;
955 }
956