xref: /linux/drivers/infiniband/hw/bnxt_re/main.c (revision d723c456ef5ad60d368e62791004fd152c4380aa)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Main component of the bnxt_re driver
37  */
38 
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/ethtool.h>
42 #include <linux/mutex.h>
43 #include <linux/list.h>
44 #include <linux/rculist.h>
45 #include <linux/spinlock.h>
46 #include <linux/pci.h>
47 #include <net/dcbnl.h>
48 #include <net/ipv6.h>
49 #include <net/addrconf.h>
50 #include <linux/if_ether.h>
51 #include <linux/auxiliary_bus.h>
52 
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_user_verbs.h>
55 #include <rdma/ib_umem.h>
56 #include <rdma/ib_addr.h>
57 #include <linux/hashtable.h>
58 
59 #include "bnxt_ulp.h"
60 #include "roce_hsi.h"
61 #include "qplib_res.h"
62 #include "qplib_sp.h"
63 #include "qplib_fp.h"
64 #include "qplib_rcfw.h"
65 #include "bnxt_re.h"
66 #include "ib_verbs.h"
67 #include <rdma/bnxt_re-abi.h>
68 #include "bnxt.h"
69 #include "hw_counters.h"
70 
71 static char version[] =
72 		BNXT_RE_DESC "\n";
73 
74 MODULE_AUTHOR("Eddie Wai <eddie.wai@broadcom.com>");
75 MODULE_DESCRIPTION(BNXT_RE_DESC);
76 MODULE_LICENSE("Dual BSD/GPL");
77 
78 /* globals */
79 static DEFINE_MUTEX(bnxt_re_mutex);
80 
81 static void bnxt_re_stop_irq(void *handle);
82 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev);
83 static int bnxt_re_netdev_event(struct notifier_block *notifier,
84 				unsigned long event, void *ptr);
85 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev);
86 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type);
87 static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev);
88 
89 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
90 			     u32 *offset);
91 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable);
92 static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev)
93 {
94 	struct bnxt_qplib_chip_ctx *cctx;
95 	struct bnxt_en_dev *en_dev;
96 	struct bnxt_qplib_res *res;
97 	u32 l2db_len = 0;
98 	u32 offset = 0;
99 	u32 barlen;
100 	int rc;
101 
102 	res = &rdev->qplib_res;
103 	en_dev = rdev->en_dev;
104 	cctx = rdev->chip_ctx;
105 
106 	/* Issue qcfg */
107 	rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset);
108 	if (rc)
109 		dev_info(rdev_to_dev(rdev),
110 			 "Couldn't get DB bar size, Low latency framework is disabled\n");
111 	/* set register offsets for both UC and WC */
112 	if (bnxt_qplib_is_chip_gen_p7(cctx)) {
113 		res->dpi_tbl.ucreg.offset = offset;
114 		res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
115 	} else {
116 		res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET :
117 							 BNXT_QPLIB_DBR_PF_DB_OFFSET;
118 		res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset;
119 	}
120 
121 	/* If WC mapping is disabled by L2 driver then en_dev->l2_db_size
122 	 * is equal to the DB-Bar actual size. This indicates that L2
123 	 * is mapping entire bar as UC-. RoCE driver can't enable WC mapping
124 	 * in such cases and DB-push will be disabled.
125 	 */
126 	barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION);
127 	if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) {
128 		res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
129 		dev_info(rdev_to_dev(rdev),  "Low latency framework is enabled\n");
130 	}
131 }
132 
133 static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev)
134 {
135 	struct bnxt_qplib_chip_ctx *cctx;
136 
137 	cctx = rdev->chip_ctx;
138 	cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ?
139 			       BNXT_QPLIB_WQE_MODE_VARIABLE : BNXT_QPLIB_WQE_MODE_STATIC;
140 	if (bnxt_re_hwrm_qcaps(rdev))
141 		dev_err(rdev_to_dev(rdev),
142 			"Failed to query hwrm qcaps\n");
143 	if (bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx)) {
144 		cctx->modes.toggle_bits |= BNXT_QPLIB_CQ_TOGGLE_BIT;
145 		cctx->modes.toggle_bits |= BNXT_QPLIB_SRQ_TOGGLE_BIT;
146 	}
147 }
148 
149 static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev)
150 {
151 	struct bnxt_qplib_chip_ctx *chip_ctx;
152 
153 	if (!rdev->chip_ctx)
154 		return;
155 	chip_ctx = rdev->chip_ctx;
156 	rdev->chip_ctx = NULL;
157 	rdev->rcfw.res = NULL;
158 	rdev->qplib_res.cctx = NULL;
159 	rdev->qplib_res.pdev = NULL;
160 	rdev->qplib_res.netdev = NULL;
161 	kfree(chip_ctx);
162 }
163 
164 static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev)
165 {
166 	struct bnxt_qplib_chip_ctx *chip_ctx;
167 	struct bnxt_en_dev *en_dev;
168 	int rc;
169 
170 	en_dev = rdev->en_dev;
171 
172 	rdev->qplib_res.pdev = en_dev->pdev;
173 	chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL);
174 	if (!chip_ctx)
175 		return -ENOMEM;
176 	chip_ctx->chip_num = en_dev->chip_num;
177 	chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size;
178 
179 	rdev->chip_ctx = chip_ctx;
180 	/* rest members to follow eventually */
181 
182 	rdev->qplib_res.cctx = rdev->chip_ctx;
183 	rdev->rcfw.res = &rdev->qplib_res;
184 	rdev->qplib_res.dattr = &rdev->dev_attr;
185 	rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev);
186 
187 	bnxt_re_set_drv_mode(rdev);
188 
189 	bnxt_re_set_db_offset(rdev);
190 	rc = bnxt_qplib_map_db_bar(&rdev->qplib_res);
191 	if (rc) {
192 		kfree(rdev->chip_ctx);
193 		rdev->chip_ctx = NULL;
194 		return rc;
195 	}
196 
197 	if (bnxt_qplib_determine_atomics(en_dev->pdev))
198 		ibdev_info(&rdev->ibdev,
199 			   "platform doesn't support global atomics.");
200 	return 0;
201 }
202 
203 /* SR-IOV helper functions */
204 
205 static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev)
206 {
207 	if (BNXT_EN_VF(rdev->en_dev))
208 		rdev->is_virtfn = 1;
209 }
210 
211 /* Set the maximum number of each resource that the driver actually wants
212  * to allocate. This may be up to the maximum number the firmware has
213  * reserved for the function. The driver may choose to allocate fewer
214  * resources than the firmware maximum.
215  */
216 static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev)
217 {
218 	struct bnxt_qplib_dev_attr *attr;
219 	struct bnxt_qplib_ctx *ctx;
220 	int i;
221 
222 	attr = &rdev->dev_attr;
223 	ctx = &rdev->qplib_ctx;
224 
225 	ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT,
226 			       attr->max_qp);
227 	ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K;
228 	/* Use max_mr from fw since max_mrw does not get set */
229 	ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr);
230 	ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT,
231 				attr->max_srq);
232 	ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq);
233 	if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
234 		for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
235 			rdev->qplib_ctx.tqm_ctx.qcount[i] =
236 			rdev->dev_attr.tqm_alloc_reqs[i];
237 }
238 
239 static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf)
240 {
241 	struct bnxt_qplib_vf_res *vf_res;
242 	u32 mrws = 0;
243 	u32 vf_pct;
244 	u32 nvfs;
245 
246 	vf_res = &qplib_ctx->vf_res;
247 	/*
248 	 * Reserve a set of resources for the PF. Divide the remaining
249 	 * resources among the VFs
250 	 */
251 	vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF;
252 	nvfs = num_vf;
253 	num_vf = 100 * num_vf;
254 	vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf;
255 	vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf;
256 	vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf;
257 	/*
258 	 * The driver allows many more MRs than other resources. If the
259 	 * firmware does also, then reserve a fixed amount for the PF and
260 	 * divide the rest among VFs. VFs may use many MRs for NFS
261 	 * mounts, ISER, NVME applications, etc. If the firmware severely
262 	 * restricts the number of MRs, then let PF have half and divide
263 	 * the rest among VFs, as for the other resource types.
264 	 */
265 	if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) {
266 		mrws = qplib_ctx->mrw_count * vf_pct;
267 		nvfs = num_vf;
268 	} else {
269 		mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF;
270 	}
271 	vf_res->max_mrw_per_vf = (mrws / nvfs);
272 	vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF;
273 }
274 
275 static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev)
276 {
277 	u32 num_vfs;
278 
279 	memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res));
280 	bnxt_re_limit_pf_res(rdev);
281 
282 	num_vfs =  bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ?
283 			BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs;
284 	if (num_vfs)
285 		bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs);
286 }
287 
288 static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev)
289 {
290 	rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev);
291 	if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) {
292 		bnxt_re_set_resource_limits(rdev);
293 		bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw,
294 					      &rdev->qplib_ctx);
295 	}
296 }
297 
298 static void bnxt_re_shutdown(struct auxiliary_device *adev)
299 {
300 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
301 	struct bnxt_re_dev *rdev;
302 
303 	if (!en_info)
304 		return;
305 
306 	rdev = en_info->rdev;
307 	ib_unregister_device(&rdev->ibdev);
308 	bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
309 }
310 
311 static void bnxt_re_stop_irq(void *handle)
312 {
313 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
314 	struct bnxt_qplib_rcfw *rcfw;
315 	struct bnxt_re_dev *rdev;
316 	struct bnxt_qplib_nq *nq;
317 	int indx;
318 
319 	if (!en_info)
320 		return;
321 
322 	rdev = en_info->rdev;
323 	rcfw = &rdev->rcfw;
324 
325 	for (indx = BNXT_RE_NQ_IDX; indx < rdev->num_msix; indx++) {
326 		nq = &rdev->nq[indx - 1];
327 		bnxt_qplib_nq_stop_irq(nq, false);
328 	}
329 
330 	bnxt_qplib_rcfw_stop_irq(rcfw, false);
331 }
332 
333 static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent)
334 {
335 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
336 	struct bnxt_msix_entry *msix_ent;
337 	struct bnxt_qplib_rcfw *rcfw;
338 	struct bnxt_re_dev *rdev;
339 	struct bnxt_qplib_nq *nq;
340 	int indx, rc;
341 
342 	if (!en_info)
343 		return;
344 
345 	rdev = en_info->rdev;
346 	msix_ent = rdev->en_dev->msix_entries;
347 	rcfw = &rdev->rcfw;
348 	if (!ent) {
349 		/* Not setting the f/w timeout bit in rcfw.
350 		 * During the driver unload the first command
351 		 * to f/w will timeout and that will set the
352 		 * timeout bit.
353 		 */
354 		ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n");
355 		return;
356 	}
357 
358 	/* Vectors may change after restart, so update with new vectors
359 	 * in device sctructure.
360 	 */
361 	for (indx = 0; indx < rdev->num_msix; indx++)
362 		rdev->en_dev->msix_entries[indx].vector = ent[indx].vector;
363 
364 	rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector,
365 				       false);
366 	if (rc) {
367 		ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n");
368 		return;
369 	}
370 	for (indx = BNXT_RE_NQ_IDX ; indx < rdev->num_msix; indx++) {
371 		nq = &rdev->nq[indx - 1];
372 		rc = bnxt_qplib_nq_start_irq(nq, indx - 1,
373 					     msix_ent[indx].vector, false);
374 		if (rc) {
375 			ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n",
376 				   indx - 1);
377 			return;
378 		}
379 	}
380 }
381 
382 static struct bnxt_ulp_ops bnxt_re_ulp_ops = {
383 	.ulp_irq_stop = bnxt_re_stop_irq,
384 	.ulp_irq_restart = bnxt_re_start_irq
385 };
386 
387 /* RoCE -> Net driver */
388 
389 static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev)
390 {
391 	struct bnxt_en_dev *en_dev;
392 
393 	en_dev = rdev->en_dev;
394 	return bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev->adev);
395 }
396 
397 static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd)
398 {
399 	hdr->req_type = cpu_to_le16(opcd);
400 	hdr->cmpl_ring = cpu_to_le16(-1);
401 	hdr->target_id = cpu_to_le16(-1);
402 }
403 
404 static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg,
405 				int msg_len, void *resp, int resp_max_len,
406 				int timeout)
407 {
408 	fw_msg->msg = msg;
409 	fw_msg->msg_len = msg_len;
410 	fw_msg->resp = resp;
411 	fw_msg->resp_max_len = resp_max_len;
412 	fw_msg->timeout = timeout;
413 }
414 
415 /* Query device config using common hwrm */
416 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
417 			     u32 *offset)
418 {
419 	struct bnxt_en_dev *en_dev = rdev->en_dev;
420 	struct hwrm_func_qcfg_output resp = {0};
421 	struct hwrm_func_qcfg_input req = {0};
422 	struct bnxt_fw_msg fw_msg = {};
423 	int rc;
424 
425 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG);
426 	req.fid = cpu_to_le16(0xffff);
427 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
428 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
429 	rc = bnxt_send_msg(en_dev, &fw_msg);
430 	if (!rc) {
431 		*db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024);
432 		*offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024);
433 	}
434 	return rc;
435 }
436 
437 /* Query function capabilities using common hwrm */
438 int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev)
439 {
440 	struct bnxt_en_dev *en_dev = rdev->en_dev;
441 	struct hwrm_func_qcaps_output resp = {};
442 	struct hwrm_func_qcaps_input req = {};
443 	struct bnxt_qplib_chip_ctx *cctx;
444 	struct bnxt_fw_msg fw_msg = {};
445 	u32 flags_ext2;
446 	int rc;
447 
448 	cctx = rdev->chip_ctx;
449 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS);
450 	req.fid = cpu_to_le16(0xffff);
451 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
452 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
453 
454 	rc = bnxt_send_msg(en_dev, &fw_msg);
455 	if (rc)
456 		return rc;
457 	cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE;
458 
459 	flags_ext2 = le32_to_cpu(resp.flags_ext2);
460 	cctx->modes.dbr_pacing = flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED ||
461 				 flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_V0_SUPPORTED;
462 	return 0;
463 }
464 
465 static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev)
466 {
467 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
468 	struct hwrm_func_dbr_pacing_qcfg_output resp = {};
469 	struct hwrm_func_dbr_pacing_qcfg_input req = {};
470 	struct bnxt_en_dev *en_dev = rdev->en_dev;
471 	struct bnxt_qplib_chip_ctx *cctx;
472 	struct bnxt_fw_msg fw_msg = {};
473 	int rc;
474 
475 	cctx = rdev->chip_ctx;
476 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG);
477 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
478 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
479 	rc = bnxt_send_msg(en_dev, &fw_msg);
480 	if (rc)
481 		return rc;
482 
483 	if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
484 	    FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) ==
485 		FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC)
486 		cctx->dbr_stat_db_fifo =
487 			le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
488 			~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK;
489 
490 	pacing_data->fifo_max_depth = le32_to_cpu(resp.dbr_stat_db_max_fifo_depth);
491 	if (!pacing_data->fifo_max_depth)
492 		pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH(cctx);
493 	pacing_data->fifo_room_mask = le32_to_cpu(resp.dbr_stat_db_fifo_reg_fifo_room_mask);
494 	pacing_data->fifo_room_shift = resp.dbr_stat_db_fifo_reg_fifo_room_shift;
495 
496 	return 0;
497 }
498 
499 /* Update the pacing tunable parameters to the default values */
500 static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev)
501 {
502 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
503 
504 	pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing;
505 	pacing_data->pacing_th = rdev->pacing.pacing_algo_th;
506 	pacing_data->alarm_th =
507 		pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
508 }
509 
510 static u32 __get_fifo_occupancy(struct bnxt_re_dev *rdev)
511 {
512 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
513 	u32 read_val, fifo_occup;
514 
515 	read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off);
516 	fifo_occup = pacing_data->fifo_max_depth -
517 		     ((read_val & pacing_data->fifo_room_mask) >>
518 		      pacing_data->fifo_room_shift);
519 	return fifo_occup;
520 }
521 
522 static bool is_dbr_fifo_full(struct bnxt_re_dev *rdev)
523 {
524 	u32 max_occup, fifo_occup;
525 
526 	fifo_occup = __get_fifo_occupancy(rdev);
527 	max_occup = BNXT_RE_MAX_FIFO_DEPTH(rdev->chip_ctx) - 1;
528 	if (fifo_occup == max_occup)
529 		return true;
530 
531 	return false;
532 }
533 
534 static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev)
535 {
536 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
537 	u32 retry_fifo_check = 1000;
538 	u32 fifo_occup;
539 
540 	/* loop shouldn't run infintely as the occupancy usually goes
541 	 * below pacing algo threshold as soon as pacing kicks in.
542 	 */
543 	while (1) {
544 		fifo_occup = __get_fifo_occupancy(rdev);
545 		/* Fifo occupancy cannot be greater the MAX FIFO depth */
546 		if (fifo_occup > pacing_data->fifo_max_depth)
547 			break;
548 
549 		if (fifo_occup < pacing_data->pacing_th)
550 			break;
551 		if (!retry_fifo_check--) {
552 			dev_info_once(rdev_to_dev(rdev),
553 				      "%s: fifo_occup = 0x%xfifo_max_depth = 0x%x pacing_th = 0x%x\n",
554 				      __func__, fifo_occup, pacing_data->fifo_max_depth,
555 					pacing_data->pacing_th);
556 			break;
557 		}
558 
559 	}
560 }
561 
562 static void bnxt_re_db_fifo_check(struct work_struct *work)
563 {
564 	struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
565 			dbq_fifo_check_work);
566 	struct bnxt_qplib_db_pacing_data *pacing_data;
567 	u32 pacing_save;
568 
569 	if (!mutex_trylock(&rdev->pacing.dbq_lock))
570 		return;
571 	pacing_data = rdev->qplib_res.pacing_data;
572 	pacing_save = rdev->pacing.do_pacing_save;
573 	__wait_for_fifo_occupancy_below_th(rdev);
574 	cancel_delayed_work_sync(&rdev->dbq_pacing_work);
575 	if (pacing_save > rdev->pacing.dbr_def_do_pacing) {
576 		/* Double the do_pacing value during the congestion */
577 		pacing_save = pacing_save << 1;
578 	} else {
579 		/*
580 		 * when a new congestion is detected increase the do_pacing
581 		 * by 8 times. And also increase the pacing_th by 4 times. The
582 		 * reason to increase pacing_th is to give more space for the
583 		 * queue to oscillate down without getting empty, but also more
584 		 * room for the queue to increase without causing another alarm.
585 		 */
586 		pacing_save = pacing_save << 3;
587 		pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4;
588 	}
589 
590 	if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING)
591 		pacing_save = BNXT_RE_MAX_DBR_DO_PACING;
592 
593 	pacing_data->do_pacing = pacing_save;
594 	rdev->pacing.do_pacing_save = pacing_data->do_pacing;
595 	pacing_data->alarm_th =
596 		pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
597 	schedule_delayed_work(&rdev->dbq_pacing_work,
598 			      msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
599 	rdev->stats.pacing.alerts++;
600 	mutex_unlock(&rdev->pacing.dbq_lock);
601 }
602 
603 static void bnxt_re_pacing_timer_exp(struct work_struct *work)
604 {
605 	struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
606 			dbq_pacing_work.work);
607 	struct bnxt_qplib_db_pacing_data *pacing_data;
608 	u32 fifo_occup;
609 
610 	if (!mutex_trylock(&rdev->pacing.dbq_lock))
611 		return;
612 
613 	pacing_data = rdev->qplib_res.pacing_data;
614 	fifo_occup = __get_fifo_occupancy(rdev);
615 
616 	if (fifo_occup > pacing_data->pacing_th)
617 		goto restart_timer;
618 
619 	/*
620 	 * Instead of immediately going back to the default do_pacing
621 	 * reduce it by 1/8 times and restart the timer.
622 	 */
623 	pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3);
624 	pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing);
625 	if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) {
626 		bnxt_re_set_default_pacing_data(rdev);
627 		rdev->stats.pacing.complete++;
628 		goto dbq_unlock;
629 	}
630 
631 restart_timer:
632 	schedule_delayed_work(&rdev->dbq_pacing_work,
633 			      msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
634 	rdev->stats.pacing.resched++;
635 dbq_unlock:
636 	rdev->pacing.do_pacing_save = pacing_data->do_pacing;
637 	mutex_unlock(&rdev->pacing.dbq_lock);
638 }
639 
640 void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev)
641 {
642 	struct bnxt_qplib_db_pacing_data *pacing_data;
643 
644 	if (!rdev->pacing.dbr_pacing)
645 		return;
646 	mutex_lock(&rdev->pacing.dbq_lock);
647 	pacing_data = rdev->qplib_res.pacing_data;
648 
649 	/*
650 	 * Increase the alarm_th to max so that other user lib instances do not
651 	 * keep alerting the driver.
652 	 */
653 	pacing_data->alarm_th = pacing_data->fifo_max_depth;
654 	pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING;
655 	cancel_work_sync(&rdev->dbq_fifo_check_work);
656 	schedule_work(&rdev->dbq_fifo_check_work);
657 	mutex_unlock(&rdev->pacing.dbq_lock);
658 }
659 
660 static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev)
661 {
662 	/* Allocate a page for app use */
663 	rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL);
664 	if (!rdev->pacing.dbr_page)
665 		return -ENOMEM;
666 
667 	memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE);
668 	rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page;
669 
670 	if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) {
671 		free_page((u64)rdev->pacing.dbr_page);
672 		rdev->pacing.dbr_page = NULL;
673 		return -EIO;
674 	}
675 
676 	/* MAP HW window 2 for reading db fifo depth */
677 	writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK,
678 	       rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
679 	rdev->pacing.dbr_db_fifo_reg_off =
680 		(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) +
681 		 BNXT_RE_GRC_FIFO_REG_BASE;
682 	rdev->pacing.dbr_bar_addr =
683 		pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off;
684 
685 	if (is_dbr_fifo_full(rdev)) {
686 		free_page((u64)rdev->pacing.dbr_page);
687 		rdev->pacing.dbr_page = NULL;
688 		return -EIO;
689 	}
690 
691 	rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD;
692 	rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME;
693 	rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION;
694 	rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing;
695 	rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off;
696 	bnxt_re_set_default_pacing_data(rdev);
697 	/* Initialize worker for DBR Pacing */
698 	INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check);
699 	INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp);
700 	return 0;
701 }
702 
703 static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev)
704 {
705 	cancel_work_sync(&rdev->dbq_fifo_check_work);
706 	cancel_delayed_work_sync(&rdev->dbq_pacing_work);
707 	if (rdev->pacing.dbr_page)
708 		free_page((u64)rdev->pacing.dbr_page);
709 
710 	rdev->pacing.dbr_page = NULL;
711 	rdev->pacing.dbr_pacing = false;
712 }
713 
714 static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev,
715 				 u16 fw_ring_id, int type)
716 {
717 	struct bnxt_en_dev *en_dev;
718 	struct hwrm_ring_free_input req = {};
719 	struct hwrm_ring_free_output resp;
720 	struct bnxt_fw_msg fw_msg = {};
721 	int rc = -EINVAL;
722 
723 	if (!rdev)
724 		return rc;
725 
726 	en_dev = rdev->en_dev;
727 
728 	if (!en_dev)
729 		return rc;
730 
731 	if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
732 		return 0;
733 
734 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE);
735 	req.ring_type = type;
736 	req.ring_id = cpu_to_le16(fw_ring_id);
737 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
738 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
739 	rc = bnxt_send_msg(en_dev, &fw_msg);
740 	if (rc)
741 		ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x",
742 			  req.ring_id, rc);
743 	return rc;
744 }
745 
746 static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev,
747 				  struct bnxt_re_ring_attr *ring_attr,
748 				  u16 *fw_ring_id)
749 {
750 	struct bnxt_en_dev *en_dev = rdev->en_dev;
751 	struct hwrm_ring_alloc_input req = {};
752 	struct hwrm_ring_alloc_output resp;
753 	struct bnxt_fw_msg fw_msg = {};
754 	int rc = -EINVAL;
755 
756 	if (!en_dev)
757 		return rc;
758 
759 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC);
760 	req.enables = 0;
761 	req.page_tbl_addr =  cpu_to_le64(ring_attr->dma_arr[0]);
762 	if (ring_attr->pages > 1) {
763 		/* Page size is in log2 units */
764 		req.page_size = BNXT_PAGE_SHIFT;
765 		req.page_tbl_depth = 1;
766 	}
767 	req.fbo = 0;
768 	/* Association of ring index with doorbell index and MSIX number */
769 	req.logical_id = cpu_to_le16(ring_attr->lrid);
770 	req.length = cpu_to_le32(ring_attr->depth + 1);
771 	req.ring_type = ring_attr->type;
772 	req.int_mode = ring_attr->mode;
773 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
774 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
775 	rc = bnxt_send_msg(en_dev, &fw_msg);
776 	if (!rc)
777 		*fw_ring_id = le16_to_cpu(resp.ring_id);
778 
779 	return rc;
780 }
781 
782 static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev,
783 				      u32 fw_stats_ctx_id)
784 {
785 	struct bnxt_en_dev *en_dev = rdev->en_dev;
786 	struct hwrm_stat_ctx_free_input req = {};
787 	struct hwrm_stat_ctx_free_output resp = {};
788 	struct bnxt_fw_msg fw_msg = {};
789 	int rc = -EINVAL;
790 
791 	if (!en_dev)
792 		return rc;
793 
794 	if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
795 		return 0;
796 
797 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE);
798 	req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id);
799 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
800 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
801 	rc = bnxt_send_msg(en_dev, &fw_msg);
802 	if (rc)
803 		ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x",
804 			  rc);
805 
806 	return rc;
807 }
808 
809 static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev,
810 				       dma_addr_t dma_map,
811 				       u32 *fw_stats_ctx_id)
812 {
813 	struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx;
814 	struct hwrm_stat_ctx_alloc_output resp = {};
815 	struct hwrm_stat_ctx_alloc_input req = {};
816 	struct bnxt_en_dev *en_dev = rdev->en_dev;
817 	struct bnxt_fw_msg fw_msg = {};
818 	int rc = -EINVAL;
819 
820 	*fw_stats_ctx_id = INVALID_STATS_CTX_ID;
821 
822 	if (!en_dev)
823 		return rc;
824 
825 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC);
826 	req.update_period_ms = cpu_to_le32(1000);
827 	req.stats_dma_addr = cpu_to_le64(dma_map);
828 	req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size);
829 	req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE;
830 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
831 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
832 	rc = bnxt_send_msg(en_dev, &fw_msg);
833 	if (!rc)
834 		*fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id);
835 
836 	return rc;
837 }
838 
839 static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext)
840 {
841 }
842 
843 /* Device */
844 
845 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev)
846 {
847 	struct ib_device *ibdev =
848 		ib_device_get_by_netdev(netdev, RDMA_DRIVER_BNXT_RE);
849 	if (!ibdev)
850 		return NULL;
851 
852 	return container_of(ibdev, struct bnxt_re_dev, ibdev);
853 }
854 
855 static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr,
856 			   char *buf)
857 {
858 	struct bnxt_re_dev *rdev =
859 		rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
860 
861 	return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor);
862 }
863 static DEVICE_ATTR_RO(hw_rev);
864 
865 static ssize_t hca_type_show(struct device *device,
866 			     struct device_attribute *attr, char *buf)
867 {
868 	struct bnxt_re_dev *rdev =
869 		rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
870 
871 	return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc);
872 }
873 static DEVICE_ATTR_RO(hca_type);
874 
875 static struct attribute *bnxt_re_attributes[] = {
876 	&dev_attr_hw_rev.attr,
877 	&dev_attr_hca_type.attr,
878 	NULL
879 };
880 
881 static const struct attribute_group bnxt_re_dev_attr_group = {
882 	.attrs = bnxt_re_attributes,
883 };
884 
885 static const struct ib_device_ops bnxt_re_dev_ops = {
886 	.owner = THIS_MODULE,
887 	.driver_id = RDMA_DRIVER_BNXT_RE,
888 	.uverbs_abi_ver = BNXT_RE_ABI_VERSION,
889 
890 	.add_gid = bnxt_re_add_gid,
891 	.alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats,
892 	.alloc_mr = bnxt_re_alloc_mr,
893 	.alloc_pd = bnxt_re_alloc_pd,
894 	.alloc_ucontext = bnxt_re_alloc_ucontext,
895 	.create_ah = bnxt_re_create_ah,
896 	.create_cq = bnxt_re_create_cq,
897 	.create_qp = bnxt_re_create_qp,
898 	.create_srq = bnxt_re_create_srq,
899 	.create_user_ah = bnxt_re_create_ah,
900 	.dealloc_pd = bnxt_re_dealloc_pd,
901 	.dealloc_ucontext = bnxt_re_dealloc_ucontext,
902 	.del_gid = bnxt_re_del_gid,
903 	.dereg_mr = bnxt_re_dereg_mr,
904 	.destroy_ah = bnxt_re_destroy_ah,
905 	.destroy_cq = bnxt_re_destroy_cq,
906 	.destroy_qp = bnxt_re_destroy_qp,
907 	.destroy_srq = bnxt_re_destroy_srq,
908 	.device_group = &bnxt_re_dev_attr_group,
909 	.disassociate_ucontext = bnxt_re_disassociate_ucontext,
910 	.get_dev_fw_str = bnxt_re_query_fw_str,
911 	.get_dma_mr = bnxt_re_get_dma_mr,
912 	.get_hw_stats = bnxt_re_ib_get_hw_stats,
913 	.get_link_layer = bnxt_re_get_link_layer,
914 	.get_port_immutable = bnxt_re_get_port_immutable,
915 	.map_mr_sg = bnxt_re_map_mr_sg,
916 	.mmap = bnxt_re_mmap,
917 	.mmap_free = bnxt_re_mmap_free,
918 	.modify_qp = bnxt_re_modify_qp,
919 	.modify_srq = bnxt_re_modify_srq,
920 	.poll_cq = bnxt_re_poll_cq,
921 	.post_recv = bnxt_re_post_recv,
922 	.post_send = bnxt_re_post_send,
923 	.post_srq_recv = bnxt_re_post_srq_recv,
924 	.query_ah = bnxt_re_query_ah,
925 	.query_device = bnxt_re_query_device,
926 	.query_pkey = bnxt_re_query_pkey,
927 	.query_port = bnxt_re_query_port,
928 	.query_qp = bnxt_re_query_qp,
929 	.query_srq = bnxt_re_query_srq,
930 	.reg_user_mr = bnxt_re_reg_user_mr,
931 	.reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf,
932 	.req_notify_cq = bnxt_re_req_notify_cq,
933 	.resize_cq = bnxt_re_resize_cq,
934 	INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah),
935 	INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq),
936 	INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd),
937 	INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp),
938 	INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq),
939 	INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx),
940 };
941 
942 static int bnxt_re_register_ib(struct bnxt_re_dev *rdev)
943 {
944 	struct ib_device *ibdev = &rdev->ibdev;
945 	int ret;
946 
947 	/* ib device init */
948 	ibdev->node_type = RDMA_NODE_IB_CA;
949 	strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA",
950 		strlen(BNXT_RE_DESC) + 5);
951 	ibdev->phys_port_cnt = 1;
952 
953 	addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr);
954 
955 	ibdev->num_comp_vectors	= rdev->num_msix - 1;
956 	ibdev->dev.parent = &rdev->en_dev->pdev->dev;
957 	ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY;
958 
959 	if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS))
960 		ibdev->driver_def = bnxt_re_uapi_defs;
961 
962 	ib_set_device_ops(ibdev, &bnxt_re_dev_ops);
963 	ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1);
964 	if (ret)
965 		return ret;
966 
967 	dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX);
968 	ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ);
969 	return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev);
970 }
971 
972 static struct bnxt_re_dev *bnxt_re_dev_add(struct auxiliary_device *adev,
973 					   struct bnxt_en_dev *en_dev)
974 {
975 	struct bnxt_re_dev *rdev;
976 
977 	/* Allocate bnxt_re_dev instance here */
978 	rdev = ib_alloc_device(bnxt_re_dev, ibdev);
979 	if (!rdev) {
980 		ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!",
981 			  ROCE_DRV_MODULE_NAME);
982 		return NULL;
983 	}
984 	/* Default values */
985 	rdev->nb.notifier_call = NULL;
986 	rdev->netdev = en_dev->net;
987 	rdev->en_dev = en_dev;
988 	rdev->adev = adev;
989 	rdev->id = rdev->en_dev->pdev->devfn;
990 	INIT_LIST_HEAD(&rdev->qp_list);
991 	mutex_init(&rdev->qp_lock);
992 	mutex_init(&rdev->pacing.dbq_lock);
993 	atomic_set(&rdev->stats.res.qp_count, 0);
994 	atomic_set(&rdev->stats.res.cq_count, 0);
995 	atomic_set(&rdev->stats.res.srq_count, 0);
996 	atomic_set(&rdev->stats.res.mr_count, 0);
997 	atomic_set(&rdev->stats.res.mw_count, 0);
998 	atomic_set(&rdev->stats.res.ah_count, 0);
999 	atomic_set(&rdev->stats.res.pd_count, 0);
1000 	rdev->cosq[0] = 0xFFFF;
1001 	rdev->cosq[1] = 0xFFFF;
1002 
1003 	return rdev;
1004 }
1005 
1006 static int bnxt_re_handle_unaffi_async_event(struct creq_func_event
1007 					     *unaffi_async)
1008 {
1009 	switch (unaffi_async->event) {
1010 	case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR:
1011 		break;
1012 	case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR:
1013 		break;
1014 	case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR:
1015 		break;
1016 	case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR:
1017 		break;
1018 	case CREQ_FUNC_EVENT_EVENT_CQ_ERROR:
1019 		break;
1020 	case CREQ_FUNC_EVENT_EVENT_TQM_ERROR:
1021 		break;
1022 	case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR:
1023 		break;
1024 	case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR:
1025 		break;
1026 	case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR:
1027 		break;
1028 	case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR:
1029 		break;
1030 	case CREQ_FUNC_EVENT_EVENT_TIM_ERROR:
1031 		break;
1032 	default:
1033 		return -EINVAL;
1034 	}
1035 	return 0;
1036 }
1037 
1038 static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event,
1039 					 struct bnxt_re_qp *qp)
1040 {
1041 	struct creq_qp_error_notification *err_event;
1042 	struct bnxt_re_srq *srq = NULL;
1043 	struct ib_event event = {};
1044 	unsigned int flags;
1045 
1046 	if (qp->qplib_qp.srq)
1047 		srq =  container_of(qp->qplib_qp.srq, struct bnxt_re_srq,
1048 				    qplib_srq);
1049 
1050 	if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR &&
1051 	    rdma_is_kernel_res(&qp->ib_qp.res)) {
1052 		flags = bnxt_re_lock_cqs(qp);
1053 		bnxt_qplib_add_flush_qp(&qp->qplib_qp);
1054 		bnxt_re_unlock_cqs(qp, flags);
1055 	}
1056 
1057 	event.device = &qp->rdev->ibdev;
1058 	event.element.qp = &qp->ib_qp;
1059 	event.event = IB_EVENT_QP_FATAL;
1060 
1061 	err_event = (struct creq_qp_error_notification *)qp_event;
1062 
1063 	switch (err_event->req_err_state_reason) {
1064 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_OPCODE_ERROR:
1065 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TIMEOUT_RETRY_LIMIT:
1066 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RNR_TIMEOUT_RETRY_LIMIT:
1067 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_2:
1068 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_3:
1069 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_READ_RESP:
1070 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_BIND:
1071 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_FAST_REG:
1072 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_INVALIDATE:
1073 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETRAN_LOCAL_ERROR:
1074 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_AV_DOMAIN_ERROR:
1075 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PROD_WQE_MSMTCH_ERROR:
1076 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PSN_RANGE_CHECK_ERROR:
1077 		event.event = IB_EVENT_QP_ACCESS_ERR;
1078 		break;
1079 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_1:
1080 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_4:
1081 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_READ_RESP_LENGTH:
1082 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_WQE_FORMAT_ERROR:
1083 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ORRQ_FORMAT_ERROR:
1084 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_AVID_ERROR:
1085 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_SERV_TYPE_ERROR:
1086 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_OP_ERROR:
1087 		event.event = IB_EVENT_QP_REQ_ERR;
1088 		break;
1089 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_MEMORY_ERROR:
1090 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_MEMORY_ERROR:
1091 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CMP_ERROR:
1092 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CQ_LOAD_ERROR:
1093 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_PCI_ERROR:
1094 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_PCI_ERROR:
1095 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETX_SETUP_ERROR:
1096 		event.event = IB_EVENT_QP_FATAL;
1097 		break;
1098 
1099 	default:
1100 		break;
1101 	}
1102 
1103 	switch (err_event->res_err_state_reason) {
1104 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEED_MAX:
1105 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PAYLOAD_LENGTH_MISMATCH:
1106 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_SEQ_ERROR_RETRY_LIMIT:
1107 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_INVALID_R_KEY:
1108 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_DOMAIN_ERROR:
1109 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_NO_PERMISSION:
1110 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_RANGE_ERROR:
1111 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_INVALID_R_KEY:
1112 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_DOMAIN_ERROR:
1113 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_NO_PERMISSION:
1114 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_RANGE_ERROR:
1115 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNALIGN_ATOMIC:
1116 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_NOT_FOUND:
1117 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_INVALID_DUP_RKEY:
1118 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_FORMAT_ERROR:
1119 		event.event = IB_EVENT_QP_ACCESS_ERR;
1120 		break;
1121 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEEDS_WQE:
1122 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_WQE_FORMAT_ERROR:
1123 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNSUPPORTED_OPCODE:
1124 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_REM_INVALIDATE:
1125 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_OPCODE_ERROR:
1126 		event.event = IB_EVENT_QP_REQ_ERR;
1127 		break;
1128 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_OFLOW:
1129 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CMP_ERROR:
1130 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CQ_LOAD_ERROR:
1131 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_PCI_ERROR:
1132 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_PCI_ERROR:
1133 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_MEMORY_ERROR:
1134 		event.event = IB_EVENT_QP_FATAL;
1135 		break;
1136 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_LOAD_ERROR:
1137 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_ERROR:
1138 		if (srq)
1139 			event.event = IB_EVENT_SRQ_ERR;
1140 		break;
1141 	default:
1142 		break;
1143 	}
1144 
1145 	if (err_event->res_err_state_reason || err_event->req_err_state_reason) {
1146 		ibdev_dbg(&qp->rdev->ibdev,
1147 			  "%s %s qp_id: %d cons (%d %d) req (%d %d) res (%d %d)\n",
1148 			   __func__, rdma_is_kernel_res(&qp->ib_qp.res) ? "kernel" : "user",
1149 			   qp->qplib_qp.id,
1150 			   err_event->sq_cons_idx,
1151 			   err_event->rq_cons_idx,
1152 			   err_event->req_slow_path_state,
1153 			   err_event->req_err_state_reason,
1154 			   err_event->res_slow_path_state,
1155 			   err_event->res_err_state_reason);
1156 	} else {
1157 		if (srq)
1158 			event.event = IB_EVENT_QP_LAST_WQE_REACHED;
1159 	}
1160 
1161 	if (event.event == IB_EVENT_SRQ_ERR && srq->ib_srq.event_handler)  {
1162 		(*srq->ib_srq.event_handler)(&event,
1163 				srq->ib_srq.srq_context);
1164 	} else if (event.device && qp->ib_qp.event_handler) {
1165 		qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context);
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int bnxt_re_handle_cq_async_error(void *event, struct bnxt_re_cq *cq)
1172 {
1173 	struct creq_cq_error_notification *cqerr;
1174 	struct ib_event ibevent = {};
1175 
1176 	cqerr = event;
1177 	switch (cqerr->cq_err_reason) {
1178 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_INVALID_ERROR:
1179 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_OVERFLOW_ERROR:
1180 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_LOAD_ERROR:
1181 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_INVALID_ERROR:
1182 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_OVERFLOW_ERROR:
1183 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_LOAD_ERROR:
1184 		ibevent.event = IB_EVENT_CQ_ERR;
1185 		break;
1186 	default:
1187 		break;
1188 	}
1189 
1190 	if (ibevent.event == IB_EVENT_CQ_ERR && cq->ib_cq.event_handler) {
1191 		ibevent.element.cq = &cq->ib_cq;
1192 		ibevent.device = &cq->rdev->ibdev;
1193 
1194 		ibdev_dbg(&cq->rdev->ibdev,
1195 			  "%s err reason %d\n", __func__, cqerr->cq_err_reason);
1196 		cq->ib_cq.event_handler(&ibevent, cq->ib_cq.cq_context);
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async,
1203 					   void *obj)
1204 {
1205 	struct bnxt_qplib_qp *lib_qp;
1206 	struct bnxt_qplib_cq *lib_cq;
1207 	struct bnxt_re_qp *qp;
1208 	struct bnxt_re_cq *cq;
1209 	int rc = 0;
1210 	u8 event;
1211 
1212 	if (!obj)
1213 		return rc; /* QP was already dead, still return success */
1214 
1215 	event = affi_async->event;
1216 	switch (event) {
1217 	case CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION:
1218 		lib_qp = obj;
1219 		qp = container_of(lib_qp, struct bnxt_re_qp, qplib_qp);
1220 		rc = bnxt_re_handle_qp_async_event(affi_async, qp);
1221 		break;
1222 	case CREQ_QP_EVENT_EVENT_CQ_ERROR_NOTIFICATION:
1223 		lib_cq = obj;
1224 		cq = container_of(lib_cq, struct bnxt_re_cq, qplib_cq);
1225 		rc = bnxt_re_handle_cq_async_error(affi_async, cq);
1226 		break;
1227 	default:
1228 		rc = -EINVAL;
1229 	}
1230 	return rc;
1231 }
1232 
1233 static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw,
1234 			       void *aeqe, void *obj)
1235 {
1236 	struct creq_qp_event *affi_async;
1237 	struct creq_func_event *unaffi_async;
1238 	u8 type;
1239 	int rc;
1240 
1241 	type = ((struct creq_base *)aeqe)->type;
1242 	if (type == CREQ_BASE_TYPE_FUNC_EVENT) {
1243 		unaffi_async = aeqe;
1244 		rc = bnxt_re_handle_unaffi_async_event(unaffi_async);
1245 	} else {
1246 		affi_async = aeqe;
1247 		rc = bnxt_re_handle_affi_async_event(affi_async, obj);
1248 	}
1249 
1250 	return rc;
1251 }
1252 
1253 static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq,
1254 				struct bnxt_qplib_srq *handle, u8 event)
1255 {
1256 	struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq,
1257 					       qplib_srq);
1258 	struct ib_event ib_event;
1259 
1260 	ib_event.device = &srq->rdev->ibdev;
1261 	ib_event.element.srq = &srq->ib_srq;
1262 
1263 	if (srq->ib_srq.event_handler) {
1264 		if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT)
1265 			ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED;
1266 		(*srq->ib_srq.event_handler)(&ib_event,
1267 					     srq->ib_srq.srq_context);
1268 	}
1269 	return 0;
1270 }
1271 
1272 static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq,
1273 			       struct bnxt_qplib_cq *handle)
1274 {
1275 	struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq,
1276 					     qplib_cq);
1277 
1278 	if (cq->ib_cq.comp_handler)
1279 		(*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context);
1280 
1281 	return 0;
1282 }
1283 
1284 static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev)
1285 {
1286 	int i;
1287 
1288 	for (i = 1; i < rdev->num_msix; i++)
1289 		bnxt_qplib_disable_nq(&rdev->nq[i - 1]);
1290 
1291 	if (rdev->qplib_res.rcfw)
1292 		bnxt_qplib_cleanup_res(&rdev->qplib_res);
1293 }
1294 
1295 static int bnxt_re_init_res(struct bnxt_re_dev *rdev)
1296 {
1297 	int num_vec_enabled = 0;
1298 	int rc = 0, i;
1299 	u32 db_offt;
1300 
1301 	bnxt_qplib_init_res(&rdev->qplib_res);
1302 
1303 	for (i = 1; i < rdev->num_msix ; i++) {
1304 		db_offt = rdev->en_dev->msix_entries[i].db_offset;
1305 		rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nq[i - 1],
1306 					  i - 1, rdev->en_dev->msix_entries[i].vector,
1307 					  db_offt, &bnxt_re_cqn_handler,
1308 					  &bnxt_re_srqn_handler);
1309 		if (rc) {
1310 			ibdev_err(&rdev->ibdev,
1311 				  "Failed to enable NQ with rc = 0x%x", rc);
1312 			goto fail;
1313 		}
1314 		num_vec_enabled++;
1315 	}
1316 	return 0;
1317 fail:
1318 	for (i = num_vec_enabled; i >= 0; i--)
1319 		bnxt_qplib_disable_nq(&rdev->nq[i]);
1320 	return rc;
1321 }
1322 
1323 static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev)
1324 {
1325 	u8 type;
1326 	int i;
1327 
1328 	for (i = 0; i < rdev->num_msix - 1; i++) {
1329 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1330 		bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type);
1331 		bnxt_qplib_free_nq(&rdev->nq[i]);
1332 		rdev->nq[i].res = NULL;
1333 	}
1334 }
1335 
1336 static void bnxt_re_free_res(struct bnxt_re_dev *rdev)
1337 {
1338 	bnxt_re_free_nq_res(rdev);
1339 
1340 	if (rdev->qplib_res.dpi_tbl.max) {
1341 		bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
1342 				       &rdev->dpi_privileged);
1343 	}
1344 	if (rdev->qplib_res.rcfw) {
1345 		bnxt_qplib_free_res(&rdev->qplib_res);
1346 		rdev->qplib_res.rcfw = NULL;
1347 	}
1348 }
1349 
1350 static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev)
1351 {
1352 	struct bnxt_re_ring_attr rattr = {};
1353 	int num_vec_created = 0;
1354 	int rc, i;
1355 	u8 type;
1356 
1357 	/* Configure and allocate resources for qplib */
1358 	rdev->qplib_res.rcfw = &rdev->rcfw;
1359 	rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr);
1360 	if (rc)
1361 		goto fail;
1362 
1363 	rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->en_dev->pdev,
1364 				  rdev->netdev, &rdev->dev_attr);
1365 	if (rc)
1366 		goto fail;
1367 
1368 	rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res,
1369 				  &rdev->dpi_privileged,
1370 				  rdev, BNXT_QPLIB_DPI_TYPE_KERNEL);
1371 	if (rc)
1372 		goto dealloc_res;
1373 
1374 	for (i = 0; i < rdev->num_msix - 1; i++) {
1375 		struct bnxt_qplib_nq *nq;
1376 
1377 		nq = &rdev->nq[i];
1378 		nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT;
1379 		rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, &rdev->nq[i]);
1380 		if (rc) {
1381 			ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x",
1382 				  i, rc);
1383 			goto free_nq;
1384 		}
1385 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1386 		rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr;
1387 		rattr.pages = nq->hwq.pbl[rdev->nq[i].hwq.level].pg_count;
1388 		rattr.type = type;
1389 		rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
1390 		rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1;
1391 		rattr.lrid = rdev->en_dev->msix_entries[i + 1].ring_idx;
1392 		rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id);
1393 		if (rc) {
1394 			ibdev_err(&rdev->ibdev,
1395 				  "Failed to allocate NQ fw id with rc = 0x%x",
1396 				  rc);
1397 			bnxt_qplib_free_nq(&rdev->nq[i]);
1398 			goto free_nq;
1399 		}
1400 		num_vec_created++;
1401 	}
1402 	return 0;
1403 free_nq:
1404 	for (i = num_vec_created - 1; i >= 0; i--) {
1405 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1406 		bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type);
1407 		bnxt_qplib_free_nq(&rdev->nq[i]);
1408 	}
1409 	bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
1410 			       &rdev->dpi_privileged);
1411 dealloc_res:
1412 	bnxt_qplib_free_res(&rdev->qplib_res);
1413 
1414 fail:
1415 	rdev->qplib_res.rcfw = NULL;
1416 	return rc;
1417 }
1418 
1419 static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp,
1420 				   u8 port_num, enum ib_event_type event)
1421 {
1422 	struct ib_event ib_event;
1423 
1424 	ib_event.device = ibdev;
1425 	if (qp) {
1426 		ib_event.element.qp = qp;
1427 		ib_event.event = event;
1428 		if (qp->event_handler)
1429 			qp->event_handler(&ib_event, qp->qp_context);
1430 
1431 	} else {
1432 		ib_event.element.port_num = port_num;
1433 		ib_event.event = event;
1434 		ib_dispatch_event(&ib_event);
1435 	}
1436 }
1437 
1438 static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev,
1439 					struct bnxt_re_qp *qp)
1440 {
1441 	return (qp->ib_qp.qp_type == IB_QPT_GSI) ||
1442 	       (qp == rdev->gsi_ctx.gsi_sqp);
1443 }
1444 
1445 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev)
1446 {
1447 	int mask = IB_QP_STATE;
1448 	struct ib_qp_attr qp_attr;
1449 	struct bnxt_re_qp *qp;
1450 
1451 	qp_attr.qp_state = IB_QPS_ERR;
1452 	mutex_lock(&rdev->qp_lock);
1453 	list_for_each_entry(qp, &rdev->qp_list, list) {
1454 		/* Modify the state of all QPs except QP1/Shadow QP */
1455 		if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) {
1456 			if (qp->qplib_qp.state !=
1457 			    CMDQ_MODIFY_QP_NEW_STATE_RESET &&
1458 			    qp->qplib_qp.state !=
1459 			    CMDQ_MODIFY_QP_NEW_STATE_ERR) {
1460 				bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp,
1461 						       1, IB_EVENT_QP_FATAL);
1462 				bnxt_re_modify_qp(&qp->ib_qp, &qp_attr, mask,
1463 						  NULL);
1464 			}
1465 		}
1466 	}
1467 	mutex_unlock(&rdev->qp_lock);
1468 }
1469 
1470 static int bnxt_re_update_gid(struct bnxt_re_dev *rdev)
1471 {
1472 	struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl;
1473 	struct bnxt_qplib_gid gid;
1474 	u16 gid_idx, index;
1475 	int rc = 0;
1476 
1477 	if (!ib_device_try_get(&rdev->ibdev))
1478 		return 0;
1479 
1480 	for (index = 0; index < sgid_tbl->active; index++) {
1481 		gid_idx = sgid_tbl->hw_id[index];
1482 
1483 		if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero,
1484 			    sizeof(bnxt_qplib_gid_zero)))
1485 			continue;
1486 		/* need to modify the VLAN enable setting of non VLAN GID only
1487 		 * as setting is done for VLAN GID while adding GID
1488 		 */
1489 		if (sgid_tbl->vlan[index])
1490 			continue;
1491 
1492 		memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid));
1493 
1494 		rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx,
1495 					    rdev->qplib_res.netdev->dev_addr);
1496 	}
1497 
1498 	ib_device_put(&rdev->ibdev);
1499 	return rc;
1500 }
1501 
1502 static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev)
1503 {
1504 	u32 prio_map = 0, tmp_map = 0;
1505 	struct net_device *netdev;
1506 	struct dcb_app app = {};
1507 
1508 	netdev = rdev->netdev;
1509 
1510 	app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE;
1511 	app.protocol = ETH_P_IBOE;
1512 	tmp_map = dcb_ieee_getapp_mask(netdev, &app);
1513 	prio_map = tmp_map;
1514 
1515 	app.selector = IEEE_8021QAZ_APP_SEL_DGRAM;
1516 	app.protocol = ROCE_V2_UDP_DPORT;
1517 	tmp_map = dcb_ieee_getapp_mask(netdev, &app);
1518 	prio_map |= tmp_map;
1519 
1520 	return prio_map;
1521 }
1522 
1523 static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev)
1524 {
1525 	u8 prio_map = 0;
1526 
1527 	/* Get priority for roce */
1528 	prio_map = bnxt_re_get_priority_mask(rdev);
1529 
1530 	if (prio_map == rdev->cur_prio_map)
1531 		return 0;
1532 	rdev->cur_prio_map = prio_map;
1533 	/* Actual priorities are not programmed as they are already
1534 	 * done by L2 driver; just enable or disable priority vlan tagging
1535 	 */
1536 	if ((prio_map == 0 && rdev->qplib_res.prio) ||
1537 	    (prio_map != 0 && !rdev->qplib_res.prio)) {
1538 		rdev->qplib_res.prio = prio_map;
1539 		bnxt_re_update_gid(rdev);
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev)
1546 {
1547 	struct bnxt_en_dev *en_dev = rdev->en_dev;
1548 	struct hwrm_ver_get_output resp = {};
1549 	struct hwrm_ver_get_input req = {};
1550 	struct bnxt_qplib_chip_ctx *cctx;
1551 	struct bnxt_fw_msg fw_msg = {};
1552 	int rc;
1553 
1554 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET);
1555 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
1556 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
1557 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
1558 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
1559 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
1560 	rc = bnxt_send_msg(en_dev, &fw_msg);
1561 	if (rc) {
1562 		ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x",
1563 			  rc);
1564 		return;
1565 	}
1566 
1567 	cctx = rdev->chip_ctx;
1568 	cctx->hwrm_intf_ver =
1569 		(u64)le16_to_cpu(resp.hwrm_intf_major) << 48 |
1570 		(u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 |
1571 		(u64)le16_to_cpu(resp.hwrm_intf_build) << 16 |
1572 		le16_to_cpu(resp.hwrm_intf_patch);
1573 
1574 	cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout);
1575 
1576 	if (!cctx->hwrm_cmd_max_timeout)
1577 		cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT;
1578 }
1579 
1580 static int bnxt_re_ib_init(struct bnxt_re_dev *rdev)
1581 {
1582 	int rc;
1583 	u32 event;
1584 
1585 	/* Register ib dev */
1586 	rc = bnxt_re_register_ib(rdev);
1587 	if (rc) {
1588 		pr_err("Failed to register with IB: %#x\n", rc);
1589 		return rc;
1590 	}
1591 	dev_info(rdev_to_dev(rdev), "Device registered with IB successfully");
1592 	set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags);
1593 
1594 	event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ?
1595 		IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR;
1596 
1597 	bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event);
1598 
1599 	return rc;
1600 }
1601 
1602 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type)
1603 {
1604 	u8 type;
1605 	int rc;
1606 
1607 	if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags))
1608 		cancel_delayed_work_sync(&rdev->worker);
1609 
1610 	if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED,
1611 			       &rdev->flags))
1612 		bnxt_re_cleanup_res(rdev);
1613 	if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags))
1614 		bnxt_re_free_res(rdev);
1615 
1616 	if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) {
1617 		rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw);
1618 		if (rc)
1619 			ibdev_warn(&rdev->ibdev,
1620 				   "Failed to deinitialize RCFW: %#x", rc);
1621 		bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
1622 		bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
1623 		bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
1624 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1625 		bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
1626 		bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
1627 	}
1628 
1629 	rdev->num_msix = 0;
1630 
1631 	if (rdev->pacing.dbr_pacing)
1632 		bnxt_re_deinitialize_dbr_pacing(rdev);
1633 
1634 	bnxt_re_destroy_chip_ctx(rdev);
1635 	if (op_type == BNXT_RE_COMPLETE_REMOVE) {
1636 		if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags))
1637 			bnxt_unregister_dev(rdev->en_dev);
1638 	}
1639 }
1640 
1641 /* worker thread for polling periodic events. Now used for QoS programming*/
1642 static void bnxt_re_worker(struct work_struct *work)
1643 {
1644 	struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
1645 						worker.work);
1646 
1647 	bnxt_re_setup_qos(rdev);
1648 	schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
1649 }
1650 
1651 static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 op_type)
1652 {
1653 	struct bnxt_re_ring_attr rattr = {};
1654 	struct bnxt_qplib_creq_ctx *creq;
1655 	u32 db_offt;
1656 	int vid;
1657 	u8 type;
1658 	int rc;
1659 
1660 	if (op_type == BNXT_RE_COMPLETE_INIT) {
1661 		/* Registered a new RoCE device instance to netdev */
1662 		rc = bnxt_re_register_netdev(rdev);
1663 		if (rc) {
1664 			ibdev_err(&rdev->ibdev,
1665 				  "Failed to register with netedev: %#x\n", rc);
1666 			return -EINVAL;
1667 		}
1668 	}
1669 	set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
1670 
1671 	rc = bnxt_re_setup_chip_ctx(rdev);
1672 	if (rc) {
1673 		bnxt_unregister_dev(rdev->en_dev);
1674 		clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
1675 		ibdev_err(&rdev->ibdev, "Failed to get chip context\n");
1676 		return -EINVAL;
1677 	}
1678 
1679 	/* Check whether VF or PF */
1680 	bnxt_re_get_sriov_func_type(rdev);
1681 
1682 	if (!rdev->en_dev->ulp_tbl->msix_requested) {
1683 		ibdev_err(&rdev->ibdev,
1684 			  "Failed to get MSI-X vectors: %#x\n", rc);
1685 		rc = -EINVAL;
1686 		goto fail;
1687 	}
1688 	ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n",
1689 		  rdev->en_dev->ulp_tbl->msix_requested);
1690 	rdev->num_msix = rdev->en_dev->ulp_tbl->msix_requested;
1691 
1692 	bnxt_re_query_hwrm_intf_version(rdev);
1693 
1694 	/* Establish RCFW Communication Channel to initialize the context
1695 	 * memory for the function and all child VFs
1696 	 */
1697 	rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw,
1698 					   &rdev->qplib_ctx,
1699 					   BNXT_RE_MAX_QPC_COUNT);
1700 	if (rc) {
1701 		ibdev_err(&rdev->ibdev,
1702 			  "Failed to allocate RCFW Channel: %#x\n", rc);
1703 		goto fail;
1704 	}
1705 
1706 	type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1707 	creq = &rdev->rcfw.creq;
1708 	rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr;
1709 	rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count;
1710 	rattr.type = type;
1711 	rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
1712 	rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1;
1713 	rattr.lrid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].ring_idx;
1714 	rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id);
1715 	if (rc) {
1716 		ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc);
1717 		goto free_rcfw;
1718 	}
1719 	db_offt = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].db_offset;
1720 	vid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].vector;
1721 	rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw,
1722 					    vid, db_offt,
1723 					    &bnxt_re_aeq_handler);
1724 	if (rc) {
1725 		ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n",
1726 			  rc);
1727 		goto free_ring;
1728 	}
1729 
1730 	if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) {
1731 		rc = bnxt_re_initialize_dbr_pacing(rdev);
1732 		if (!rc) {
1733 			rdev->pacing.dbr_pacing = true;
1734 		} else {
1735 			ibdev_err(&rdev->ibdev,
1736 				  "DBR pacing disabled with error : %d\n", rc);
1737 			rdev->pacing.dbr_pacing = false;
1738 		}
1739 	}
1740 	rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr);
1741 	if (rc)
1742 		goto disable_rcfw;
1743 
1744 	bnxt_re_set_resource_limits(rdev);
1745 
1746 	rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0,
1747 				  bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx));
1748 	if (rc) {
1749 		ibdev_err(&rdev->ibdev,
1750 			  "Failed to allocate QPLIB context: %#x\n", rc);
1751 		goto disable_rcfw;
1752 	}
1753 	rc = bnxt_re_net_stats_ctx_alloc(rdev,
1754 					 rdev->qplib_ctx.stats.dma_map,
1755 					 &rdev->qplib_ctx.stats.fw_id);
1756 	if (rc) {
1757 		ibdev_err(&rdev->ibdev,
1758 			  "Failed to allocate stats context: %#x\n", rc);
1759 		goto free_ctx;
1760 	}
1761 
1762 	rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx,
1763 				  rdev->is_virtfn);
1764 	if (rc) {
1765 		ibdev_err(&rdev->ibdev,
1766 			  "Failed to initialize RCFW: %#x\n", rc);
1767 		goto free_sctx;
1768 	}
1769 	set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags);
1770 
1771 	/* Resources based on the 'new' device caps */
1772 	rc = bnxt_re_alloc_res(rdev);
1773 	if (rc) {
1774 		ibdev_err(&rdev->ibdev,
1775 			  "Failed to allocate resources: %#x\n", rc);
1776 		goto fail;
1777 	}
1778 	set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags);
1779 	rc = bnxt_re_init_res(rdev);
1780 	if (rc) {
1781 		ibdev_err(&rdev->ibdev,
1782 			  "Failed to initialize resources: %#x\n", rc);
1783 		goto fail;
1784 	}
1785 
1786 	set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags);
1787 
1788 	if (!rdev->is_virtfn) {
1789 		rc = bnxt_re_setup_qos(rdev);
1790 		if (rc)
1791 			ibdev_info(&rdev->ibdev,
1792 				   "RoCE priority not yet configured\n");
1793 
1794 		INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker);
1795 		set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags);
1796 		schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
1797 		/*
1798 		 * Use the total VF count since the actual VF count may not be
1799 		 * available at this point.
1800 		 */
1801 		bnxt_re_vf_res_config(rdev);
1802 	}
1803 	hash_init(rdev->cq_hash);
1804 	if (rdev->chip_ctx->modes.toggle_bits & BNXT_QPLIB_SRQ_TOGGLE_BIT)
1805 		hash_init(rdev->srq_hash);
1806 
1807 	return 0;
1808 free_sctx:
1809 	bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
1810 free_ctx:
1811 	bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
1812 disable_rcfw:
1813 	bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
1814 free_ring:
1815 	type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1816 	bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
1817 free_rcfw:
1818 	bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
1819 fail:
1820 	bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
1821 
1822 	return rc;
1823 }
1824 
1825 static void bnxt_re_update_en_info_rdev(struct bnxt_re_dev *rdev,
1826 					struct bnxt_re_en_dev_info *en_info,
1827 					struct auxiliary_device *adev)
1828 {
1829 	/* Before updating the rdev pointer in bnxt_re_en_dev_info structure,
1830 	 * take the rtnl lock to avoid accessing invalid rdev pointer from
1831 	 * L2 ULP callbacks. This is applicable in all the places where rdev
1832 	 * pointer is updated in bnxt_re_en_dev_info.
1833 	 */
1834 	rtnl_lock();
1835 	en_info->rdev = rdev;
1836 	rtnl_unlock();
1837 }
1838 
1839 static int bnxt_re_add_device(struct auxiliary_device *adev, u8 op_type)
1840 {
1841 	struct bnxt_aux_priv *aux_priv =
1842 		container_of(adev, struct bnxt_aux_priv, aux_dev);
1843 	struct bnxt_re_en_dev_info *en_info;
1844 	struct bnxt_en_dev *en_dev;
1845 	struct bnxt_re_dev *rdev;
1846 	int rc;
1847 
1848 	en_info = auxiliary_get_drvdata(adev);
1849 	en_dev = en_info->en_dev;
1850 
1851 
1852 	rdev = bnxt_re_dev_add(adev, en_dev);
1853 	if (!rdev || !rdev_to_dev(rdev)) {
1854 		rc = -ENOMEM;
1855 		goto exit;
1856 	}
1857 
1858 	bnxt_re_update_en_info_rdev(rdev, en_info, adev);
1859 
1860 	rc = bnxt_re_dev_init(rdev, op_type);
1861 	if (rc)
1862 		goto re_dev_dealloc;
1863 
1864 	rc = bnxt_re_ib_init(rdev);
1865 	if (rc) {
1866 		pr_err("Failed to register with IB: %s",
1867 			aux_priv->aux_dev.name);
1868 		goto re_dev_uninit;
1869 	}
1870 
1871 	rdev->nb.notifier_call = bnxt_re_netdev_event;
1872 	rc = register_netdevice_notifier(&rdev->nb);
1873 	if (rc) {
1874 		rdev->nb.notifier_call = NULL;
1875 		pr_err("%s: Cannot register to netdevice_notifier",
1876 		       ROCE_DRV_MODULE_NAME);
1877 		goto re_dev_unreg;
1878 	}
1879 	bnxt_re_setup_cc(rdev, true);
1880 
1881 	return 0;
1882 
1883 re_dev_unreg:
1884 	ib_unregister_device(&rdev->ibdev);
1885 re_dev_uninit:
1886 	bnxt_re_update_en_info_rdev(NULL, en_info, adev);
1887 	bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
1888 re_dev_dealloc:
1889 	ib_dealloc_device(&rdev->ibdev);
1890 exit:
1891 	return rc;
1892 }
1893 
1894 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable)
1895 {
1896 	struct bnxt_qplib_cc_param cc_param = {};
1897 
1898 	/* Do not enable congestion control on VFs */
1899 	if (rdev->is_virtfn)
1900 		return;
1901 
1902 	/* Currently enabling only for GenP5 adapters */
1903 	if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
1904 		return;
1905 
1906 	if (enable) {
1907 		cc_param.enable  = 1;
1908 		cc_param.cc_mode = CMDQ_MODIFY_ROCE_CC_CC_MODE_PROBABILISTIC_CC_MODE;
1909 	}
1910 
1911 	cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE |
1912 			 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC |
1913 			 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN);
1914 
1915 	if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param))
1916 		ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable);
1917 }
1918 
1919 /*
1920  * "Notifier chain callback can be invoked for the same chain from
1921  * different CPUs at the same time".
1922  *
1923  * For cases when the netdev is already present, our call to the
1924  * register_netdevice_notifier() will actually get the rtnl_lock()
1925  * before sending NETDEV_REGISTER and (if up) NETDEV_UP
1926  * events.
1927  *
1928  * But for cases when the netdev is not already present, the notifier
1929  * chain is subjected to be invoked from different CPUs simultaneously.
1930  *
1931  * This is protected by the netdev_mutex.
1932  */
1933 static int bnxt_re_netdev_event(struct notifier_block *notifier,
1934 				unsigned long event, void *ptr)
1935 {
1936 	struct net_device *real_dev, *netdev = netdev_notifier_info_to_dev(ptr);
1937 	struct bnxt_re_dev *rdev;
1938 
1939 	real_dev = rdma_vlan_dev_real_dev(netdev);
1940 	if (!real_dev)
1941 		real_dev = netdev;
1942 
1943 	if (real_dev != netdev)
1944 		goto exit;
1945 
1946 	rdev = bnxt_re_from_netdev(real_dev);
1947 	if (!rdev)
1948 		return NOTIFY_DONE;
1949 
1950 
1951 	switch (event) {
1952 	case NETDEV_UP:
1953 	case NETDEV_DOWN:
1954 	case NETDEV_CHANGE:
1955 		bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
1956 					netif_carrier_ok(real_dev) ?
1957 					IB_EVENT_PORT_ACTIVE :
1958 					IB_EVENT_PORT_ERR);
1959 		break;
1960 	default:
1961 		break;
1962 	}
1963 	ib_device_put(&rdev->ibdev);
1964 exit:
1965 	return NOTIFY_DONE;
1966 }
1967 
1968 #define BNXT_ADEV_NAME "bnxt_en"
1969 
1970 static void bnxt_re_remove_device(struct bnxt_re_dev *rdev, u8 op_type,
1971 				  struct auxiliary_device *aux_dev)
1972 {
1973 	if (rdev->nb.notifier_call) {
1974 		unregister_netdevice_notifier(&rdev->nb);
1975 		rdev->nb.notifier_call = NULL;
1976 	} else {
1977 		/* If notifier is null, we should have already done a
1978 		 * clean up before coming here.
1979 		 */
1980 		return;
1981 	}
1982 	bnxt_re_setup_cc(rdev, false);
1983 	ib_unregister_device(&rdev->ibdev);
1984 	bnxt_re_dev_uninit(rdev, op_type);
1985 	ib_dealloc_device(&rdev->ibdev);
1986 }
1987 
1988 static void bnxt_re_remove(struct auxiliary_device *adev)
1989 {
1990 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
1991 	struct bnxt_re_dev *rdev;
1992 
1993 	mutex_lock(&bnxt_re_mutex);
1994 	if (!en_info) {
1995 		mutex_unlock(&bnxt_re_mutex);
1996 		return;
1997 	}
1998 	rdev = en_info->rdev;
1999 
2000 	if (rdev)
2001 		bnxt_re_remove_device(rdev, BNXT_RE_COMPLETE_REMOVE, adev);
2002 	kfree(en_info);
2003 	mutex_unlock(&bnxt_re_mutex);
2004 }
2005 
2006 static int bnxt_re_probe(struct auxiliary_device *adev,
2007 			 const struct auxiliary_device_id *id)
2008 {
2009 	struct bnxt_aux_priv *aux_priv =
2010 		container_of(adev, struct bnxt_aux_priv, aux_dev);
2011 	struct bnxt_re_en_dev_info *en_info;
2012 	struct bnxt_en_dev *en_dev;
2013 	int rc;
2014 
2015 	en_dev = aux_priv->edev;
2016 
2017 	mutex_lock(&bnxt_re_mutex);
2018 	en_info = kzalloc(sizeof(*en_info), GFP_KERNEL);
2019 	if (!en_info) {
2020 		mutex_unlock(&bnxt_re_mutex);
2021 		return -ENOMEM;
2022 	}
2023 	en_info->en_dev = en_dev;
2024 
2025 	auxiliary_set_drvdata(adev, en_info);
2026 
2027 	rc = bnxt_re_add_device(adev, BNXT_RE_COMPLETE_INIT);
2028 	mutex_unlock(&bnxt_re_mutex);
2029 	return rc;
2030 }
2031 
2032 static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state)
2033 {
2034 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2035 	struct bnxt_en_dev *en_dev;
2036 	struct bnxt_re_dev *rdev;
2037 
2038 	if (!en_info)
2039 		return 0;
2040 
2041 	rdev = en_info->rdev;
2042 	en_dev = en_info->en_dev;
2043 	mutex_lock(&bnxt_re_mutex);
2044 	/* L2 driver may invoke this callback during device error/crash or device
2045 	 * reset. Current RoCE driver doesn't recover the device in case of
2046 	 * error. Handle the error by dispatching fatal events to all qps
2047 	 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as
2048 	 * L2 driver want to modify the MSIx table.
2049 	 */
2050 
2051 	ibdev_info(&rdev->ibdev, "Handle device suspend call");
2052 	/* Check the current device state from bnxt_en_dev and move the
2053 	 * device to detached state if FW_FATAL_COND is set.
2054 	 * This prevents more commands to HW during clean-up,
2055 	 * in case the device is already in error.
2056 	 */
2057 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state))
2058 		set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
2059 
2060 	bnxt_re_dev_stop(rdev);
2061 	bnxt_re_stop_irq(adev);
2062 	/* Move the device states to detached and  avoid sending any more
2063 	 * commands to HW
2064 	 */
2065 	set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
2066 	set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
2067 	wake_up_all(&rdev->rcfw.cmdq.waitq);
2068 
2069 	if (rdev->pacing.dbr_pacing)
2070 		bnxt_re_set_pacing_dev_state(rdev);
2071 
2072 	ibdev_info(&rdev->ibdev, "%s: L2 driver notified to stop en_state 0x%lx",
2073 		   __func__, en_dev->en_state);
2074 	bnxt_re_remove_device(rdev, BNXT_RE_PRE_RECOVERY_REMOVE, adev);
2075 	mutex_unlock(&bnxt_re_mutex);
2076 
2077 	return 0;
2078 }
2079 
2080 static int bnxt_re_resume(struct auxiliary_device *adev)
2081 {
2082 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2083 	struct bnxt_re_dev *rdev;
2084 
2085 	if (!en_info)
2086 		return 0;
2087 
2088 	mutex_lock(&bnxt_re_mutex);
2089 	/* L2 driver may invoke this callback during device recovery, resume.
2090 	 * reset. Current RoCE driver doesn't recover the device in case of
2091 	 * error. Handle the error by dispatching fatal events to all qps
2092 	 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as
2093 	 * L2 driver want to modify the MSIx table.
2094 	 */
2095 
2096 	bnxt_re_add_device(adev, BNXT_RE_POST_RECOVERY_INIT);
2097 	rdev = en_info->rdev;
2098 	ibdev_info(&rdev->ibdev, "Device resume completed");
2099 	mutex_unlock(&bnxt_re_mutex);
2100 
2101 	return 0;
2102 }
2103 
2104 static const struct auxiliary_device_id bnxt_re_id_table[] = {
2105 	{ .name = BNXT_ADEV_NAME ".rdma", },
2106 	{},
2107 };
2108 
2109 MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table);
2110 
2111 static struct auxiliary_driver bnxt_re_driver = {
2112 	.name = "rdma",
2113 	.probe = bnxt_re_probe,
2114 	.remove = bnxt_re_remove,
2115 	.shutdown = bnxt_re_shutdown,
2116 	.suspend = bnxt_re_suspend,
2117 	.resume = bnxt_re_resume,
2118 	.id_table = bnxt_re_id_table,
2119 };
2120 
2121 static int __init bnxt_re_mod_init(void)
2122 {
2123 	int rc;
2124 
2125 	pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version);
2126 	rc = auxiliary_driver_register(&bnxt_re_driver);
2127 	if (rc) {
2128 		pr_err("%s: Failed to register auxiliary driver\n",
2129 			ROCE_DRV_MODULE_NAME);
2130 		return rc;
2131 	}
2132 	return 0;
2133 }
2134 
2135 static void __exit bnxt_re_mod_exit(void)
2136 {
2137 	auxiliary_driver_unregister(&bnxt_re_driver);
2138 }
2139 
2140 module_init(bnxt_re_mod_init);
2141 module_exit(bnxt_re_mod_exit);
2142