1 /* 2 * Broadcom NetXtreme-E RoCE driver. 3 * 4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term 5 * Broadcom refers to Broadcom Limited and/or its subsidiaries. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in 21 * the documentation and/or other materials provided with the 22 * distribution. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN 34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 * Description: Main component of the bnxt_re driver 37 */ 38 39 #include <linux/module.h> 40 #include <linux/netdevice.h> 41 #include <linux/ethtool.h> 42 #include <linux/mutex.h> 43 #include <linux/list.h> 44 #include <linux/rculist.h> 45 #include <linux/spinlock.h> 46 #include <linux/pci.h> 47 #include <net/dcbnl.h> 48 #include <net/ipv6.h> 49 #include <net/addrconf.h> 50 #include <linux/if_ether.h> 51 #include <linux/auxiliary_bus.h> 52 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_user_verbs.h> 55 #include <rdma/ib_umem.h> 56 #include <rdma/ib_addr.h> 57 58 #include "bnxt_ulp.h" 59 #include "roce_hsi.h" 60 #include "qplib_res.h" 61 #include "qplib_sp.h" 62 #include "qplib_fp.h" 63 #include "qplib_rcfw.h" 64 #include "bnxt_re.h" 65 #include "ib_verbs.h" 66 #include <rdma/bnxt_re-abi.h> 67 #include "bnxt.h" 68 #include "hw_counters.h" 69 70 static char version[] = 71 BNXT_RE_DESC "\n"; 72 73 MODULE_AUTHOR("Eddie Wai <eddie.wai@broadcom.com>"); 74 MODULE_DESCRIPTION(BNXT_RE_DESC); 75 MODULE_LICENSE("Dual BSD/GPL"); 76 77 /* globals */ 78 static DEFINE_MUTEX(bnxt_re_mutex); 79 80 static void bnxt_re_stop_irq(void *handle); 81 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev); 82 static int bnxt_re_netdev_event(struct notifier_block *notifier, 83 unsigned long event, void *ptr); 84 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev); 85 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev); 86 static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev); 87 88 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, 89 u32 *offset); 90 static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev) 91 { 92 struct bnxt_qplib_chip_ctx *cctx; 93 struct bnxt_en_dev *en_dev; 94 struct bnxt_qplib_res *res; 95 u32 l2db_len = 0; 96 u32 offset = 0; 97 u32 barlen; 98 int rc; 99 100 res = &rdev->qplib_res; 101 en_dev = rdev->en_dev; 102 cctx = rdev->chip_ctx; 103 104 /* Issue qcfg */ 105 rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset); 106 if (rc) 107 dev_info(rdev_to_dev(rdev), 108 "Couldn't get DB bar size, Low latency framework is disabled\n"); 109 /* set register offsets for both UC and WC */ 110 res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET : 111 BNXT_QPLIB_DBR_PF_DB_OFFSET; 112 res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset; 113 114 /* If WC mapping is disabled by L2 driver then en_dev->l2_db_size 115 * is equal to the DB-Bar actual size. This indicates that L2 116 * is mapping entire bar as UC-. RoCE driver can't enable WC mapping 117 * in such cases and DB-push will be disabled. 118 */ 119 barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION); 120 if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) { 121 res->dpi_tbl.wcreg.offset = en_dev->l2_db_size; 122 dev_info(rdev_to_dev(rdev), "Low latency framework is enabled\n"); 123 } 124 } 125 126 static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev, u8 mode) 127 { 128 struct bnxt_qplib_chip_ctx *cctx; 129 130 cctx = rdev->chip_ctx; 131 cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p5(rdev->chip_ctx) ? 132 mode : BNXT_QPLIB_WQE_MODE_STATIC; 133 if (bnxt_re_hwrm_qcaps(rdev)) 134 dev_err(rdev_to_dev(rdev), 135 "Failed to query hwrm qcaps\n"); 136 } 137 138 static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev) 139 { 140 struct bnxt_qplib_chip_ctx *chip_ctx; 141 142 if (!rdev->chip_ctx) 143 return; 144 chip_ctx = rdev->chip_ctx; 145 rdev->chip_ctx = NULL; 146 rdev->rcfw.res = NULL; 147 rdev->qplib_res.cctx = NULL; 148 rdev->qplib_res.pdev = NULL; 149 rdev->qplib_res.netdev = NULL; 150 kfree(chip_ctx); 151 } 152 153 static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev, u8 wqe_mode) 154 { 155 struct bnxt_qplib_chip_ctx *chip_ctx; 156 struct bnxt_en_dev *en_dev; 157 int rc; 158 159 en_dev = rdev->en_dev; 160 161 chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL); 162 if (!chip_ctx) 163 return -ENOMEM; 164 chip_ctx->chip_num = en_dev->chip_num; 165 chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size; 166 167 rdev->chip_ctx = chip_ctx; 168 /* rest members to follow eventually */ 169 170 rdev->qplib_res.cctx = rdev->chip_ctx; 171 rdev->rcfw.res = &rdev->qplib_res; 172 rdev->qplib_res.dattr = &rdev->dev_attr; 173 rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev); 174 175 bnxt_re_set_drv_mode(rdev, wqe_mode); 176 177 bnxt_re_set_db_offset(rdev); 178 rc = bnxt_qplib_map_db_bar(&rdev->qplib_res); 179 if (rc) 180 return rc; 181 182 if (bnxt_qplib_determine_atomics(en_dev->pdev)) 183 ibdev_info(&rdev->ibdev, 184 "platform doesn't support global atomics."); 185 return 0; 186 } 187 188 /* SR-IOV helper functions */ 189 190 static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev) 191 { 192 if (BNXT_EN_VF(rdev->en_dev)) 193 rdev->is_virtfn = 1; 194 } 195 196 /* Set the maximum number of each resource that the driver actually wants 197 * to allocate. This may be up to the maximum number the firmware has 198 * reserved for the function. The driver may choose to allocate fewer 199 * resources than the firmware maximum. 200 */ 201 static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev) 202 { 203 struct bnxt_qplib_dev_attr *attr; 204 struct bnxt_qplib_ctx *ctx; 205 int i; 206 207 attr = &rdev->dev_attr; 208 ctx = &rdev->qplib_ctx; 209 210 ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT, 211 attr->max_qp); 212 ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K; 213 /* Use max_mr from fw since max_mrw does not get set */ 214 ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr); 215 ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT, 216 attr->max_srq); 217 ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq); 218 if (!bnxt_qplib_is_chip_gen_p5(rdev->chip_ctx)) 219 for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) 220 rdev->qplib_ctx.tqm_ctx.qcount[i] = 221 rdev->dev_attr.tqm_alloc_reqs[i]; 222 } 223 224 static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf) 225 { 226 struct bnxt_qplib_vf_res *vf_res; 227 u32 mrws = 0; 228 u32 vf_pct; 229 u32 nvfs; 230 231 vf_res = &qplib_ctx->vf_res; 232 /* 233 * Reserve a set of resources for the PF. Divide the remaining 234 * resources among the VFs 235 */ 236 vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF; 237 nvfs = num_vf; 238 num_vf = 100 * num_vf; 239 vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf; 240 vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf; 241 vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf; 242 /* 243 * The driver allows many more MRs than other resources. If the 244 * firmware does also, then reserve a fixed amount for the PF and 245 * divide the rest among VFs. VFs may use many MRs for NFS 246 * mounts, ISER, NVME applications, etc. If the firmware severely 247 * restricts the number of MRs, then let PF have half and divide 248 * the rest among VFs, as for the other resource types. 249 */ 250 if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) { 251 mrws = qplib_ctx->mrw_count * vf_pct; 252 nvfs = num_vf; 253 } else { 254 mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF; 255 } 256 vf_res->max_mrw_per_vf = (mrws / nvfs); 257 vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF; 258 } 259 260 static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev) 261 { 262 u32 num_vfs; 263 264 memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res)); 265 bnxt_re_limit_pf_res(rdev); 266 267 num_vfs = bnxt_qplib_is_chip_gen_p5(rdev->chip_ctx) ? 268 BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs; 269 if (num_vfs) 270 bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs); 271 } 272 273 static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev) 274 { 275 276 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 277 return; 278 rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev); 279 if (!bnxt_qplib_is_chip_gen_p5(rdev->chip_ctx)) { 280 bnxt_re_set_resource_limits(rdev); 281 bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw, 282 &rdev->qplib_ctx); 283 } 284 } 285 286 static void bnxt_re_shutdown(struct auxiliary_device *adev) 287 { 288 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 289 290 if (!rdev) 291 return; 292 ib_unregister_device(&rdev->ibdev); 293 bnxt_re_dev_uninit(rdev); 294 } 295 296 static void bnxt_re_stop_irq(void *handle) 297 { 298 struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle; 299 struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw; 300 struct bnxt_qplib_nq *nq; 301 int indx; 302 303 for (indx = BNXT_RE_NQ_IDX; indx < rdev->num_msix; indx++) { 304 nq = &rdev->nq[indx - 1]; 305 bnxt_qplib_nq_stop_irq(nq, false); 306 } 307 308 bnxt_qplib_rcfw_stop_irq(rcfw, false); 309 } 310 311 static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent) 312 { 313 struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle; 314 struct bnxt_msix_entry *msix_ent = rdev->en_dev->msix_entries; 315 struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw; 316 struct bnxt_qplib_nq *nq; 317 int indx, rc; 318 319 if (!ent) { 320 /* Not setting the f/w timeout bit in rcfw. 321 * During the driver unload the first command 322 * to f/w will timeout and that will set the 323 * timeout bit. 324 */ 325 ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n"); 326 return; 327 } 328 329 /* Vectors may change after restart, so update with new vectors 330 * in device sctructure. 331 */ 332 for (indx = 0; indx < rdev->num_msix; indx++) 333 rdev->en_dev->msix_entries[indx].vector = ent[indx].vector; 334 335 rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector, 336 false); 337 if (rc) { 338 ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n"); 339 return; 340 } 341 for (indx = BNXT_RE_NQ_IDX ; indx < rdev->num_msix; indx++) { 342 nq = &rdev->nq[indx - 1]; 343 rc = bnxt_qplib_nq_start_irq(nq, indx - 1, 344 msix_ent[indx].vector, false); 345 if (rc) { 346 ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n", 347 indx - 1); 348 return; 349 } 350 } 351 } 352 353 static struct bnxt_ulp_ops bnxt_re_ulp_ops = { 354 .ulp_irq_stop = bnxt_re_stop_irq, 355 .ulp_irq_restart = bnxt_re_start_irq 356 }; 357 358 /* RoCE -> Net driver */ 359 360 static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev) 361 { 362 struct bnxt_en_dev *en_dev; 363 int rc; 364 365 en_dev = rdev->en_dev; 366 367 rc = bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev); 368 if (!rc) 369 rdev->qplib_res.pdev = rdev->en_dev->pdev; 370 return rc; 371 } 372 373 static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd) 374 { 375 hdr->req_type = cpu_to_le16(opcd); 376 hdr->cmpl_ring = cpu_to_le16(-1); 377 hdr->target_id = cpu_to_le16(-1); 378 } 379 380 static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg, 381 int msg_len, void *resp, int resp_max_len, 382 int timeout) 383 { 384 fw_msg->msg = msg; 385 fw_msg->msg_len = msg_len; 386 fw_msg->resp = resp; 387 fw_msg->resp_max_len = resp_max_len; 388 fw_msg->timeout = timeout; 389 } 390 391 /* Query device config using common hwrm */ 392 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, 393 u32 *offset) 394 { 395 struct bnxt_en_dev *en_dev = rdev->en_dev; 396 struct hwrm_func_qcfg_output resp = {0}; 397 struct hwrm_func_qcfg_input req = {0}; 398 struct bnxt_fw_msg fw_msg = {}; 399 int rc; 400 401 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG); 402 req.fid = cpu_to_le16(0xffff); 403 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 404 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 405 rc = bnxt_send_msg(en_dev, &fw_msg); 406 if (!rc) { 407 *db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024); 408 *offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024); 409 } 410 return rc; 411 } 412 413 /* Query function capabilities using common hwrm */ 414 int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev) 415 { 416 struct bnxt_en_dev *en_dev = rdev->en_dev; 417 struct hwrm_func_qcaps_output resp = {}; 418 struct hwrm_func_qcaps_input req = {}; 419 struct bnxt_qplib_chip_ctx *cctx; 420 struct bnxt_fw_msg fw_msg = {}; 421 int rc; 422 423 cctx = rdev->chip_ctx; 424 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS); 425 req.fid = cpu_to_le16(0xffff); 426 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 427 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 428 429 rc = bnxt_send_msg(en_dev, &fw_msg); 430 if (rc) 431 return rc; 432 cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE; 433 434 cctx->modes.dbr_pacing = 435 le32_to_cpu(resp.flags_ext2) & 436 FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED; 437 return 0; 438 } 439 440 static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev) 441 { 442 struct hwrm_func_dbr_pacing_qcfg_output resp = {}; 443 struct hwrm_func_dbr_pacing_qcfg_input req = {}; 444 struct bnxt_en_dev *en_dev = rdev->en_dev; 445 struct bnxt_qplib_chip_ctx *cctx; 446 struct bnxt_fw_msg fw_msg = {}; 447 int rc; 448 449 cctx = rdev->chip_ctx; 450 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG); 451 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 452 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 453 rc = bnxt_send_msg(en_dev, &fw_msg); 454 if (rc) 455 return rc; 456 457 if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) & 458 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) == 459 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC) 460 cctx->dbr_stat_db_fifo = 461 le32_to_cpu(resp.dbr_stat_db_fifo_reg) & 462 ~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK; 463 return 0; 464 } 465 466 /* Update the pacing tunable parameters to the default values */ 467 static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev) 468 { 469 struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data; 470 471 pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing; 472 pacing_data->pacing_th = rdev->pacing.pacing_algo_th; 473 pacing_data->alarm_th = 474 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; 475 } 476 477 static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev) 478 { 479 u32 read_val, fifo_occup; 480 481 /* loop shouldn't run infintely as the occupancy usually goes 482 * below pacing algo threshold as soon as pacing kicks in. 483 */ 484 while (1) { 485 read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off); 486 fifo_occup = BNXT_RE_MAX_FIFO_DEPTH - 487 ((read_val & BNXT_RE_DB_FIFO_ROOM_MASK) >> 488 BNXT_RE_DB_FIFO_ROOM_SHIFT); 489 /* Fifo occupancy cannot be greater the MAX FIFO depth */ 490 if (fifo_occup > BNXT_RE_MAX_FIFO_DEPTH) 491 break; 492 493 if (fifo_occup < rdev->qplib_res.pacing_data->pacing_th) 494 break; 495 } 496 } 497 498 static void bnxt_re_db_fifo_check(struct work_struct *work) 499 { 500 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 501 dbq_fifo_check_work); 502 struct bnxt_qplib_db_pacing_data *pacing_data; 503 u32 pacing_save; 504 505 if (!mutex_trylock(&rdev->pacing.dbq_lock)) 506 return; 507 pacing_data = rdev->qplib_res.pacing_data; 508 pacing_save = rdev->pacing.do_pacing_save; 509 __wait_for_fifo_occupancy_below_th(rdev); 510 cancel_delayed_work_sync(&rdev->dbq_pacing_work); 511 if (pacing_save > rdev->pacing.dbr_def_do_pacing) { 512 /* Double the do_pacing value during the congestion */ 513 pacing_save = pacing_save << 1; 514 } else { 515 /* 516 * when a new congestion is detected increase the do_pacing 517 * by 8 times. And also increase the pacing_th by 4 times. The 518 * reason to increase pacing_th is to give more space for the 519 * queue to oscillate down without getting empty, but also more 520 * room for the queue to increase without causing another alarm. 521 */ 522 pacing_save = pacing_save << 3; 523 pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4; 524 } 525 526 if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING) 527 pacing_save = BNXT_RE_MAX_DBR_DO_PACING; 528 529 pacing_data->do_pacing = pacing_save; 530 rdev->pacing.do_pacing_save = pacing_data->do_pacing; 531 pacing_data->alarm_th = 532 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; 533 schedule_delayed_work(&rdev->dbq_pacing_work, 534 msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); 535 rdev->stats.pacing.alerts++; 536 mutex_unlock(&rdev->pacing.dbq_lock); 537 } 538 539 static void bnxt_re_pacing_timer_exp(struct work_struct *work) 540 { 541 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 542 dbq_pacing_work.work); 543 struct bnxt_qplib_db_pacing_data *pacing_data; 544 u32 read_val, fifo_occup; 545 546 if (!mutex_trylock(&rdev->pacing.dbq_lock)) 547 return; 548 549 pacing_data = rdev->qplib_res.pacing_data; 550 read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off); 551 fifo_occup = BNXT_RE_MAX_FIFO_DEPTH - 552 ((read_val & BNXT_RE_DB_FIFO_ROOM_MASK) >> 553 BNXT_RE_DB_FIFO_ROOM_SHIFT); 554 555 if (fifo_occup > pacing_data->pacing_th) 556 goto restart_timer; 557 558 /* 559 * Instead of immediately going back to the default do_pacing 560 * reduce it by 1/8 times and restart the timer. 561 */ 562 pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3); 563 pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing); 564 if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) { 565 bnxt_re_set_default_pacing_data(rdev); 566 rdev->stats.pacing.complete++; 567 goto dbq_unlock; 568 } 569 570 restart_timer: 571 schedule_delayed_work(&rdev->dbq_pacing_work, 572 msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); 573 rdev->stats.pacing.resched++; 574 dbq_unlock: 575 rdev->pacing.do_pacing_save = pacing_data->do_pacing; 576 mutex_unlock(&rdev->pacing.dbq_lock); 577 } 578 579 void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev) 580 { 581 struct bnxt_qplib_db_pacing_data *pacing_data; 582 583 if (!rdev->pacing.dbr_pacing) 584 return; 585 mutex_lock(&rdev->pacing.dbq_lock); 586 pacing_data = rdev->qplib_res.pacing_data; 587 588 /* 589 * Increase the alarm_th to max so that other user lib instances do not 590 * keep alerting the driver. 591 */ 592 pacing_data->alarm_th = BNXT_RE_MAX_FIFO_DEPTH; 593 pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING; 594 cancel_work_sync(&rdev->dbq_fifo_check_work); 595 schedule_work(&rdev->dbq_fifo_check_work); 596 mutex_unlock(&rdev->pacing.dbq_lock); 597 } 598 599 static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev) 600 { 601 if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) 602 return -EIO; 603 604 /* Allocate a page for app use */ 605 rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL); 606 if (!rdev->pacing.dbr_page) 607 return -ENOMEM; 608 609 memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE); 610 rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page; 611 612 /* MAP HW window 2 for reading db fifo depth */ 613 writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK, 614 rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 615 rdev->pacing.dbr_db_fifo_reg_off = 616 (rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) + 617 BNXT_RE_GRC_FIFO_REG_BASE; 618 rdev->pacing.dbr_bar_addr = 619 pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off; 620 621 rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD; 622 rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME; 623 rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION; 624 rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing; 625 rdev->qplib_res.pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH; 626 rdev->qplib_res.pacing_data->fifo_room_mask = BNXT_RE_DB_FIFO_ROOM_MASK; 627 rdev->qplib_res.pacing_data->fifo_room_shift = BNXT_RE_DB_FIFO_ROOM_SHIFT; 628 rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off; 629 bnxt_re_set_default_pacing_data(rdev); 630 /* Initialize worker for DBR Pacing */ 631 INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check); 632 INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp); 633 return 0; 634 } 635 636 static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev) 637 { 638 cancel_work_sync(&rdev->dbq_fifo_check_work); 639 cancel_delayed_work_sync(&rdev->dbq_pacing_work); 640 if (rdev->pacing.dbr_page) 641 free_page((u64)rdev->pacing.dbr_page); 642 643 rdev->pacing.dbr_page = NULL; 644 rdev->pacing.dbr_pacing = false; 645 } 646 647 static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev, 648 u16 fw_ring_id, int type) 649 { 650 struct bnxt_en_dev *en_dev; 651 struct hwrm_ring_free_input req = {}; 652 struct hwrm_ring_free_output resp; 653 struct bnxt_fw_msg fw_msg = {}; 654 int rc = -EINVAL; 655 656 if (!rdev) 657 return rc; 658 659 en_dev = rdev->en_dev; 660 661 if (!en_dev) 662 return rc; 663 664 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 665 return 0; 666 667 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE); 668 req.ring_type = type; 669 req.ring_id = cpu_to_le16(fw_ring_id); 670 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 671 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 672 rc = bnxt_send_msg(en_dev, &fw_msg); 673 if (rc) 674 ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x", 675 req.ring_id, rc); 676 return rc; 677 } 678 679 static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev, 680 struct bnxt_re_ring_attr *ring_attr, 681 u16 *fw_ring_id) 682 { 683 struct bnxt_en_dev *en_dev = rdev->en_dev; 684 struct hwrm_ring_alloc_input req = {}; 685 struct hwrm_ring_alloc_output resp; 686 struct bnxt_fw_msg fw_msg = {}; 687 int rc = -EINVAL; 688 689 if (!en_dev) 690 return rc; 691 692 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC); 693 req.enables = 0; 694 req.page_tbl_addr = cpu_to_le64(ring_attr->dma_arr[0]); 695 if (ring_attr->pages > 1) { 696 /* Page size is in log2 units */ 697 req.page_size = BNXT_PAGE_SHIFT; 698 req.page_tbl_depth = 1; 699 } 700 req.fbo = 0; 701 /* Association of ring index with doorbell index and MSIX number */ 702 req.logical_id = cpu_to_le16(ring_attr->lrid); 703 req.length = cpu_to_le32(ring_attr->depth + 1); 704 req.ring_type = ring_attr->type; 705 req.int_mode = ring_attr->mode; 706 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 707 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 708 rc = bnxt_send_msg(en_dev, &fw_msg); 709 if (!rc) 710 *fw_ring_id = le16_to_cpu(resp.ring_id); 711 712 return rc; 713 } 714 715 static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev, 716 u32 fw_stats_ctx_id) 717 { 718 struct bnxt_en_dev *en_dev = rdev->en_dev; 719 struct hwrm_stat_ctx_free_input req = {}; 720 struct hwrm_stat_ctx_free_output resp = {}; 721 struct bnxt_fw_msg fw_msg = {}; 722 int rc = -EINVAL; 723 724 if (!en_dev) 725 return rc; 726 727 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 728 return 0; 729 730 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE); 731 req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id); 732 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 733 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 734 rc = bnxt_send_msg(en_dev, &fw_msg); 735 if (rc) 736 ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x", 737 rc); 738 739 return rc; 740 } 741 742 static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev, 743 dma_addr_t dma_map, 744 u32 *fw_stats_ctx_id) 745 { 746 struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx; 747 struct hwrm_stat_ctx_alloc_output resp = {}; 748 struct hwrm_stat_ctx_alloc_input req = {}; 749 struct bnxt_en_dev *en_dev = rdev->en_dev; 750 struct bnxt_fw_msg fw_msg = {}; 751 int rc = -EINVAL; 752 753 *fw_stats_ctx_id = INVALID_STATS_CTX_ID; 754 755 if (!en_dev) 756 return rc; 757 758 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC); 759 req.update_period_ms = cpu_to_le32(1000); 760 req.stats_dma_addr = cpu_to_le64(dma_map); 761 req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size); 762 req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE; 763 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 764 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 765 rc = bnxt_send_msg(en_dev, &fw_msg); 766 if (!rc) 767 *fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id); 768 769 return rc; 770 } 771 772 static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext) 773 { 774 } 775 776 /* Device */ 777 778 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev) 779 { 780 struct ib_device *ibdev = 781 ib_device_get_by_netdev(netdev, RDMA_DRIVER_BNXT_RE); 782 if (!ibdev) 783 return NULL; 784 785 return container_of(ibdev, struct bnxt_re_dev, ibdev); 786 } 787 788 static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr, 789 char *buf) 790 { 791 struct bnxt_re_dev *rdev = 792 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); 793 794 return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor); 795 } 796 static DEVICE_ATTR_RO(hw_rev); 797 798 static ssize_t hca_type_show(struct device *device, 799 struct device_attribute *attr, char *buf) 800 { 801 struct bnxt_re_dev *rdev = 802 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); 803 804 return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc); 805 } 806 static DEVICE_ATTR_RO(hca_type); 807 808 static struct attribute *bnxt_re_attributes[] = { 809 &dev_attr_hw_rev.attr, 810 &dev_attr_hca_type.attr, 811 NULL 812 }; 813 814 static const struct attribute_group bnxt_re_dev_attr_group = { 815 .attrs = bnxt_re_attributes, 816 }; 817 818 static const struct ib_device_ops bnxt_re_dev_ops = { 819 .owner = THIS_MODULE, 820 .driver_id = RDMA_DRIVER_BNXT_RE, 821 .uverbs_abi_ver = BNXT_RE_ABI_VERSION, 822 823 .add_gid = bnxt_re_add_gid, 824 .alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats, 825 .alloc_mr = bnxt_re_alloc_mr, 826 .alloc_pd = bnxt_re_alloc_pd, 827 .alloc_ucontext = bnxt_re_alloc_ucontext, 828 .create_ah = bnxt_re_create_ah, 829 .create_cq = bnxt_re_create_cq, 830 .create_qp = bnxt_re_create_qp, 831 .create_srq = bnxt_re_create_srq, 832 .create_user_ah = bnxt_re_create_ah, 833 .dealloc_pd = bnxt_re_dealloc_pd, 834 .dealloc_ucontext = bnxt_re_dealloc_ucontext, 835 .del_gid = bnxt_re_del_gid, 836 .dereg_mr = bnxt_re_dereg_mr, 837 .destroy_ah = bnxt_re_destroy_ah, 838 .destroy_cq = bnxt_re_destroy_cq, 839 .destroy_qp = bnxt_re_destroy_qp, 840 .destroy_srq = bnxt_re_destroy_srq, 841 .device_group = &bnxt_re_dev_attr_group, 842 .disassociate_ucontext = bnxt_re_disassociate_ucontext, 843 .get_dev_fw_str = bnxt_re_query_fw_str, 844 .get_dma_mr = bnxt_re_get_dma_mr, 845 .get_hw_stats = bnxt_re_ib_get_hw_stats, 846 .get_link_layer = bnxt_re_get_link_layer, 847 .get_port_immutable = bnxt_re_get_port_immutable, 848 .map_mr_sg = bnxt_re_map_mr_sg, 849 .mmap = bnxt_re_mmap, 850 .mmap_free = bnxt_re_mmap_free, 851 .modify_qp = bnxt_re_modify_qp, 852 .modify_srq = bnxt_re_modify_srq, 853 .poll_cq = bnxt_re_poll_cq, 854 .post_recv = bnxt_re_post_recv, 855 .post_send = bnxt_re_post_send, 856 .post_srq_recv = bnxt_re_post_srq_recv, 857 .query_ah = bnxt_re_query_ah, 858 .query_device = bnxt_re_query_device, 859 .query_pkey = bnxt_re_query_pkey, 860 .query_port = bnxt_re_query_port, 861 .query_qp = bnxt_re_query_qp, 862 .query_srq = bnxt_re_query_srq, 863 .reg_user_mr = bnxt_re_reg_user_mr, 864 .reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf, 865 .req_notify_cq = bnxt_re_req_notify_cq, 866 .resize_cq = bnxt_re_resize_cq, 867 INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah), 868 INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq), 869 INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd), 870 INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp), 871 INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq), 872 INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx), 873 }; 874 875 static int bnxt_re_register_ib(struct bnxt_re_dev *rdev) 876 { 877 struct ib_device *ibdev = &rdev->ibdev; 878 int ret; 879 880 /* ib device init */ 881 ibdev->node_type = RDMA_NODE_IB_CA; 882 strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA", 883 strlen(BNXT_RE_DESC) + 5); 884 ibdev->phys_port_cnt = 1; 885 886 addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr); 887 888 ibdev->num_comp_vectors = rdev->num_msix - 1; 889 ibdev->dev.parent = &rdev->en_dev->pdev->dev; 890 ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY; 891 892 if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)) 893 ibdev->driver_def = bnxt_re_uapi_defs; 894 895 ib_set_device_ops(ibdev, &bnxt_re_dev_ops); 896 ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1); 897 if (ret) 898 return ret; 899 900 dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX); 901 ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ); 902 return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev); 903 } 904 905 static struct bnxt_re_dev *bnxt_re_dev_add(struct bnxt_aux_priv *aux_priv, 906 struct bnxt_en_dev *en_dev) 907 { 908 struct bnxt_re_dev *rdev; 909 910 /* Allocate bnxt_re_dev instance here */ 911 rdev = ib_alloc_device(bnxt_re_dev, ibdev); 912 if (!rdev) { 913 ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!", 914 ROCE_DRV_MODULE_NAME); 915 return NULL; 916 } 917 /* Default values */ 918 rdev->nb.notifier_call = NULL; 919 rdev->netdev = en_dev->net; 920 rdev->en_dev = en_dev; 921 rdev->id = rdev->en_dev->pdev->devfn; 922 INIT_LIST_HEAD(&rdev->qp_list); 923 mutex_init(&rdev->qp_lock); 924 mutex_init(&rdev->pacing.dbq_lock); 925 atomic_set(&rdev->stats.res.qp_count, 0); 926 atomic_set(&rdev->stats.res.cq_count, 0); 927 atomic_set(&rdev->stats.res.srq_count, 0); 928 atomic_set(&rdev->stats.res.mr_count, 0); 929 atomic_set(&rdev->stats.res.mw_count, 0); 930 atomic_set(&rdev->stats.res.ah_count, 0); 931 atomic_set(&rdev->stats.res.pd_count, 0); 932 rdev->cosq[0] = 0xFFFF; 933 rdev->cosq[1] = 0xFFFF; 934 935 return rdev; 936 } 937 938 static int bnxt_re_handle_unaffi_async_event(struct creq_func_event 939 *unaffi_async) 940 { 941 switch (unaffi_async->event) { 942 case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR: 943 break; 944 case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR: 945 break; 946 case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR: 947 break; 948 case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR: 949 break; 950 case CREQ_FUNC_EVENT_EVENT_CQ_ERROR: 951 break; 952 case CREQ_FUNC_EVENT_EVENT_TQM_ERROR: 953 break; 954 case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR: 955 break; 956 case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR: 957 break; 958 case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR: 959 break; 960 case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR: 961 break; 962 case CREQ_FUNC_EVENT_EVENT_TIM_ERROR: 963 break; 964 default: 965 return -EINVAL; 966 } 967 return 0; 968 } 969 970 static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event, 971 struct bnxt_re_qp *qp) 972 { 973 struct bnxt_re_srq *srq = container_of(qp->qplib_qp.srq, struct bnxt_re_srq, 974 qplib_srq); 975 struct creq_qp_error_notification *err_event; 976 struct ib_event event = {}; 977 unsigned int flags; 978 979 if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR && 980 rdma_is_kernel_res(&qp->ib_qp.res)) { 981 flags = bnxt_re_lock_cqs(qp); 982 bnxt_qplib_add_flush_qp(&qp->qplib_qp); 983 bnxt_re_unlock_cqs(qp, flags); 984 } 985 986 event.device = &qp->rdev->ibdev; 987 event.element.qp = &qp->ib_qp; 988 event.event = IB_EVENT_QP_FATAL; 989 990 err_event = (struct creq_qp_error_notification *)qp_event; 991 992 switch (err_event->req_err_state_reason) { 993 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_OPCODE_ERROR: 994 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TIMEOUT_RETRY_LIMIT: 995 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RNR_TIMEOUT_RETRY_LIMIT: 996 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_2: 997 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_3: 998 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_READ_RESP: 999 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_BIND: 1000 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_FAST_REG: 1001 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_INVALIDATE: 1002 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETRAN_LOCAL_ERROR: 1003 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_AV_DOMAIN_ERROR: 1004 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PROD_WQE_MSMTCH_ERROR: 1005 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PSN_RANGE_CHECK_ERROR: 1006 event.event = IB_EVENT_QP_ACCESS_ERR; 1007 break; 1008 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_1: 1009 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_4: 1010 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_READ_RESP_LENGTH: 1011 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_WQE_FORMAT_ERROR: 1012 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ORRQ_FORMAT_ERROR: 1013 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_AVID_ERROR: 1014 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_SERV_TYPE_ERROR: 1015 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_OP_ERROR: 1016 event.event = IB_EVENT_QP_REQ_ERR; 1017 break; 1018 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_MEMORY_ERROR: 1019 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_MEMORY_ERROR: 1020 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CMP_ERROR: 1021 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CQ_LOAD_ERROR: 1022 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_PCI_ERROR: 1023 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_PCI_ERROR: 1024 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETX_SETUP_ERROR: 1025 event.event = IB_EVENT_QP_FATAL; 1026 break; 1027 1028 default: 1029 break; 1030 } 1031 1032 switch (err_event->res_err_state_reason) { 1033 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEED_MAX: 1034 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PAYLOAD_LENGTH_MISMATCH: 1035 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_SEQ_ERROR_RETRY_LIMIT: 1036 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_INVALID_R_KEY: 1037 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_DOMAIN_ERROR: 1038 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_NO_PERMISSION: 1039 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_RANGE_ERROR: 1040 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_INVALID_R_KEY: 1041 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_DOMAIN_ERROR: 1042 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_NO_PERMISSION: 1043 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_RANGE_ERROR: 1044 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNALIGN_ATOMIC: 1045 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_NOT_FOUND: 1046 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_INVALID_DUP_RKEY: 1047 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_FORMAT_ERROR: 1048 event.event = IB_EVENT_QP_ACCESS_ERR; 1049 break; 1050 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEEDS_WQE: 1051 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_WQE_FORMAT_ERROR: 1052 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNSUPPORTED_OPCODE: 1053 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_REM_INVALIDATE: 1054 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_OPCODE_ERROR: 1055 event.event = IB_EVENT_QP_REQ_ERR; 1056 break; 1057 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_OFLOW: 1058 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CMP_ERROR: 1059 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CQ_LOAD_ERROR: 1060 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_PCI_ERROR: 1061 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_PCI_ERROR: 1062 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_MEMORY_ERROR: 1063 event.event = IB_EVENT_QP_FATAL; 1064 break; 1065 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_LOAD_ERROR: 1066 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_ERROR: 1067 if (srq) 1068 event.event = IB_EVENT_SRQ_ERR; 1069 break; 1070 default: 1071 break; 1072 } 1073 1074 if (err_event->res_err_state_reason || err_event->req_err_state_reason) { 1075 ibdev_dbg(&qp->rdev->ibdev, 1076 "%s %s qp_id: %d cons (%d %d) req (%d %d) res (%d %d)\n", 1077 __func__, rdma_is_kernel_res(&qp->ib_qp.res) ? "kernel" : "user", 1078 qp->qplib_qp.id, 1079 err_event->sq_cons_idx, 1080 err_event->rq_cons_idx, 1081 err_event->req_slow_path_state, 1082 err_event->req_err_state_reason, 1083 err_event->res_slow_path_state, 1084 err_event->res_err_state_reason); 1085 } else { 1086 if (srq) 1087 event.event = IB_EVENT_QP_LAST_WQE_REACHED; 1088 } 1089 1090 if (event.event == IB_EVENT_SRQ_ERR && srq->ib_srq.event_handler) { 1091 (*srq->ib_srq.event_handler)(&event, 1092 srq->ib_srq.srq_context); 1093 } else if (event.device && qp->ib_qp.event_handler) { 1094 qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context); 1095 } 1096 1097 return 0; 1098 } 1099 1100 static int bnxt_re_handle_cq_async_error(void *event, struct bnxt_re_cq *cq) 1101 { 1102 struct creq_cq_error_notification *cqerr; 1103 struct ib_event ibevent = {}; 1104 1105 cqerr = event; 1106 switch (cqerr->cq_err_reason) { 1107 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_INVALID_ERROR: 1108 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_OVERFLOW_ERROR: 1109 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_LOAD_ERROR: 1110 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_INVALID_ERROR: 1111 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_OVERFLOW_ERROR: 1112 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_LOAD_ERROR: 1113 ibevent.event = IB_EVENT_CQ_ERR; 1114 break; 1115 default: 1116 break; 1117 } 1118 1119 if (ibevent.event == IB_EVENT_CQ_ERR && cq->ib_cq.event_handler) { 1120 ibevent.element.cq = &cq->ib_cq; 1121 ibevent.device = &cq->rdev->ibdev; 1122 1123 ibdev_dbg(&cq->rdev->ibdev, 1124 "%s err reason %d\n", __func__, cqerr->cq_err_reason); 1125 cq->ib_cq.event_handler(&ibevent, cq->ib_cq.cq_context); 1126 } 1127 1128 return 0; 1129 } 1130 1131 static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async, 1132 void *obj) 1133 { 1134 struct bnxt_qplib_qp *lib_qp; 1135 struct bnxt_qplib_cq *lib_cq; 1136 struct bnxt_re_qp *qp; 1137 struct bnxt_re_cq *cq; 1138 int rc = 0; 1139 u8 event; 1140 1141 if (!obj) 1142 return rc; /* QP was already dead, still return success */ 1143 1144 event = affi_async->event; 1145 switch (event) { 1146 case CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION: 1147 lib_qp = obj; 1148 qp = container_of(lib_qp, struct bnxt_re_qp, qplib_qp); 1149 rc = bnxt_re_handle_qp_async_event(affi_async, qp); 1150 break; 1151 case CREQ_QP_EVENT_EVENT_CQ_ERROR_NOTIFICATION: 1152 lib_cq = obj; 1153 cq = container_of(lib_cq, struct bnxt_re_cq, qplib_cq); 1154 rc = bnxt_re_handle_cq_async_error(affi_async, cq); 1155 break; 1156 default: 1157 rc = -EINVAL; 1158 } 1159 return rc; 1160 } 1161 1162 static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw, 1163 void *aeqe, void *obj) 1164 { 1165 struct creq_qp_event *affi_async; 1166 struct creq_func_event *unaffi_async; 1167 u8 type; 1168 int rc; 1169 1170 type = ((struct creq_base *)aeqe)->type; 1171 if (type == CREQ_BASE_TYPE_FUNC_EVENT) { 1172 unaffi_async = aeqe; 1173 rc = bnxt_re_handle_unaffi_async_event(unaffi_async); 1174 } else { 1175 affi_async = aeqe; 1176 rc = bnxt_re_handle_affi_async_event(affi_async, obj); 1177 } 1178 1179 return rc; 1180 } 1181 1182 static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq, 1183 struct bnxt_qplib_srq *handle, u8 event) 1184 { 1185 struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq, 1186 qplib_srq); 1187 struct ib_event ib_event; 1188 1189 ib_event.device = &srq->rdev->ibdev; 1190 ib_event.element.srq = &srq->ib_srq; 1191 1192 if (srq->ib_srq.event_handler) { 1193 if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT) 1194 ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED; 1195 (*srq->ib_srq.event_handler)(&ib_event, 1196 srq->ib_srq.srq_context); 1197 } 1198 return 0; 1199 } 1200 1201 static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq, 1202 struct bnxt_qplib_cq *handle) 1203 { 1204 struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq, 1205 qplib_cq); 1206 1207 if (cq->ib_cq.comp_handler) { 1208 /* Lock comp_handler? */ 1209 (*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context); 1210 } 1211 1212 return 0; 1213 } 1214 1215 #define BNXT_RE_GEN_P5_PF_NQ_DB 0x10000 1216 #define BNXT_RE_GEN_P5_VF_NQ_DB 0x4000 1217 static u32 bnxt_re_get_nqdb_offset(struct bnxt_re_dev *rdev, u16 indx) 1218 { 1219 return bnxt_qplib_is_chip_gen_p5(rdev->chip_ctx) ? 1220 (rdev->is_virtfn ? BNXT_RE_GEN_P5_VF_NQ_DB : 1221 BNXT_RE_GEN_P5_PF_NQ_DB) : 1222 rdev->en_dev->msix_entries[indx].db_offset; 1223 } 1224 1225 static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev) 1226 { 1227 int i; 1228 1229 for (i = 1; i < rdev->num_msix; i++) 1230 bnxt_qplib_disable_nq(&rdev->nq[i - 1]); 1231 1232 if (rdev->qplib_res.rcfw) 1233 bnxt_qplib_cleanup_res(&rdev->qplib_res); 1234 } 1235 1236 static int bnxt_re_init_res(struct bnxt_re_dev *rdev) 1237 { 1238 int num_vec_enabled = 0; 1239 int rc = 0, i; 1240 u32 db_offt; 1241 1242 bnxt_qplib_init_res(&rdev->qplib_res); 1243 1244 for (i = 1; i < rdev->num_msix ; i++) { 1245 db_offt = bnxt_re_get_nqdb_offset(rdev, i); 1246 rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nq[i - 1], 1247 i - 1, rdev->en_dev->msix_entries[i].vector, 1248 db_offt, &bnxt_re_cqn_handler, 1249 &bnxt_re_srqn_handler); 1250 if (rc) { 1251 ibdev_err(&rdev->ibdev, 1252 "Failed to enable NQ with rc = 0x%x", rc); 1253 goto fail; 1254 } 1255 num_vec_enabled++; 1256 } 1257 return 0; 1258 fail: 1259 for (i = num_vec_enabled; i >= 0; i--) 1260 bnxt_qplib_disable_nq(&rdev->nq[i]); 1261 return rc; 1262 } 1263 1264 static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev) 1265 { 1266 u8 type; 1267 int i; 1268 1269 for (i = 0; i < rdev->num_msix - 1; i++) { 1270 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1271 bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); 1272 bnxt_qplib_free_nq(&rdev->nq[i]); 1273 rdev->nq[i].res = NULL; 1274 } 1275 } 1276 1277 static void bnxt_re_free_res(struct bnxt_re_dev *rdev) 1278 { 1279 bnxt_re_free_nq_res(rdev); 1280 1281 if (rdev->qplib_res.dpi_tbl.max) { 1282 bnxt_qplib_dealloc_dpi(&rdev->qplib_res, 1283 &rdev->dpi_privileged); 1284 } 1285 if (rdev->qplib_res.rcfw) { 1286 bnxt_qplib_free_res(&rdev->qplib_res); 1287 rdev->qplib_res.rcfw = NULL; 1288 } 1289 } 1290 1291 static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev) 1292 { 1293 struct bnxt_re_ring_attr rattr = {}; 1294 int num_vec_created = 0; 1295 int rc, i; 1296 u8 type; 1297 1298 /* Configure and allocate resources for qplib */ 1299 rdev->qplib_res.rcfw = &rdev->rcfw; 1300 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); 1301 if (rc) 1302 goto fail; 1303 1304 rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->en_dev->pdev, 1305 rdev->netdev, &rdev->dev_attr); 1306 if (rc) 1307 goto fail; 1308 1309 rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res, 1310 &rdev->dpi_privileged, 1311 rdev, BNXT_QPLIB_DPI_TYPE_KERNEL); 1312 if (rc) 1313 goto dealloc_res; 1314 1315 for (i = 0; i < rdev->num_msix - 1; i++) { 1316 struct bnxt_qplib_nq *nq; 1317 1318 nq = &rdev->nq[i]; 1319 nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT; 1320 rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, &rdev->nq[i]); 1321 if (rc) { 1322 ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x", 1323 i, rc); 1324 goto free_nq; 1325 } 1326 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1327 rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr; 1328 rattr.pages = nq->hwq.pbl[rdev->nq[i].hwq.level].pg_count; 1329 rattr.type = type; 1330 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; 1331 rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1; 1332 rattr.lrid = rdev->en_dev->msix_entries[i + 1].ring_idx; 1333 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id); 1334 if (rc) { 1335 ibdev_err(&rdev->ibdev, 1336 "Failed to allocate NQ fw id with rc = 0x%x", 1337 rc); 1338 bnxt_qplib_free_nq(&rdev->nq[i]); 1339 goto free_nq; 1340 } 1341 num_vec_created++; 1342 } 1343 return 0; 1344 free_nq: 1345 for (i = num_vec_created - 1; i >= 0; i--) { 1346 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1347 bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); 1348 bnxt_qplib_free_nq(&rdev->nq[i]); 1349 } 1350 bnxt_qplib_dealloc_dpi(&rdev->qplib_res, 1351 &rdev->dpi_privileged); 1352 dealloc_res: 1353 bnxt_qplib_free_res(&rdev->qplib_res); 1354 1355 fail: 1356 rdev->qplib_res.rcfw = NULL; 1357 return rc; 1358 } 1359 1360 static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp, 1361 u8 port_num, enum ib_event_type event) 1362 { 1363 struct ib_event ib_event; 1364 1365 ib_event.device = ibdev; 1366 if (qp) { 1367 ib_event.element.qp = qp; 1368 ib_event.event = event; 1369 if (qp->event_handler) 1370 qp->event_handler(&ib_event, qp->qp_context); 1371 1372 } else { 1373 ib_event.element.port_num = port_num; 1374 ib_event.event = event; 1375 ib_dispatch_event(&ib_event); 1376 } 1377 } 1378 1379 static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev, 1380 struct bnxt_re_qp *qp) 1381 { 1382 return (qp->ib_qp.qp_type == IB_QPT_GSI) || 1383 (qp == rdev->gsi_ctx.gsi_sqp); 1384 } 1385 1386 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev) 1387 { 1388 int mask = IB_QP_STATE; 1389 struct ib_qp_attr qp_attr; 1390 struct bnxt_re_qp *qp; 1391 1392 qp_attr.qp_state = IB_QPS_ERR; 1393 mutex_lock(&rdev->qp_lock); 1394 list_for_each_entry(qp, &rdev->qp_list, list) { 1395 /* Modify the state of all QPs except QP1/Shadow QP */ 1396 if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) { 1397 if (qp->qplib_qp.state != 1398 CMDQ_MODIFY_QP_NEW_STATE_RESET && 1399 qp->qplib_qp.state != 1400 CMDQ_MODIFY_QP_NEW_STATE_ERR) { 1401 bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp, 1402 1, IB_EVENT_QP_FATAL); 1403 bnxt_re_modify_qp(&qp->ib_qp, &qp_attr, mask, 1404 NULL); 1405 } 1406 } 1407 } 1408 mutex_unlock(&rdev->qp_lock); 1409 } 1410 1411 static int bnxt_re_update_gid(struct bnxt_re_dev *rdev) 1412 { 1413 struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl; 1414 struct bnxt_qplib_gid gid; 1415 u16 gid_idx, index; 1416 int rc = 0; 1417 1418 if (!ib_device_try_get(&rdev->ibdev)) 1419 return 0; 1420 1421 for (index = 0; index < sgid_tbl->active; index++) { 1422 gid_idx = sgid_tbl->hw_id[index]; 1423 1424 if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero, 1425 sizeof(bnxt_qplib_gid_zero))) 1426 continue; 1427 /* need to modify the VLAN enable setting of non VLAN GID only 1428 * as setting is done for VLAN GID while adding GID 1429 */ 1430 if (sgid_tbl->vlan[index]) 1431 continue; 1432 1433 memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid)); 1434 1435 rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx, 1436 rdev->qplib_res.netdev->dev_addr); 1437 } 1438 1439 ib_device_put(&rdev->ibdev); 1440 return rc; 1441 } 1442 1443 static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev) 1444 { 1445 u32 prio_map = 0, tmp_map = 0; 1446 struct net_device *netdev; 1447 struct dcb_app app = {}; 1448 1449 netdev = rdev->netdev; 1450 1451 app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE; 1452 app.protocol = ETH_P_IBOE; 1453 tmp_map = dcb_ieee_getapp_mask(netdev, &app); 1454 prio_map = tmp_map; 1455 1456 app.selector = IEEE_8021QAZ_APP_SEL_DGRAM; 1457 app.protocol = ROCE_V2_UDP_DPORT; 1458 tmp_map = dcb_ieee_getapp_mask(netdev, &app); 1459 prio_map |= tmp_map; 1460 1461 return prio_map; 1462 } 1463 1464 static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev) 1465 { 1466 u8 prio_map = 0; 1467 1468 /* Get priority for roce */ 1469 prio_map = bnxt_re_get_priority_mask(rdev); 1470 1471 if (prio_map == rdev->cur_prio_map) 1472 return 0; 1473 rdev->cur_prio_map = prio_map; 1474 /* Actual priorities are not programmed as they are already 1475 * done by L2 driver; just enable or disable priority vlan tagging 1476 */ 1477 if ((prio_map == 0 && rdev->qplib_res.prio) || 1478 (prio_map != 0 && !rdev->qplib_res.prio)) { 1479 rdev->qplib_res.prio = prio_map; 1480 bnxt_re_update_gid(rdev); 1481 } 1482 1483 return 0; 1484 } 1485 1486 static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev) 1487 { 1488 struct bnxt_en_dev *en_dev = rdev->en_dev; 1489 struct hwrm_ver_get_output resp = {}; 1490 struct hwrm_ver_get_input req = {}; 1491 struct bnxt_qplib_chip_ctx *cctx; 1492 struct bnxt_fw_msg fw_msg = {}; 1493 int rc; 1494 1495 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET); 1496 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 1497 req.hwrm_intf_min = HWRM_VERSION_MINOR; 1498 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 1499 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 1500 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 1501 rc = bnxt_send_msg(en_dev, &fw_msg); 1502 if (rc) { 1503 ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x", 1504 rc); 1505 return; 1506 } 1507 1508 cctx = rdev->chip_ctx; 1509 cctx->hwrm_intf_ver = 1510 (u64)le16_to_cpu(resp.hwrm_intf_major) << 48 | 1511 (u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 | 1512 (u64)le16_to_cpu(resp.hwrm_intf_build) << 16 | 1513 le16_to_cpu(resp.hwrm_intf_patch); 1514 1515 cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout); 1516 1517 if (!cctx->hwrm_cmd_max_timeout) 1518 cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT; 1519 } 1520 1521 static int bnxt_re_ib_init(struct bnxt_re_dev *rdev) 1522 { 1523 int rc; 1524 u32 event; 1525 1526 /* Register ib dev */ 1527 rc = bnxt_re_register_ib(rdev); 1528 if (rc) { 1529 pr_err("Failed to register with IB: %#x\n", rc); 1530 return rc; 1531 } 1532 dev_info(rdev_to_dev(rdev), "Device registered with IB successfully"); 1533 set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags); 1534 1535 event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ? 1536 IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR; 1537 1538 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event); 1539 1540 return rc; 1541 } 1542 1543 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev) 1544 { 1545 u8 type; 1546 int rc; 1547 1548 if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags)) 1549 cancel_delayed_work_sync(&rdev->worker); 1550 1551 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, 1552 &rdev->flags)) 1553 bnxt_re_cleanup_res(rdev); 1554 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags)) 1555 bnxt_re_free_res(rdev); 1556 1557 if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) { 1558 rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw); 1559 if (rc) 1560 ibdev_warn(&rdev->ibdev, 1561 "Failed to deinitialize RCFW: %#x", rc); 1562 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); 1563 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); 1564 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); 1565 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1566 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); 1567 bnxt_qplib_free_rcfw_channel(&rdev->rcfw); 1568 } 1569 1570 rdev->num_msix = 0; 1571 1572 if (rdev->pacing.dbr_pacing) 1573 bnxt_re_deinitialize_dbr_pacing(rdev); 1574 1575 bnxt_re_destroy_chip_ctx(rdev); 1576 if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags)) 1577 bnxt_unregister_dev(rdev->en_dev); 1578 } 1579 1580 /* worker thread for polling periodic events. Now used for QoS programming*/ 1581 static void bnxt_re_worker(struct work_struct *work) 1582 { 1583 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 1584 worker.work); 1585 1586 bnxt_re_setup_qos(rdev); 1587 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); 1588 } 1589 1590 static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 wqe_mode) 1591 { 1592 struct bnxt_re_ring_attr rattr = {}; 1593 struct bnxt_qplib_creq_ctx *creq; 1594 u32 db_offt; 1595 int vid; 1596 u8 type; 1597 int rc; 1598 1599 /* Registered a new RoCE device instance to netdev */ 1600 rc = bnxt_re_register_netdev(rdev); 1601 if (rc) { 1602 ibdev_err(&rdev->ibdev, 1603 "Failed to register with netedev: %#x\n", rc); 1604 return -EINVAL; 1605 } 1606 set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); 1607 1608 rc = bnxt_re_setup_chip_ctx(rdev, wqe_mode); 1609 if (rc) { 1610 bnxt_unregister_dev(rdev->en_dev); 1611 clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); 1612 ibdev_err(&rdev->ibdev, "Failed to get chip context\n"); 1613 return -EINVAL; 1614 } 1615 1616 /* Check whether VF or PF */ 1617 bnxt_re_get_sriov_func_type(rdev); 1618 1619 if (!rdev->en_dev->ulp_tbl->msix_requested) { 1620 ibdev_err(&rdev->ibdev, 1621 "Failed to get MSI-X vectors: %#x\n", rc); 1622 rc = -EINVAL; 1623 goto fail; 1624 } 1625 ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n", 1626 rdev->en_dev->ulp_tbl->msix_requested); 1627 rdev->num_msix = rdev->en_dev->ulp_tbl->msix_requested; 1628 1629 bnxt_re_query_hwrm_intf_version(rdev); 1630 1631 /* Establish RCFW Communication Channel to initialize the context 1632 * memory for the function and all child VFs 1633 */ 1634 rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw, 1635 &rdev->qplib_ctx, 1636 BNXT_RE_MAX_QPC_COUNT); 1637 if (rc) { 1638 ibdev_err(&rdev->ibdev, 1639 "Failed to allocate RCFW Channel: %#x\n", rc); 1640 goto fail; 1641 } 1642 1643 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1644 creq = &rdev->rcfw.creq; 1645 rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr; 1646 rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count; 1647 rattr.type = type; 1648 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; 1649 rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1; 1650 rattr.lrid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].ring_idx; 1651 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id); 1652 if (rc) { 1653 ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc); 1654 goto free_rcfw; 1655 } 1656 db_offt = bnxt_re_get_nqdb_offset(rdev, BNXT_RE_AEQ_IDX); 1657 vid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].vector; 1658 rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw, 1659 vid, db_offt, 1660 &bnxt_re_aeq_handler); 1661 if (rc) { 1662 ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n", 1663 rc); 1664 goto free_ring; 1665 } 1666 1667 if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) { 1668 rc = bnxt_re_initialize_dbr_pacing(rdev); 1669 if (!rc) { 1670 rdev->pacing.dbr_pacing = true; 1671 } else { 1672 ibdev_err(&rdev->ibdev, 1673 "DBR pacing disabled with error : %d\n", rc); 1674 rdev->pacing.dbr_pacing = false; 1675 } 1676 } 1677 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); 1678 if (rc) 1679 goto disable_rcfw; 1680 1681 bnxt_re_set_resource_limits(rdev); 1682 1683 rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0, 1684 bnxt_qplib_is_chip_gen_p5(rdev->chip_ctx)); 1685 if (rc) { 1686 ibdev_err(&rdev->ibdev, 1687 "Failed to allocate QPLIB context: %#x\n", rc); 1688 goto disable_rcfw; 1689 } 1690 rc = bnxt_re_net_stats_ctx_alloc(rdev, 1691 rdev->qplib_ctx.stats.dma_map, 1692 &rdev->qplib_ctx.stats.fw_id); 1693 if (rc) { 1694 ibdev_err(&rdev->ibdev, 1695 "Failed to allocate stats context: %#x\n", rc); 1696 goto free_ctx; 1697 } 1698 1699 rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx, 1700 rdev->is_virtfn); 1701 if (rc) { 1702 ibdev_err(&rdev->ibdev, 1703 "Failed to initialize RCFW: %#x\n", rc); 1704 goto free_sctx; 1705 } 1706 set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags); 1707 1708 /* Resources based on the 'new' device caps */ 1709 rc = bnxt_re_alloc_res(rdev); 1710 if (rc) { 1711 ibdev_err(&rdev->ibdev, 1712 "Failed to allocate resources: %#x\n", rc); 1713 goto fail; 1714 } 1715 set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags); 1716 rc = bnxt_re_init_res(rdev); 1717 if (rc) { 1718 ibdev_err(&rdev->ibdev, 1719 "Failed to initialize resources: %#x\n", rc); 1720 goto fail; 1721 } 1722 1723 set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags); 1724 1725 if (!rdev->is_virtfn) { 1726 rc = bnxt_re_setup_qos(rdev); 1727 if (rc) 1728 ibdev_info(&rdev->ibdev, 1729 "RoCE priority not yet configured\n"); 1730 1731 INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker); 1732 set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags); 1733 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); 1734 /* 1735 * Use the total VF count since the actual VF count may not be 1736 * available at this point. 1737 */ 1738 bnxt_re_vf_res_config(rdev); 1739 } 1740 1741 return 0; 1742 free_sctx: 1743 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); 1744 free_ctx: 1745 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); 1746 disable_rcfw: 1747 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); 1748 free_ring: 1749 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1750 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); 1751 free_rcfw: 1752 bnxt_qplib_free_rcfw_channel(&rdev->rcfw); 1753 fail: 1754 bnxt_re_dev_uninit(rdev); 1755 1756 return rc; 1757 } 1758 1759 static int bnxt_re_add_device(struct auxiliary_device *adev, u8 wqe_mode) 1760 { 1761 struct bnxt_aux_priv *aux_priv = 1762 container_of(adev, struct bnxt_aux_priv, aux_dev); 1763 struct bnxt_en_dev *en_dev; 1764 struct bnxt_re_dev *rdev; 1765 int rc; 1766 1767 /* en_dev should never be NULL as long as adev and aux_dev are valid. */ 1768 en_dev = aux_priv->edev; 1769 1770 rdev = bnxt_re_dev_add(aux_priv, en_dev); 1771 if (!rdev || !rdev_to_dev(rdev)) { 1772 rc = -ENOMEM; 1773 goto exit; 1774 } 1775 1776 rc = bnxt_re_dev_init(rdev, wqe_mode); 1777 if (rc) 1778 goto re_dev_dealloc; 1779 1780 rc = bnxt_re_ib_init(rdev); 1781 if (rc) { 1782 pr_err("Failed to register with IB: %s", 1783 aux_priv->aux_dev.name); 1784 goto re_dev_uninit; 1785 } 1786 auxiliary_set_drvdata(adev, rdev); 1787 1788 return 0; 1789 1790 re_dev_uninit: 1791 bnxt_re_dev_uninit(rdev); 1792 re_dev_dealloc: 1793 ib_dealloc_device(&rdev->ibdev); 1794 exit: 1795 return rc; 1796 } 1797 1798 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable) 1799 { 1800 struct bnxt_qplib_cc_param cc_param = {}; 1801 1802 /* Do not enable congestion control on VFs */ 1803 if (rdev->is_virtfn) 1804 return; 1805 1806 /* Currently enabling only for GenP5 adapters */ 1807 if (!bnxt_qplib_is_chip_gen_p5(rdev->chip_ctx)) 1808 return; 1809 1810 if (enable) { 1811 cc_param.enable = 1; 1812 cc_param.cc_mode = CMDQ_MODIFY_ROCE_CC_CC_MODE_PROBABILISTIC_CC_MODE; 1813 } 1814 1815 cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE | 1816 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC | 1817 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN); 1818 1819 if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param)) 1820 ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable); 1821 } 1822 1823 /* 1824 * "Notifier chain callback can be invoked for the same chain from 1825 * different CPUs at the same time". 1826 * 1827 * For cases when the netdev is already present, our call to the 1828 * register_netdevice_notifier() will actually get the rtnl_lock() 1829 * before sending NETDEV_REGISTER and (if up) NETDEV_UP 1830 * events. 1831 * 1832 * But for cases when the netdev is not already present, the notifier 1833 * chain is subjected to be invoked from different CPUs simultaneously. 1834 * 1835 * This is protected by the netdev_mutex. 1836 */ 1837 static int bnxt_re_netdev_event(struct notifier_block *notifier, 1838 unsigned long event, void *ptr) 1839 { 1840 struct net_device *real_dev, *netdev = netdev_notifier_info_to_dev(ptr); 1841 struct bnxt_re_dev *rdev; 1842 1843 real_dev = rdma_vlan_dev_real_dev(netdev); 1844 if (!real_dev) 1845 real_dev = netdev; 1846 1847 if (real_dev != netdev) 1848 goto exit; 1849 1850 rdev = bnxt_re_from_netdev(real_dev); 1851 if (!rdev) 1852 return NOTIFY_DONE; 1853 1854 1855 switch (event) { 1856 case NETDEV_UP: 1857 case NETDEV_DOWN: 1858 case NETDEV_CHANGE: 1859 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, 1860 netif_carrier_ok(real_dev) ? 1861 IB_EVENT_PORT_ACTIVE : 1862 IB_EVENT_PORT_ERR); 1863 break; 1864 default: 1865 break; 1866 } 1867 ib_device_put(&rdev->ibdev); 1868 exit: 1869 return NOTIFY_DONE; 1870 } 1871 1872 #define BNXT_ADEV_NAME "bnxt_en" 1873 1874 static void bnxt_re_remove(struct auxiliary_device *adev) 1875 { 1876 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1877 1878 if (!rdev) 1879 return; 1880 1881 mutex_lock(&bnxt_re_mutex); 1882 if (rdev->nb.notifier_call) { 1883 unregister_netdevice_notifier(&rdev->nb); 1884 rdev->nb.notifier_call = NULL; 1885 } else { 1886 /* If notifier is null, we should have already done a 1887 * clean up before coming here. 1888 */ 1889 goto skip_remove; 1890 } 1891 bnxt_re_setup_cc(rdev, false); 1892 ib_unregister_device(&rdev->ibdev); 1893 bnxt_re_dev_uninit(rdev); 1894 ib_dealloc_device(&rdev->ibdev); 1895 skip_remove: 1896 mutex_unlock(&bnxt_re_mutex); 1897 } 1898 1899 static int bnxt_re_probe(struct auxiliary_device *adev, 1900 const struct auxiliary_device_id *id) 1901 { 1902 struct bnxt_re_dev *rdev; 1903 int rc; 1904 1905 mutex_lock(&bnxt_re_mutex); 1906 rc = bnxt_re_add_device(adev, BNXT_QPLIB_WQE_MODE_STATIC); 1907 if (rc) { 1908 mutex_unlock(&bnxt_re_mutex); 1909 return rc; 1910 } 1911 1912 rdev = auxiliary_get_drvdata(adev); 1913 1914 rdev->nb.notifier_call = bnxt_re_netdev_event; 1915 rc = register_netdevice_notifier(&rdev->nb); 1916 if (rc) { 1917 rdev->nb.notifier_call = NULL; 1918 pr_err("%s: Cannot register to netdevice_notifier", 1919 ROCE_DRV_MODULE_NAME); 1920 goto err; 1921 } 1922 1923 bnxt_re_setup_cc(rdev, true); 1924 mutex_unlock(&bnxt_re_mutex); 1925 return 0; 1926 1927 err: 1928 mutex_unlock(&bnxt_re_mutex); 1929 bnxt_re_remove(adev); 1930 1931 return rc; 1932 } 1933 1934 static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state) 1935 { 1936 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1937 1938 if (!rdev) 1939 return 0; 1940 1941 mutex_lock(&bnxt_re_mutex); 1942 /* L2 driver may invoke this callback during device error/crash or device 1943 * reset. Current RoCE driver doesn't recover the device in case of 1944 * error. Handle the error by dispatching fatal events to all qps 1945 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as 1946 * L2 driver want to modify the MSIx table. 1947 */ 1948 1949 ibdev_info(&rdev->ibdev, "Handle device suspend call"); 1950 /* Check the current device state from bnxt_en_dev and move the 1951 * device to detached state if FW_FATAL_COND is set. 1952 * This prevents more commands to HW during clean-up, 1953 * in case the device is already in error. 1954 */ 1955 if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state)) 1956 set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); 1957 1958 bnxt_re_dev_stop(rdev); 1959 bnxt_re_stop_irq(rdev); 1960 /* Move the device states to detached and avoid sending any more 1961 * commands to HW 1962 */ 1963 set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags); 1964 set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); 1965 wake_up_all(&rdev->rcfw.cmdq.waitq); 1966 mutex_unlock(&bnxt_re_mutex); 1967 1968 return 0; 1969 } 1970 1971 static int bnxt_re_resume(struct auxiliary_device *adev) 1972 { 1973 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1974 1975 if (!rdev) 1976 return 0; 1977 1978 mutex_lock(&bnxt_re_mutex); 1979 /* L2 driver may invoke this callback during device recovery, resume. 1980 * reset. Current RoCE driver doesn't recover the device in case of 1981 * error. Handle the error by dispatching fatal events to all qps 1982 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as 1983 * L2 driver want to modify the MSIx table. 1984 */ 1985 1986 ibdev_info(&rdev->ibdev, "Handle device resume call"); 1987 mutex_unlock(&bnxt_re_mutex); 1988 1989 return 0; 1990 } 1991 1992 static const struct auxiliary_device_id bnxt_re_id_table[] = { 1993 { .name = BNXT_ADEV_NAME ".rdma", }, 1994 {}, 1995 }; 1996 1997 MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table); 1998 1999 static struct auxiliary_driver bnxt_re_driver = { 2000 .name = "rdma", 2001 .probe = bnxt_re_probe, 2002 .remove = bnxt_re_remove, 2003 .shutdown = bnxt_re_shutdown, 2004 .suspend = bnxt_re_suspend, 2005 .resume = bnxt_re_resume, 2006 .id_table = bnxt_re_id_table, 2007 }; 2008 2009 static int __init bnxt_re_mod_init(void) 2010 { 2011 int rc; 2012 2013 pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version); 2014 rc = auxiliary_driver_register(&bnxt_re_driver); 2015 if (rc) { 2016 pr_err("%s: Failed to register auxiliary driver\n", 2017 ROCE_DRV_MODULE_NAME); 2018 return rc; 2019 } 2020 return 0; 2021 } 2022 2023 static void __exit bnxt_re_mod_exit(void) 2024 { 2025 auxiliary_driver_unregister(&bnxt_re_driver); 2026 } 2027 2028 module_init(bnxt_re_mod_init); 2029 module_exit(bnxt_re_mod_exit); 2030