1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static int ib_resolve_eth_dmac(struct ib_device *device, 57 struct rdma_ah_attr *ah_attr); 58 59 static const char * const ib_events[] = { 60 [IB_EVENT_CQ_ERR] = "CQ error", 61 [IB_EVENT_QP_FATAL] = "QP fatal error", 62 [IB_EVENT_QP_REQ_ERR] = "QP request error", 63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 64 [IB_EVENT_COMM_EST] = "communication established", 65 [IB_EVENT_SQ_DRAINED] = "send queue drained", 66 [IB_EVENT_PATH_MIG] = "path migration successful", 67 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 68 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 69 [IB_EVENT_PORT_ACTIVE] = "port active", 70 [IB_EVENT_PORT_ERR] = "port error", 71 [IB_EVENT_LID_CHANGE] = "LID change", 72 [IB_EVENT_PKEY_CHANGE] = "P_key change", 73 [IB_EVENT_SM_CHANGE] = "SM change", 74 [IB_EVENT_SRQ_ERR] = "SRQ error", 75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 78 [IB_EVENT_GID_CHANGE] = "GID changed", 79 }; 80 81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 82 { 83 size_t index = event; 84 85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 86 ib_events[index] : "unrecognized event"; 87 } 88 EXPORT_SYMBOL(ib_event_msg); 89 90 static const char * const wc_statuses[] = { 91 [IB_WC_SUCCESS] = "success", 92 [IB_WC_LOC_LEN_ERR] = "local length error", 93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 95 [IB_WC_LOC_PROT_ERR] = "local protection error", 96 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 97 [IB_WC_MW_BIND_ERR] = "memory management operation error", 98 [IB_WC_BAD_RESP_ERR] = "bad response error", 99 [IB_WC_LOC_ACCESS_ERR] = "local access error", 100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 101 [IB_WC_REM_ACCESS_ERR] = "remote access error", 102 [IB_WC_REM_OP_ERR] = "remote operation error", 103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 107 [IB_WC_REM_ABORT_ERR] = "operation aborted", 108 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 110 [IB_WC_FATAL_ERR] = "fatal error", 111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 112 [IB_WC_GENERAL_ERR] = "general error", 113 }; 114 115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 116 { 117 size_t index = status; 118 119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 120 wc_statuses[index] : "unrecognized status"; 121 } 122 EXPORT_SYMBOL(ib_wc_status_msg); 123 124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 125 { 126 switch (rate) { 127 case IB_RATE_2_5_GBPS: return 1; 128 case IB_RATE_5_GBPS: return 2; 129 case IB_RATE_10_GBPS: return 4; 130 case IB_RATE_20_GBPS: return 8; 131 case IB_RATE_30_GBPS: return 12; 132 case IB_RATE_40_GBPS: return 16; 133 case IB_RATE_60_GBPS: return 24; 134 case IB_RATE_80_GBPS: return 32; 135 case IB_RATE_120_GBPS: return 48; 136 case IB_RATE_14_GBPS: return 6; 137 case IB_RATE_56_GBPS: return 22; 138 case IB_RATE_112_GBPS: return 45; 139 case IB_RATE_168_GBPS: return 67; 140 case IB_RATE_25_GBPS: return 10; 141 case IB_RATE_100_GBPS: return 40; 142 case IB_RATE_200_GBPS: return 80; 143 case IB_RATE_300_GBPS: return 120; 144 case IB_RATE_28_GBPS: return 11; 145 case IB_RATE_50_GBPS: return 20; 146 case IB_RATE_400_GBPS: return 160; 147 case IB_RATE_600_GBPS: return 240; 148 default: return -1; 149 } 150 } 151 EXPORT_SYMBOL(ib_rate_to_mult); 152 153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 154 { 155 switch (mult) { 156 case 1: return IB_RATE_2_5_GBPS; 157 case 2: return IB_RATE_5_GBPS; 158 case 4: return IB_RATE_10_GBPS; 159 case 8: return IB_RATE_20_GBPS; 160 case 12: return IB_RATE_30_GBPS; 161 case 16: return IB_RATE_40_GBPS; 162 case 24: return IB_RATE_60_GBPS; 163 case 32: return IB_RATE_80_GBPS; 164 case 48: return IB_RATE_120_GBPS; 165 case 6: return IB_RATE_14_GBPS; 166 case 22: return IB_RATE_56_GBPS; 167 case 45: return IB_RATE_112_GBPS; 168 case 67: return IB_RATE_168_GBPS; 169 case 10: return IB_RATE_25_GBPS; 170 case 40: return IB_RATE_100_GBPS; 171 case 80: return IB_RATE_200_GBPS; 172 case 120: return IB_RATE_300_GBPS; 173 case 11: return IB_RATE_28_GBPS; 174 case 20: return IB_RATE_50_GBPS; 175 case 160: return IB_RATE_400_GBPS; 176 case 240: return IB_RATE_600_GBPS; 177 default: return IB_RATE_PORT_CURRENT; 178 } 179 } 180 EXPORT_SYMBOL(mult_to_ib_rate); 181 182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 183 { 184 switch (rate) { 185 case IB_RATE_2_5_GBPS: return 2500; 186 case IB_RATE_5_GBPS: return 5000; 187 case IB_RATE_10_GBPS: return 10000; 188 case IB_RATE_20_GBPS: return 20000; 189 case IB_RATE_30_GBPS: return 30000; 190 case IB_RATE_40_GBPS: return 40000; 191 case IB_RATE_60_GBPS: return 60000; 192 case IB_RATE_80_GBPS: return 80000; 193 case IB_RATE_120_GBPS: return 120000; 194 case IB_RATE_14_GBPS: return 14062; 195 case IB_RATE_56_GBPS: return 56250; 196 case IB_RATE_112_GBPS: return 112500; 197 case IB_RATE_168_GBPS: return 168750; 198 case IB_RATE_25_GBPS: return 25781; 199 case IB_RATE_100_GBPS: return 103125; 200 case IB_RATE_200_GBPS: return 206250; 201 case IB_RATE_300_GBPS: return 309375; 202 case IB_RATE_28_GBPS: return 28125; 203 case IB_RATE_50_GBPS: return 53125; 204 case IB_RATE_400_GBPS: return 425000; 205 case IB_RATE_600_GBPS: return 637500; 206 default: return -1; 207 } 208 } 209 EXPORT_SYMBOL(ib_rate_to_mbps); 210 211 __attribute_const__ enum rdma_transport_type 212 rdma_node_get_transport(unsigned int node_type) 213 { 214 215 if (node_type == RDMA_NODE_USNIC) 216 return RDMA_TRANSPORT_USNIC; 217 if (node_type == RDMA_NODE_USNIC_UDP) 218 return RDMA_TRANSPORT_USNIC_UDP; 219 if (node_type == RDMA_NODE_RNIC) 220 return RDMA_TRANSPORT_IWARP; 221 if (node_type == RDMA_NODE_UNSPECIFIED) 222 return RDMA_TRANSPORT_UNSPECIFIED; 223 224 return RDMA_TRANSPORT_IB; 225 } 226 EXPORT_SYMBOL(rdma_node_get_transport); 227 228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 229 { 230 enum rdma_transport_type lt; 231 if (device->ops.get_link_layer) 232 return device->ops.get_link_layer(device, port_num); 233 234 lt = rdma_node_get_transport(device->node_type); 235 if (lt == RDMA_TRANSPORT_IB) 236 return IB_LINK_LAYER_INFINIBAND; 237 238 return IB_LINK_LAYER_ETHERNET; 239 } 240 EXPORT_SYMBOL(rdma_port_get_link_layer); 241 242 /* Protection domains */ 243 244 /** 245 * ib_alloc_pd - Allocates an unused protection domain. 246 * @device: The device on which to allocate the protection domain. 247 * @flags: protection domain flags 248 * @caller: caller's build-time module name 249 * 250 * A protection domain object provides an association between QPs, shared 251 * receive queues, address handles, memory regions, and memory windows. 252 * 253 * Every PD has a local_dma_lkey which can be used as the lkey value for local 254 * memory operations. 255 */ 256 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 257 const char *caller) 258 { 259 struct ib_pd *pd; 260 int mr_access_flags = 0; 261 int ret; 262 263 pd = rdma_zalloc_drv_obj(device, ib_pd); 264 if (!pd) 265 return ERR_PTR(-ENOMEM); 266 267 pd->device = device; 268 pd->uobject = NULL; 269 pd->__internal_mr = NULL; 270 atomic_set(&pd->usecnt, 0); 271 pd->flags = flags; 272 273 pd->res.type = RDMA_RESTRACK_PD; 274 rdma_restrack_set_task(&pd->res, caller); 275 276 ret = device->ops.alloc_pd(pd, NULL); 277 if (ret) { 278 kfree(pd); 279 return ERR_PTR(ret); 280 } 281 rdma_restrack_kadd(&pd->res); 282 283 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 284 pd->local_dma_lkey = device->local_dma_lkey; 285 else 286 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 287 288 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 289 pr_warn("%s: enabling unsafe global rkey\n", caller); 290 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 291 } 292 293 if (mr_access_flags) { 294 struct ib_mr *mr; 295 296 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 297 if (IS_ERR(mr)) { 298 ib_dealloc_pd(pd); 299 return ERR_CAST(mr); 300 } 301 302 mr->device = pd->device; 303 mr->pd = pd; 304 mr->type = IB_MR_TYPE_DMA; 305 mr->uobject = NULL; 306 mr->need_inval = false; 307 308 pd->__internal_mr = mr; 309 310 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 311 pd->local_dma_lkey = pd->__internal_mr->lkey; 312 313 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 314 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 315 } 316 317 return pd; 318 } 319 EXPORT_SYMBOL(__ib_alloc_pd); 320 321 /** 322 * ib_dealloc_pd_user - Deallocates a protection domain. 323 * @pd: The protection domain to deallocate. 324 * @udata: Valid user data or NULL for kernel object 325 * 326 * It is an error to call this function while any resources in the pd still 327 * exist. The caller is responsible to synchronously destroy them and 328 * guarantee no new allocations will happen. 329 */ 330 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 331 { 332 int ret; 333 334 if (pd->__internal_mr) { 335 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 336 WARN_ON(ret); 337 pd->__internal_mr = NULL; 338 } 339 340 /* uverbs manipulates usecnt with proper locking, while the kabi 341 requires the caller to guarantee we can't race here. */ 342 WARN_ON(atomic_read(&pd->usecnt)); 343 344 rdma_restrack_del(&pd->res); 345 pd->device->ops.dealloc_pd(pd, udata); 346 kfree(pd); 347 } 348 EXPORT_SYMBOL(ib_dealloc_pd_user); 349 350 /* Address handles */ 351 352 /** 353 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 354 * @dest: Pointer to destination ah_attr. Contents of the destination 355 * pointer is assumed to be invalid and attribute are overwritten. 356 * @src: Pointer to source ah_attr. 357 */ 358 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 359 const struct rdma_ah_attr *src) 360 { 361 *dest = *src; 362 if (dest->grh.sgid_attr) 363 rdma_hold_gid_attr(dest->grh.sgid_attr); 364 } 365 EXPORT_SYMBOL(rdma_copy_ah_attr); 366 367 /** 368 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 369 * @old: Pointer to existing ah_attr which needs to be replaced. 370 * old is assumed to be valid or zero'd 371 * @new: Pointer to the new ah_attr. 372 * 373 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 374 * old the ah_attr is valid; after that it copies the new attribute and holds 375 * the reference to the replaced ah_attr. 376 */ 377 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 378 const struct rdma_ah_attr *new) 379 { 380 rdma_destroy_ah_attr(old); 381 *old = *new; 382 if (old->grh.sgid_attr) 383 rdma_hold_gid_attr(old->grh.sgid_attr); 384 } 385 EXPORT_SYMBOL(rdma_replace_ah_attr); 386 387 /** 388 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 389 * @dest: Pointer to destination ah_attr to copy to. 390 * dest is assumed to be valid or zero'd 391 * @src: Pointer to the new ah_attr. 392 * 393 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 394 * if it is valid. This also transfers ownership of internal references from 395 * src to dest, making src invalid in the process. No new reference of the src 396 * ah_attr is taken. 397 */ 398 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 399 { 400 rdma_destroy_ah_attr(dest); 401 *dest = *src; 402 src->grh.sgid_attr = NULL; 403 } 404 EXPORT_SYMBOL(rdma_move_ah_attr); 405 406 /* 407 * Validate that the rdma_ah_attr is valid for the device before passing it 408 * off to the driver. 409 */ 410 static int rdma_check_ah_attr(struct ib_device *device, 411 struct rdma_ah_attr *ah_attr) 412 { 413 if (!rdma_is_port_valid(device, ah_attr->port_num)) 414 return -EINVAL; 415 416 if ((rdma_is_grh_required(device, ah_attr->port_num) || 417 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 418 !(ah_attr->ah_flags & IB_AH_GRH)) 419 return -EINVAL; 420 421 if (ah_attr->grh.sgid_attr) { 422 /* 423 * Make sure the passed sgid_attr is consistent with the 424 * parameters 425 */ 426 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 427 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 428 return -EINVAL; 429 } 430 return 0; 431 } 432 433 /* 434 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 435 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 436 */ 437 static int rdma_fill_sgid_attr(struct ib_device *device, 438 struct rdma_ah_attr *ah_attr, 439 const struct ib_gid_attr **old_sgid_attr) 440 { 441 const struct ib_gid_attr *sgid_attr; 442 struct ib_global_route *grh; 443 int ret; 444 445 *old_sgid_attr = ah_attr->grh.sgid_attr; 446 447 ret = rdma_check_ah_attr(device, ah_attr); 448 if (ret) 449 return ret; 450 451 if (!(ah_attr->ah_flags & IB_AH_GRH)) 452 return 0; 453 454 grh = rdma_ah_retrieve_grh(ah_attr); 455 if (grh->sgid_attr) 456 return 0; 457 458 sgid_attr = 459 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 460 if (IS_ERR(sgid_attr)) 461 return PTR_ERR(sgid_attr); 462 463 /* Move ownerhip of the kref into the ah_attr */ 464 grh->sgid_attr = sgid_attr; 465 return 0; 466 } 467 468 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 469 const struct ib_gid_attr *old_sgid_attr) 470 { 471 /* 472 * Fill didn't change anything, the caller retains ownership of 473 * whatever it passed 474 */ 475 if (ah_attr->grh.sgid_attr == old_sgid_attr) 476 return; 477 478 /* 479 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 480 * doesn't see any change in the rdma_ah_attr. If we get here 481 * old_sgid_attr is NULL. 482 */ 483 rdma_destroy_ah_attr(ah_attr); 484 } 485 486 static const struct ib_gid_attr * 487 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 488 const struct ib_gid_attr *old_attr) 489 { 490 if (old_attr) 491 rdma_put_gid_attr(old_attr); 492 if (ah_attr->ah_flags & IB_AH_GRH) { 493 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 494 return ah_attr->grh.sgid_attr; 495 } 496 return NULL; 497 } 498 499 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 500 struct rdma_ah_attr *ah_attr, 501 u32 flags, 502 struct ib_udata *udata) 503 { 504 struct ib_device *device = pd->device; 505 struct ib_ah *ah; 506 int ret; 507 508 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 509 510 if (!device->ops.create_ah) 511 return ERR_PTR(-EOPNOTSUPP); 512 513 ah = rdma_zalloc_drv_obj_gfp( 514 device, ib_ah, 515 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 516 if (!ah) 517 return ERR_PTR(-ENOMEM); 518 519 ah->device = device; 520 ah->pd = pd; 521 ah->type = ah_attr->type; 522 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 523 524 ret = device->ops.create_ah(ah, ah_attr, flags, udata); 525 if (ret) { 526 kfree(ah); 527 return ERR_PTR(ret); 528 } 529 530 atomic_inc(&pd->usecnt); 531 return ah; 532 } 533 534 /** 535 * rdma_create_ah - Creates an address handle for the 536 * given address vector. 537 * @pd: The protection domain associated with the address handle. 538 * @ah_attr: The attributes of the address vector. 539 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 540 * 541 * It returns 0 on success and returns appropriate error code on error. 542 * The address handle is used to reference a local or global destination 543 * in all UD QP post sends. 544 */ 545 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 546 u32 flags) 547 { 548 const struct ib_gid_attr *old_sgid_attr; 549 struct ib_ah *ah; 550 int ret; 551 552 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 553 if (ret) 554 return ERR_PTR(ret); 555 556 ah = _rdma_create_ah(pd, ah_attr, flags, NULL); 557 558 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 559 return ah; 560 } 561 EXPORT_SYMBOL(rdma_create_ah); 562 563 /** 564 * rdma_create_user_ah - Creates an address handle for the 565 * given address vector. 566 * It resolves destination mac address for ah attribute of RoCE type. 567 * @pd: The protection domain associated with the address handle. 568 * @ah_attr: The attributes of the address vector. 569 * @udata: pointer to user's input output buffer information need by 570 * provider driver. 571 * 572 * It returns 0 on success and returns appropriate error code on error. 573 * The address handle is used to reference a local or global destination 574 * in all UD QP post sends. 575 */ 576 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 577 struct rdma_ah_attr *ah_attr, 578 struct ib_udata *udata) 579 { 580 const struct ib_gid_attr *old_sgid_attr; 581 struct ib_ah *ah; 582 int err; 583 584 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 585 if (err) 586 return ERR_PTR(err); 587 588 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 589 err = ib_resolve_eth_dmac(pd->device, ah_attr); 590 if (err) { 591 ah = ERR_PTR(err); 592 goto out; 593 } 594 } 595 596 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata); 597 598 out: 599 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 600 return ah; 601 } 602 EXPORT_SYMBOL(rdma_create_user_ah); 603 604 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 605 { 606 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 607 struct iphdr ip4h_checked; 608 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 609 610 /* If it's IPv6, the version must be 6, otherwise, the first 611 * 20 bytes (before the IPv4 header) are garbled. 612 */ 613 if (ip6h->version != 6) 614 return (ip4h->version == 4) ? 4 : 0; 615 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 616 617 /* RoCE v2 requires no options, thus header length 618 * must be 5 words 619 */ 620 if (ip4h->ihl != 5) 621 return 6; 622 623 /* Verify checksum. 624 * We can't write on scattered buffers so we need to copy to 625 * temp buffer. 626 */ 627 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 628 ip4h_checked.check = 0; 629 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 630 /* if IPv4 header checksum is OK, believe it */ 631 if (ip4h->check == ip4h_checked.check) 632 return 4; 633 return 6; 634 } 635 EXPORT_SYMBOL(ib_get_rdma_header_version); 636 637 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 638 u8 port_num, 639 const struct ib_grh *grh) 640 { 641 int grh_version; 642 643 if (rdma_protocol_ib(device, port_num)) 644 return RDMA_NETWORK_IB; 645 646 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 647 648 if (grh_version == 4) 649 return RDMA_NETWORK_IPV4; 650 651 if (grh->next_hdr == IPPROTO_UDP) 652 return RDMA_NETWORK_IPV6; 653 654 return RDMA_NETWORK_ROCE_V1; 655 } 656 657 struct find_gid_index_context { 658 u16 vlan_id; 659 enum ib_gid_type gid_type; 660 }; 661 662 static bool find_gid_index(const union ib_gid *gid, 663 const struct ib_gid_attr *gid_attr, 664 void *context) 665 { 666 struct find_gid_index_context *ctx = context; 667 u16 vlan_id = 0xffff; 668 int ret; 669 670 if (ctx->gid_type != gid_attr->gid_type) 671 return false; 672 673 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 674 if (ret) 675 return false; 676 677 return ctx->vlan_id == vlan_id; 678 } 679 680 static const struct ib_gid_attr * 681 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, 682 u16 vlan_id, const union ib_gid *sgid, 683 enum ib_gid_type gid_type) 684 { 685 struct find_gid_index_context context = {.vlan_id = vlan_id, 686 .gid_type = gid_type}; 687 688 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 689 &context); 690 } 691 692 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 693 enum rdma_network_type net_type, 694 union ib_gid *sgid, union ib_gid *dgid) 695 { 696 struct sockaddr_in src_in; 697 struct sockaddr_in dst_in; 698 __be32 src_saddr, dst_saddr; 699 700 if (!sgid || !dgid) 701 return -EINVAL; 702 703 if (net_type == RDMA_NETWORK_IPV4) { 704 memcpy(&src_in.sin_addr.s_addr, 705 &hdr->roce4grh.saddr, 4); 706 memcpy(&dst_in.sin_addr.s_addr, 707 &hdr->roce4grh.daddr, 4); 708 src_saddr = src_in.sin_addr.s_addr; 709 dst_saddr = dst_in.sin_addr.s_addr; 710 ipv6_addr_set_v4mapped(src_saddr, 711 (struct in6_addr *)sgid); 712 ipv6_addr_set_v4mapped(dst_saddr, 713 (struct in6_addr *)dgid); 714 return 0; 715 } else if (net_type == RDMA_NETWORK_IPV6 || 716 net_type == RDMA_NETWORK_IB) { 717 *dgid = hdr->ibgrh.dgid; 718 *sgid = hdr->ibgrh.sgid; 719 return 0; 720 } else { 721 return -EINVAL; 722 } 723 } 724 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 725 726 /* Resolve destination mac address and hop limit for unicast destination 727 * GID entry, considering the source GID entry as well. 728 * ah_attribute must have have valid port_num, sgid_index. 729 */ 730 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 731 struct rdma_ah_attr *ah_attr) 732 { 733 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 734 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 735 int hop_limit = 0xff; 736 int ret = 0; 737 738 /* If destination is link local and source GID is RoCEv1, 739 * IP stack is not used. 740 */ 741 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 742 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 743 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 744 ah_attr->roce.dmac); 745 return ret; 746 } 747 748 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 749 ah_attr->roce.dmac, 750 sgid_attr, &hop_limit); 751 752 grh->hop_limit = hop_limit; 753 return ret; 754 } 755 756 /* 757 * This function initializes address handle attributes from the incoming packet. 758 * Incoming packet has dgid of the receiver node on which this code is 759 * getting executed and, sgid contains the GID of the sender. 760 * 761 * When resolving mac address of destination, the arrived dgid is used 762 * as sgid and, sgid is used as dgid because sgid contains destinations 763 * GID whom to respond to. 764 * 765 * On success the caller is responsible to call rdma_destroy_ah_attr on the 766 * attr. 767 */ 768 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 769 const struct ib_wc *wc, const struct ib_grh *grh, 770 struct rdma_ah_attr *ah_attr) 771 { 772 u32 flow_class; 773 int ret; 774 enum rdma_network_type net_type = RDMA_NETWORK_IB; 775 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 776 const struct ib_gid_attr *sgid_attr; 777 int hoplimit = 0xff; 778 union ib_gid dgid; 779 union ib_gid sgid; 780 781 might_sleep(); 782 783 memset(ah_attr, 0, sizeof *ah_attr); 784 ah_attr->type = rdma_ah_find_type(device, port_num); 785 if (rdma_cap_eth_ah(device, port_num)) { 786 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 787 net_type = wc->network_hdr_type; 788 else 789 net_type = ib_get_net_type_by_grh(device, port_num, grh); 790 gid_type = ib_network_to_gid_type(net_type); 791 } 792 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 793 &sgid, &dgid); 794 if (ret) 795 return ret; 796 797 rdma_ah_set_sl(ah_attr, wc->sl); 798 rdma_ah_set_port_num(ah_attr, port_num); 799 800 if (rdma_protocol_roce(device, port_num)) { 801 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 802 wc->vlan_id : 0xffff; 803 804 if (!(wc->wc_flags & IB_WC_GRH)) 805 return -EPROTOTYPE; 806 807 sgid_attr = get_sgid_attr_from_eth(device, port_num, 808 vlan_id, &dgid, 809 gid_type); 810 if (IS_ERR(sgid_attr)) 811 return PTR_ERR(sgid_attr); 812 813 flow_class = be32_to_cpu(grh->version_tclass_flow); 814 rdma_move_grh_sgid_attr(ah_attr, 815 &sgid, 816 flow_class & 0xFFFFF, 817 hoplimit, 818 (flow_class >> 20) & 0xFF, 819 sgid_attr); 820 821 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 822 if (ret) 823 rdma_destroy_ah_attr(ah_attr); 824 825 return ret; 826 } else { 827 rdma_ah_set_dlid(ah_attr, wc->slid); 828 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 829 830 if ((wc->wc_flags & IB_WC_GRH) == 0) 831 return 0; 832 833 if (dgid.global.interface_id != 834 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 835 sgid_attr = rdma_find_gid_by_port( 836 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 837 } else 838 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 839 840 if (IS_ERR(sgid_attr)) 841 return PTR_ERR(sgid_attr); 842 flow_class = be32_to_cpu(grh->version_tclass_flow); 843 rdma_move_grh_sgid_attr(ah_attr, 844 &sgid, 845 flow_class & 0xFFFFF, 846 hoplimit, 847 (flow_class >> 20) & 0xFF, 848 sgid_attr); 849 850 return 0; 851 } 852 } 853 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 854 855 /** 856 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 857 * of the reference 858 * 859 * @attr: Pointer to AH attribute structure 860 * @dgid: Destination GID 861 * @flow_label: Flow label 862 * @hop_limit: Hop limit 863 * @traffic_class: traffic class 864 * @sgid_attr: Pointer to SGID attribute 865 * 866 * This takes ownership of the sgid_attr reference. The caller must ensure 867 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 868 * calling this function. 869 */ 870 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 871 u32 flow_label, u8 hop_limit, u8 traffic_class, 872 const struct ib_gid_attr *sgid_attr) 873 { 874 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 875 traffic_class); 876 attr->grh.sgid_attr = sgid_attr; 877 } 878 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 879 880 /** 881 * rdma_destroy_ah_attr - Release reference to SGID attribute of 882 * ah attribute. 883 * @ah_attr: Pointer to ah attribute 884 * 885 * Release reference to the SGID attribute of the ah attribute if it is 886 * non NULL. It is safe to call this multiple times, and safe to call it on 887 * a zero initialized ah_attr. 888 */ 889 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 890 { 891 if (ah_attr->grh.sgid_attr) { 892 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 893 ah_attr->grh.sgid_attr = NULL; 894 } 895 } 896 EXPORT_SYMBOL(rdma_destroy_ah_attr); 897 898 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 899 const struct ib_grh *grh, u8 port_num) 900 { 901 struct rdma_ah_attr ah_attr; 902 struct ib_ah *ah; 903 int ret; 904 905 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 906 if (ret) 907 return ERR_PTR(ret); 908 909 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 910 911 rdma_destroy_ah_attr(&ah_attr); 912 return ah; 913 } 914 EXPORT_SYMBOL(ib_create_ah_from_wc); 915 916 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 917 { 918 const struct ib_gid_attr *old_sgid_attr; 919 int ret; 920 921 if (ah->type != ah_attr->type) 922 return -EINVAL; 923 924 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 925 if (ret) 926 return ret; 927 928 ret = ah->device->ops.modify_ah ? 929 ah->device->ops.modify_ah(ah, ah_attr) : 930 -EOPNOTSUPP; 931 932 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 933 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 934 return ret; 935 } 936 EXPORT_SYMBOL(rdma_modify_ah); 937 938 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 939 { 940 ah_attr->grh.sgid_attr = NULL; 941 942 return ah->device->ops.query_ah ? 943 ah->device->ops.query_ah(ah, ah_attr) : 944 -EOPNOTSUPP; 945 } 946 EXPORT_SYMBOL(rdma_query_ah); 947 948 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 949 { 950 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 951 struct ib_pd *pd; 952 953 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 954 955 pd = ah->pd; 956 957 ah->device->ops.destroy_ah(ah, flags); 958 atomic_dec(&pd->usecnt); 959 if (sgid_attr) 960 rdma_put_gid_attr(sgid_attr); 961 962 kfree(ah); 963 return 0; 964 } 965 EXPORT_SYMBOL(rdma_destroy_ah_user); 966 967 /* Shared receive queues */ 968 969 struct ib_srq *ib_create_srq(struct ib_pd *pd, 970 struct ib_srq_init_attr *srq_init_attr) 971 { 972 struct ib_srq *srq; 973 int ret; 974 975 if (!pd->device->ops.create_srq) 976 return ERR_PTR(-EOPNOTSUPP); 977 978 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 979 if (!srq) 980 return ERR_PTR(-ENOMEM); 981 982 srq->device = pd->device; 983 srq->pd = pd; 984 srq->event_handler = srq_init_attr->event_handler; 985 srq->srq_context = srq_init_attr->srq_context; 986 srq->srq_type = srq_init_attr->srq_type; 987 988 if (ib_srq_has_cq(srq->srq_type)) { 989 srq->ext.cq = srq_init_attr->ext.cq; 990 atomic_inc(&srq->ext.cq->usecnt); 991 } 992 if (srq->srq_type == IB_SRQT_XRC) { 993 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 994 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 995 } 996 atomic_inc(&pd->usecnt); 997 998 ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL); 999 if (ret) { 1000 atomic_dec(&srq->pd->usecnt); 1001 if (srq->srq_type == IB_SRQT_XRC) 1002 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1003 if (ib_srq_has_cq(srq->srq_type)) 1004 atomic_dec(&srq->ext.cq->usecnt); 1005 kfree(srq); 1006 return ERR_PTR(ret); 1007 } 1008 1009 return srq; 1010 } 1011 EXPORT_SYMBOL(ib_create_srq); 1012 1013 int ib_modify_srq(struct ib_srq *srq, 1014 struct ib_srq_attr *srq_attr, 1015 enum ib_srq_attr_mask srq_attr_mask) 1016 { 1017 return srq->device->ops.modify_srq ? 1018 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1019 NULL) : -EOPNOTSUPP; 1020 } 1021 EXPORT_SYMBOL(ib_modify_srq); 1022 1023 int ib_query_srq(struct ib_srq *srq, 1024 struct ib_srq_attr *srq_attr) 1025 { 1026 return srq->device->ops.query_srq ? 1027 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1028 } 1029 EXPORT_SYMBOL(ib_query_srq); 1030 1031 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1032 { 1033 if (atomic_read(&srq->usecnt)) 1034 return -EBUSY; 1035 1036 srq->device->ops.destroy_srq(srq, udata); 1037 1038 atomic_dec(&srq->pd->usecnt); 1039 if (srq->srq_type == IB_SRQT_XRC) 1040 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1041 if (ib_srq_has_cq(srq->srq_type)) 1042 atomic_dec(&srq->ext.cq->usecnt); 1043 kfree(srq); 1044 1045 return 0; 1046 } 1047 EXPORT_SYMBOL(ib_destroy_srq_user); 1048 1049 /* Queue pairs */ 1050 1051 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1052 { 1053 struct ib_qp *qp = context; 1054 unsigned long flags; 1055 1056 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 1057 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1058 if (event->element.qp->event_handler) 1059 event->element.qp->event_handler(event, event->element.qp->qp_context); 1060 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 1061 } 1062 1063 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 1064 { 1065 mutex_lock(&xrcd->tgt_qp_mutex); 1066 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 1067 mutex_unlock(&xrcd->tgt_qp_mutex); 1068 } 1069 1070 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1071 void (*event_handler)(struct ib_event *, void *), 1072 void *qp_context) 1073 { 1074 struct ib_qp *qp; 1075 unsigned long flags; 1076 int err; 1077 1078 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1079 if (!qp) 1080 return ERR_PTR(-ENOMEM); 1081 1082 qp->real_qp = real_qp; 1083 err = ib_open_shared_qp_security(qp, real_qp->device); 1084 if (err) { 1085 kfree(qp); 1086 return ERR_PTR(err); 1087 } 1088 1089 qp->real_qp = real_qp; 1090 atomic_inc(&real_qp->usecnt); 1091 qp->device = real_qp->device; 1092 qp->event_handler = event_handler; 1093 qp->qp_context = qp_context; 1094 qp->qp_num = real_qp->qp_num; 1095 qp->qp_type = real_qp->qp_type; 1096 1097 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1098 list_add(&qp->open_list, &real_qp->open_list); 1099 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1100 1101 return qp; 1102 } 1103 1104 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1105 struct ib_qp_open_attr *qp_open_attr) 1106 { 1107 struct ib_qp *qp, *real_qp; 1108 1109 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1110 return ERR_PTR(-EINVAL); 1111 1112 qp = ERR_PTR(-EINVAL); 1113 mutex_lock(&xrcd->tgt_qp_mutex); 1114 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 1115 if (real_qp->qp_num == qp_open_attr->qp_num) { 1116 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1117 qp_open_attr->qp_context); 1118 break; 1119 } 1120 } 1121 mutex_unlock(&xrcd->tgt_qp_mutex); 1122 return qp; 1123 } 1124 EXPORT_SYMBOL(ib_open_qp); 1125 1126 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1127 struct ib_qp_init_attr *qp_init_attr, 1128 struct ib_udata *udata) 1129 { 1130 struct ib_qp *real_qp = qp; 1131 1132 qp->event_handler = __ib_shared_qp_event_handler; 1133 qp->qp_context = qp; 1134 qp->pd = NULL; 1135 qp->send_cq = qp->recv_cq = NULL; 1136 qp->srq = NULL; 1137 qp->xrcd = qp_init_attr->xrcd; 1138 atomic_inc(&qp_init_attr->xrcd->usecnt); 1139 INIT_LIST_HEAD(&qp->open_list); 1140 1141 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1142 qp_init_attr->qp_context); 1143 if (IS_ERR(qp)) 1144 return qp; 1145 1146 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 1147 return qp; 1148 } 1149 1150 struct ib_qp *ib_create_qp_user(struct ib_pd *pd, 1151 struct ib_qp_init_attr *qp_init_attr, 1152 struct ib_udata *udata) 1153 { 1154 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 1155 struct ib_qp *qp; 1156 int ret; 1157 1158 if (qp_init_attr->rwq_ind_tbl && 1159 (qp_init_attr->recv_cq || 1160 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 1161 qp_init_attr->cap.max_recv_sge)) 1162 return ERR_PTR(-EINVAL); 1163 1164 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) && 1165 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER)) 1166 return ERR_PTR(-EINVAL); 1167 1168 /* 1169 * If the callers is using the RDMA API calculate the resources 1170 * needed for the RDMA READ/WRITE operations. 1171 * 1172 * Note that these callers need to pass in a port number. 1173 */ 1174 if (qp_init_attr->cap.max_rdma_ctxs) 1175 rdma_rw_init_qp(device, qp_init_attr); 1176 1177 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 1178 if (IS_ERR(qp)) 1179 return qp; 1180 1181 ret = ib_create_qp_security(qp, device); 1182 if (ret) 1183 goto err; 1184 1185 qp->qp_type = qp_init_attr->qp_type; 1186 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 1187 1188 atomic_set(&qp->usecnt, 0); 1189 qp->mrs_used = 0; 1190 spin_lock_init(&qp->mr_lock); 1191 INIT_LIST_HEAD(&qp->rdma_mrs); 1192 INIT_LIST_HEAD(&qp->sig_mrs); 1193 qp->port = 0; 1194 1195 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { 1196 struct ib_qp *xrc_qp = 1197 create_xrc_qp_user(qp, qp_init_attr, udata); 1198 1199 if (IS_ERR(xrc_qp)) { 1200 ret = PTR_ERR(xrc_qp); 1201 goto err; 1202 } 1203 return xrc_qp; 1204 } 1205 1206 qp->event_handler = qp_init_attr->event_handler; 1207 qp->qp_context = qp_init_attr->qp_context; 1208 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 1209 qp->recv_cq = NULL; 1210 qp->srq = NULL; 1211 } else { 1212 qp->recv_cq = qp_init_attr->recv_cq; 1213 if (qp_init_attr->recv_cq) 1214 atomic_inc(&qp_init_attr->recv_cq->usecnt); 1215 qp->srq = qp_init_attr->srq; 1216 if (qp->srq) 1217 atomic_inc(&qp_init_attr->srq->usecnt); 1218 } 1219 1220 qp->send_cq = qp_init_attr->send_cq; 1221 qp->xrcd = NULL; 1222 1223 atomic_inc(&pd->usecnt); 1224 if (qp_init_attr->send_cq) 1225 atomic_inc(&qp_init_attr->send_cq->usecnt); 1226 if (qp_init_attr->rwq_ind_tbl) 1227 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1228 1229 if (qp_init_attr->cap.max_rdma_ctxs) { 1230 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1231 if (ret) 1232 goto err; 1233 } 1234 1235 /* 1236 * Note: all hw drivers guarantee that max_send_sge is lower than 1237 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1238 * max_send_sge <= max_sge_rd. 1239 */ 1240 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1241 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1242 device->attrs.max_sge_rd); 1243 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1244 qp->integrity_en = true; 1245 1246 return qp; 1247 1248 err: 1249 ib_destroy_qp(qp); 1250 return ERR_PTR(ret); 1251 1252 } 1253 EXPORT_SYMBOL(ib_create_qp_user); 1254 1255 static const struct { 1256 int valid; 1257 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1258 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1259 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1260 [IB_QPS_RESET] = { 1261 [IB_QPS_RESET] = { .valid = 1 }, 1262 [IB_QPS_INIT] = { 1263 .valid = 1, 1264 .req_param = { 1265 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1266 IB_QP_PORT | 1267 IB_QP_QKEY), 1268 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1269 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1270 IB_QP_PORT | 1271 IB_QP_ACCESS_FLAGS), 1272 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1273 IB_QP_PORT | 1274 IB_QP_ACCESS_FLAGS), 1275 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1276 IB_QP_PORT | 1277 IB_QP_ACCESS_FLAGS), 1278 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1279 IB_QP_PORT | 1280 IB_QP_ACCESS_FLAGS), 1281 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1282 IB_QP_QKEY), 1283 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1284 IB_QP_QKEY), 1285 } 1286 }, 1287 }, 1288 [IB_QPS_INIT] = { 1289 [IB_QPS_RESET] = { .valid = 1 }, 1290 [IB_QPS_ERR] = { .valid = 1 }, 1291 [IB_QPS_INIT] = { 1292 .valid = 1, 1293 .opt_param = { 1294 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1295 IB_QP_PORT | 1296 IB_QP_QKEY), 1297 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1298 IB_QP_PORT | 1299 IB_QP_ACCESS_FLAGS), 1300 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1301 IB_QP_PORT | 1302 IB_QP_ACCESS_FLAGS), 1303 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1304 IB_QP_PORT | 1305 IB_QP_ACCESS_FLAGS), 1306 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1307 IB_QP_PORT | 1308 IB_QP_ACCESS_FLAGS), 1309 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1310 IB_QP_QKEY), 1311 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1312 IB_QP_QKEY), 1313 } 1314 }, 1315 [IB_QPS_RTR] = { 1316 .valid = 1, 1317 .req_param = { 1318 [IB_QPT_UC] = (IB_QP_AV | 1319 IB_QP_PATH_MTU | 1320 IB_QP_DEST_QPN | 1321 IB_QP_RQ_PSN), 1322 [IB_QPT_RC] = (IB_QP_AV | 1323 IB_QP_PATH_MTU | 1324 IB_QP_DEST_QPN | 1325 IB_QP_RQ_PSN | 1326 IB_QP_MAX_DEST_RD_ATOMIC | 1327 IB_QP_MIN_RNR_TIMER), 1328 [IB_QPT_XRC_INI] = (IB_QP_AV | 1329 IB_QP_PATH_MTU | 1330 IB_QP_DEST_QPN | 1331 IB_QP_RQ_PSN), 1332 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1333 IB_QP_PATH_MTU | 1334 IB_QP_DEST_QPN | 1335 IB_QP_RQ_PSN | 1336 IB_QP_MAX_DEST_RD_ATOMIC | 1337 IB_QP_MIN_RNR_TIMER), 1338 }, 1339 .opt_param = { 1340 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1341 IB_QP_QKEY), 1342 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1343 IB_QP_ACCESS_FLAGS | 1344 IB_QP_PKEY_INDEX), 1345 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1346 IB_QP_ACCESS_FLAGS | 1347 IB_QP_PKEY_INDEX), 1348 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1349 IB_QP_ACCESS_FLAGS | 1350 IB_QP_PKEY_INDEX), 1351 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1352 IB_QP_ACCESS_FLAGS | 1353 IB_QP_PKEY_INDEX), 1354 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1355 IB_QP_QKEY), 1356 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1357 IB_QP_QKEY), 1358 }, 1359 }, 1360 }, 1361 [IB_QPS_RTR] = { 1362 [IB_QPS_RESET] = { .valid = 1 }, 1363 [IB_QPS_ERR] = { .valid = 1 }, 1364 [IB_QPS_RTS] = { 1365 .valid = 1, 1366 .req_param = { 1367 [IB_QPT_UD] = IB_QP_SQ_PSN, 1368 [IB_QPT_UC] = IB_QP_SQ_PSN, 1369 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1370 IB_QP_RETRY_CNT | 1371 IB_QP_RNR_RETRY | 1372 IB_QP_SQ_PSN | 1373 IB_QP_MAX_QP_RD_ATOMIC), 1374 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1375 IB_QP_RETRY_CNT | 1376 IB_QP_RNR_RETRY | 1377 IB_QP_SQ_PSN | 1378 IB_QP_MAX_QP_RD_ATOMIC), 1379 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1380 IB_QP_SQ_PSN), 1381 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1382 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1383 }, 1384 .opt_param = { 1385 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1386 IB_QP_QKEY), 1387 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1388 IB_QP_ALT_PATH | 1389 IB_QP_ACCESS_FLAGS | 1390 IB_QP_PATH_MIG_STATE), 1391 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1392 IB_QP_ALT_PATH | 1393 IB_QP_ACCESS_FLAGS | 1394 IB_QP_MIN_RNR_TIMER | 1395 IB_QP_PATH_MIG_STATE), 1396 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1397 IB_QP_ALT_PATH | 1398 IB_QP_ACCESS_FLAGS | 1399 IB_QP_PATH_MIG_STATE), 1400 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1401 IB_QP_ALT_PATH | 1402 IB_QP_ACCESS_FLAGS | 1403 IB_QP_MIN_RNR_TIMER | 1404 IB_QP_PATH_MIG_STATE), 1405 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1406 IB_QP_QKEY), 1407 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1408 IB_QP_QKEY), 1409 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1410 } 1411 } 1412 }, 1413 [IB_QPS_RTS] = { 1414 [IB_QPS_RESET] = { .valid = 1 }, 1415 [IB_QPS_ERR] = { .valid = 1 }, 1416 [IB_QPS_RTS] = { 1417 .valid = 1, 1418 .opt_param = { 1419 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1420 IB_QP_QKEY), 1421 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1422 IB_QP_ACCESS_FLAGS | 1423 IB_QP_ALT_PATH | 1424 IB_QP_PATH_MIG_STATE), 1425 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1426 IB_QP_ACCESS_FLAGS | 1427 IB_QP_ALT_PATH | 1428 IB_QP_PATH_MIG_STATE | 1429 IB_QP_MIN_RNR_TIMER), 1430 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1431 IB_QP_ACCESS_FLAGS | 1432 IB_QP_ALT_PATH | 1433 IB_QP_PATH_MIG_STATE), 1434 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1435 IB_QP_ACCESS_FLAGS | 1436 IB_QP_ALT_PATH | 1437 IB_QP_PATH_MIG_STATE | 1438 IB_QP_MIN_RNR_TIMER), 1439 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1440 IB_QP_QKEY), 1441 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1442 IB_QP_QKEY), 1443 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1444 } 1445 }, 1446 [IB_QPS_SQD] = { 1447 .valid = 1, 1448 .opt_param = { 1449 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1450 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1451 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1452 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1453 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1454 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1455 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1456 } 1457 }, 1458 }, 1459 [IB_QPS_SQD] = { 1460 [IB_QPS_RESET] = { .valid = 1 }, 1461 [IB_QPS_ERR] = { .valid = 1 }, 1462 [IB_QPS_RTS] = { 1463 .valid = 1, 1464 .opt_param = { 1465 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1466 IB_QP_QKEY), 1467 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1468 IB_QP_ALT_PATH | 1469 IB_QP_ACCESS_FLAGS | 1470 IB_QP_PATH_MIG_STATE), 1471 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1472 IB_QP_ALT_PATH | 1473 IB_QP_ACCESS_FLAGS | 1474 IB_QP_MIN_RNR_TIMER | 1475 IB_QP_PATH_MIG_STATE), 1476 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1477 IB_QP_ALT_PATH | 1478 IB_QP_ACCESS_FLAGS | 1479 IB_QP_PATH_MIG_STATE), 1480 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1481 IB_QP_ALT_PATH | 1482 IB_QP_ACCESS_FLAGS | 1483 IB_QP_MIN_RNR_TIMER | 1484 IB_QP_PATH_MIG_STATE), 1485 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1486 IB_QP_QKEY), 1487 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1488 IB_QP_QKEY), 1489 } 1490 }, 1491 [IB_QPS_SQD] = { 1492 .valid = 1, 1493 .opt_param = { 1494 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1495 IB_QP_QKEY), 1496 [IB_QPT_UC] = (IB_QP_AV | 1497 IB_QP_ALT_PATH | 1498 IB_QP_ACCESS_FLAGS | 1499 IB_QP_PKEY_INDEX | 1500 IB_QP_PATH_MIG_STATE), 1501 [IB_QPT_RC] = (IB_QP_PORT | 1502 IB_QP_AV | 1503 IB_QP_TIMEOUT | 1504 IB_QP_RETRY_CNT | 1505 IB_QP_RNR_RETRY | 1506 IB_QP_MAX_QP_RD_ATOMIC | 1507 IB_QP_MAX_DEST_RD_ATOMIC | 1508 IB_QP_ALT_PATH | 1509 IB_QP_ACCESS_FLAGS | 1510 IB_QP_PKEY_INDEX | 1511 IB_QP_MIN_RNR_TIMER | 1512 IB_QP_PATH_MIG_STATE), 1513 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1514 IB_QP_AV | 1515 IB_QP_TIMEOUT | 1516 IB_QP_RETRY_CNT | 1517 IB_QP_RNR_RETRY | 1518 IB_QP_MAX_QP_RD_ATOMIC | 1519 IB_QP_ALT_PATH | 1520 IB_QP_ACCESS_FLAGS | 1521 IB_QP_PKEY_INDEX | 1522 IB_QP_PATH_MIG_STATE), 1523 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1524 IB_QP_AV | 1525 IB_QP_TIMEOUT | 1526 IB_QP_MAX_DEST_RD_ATOMIC | 1527 IB_QP_ALT_PATH | 1528 IB_QP_ACCESS_FLAGS | 1529 IB_QP_PKEY_INDEX | 1530 IB_QP_MIN_RNR_TIMER | 1531 IB_QP_PATH_MIG_STATE), 1532 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1533 IB_QP_QKEY), 1534 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1535 IB_QP_QKEY), 1536 } 1537 } 1538 }, 1539 [IB_QPS_SQE] = { 1540 [IB_QPS_RESET] = { .valid = 1 }, 1541 [IB_QPS_ERR] = { .valid = 1 }, 1542 [IB_QPS_RTS] = { 1543 .valid = 1, 1544 .opt_param = { 1545 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1546 IB_QP_QKEY), 1547 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1548 IB_QP_ACCESS_FLAGS), 1549 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1550 IB_QP_QKEY), 1551 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1552 IB_QP_QKEY), 1553 } 1554 } 1555 }, 1556 [IB_QPS_ERR] = { 1557 [IB_QPS_RESET] = { .valid = 1 }, 1558 [IB_QPS_ERR] = { .valid = 1 } 1559 } 1560 }; 1561 1562 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1563 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1564 { 1565 enum ib_qp_attr_mask req_param, opt_param; 1566 1567 if (mask & IB_QP_CUR_STATE && 1568 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1569 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1570 return false; 1571 1572 if (!qp_state_table[cur_state][next_state].valid) 1573 return false; 1574 1575 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1576 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1577 1578 if ((mask & req_param) != req_param) 1579 return false; 1580 1581 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1582 return false; 1583 1584 return true; 1585 } 1586 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1587 1588 /** 1589 * ib_resolve_eth_dmac - Resolve destination mac address 1590 * @device: Device to consider 1591 * @ah_attr: address handle attribute which describes the 1592 * source and destination parameters 1593 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1594 * returns 0 on success or appropriate error code. It initializes the 1595 * necessary ah_attr fields when call is successful. 1596 */ 1597 static int ib_resolve_eth_dmac(struct ib_device *device, 1598 struct rdma_ah_attr *ah_attr) 1599 { 1600 int ret = 0; 1601 1602 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1603 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1604 __be32 addr = 0; 1605 1606 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1607 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1608 } else { 1609 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1610 (char *)ah_attr->roce.dmac); 1611 } 1612 } else { 1613 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1614 } 1615 return ret; 1616 } 1617 1618 static bool is_qp_type_connected(const struct ib_qp *qp) 1619 { 1620 return (qp->qp_type == IB_QPT_UC || 1621 qp->qp_type == IB_QPT_RC || 1622 qp->qp_type == IB_QPT_XRC_INI || 1623 qp->qp_type == IB_QPT_XRC_TGT); 1624 } 1625 1626 /** 1627 * IB core internal function to perform QP attributes modification. 1628 */ 1629 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1630 int attr_mask, struct ib_udata *udata) 1631 { 1632 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1633 const struct ib_gid_attr *old_sgid_attr_av; 1634 const struct ib_gid_attr *old_sgid_attr_alt_av; 1635 int ret; 1636 1637 if (attr_mask & IB_QP_AV) { 1638 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1639 &old_sgid_attr_av); 1640 if (ret) 1641 return ret; 1642 } 1643 if (attr_mask & IB_QP_ALT_PATH) { 1644 /* 1645 * FIXME: This does not track the migration state, so if the 1646 * user loads a new alternate path after the HW has migrated 1647 * from primary->alternate we will keep the wrong 1648 * references. This is OK for IB because the reference 1649 * counting does not serve any functional purpose. 1650 */ 1651 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1652 &old_sgid_attr_alt_av); 1653 if (ret) 1654 goto out_av; 1655 1656 /* 1657 * Today the core code can only handle alternate paths and APM 1658 * for IB. Ban them in roce mode. 1659 */ 1660 if (!(rdma_protocol_ib(qp->device, 1661 attr->alt_ah_attr.port_num) && 1662 rdma_protocol_ib(qp->device, port))) { 1663 ret = EINVAL; 1664 goto out; 1665 } 1666 } 1667 1668 /* 1669 * If the user provided the qp_attr then we have to resolve it. Kernel 1670 * users have to provide already resolved rdma_ah_attr's 1671 */ 1672 if (udata && (attr_mask & IB_QP_AV) && 1673 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1674 is_qp_type_connected(qp)) { 1675 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1676 if (ret) 1677 goto out; 1678 } 1679 1680 if (rdma_ib_or_roce(qp->device, port)) { 1681 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1682 dev_warn(&qp->device->dev, 1683 "%s rq_psn overflow, masking to 24 bits\n", 1684 __func__); 1685 attr->rq_psn &= 0xffffff; 1686 } 1687 1688 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1689 dev_warn(&qp->device->dev, 1690 " %s sq_psn overflow, masking to 24 bits\n", 1691 __func__); 1692 attr->sq_psn &= 0xffffff; 1693 } 1694 } 1695 1696 /* 1697 * Bind this qp to a counter automatically based on the rdma counter 1698 * rules. This only set in RST2INIT with port specified 1699 */ 1700 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1701 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1702 rdma_counter_bind_qp_auto(qp, attr->port_num); 1703 1704 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1705 if (ret) 1706 goto out; 1707 1708 if (attr_mask & IB_QP_PORT) 1709 qp->port = attr->port_num; 1710 if (attr_mask & IB_QP_AV) 1711 qp->av_sgid_attr = 1712 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1713 if (attr_mask & IB_QP_ALT_PATH) 1714 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1715 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1716 1717 out: 1718 if (attr_mask & IB_QP_ALT_PATH) 1719 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1720 out_av: 1721 if (attr_mask & IB_QP_AV) 1722 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1723 return ret; 1724 } 1725 1726 /** 1727 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1728 * @ib_qp: The QP to modify. 1729 * @attr: On input, specifies the QP attributes to modify. On output, 1730 * the current values of selected QP attributes are returned. 1731 * @attr_mask: A bit-mask used to specify which attributes of the QP 1732 * are being modified. 1733 * @udata: pointer to user's input output buffer information 1734 * are being modified. 1735 * It returns 0 on success and returns appropriate error code on error. 1736 */ 1737 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1738 int attr_mask, struct ib_udata *udata) 1739 { 1740 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1741 } 1742 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1743 1744 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1745 { 1746 int rc; 1747 u32 netdev_speed; 1748 struct net_device *netdev; 1749 struct ethtool_link_ksettings lksettings; 1750 1751 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1752 return -EINVAL; 1753 1754 netdev = ib_device_get_netdev(dev, port_num); 1755 if (!netdev) 1756 return -ENODEV; 1757 1758 rtnl_lock(); 1759 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1760 rtnl_unlock(); 1761 1762 dev_put(netdev); 1763 1764 if (!rc) { 1765 netdev_speed = lksettings.base.speed; 1766 } else { 1767 netdev_speed = SPEED_1000; 1768 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1769 netdev_speed); 1770 } 1771 1772 if (netdev_speed <= SPEED_1000) { 1773 *width = IB_WIDTH_1X; 1774 *speed = IB_SPEED_SDR; 1775 } else if (netdev_speed <= SPEED_10000) { 1776 *width = IB_WIDTH_1X; 1777 *speed = IB_SPEED_FDR10; 1778 } else if (netdev_speed <= SPEED_20000) { 1779 *width = IB_WIDTH_4X; 1780 *speed = IB_SPEED_DDR; 1781 } else if (netdev_speed <= SPEED_25000) { 1782 *width = IB_WIDTH_1X; 1783 *speed = IB_SPEED_EDR; 1784 } else if (netdev_speed <= SPEED_40000) { 1785 *width = IB_WIDTH_4X; 1786 *speed = IB_SPEED_FDR10; 1787 } else { 1788 *width = IB_WIDTH_4X; 1789 *speed = IB_SPEED_EDR; 1790 } 1791 1792 return 0; 1793 } 1794 EXPORT_SYMBOL(ib_get_eth_speed); 1795 1796 int ib_modify_qp(struct ib_qp *qp, 1797 struct ib_qp_attr *qp_attr, 1798 int qp_attr_mask) 1799 { 1800 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1801 } 1802 EXPORT_SYMBOL(ib_modify_qp); 1803 1804 int ib_query_qp(struct ib_qp *qp, 1805 struct ib_qp_attr *qp_attr, 1806 int qp_attr_mask, 1807 struct ib_qp_init_attr *qp_init_attr) 1808 { 1809 qp_attr->ah_attr.grh.sgid_attr = NULL; 1810 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1811 1812 return qp->device->ops.query_qp ? 1813 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1814 qp_init_attr) : -EOPNOTSUPP; 1815 } 1816 EXPORT_SYMBOL(ib_query_qp); 1817 1818 int ib_close_qp(struct ib_qp *qp) 1819 { 1820 struct ib_qp *real_qp; 1821 unsigned long flags; 1822 1823 real_qp = qp->real_qp; 1824 if (real_qp == qp) 1825 return -EINVAL; 1826 1827 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1828 list_del(&qp->open_list); 1829 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1830 1831 atomic_dec(&real_qp->usecnt); 1832 if (qp->qp_sec) 1833 ib_close_shared_qp_security(qp->qp_sec); 1834 kfree(qp); 1835 1836 return 0; 1837 } 1838 EXPORT_SYMBOL(ib_close_qp); 1839 1840 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1841 { 1842 struct ib_xrcd *xrcd; 1843 struct ib_qp *real_qp; 1844 int ret; 1845 1846 real_qp = qp->real_qp; 1847 xrcd = real_qp->xrcd; 1848 1849 mutex_lock(&xrcd->tgt_qp_mutex); 1850 ib_close_qp(qp); 1851 if (atomic_read(&real_qp->usecnt) == 0) 1852 list_del(&real_qp->xrcd_list); 1853 else 1854 real_qp = NULL; 1855 mutex_unlock(&xrcd->tgt_qp_mutex); 1856 1857 if (real_qp) { 1858 ret = ib_destroy_qp(real_qp); 1859 if (!ret) 1860 atomic_dec(&xrcd->usecnt); 1861 else 1862 __ib_insert_xrcd_qp(xrcd, real_qp); 1863 } 1864 1865 return 0; 1866 } 1867 1868 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 1869 { 1870 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 1871 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 1872 struct ib_pd *pd; 1873 struct ib_cq *scq, *rcq; 1874 struct ib_srq *srq; 1875 struct ib_rwq_ind_table *ind_tbl; 1876 struct ib_qp_security *sec; 1877 int ret; 1878 1879 WARN_ON_ONCE(qp->mrs_used > 0); 1880 1881 if (atomic_read(&qp->usecnt)) 1882 return -EBUSY; 1883 1884 if (qp->real_qp != qp) 1885 return __ib_destroy_shared_qp(qp); 1886 1887 pd = qp->pd; 1888 scq = qp->send_cq; 1889 rcq = qp->recv_cq; 1890 srq = qp->srq; 1891 ind_tbl = qp->rwq_ind_tbl; 1892 sec = qp->qp_sec; 1893 if (sec) 1894 ib_destroy_qp_security_begin(sec); 1895 1896 if (!qp->uobject) 1897 rdma_rw_cleanup_mrs(qp); 1898 1899 rdma_counter_unbind_qp(qp, true); 1900 rdma_restrack_del(&qp->res); 1901 ret = qp->device->ops.destroy_qp(qp, udata); 1902 if (!ret) { 1903 if (alt_path_sgid_attr) 1904 rdma_put_gid_attr(alt_path_sgid_attr); 1905 if (av_sgid_attr) 1906 rdma_put_gid_attr(av_sgid_attr); 1907 if (pd) 1908 atomic_dec(&pd->usecnt); 1909 if (scq) 1910 atomic_dec(&scq->usecnt); 1911 if (rcq) 1912 atomic_dec(&rcq->usecnt); 1913 if (srq) 1914 atomic_dec(&srq->usecnt); 1915 if (ind_tbl) 1916 atomic_dec(&ind_tbl->usecnt); 1917 if (sec) 1918 ib_destroy_qp_security_end(sec); 1919 } else { 1920 if (sec) 1921 ib_destroy_qp_security_abort(sec); 1922 } 1923 1924 return ret; 1925 } 1926 EXPORT_SYMBOL(ib_destroy_qp_user); 1927 1928 /* Completion queues */ 1929 1930 struct ib_cq *__ib_create_cq(struct ib_device *device, 1931 ib_comp_handler comp_handler, 1932 void (*event_handler)(struct ib_event *, void *), 1933 void *cq_context, 1934 const struct ib_cq_init_attr *cq_attr, 1935 const char *caller) 1936 { 1937 struct ib_cq *cq; 1938 int ret; 1939 1940 cq = rdma_zalloc_drv_obj(device, ib_cq); 1941 if (!cq) 1942 return ERR_PTR(-ENOMEM); 1943 1944 cq->device = device; 1945 cq->uobject = NULL; 1946 cq->comp_handler = comp_handler; 1947 cq->event_handler = event_handler; 1948 cq->cq_context = cq_context; 1949 atomic_set(&cq->usecnt, 0); 1950 cq->res.type = RDMA_RESTRACK_CQ; 1951 rdma_restrack_set_task(&cq->res, caller); 1952 1953 ret = device->ops.create_cq(cq, cq_attr, NULL); 1954 if (ret) { 1955 kfree(cq); 1956 return ERR_PTR(ret); 1957 } 1958 1959 rdma_restrack_kadd(&cq->res); 1960 return cq; 1961 } 1962 EXPORT_SYMBOL(__ib_create_cq); 1963 1964 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1965 { 1966 return cq->device->ops.modify_cq ? 1967 cq->device->ops.modify_cq(cq, cq_count, 1968 cq_period) : -EOPNOTSUPP; 1969 } 1970 EXPORT_SYMBOL(rdma_set_cq_moderation); 1971 1972 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 1973 { 1974 if (atomic_read(&cq->usecnt)) 1975 return -EBUSY; 1976 1977 rdma_restrack_del(&cq->res); 1978 cq->device->ops.destroy_cq(cq, udata); 1979 kfree(cq); 1980 return 0; 1981 } 1982 EXPORT_SYMBOL(ib_destroy_cq_user); 1983 1984 int ib_resize_cq(struct ib_cq *cq, int cqe) 1985 { 1986 return cq->device->ops.resize_cq ? 1987 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 1988 } 1989 EXPORT_SYMBOL(ib_resize_cq); 1990 1991 /* Memory regions */ 1992 1993 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 1994 { 1995 struct ib_pd *pd = mr->pd; 1996 struct ib_dm *dm = mr->dm; 1997 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 1998 int ret; 1999 2000 rdma_restrack_del(&mr->res); 2001 ret = mr->device->ops.dereg_mr(mr, udata); 2002 if (!ret) { 2003 atomic_dec(&pd->usecnt); 2004 if (dm) 2005 atomic_dec(&dm->usecnt); 2006 kfree(sig_attrs); 2007 } 2008 2009 return ret; 2010 } 2011 EXPORT_SYMBOL(ib_dereg_mr_user); 2012 2013 /** 2014 * ib_alloc_mr_user() - Allocates a memory region 2015 * @pd: protection domain associated with the region 2016 * @mr_type: memory region type 2017 * @max_num_sg: maximum sg entries available for registration. 2018 * @udata: user data or null for kernel objects 2019 * 2020 * Notes: 2021 * Memory registeration page/sg lists must not exceed max_num_sg. 2022 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2023 * max_num_sg * used_page_size. 2024 * 2025 */ 2026 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 2027 u32 max_num_sg, struct ib_udata *udata) 2028 { 2029 struct ib_mr *mr; 2030 2031 if (!pd->device->ops.alloc_mr) 2032 return ERR_PTR(-EOPNOTSUPP); 2033 2034 if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY)) 2035 return ERR_PTR(-EINVAL); 2036 2037 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata); 2038 if (!IS_ERR(mr)) { 2039 mr->device = pd->device; 2040 mr->pd = pd; 2041 mr->dm = NULL; 2042 mr->uobject = NULL; 2043 atomic_inc(&pd->usecnt); 2044 mr->need_inval = false; 2045 mr->res.type = RDMA_RESTRACK_MR; 2046 rdma_restrack_kadd(&mr->res); 2047 mr->type = mr_type; 2048 mr->sig_attrs = NULL; 2049 } 2050 2051 return mr; 2052 } 2053 EXPORT_SYMBOL(ib_alloc_mr_user); 2054 2055 /** 2056 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2057 * @pd: protection domain associated with the region 2058 * @max_num_data_sg: maximum data sg entries available for registration 2059 * @max_num_meta_sg: maximum metadata sg entries available for 2060 * registration 2061 * 2062 * Notes: 2063 * Memory registration page/sg lists must not exceed max_num_sg, 2064 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2065 * 2066 */ 2067 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2068 u32 max_num_data_sg, 2069 u32 max_num_meta_sg) 2070 { 2071 struct ib_mr *mr; 2072 struct ib_sig_attrs *sig_attrs; 2073 2074 if (!pd->device->ops.alloc_mr_integrity || 2075 !pd->device->ops.map_mr_sg_pi) 2076 return ERR_PTR(-EOPNOTSUPP); 2077 2078 if (!max_num_meta_sg) 2079 return ERR_PTR(-EINVAL); 2080 2081 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2082 if (!sig_attrs) 2083 return ERR_PTR(-ENOMEM); 2084 2085 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2086 max_num_meta_sg); 2087 if (IS_ERR(mr)) { 2088 kfree(sig_attrs); 2089 return mr; 2090 } 2091 2092 mr->device = pd->device; 2093 mr->pd = pd; 2094 mr->dm = NULL; 2095 mr->uobject = NULL; 2096 atomic_inc(&pd->usecnt); 2097 mr->need_inval = false; 2098 mr->res.type = RDMA_RESTRACK_MR; 2099 rdma_restrack_kadd(&mr->res); 2100 mr->type = IB_MR_TYPE_INTEGRITY; 2101 mr->sig_attrs = sig_attrs; 2102 2103 return mr; 2104 } 2105 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2106 2107 /* "Fast" memory regions */ 2108 2109 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2110 int mr_access_flags, 2111 struct ib_fmr_attr *fmr_attr) 2112 { 2113 struct ib_fmr *fmr; 2114 2115 if (!pd->device->ops.alloc_fmr) 2116 return ERR_PTR(-EOPNOTSUPP); 2117 2118 fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr); 2119 if (!IS_ERR(fmr)) { 2120 fmr->device = pd->device; 2121 fmr->pd = pd; 2122 atomic_inc(&pd->usecnt); 2123 } 2124 2125 return fmr; 2126 } 2127 EXPORT_SYMBOL(ib_alloc_fmr); 2128 2129 int ib_unmap_fmr(struct list_head *fmr_list) 2130 { 2131 struct ib_fmr *fmr; 2132 2133 if (list_empty(fmr_list)) 2134 return 0; 2135 2136 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 2137 return fmr->device->ops.unmap_fmr(fmr_list); 2138 } 2139 EXPORT_SYMBOL(ib_unmap_fmr); 2140 2141 int ib_dealloc_fmr(struct ib_fmr *fmr) 2142 { 2143 struct ib_pd *pd; 2144 int ret; 2145 2146 pd = fmr->pd; 2147 ret = fmr->device->ops.dealloc_fmr(fmr); 2148 if (!ret) 2149 atomic_dec(&pd->usecnt); 2150 2151 return ret; 2152 } 2153 EXPORT_SYMBOL(ib_dealloc_fmr); 2154 2155 /* Multicast groups */ 2156 2157 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2158 { 2159 struct ib_qp_init_attr init_attr = {}; 2160 struct ib_qp_attr attr = {}; 2161 int num_eth_ports = 0; 2162 int port; 2163 2164 /* If QP state >= init, it is assigned to a port and we can check this 2165 * port only. 2166 */ 2167 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2168 if (attr.qp_state >= IB_QPS_INIT) { 2169 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2170 IB_LINK_LAYER_INFINIBAND) 2171 return true; 2172 goto lid_check; 2173 } 2174 } 2175 2176 /* Can't get a quick answer, iterate over all ports */ 2177 for (port = 0; port < qp->device->phys_port_cnt; port++) 2178 if (rdma_port_get_link_layer(qp->device, port) != 2179 IB_LINK_LAYER_INFINIBAND) 2180 num_eth_ports++; 2181 2182 /* If we have at lease one Ethernet port, RoCE annex declares that 2183 * multicast LID should be ignored. We can't tell at this step if the 2184 * QP belongs to an IB or Ethernet port. 2185 */ 2186 if (num_eth_ports) 2187 return true; 2188 2189 /* If all the ports are IB, we can check according to IB spec. */ 2190 lid_check: 2191 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2192 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2193 } 2194 2195 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2196 { 2197 int ret; 2198 2199 if (!qp->device->ops.attach_mcast) 2200 return -EOPNOTSUPP; 2201 2202 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2203 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2204 return -EINVAL; 2205 2206 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2207 if (!ret) 2208 atomic_inc(&qp->usecnt); 2209 return ret; 2210 } 2211 EXPORT_SYMBOL(ib_attach_mcast); 2212 2213 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2214 { 2215 int ret; 2216 2217 if (!qp->device->ops.detach_mcast) 2218 return -EOPNOTSUPP; 2219 2220 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2221 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2222 return -EINVAL; 2223 2224 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2225 if (!ret) 2226 atomic_dec(&qp->usecnt); 2227 return ret; 2228 } 2229 EXPORT_SYMBOL(ib_detach_mcast); 2230 2231 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 2232 { 2233 struct ib_xrcd *xrcd; 2234 2235 if (!device->ops.alloc_xrcd) 2236 return ERR_PTR(-EOPNOTSUPP); 2237 2238 xrcd = device->ops.alloc_xrcd(device, NULL); 2239 if (!IS_ERR(xrcd)) { 2240 xrcd->device = device; 2241 xrcd->inode = NULL; 2242 atomic_set(&xrcd->usecnt, 0); 2243 mutex_init(&xrcd->tgt_qp_mutex); 2244 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 2245 } 2246 2247 return xrcd; 2248 } 2249 EXPORT_SYMBOL(__ib_alloc_xrcd); 2250 2251 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata) 2252 { 2253 struct ib_qp *qp; 2254 int ret; 2255 2256 if (atomic_read(&xrcd->usecnt)) 2257 return -EBUSY; 2258 2259 while (!list_empty(&xrcd->tgt_qp_list)) { 2260 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 2261 ret = ib_destroy_qp(qp); 2262 if (ret) 2263 return ret; 2264 } 2265 mutex_destroy(&xrcd->tgt_qp_mutex); 2266 2267 return xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2268 } 2269 EXPORT_SYMBOL(ib_dealloc_xrcd); 2270 2271 /** 2272 * ib_create_wq - Creates a WQ associated with the specified protection 2273 * domain. 2274 * @pd: The protection domain associated with the WQ. 2275 * @wq_attr: A list of initial attributes required to create the 2276 * WQ. If WQ creation succeeds, then the attributes are updated to 2277 * the actual capabilities of the created WQ. 2278 * 2279 * wq_attr->max_wr and wq_attr->max_sge determine 2280 * the requested size of the WQ, and set to the actual values allocated 2281 * on return. 2282 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2283 * at least as large as the requested values. 2284 */ 2285 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2286 struct ib_wq_init_attr *wq_attr) 2287 { 2288 struct ib_wq *wq; 2289 2290 if (!pd->device->ops.create_wq) 2291 return ERR_PTR(-EOPNOTSUPP); 2292 2293 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2294 if (!IS_ERR(wq)) { 2295 wq->event_handler = wq_attr->event_handler; 2296 wq->wq_context = wq_attr->wq_context; 2297 wq->wq_type = wq_attr->wq_type; 2298 wq->cq = wq_attr->cq; 2299 wq->device = pd->device; 2300 wq->pd = pd; 2301 wq->uobject = NULL; 2302 atomic_inc(&pd->usecnt); 2303 atomic_inc(&wq_attr->cq->usecnt); 2304 atomic_set(&wq->usecnt, 0); 2305 } 2306 return wq; 2307 } 2308 EXPORT_SYMBOL(ib_create_wq); 2309 2310 /** 2311 * ib_destroy_wq - Destroys the specified user WQ. 2312 * @wq: The WQ to destroy. 2313 * @udata: Valid user data 2314 */ 2315 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata) 2316 { 2317 struct ib_cq *cq = wq->cq; 2318 struct ib_pd *pd = wq->pd; 2319 2320 if (atomic_read(&wq->usecnt)) 2321 return -EBUSY; 2322 2323 wq->device->ops.destroy_wq(wq, udata); 2324 atomic_dec(&pd->usecnt); 2325 atomic_dec(&cq->usecnt); 2326 2327 return 0; 2328 } 2329 EXPORT_SYMBOL(ib_destroy_wq); 2330 2331 /** 2332 * ib_modify_wq - Modifies the specified WQ. 2333 * @wq: The WQ to modify. 2334 * @wq_attr: On input, specifies the WQ attributes to modify. 2335 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 2336 * are being modified. 2337 * On output, the current values of selected WQ attributes are returned. 2338 */ 2339 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 2340 u32 wq_attr_mask) 2341 { 2342 int err; 2343 2344 if (!wq->device->ops.modify_wq) 2345 return -EOPNOTSUPP; 2346 2347 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL); 2348 return err; 2349 } 2350 EXPORT_SYMBOL(ib_modify_wq); 2351 2352 /* 2353 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 2354 * @device: The device on which to create the rwq indirection table. 2355 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 2356 * create the Indirection Table. 2357 * 2358 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 2359 * than the created ib_rwq_ind_table object and the caller is responsible 2360 * for its memory allocation/free. 2361 */ 2362 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 2363 struct ib_rwq_ind_table_init_attr *init_attr) 2364 { 2365 struct ib_rwq_ind_table *rwq_ind_table; 2366 int i; 2367 u32 table_size; 2368 2369 if (!device->ops.create_rwq_ind_table) 2370 return ERR_PTR(-EOPNOTSUPP); 2371 2372 table_size = (1 << init_attr->log_ind_tbl_size); 2373 rwq_ind_table = device->ops.create_rwq_ind_table(device, 2374 init_attr, NULL); 2375 if (IS_ERR(rwq_ind_table)) 2376 return rwq_ind_table; 2377 2378 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 2379 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 2380 rwq_ind_table->device = device; 2381 rwq_ind_table->uobject = NULL; 2382 atomic_set(&rwq_ind_table->usecnt, 0); 2383 2384 for (i = 0; i < table_size; i++) 2385 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 2386 2387 return rwq_ind_table; 2388 } 2389 EXPORT_SYMBOL(ib_create_rwq_ind_table); 2390 2391 /* 2392 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 2393 * @wq_ind_table: The Indirection Table to destroy. 2394 */ 2395 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 2396 { 2397 int err, i; 2398 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 2399 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 2400 2401 if (atomic_read(&rwq_ind_table->usecnt)) 2402 return -EBUSY; 2403 2404 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table); 2405 if (!err) { 2406 for (i = 0; i < table_size; i++) 2407 atomic_dec(&ind_tbl[i]->usecnt); 2408 } 2409 2410 return err; 2411 } 2412 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 2413 2414 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2415 struct ib_mr_status *mr_status) 2416 { 2417 if (!mr->device->ops.check_mr_status) 2418 return -EOPNOTSUPP; 2419 2420 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2421 } 2422 EXPORT_SYMBOL(ib_check_mr_status); 2423 2424 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2425 int state) 2426 { 2427 if (!device->ops.set_vf_link_state) 2428 return -EOPNOTSUPP; 2429 2430 return device->ops.set_vf_link_state(device, vf, port, state); 2431 } 2432 EXPORT_SYMBOL(ib_set_vf_link_state); 2433 2434 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2435 struct ifla_vf_info *info) 2436 { 2437 if (!device->ops.get_vf_config) 2438 return -EOPNOTSUPP; 2439 2440 return device->ops.get_vf_config(device, vf, port, info); 2441 } 2442 EXPORT_SYMBOL(ib_get_vf_config); 2443 2444 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2445 struct ifla_vf_stats *stats) 2446 { 2447 if (!device->ops.get_vf_stats) 2448 return -EOPNOTSUPP; 2449 2450 return device->ops.get_vf_stats(device, vf, port, stats); 2451 } 2452 EXPORT_SYMBOL(ib_get_vf_stats); 2453 2454 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2455 int type) 2456 { 2457 if (!device->ops.set_vf_guid) 2458 return -EOPNOTSUPP; 2459 2460 return device->ops.set_vf_guid(device, vf, port, guid, type); 2461 } 2462 EXPORT_SYMBOL(ib_set_vf_guid); 2463 2464 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 2465 struct ifla_vf_guid *node_guid, 2466 struct ifla_vf_guid *port_guid) 2467 { 2468 if (!device->ops.get_vf_guid) 2469 return -EOPNOTSUPP; 2470 2471 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2472 } 2473 EXPORT_SYMBOL(ib_get_vf_guid); 2474 /** 2475 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2476 * information) and set an appropriate memory region for registration. 2477 * @mr: memory region 2478 * @data_sg: dma mapped scatterlist for data 2479 * @data_sg_nents: number of entries in data_sg 2480 * @data_sg_offset: offset in bytes into data_sg 2481 * @meta_sg: dma mapped scatterlist for metadata 2482 * @meta_sg_nents: number of entries in meta_sg 2483 * @meta_sg_offset: offset in bytes into meta_sg 2484 * @page_size: page vector desired page size 2485 * 2486 * Constraints: 2487 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2488 * 2489 * Return: 0 on success. 2490 * 2491 * After this completes successfully, the memory region 2492 * is ready for registration. 2493 */ 2494 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2495 int data_sg_nents, unsigned int *data_sg_offset, 2496 struct scatterlist *meta_sg, int meta_sg_nents, 2497 unsigned int *meta_sg_offset, unsigned int page_size) 2498 { 2499 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2500 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2501 return -EOPNOTSUPP; 2502 2503 mr->page_size = page_size; 2504 2505 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2506 data_sg_offset, meta_sg, 2507 meta_sg_nents, meta_sg_offset); 2508 } 2509 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2510 2511 /** 2512 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2513 * and set it the memory region. 2514 * @mr: memory region 2515 * @sg: dma mapped scatterlist 2516 * @sg_nents: number of entries in sg 2517 * @sg_offset: offset in bytes into sg 2518 * @page_size: page vector desired page size 2519 * 2520 * Constraints: 2521 * - The first sg element is allowed to have an offset. 2522 * - Each sg element must either be aligned to page_size or virtually 2523 * contiguous to the previous element. In case an sg element has a 2524 * non-contiguous offset, the mapping prefix will not include it. 2525 * - The last sg element is allowed to have length less than page_size. 2526 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2527 * then only max_num_sg entries will be mapped. 2528 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2529 * constraints holds and the page_size argument is ignored. 2530 * 2531 * Returns the number of sg elements that were mapped to the memory region. 2532 * 2533 * After this completes successfully, the memory region 2534 * is ready for registration. 2535 */ 2536 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2537 unsigned int *sg_offset, unsigned int page_size) 2538 { 2539 if (unlikely(!mr->device->ops.map_mr_sg)) 2540 return -EOPNOTSUPP; 2541 2542 mr->page_size = page_size; 2543 2544 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2545 } 2546 EXPORT_SYMBOL(ib_map_mr_sg); 2547 2548 /** 2549 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2550 * to a page vector 2551 * @mr: memory region 2552 * @sgl: dma mapped scatterlist 2553 * @sg_nents: number of entries in sg 2554 * @sg_offset_p: IN: start offset in bytes into sg 2555 * OUT: offset in bytes for element n of the sg of the first 2556 * byte that has not been processed where n is the return 2557 * value of this function. 2558 * @set_page: driver page assignment function pointer 2559 * 2560 * Core service helper for drivers to convert the largest 2561 * prefix of given sg list to a page vector. The sg list 2562 * prefix converted is the prefix that meet the requirements 2563 * of ib_map_mr_sg. 2564 * 2565 * Returns the number of sg elements that were assigned to 2566 * a page vector. 2567 */ 2568 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2569 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2570 { 2571 struct scatterlist *sg; 2572 u64 last_end_dma_addr = 0; 2573 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2574 unsigned int last_page_off = 0; 2575 u64 page_mask = ~((u64)mr->page_size - 1); 2576 int i, ret; 2577 2578 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2579 return -EINVAL; 2580 2581 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2582 mr->length = 0; 2583 2584 for_each_sg(sgl, sg, sg_nents, i) { 2585 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2586 u64 prev_addr = dma_addr; 2587 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2588 u64 end_dma_addr = dma_addr + dma_len; 2589 u64 page_addr = dma_addr & page_mask; 2590 2591 /* 2592 * For the second and later elements, check whether either the 2593 * end of element i-1 or the start of element i is not aligned 2594 * on a page boundary. 2595 */ 2596 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2597 /* Stop mapping if there is a gap. */ 2598 if (last_end_dma_addr != dma_addr) 2599 break; 2600 2601 /* 2602 * Coalesce this element with the last. If it is small 2603 * enough just update mr->length. Otherwise start 2604 * mapping from the next page. 2605 */ 2606 goto next_page; 2607 } 2608 2609 do { 2610 ret = set_page(mr, page_addr); 2611 if (unlikely(ret < 0)) { 2612 sg_offset = prev_addr - sg_dma_address(sg); 2613 mr->length += prev_addr - dma_addr; 2614 if (sg_offset_p) 2615 *sg_offset_p = sg_offset; 2616 return i || sg_offset ? i : ret; 2617 } 2618 prev_addr = page_addr; 2619 next_page: 2620 page_addr += mr->page_size; 2621 } while (page_addr < end_dma_addr); 2622 2623 mr->length += dma_len; 2624 last_end_dma_addr = end_dma_addr; 2625 last_page_off = end_dma_addr & ~page_mask; 2626 2627 sg_offset = 0; 2628 } 2629 2630 if (sg_offset_p) 2631 *sg_offset_p = 0; 2632 return i; 2633 } 2634 EXPORT_SYMBOL(ib_sg_to_pages); 2635 2636 struct ib_drain_cqe { 2637 struct ib_cqe cqe; 2638 struct completion done; 2639 }; 2640 2641 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2642 { 2643 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2644 cqe); 2645 2646 complete(&cqe->done); 2647 } 2648 2649 /* 2650 * Post a WR and block until its completion is reaped for the SQ. 2651 */ 2652 static void __ib_drain_sq(struct ib_qp *qp) 2653 { 2654 struct ib_cq *cq = qp->send_cq; 2655 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2656 struct ib_drain_cqe sdrain; 2657 struct ib_rdma_wr swr = { 2658 .wr = { 2659 .next = NULL, 2660 { .wr_cqe = &sdrain.cqe, }, 2661 .opcode = IB_WR_RDMA_WRITE, 2662 }, 2663 }; 2664 int ret; 2665 2666 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2667 if (ret) { 2668 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2669 return; 2670 } 2671 2672 sdrain.cqe.done = ib_drain_qp_done; 2673 init_completion(&sdrain.done); 2674 2675 ret = ib_post_send(qp, &swr.wr, NULL); 2676 if (ret) { 2677 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2678 return; 2679 } 2680 2681 if (cq->poll_ctx == IB_POLL_DIRECT) 2682 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2683 ib_process_cq_direct(cq, -1); 2684 else 2685 wait_for_completion(&sdrain.done); 2686 } 2687 2688 /* 2689 * Post a WR and block until its completion is reaped for the RQ. 2690 */ 2691 static void __ib_drain_rq(struct ib_qp *qp) 2692 { 2693 struct ib_cq *cq = qp->recv_cq; 2694 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2695 struct ib_drain_cqe rdrain; 2696 struct ib_recv_wr rwr = {}; 2697 int ret; 2698 2699 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2700 if (ret) { 2701 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2702 return; 2703 } 2704 2705 rwr.wr_cqe = &rdrain.cqe; 2706 rdrain.cqe.done = ib_drain_qp_done; 2707 init_completion(&rdrain.done); 2708 2709 ret = ib_post_recv(qp, &rwr, NULL); 2710 if (ret) { 2711 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2712 return; 2713 } 2714 2715 if (cq->poll_ctx == IB_POLL_DIRECT) 2716 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2717 ib_process_cq_direct(cq, -1); 2718 else 2719 wait_for_completion(&rdrain.done); 2720 } 2721 2722 /** 2723 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2724 * application. 2725 * @qp: queue pair to drain 2726 * 2727 * If the device has a provider-specific drain function, then 2728 * call that. Otherwise call the generic drain function 2729 * __ib_drain_sq(). 2730 * 2731 * The caller must: 2732 * 2733 * ensure there is room in the CQ and SQ for the drain work request and 2734 * completion. 2735 * 2736 * allocate the CQ using ib_alloc_cq(). 2737 * 2738 * ensure that there are no other contexts that are posting WRs concurrently. 2739 * Otherwise the drain is not guaranteed. 2740 */ 2741 void ib_drain_sq(struct ib_qp *qp) 2742 { 2743 if (qp->device->ops.drain_sq) 2744 qp->device->ops.drain_sq(qp); 2745 else 2746 __ib_drain_sq(qp); 2747 } 2748 EXPORT_SYMBOL(ib_drain_sq); 2749 2750 /** 2751 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2752 * application. 2753 * @qp: queue pair to drain 2754 * 2755 * If the device has a provider-specific drain function, then 2756 * call that. Otherwise call the generic drain function 2757 * __ib_drain_rq(). 2758 * 2759 * The caller must: 2760 * 2761 * ensure there is room in the CQ and RQ for the drain work request and 2762 * completion. 2763 * 2764 * allocate the CQ using ib_alloc_cq(). 2765 * 2766 * ensure that there are no other contexts that are posting WRs concurrently. 2767 * Otherwise the drain is not guaranteed. 2768 */ 2769 void ib_drain_rq(struct ib_qp *qp) 2770 { 2771 if (qp->device->ops.drain_rq) 2772 qp->device->ops.drain_rq(qp); 2773 else 2774 __ib_drain_rq(qp); 2775 } 2776 EXPORT_SYMBOL(ib_drain_rq); 2777 2778 /** 2779 * ib_drain_qp() - Block until all CQEs have been consumed by the 2780 * application on both the RQ and SQ. 2781 * @qp: queue pair to drain 2782 * 2783 * The caller must: 2784 * 2785 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2786 * and completions. 2787 * 2788 * allocate the CQs using ib_alloc_cq(). 2789 * 2790 * ensure that there are no other contexts that are posting WRs concurrently. 2791 * Otherwise the drain is not guaranteed. 2792 */ 2793 void ib_drain_qp(struct ib_qp *qp) 2794 { 2795 ib_drain_sq(qp); 2796 if (!qp->srq) 2797 ib_drain_rq(qp); 2798 } 2799 EXPORT_SYMBOL(ib_drain_qp); 2800 2801 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 2802 enum rdma_netdev_t type, const char *name, 2803 unsigned char name_assign_type, 2804 void (*setup)(struct net_device *)) 2805 { 2806 struct rdma_netdev_alloc_params params; 2807 struct net_device *netdev; 2808 int rc; 2809 2810 if (!device->ops.rdma_netdev_get_params) 2811 return ERR_PTR(-EOPNOTSUPP); 2812 2813 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2814 ¶ms); 2815 if (rc) 2816 return ERR_PTR(rc); 2817 2818 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2819 setup, params.txqs, params.rxqs); 2820 if (!netdev) 2821 return ERR_PTR(-ENOMEM); 2822 2823 return netdev; 2824 } 2825 EXPORT_SYMBOL(rdma_alloc_netdev); 2826 2827 int rdma_init_netdev(struct ib_device *device, u8 port_num, 2828 enum rdma_netdev_t type, const char *name, 2829 unsigned char name_assign_type, 2830 void (*setup)(struct net_device *), 2831 struct net_device *netdev) 2832 { 2833 struct rdma_netdev_alloc_params params; 2834 int rc; 2835 2836 if (!device->ops.rdma_netdev_get_params) 2837 return -EOPNOTSUPP; 2838 2839 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2840 ¶ms); 2841 if (rc) 2842 return rc; 2843 2844 return params.initialize_rdma_netdev(device, port_num, 2845 netdev, params.param); 2846 } 2847 EXPORT_SYMBOL(rdma_init_netdev); 2848 2849 void __rdma_block_iter_start(struct ib_block_iter *biter, 2850 struct scatterlist *sglist, unsigned int nents, 2851 unsigned long pgsz) 2852 { 2853 memset(biter, 0, sizeof(struct ib_block_iter)); 2854 biter->__sg = sglist; 2855 biter->__sg_nents = nents; 2856 2857 /* Driver provides best block size to use */ 2858 biter->__pg_bit = __fls(pgsz); 2859 } 2860 EXPORT_SYMBOL(__rdma_block_iter_start); 2861 2862 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2863 { 2864 unsigned int block_offset; 2865 2866 if (!biter->__sg_nents || !biter->__sg) 2867 return false; 2868 2869 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2870 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2871 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; 2872 2873 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { 2874 biter->__sg_advance = 0; 2875 biter->__sg = sg_next(biter->__sg); 2876 biter->__sg_nents--; 2877 } 2878 2879 return true; 2880 } 2881 EXPORT_SYMBOL(__rdma_block_iter_next); 2882