1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 #include <rdma/lag.h> 54 55 #include "core_priv.h" 56 #include <trace/events/rdma_core.h> 57 58 static int ib_resolve_eth_dmac(struct ib_device *device, 59 struct rdma_ah_attr *ah_attr); 60 61 static const char * const ib_events[] = { 62 [IB_EVENT_CQ_ERR] = "CQ error", 63 [IB_EVENT_QP_FATAL] = "QP fatal error", 64 [IB_EVENT_QP_REQ_ERR] = "QP request error", 65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 66 [IB_EVENT_COMM_EST] = "communication established", 67 [IB_EVENT_SQ_DRAINED] = "send queue drained", 68 [IB_EVENT_PATH_MIG] = "path migration successful", 69 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 70 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 71 [IB_EVENT_PORT_ACTIVE] = "port active", 72 [IB_EVENT_PORT_ERR] = "port error", 73 [IB_EVENT_LID_CHANGE] = "LID change", 74 [IB_EVENT_PKEY_CHANGE] = "P_key change", 75 [IB_EVENT_SM_CHANGE] = "SM change", 76 [IB_EVENT_SRQ_ERR] = "SRQ error", 77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 80 [IB_EVENT_GID_CHANGE] = "GID changed", 81 }; 82 83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 84 { 85 size_t index = event; 86 87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 88 ib_events[index] : "unrecognized event"; 89 } 90 EXPORT_SYMBOL(ib_event_msg); 91 92 static const char * const wc_statuses[] = { 93 [IB_WC_SUCCESS] = "success", 94 [IB_WC_LOC_LEN_ERR] = "local length error", 95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 97 [IB_WC_LOC_PROT_ERR] = "local protection error", 98 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 99 [IB_WC_MW_BIND_ERR] = "memory bind operation error", 100 [IB_WC_BAD_RESP_ERR] = "bad response error", 101 [IB_WC_LOC_ACCESS_ERR] = "local access error", 102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error", 103 [IB_WC_REM_ACCESS_ERR] = "remote access error", 104 [IB_WC_REM_OP_ERR] = "remote operation error", 105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 109 [IB_WC_REM_ABORT_ERR] = "operation aborted", 110 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 112 [IB_WC_FATAL_ERR] = "fatal error", 113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 114 [IB_WC_GENERAL_ERR] = "general error", 115 }; 116 117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 118 { 119 size_t index = status; 120 121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 122 wc_statuses[index] : "unrecognized status"; 123 } 124 EXPORT_SYMBOL(ib_wc_status_msg); 125 126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 127 { 128 switch (rate) { 129 case IB_RATE_2_5_GBPS: return 1; 130 case IB_RATE_5_GBPS: return 2; 131 case IB_RATE_10_GBPS: return 4; 132 case IB_RATE_20_GBPS: return 8; 133 case IB_RATE_30_GBPS: return 12; 134 case IB_RATE_40_GBPS: return 16; 135 case IB_RATE_60_GBPS: return 24; 136 case IB_RATE_80_GBPS: return 32; 137 case IB_RATE_120_GBPS: return 48; 138 case IB_RATE_14_GBPS: return 6; 139 case IB_RATE_56_GBPS: return 22; 140 case IB_RATE_112_GBPS: return 45; 141 case IB_RATE_168_GBPS: return 67; 142 case IB_RATE_25_GBPS: return 10; 143 case IB_RATE_100_GBPS: return 40; 144 case IB_RATE_200_GBPS: return 80; 145 case IB_RATE_300_GBPS: return 120; 146 case IB_RATE_28_GBPS: return 11; 147 case IB_RATE_50_GBPS: return 20; 148 case IB_RATE_400_GBPS: return 160; 149 case IB_RATE_600_GBPS: return 240; 150 case IB_RATE_800_GBPS: return 320; 151 default: return -1; 152 } 153 } 154 EXPORT_SYMBOL(ib_rate_to_mult); 155 156 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 157 { 158 switch (mult) { 159 case 1: return IB_RATE_2_5_GBPS; 160 case 2: return IB_RATE_5_GBPS; 161 case 4: return IB_RATE_10_GBPS; 162 case 8: return IB_RATE_20_GBPS; 163 case 12: return IB_RATE_30_GBPS; 164 case 16: return IB_RATE_40_GBPS; 165 case 24: return IB_RATE_60_GBPS; 166 case 32: return IB_RATE_80_GBPS; 167 case 48: return IB_RATE_120_GBPS; 168 case 6: return IB_RATE_14_GBPS; 169 case 22: return IB_RATE_56_GBPS; 170 case 45: return IB_RATE_112_GBPS; 171 case 67: return IB_RATE_168_GBPS; 172 case 10: return IB_RATE_25_GBPS; 173 case 40: return IB_RATE_100_GBPS; 174 case 80: return IB_RATE_200_GBPS; 175 case 120: return IB_RATE_300_GBPS; 176 case 11: return IB_RATE_28_GBPS; 177 case 20: return IB_RATE_50_GBPS; 178 case 160: return IB_RATE_400_GBPS; 179 case 240: return IB_RATE_600_GBPS; 180 case 320: return IB_RATE_800_GBPS; 181 default: return IB_RATE_PORT_CURRENT; 182 } 183 } 184 EXPORT_SYMBOL(mult_to_ib_rate); 185 186 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 187 { 188 switch (rate) { 189 case IB_RATE_2_5_GBPS: return 2500; 190 case IB_RATE_5_GBPS: return 5000; 191 case IB_RATE_10_GBPS: return 10000; 192 case IB_RATE_20_GBPS: return 20000; 193 case IB_RATE_30_GBPS: return 30000; 194 case IB_RATE_40_GBPS: return 40000; 195 case IB_RATE_60_GBPS: return 60000; 196 case IB_RATE_80_GBPS: return 80000; 197 case IB_RATE_120_GBPS: return 120000; 198 case IB_RATE_14_GBPS: return 14062; 199 case IB_RATE_56_GBPS: return 56250; 200 case IB_RATE_112_GBPS: return 112500; 201 case IB_RATE_168_GBPS: return 168750; 202 case IB_RATE_25_GBPS: return 25781; 203 case IB_RATE_100_GBPS: return 103125; 204 case IB_RATE_200_GBPS: return 206250; 205 case IB_RATE_300_GBPS: return 309375; 206 case IB_RATE_28_GBPS: return 28125; 207 case IB_RATE_50_GBPS: return 53125; 208 case IB_RATE_400_GBPS: return 425000; 209 case IB_RATE_600_GBPS: return 637500; 210 case IB_RATE_800_GBPS: return 850000; 211 default: return -1; 212 } 213 } 214 EXPORT_SYMBOL(ib_rate_to_mbps); 215 216 __attribute_const__ enum rdma_transport_type 217 rdma_node_get_transport(unsigned int node_type) 218 { 219 220 if (node_type == RDMA_NODE_USNIC) 221 return RDMA_TRANSPORT_USNIC; 222 if (node_type == RDMA_NODE_USNIC_UDP) 223 return RDMA_TRANSPORT_USNIC_UDP; 224 if (node_type == RDMA_NODE_RNIC) 225 return RDMA_TRANSPORT_IWARP; 226 if (node_type == RDMA_NODE_UNSPECIFIED) 227 return RDMA_TRANSPORT_UNSPECIFIED; 228 229 return RDMA_TRANSPORT_IB; 230 } 231 EXPORT_SYMBOL(rdma_node_get_transport); 232 233 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 234 u32 port_num) 235 { 236 enum rdma_transport_type lt; 237 if (device->ops.get_link_layer) 238 return device->ops.get_link_layer(device, port_num); 239 240 lt = rdma_node_get_transport(device->node_type); 241 if (lt == RDMA_TRANSPORT_IB) 242 return IB_LINK_LAYER_INFINIBAND; 243 244 return IB_LINK_LAYER_ETHERNET; 245 } 246 EXPORT_SYMBOL(rdma_port_get_link_layer); 247 248 /* Protection domains */ 249 250 /** 251 * __ib_alloc_pd - Allocates an unused protection domain. 252 * @device: The device on which to allocate the protection domain. 253 * @flags: protection domain flags 254 * @caller: caller's build-time module name 255 * 256 * A protection domain object provides an association between QPs, shared 257 * receive queues, address handles, memory regions, and memory windows. 258 * 259 * Every PD has a local_dma_lkey which can be used as the lkey value for local 260 * memory operations. 261 */ 262 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 263 const char *caller) 264 { 265 struct ib_pd *pd; 266 int mr_access_flags = 0; 267 int ret; 268 269 pd = rdma_zalloc_drv_obj(device, ib_pd); 270 if (!pd) 271 return ERR_PTR(-ENOMEM); 272 273 pd->device = device; 274 pd->flags = flags; 275 276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD); 277 rdma_restrack_set_name(&pd->res, caller); 278 279 ret = device->ops.alloc_pd(pd, NULL); 280 if (ret) { 281 rdma_restrack_put(&pd->res); 282 kfree(pd); 283 return ERR_PTR(ret); 284 } 285 rdma_restrack_add(&pd->res); 286 287 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY) 288 pd->local_dma_lkey = device->local_dma_lkey; 289 else 290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 291 292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 293 pr_warn("%s: enabling unsafe global rkey\n", caller); 294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 295 } 296 297 if (mr_access_flags) { 298 struct ib_mr *mr; 299 300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 301 if (IS_ERR(mr)) { 302 ib_dealloc_pd(pd); 303 return ERR_CAST(mr); 304 } 305 306 mr->device = pd->device; 307 mr->pd = pd; 308 mr->type = IB_MR_TYPE_DMA; 309 mr->uobject = NULL; 310 mr->need_inval = false; 311 312 pd->__internal_mr = mr; 313 314 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)) 315 pd->local_dma_lkey = pd->__internal_mr->lkey; 316 317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 318 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 319 } 320 321 return pd; 322 } 323 EXPORT_SYMBOL(__ib_alloc_pd); 324 325 /** 326 * ib_dealloc_pd_user - Deallocates a protection domain. 327 * @pd: The protection domain to deallocate. 328 * @udata: Valid user data or NULL for kernel object 329 * 330 * It is an error to call this function while any resources in the pd still 331 * exist. The caller is responsible to synchronously destroy them and 332 * guarantee no new allocations will happen. 333 */ 334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 335 { 336 int ret; 337 338 if (pd->__internal_mr) { 339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 340 WARN_ON(ret); 341 pd->__internal_mr = NULL; 342 } 343 344 ret = pd->device->ops.dealloc_pd(pd, udata); 345 if (ret) 346 return ret; 347 348 rdma_restrack_del(&pd->res); 349 kfree(pd); 350 return ret; 351 } 352 EXPORT_SYMBOL(ib_dealloc_pd_user); 353 354 /* Address handles */ 355 356 /** 357 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 358 * @dest: Pointer to destination ah_attr. Contents of the destination 359 * pointer is assumed to be invalid and attribute are overwritten. 360 * @src: Pointer to source ah_attr. 361 */ 362 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 363 const struct rdma_ah_attr *src) 364 { 365 *dest = *src; 366 if (dest->grh.sgid_attr) 367 rdma_hold_gid_attr(dest->grh.sgid_attr); 368 } 369 EXPORT_SYMBOL(rdma_copy_ah_attr); 370 371 /** 372 * rdma_replace_ah_attr - Replace valid ah_attr with new one. 373 * @old: Pointer to existing ah_attr which needs to be replaced. 374 * old is assumed to be valid or zero'd 375 * @new: Pointer to the new ah_attr. 376 * 377 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 378 * old the ah_attr is valid; after that it copies the new attribute and holds 379 * the reference to the replaced ah_attr. 380 */ 381 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 382 const struct rdma_ah_attr *new) 383 { 384 rdma_destroy_ah_attr(old); 385 *old = *new; 386 if (old->grh.sgid_attr) 387 rdma_hold_gid_attr(old->grh.sgid_attr); 388 } 389 EXPORT_SYMBOL(rdma_replace_ah_attr); 390 391 /** 392 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 393 * @dest: Pointer to destination ah_attr to copy to. 394 * dest is assumed to be valid or zero'd 395 * @src: Pointer to the new ah_attr. 396 * 397 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 398 * if it is valid. This also transfers ownership of internal references from 399 * src to dest, making src invalid in the process. No new reference of the src 400 * ah_attr is taken. 401 */ 402 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 403 { 404 rdma_destroy_ah_attr(dest); 405 *dest = *src; 406 src->grh.sgid_attr = NULL; 407 } 408 EXPORT_SYMBOL(rdma_move_ah_attr); 409 410 /* 411 * Validate that the rdma_ah_attr is valid for the device before passing it 412 * off to the driver. 413 */ 414 static int rdma_check_ah_attr(struct ib_device *device, 415 struct rdma_ah_attr *ah_attr) 416 { 417 if (!rdma_is_port_valid(device, ah_attr->port_num)) 418 return -EINVAL; 419 420 if ((rdma_is_grh_required(device, ah_attr->port_num) || 421 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 422 !(ah_attr->ah_flags & IB_AH_GRH)) 423 return -EINVAL; 424 425 if (ah_attr->grh.sgid_attr) { 426 /* 427 * Make sure the passed sgid_attr is consistent with the 428 * parameters 429 */ 430 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 431 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 432 return -EINVAL; 433 } 434 return 0; 435 } 436 437 /* 438 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 439 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 440 */ 441 static int rdma_fill_sgid_attr(struct ib_device *device, 442 struct rdma_ah_attr *ah_attr, 443 const struct ib_gid_attr **old_sgid_attr) 444 { 445 const struct ib_gid_attr *sgid_attr; 446 struct ib_global_route *grh; 447 int ret; 448 449 *old_sgid_attr = ah_attr->grh.sgid_attr; 450 451 ret = rdma_check_ah_attr(device, ah_attr); 452 if (ret) 453 return ret; 454 455 if (!(ah_attr->ah_flags & IB_AH_GRH)) 456 return 0; 457 458 grh = rdma_ah_retrieve_grh(ah_attr); 459 if (grh->sgid_attr) 460 return 0; 461 462 sgid_attr = 463 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 464 if (IS_ERR(sgid_attr)) 465 return PTR_ERR(sgid_attr); 466 467 /* Move ownerhip of the kref into the ah_attr */ 468 grh->sgid_attr = sgid_attr; 469 return 0; 470 } 471 472 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 473 const struct ib_gid_attr *old_sgid_attr) 474 { 475 /* 476 * Fill didn't change anything, the caller retains ownership of 477 * whatever it passed 478 */ 479 if (ah_attr->grh.sgid_attr == old_sgid_attr) 480 return; 481 482 /* 483 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 484 * doesn't see any change in the rdma_ah_attr. If we get here 485 * old_sgid_attr is NULL. 486 */ 487 rdma_destroy_ah_attr(ah_attr); 488 } 489 490 static const struct ib_gid_attr * 491 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 492 const struct ib_gid_attr *old_attr) 493 { 494 if (old_attr) 495 rdma_put_gid_attr(old_attr); 496 if (ah_attr->ah_flags & IB_AH_GRH) { 497 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 498 return ah_attr->grh.sgid_attr; 499 } 500 return NULL; 501 } 502 503 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 504 struct rdma_ah_attr *ah_attr, 505 u32 flags, 506 struct ib_udata *udata, 507 struct net_device *xmit_slave) 508 { 509 struct rdma_ah_init_attr init_attr = {}; 510 struct ib_device *device = pd->device; 511 struct ib_ah *ah; 512 int ret; 513 514 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 515 516 if (!udata && !device->ops.create_ah) 517 return ERR_PTR(-EOPNOTSUPP); 518 519 ah = rdma_zalloc_drv_obj_gfp( 520 device, ib_ah, 521 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 522 if (!ah) 523 return ERR_PTR(-ENOMEM); 524 525 ah->device = device; 526 ah->pd = pd; 527 ah->type = ah_attr->type; 528 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 529 init_attr.ah_attr = ah_attr; 530 init_attr.flags = flags; 531 init_attr.xmit_slave = xmit_slave; 532 533 if (udata) 534 ret = device->ops.create_user_ah(ah, &init_attr, udata); 535 else 536 ret = device->ops.create_ah(ah, &init_attr, NULL); 537 if (ret) { 538 if (ah->sgid_attr) 539 rdma_put_gid_attr(ah->sgid_attr); 540 kfree(ah); 541 return ERR_PTR(ret); 542 } 543 544 atomic_inc(&pd->usecnt); 545 return ah; 546 } 547 548 /** 549 * rdma_create_ah - Creates an address handle for the 550 * given address vector. 551 * @pd: The protection domain associated with the address handle. 552 * @ah_attr: The attributes of the address vector. 553 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 554 * 555 * It returns 0 on success and returns appropriate error code on error. 556 * The address handle is used to reference a local or global destination 557 * in all UD QP post sends. 558 */ 559 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 560 u32 flags) 561 { 562 const struct ib_gid_attr *old_sgid_attr; 563 struct net_device *slave; 564 struct ib_ah *ah; 565 int ret; 566 567 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 568 if (ret) 569 return ERR_PTR(ret); 570 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr, 571 (flags & RDMA_CREATE_AH_SLEEPABLE) ? 572 GFP_KERNEL : GFP_ATOMIC); 573 if (IS_ERR(slave)) { 574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 575 return (void *)slave; 576 } 577 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave); 578 rdma_lag_put_ah_roce_slave(slave); 579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 580 return ah; 581 } 582 EXPORT_SYMBOL(rdma_create_ah); 583 584 /** 585 * rdma_create_user_ah - Creates an address handle for the 586 * given address vector. 587 * It resolves destination mac address for ah attribute of RoCE type. 588 * @pd: The protection domain associated with the address handle. 589 * @ah_attr: The attributes of the address vector. 590 * @udata: pointer to user's input output buffer information need by 591 * provider driver. 592 * 593 * It returns 0 on success and returns appropriate error code on error. 594 * The address handle is used to reference a local or global destination 595 * in all UD QP post sends. 596 */ 597 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 598 struct rdma_ah_attr *ah_attr, 599 struct ib_udata *udata) 600 { 601 const struct ib_gid_attr *old_sgid_attr; 602 struct ib_ah *ah; 603 int err; 604 605 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 606 if (err) 607 return ERR_PTR(err); 608 609 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 610 err = ib_resolve_eth_dmac(pd->device, ah_attr); 611 if (err) { 612 ah = ERR_PTR(err); 613 goto out; 614 } 615 } 616 617 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, 618 udata, NULL); 619 620 out: 621 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 622 return ah; 623 } 624 EXPORT_SYMBOL(rdma_create_user_ah); 625 626 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 627 { 628 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 629 struct iphdr ip4h_checked; 630 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 631 632 /* If it's IPv6, the version must be 6, otherwise, the first 633 * 20 bytes (before the IPv4 header) are garbled. 634 */ 635 if (ip6h->version != 6) 636 return (ip4h->version == 4) ? 4 : 0; 637 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 638 639 /* RoCE v2 requires no options, thus header length 640 * must be 5 words 641 */ 642 if (ip4h->ihl != 5) 643 return 6; 644 645 /* Verify checksum. 646 * We can't write on scattered buffers so we need to copy to 647 * temp buffer. 648 */ 649 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 650 ip4h_checked.check = 0; 651 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 652 /* if IPv4 header checksum is OK, believe it */ 653 if (ip4h->check == ip4h_checked.check) 654 return 4; 655 return 6; 656 } 657 EXPORT_SYMBOL(ib_get_rdma_header_version); 658 659 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 660 u32 port_num, 661 const struct ib_grh *grh) 662 { 663 int grh_version; 664 665 if (rdma_protocol_ib(device, port_num)) 666 return RDMA_NETWORK_IB; 667 668 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 669 670 if (grh_version == 4) 671 return RDMA_NETWORK_IPV4; 672 673 if (grh->next_hdr == IPPROTO_UDP) 674 return RDMA_NETWORK_IPV6; 675 676 return RDMA_NETWORK_ROCE_V1; 677 } 678 679 struct find_gid_index_context { 680 u16 vlan_id; 681 enum ib_gid_type gid_type; 682 }; 683 684 static bool find_gid_index(const union ib_gid *gid, 685 const struct ib_gid_attr *gid_attr, 686 void *context) 687 { 688 struct find_gid_index_context *ctx = context; 689 u16 vlan_id = 0xffff; 690 int ret; 691 692 if (ctx->gid_type != gid_attr->gid_type) 693 return false; 694 695 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 696 if (ret) 697 return false; 698 699 return ctx->vlan_id == vlan_id; 700 } 701 702 static const struct ib_gid_attr * 703 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num, 704 u16 vlan_id, const union ib_gid *sgid, 705 enum ib_gid_type gid_type) 706 { 707 struct find_gid_index_context context = {.vlan_id = vlan_id, 708 .gid_type = gid_type}; 709 710 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 711 &context); 712 } 713 714 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 715 enum rdma_network_type net_type, 716 union ib_gid *sgid, union ib_gid *dgid) 717 { 718 struct sockaddr_in src_in; 719 struct sockaddr_in dst_in; 720 __be32 src_saddr, dst_saddr; 721 722 if (!sgid || !dgid) 723 return -EINVAL; 724 725 if (net_type == RDMA_NETWORK_IPV4) { 726 memcpy(&src_in.sin_addr.s_addr, 727 &hdr->roce4grh.saddr, 4); 728 memcpy(&dst_in.sin_addr.s_addr, 729 &hdr->roce4grh.daddr, 4); 730 src_saddr = src_in.sin_addr.s_addr; 731 dst_saddr = dst_in.sin_addr.s_addr; 732 ipv6_addr_set_v4mapped(src_saddr, 733 (struct in6_addr *)sgid); 734 ipv6_addr_set_v4mapped(dst_saddr, 735 (struct in6_addr *)dgid); 736 return 0; 737 } else if (net_type == RDMA_NETWORK_IPV6 || 738 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) { 739 *dgid = hdr->ibgrh.dgid; 740 *sgid = hdr->ibgrh.sgid; 741 return 0; 742 } else { 743 return -EINVAL; 744 } 745 } 746 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 747 748 /* Resolve destination mac address and hop limit for unicast destination 749 * GID entry, considering the source GID entry as well. 750 * ah_attribute must have valid port_num, sgid_index. 751 */ 752 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 753 struct rdma_ah_attr *ah_attr) 754 { 755 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 756 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 757 int hop_limit = 0xff; 758 int ret = 0; 759 760 /* If destination is link local and source GID is RoCEv1, 761 * IP stack is not used. 762 */ 763 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 764 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 765 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 766 ah_attr->roce.dmac); 767 return ret; 768 } 769 770 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 771 ah_attr->roce.dmac, 772 sgid_attr, &hop_limit); 773 774 grh->hop_limit = hop_limit; 775 return ret; 776 } 777 778 /* 779 * This function initializes address handle attributes from the incoming packet. 780 * Incoming packet has dgid of the receiver node on which this code is 781 * getting executed and, sgid contains the GID of the sender. 782 * 783 * When resolving mac address of destination, the arrived dgid is used 784 * as sgid and, sgid is used as dgid because sgid contains destinations 785 * GID whom to respond to. 786 * 787 * On success the caller is responsible to call rdma_destroy_ah_attr on the 788 * attr. 789 */ 790 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 791 const struct ib_wc *wc, const struct ib_grh *grh, 792 struct rdma_ah_attr *ah_attr) 793 { 794 u32 flow_class; 795 int ret; 796 enum rdma_network_type net_type = RDMA_NETWORK_IB; 797 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 798 const struct ib_gid_attr *sgid_attr; 799 int hoplimit = 0xff; 800 union ib_gid dgid; 801 union ib_gid sgid; 802 803 might_sleep(); 804 805 memset(ah_attr, 0, sizeof *ah_attr); 806 ah_attr->type = rdma_ah_find_type(device, port_num); 807 if (rdma_cap_eth_ah(device, port_num)) { 808 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 809 net_type = wc->network_hdr_type; 810 else 811 net_type = ib_get_net_type_by_grh(device, port_num, grh); 812 gid_type = ib_network_to_gid_type(net_type); 813 } 814 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 815 &sgid, &dgid); 816 if (ret) 817 return ret; 818 819 rdma_ah_set_sl(ah_attr, wc->sl); 820 rdma_ah_set_port_num(ah_attr, port_num); 821 822 if (rdma_protocol_roce(device, port_num)) { 823 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 824 wc->vlan_id : 0xffff; 825 826 if (!(wc->wc_flags & IB_WC_GRH)) 827 return -EPROTOTYPE; 828 829 sgid_attr = get_sgid_attr_from_eth(device, port_num, 830 vlan_id, &dgid, 831 gid_type); 832 if (IS_ERR(sgid_attr)) 833 return PTR_ERR(sgid_attr); 834 835 flow_class = be32_to_cpu(grh->version_tclass_flow); 836 rdma_move_grh_sgid_attr(ah_attr, 837 &sgid, 838 flow_class & 0xFFFFF, 839 hoplimit, 840 (flow_class >> 20) & 0xFF, 841 sgid_attr); 842 843 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 844 if (ret) 845 rdma_destroy_ah_attr(ah_attr); 846 847 return ret; 848 } else { 849 rdma_ah_set_dlid(ah_attr, wc->slid); 850 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 851 852 if ((wc->wc_flags & IB_WC_GRH) == 0) 853 return 0; 854 855 if (dgid.global.interface_id != 856 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 857 sgid_attr = rdma_find_gid_by_port( 858 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 859 } else 860 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 861 862 if (IS_ERR(sgid_attr)) 863 return PTR_ERR(sgid_attr); 864 flow_class = be32_to_cpu(grh->version_tclass_flow); 865 rdma_move_grh_sgid_attr(ah_attr, 866 &sgid, 867 flow_class & 0xFFFFF, 868 hoplimit, 869 (flow_class >> 20) & 0xFF, 870 sgid_attr); 871 872 return 0; 873 } 874 } 875 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 876 877 /** 878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 879 * of the reference 880 * 881 * @attr: Pointer to AH attribute structure 882 * @dgid: Destination GID 883 * @flow_label: Flow label 884 * @hop_limit: Hop limit 885 * @traffic_class: traffic class 886 * @sgid_attr: Pointer to SGID attribute 887 * 888 * This takes ownership of the sgid_attr reference. The caller must ensure 889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 890 * calling this function. 891 */ 892 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 893 u32 flow_label, u8 hop_limit, u8 traffic_class, 894 const struct ib_gid_attr *sgid_attr) 895 { 896 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 897 traffic_class); 898 attr->grh.sgid_attr = sgid_attr; 899 } 900 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 901 902 /** 903 * rdma_destroy_ah_attr - Release reference to SGID attribute of 904 * ah attribute. 905 * @ah_attr: Pointer to ah attribute 906 * 907 * Release reference to the SGID attribute of the ah attribute if it is 908 * non NULL. It is safe to call this multiple times, and safe to call it on 909 * a zero initialized ah_attr. 910 */ 911 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 912 { 913 if (ah_attr->grh.sgid_attr) { 914 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 915 ah_attr->grh.sgid_attr = NULL; 916 } 917 } 918 EXPORT_SYMBOL(rdma_destroy_ah_attr); 919 920 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 921 const struct ib_grh *grh, u32 port_num) 922 { 923 struct rdma_ah_attr ah_attr; 924 struct ib_ah *ah; 925 int ret; 926 927 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 928 if (ret) 929 return ERR_PTR(ret); 930 931 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 932 933 rdma_destroy_ah_attr(&ah_attr); 934 return ah; 935 } 936 EXPORT_SYMBOL(ib_create_ah_from_wc); 937 938 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 939 { 940 const struct ib_gid_attr *old_sgid_attr; 941 int ret; 942 943 if (ah->type != ah_attr->type) 944 return -EINVAL; 945 946 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 947 if (ret) 948 return ret; 949 950 ret = ah->device->ops.modify_ah ? 951 ah->device->ops.modify_ah(ah, ah_attr) : 952 -EOPNOTSUPP; 953 954 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 955 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 956 return ret; 957 } 958 EXPORT_SYMBOL(rdma_modify_ah); 959 960 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 961 { 962 ah_attr->grh.sgid_attr = NULL; 963 964 return ah->device->ops.query_ah ? 965 ah->device->ops.query_ah(ah, ah_attr) : 966 -EOPNOTSUPP; 967 } 968 EXPORT_SYMBOL(rdma_query_ah); 969 970 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 971 { 972 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 973 struct ib_pd *pd; 974 int ret; 975 976 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 977 978 pd = ah->pd; 979 980 ret = ah->device->ops.destroy_ah(ah, flags); 981 if (ret) 982 return ret; 983 984 atomic_dec(&pd->usecnt); 985 if (sgid_attr) 986 rdma_put_gid_attr(sgid_attr); 987 988 kfree(ah); 989 return ret; 990 } 991 EXPORT_SYMBOL(rdma_destroy_ah_user); 992 993 /* Shared receive queues */ 994 995 /** 996 * ib_create_srq_user - Creates a SRQ associated with the specified protection 997 * domain. 998 * @pd: The protection domain associated with the SRQ. 999 * @srq_init_attr: A list of initial attributes required to create the 1000 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1001 * the actual capabilities of the created SRQ. 1002 * @uobject: uobject pointer if this is not a kernel SRQ 1003 * @udata: udata pointer if this is not a kernel SRQ 1004 * 1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1006 * requested size of the SRQ, and set to the actual values allocated 1007 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1008 * will always be at least as large as the requested values. 1009 */ 1010 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 1011 struct ib_srq_init_attr *srq_init_attr, 1012 struct ib_usrq_object *uobject, 1013 struct ib_udata *udata) 1014 { 1015 struct ib_srq *srq; 1016 int ret; 1017 1018 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 1019 if (!srq) 1020 return ERR_PTR(-ENOMEM); 1021 1022 srq->device = pd->device; 1023 srq->pd = pd; 1024 srq->event_handler = srq_init_attr->event_handler; 1025 srq->srq_context = srq_init_attr->srq_context; 1026 srq->srq_type = srq_init_attr->srq_type; 1027 srq->uobject = uobject; 1028 1029 if (ib_srq_has_cq(srq->srq_type)) { 1030 srq->ext.cq = srq_init_attr->ext.cq; 1031 atomic_inc(&srq->ext.cq->usecnt); 1032 } 1033 if (srq->srq_type == IB_SRQT_XRC) { 1034 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 1035 if (srq->ext.xrc.xrcd) 1036 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 1037 } 1038 atomic_inc(&pd->usecnt); 1039 1040 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ); 1041 rdma_restrack_parent_name(&srq->res, &pd->res); 1042 1043 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata); 1044 if (ret) { 1045 rdma_restrack_put(&srq->res); 1046 atomic_dec(&pd->usecnt); 1047 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1048 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1049 if (ib_srq_has_cq(srq->srq_type)) 1050 atomic_dec(&srq->ext.cq->usecnt); 1051 kfree(srq); 1052 return ERR_PTR(ret); 1053 } 1054 1055 rdma_restrack_add(&srq->res); 1056 1057 return srq; 1058 } 1059 EXPORT_SYMBOL(ib_create_srq_user); 1060 1061 int ib_modify_srq(struct ib_srq *srq, 1062 struct ib_srq_attr *srq_attr, 1063 enum ib_srq_attr_mask srq_attr_mask) 1064 { 1065 return srq->device->ops.modify_srq ? 1066 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1067 NULL) : -EOPNOTSUPP; 1068 } 1069 EXPORT_SYMBOL(ib_modify_srq); 1070 1071 int ib_query_srq(struct ib_srq *srq, 1072 struct ib_srq_attr *srq_attr) 1073 { 1074 return srq->device->ops.query_srq ? 1075 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1076 } 1077 EXPORT_SYMBOL(ib_query_srq); 1078 1079 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1080 { 1081 int ret; 1082 1083 if (atomic_read(&srq->usecnt)) 1084 return -EBUSY; 1085 1086 ret = srq->device->ops.destroy_srq(srq, udata); 1087 if (ret) 1088 return ret; 1089 1090 atomic_dec(&srq->pd->usecnt); 1091 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1092 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1093 if (ib_srq_has_cq(srq->srq_type)) 1094 atomic_dec(&srq->ext.cq->usecnt); 1095 rdma_restrack_del(&srq->res); 1096 kfree(srq); 1097 1098 return ret; 1099 } 1100 EXPORT_SYMBOL(ib_destroy_srq_user); 1101 1102 /* Queue pairs */ 1103 1104 static void __ib_qp_event_handler(struct ib_event *event, void *context) 1105 { 1106 struct ib_qp *qp = event->element.qp; 1107 1108 if (event->event == IB_EVENT_QP_LAST_WQE_REACHED) 1109 complete(&qp->srq_completion); 1110 if (qp->registered_event_handler) 1111 qp->registered_event_handler(event, qp->qp_context); 1112 } 1113 1114 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1115 { 1116 struct ib_qp *qp = context; 1117 unsigned long flags; 1118 1119 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); 1120 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1121 if (event->element.qp->event_handler) 1122 event->element.qp->event_handler(event, event->element.qp->qp_context); 1123 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); 1124 } 1125 1126 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1127 void (*event_handler)(struct ib_event *, void *), 1128 void *qp_context) 1129 { 1130 struct ib_qp *qp; 1131 unsigned long flags; 1132 int err; 1133 1134 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1135 if (!qp) 1136 return ERR_PTR(-ENOMEM); 1137 1138 qp->real_qp = real_qp; 1139 err = ib_open_shared_qp_security(qp, real_qp->device); 1140 if (err) { 1141 kfree(qp); 1142 return ERR_PTR(err); 1143 } 1144 1145 qp->real_qp = real_qp; 1146 atomic_inc(&real_qp->usecnt); 1147 qp->device = real_qp->device; 1148 qp->event_handler = event_handler; 1149 qp->qp_context = qp_context; 1150 qp->qp_num = real_qp->qp_num; 1151 qp->qp_type = real_qp->qp_type; 1152 1153 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1154 list_add(&qp->open_list, &real_qp->open_list); 1155 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1156 1157 return qp; 1158 } 1159 1160 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1161 struct ib_qp_open_attr *qp_open_attr) 1162 { 1163 struct ib_qp *qp, *real_qp; 1164 1165 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1166 return ERR_PTR(-EINVAL); 1167 1168 down_read(&xrcd->tgt_qps_rwsem); 1169 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num); 1170 if (!real_qp) { 1171 up_read(&xrcd->tgt_qps_rwsem); 1172 return ERR_PTR(-EINVAL); 1173 } 1174 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1175 qp_open_attr->qp_context); 1176 up_read(&xrcd->tgt_qps_rwsem); 1177 return qp; 1178 } 1179 EXPORT_SYMBOL(ib_open_qp); 1180 1181 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1182 struct ib_qp_init_attr *qp_init_attr) 1183 { 1184 struct ib_qp *real_qp = qp; 1185 int err; 1186 1187 qp->event_handler = __ib_shared_qp_event_handler; 1188 qp->qp_context = qp; 1189 qp->pd = NULL; 1190 qp->send_cq = qp->recv_cq = NULL; 1191 qp->srq = NULL; 1192 qp->xrcd = qp_init_attr->xrcd; 1193 atomic_inc(&qp_init_attr->xrcd->usecnt); 1194 INIT_LIST_HEAD(&qp->open_list); 1195 1196 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1197 qp_init_attr->qp_context); 1198 if (IS_ERR(qp)) 1199 return qp; 1200 1201 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num, 1202 real_qp, GFP_KERNEL)); 1203 if (err) { 1204 ib_close_qp(qp); 1205 return ERR_PTR(err); 1206 } 1207 return qp; 1208 } 1209 1210 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd, 1211 struct ib_qp_init_attr *attr, 1212 struct ib_udata *udata, 1213 struct ib_uqp_object *uobj, const char *caller) 1214 { 1215 struct ib_udata dummy = {}; 1216 struct ib_qp *qp; 1217 int ret; 1218 1219 if (!dev->ops.create_qp) 1220 return ERR_PTR(-EOPNOTSUPP); 1221 1222 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp); 1223 if (!qp) 1224 return ERR_PTR(-ENOMEM); 1225 1226 qp->device = dev; 1227 qp->pd = pd; 1228 qp->uobject = uobj; 1229 qp->real_qp = qp; 1230 1231 qp->qp_type = attr->qp_type; 1232 qp->rwq_ind_tbl = attr->rwq_ind_tbl; 1233 qp->srq = attr->srq; 1234 qp->event_handler = __ib_qp_event_handler; 1235 qp->registered_event_handler = attr->event_handler; 1236 qp->port = attr->port_num; 1237 qp->qp_context = attr->qp_context; 1238 1239 spin_lock_init(&qp->mr_lock); 1240 INIT_LIST_HEAD(&qp->rdma_mrs); 1241 INIT_LIST_HEAD(&qp->sig_mrs); 1242 init_completion(&qp->srq_completion); 1243 1244 qp->send_cq = attr->send_cq; 1245 qp->recv_cq = attr->recv_cq; 1246 1247 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP); 1248 WARN_ONCE(!udata && !caller, "Missing kernel QP owner"); 1249 rdma_restrack_set_name(&qp->res, udata ? NULL : caller); 1250 ret = dev->ops.create_qp(qp, attr, udata); 1251 if (ret) 1252 goto err_create; 1253 1254 /* 1255 * TODO: The mlx4 internally overwrites send_cq and recv_cq. 1256 * Unfortunately, it is not an easy task to fix that driver. 1257 */ 1258 qp->send_cq = attr->send_cq; 1259 qp->recv_cq = attr->recv_cq; 1260 1261 ret = ib_create_qp_security(qp, dev); 1262 if (ret) 1263 goto err_security; 1264 1265 rdma_restrack_add(&qp->res); 1266 return qp; 1267 1268 err_security: 1269 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL); 1270 err_create: 1271 rdma_restrack_put(&qp->res); 1272 kfree(qp); 1273 return ERR_PTR(ret); 1274 1275 } 1276 1277 /** 1278 * ib_create_qp_user - Creates a QP associated with the specified protection 1279 * domain. 1280 * @dev: IB device 1281 * @pd: The protection domain associated with the QP. 1282 * @attr: A list of initial attributes required to create the 1283 * QP. If QP creation succeeds, then the attributes are updated to 1284 * the actual capabilities of the created QP. 1285 * @udata: User data 1286 * @uobj: uverbs obect 1287 * @caller: caller's build-time module name 1288 */ 1289 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd, 1290 struct ib_qp_init_attr *attr, 1291 struct ib_udata *udata, 1292 struct ib_uqp_object *uobj, const char *caller) 1293 { 1294 struct ib_qp *qp, *xrc_qp; 1295 1296 if (attr->qp_type == IB_QPT_XRC_TGT) 1297 qp = create_qp(dev, pd, attr, NULL, NULL, caller); 1298 else 1299 qp = create_qp(dev, pd, attr, udata, uobj, NULL); 1300 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp)) 1301 return qp; 1302 1303 xrc_qp = create_xrc_qp_user(qp, attr); 1304 if (IS_ERR(xrc_qp)) { 1305 ib_destroy_qp(qp); 1306 return xrc_qp; 1307 } 1308 1309 xrc_qp->uobject = uobj; 1310 return xrc_qp; 1311 } 1312 EXPORT_SYMBOL(ib_create_qp_user); 1313 1314 void ib_qp_usecnt_inc(struct ib_qp *qp) 1315 { 1316 if (qp->pd) 1317 atomic_inc(&qp->pd->usecnt); 1318 if (qp->send_cq) 1319 atomic_inc(&qp->send_cq->usecnt); 1320 if (qp->recv_cq) 1321 atomic_inc(&qp->recv_cq->usecnt); 1322 if (qp->srq) 1323 atomic_inc(&qp->srq->usecnt); 1324 if (qp->rwq_ind_tbl) 1325 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1326 } 1327 EXPORT_SYMBOL(ib_qp_usecnt_inc); 1328 1329 void ib_qp_usecnt_dec(struct ib_qp *qp) 1330 { 1331 if (qp->rwq_ind_tbl) 1332 atomic_dec(&qp->rwq_ind_tbl->usecnt); 1333 if (qp->srq) 1334 atomic_dec(&qp->srq->usecnt); 1335 if (qp->recv_cq) 1336 atomic_dec(&qp->recv_cq->usecnt); 1337 if (qp->send_cq) 1338 atomic_dec(&qp->send_cq->usecnt); 1339 if (qp->pd) 1340 atomic_dec(&qp->pd->usecnt); 1341 } 1342 EXPORT_SYMBOL(ib_qp_usecnt_dec); 1343 1344 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 1345 struct ib_qp_init_attr *qp_init_attr, 1346 const char *caller) 1347 { 1348 struct ib_device *device = pd->device; 1349 struct ib_qp *qp; 1350 int ret; 1351 1352 /* 1353 * If the callers is using the RDMA API calculate the resources 1354 * needed for the RDMA READ/WRITE operations. 1355 * 1356 * Note that these callers need to pass in a port number. 1357 */ 1358 if (qp_init_attr->cap.max_rdma_ctxs) 1359 rdma_rw_init_qp(device, qp_init_attr); 1360 1361 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller); 1362 if (IS_ERR(qp)) 1363 return qp; 1364 1365 ib_qp_usecnt_inc(qp); 1366 1367 if (qp_init_attr->cap.max_rdma_ctxs) { 1368 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1369 if (ret) 1370 goto err; 1371 } 1372 1373 /* 1374 * Note: all hw drivers guarantee that max_send_sge is lower than 1375 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1376 * max_send_sge <= max_sge_rd. 1377 */ 1378 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1379 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1380 device->attrs.max_sge_rd); 1381 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1382 qp->integrity_en = true; 1383 1384 return qp; 1385 1386 err: 1387 ib_destroy_qp(qp); 1388 return ERR_PTR(ret); 1389 1390 } 1391 EXPORT_SYMBOL(ib_create_qp_kernel); 1392 1393 static const struct { 1394 int valid; 1395 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1396 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1397 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1398 [IB_QPS_RESET] = { 1399 [IB_QPS_RESET] = { .valid = 1 }, 1400 [IB_QPS_INIT] = { 1401 .valid = 1, 1402 .req_param = { 1403 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1404 IB_QP_PORT | 1405 IB_QP_QKEY), 1406 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1407 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1408 IB_QP_PORT | 1409 IB_QP_ACCESS_FLAGS), 1410 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1411 IB_QP_PORT | 1412 IB_QP_ACCESS_FLAGS), 1413 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1414 IB_QP_PORT | 1415 IB_QP_ACCESS_FLAGS), 1416 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1417 IB_QP_PORT | 1418 IB_QP_ACCESS_FLAGS), 1419 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1420 IB_QP_QKEY), 1421 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1422 IB_QP_QKEY), 1423 } 1424 }, 1425 }, 1426 [IB_QPS_INIT] = { 1427 [IB_QPS_RESET] = { .valid = 1 }, 1428 [IB_QPS_ERR] = { .valid = 1 }, 1429 [IB_QPS_INIT] = { 1430 .valid = 1, 1431 .opt_param = { 1432 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1433 IB_QP_PORT | 1434 IB_QP_QKEY), 1435 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1436 IB_QP_PORT | 1437 IB_QP_ACCESS_FLAGS), 1438 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1439 IB_QP_PORT | 1440 IB_QP_ACCESS_FLAGS), 1441 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1442 IB_QP_PORT | 1443 IB_QP_ACCESS_FLAGS), 1444 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1445 IB_QP_PORT | 1446 IB_QP_ACCESS_FLAGS), 1447 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1448 IB_QP_QKEY), 1449 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1450 IB_QP_QKEY), 1451 } 1452 }, 1453 [IB_QPS_RTR] = { 1454 .valid = 1, 1455 .req_param = { 1456 [IB_QPT_UC] = (IB_QP_AV | 1457 IB_QP_PATH_MTU | 1458 IB_QP_DEST_QPN | 1459 IB_QP_RQ_PSN), 1460 [IB_QPT_RC] = (IB_QP_AV | 1461 IB_QP_PATH_MTU | 1462 IB_QP_DEST_QPN | 1463 IB_QP_RQ_PSN | 1464 IB_QP_MAX_DEST_RD_ATOMIC | 1465 IB_QP_MIN_RNR_TIMER), 1466 [IB_QPT_XRC_INI] = (IB_QP_AV | 1467 IB_QP_PATH_MTU | 1468 IB_QP_DEST_QPN | 1469 IB_QP_RQ_PSN), 1470 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1471 IB_QP_PATH_MTU | 1472 IB_QP_DEST_QPN | 1473 IB_QP_RQ_PSN | 1474 IB_QP_MAX_DEST_RD_ATOMIC | 1475 IB_QP_MIN_RNR_TIMER), 1476 }, 1477 .opt_param = { 1478 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1479 IB_QP_QKEY), 1480 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1481 IB_QP_ACCESS_FLAGS | 1482 IB_QP_PKEY_INDEX), 1483 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1484 IB_QP_ACCESS_FLAGS | 1485 IB_QP_PKEY_INDEX), 1486 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1487 IB_QP_ACCESS_FLAGS | 1488 IB_QP_PKEY_INDEX), 1489 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1490 IB_QP_ACCESS_FLAGS | 1491 IB_QP_PKEY_INDEX), 1492 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1493 IB_QP_QKEY), 1494 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1495 IB_QP_QKEY), 1496 }, 1497 }, 1498 }, 1499 [IB_QPS_RTR] = { 1500 [IB_QPS_RESET] = { .valid = 1 }, 1501 [IB_QPS_ERR] = { .valid = 1 }, 1502 [IB_QPS_RTS] = { 1503 .valid = 1, 1504 .req_param = { 1505 [IB_QPT_UD] = IB_QP_SQ_PSN, 1506 [IB_QPT_UC] = IB_QP_SQ_PSN, 1507 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1508 IB_QP_RETRY_CNT | 1509 IB_QP_RNR_RETRY | 1510 IB_QP_SQ_PSN | 1511 IB_QP_MAX_QP_RD_ATOMIC), 1512 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1513 IB_QP_RETRY_CNT | 1514 IB_QP_RNR_RETRY | 1515 IB_QP_SQ_PSN | 1516 IB_QP_MAX_QP_RD_ATOMIC), 1517 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1518 IB_QP_SQ_PSN), 1519 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1520 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1521 }, 1522 .opt_param = { 1523 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1524 IB_QP_QKEY), 1525 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1526 IB_QP_ALT_PATH | 1527 IB_QP_ACCESS_FLAGS | 1528 IB_QP_PATH_MIG_STATE), 1529 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1530 IB_QP_ALT_PATH | 1531 IB_QP_ACCESS_FLAGS | 1532 IB_QP_MIN_RNR_TIMER | 1533 IB_QP_PATH_MIG_STATE), 1534 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1535 IB_QP_ALT_PATH | 1536 IB_QP_ACCESS_FLAGS | 1537 IB_QP_PATH_MIG_STATE), 1538 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1539 IB_QP_ALT_PATH | 1540 IB_QP_ACCESS_FLAGS | 1541 IB_QP_MIN_RNR_TIMER | 1542 IB_QP_PATH_MIG_STATE), 1543 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1544 IB_QP_QKEY), 1545 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1546 IB_QP_QKEY), 1547 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1548 } 1549 } 1550 }, 1551 [IB_QPS_RTS] = { 1552 [IB_QPS_RESET] = { .valid = 1 }, 1553 [IB_QPS_ERR] = { .valid = 1 }, 1554 [IB_QPS_RTS] = { 1555 .valid = 1, 1556 .opt_param = { 1557 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1558 IB_QP_QKEY), 1559 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1560 IB_QP_ACCESS_FLAGS | 1561 IB_QP_ALT_PATH | 1562 IB_QP_PATH_MIG_STATE), 1563 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1564 IB_QP_ACCESS_FLAGS | 1565 IB_QP_ALT_PATH | 1566 IB_QP_PATH_MIG_STATE | 1567 IB_QP_MIN_RNR_TIMER), 1568 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1569 IB_QP_ACCESS_FLAGS | 1570 IB_QP_ALT_PATH | 1571 IB_QP_PATH_MIG_STATE), 1572 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1573 IB_QP_ACCESS_FLAGS | 1574 IB_QP_ALT_PATH | 1575 IB_QP_PATH_MIG_STATE | 1576 IB_QP_MIN_RNR_TIMER), 1577 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1578 IB_QP_QKEY), 1579 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1580 IB_QP_QKEY), 1581 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1582 } 1583 }, 1584 [IB_QPS_SQD] = { 1585 .valid = 1, 1586 .opt_param = { 1587 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1588 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1589 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1590 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1591 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1592 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1593 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1594 } 1595 }, 1596 }, 1597 [IB_QPS_SQD] = { 1598 [IB_QPS_RESET] = { .valid = 1 }, 1599 [IB_QPS_ERR] = { .valid = 1 }, 1600 [IB_QPS_RTS] = { 1601 .valid = 1, 1602 .opt_param = { 1603 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1604 IB_QP_QKEY), 1605 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1606 IB_QP_ALT_PATH | 1607 IB_QP_ACCESS_FLAGS | 1608 IB_QP_PATH_MIG_STATE), 1609 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1610 IB_QP_ALT_PATH | 1611 IB_QP_ACCESS_FLAGS | 1612 IB_QP_MIN_RNR_TIMER | 1613 IB_QP_PATH_MIG_STATE), 1614 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1615 IB_QP_ALT_PATH | 1616 IB_QP_ACCESS_FLAGS | 1617 IB_QP_PATH_MIG_STATE), 1618 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1619 IB_QP_ALT_PATH | 1620 IB_QP_ACCESS_FLAGS | 1621 IB_QP_MIN_RNR_TIMER | 1622 IB_QP_PATH_MIG_STATE), 1623 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1624 IB_QP_QKEY), 1625 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1626 IB_QP_QKEY), 1627 } 1628 }, 1629 [IB_QPS_SQD] = { 1630 .valid = 1, 1631 .opt_param = { 1632 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1633 IB_QP_QKEY), 1634 [IB_QPT_UC] = (IB_QP_AV | 1635 IB_QP_ALT_PATH | 1636 IB_QP_ACCESS_FLAGS | 1637 IB_QP_PKEY_INDEX | 1638 IB_QP_PATH_MIG_STATE), 1639 [IB_QPT_RC] = (IB_QP_PORT | 1640 IB_QP_AV | 1641 IB_QP_TIMEOUT | 1642 IB_QP_RETRY_CNT | 1643 IB_QP_RNR_RETRY | 1644 IB_QP_MAX_QP_RD_ATOMIC | 1645 IB_QP_MAX_DEST_RD_ATOMIC | 1646 IB_QP_ALT_PATH | 1647 IB_QP_ACCESS_FLAGS | 1648 IB_QP_PKEY_INDEX | 1649 IB_QP_MIN_RNR_TIMER | 1650 IB_QP_PATH_MIG_STATE), 1651 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1652 IB_QP_AV | 1653 IB_QP_TIMEOUT | 1654 IB_QP_RETRY_CNT | 1655 IB_QP_RNR_RETRY | 1656 IB_QP_MAX_QP_RD_ATOMIC | 1657 IB_QP_ALT_PATH | 1658 IB_QP_ACCESS_FLAGS | 1659 IB_QP_PKEY_INDEX | 1660 IB_QP_PATH_MIG_STATE), 1661 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1662 IB_QP_AV | 1663 IB_QP_TIMEOUT | 1664 IB_QP_MAX_DEST_RD_ATOMIC | 1665 IB_QP_ALT_PATH | 1666 IB_QP_ACCESS_FLAGS | 1667 IB_QP_PKEY_INDEX | 1668 IB_QP_MIN_RNR_TIMER | 1669 IB_QP_PATH_MIG_STATE), 1670 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1671 IB_QP_QKEY), 1672 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1673 IB_QP_QKEY), 1674 } 1675 } 1676 }, 1677 [IB_QPS_SQE] = { 1678 [IB_QPS_RESET] = { .valid = 1 }, 1679 [IB_QPS_ERR] = { .valid = 1 }, 1680 [IB_QPS_RTS] = { 1681 .valid = 1, 1682 .opt_param = { 1683 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1684 IB_QP_QKEY), 1685 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1686 IB_QP_ACCESS_FLAGS), 1687 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1688 IB_QP_QKEY), 1689 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1690 IB_QP_QKEY), 1691 } 1692 } 1693 }, 1694 [IB_QPS_ERR] = { 1695 [IB_QPS_RESET] = { .valid = 1 }, 1696 [IB_QPS_ERR] = { .valid = 1 } 1697 } 1698 }; 1699 1700 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1701 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1702 { 1703 enum ib_qp_attr_mask req_param, opt_param; 1704 1705 if (mask & IB_QP_CUR_STATE && 1706 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1707 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1708 return false; 1709 1710 if (!qp_state_table[cur_state][next_state].valid) 1711 return false; 1712 1713 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1714 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1715 1716 if ((mask & req_param) != req_param) 1717 return false; 1718 1719 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1720 return false; 1721 1722 return true; 1723 } 1724 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1725 1726 /** 1727 * ib_resolve_eth_dmac - Resolve destination mac address 1728 * @device: Device to consider 1729 * @ah_attr: address handle attribute which describes the 1730 * source and destination parameters 1731 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1732 * returns 0 on success or appropriate error code. It initializes the 1733 * necessary ah_attr fields when call is successful. 1734 */ 1735 static int ib_resolve_eth_dmac(struct ib_device *device, 1736 struct rdma_ah_attr *ah_attr) 1737 { 1738 int ret = 0; 1739 1740 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1741 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1742 __be32 addr = 0; 1743 1744 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1745 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1746 } else { 1747 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1748 (char *)ah_attr->roce.dmac); 1749 } 1750 } else { 1751 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1752 } 1753 return ret; 1754 } 1755 1756 static bool is_qp_type_connected(const struct ib_qp *qp) 1757 { 1758 return (qp->qp_type == IB_QPT_UC || 1759 qp->qp_type == IB_QPT_RC || 1760 qp->qp_type == IB_QPT_XRC_INI || 1761 qp->qp_type == IB_QPT_XRC_TGT); 1762 } 1763 1764 /* 1765 * IB core internal function to perform QP attributes modification. 1766 */ 1767 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1768 int attr_mask, struct ib_udata *udata) 1769 { 1770 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1771 const struct ib_gid_attr *old_sgid_attr_av; 1772 const struct ib_gid_attr *old_sgid_attr_alt_av; 1773 int ret; 1774 1775 attr->xmit_slave = NULL; 1776 if (attr_mask & IB_QP_AV) { 1777 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1778 &old_sgid_attr_av); 1779 if (ret) 1780 return ret; 1781 1782 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1783 is_qp_type_connected(qp)) { 1784 struct net_device *slave; 1785 1786 /* 1787 * If the user provided the qp_attr then we have to 1788 * resolve it. Kerne users have to provide already 1789 * resolved rdma_ah_attr's. 1790 */ 1791 if (udata) { 1792 ret = ib_resolve_eth_dmac(qp->device, 1793 &attr->ah_attr); 1794 if (ret) 1795 goto out_av; 1796 } 1797 slave = rdma_lag_get_ah_roce_slave(qp->device, 1798 &attr->ah_attr, 1799 GFP_KERNEL); 1800 if (IS_ERR(slave)) { 1801 ret = PTR_ERR(slave); 1802 goto out_av; 1803 } 1804 attr->xmit_slave = slave; 1805 } 1806 } 1807 if (attr_mask & IB_QP_ALT_PATH) { 1808 /* 1809 * FIXME: This does not track the migration state, so if the 1810 * user loads a new alternate path after the HW has migrated 1811 * from primary->alternate we will keep the wrong 1812 * references. This is OK for IB because the reference 1813 * counting does not serve any functional purpose. 1814 */ 1815 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1816 &old_sgid_attr_alt_av); 1817 if (ret) 1818 goto out_av; 1819 1820 /* 1821 * Today the core code can only handle alternate paths and APM 1822 * for IB. Ban them in roce mode. 1823 */ 1824 if (!(rdma_protocol_ib(qp->device, 1825 attr->alt_ah_attr.port_num) && 1826 rdma_protocol_ib(qp->device, port))) { 1827 ret = -EINVAL; 1828 goto out; 1829 } 1830 } 1831 1832 if (rdma_ib_or_roce(qp->device, port)) { 1833 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1834 dev_warn(&qp->device->dev, 1835 "%s rq_psn overflow, masking to 24 bits\n", 1836 __func__); 1837 attr->rq_psn &= 0xffffff; 1838 } 1839 1840 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1841 dev_warn(&qp->device->dev, 1842 " %s sq_psn overflow, masking to 24 bits\n", 1843 __func__); 1844 attr->sq_psn &= 0xffffff; 1845 } 1846 } 1847 1848 /* 1849 * Bind this qp to a counter automatically based on the rdma counter 1850 * rules. This only set in RST2INIT with port specified 1851 */ 1852 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1853 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1854 rdma_counter_bind_qp_auto(qp, attr->port_num); 1855 1856 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1857 if (ret) 1858 goto out; 1859 1860 if (attr_mask & IB_QP_PORT) 1861 qp->port = attr->port_num; 1862 if (attr_mask & IB_QP_AV) 1863 qp->av_sgid_attr = 1864 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1865 if (attr_mask & IB_QP_ALT_PATH) 1866 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1867 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1868 1869 out: 1870 if (attr_mask & IB_QP_ALT_PATH) 1871 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1872 out_av: 1873 if (attr_mask & IB_QP_AV) { 1874 rdma_lag_put_ah_roce_slave(attr->xmit_slave); 1875 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1876 } 1877 return ret; 1878 } 1879 1880 /** 1881 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1882 * @ib_qp: The QP to modify. 1883 * @attr: On input, specifies the QP attributes to modify. On output, 1884 * the current values of selected QP attributes are returned. 1885 * @attr_mask: A bit-mask used to specify which attributes of the QP 1886 * are being modified. 1887 * @udata: pointer to user's input output buffer information 1888 * are being modified. 1889 * It returns 0 on success and returns appropriate error code on error. 1890 */ 1891 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1892 int attr_mask, struct ib_udata *udata) 1893 { 1894 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1895 } 1896 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1897 1898 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes, 1899 u16 *speed, u8 *width) 1900 { 1901 if (!lanes) { 1902 if (netdev_speed <= SPEED_1000) { 1903 *width = IB_WIDTH_1X; 1904 *speed = IB_SPEED_SDR; 1905 } else if (netdev_speed <= SPEED_10000) { 1906 *width = IB_WIDTH_1X; 1907 *speed = IB_SPEED_FDR10; 1908 } else if (netdev_speed <= SPEED_20000) { 1909 *width = IB_WIDTH_4X; 1910 *speed = IB_SPEED_DDR; 1911 } else if (netdev_speed <= SPEED_25000) { 1912 *width = IB_WIDTH_1X; 1913 *speed = IB_SPEED_EDR; 1914 } else if (netdev_speed <= SPEED_40000) { 1915 *width = IB_WIDTH_4X; 1916 *speed = IB_SPEED_FDR10; 1917 } else if (netdev_speed <= SPEED_50000) { 1918 *width = IB_WIDTH_2X; 1919 *speed = IB_SPEED_EDR; 1920 } else if (netdev_speed <= SPEED_100000) { 1921 *width = IB_WIDTH_4X; 1922 *speed = IB_SPEED_EDR; 1923 } else if (netdev_speed <= SPEED_200000) { 1924 *width = IB_WIDTH_4X; 1925 *speed = IB_SPEED_HDR; 1926 } else { 1927 *width = IB_WIDTH_4X; 1928 *speed = IB_SPEED_NDR; 1929 } 1930 1931 return; 1932 } 1933 1934 switch (lanes) { 1935 case 1: 1936 *width = IB_WIDTH_1X; 1937 break; 1938 case 2: 1939 *width = IB_WIDTH_2X; 1940 break; 1941 case 4: 1942 *width = IB_WIDTH_4X; 1943 break; 1944 case 8: 1945 *width = IB_WIDTH_8X; 1946 break; 1947 case 12: 1948 *width = IB_WIDTH_12X; 1949 break; 1950 default: 1951 *width = IB_WIDTH_1X; 1952 } 1953 1954 switch (netdev_speed / lanes) { 1955 case SPEED_2500: 1956 *speed = IB_SPEED_SDR; 1957 break; 1958 case SPEED_5000: 1959 *speed = IB_SPEED_DDR; 1960 break; 1961 case SPEED_10000: 1962 *speed = IB_SPEED_FDR10; 1963 break; 1964 case SPEED_14000: 1965 *speed = IB_SPEED_FDR; 1966 break; 1967 case SPEED_25000: 1968 *speed = IB_SPEED_EDR; 1969 break; 1970 case SPEED_50000: 1971 *speed = IB_SPEED_HDR; 1972 break; 1973 case SPEED_100000: 1974 *speed = IB_SPEED_NDR; 1975 break; 1976 default: 1977 *speed = IB_SPEED_SDR; 1978 } 1979 } 1980 1981 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width) 1982 { 1983 int rc; 1984 u32 netdev_speed; 1985 struct net_device *netdev; 1986 struct ethtool_link_ksettings lksettings = {}; 1987 1988 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1989 return -EINVAL; 1990 1991 netdev = ib_device_get_netdev(dev, port_num); 1992 if (!netdev) 1993 return -ENODEV; 1994 1995 rtnl_lock(); 1996 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1997 rtnl_unlock(); 1998 1999 dev_put(netdev); 2000 2001 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) { 2002 netdev_speed = lksettings.base.speed; 2003 } else { 2004 netdev_speed = SPEED_1000; 2005 if (rc) 2006 pr_warn("%s speed is unknown, defaulting to %u\n", 2007 netdev->name, netdev_speed); 2008 } 2009 2010 ib_get_width_and_speed(netdev_speed, lksettings.lanes, 2011 speed, width); 2012 2013 return 0; 2014 } 2015 EXPORT_SYMBOL(ib_get_eth_speed); 2016 2017 int ib_modify_qp(struct ib_qp *qp, 2018 struct ib_qp_attr *qp_attr, 2019 int qp_attr_mask) 2020 { 2021 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 2022 } 2023 EXPORT_SYMBOL(ib_modify_qp); 2024 2025 int ib_query_qp(struct ib_qp *qp, 2026 struct ib_qp_attr *qp_attr, 2027 int qp_attr_mask, 2028 struct ib_qp_init_attr *qp_init_attr) 2029 { 2030 qp_attr->ah_attr.grh.sgid_attr = NULL; 2031 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 2032 2033 return qp->device->ops.query_qp ? 2034 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 2035 qp_init_attr) : -EOPNOTSUPP; 2036 } 2037 EXPORT_SYMBOL(ib_query_qp); 2038 2039 int ib_close_qp(struct ib_qp *qp) 2040 { 2041 struct ib_qp *real_qp; 2042 unsigned long flags; 2043 2044 real_qp = qp->real_qp; 2045 if (real_qp == qp) 2046 return -EINVAL; 2047 2048 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 2049 list_del(&qp->open_list); 2050 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 2051 2052 atomic_dec(&real_qp->usecnt); 2053 if (qp->qp_sec) 2054 ib_close_shared_qp_security(qp->qp_sec); 2055 kfree(qp); 2056 2057 return 0; 2058 } 2059 EXPORT_SYMBOL(ib_close_qp); 2060 2061 static int __ib_destroy_shared_qp(struct ib_qp *qp) 2062 { 2063 struct ib_xrcd *xrcd; 2064 struct ib_qp *real_qp; 2065 int ret; 2066 2067 real_qp = qp->real_qp; 2068 xrcd = real_qp->xrcd; 2069 down_write(&xrcd->tgt_qps_rwsem); 2070 ib_close_qp(qp); 2071 if (atomic_read(&real_qp->usecnt) == 0) 2072 xa_erase(&xrcd->tgt_qps, real_qp->qp_num); 2073 else 2074 real_qp = NULL; 2075 up_write(&xrcd->tgt_qps_rwsem); 2076 2077 if (real_qp) { 2078 ret = ib_destroy_qp(real_qp); 2079 if (!ret) 2080 atomic_dec(&xrcd->usecnt); 2081 } 2082 2083 return 0; 2084 } 2085 2086 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 2087 { 2088 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 2089 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 2090 struct ib_qp_security *sec; 2091 int ret; 2092 2093 WARN_ON_ONCE(qp->mrs_used > 0); 2094 2095 if (atomic_read(&qp->usecnt)) 2096 return -EBUSY; 2097 2098 if (qp->real_qp != qp) 2099 return __ib_destroy_shared_qp(qp); 2100 2101 sec = qp->qp_sec; 2102 if (sec) 2103 ib_destroy_qp_security_begin(sec); 2104 2105 if (!qp->uobject) 2106 rdma_rw_cleanup_mrs(qp); 2107 2108 rdma_counter_unbind_qp(qp, true); 2109 ret = qp->device->ops.destroy_qp(qp, udata); 2110 if (ret) { 2111 if (sec) 2112 ib_destroy_qp_security_abort(sec); 2113 return ret; 2114 } 2115 2116 if (alt_path_sgid_attr) 2117 rdma_put_gid_attr(alt_path_sgid_attr); 2118 if (av_sgid_attr) 2119 rdma_put_gid_attr(av_sgid_attr); 2120 2121 ib_qp_usecnt_dec(qp); 2122 if (sec) 2123 ib_destroy_qp_security_end(sec); 2124 2125 rdma_restrack_del(&qp->res); 2126 kfree(qp); 2127 return ret; 2128 } 2129 EXPORT_SYMBOL(ib_destroy_qp_user); 2130 2131 /* Completion queues */ 2132 2133 struct ib_cq *__ib_create_cq(struct ib_device *device, 2134 ib_comp_handler comp_handler, 2135 void (*event_handler)(struct ib_event *, void *), 2136 void *cq_context, 2137 const struct ib_cq_init_attr *cq_attr, 2138 const char *caller) 2139 { 2140 struct ib_cq *cq; 2141 int ret; 2142 2143 cq = rdma_zalloc_drv_obj(device, ib_cq); 2144 if (!cq) 2145 return ERR_PTR(-ENOMEM); 2146 2147 cq->device = device; 2148 cq->uobject = NULL; 2149 cq->comp_handler = comp_handler; 2150 cq->event_handler = event_handler; 2151 cq->cq_context = cq_context; 2152 atomic_set(&cq->usecnt, 0); 2153 2154 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); 2155 rdma_restrack_set_name(&cq->res, caller); 2156 2157 ret = device->ops.create_cq(cq, cq_attr, NULL); 2158 if (ret) { 2159 rdma_restrack_put(&cq->res); 2160 kfree(cq); 2161 return ERR_PTR(ret); 2162 } 2163 2164 rdma_restrack_add(&cq->res); 2165 return cq; 2166 } 2167 EXPORT_SYMBOL(__ib_create_cq); 2168 2169 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 2170 { 2171 if (cq->shared) 2172 return -EOPNOTSUPP; 2173 2174 return cq->device->ops.modify_cq ? 2175 cq->device->ops.modify_cq(cq, cq_count, 2176 cq_period) : -EOPNOTSUPP; 2177 } 2178 EXPORT_SYMBOL(rdma_set_cq_moderation); 2179 2180 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 2181 { 2182 int ret; 2183 2184 if (WARN_ON_ONCE(cq->shared)) 2185 return -EOPNOTSUPP; 2186 2187 if (atomic_read(&cq->usecnt)) 2188 return -EBUSY; 2189 2190 ret = cq->device->ops.destroy_cq(cq, udata); 2191 if (ret) 2192 return ret; 2193 2194 rdma_restrack_del(&cq->res); 2195 kfree(cq); 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(ib_destroy_cq_user); 2199 2200 int ib_resize_cq(struct ib_cq *cq, int cqe) 2201 { 2202 if (cq->shared) 2203 return -EOPNOTSUPP; 2204 2205 return cq->device->ops.resize_cq ? 2206 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 2207 } 2208 EXPORT_SYMBOL(ib_resize_cq); 2209 2210 /* Memory regions */ 2211 2212 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 2213 u64 virt_addr, int access_flags) 2214 { 2215 struct ib_mr *mr; 2216 2217 if (access_flags & IB_ACCESS_ON_DEMAND) { 2218 if (!(pd->device->attrs.kernel_cap_flags & 2219 IBK_ON_DEMAND_PAGING)) { 2220 pr_debug("ODP support not available\n"); 2221 return ERR_PTR(-EINVAL); 2222 } 2223 } 2224 2225 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, 2226 access_flags, NULL); 2227 2228 if (IS_ERR(mr)) 2229 return mr; 2230 2231 mr->device = pd->device; 2232 mr->type = IB_MR_TYPE_USER; 2233 mr->pd = pd; 2234 mr->dm = NULL; 2235 atomic_inc(&pd->usecnt); 2236 mr->iova = virt_addr; 2237 mr->length = length; 2238 2239 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2240 rdma_restrack_parent_name(&mr->res, &pd->res); 2241 rdma_restrack_add(&mr->res); 2242 2243 return mr; 2244 } 2245 EXPORT_SYMBOL(ib_reg_user_mr); 2246 2247 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 2248 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2249 { 2250 if (!pd->device->ops.advise_mr) 2251 return -EOPNOTSUPP; 2252 2253 if (!num_sge) 2254 return 0; 2255 2256 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, 2257 NULL); 2258 } 2259 EXPORT_SYMBOL(ib_advise_mr); 2260 2261 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 2262 { 2263 struct ib_pd *pd = mr->pd; 2264 struct ib_dm *dm = mr->dm; 2265 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 2266 int ret; 2267 2268 trace_mr_dereg(mr); 2269 rdma_restrack_del(&mr->res); 2270 ret = mr->device->ops.dereg_mr(mr, udata); 2271 if (!ret) { 2272 atomic_dec(&pd->usecnt); 2273 if (dm) 2274 atomic_dec(&dm->usecnt); 2275 kfree(sig_attrs); 2276 } 2277 2278 return ret; 2279 } 2280 EXPORT_SYMBOL(ib_dereg_mr_user); 2281 2282 /** 2283 * ib_alloc_mr() - Allocates a memory region 2284 * @pd: protection domain associated with the region 2285 * @mr_type: memory region type 2286 * @max_num_sg: maximum sg entries available for registration. 2287 * 2288 * Notes: 2289 * Memory registeration page/sg lists must not exceed max_num_sg. 2290 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2291 * max_num_sg * used_page_size. 2292 * 2293 */ 2294 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2295 u32 max_num_sg) 2296 { 2297 struct ib_mr *mr; 2298 2299 if (!pd->device->ops.alloc_mr) { 2300 mr = ERR_PTR(-EOPNOTSUPP); 2301 goto out; 2302 } 2303 2304 if (mr_type == IB_MR_TYPE_INTEGRITY) { 2305 WARN_ON_ONCE(1); 2306 mr = ERR_PTR(-EINVAL); 2307 goto out; 2308 } 2309 2310 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); 2311 if (IS_ERR(mr)) 2312 goto out; 2313 2314 mr->device = pd->device; 2315 mr->pd = pd; 2316 mr->dm = NULL; 2317 mr->uobject = NULL; 2318 atomic_inc(&pd->usecnt); 2319 mr->need_inval = false; 2320 mr->type = mr_type; 2321 mr->sig_attrs = NULL; 2322 2323 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2324 rdma_restrack_parent_name(&mr->res, &pd->res); 2325 rdma_restrack_add(&mr->res); 2326 out: 2327 trace_mr_alloc(pd, mr_type, max_num_sg, mr); 2328 return mr; 2329 } 2330 EXPORT_SYMBOL(ib_alloc_mr); 2331 2332 /** 2333 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2334 * @pd: protection domain associated with the region 2335 * @max_num_data_sg: maximum data sg entries available for registration 2336 * @max_num_meta_sg: maximum metadata sg entries available for 2337 * registration 2338 * 2339 * Notes: 2340 * Memory registration page/sg lists must not exceed max_num_sg, 2341 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2342 * 2343 */ 2344 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2345 u32 max_num_data_sg, 2346 u32 max_num_meta_sg) 2347 { 2348 struct ib_mr *mr; 2349 struct ib_sig_attrs *sig_attrs; 2350 2351 if (!pd->device->ops.alloc_mr_integrity || 2352 !pd->device->ops.map_mr_sg_pi) { 2353 mr = ERR_PTR(-EOPNOTSUPP); 2354 goto out; 2355 } 2356 2357 if (!max_num_meta_sg) { 2358 mr = ERR_PTR(-EINVAL); 2359 goto out; 2360 } 2361 2362 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2363 if (!sig_attrs) { 2364 mr = ERR_PTR(-ENOMEM); 2365 goto out; 2366 } 2367 2368 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2369 max_num_meta_sg); 2370 if (IS_ERR(mr)) { 2371 kfree(sig_attrs); 2372 goto out; 2373 } 2374 2375 mr->device = pd->device; 2376 mr->pd = pd; 2377 mr->dm = NULL; 2378 mr->uobject = NULL; 2379 atomic_inc(&pd->usecnt); 2380 mr->need_inval = false; 2381 mr->type = IB_MR_TYPE_INTEGRITY; 2382 mr->sig_attrs = sig_attrs; 2383 2384 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2385 rdma_restrack_parent_name(&mr->res, &pd->res); 2386 rdma_restrack_add(&mr->res); 2387 out: 2388 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); 2389 return mr; 2390 } 2391 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2392 2393 /* Multicast groups */ 2394 2395 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2396 { 2397 struct ib_qp_init_attr init_attr = {}; 2398 struct ib_qp_attr attr = {}; 2399 int num_eth_ports = 0; 2400 unsigned int port; 2401 2402 /* If QP state >= init, it is assigned to a port and we can check this 2403 * port only. 2404 */ 2405 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2406 if (attr.qp_state >= IB_QPS_INIT) { 2407 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2408 IB_LINK_LAYER_INFINIBAND) 2409 return true; 2410 goto lid_check; 2411 } 2412 } 2413 2414 /* Can't get a quick answer, iterate over all ports */ 2415 rdma_for_each_port(qp->device, port) 2416 if (rdma_port_get_link_layer(qp->device, port) != 2417 IB_LINK_LAYER_INFINIBAND) 2418 num_eth_ports++; 2419 2420 /* If we have at lease one Ethernet port, RoCE annex declares that 2421 * multicast LID should be ignored. We can't tell at this step if the 2422 * QP belongs to an IB or Ethernet port. 2423 */ 2424 if (num_eth_ports) 2425 return true; 2426 2427 /* If all the ports are IB, we can check according to IB spec. */ 2428 lid_check: 2429 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2430 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2431 } 2432 2433 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2434 { 2435 int ret; 2436 2437 if (!qp->device->ops.attach_mcast) 2438 return -EOPNOTSUPP; 2439 2440 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2441 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2442 return -EINVAL; 2443 2444 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2445 if (!ret) 2446 atomic_inc(&qp->usecnt); 2447 return ret; 2448 } 2449 EXPORT_SYMBOL(ib_attach_mcast); 2450 2451 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2452 { 2453 int ret; 2454 2455 if (!qp->device->ops.detach_mcast) 2456 return -EOPNOTSUPP; 2457 2458 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2459 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2460 return -EINVAL; 2461 2462 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2463 if (!ret) 2464 atomic_dec(&qp->usecnt); 2465 return ret; 2466 } 2467 EXPORT_SYMBOL(ib_detach_mcast); 2468 2469 /** 2470 * ib_alloc_xrcd_user - Allocates an XRC domain. 2471 * @device: The device on which to allocate the XRC domain. 2472 * @inode: inode to connect XRCD 2473 * @udata: Valid user data or NULL for kernel object 2474 */ 2475 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 2476 struct inode *inode, struct ib_udata *udata) 2477 { 2478 struct ib_xrcd *xrcd; 2479 int ret; 2480 2481 if (!device->ops.alloc_xrcd) 2482 return ERR_PTR(-EOPNOTSUPP); 2483 2484 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd); 2485 if (!xrcd) 2486 return ERR_PTR(-ENOMEM); 2487 2488 xrcd->device = device; 2489 xrcd->inode = inode; 2490 atomic_set(&xrcd->usecnt, 0); 2491 init_rwsem(&xrcd->tgt_qps_rwsem); 2492 xa_init(&xrcd->tgt_qps); 2493 2494 ret = device->ops.alloc_xrcd(xrcd, udata); 2495 if (ret) 2496 goto err; 2497 return xrcd; 2498 err: 2499 kfree(xrcd); 2500 return ERR_PTR(ret); 2501 } 2502 EXPORT_SYMBOL(ib_alloc_xrcd_user); 2503 2504 /** 2505 * ib_dealloc_xrcd_user - Deallocates an XRC domain. 2506 * @xrcd: The XRC domain to deallocate. 2507 * @udata: Valid user data or NULL for kernel object 2508 */ 2509 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata) 2510 { 2511 int ret; 2512 2513 if (atomic_read(&xrcd->usecnt)) 2514 return -EBUSY; 2515 2516 WARN_ON(!xa_empty(&xrcd->tgt_qps)); 2517 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2518 if (ret) 2519 return ret; 2520 kfree(xrcd); 2521 return ret; 2522 } 2523 EXPORT_SYMBOL(ib_dealloc_xrcd_user); 2524 2525 /** 2526 * ib_create_wq - Creates a WQ associated with the specified protection 2527 * domain. 2528 * @pd: The protection domain associated with the WQ. 2529 * @wq_attr: A list of initial attributes required to create the 2530 * WQ. If WQ creation succeeds, then the attributes are updated to 2531 * the actual capabilities of the created WQ. 2532 * 2533 * wq_attr->max_wr and wq_attr->max_sge determine 2534 * the requested size of the WQ, and set to the actual values allocated 2535 * on return. 2536 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2537 * at least as large as the requested values. 2538 */ 2539 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2540 struct ib_wq_init_attr *wq_attr) 2541 { 2542 struct ib_wq *wq; 2543 2544 if (!pd->device->ops.create_wq) 2545 return ERR_PTR(-EOPNOTSUPP); 2546 2547 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2548 if (!IS_ERR(wq)) { 2549 wq->event_handler = wq_attr->event_handler; 2550 wq->wq_context = wq_attr->wq_context; 2551 wq->wq_type = wq_attr->wq_type; 2552 wq->cq = wq_attr->cq; 2553 wq->device = pd->device; 2554 wq->pd = pd; 2555 wq->uobject = NULL; 2556 atomic_inc(&pd->usecnt); 2557 atomic_inc(&wq_attr->cq->usecnt); 2558 atomic_set(&wq->usecnt, 0); 2559 } 2560 return wq; 2561 } 2562 EXPORT_SYMBOL(ib_create_wq); 2563 2564 /** 2565 * ib_destroy_wq_user - Destroys the specified user WQ. 2566 * @wq: The WQ to destroy. 2567 * @udata: Valid user data 2568 */ 2569 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata) 2570 { 2571 struct ib_cq *cq = wq->cq; 2572 struct ib_pd *pd = wq->pd; 2573 int ret; 2574 2575 if (atomic_read(&wq->usecnt)) 2576 return -EBUSY; 2577 2578 ret = wq->device->ops.destroy_wq(wq, udata); 2579 if (ret) 2580 return ret; 2581 2582 atomic_dec(&pd->usecnt); 2583 atomic_dec(&cq->usecnt); 2584 return ret; 2585 } 2586 EXPORT_SYMBOL(ib_destroy_wq_user); 2587 2588 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2589 struct ib_mr_status *mr_status) 2590 { 2591 if (!mr->device->ops.check_mr_status) 2592 return -EOPNOTSUPP; 2593 2594 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2595 } 2596 EXPORT_SYMBOL(ib_check_mr_status); 2597 2598 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 2599 int state) 2600 { 2601 if (!device->ops.set_vf_link_state) 2602 return -EOPNOTSUPP; 2603 2604 return device->ops.set_vf_link_state(device, vf, port, state); 2605 } 2606 EXPORT_SYMBOL(ib_set_vf_link_state); 2607 2608 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 2609 struct ifla_vf_info *info) 2610 { 2611 if (!device->ops.get_vf_config) 2612 return -EOPNOTSUPP; 2613 2614 return device->ops.get_vf_config(device, vf, port, info); 2615 } 2616 EXPORT_SYMBOL(ib_get_vf_config); 2617 2618 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 2619 struct ifla_vf_stats *stats) 2620 { 2621 if (!device->ops.get_vf_stats) 2622 return -EOPNOTSUPP; 2623 2624 return device->ops.get_vf_stats(device, vf, port, stats); 2625 } 2626 EXPORT_SYMBOL(ib_get_vf_stats); 2627 2628 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 2629 int type) 2630 { 2631 if (!device->ops.set_vf_guid) 2632 return -EOPNOTSUPP; 2633 2634 return device->ops.set_vf_guid(device, vf, port, guid, type); 2635 } 2636 EXPORT_SYMBOL(ib_set_vf_guid); 2637 2638 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 2639 struct ifla_vf_guid *node_guid, 2640 struct ifla_vf_guid *port_guid) 2641 { 2642 if (!device->ops.get_vf_guid) 2643 return -EOPNOTSUPP; 2644 2645 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2646 } 2647 EXPORT_SYMBOL(ib_get_vf_guid); 2648 /** 2649 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2650 * information) and set an appropriate memory region for registration. 2651 * @mr: memory region 2652 * @data_sg: dma mapped scatterlist for data 2653 * @data_sg_nents: number of entries in data_sg 2654 * @data_sg_offset: offset in bytes into data_sg 2655 * @meta_sg: dma mapped scatterlist for metadata 2656 * @meta_sg_nents: number of entries in meta_sg 2657 * @meta_sg_offset: offset in bytes into meta_sg 2658 * @page_size: page vector desired page size 2659 * 2660 * Constraints: 2661 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2662 * 2663 * Return: 0 on success. 2664 * 2665 * After this completes successfully, the memory region 2666 * is ready for registration. 2667 */ 2668 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2669 int data_sg_nents, unsigned int *data_sg_offset, 2670 struct scatterlist *meta_sg, int meta_sg_nents, 2671 unsigned int *meta_sg_offset, unsigned int page_size) 2672 { 2673 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2674 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2675 return -EOPNOTSUPP; 2676 2677 mr->page_size = page_size; 2678 2679 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2680 data_sg_offset, meta_sg, 2681 meta_sg_nents, meta_sg_offset); 2682 } 2683 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2684 2685 /** 2686 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2687 * and set it the memory region. 2688 * @mr: memory region 2689 * @sg: dma mapped scatterlist 2690 * @sg_nents: number of entries in sg 2691 * @sg_offset: offset in bytes into sg 2692 * @page_size: page vector desired page size 2693 * 2694 * Constraints: 2695 * 2696 * - The first sg element is allowed to have an offset. 2697 * - Each sg element must either be aligned to page_size or virtually 2698 * contiguous to the previous element. In case an sg element has a 2699 * non-contiguous offset, the mapping prefix will not include it. 2700 * - The last sg element is allowed to have length less than page_size. 2701 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2702 * then only max_num_sg entries will be mapped. 2703 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2704 * constraints holds and the page_size argument is ignored. 2705 * 2706 * Returns the number of sg elements that were mapped to the memory region. 2707 * 2708 * After this completes successfully, the memory region 2709 * is ready for registration. 2710 */ 2711 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2712 unsigned int *sg_offset, unsigned int page_size) 2713 { 2714 if (unlikely(!mr->device->ops.map_mr_sg)) 2715 return -EOPNOTSUPP; 2716 2717 mr->page_size = page_size; 2718 2719 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2720 } 2721 EXPORT_SYMBOL(ib_map_mr_sg); 2722 2723 /** 2724 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2725 * to a page vector 2726 * @mr: memory region 2727 * @sgl: dma mapped scatterlist 2728 * @sg_nents: number of entries in sg 2729 * @sg_offset_p: ==== ======================================================= 2730 * IN start offset in bytes into sg 2731 * OUT offset in bytes for element n of the sg of the first 2732 * byte that has not been processed where n is the return 2733 * value of this function. 2734 * ==== ======================================================= 2735 * @set_page: driver page assignment function pointer 2736 * 2737 * Core service helper for drivers to convert the largest 2738 * prefix of given sg list to a page vector. The sg list 2739 * prefix converted is the prefix that meet the requirements 2740 * of ib_map_mr_sg. 2741 * 2742 * Returns the number of sg elements that were assigned to 2743 * a page vector. 2744 */ 2745 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2746 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2747 { 2748 struct scatterlist *sg; 2749 u64 last_end_dma_addr = 0; 2750 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2751 unsigned int last_page_off = 0; 2752 u64 page_mask = ~((u64)mr->page_size - 1); 2753 int i, ret; 2754 2755 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2756 return -EINVAL; 2757 2758 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2759 mr->length = 0; 2760 2761 for_each_sg(sgl, sg, sg_nents, i) { 2762 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2763 u64 prev_addr = dma_addr; 2764 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2765 u64 end_dma_addr = dma_addr + dma_len; 2766 u64 page_addr = dma_addr & page_mask; 2767 2768 /* 2769 * For the second and later elements, check whether either the 2770 * end of element i-1 or the start of element i is not aligned 2771 * on a page boundary. 2772 */ 2773 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2774 /* Stop mapping if there is a gap. */ 2775 if (last_end_dma_addr != dma_addr) 2776 break; 2777 2778 /* 2779 * Coalesce this element with the last. If it is small 2780 * enough just update mr->length. Otherwise start 2781 * mapping from the next page. 2782 */ 2783 goto next_page; 2784 } 2785 2786 do { 2787 ret = set_page(mr, page_addr); 2788 if (unlikely(ret < 0)) { 2789 sg_offset = prev_addr - sg_dma_address(sg); 2790 mr->length += prev_addr - dma_addr; 2791 if (sg_offset_p) 2792 *sg_offset_p = sg_offset; 2793 return i || sg_offset ? i : ret; 2794 } 2795 prev_addr = page_addr; 2796 next_page: 2797 page_addr += mr->page_size; 2798 } while (page_addr < end_dma_addr); 2799 2800 mr->length += dma_len; 2801 last_end_dma_addr = end_dma_addr; 2802 last_page_off = end_dma_addr & ~page_mask; 2803 2804 sg_offset = 0; 2805 } 2806 2807 if (sg_offset_p) 2808 *sg_offset_p = 0; 2809 return i; 2810 } 2811 EXPORT_SYMBOL(ib_sg_to_pages); 2812 2813 struct ib_drain_cqe { 2814 struct ib_cqe cqe; 2815 struct completion done; 2816 }; 2817 2818 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2819 { 2820 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2821 cqe); 2822 2823 complete(&cqe->done); 2824 } 2825 2826 /* 2827 * Post a WR and block until its completion is reaped for the SQ. 2828 */ 2829 static void __ib_drain_sq(struct ib_qp *qp) 2830 { 2831 struct ib_cq *cq = qp->send_cq; 2832 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2833 struct ib_drain_cqe sdrain; 2834 struct ib_rdma_wr swr = { 2835 .wr = { 2836 .next = NULL, 2837 { .wr_cqe = &sdrain.cqe, }, 2838 .opcode = IB_WR_RDMA_WRITE, 2839 }, 2840 }; 2841 int ret; 2842 2843 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2844 if (ret) { 2845 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2846 return; 2847 } 2848 2849 sdrain.cqe.done = ib_drain_qp_done; 2850 init_completion(&sdrain.done); 2851 2852 ret = ib_post_send(qp, &swr.wr, NULL); 2853 if (ret) { 2854 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2855 return; 2856 } 2857 2858 if (cq->poll_ctx == IB_POLL_DIRECT) 2859 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2860 ib_process_cq_direct(cq, -1); 2861 else 2862 wait_for_completion(&sdrain.done); 2863 } 2864 2865 /* 2866 * Post a WR and block until its completion is reaped for the RQ. 2867 */ 2868 static void __ib_drain_rq(struct ib_qp *qp) 2869 { 2870 struct ib_cq *cq = qp->recv_cq; 2871 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2872 struct ib_drain_cqe rdrain; 2873 struct ib_recv_wr rwr = {}; 2874 int ret; 2875 2876 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2877 if (ret) { 2878 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2879 return; 2880 } 2881 2882 rwr.wr_cqe = &rdrain.cqe; 2883 rdrain.cqe.done = ib_drain_qp_done; 2884 init_completion(&rdrain.done); 2885 2886 ret = ib_post_recv(qp, &rwr, NULL); 2887 if (ret) { 2888 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2889 return; 2890 } 2891 2892 if (cq->poll_ctx == IB_POLL_DIRECT) 2893 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2894 ib_process_cq_direct(cq, -1); 2895 else 2896 wait_for_completion(&rdrain.done); 2897 } 2898 2899 /* 2900 * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout 2901 * expires. 2902 * @qp: queue pair associated with SRQ to drain 2903 * 2904 * Quoting 10.3.1 Queue Pair and EE Context States: 2905 * 2906 * Note, for QPs that are associated with an SRQ, the Consumer should take the 2907 * QP through the Error State before invoking a Destroy QP or a Modify QP to the 2908 * Reset State. The Consumer may invoke the Destroy QP without first performing 2909 * a Modify QP to the Error State and waiting for the Affiliated Asynchronous 2910 * Last WQE Reached Event. However, if the Consumer does not wait for the 2911 * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment 2912 * leakage may occur. Therefore, it is good programming practice to tear down a 2913 * QP that is associated with an SRQ by using the following process: 2914 * 2915 * - Put the QP in the Error State 2916 * - Wait for the Affiliated Asynchronous Last WQE Reached Event; 2917 * - either: 2918 * drain the CQ by invoking the Poll CQ verb and either wait for CQ 2919 * to be empty or the number of Poll CQ operations has exceeded 2920 * CQ capacity size; 2921 * - or 2922 * post another WR that completes on the same CQ and wait for this 2923 * WR to return as a WC; 2924 * - and then invoke a Destroy QP or Reset QP. 2925 * 2926 * We use the first option. 2927 */ 2928 static void __ib_drain_srq(struct ib_qp *qp) 2929 { 2930 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2931 struct ib_cq *cq; 2932 int n, polled = 0; 2933 int ret; 2934 2935 if (!qp->srq) { 2936 WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp); 2937 return; 2938 } 2939 2940 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2941 if (ret) { 2942 WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret); 2943 return; 2944 } 2945 2946 if (ib_srq_has_cq(qp->srq->srq_type)) { 2947 cq = qp->srq->ext.cq; 2948 } else if (qp->recv_cq) { 2949 cq = qp->recv_cq; 2950 } else { 2951 WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp); 2952 return; 2953 } 2954 2955 if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) { 2956 while (polled != cq->cqe) { 2957 n = ib_process_cq_direct(cq, cq->cqe - polled); 2958 if (!n) 2959 return; 2960 polled += n; 2961 } 2962 } 2963 } 2964 2965 /** 2966 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2967 * application. 2968 * @qp: queue pair to drain 2969 * 2970 * If the device has a provider-specific drain function, then 2971 * call that. Otherwise call the generic drain function 2972 * __ib_drain_sq(). 2973 * 2974 * The caller must: 2975 * 2976 * ensure there is room in the CQ and SQ for the drain work request and 2977 * completion. 2978 * 2979 * allocate the CQ using ib_alloc_cq(). 2980 * 2981 * ensure that there are no other contexts that are posting WRs concurrently. 2982 * Otherwise the drain is not guaranteed. 2983 */ 2984 void ib_drain_sq(struct ib_qp *qp) 2985 { 2986 if (qp->device->ops.drain_sq) 2987 qp->device->ops.drain_sq(qp); 2988 else 2989 __ib_drain_sq(qp); 2990 trace_cq_drain_complete(qp->send_cq); 2991 } 2992 EXPORT_SYMBOL(ib_drain_sq); 2993 2994 /** 2995 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2996 * application. 2997 * @qp: queue pair to drain 2998 * 2999 * If the device has a provider-specific drain function, then 3000 * call that. Otherwise call the generic drain function 3001 * __ib_drain_rq(). 3002 * 3003 * The caller must: 3004 * 3005 * ensure there is room in the CQ and RQ for the drain work request and 3006 * completion. 3007 * 3008 * allocate the CQ using ib_alloc_cq(). 3009 * 3010 * ensure that there are no other contexts that are posting WRs concurrently. 3011 * Otherwise the drain is not guaranteed. 3012 */ 3013 void ib_drain_rq(struct ib_qp *qp) 3014 { 3015 if (qp->device->ops.drain_rq) 3016 qp->device->ops.drain_rq(qp); 3017 else 3018 __ib_drain_rq(qp); 3019 trace_cq_drain_complete(qp->recv_cq); 3020 } 3021 EXPORT_SYMBOL(ib_drain_rq); 3022 3023 /** 3024 * ib_drain_qp() - Block until all CQEs have been consumed by the 3025 * application on both the RQ and SQ. 3026 * @qp: queue pair to drain 3027 * 3028 * The caller must: 3029 * 3030 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 3031 * and completions. 3032 * 3033 * allocate the CQs using ib_alloc_cq(). 3034 * 3035 * ensure that there are no other contexts that are posting WRs concurrently. 3036 * Otherwise the drain is not guaranteed. 3037 */ 3038 void ib_drain_qp(struct ib_qp *qp) 3039 { 3040 ib_drain_sq(qp); 3041 if (!qp->srq) 3042 ib_drain_rq(qp); 3043 else 3044 __ib_drain_srq(qp); 3045 } 3046 EXPORT_SYMBOL(ib_drain_qp); 3047 3048 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 3049 enum rdma_netdev_t type, const char *name, 3050 unsigned char name_assign_type, 3051 void (*setup)(struct net_device *)) 3052 { 3053 struct rdma_netdev_alloc_params params; 3054 struct net_device *netdev; 3055 int rc; 3056 3057 if (!device->ops.rdma_netdev_get_params) 3058 return ERR_PTR(-EOPNOTSUPP); 3059 3060 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 3061 ¶ms); 3062 if (rc) 3063 return ERR_PTR(rc); 3064 3065 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 3066 setup, params.txqs, params.rxqs); 3067 if (!netdev) 3068 return ERR_PTR(-ENOMEM); 3069 3070 return netdev; 3071 } 3072 EXPORT_SYMBOL(rdma_alloc_netdev); 3073 3074 int rdma_init_netdev(struct ib_device *device, u32 port_num, 3075 enum rdma_netdev_t type, const char *name, 3076 unsigned char name_assign_type, 3077 void (*setup)(struct net_device *), 3078 struct net_device *netdev) 3079 { 3080 struct rdma_netdev_alloc_params params; 3081 int rc; 3082 3083 if (!device->ops.rdma_netdev_get_params) 3084 return -EOPNOTSUPP; 3085 3086 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 3087 ¶ms); 3088 if (rc) 3089 return rc; 3090 3091 return params.initialize_rdma_netdev(device, port_num, 3092 netdev, params.param); 3093 } 3094 EXPORT_SYMBOL(rdma_init_netdev); 3095 3096 void __rdma_block_iter_start(struct ib_block_iter *biter, 3097 struct scatterlist *sglist, unsigned int nents, 3098 unsigned long pgsz) 3099 { 3100 memset(biter, 0, sizeof(struct ib_block_iter)); 3101 biter->__sg = sglist; 3102 biter->__sg_nents = nents; 3103 3104 /* Driver provides best block size to use */ 3105 biter->__pg_bit = __fls(pgsz); 3106 } 3107 EXPORT_SYMBOL(__rdma_block_iter_start); 3108 3109 bool __rdma_block_iter_next(struct ib_block_iter *biter) 3110 { 3111 unsigned int block_offset; 3112 unsigned int sg_delta; 3113 3114 if (!biter->__sg_nents || !biter->__sg) 3115 return false; 3116 3117 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 3118 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 3119 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset; 3120 3121 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) { 3122 biter->__sg_advance += sg_delta; 3123 } else { 3124 biter->__sg_advance = 0; 3125 biter->__sg = sg_next(biter->__sg); 3126 biter->__sg_nents--; 3127 } 3128 3129 return true; 3130 } 3131 EXPORT_SYMBOL(__rdma_block_iter_next); 3132 3133 /** 3134 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 3135 * for the drivers. 3136 * @descs: array of static descriptors 3137 * @num_counters: number of elements in array 3138 * @lifespan: milliseconds between updates 3139 */ 3140 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 3141 const struct rdma_stat_desc *descs, int num_counters, 3142 unsigned long lifespan) 3143 { 3144 struct rdma_hw_stats *stats; 3145 3146 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL); 3147 if (!stats) 3148 return NULL; 3149 3150 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters), 3151 sizeof(*stats->is_disabled), GFP_KERNEL); 3152 if (!stats->is_disabled) 3153 goto err; 3154 3155 stats->descs = descs; 3156 stats->num_counters = num_counters; 3157 stats->lifespan = msecs_to_jiffies(lifespan); 3158 mutex_init(&stats->lock); 3159 3160 return stats; 3161 3162 err: 3163 kfree(stats); 3164 return NULL; 3165 } 3166 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct); 3167 3168 /** 3169 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats 3170 * @stats: statistics to release 3171 */ 3172 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats) 3173 { 3174 if (!stats) 3175 return; 3176 3177 kfree(stats->is_disabled); 3178 kfree(stats); 3179 } 3180 EXPORT_SYMBOL(rdma_free_hw_stats_struct); 3181