1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 #include <trace/events/rdma_core.h> 56 57 static int ib_resolve_eth_dmac(struct ib_device *device, 58 struct rdma_ah_attr *ah_attr); 59 60 static const char * const ib_events[] = { 61 [IB_EVENT_CQ_ERR] = "CQ error", 62 [IB_EVENT_QP_FATAL] = "QP fatal error", 63 [IB_EVENT_QP_REQ_ERR] = "QP request error", 64 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 65 [IB_EVENT_COMM_EST] = "communication established", 66 [IB_EVENT_SQ_DRAINED] = "send queue drained", 67 [IB_EVENT_PATH_MIG] = "path migration successful", 68 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 69 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 70 [IB_EVENT_PORT_ACTIVE] = "port active", 71 [IB_EVENT_PORT_ERR] = "port error", 72 [IB_EVENT_LID_CHANGE] = "LID change", 73 [IB_EVENT_PKEY_CHANGE] = "P_key change", 74 [IB_EVENT_SM_CHANGE] = "SM change", 75 [IB_EVENT_SRQ_ERR] = "SRQ error", 76 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 77 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 78 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 79 [IB_EVENT_GID_CHANGE] = "GID changed", 80 }; 81 82 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 83 { 84 size_t index = event; 85 86 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 87 ib_events[index] : "unrecognized event"; 88 } 89 EXPORT_SYMBOL(ib_event_msg); 90 91 static const char * const wc_statuses[] = { 92 [IB_WC_SUCCESS] = "success", 93 [IB_WC_LOC_LEN_ERR] = "local length error", 94 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 95 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 96 [IB_WC_LOC_PROT_ERR] = "local protection error", 97 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 98 [IB_WC_MW_BIND_ERR] = "memory management operation error", 99 [IB_WC_BAD_RESP_ERR] = "bad response error", 100 [IB_WC_LOC_ACCESS_ERR] = "local access error", 101 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 102 [IB_WC_REM_ACCESS_ERR] = "remote access error", 103 [IB_WC_REM_OP_ERR] = "remote operation error", 104 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 105 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 106 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 107 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 108 [IB_WC_REM_ABORT_ERR] = "operation aborted", 109 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 110 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 111 [IB_WC_FATAL_ERR] = "fatal error", 112 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 113 [IB_WC_GENERAL_ERR] = "general error", 114 }; 115 116 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 117 { 118 size_t index = status; 119 120 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 121 wc_statuses[index] : "unrecognized status"; 122 } 123 EXPORT_SYMBOL(ib_wc_status_msg); 124 125 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 126 { 127 switch (rate) { 128 case IB_RATE_2_5_GBPS: return 1; 129 case IB_RATE_5_GBPS: return 2; 130 case IB_RATE_10_GBPS: return 4; 131 case IB_RATE_20_GBPS: return 8; 132 case IB_RATE_30_GBPS: return 12; 133 case IB_RATE_40_GBPS: return 16; 134 case IB_RATE_60_GBPS: return 24; 135 case IB_RATE_80_GBPS: return 32; 136 case IB_RATE_120_GBPS: return 48; 137 case IB_RATE_14_GBPS: return 6; 138 case IB_RATE_56_GBPS: return 22; 139 case IB_RATE_112_GBPS: return 45; 140 case IB_RATE_168_GBPS: return 67; 141 case IB_RATE_25_GBPS: return 10; 142 case IB_RATE_100_GBPS: return 40; 143 case IB_RATE_200_GBPS: return 80; 144 case IB_RATE_300_GBPS: return 120; 145 case IB_RATE_28_GBPS: return 11; 146 case IB_RATE_50_GBPS: return 20; 147 case IB_RATE_400_GBPS: return 160; 148 case IB_RATE_600_GBPS: return 240; 149 default: return -1; 150 } 151 } 152 EXPORT_SYMBOL(ib_rate_to_mult); 153 154 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 155 { 156 switch (mult) { 157 case 1: return IB_RATE_2_5_GBPS; 158 case 2: return IB_RATE_5_GBPS; 159 case 4: return IB_RATE_10_GBPS; 160 case 8: return IB_RATE_20_GBPS; 161 case 12: return IB_RATE_30_GBPS; 162 case 16: return IB_RATE_40_GBPS; 163 case 24: return IB_RATE_60_GBPS; 164 case 32: return IB_RATE_80_GBPS; 165 case 48: return IB_RATE_120_GBPS; 166 case 6: return IB_RATE_14_GBPS; 167 case 22: return IB_RATE_56_GBPS; 168 case 45: return IB_RATE_112_GBPS; 169 case 67: return IB_RATE_168_GBPS; 170 case 10: return IB_RATE_25_GBPS; 171 case 40: return IB_RATE_100_GBPS; 172 case 80: return IB_RATE_200_GBPS; 173 case 120: return IB_RATE_300_GBPS; 174 case 11: return IB_RATE_28_GBPS; 175 case 20: return IB_RATE_50_GBPS; 176 case 160: return IB_RATE_400_GBPS; 177 case 240: return IB_RATE_600_GBPS; 178 default: return IB_RATE_PORT_CURRENT; 179 } 180 } 181 EXPORT_SYMBOL(mult_to_ib_rate); 182 183 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 184 { 185 switch (rate) { 186 case IB_RATE_2_5_GBPS: return 2500; 187 case IB_RATE_5_GBPS: return 5000; 188 case IB_RATE_10_GBPS: return 10000; 189 case IB_RATE_20_GBPS: return 20000; 190 case IB_RATE_30_GBPS: return 30000; 191 case IB_RATE_40_GBPS: return 40000; 192 case IB_RATE_60_GBPS: return 60000; 193 case IB_RATE_80_GBPS: return 80000; 194 case IB_RATE_120_GBPS: return 120000; 195 case IB_RATE_14_GBPS: return 14062; 196 case IB_RATE_56_GBPS: return 56250; 197 case IB_RATE_112_GBPS: return 112500; 198 case IB_RATE_168_GBPS: return 168750; 199 case IB_RATE_25_GBPS: return 25781; 200 case IB_RATE_100_GBPS: return 103125; 201 case IB_RATE_200_GBPS: return 206250; 202 case IB_RATE_300_GBPS: return 309375; 203 case IB_RATE_28_GBPS: return 28125; 204 case IB_RATE_50_GBPS: return 53125; 205 case IB_RATE_400_GBPS: return 425000; 206 case IB_RATE_600_GBPS: return 637500; 207 default: return -1; 208 } 209 } 210 EXPORT_SYMBOL(ib_rate_to_mbps); 211 212 __attribute_const__ enum rdma_transport_type 213 rdma_node_get_transport(unsigned int node_type) 214 { 215 216 if (node_type == RDMA_NODE_USNIC) 217 return RDMA_TRANSPORT_USNIC; 218 if (node_type == RDMA_NODE_USNIC_UDP) 219 return RDMA_TRANSPORT_USNIC_UDP; 220 if (node_type == RDMA_NODE_RNIC) 221 return RDMA_TRANSPORT_IWARP; 222 if (node_type == RDMA_NODE_UNSPECIFIED) 223 return RDMA_TRANSPORT_UNSPECIFIED; 224 225 return RDMA_TRANSPORT_IB; 226 } 227 EXPORT_SYMBOL(rdma_node_get_transport); 228 229 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 230 { 231 enum rdma_transport_type lt; 232 if (device->ops.get_link_layer) 233 return device->ops.get_link_layer(device, port_num); 234 235 lt = rdma_node_get_transport(device->node_type); 236 if (lt == RDMA_TRANSPORT_IB) 237 return IB_LINK_LAYER_INFINIBAND; 238 239 return IB_LINK_LAYER_ETHERNET; 240 } 241 EXPORT_SYMBOL(rdma_port_get_link_layer); 242 243 /* Protection domains */ 244 245 /** 246 * ib_alloc_pd - Allocates an unused protection domain. 247 * @device: The device on which to allocate the protection domain. 248 * @flags: protection domain flags 249 * @caller: caller's build-time module name 250 * 251 * A protection domain object provides an association between QPs, shared 252 * receive queues, address handles, memory regions, and memory windows. 253 * 254 * Every PD has a local_dma_lkey which can be used as the lkey value for local 255 * memory operations. 256 */ 257 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 258 const char *caller) 259 { 260 struct ib_pd *pd; 261 int mr_access_flags = 0; 262 int ret; 263 264 pd = rdma_zalloc_drv_obj(device, ib_pd); 265 if (!pd) 266 return ERR_PTR(-ENOMEM); 267 268 pd->device = device; 269 pd->uobject = NULL; 270 pd->__internal_mr = NULL; 271 atomic_set(&pd->usecnt, 0); 272 pd->flags = flags; 273 274 pd->res.type = RDMA_RESTRACK_PD; 275 rdma_restrack_set_task(&pd->res, caller); 276 277 ret = device->ops.alloc_pd(pd, NULL); 278 if (ret) { 279 kfree(pd); 280 return ERR_PTR(ret); 281 } 282 rdma_restrack_kadd(&pd->res); 283 284 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 285 pd->local_dma_lkey = device->local_dma_lkey; 286 else 287 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 288 289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 290 pr_warn("%s: enabling unsafe global rkey\n", caller); 291 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 292 } 293 294 if (mr_access_flags) { 295 struct ib_mr *mr; 296 297 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 298 if (IS_ERR(mr)) { 299 ib_dealloc_pd(pd); 300 return ERR_CAST(mr); 301 } 302 303 mr->device = pd->device; 304 mr->pd = pd; 305 mr->type = IB_MR_TYPE_DMA; 306 mr->uobject = NULL; 307 mr->need_inval = false; 308 309 pd->__internal_mr = mr; 310 311 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 312 pd->local_dma_lkey = pd->__internal_mr->lkey; 313 314 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 315 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 316 } 317 318 return pd; 319 } 320 EXPORT_SYMBOL(__ib_alloc_pd); 321 322 /** 323 * ib_dealloc_pd_user - Deallocates a protection domain. 324 * @pd: The protection domain to deallocate. 325 * @udata: Valid user data or NULL for kernel object 326 * 327 * It is an error to call this function while any resources in the pd still 328 * exist. The caller is responsible to synchronously destroy them and 329 * guarantee no new allocations will happen. 330 */ 331 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 332 { 333 int ret; 334 335 if (pd->__internal_mr) { 336 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 337 WARN_ON(ret); 338 pd->__internal_mr = NULL; 339 } 340 341 /* uverbs manipulates usecnt with proper locking, while the kabi 342 requires the caller to guarantee we can't race here. */ 343 WARN_ON(atomic_read(&pd->usecnt)); 344 345 rdma_restrack_del(&pd->res); 346 pd->device->ops.dealloc_pd(pd, udata); 347 kfree(pd); 348 } 349 EXPORT_SYMBOL(ib_dealloc_pd_user); 350 351 /* Address handles */ 352 353 /** 354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 355 * @dest: Pointer to destination ah_attr. Contents of the destination 356 * pointer is assumed to be invalid and attribute are overwritten. 357 * @src: Pointer to source ah_attr. 358 */ 359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 360 const struct rdma_ah_attr *src) 361 { 362 *dest = *src; 363 if (dest->grh.sgid_attr) 364 rdma_hold_gid_attr(dest->grh.sgid_attr); 365 } 366 EXPORT_SYMBOL(rdma_copy_ah_attr); 367 368 /** 369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 370 * @old: Pointer to existing ah_attr which needs to be replaced. 371 * old is assumed to be valid or zero'd 372 * @new: Pointer to the new ah_attr. 373 * 374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 375 * old the ah_attr is valid; after that it copies the new attribute and holds 376 * the reference to the replaced ah_attr. 377 */ 378 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 379 const struct rdma_ah_attr *new) 380 { 381 rdma_destroy_ah_attr(old); 382 *old = *new; 383 if (old->grh.sgid_attr) 384 rdma_hold_gid_attr(old->grh.sgid_attr); 385 } 386 EXPORT_SYMBOL(rdma_replace_ah_attr); 387 388 /** 389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 390 * @dest: Pointer to destination ah_attr to copy to. 391 * dest is assumed to be valid or zero'd 392 * @src: Pointer to the new ah_attr. 393 * 394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 395 * if it is valid. This also transfers ownership of internal references from 396 * src to dest, making src invalid in the process. No new reference of the src 397 * ah_attr is taken. 398 */ 399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 400 { 401 rdma_destroy_ah_attr(dest); 402 *dest = *src; 403 src->grh.sgid_attr = NULL; 404 } 405 EXPORT_SYMBOL(rdma_move_ah_attr); 406 407 /* 408 * Validate that the rdma_ah_attr is valid for the device before passing it 409 * off to the driver. 410 */ 411 static int rdma_check_ah_attr(struct ib_device *device, 412 struct rdma_ah_attr *ah_attr) 413 { 414 if (!rdma_is_port_valid(device, ah_attr->port_num)) 415 return -EINVAL; 416 417 if ((rdma_is_grh_required(device, ah_attr->port_num) || 418 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 419 !(ah_attr->ah_flags & IB_AH_GRH)) 420 return -EINVAL; 421 422 if (ah_attr->grh.sgid_attr) { 423 /* 424 * Make sure the passed sgid_attr is consistent with the 425 * parameters 426 */ 427 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 428 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 429 return -EINVAL; 430 } 431 return 0; 432 } 433 434 /* 435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 436 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 437 */ 438 static int rdma_fill_sgid_attr(struct ib_device *device, 439 struct rdma_ah_attr *ah_attr, 440 const struct ib_gid_attr **old_sgid_attr) 441 { 442 const struct ib_gid_attr *sgid_attr; 443 struct ib_global_route *grh; 444 int ret; 445 446 *old_sgid_attr = ah_attr->grh.sgid_attr; 447 448 ret = rdma_check_ah_attr(device, ah_attr); 449 if (ret) 450 return ret; 451 452 if (!(ah_attr->ah_flags & IB_AH_GRH)) 453 return 0; 454 455 grh = rdma_ah_retrieve_grh(ah_attr); 456 if (grh->sgid_attr) 457 return 0; 458 459 sgid_attr = 460 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 461 if (IS_ERR(sgid_attr)) 462 return PTR_ERR(sgid_attr); 463 464 /* Move ownerhip of the kref into the ah_attr */ 465 grh->sgid_attr = sgid_attr; 466 return 0; 467 } 468 469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 470 const struct ib_gid_attr *old_sgid_attr) 471 { 472 /* 473 * Fill didn't change anything, the caller retains ownership of 474 * whatever it passed 475 */ 476 if (ah_attr->grh.sgid_attr == old_sgid_attr) 477 return; 478 479 /* 480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 481 * doesn't see any change in the rdma_ah_attr. If we get here 482 * old_sgid_attr is NULL. 483 */ 484 rdma_destroy_ah_attr(ah_attr); 485 } 486 487 static const struct ib_gid_attr * 488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 489 const struct ib_gid_attr *old_attr) 490 { 491 if (old_attr) 492 rdma_put_gid_attr(old_attr); 493 if (ah_attr->ah_flags & IB_AH_GRH) { 494 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 495 return ah_attr->grh.sgid_attr; 496 } 497 return NULL; 498 } 499 500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 501 struct rdma_ah_attr *ah_attr, 502 u32 flags, 503 struct ib_udata *udata) 504 { 505 struct ib_device *device = pd->device; 506 struct ib_ah *ah; 507 int ret; 508 509 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 510 511 if (!device->ops.create_ah) 512 return ERR_PTR(-EOPNOTSUPP); 513 514 ah = rdma_zalloc_drv_obj_gfp( 515 device, ib_ah, 516 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 517 if (!ah) 518 return ERR_PTR(-ENOMEM); 519 520 ah->device = device; 521 ah->pd = pd; 522 ah->type = ah_attr->type; 523 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 524 525 ret = device->ops.create_ah(ah, ah_attr, flags, udata); 526 if (ret) { 527 kfree(ah); 528 return ERR_PTR(ret); 529 } 530 531 atomic_inc(&pd->usecnt); 532 return ah; 533 } 534 535 /** 536 * rdma_create_ah - Creates an address handle for the 537 * given address vector. 538 * @pd: The protection domain associated with the address handle. 539 * @ah_attr: The attributes of the address vector. 540 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 541 * 542 * It returns 0 on success and returns appropriate error code on error. 543 * The address handle is used to reference a local or global destination 544 * in all UD QP post sends. 545 */ 546 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 547 u32 flags) 548 { 549 const struct ib_gid_attr *old_sgid_attr; 550 struct ib_ah *ah; 551 int ret; 552 553 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 554 if (ret) 555 return ERR_PTR(ret); 556 557 ah = _rdma_create_ah(pd, ah_attr, flags, NULL); 558 559 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 560 return ah; 561 } 562 EXPORT_SYMBOL(rdma_create_ah); 563 564 /** 565 * rdma_create_user_ah - Creates an address handle for the 566 * given address vector. 567 * It resolves destination mac address for ah attribute of RoCE type. 568 * @pd: The protection domain associated with the address handle. 569 * @ah_attr: The attributes of the address vector. 570 * @udata: pointer to user's input output buffer information need by 571 * provider driver. 572 * 573 * It returns 0 on success and returns appropriate error code on error. 574 * The address handle is used to reference a local or global destination 575 * in all UD QP post sends. 576 */ 577 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 578 struct rdma_ah_attr *ah_attr, 579 struct ib_udata *udata) 580 { 581 const struct ib_gid_attr *old_sgid_attr; 582 struct ib_ah *ah; 583 int err; 584 585 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 586 if (err) 587 return ERR_PTR(err); 588 589 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 590 err = ib_resolve_eth_dmac(pd->device, ah_attr); 591 if (err) { 592 ah = ERR_PTR(err); 593 goto out; 594 } 595 } 596 597 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata); 598 599 out: 600 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 601 return ah; 602 } 603 EXPORT_SYMBOL(rdma_create_user_ah); 604 605 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 606 { 607 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 608 struct iphdr ip4h_checked; 609 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 610 611 /* If it's IPv6, the version must be 6, otherwise, the first 612 * 20 bytes (before the IPv4 header) are garbled. 613 */ 614 if (ip6h->version != 6) 615 return (ip4h->version == 4) ? 4 : 0; 616 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 617 618 /* RoCE v2 requires no options, thus header length 619 * must be 5 words 620 */ 621 if (ip4h->ihl != 5) 622 return 6; 623 624 /* Verify checksum. 625 * We can't write on scattered buffers so we need to copy to 626 * temp buffer. 627 */ 628 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 629 ip4h_checked.check = 0; 630 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 631 /* if IPv4 header checksum is OK, believe it */ 632 if (ip4h->check == ip4h_checked.check) 633 return 4; 634 return 6; 635 } 636 EXPORT_SYMBOL(ib_get_rdma_header_version); 637 638 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 639 u8 port_num, 640 const struct ib_grh *grh) 641 { 642 int grh_version; 643 644 if (rdma_protocol_ib(device, port_num)) 645 return RDMA_NETWORK_IB; 646 647 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 648 649 if (grh_version == 4) 650 return RDMA_NETWORK_IPV4; 651 652 if (grh->next_hdr == IPPROTO_UDP) 653 return RDMA_NETWORK_IPV6; 654 655 return RDMA_NETWORK_ROCE_V1; 656 } 657 658 struct find_gid_index_context { 659 u16 vlan_id; 660 enum ib_gid_type gid_type; 661 }; 662 663 static bool find_gid_index(const union ib_gid *gid, 664 const struct ib_gid_attr *gid_attr, 665 void *context) 666 { 667 struct find_gid_index_context *ctx = context; 668 u16 vlan_id = 0xffff; 669 int ret; 670 671 if (ctx->gid_type != gid_attr->gid_type) 672 return false; 673 674 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 675 if (ret) 676 return false; 677 678 return ctx->vlan_id == vlan_id; 679 } 680 681 static const struct ib_gid_attr * 682 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, 683 u16 vlan_id, const union ib_gid *sgid, 684 enum ib_gid_type gid_type) 685 { 686 struct find_gid_index_context context = {.vlan_id = vlan_id, 687 .gid_type = gid_type}; 688 689 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 690 &context); 691 } 692 693 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 694 enum rdma_network_type net_type, 695 union ib_gid *sgid, union ib_gid *dgid) 696 { 697 struct sockaddr_in src_in; 698 struct sockaddr_in dst_in; 699 __be32 src_saddr, dst_saddr; 700 701 if (!sgid || !dgid) 702 return -EINVAL; 703 704 if (net_type == RDMA_NETWORK_IPV4) { 705 memcpy(&src_in.sin_addr.s_addr, 706 &hdr->roce4grh.saddr, 4); 707 memcpy(&dst_in.sin_addr.s_addr, 708 &hdr->roce4grh.daddr, 4); 709 src_saddr = src_in.sin_addr.s_addr; 710 dst_saddr = dst_in.sin_addr.s_addr; 711 ipv6_addr_set_v4mapped(src_saddr, 712 (struct in6_addr *)sgid); 713 ipv6_addr_set_v4mapped(dst_saddr, 714 (struct in6_addr *)dgid); 715 return 0; 716 } else if (net_type == RDMA_NETWORK_IPV6 || 717 net_type == RDMA_NETWORK_IB) { 718 *dgid = hdr->ibgrh.dgid; 719 *sgid = hdr->ibgrh.sgid; 720 return 0; 721 } else { 722 return -EINVAL; 723 } 724 } 725 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 726 727 /* Resolve destination mac address and hop limit for unicast destination 728 * GID entry, considering the source GID entry as well. 729 * ah_attribute must have have valid port_num, sgid_index. 730 */ 731 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 732 struct rdma_ah_attr *ah_attr) 733 { 734 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 735 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 736 int hop_limit = 0xff; 737 int ret = 0; 738 739 /* If destination is link local and source GID is RoCEv1, 740 * IP stack is not used. 741 */ 742 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 743 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 744 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 745 ah_attr->roce.dmac); 746 return ret; 747 } 748 749 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 750 ah_attr->roce.dmac, 751 sgid_attr, &hop_limit); 752 753 grh->hop_limit = hop_limit; 754 return ret; 755 } 756 757 /* 758 * This function initializes address handle attributes from the incoming packet. 759 * Incoming packet has dgid of the receiver node on which this code is 760 * getting executed and, sgid contains the GID of the sender. 761 * 762 * When resolving mac address of destination, the arrived dgid is used 763 * as sgid and, sgid is used as dgid because sgid contains destinations 764 * GID whom to respond to. 765 * 766 * On success the caller is responsible to call rdma_destroy_ah_attr on the 767 * attr. 768 */ 769 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 770 const struct ib_wc *wc, const struct ib_grh *grh, 771 struct rdma_ah_attr *ah_attr) 772 { 773 u32 flow_class; 774 int ret; 775 enum rdma_network_type net_type = RDMA_NETWORK_IB; 776 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 777 const struct ib_gid_attr *sgid_attr; 778 int hoplimit = 0xff; 779 union ib_gid dgid; 780 union ib_gid sgid; 781 782 might_sleep(); 783 784 memset(ah_attr, 0, sizeof *ah_attr); 785 ah_attr->type = rdma_ah_find_type(device, port_num); 786 if (rdma_cap_eth_ah(device, port_num)) { 787 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 788 net_type = wc->network_hdr_type; 789 else 790 net_type = ib_get_net_type_by_grh(device, port_num, grh); 791 gid_type = ib_network_to_gid_type(net_type); 792 } 793 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 794 &sgid, &dgid); 795 if (ret) 796 return ret; 797 798 rdma_ah_set_sl(ah_attr, wc->sl); 799 rdma_ah_set_port_num(ah_attr, port_num); 800 801 if (rdma_protocol_roce(device, port_num)) { 802 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 803 wc->vlan_id : 0xffff; 804 805 if (!(wc->wc_flags & IB_WC_GRH)) 806 return -EPROTOTYPE; 807 808 sgid_attr = get_sgid_attr_from_eth(device, port_num, 809 vlan_id, &dgid, 810 gid_type); 811 if (IS_ERR(sgid_attr)) 812 return PTR_ERR(sgid_attr); 813 814 flow_class = be32_to_cpu(grh->version_tclass_flow); 815 rdma_move_grh_sgid_attr(ah_attr, 816 &sgid, 817 flow_class & 0xFFFFF, 818 hoplimit, 819 (flow_class >> 20) & 0xFF, 820 sgid_attr); 821 822 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 823 if (ret) 824 rdma_destroy_ah_attr(ah_attr); 825 826 return ret; 827 } else { 828 rdma_ah_set_dlid(ah_attr, wc->slid); 829 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 830 831 if ((wc->wc_flags & IB_WC_GRH) == 0) 832 return 0; 833 834 if (dgid.global.interface_id != 835 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 836 sgid_attr = rdma_find_gid_by_port( 837 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 838 } else 839 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 840 841 if (IS_ERR(sgid_attr)) 842 return PTR_ERR(sgid_attr); 843 flow_class = be32_to_cpu(grh->version_tclass_flow); 844 rdma_move_grh_sgid_attr(ah_attr, 845 &sgid, 846 flow_class & 0xFFFFF, 847 hoplimit, 848 (flow_class >> 20) & 0xFF, 849 sgid_attr); 850 851 return 0; 852 } 853 } 854 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 855 856 /** 857 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 858 * of the reference 859 * 860 * @attr: Pointer to AH attribute structure 861 * @dgid: Destination GID 862 * @flow_label: Flow label 863 * @hop_limit: Hop limit 864 * @traffic_class: traffic class 865 * @sgid_attr: Pointer to SGID attribute 866 * 867 * This takes ownership of the sgid_attr reference. The caller must ensure 868 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 869 * calling this function. 870 */ 871 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 872 u32 flow_label, u8 hop_limit, u8 traffic_class, 873 const struct ib_gid_attr *sgid_attr) 874 { 875 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 876 traffic_class); 877 attr->grh.sgid_attr = sgid_attr; 878 } 879 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 880 881 /** 882 * rdma_destroy_ah_attr - Release reference to SGID attribute of 883 * ah attribute. 884 * @ah_attr: Pointer to ah attribute 885 * 886 * Release reference to the SGID attribute of the ah attribute if it is 887 * non NULL. It is safe to call this multiple times, and safe to call it on 888 * a zero initialized ah_attr. 889 */ 890 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 891 { 892 if (ah_attr->grh.sgid_attr) { 893 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 894 ah_attr->grh.sgid_attr = NULL; 895 } 896 } 897 EXPORT_SYMBOL(rdma_destroy_ah_attr); 898 899 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 900 const struct ib_grh *grh, u8 port_num) 901 { 902 struct rdma_ah_attr ah_attr; 903 struct ib_ah *ah; 904 int ret; 905 906 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 907 if (ret) 908 return ERR_PTR(ret); 909 910 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 911 912 rdma_destroy_ah_attr(&ah_attr); 913 return ah; 914 } 915 EXPORT_SYMBOL(ib_create_ah_from_wc); 916 917 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 918 { 919 const struct ib_gid_attr *old_sgid_attr; 920 int ret; 921 922 if (ah->type != ah_attr->type) 923 return -EINVAL; 924 925 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 926 if (ret) 927 return ret; 928 929 ret = ah->device->ops.modify_ah ? 930 ah->device->ops.modify_ah(ah, ah_attr) : 931 -EOPNOTSUPP; 932 933 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 934 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 935 return ret; 936 } 937 EXPORT_SYMBOL(rdma_modify_ah); 938 939 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 940 { 941 ah_attr->grh.sgid_attr = NULL; 942 943 return ah->device->ops.query_ah ? 944 ah->device->ops.query_ah(ah, ah_attr) : 945 -EOPNOTSUPP; 946 } 947 EXPORT_SYMBOL(rdma_query_ah); 948 949 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 950 { 951 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 952 struct ib_pd *pd; 953 954 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 955 956 pd = ah->pd; 957 958 ah->device->ops.destroy_ah(ah, flags); 959 atomic_dec(&pd->usecnt); 960 if (sgid_attr) 961 rdma_put_gid_attr(sgid_attr); 962 963 kfree(ah); 964 return 0; 965 } 966 EXPORT_SYMBOL(rdma_destroy_ah_user); 967 968 /* Shared receive queues */ 969 970 struct ib_srq *ib_create_srq(struct ib_pd *pd, 971 struct ib_srq_init_attr *srq_init_attr) 972 { 973 struct ib_srq *srq; 974 int ret; 975 976 if (!pd->device->ops.create_srq) 977 return ERR_PTR(-EOPNOTSUPP); 978 979 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 980 if (!srq) 981 return ERR_PTR(-ENOMEM); 982 983 srq->device = pd->device; 984 srq->pd = pd; 985 srq->event_handler = srq_init_attr->event_handler; 986 srq->srq_context = srq_init_attr->srq_context; 987 srq->srq_type = srq_init_attr->srq_type; 988 989 if (ib_srq_has_cq(srq->srq_type)) { 990 srq->ext.cq = srq_init_attr->ext.cq; 991 atomic_inc(&srq->ext.cq->usecnt); 992 } 993 if (srq->srq_type == IB_SRQT_XRC) { 994 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 995 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 996 } 997 atomic_inc(&pd->usecnt); 998 999 ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL); 1000 if (ret) { 1001 atomic_dec(&srq->pd->usecnt); 1002 if (srq->srq_type == IB_SRQT_XRC) 1003 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1004 if (ib_srq_has_cq(srq->srq_type)) 1005 atomic_dec(&srq->ext.cq->usecnt); 1006 kfree(srq); 1007 return ERR_PTR(ret); 1008 } 1009 1010 return srq; 1011 } 1012 EXPORT_SYMBOL(ib_create_srq); 1013 1014 int ib_modify_srq(struct ib_srq *srq, 1015 struct ib_srq_attr *srq_attr, 1016 enum ib_srq_attr_mask srq_attr_mask) 1017 { 1018 return srq->device->ops.modify_srq ? 1019 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1020 NULL) : -EOPNOTSUPP; 1021 } 1022 EXPORT_SYMBOL(ib_modify_srq); 1023 1024 int ib_query_srq(struct ib_srq *srq, 1025 struct ib_srq_attr *srq_attr) 1026 { 1027 return srq->device->ops.query_srq ? 1028 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1029 } 1030 EXPORT_SYMBOL(ib_query_srq); 1031 1032 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1033 { 1034 if (atomic_read(&srq->usecnt)) 1035 return -EBUSY; 1036 1037 srq->device->ops.destroy_srq(srq, udata); 1038 1039 atomic_dec(&srq->pd->usecnt); 1040 if (srq->srq_type == IB_SRQT_XRC) 1041 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1042 if (ib_srq_has_cq(srq->srq_type)) 1043 atomic_dec(&srq->ext.cq->usecnt); 1044 kfree(srq); 1045 1046 return 0; 1047 } 1048 EXPORT_SYMBOL(ib_destroy_srq_user); 1049 1050 /* Queue pairs */ 1051 1052 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1053 { 1054 struct ib_qp *qp = context; 1055 unsigned long flags; 1056 1057 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); 1058 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1059 if (event->element.qp->event_handler) 1060 event->element.qp->event_handler(event, event->element.qp->qp_context); 1061 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); 1062 } 1063 1064 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 1065 { 1066 mutex_lock(&xrcd->tgt_qp_mutex); 1067 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 1068 mutex_unlock(&xrcd->tgt_qp_mutex); 1069 } 1070 1071 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1072 void (*event_handler)(struct ib_event *, void *), 1073 void *qp_context) 1074 { 1075 struct ib_qp *qp; 1076 unsigned long flags; 1077 int err; 1078 1079 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1080 if (!qp) 1081 return ERR_PTR(-ENOMEM); 1082 1083 qp->real_qp = real_qp; 1084 err = ib_open_shared_qp_security(qp, real_qp->device); 1085 if (err) { 1086 kfree(qp); 1087 return ERR_PTR(err); 1088 } 1089 1090 qp->real_qp = real_qp; 1091 atomic_inc(&real_qp->usecnt); 1092 qp->device = real_qp->device; 1093 qp->event_handler = event_handler; 1094 qp->qp_context = qp_context; 1095 qp->qp_num = real_qp->qp_num; 1096 qp->qp_type = real_qp->qp_type; 1097 1098 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1099 list_add(&qp->open_list, &real_qp->open_list); 1100 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1101 1102 return qp; 1103 } 1104 1105 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1106 struct ib_qp_open_attr *qp_open_attr) 1107 { 1108 struct ib_qp *qp, *real_qp; 1109 1110 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1111 return ERR_PTR(-EINVAL); 1112 1113 qp = ERR_PTR(-EINVAL); 1114 mutex_lock(&xrcd->tgt_qp_mutex); 1115 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 1116 if (real_qp->qp_num == qp_open_attr->qp_num) { 1117 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1118 qp_open_attr->qp_context); 1119 break; 1120 } 1121 } 1122 mutex_unlock(&xrcd->tgt_qp_mutex); 1123 return qp; 1124 } 1125 EXPORT_SYMBOL(ib_open_qp); 1126 1127 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1128 struct ib_qp_init_attr *qp_init_attr) 1129 { 1130 struct ib_qp *real_qp = qp; 1131 1132 qp->event_handler = __ib_shared_qp_event_handler; 1133 qp->qp_context = qp; 1134 qp->pd = NULL; 1135 qp->send_cq = qp->recv_cq = NULL; 1136 qp->srq = NULL; 1137 qp->xrcd = qp_init_attr->xrcd; 1138 atomic_inc(&qp_init_attr->xrcd->usecnt); 1139 INIT_LIST_HEAD(&qp->open_list); 1140 1141 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1142 qp_init_attr->qp_context); 1143 if (IS_ERR(qp)) 1144 return qp; 1145 1146 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 1147 return qp; 1148 } 1149 1150 /** 1151 * ib_create_qp - Creates a kernel QP associated with the specified protection 1152 * domain. 1153 * @pd: The protection domain associated with the QP. 1154 * @qp_init_attr: A list of initial attributes required to create the 1155 * QP. If QP creation succeeds, then the attributes are updated to 1156 * the actual capabilities of the created QP. 1157 * 1158 * NOTE: for user qp use ib_create_qp_user with valid udata! 1159 */ 1160 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1161 struct ib_qp_init_attr *qp_init_attr) 1162 { 1163 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 1164 struct ib_qp *qp; 1165 int ret; 1166 1167 if (qp_init_attr->rwq_ind_tbl && 1168 (qp_init_attr->recv_cq || 1169 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 1170 qp_init_attr->cap.max_recv_sge)) 1171 return ERR_PTR(-EINVAL); 1172 1173 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) && 1174 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER)) 1175 return ERR_PTR(-EINVAL); 1176 1177 /* 1178 * If the callers is using the RDMA API calculate the resources 1179 * needed for the RDMA READ/WRITE operations. 1180 * 1181 * Note that these callers need to pass in a port number. 1182 */ 1183 if (qp_init_attr->cap.max_rdma_ctxs) 1184 rdma_rw_init_qp(device, qp_init_attr); 1185 1186 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 1187 if (IS_ERR(qp)) 1188 return qp; 1189 1190 ret = ib_create_qp_security(qp, device); 1191 if (ret) 1192 goto err; 1193 1194 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { 1195 struct ib_qp *xrc_qp = 1196 create_xrc_qp_user(qp, qp_init_attr); 1197 1198 if (IS_ERR(xrc_qp)) { 1199 ret = PTR_ERR(xrc_qp); 1200 goto err; 1201 } 1202 return xrc_qp; 1203 } 1204 1205 qp->event_handler = qp_init_attr->event_handler; 1206 qp->qp_context = qp_init_attr->qp_context; 1207 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 1208 qp->recv_cq = NULL; 1209 qp->srq = NULL; 1210 } else { 1211 qp->recv_cq = qp_init_attr->recv_cq; 1212 if (qp_init_attr->recv_cq) 1213 atomic_inc(&qp_init_attr->recv_cq->usecnt); 1214 qp->srq = qp_init_attr->srq; 1215 if (qp->srq) 1216 atomic_inc(&qp_init_attr->srq->usecnt); 1217 } 1218 1219 qp->send_cq = qp_init_attr->send_cq; 1220 qp->xrcd = NULL; 1221 1222 atomic_inc(&pd->usecnt); 1223 if (qp_init_attr->send_cq) 1224 atomic_inc(&qp_init_attr->send_cq->usecnt); 1225 if (qp_init_attr->rwq_ind_tbl) 1226 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1227 1228 if (qp_init_attr->cap.max_rdma_ctxs) { 1229 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1230 if (ret) 1231 goto err; 1232 } 1233 1234 /* 1235 * Note: all hw drivers guarantee that max_send_sge is lower than 1236 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1237 * max_send_sge <= max_sge_rd. 1238 */ 1239 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1240 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1241 device->attrs.max_sge_rd); 1242 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1243 qp->integrity_en = true; 1244 1245 return qp; 1246 1247 err: 1248 ib_destroy_qp(qp); 1249 return ERR_PTR(ret); 1250 1251 } 1252 EXPORT_SYMBOL(ib_create_qp); 1253 1254 static const struct { 1255 int valid; 1256 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1257 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1258 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1259 [IB_QPS_RESET] = { 1260 [IB_QPS_RESET] = { .valid = 1 }, 1261 [IB_QPS_INIT] = { 1262 .valid = 1, 1263 .req_param = { 1264 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1265 IB_QP_PORT | 1266 IB_QP_QKEY), 1267 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1268 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1269 IB_QP_PORT | 1270 IB_QP_ACCESS_FLAGS), 1271 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1272 IB_QP_PORT | 1273 IB_QP_ACCESS_FLAGS), 1274 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1275 IB_QP_PORT | 1276 IB_QP_ACCESS_FLAGS), 1277 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1278 IB_QP_PORT | 1279 IB_QP_ACCESS_FLAGS), 1280 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1281 IB_QP_QKEY), 1282 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1283 IB_QP_QKEY), 1284 } 1285 }, 1286 }, 1287 [IB_QPS_INIT] = { 1288 [IB_QPS_RESET] = { .valid = 1 }, 1289 [IB_QPS_ERR] = { .valid = 1 }, 1290 [IB_QPS_INIT] = { 1291 .valid = 1, 1292 .opt_param = { 1293 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1294 IB_QP_PORT | 1295 IB_QP_QKEY), 1296 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1297 IB_QP_PORT | 1298 IB_QP_ACCESS_FLAGS), 1299 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1300 IB_QP_PORT | 1301 IB_QP_ACCESS_FLAGS), 1302 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1303 IB_QP_PORT | 1304 IB_QP_ACCESS_FLAGS), 1305 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1306 IB_QP_PORT | 1307 IB_QP_ACCESS_FLAGS), 1308 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1309 IB_QP_QKEY), 1310 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1311 IB_QP_QKEY), 1312 } 1313 }, 1314 [IB_QPS_RTR] = { 1315 .valid = 1, 1316 .req_param = { 1317 [IB_QPT_UC] = (IB_QP_AV | 1318 IB_QP_PATH_MTU | 1319 IB_QP_DEST_QPN | 1320 IB_QP_RQ_PSN), 1321 [IB_QPT_RC] = (IB_QP_AV | 1322 IB_QP_PATH_MTU | 1323 IB_QP_DEST_QPN | 1324 IB_QP_RQ_PSN | 1325 IB_QP_MAX_DEST_RD_ATOMIC | 1326 IB_QP_MIN_RNR_TIMER), 1327 [IB_QPT_XRC_INI] = (IB_QP_AV | 1328 IB_QP_PATH_MTU | 1329 IB_QP_DEST_QPN | 1330 IB_QP_RQ_PSN), 1331 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1332 IB_QP_PATH_MTU | 1333 IB_QP_DEST_QPN | 1334 IB_QP_RQ_PSN | 1335 IB_QP_MAX_DEST_RD_ATOMIC | 1336 IB_QP_MIN_RNR_TIMER), 1337 }, 1338 .opt_param = { 1339 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1340 IB_QP_QKEY), 1341 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1342 IB_QP_ACCESS_FLAGS | 1343 IB_QP_PKEY_INDEX), 1344 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1345 IB_QP_ACCESS_FLAGS | 1346 IB_QP_PKEY_INDEX), 1347 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1348 IB_QP_ACCESS_FLAGS | 1349 IB_QP_PKEY_INDEX), 1350 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1351 IB_QP_ACCESS_FLAGS | 1352 IB_QP_PKEY_INDEX), 1353 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1354 IB_QP_QKEY), 1355 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1356 IB_QP_QKEY), 1357 }, 1358 }, 1359 }, 1360 [IB_QPS_RTR] = { 1361 [IB_QPS_RESET] = { .valid = 1 }, 1362 [IB_QPS_ERR] = { .valid = 1 }, 1363 [IB_QPS_RTS] = { 1364 .valid = 1, 1365 .req_param = { 1366 [IB_QPT_UD] = IB_QP_SQ_PSN, 1367 [IB_QPT_UC] = IB_QP_SQ_PSN, 1368 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1369 IB_QP_RETRY_CNT | 1370 IB_QP_RNR_RETRY | 1371 IB_QP_SQ_PSN | 1372 IB_QP_MAX_QP_RD_ATOMIC), 1373 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1374 IB_QP_RETRY_CNT | 1375 IB_QP_RNR_RETRY | 1376 IB_QP_SQ_PSN | 1377 IB_QP_MAX_QP_RD_ATOMIC), 1378 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1379 IB_QP_SQ_PSN), 1380 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1381 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1382 }, 1383 .opt_param = { 1384 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1385 IB_QP_QKEY), 1386 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1387 IB_QP_ALT_PATH | 1388 IB_QP_ACCESS_FLAGS | 1389 IB_QP_PATH_MIG_STATE), 1390 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1391 IB_QP_ALT_PATH | 1392 IB_QP_ACCESS_FLAGS | 1393 IB_QP_MIN_RNR_TIMER | 1394 IB_QP_PATH_MIG_STATE), 1395 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1396 IB_QP_ALT_PATH | 1397 IB_QP_ACCESS_FLAGS | 1398 IB_QP_PATH_MIG_STATE), 1399 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1400 IB_QP_ALT_PATH | 1401 IB_QP_ACCESS_FLAGS | 1402 IB_QP_MIN_RNR_TIMER | 1403 IB_QP_PATH_MIG_STATE), 1404 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1405 IB_QP_QKEY), 1406 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1407 IB_QP_QKEY), 1408 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1409 } 1410 } 1411 }, 1412 [IB_QPS_RTS] = { 1413 [IB_QPS_RESET] = { .valid = 1 }, 1414 [IB_QPS_ERR] = { .valid = 1 }, 1415 [IB_QPS_RTS] = { 1416 .valid = 1, 1417 .opt_param = { 1418 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1419 IB_QP_QKEY), 1420 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1421 IB_QP_ACCESS_FLAGS | 1422 IB_QP_ALT_PATH | 1423 IB_QP_PATH_MIG_STATE), 1424 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1425 IB_QP_ACCESS_FLAGS | 1426 IB_QP_ALT_PATH | 1427 IB_QP_PATH_MIG_STATE | 1428 IB_QP_MIN_RNR_TIMER), 1429 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1430 IB_QP_ACCESS_FLAGS | 1431 IB_QP_ALT_PATH | 1432 IB_QP_PATH_MIG_STATE), 1433 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1434 IB_QP_ACCESS_FLAGS | 1435 IB_QP_ALT_PATH | 1436 IB_QP_PATH_MIG_STATE | 1437 IB_QP_MIN_RNR_TIMER), 1438 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1439 IB_QP_QKEY), 1440 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1441 IB_QP_QKEY), 1442 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1443 } 1444 }, 1445 [IB_QPS_SQD] = { 1446 .valid = 1, 1447 .opt_param = { 1448 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1449 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1450 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1451 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1452 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1453 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1454 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1455 } 1456 }, 1457 }, 1458 [IB_QPS_SQD] = { 1459 [IB_QPS_RESET] = { .valid = 1 }, 1460 [IB_QPS_ERR] = { .valid = 1 }, 1461 [IB_QPS_RTS] = { 1462 .valid = 1, 1463 .opt_param = { 1464 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1465 IB_QP_QKEY), 1466 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1467 IB_QP_ALT_PATH | 1468 IB_QP_ACCESS_FLAGS | 1469 IB_QP_PATH_MIG_STATE), 1470 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1471 IB_QP_ALT_PATH | 1472 IB_QP_ACCESS_FLAGS | 1473 IB_QP_MIN_RNR_TIMER | 1474 IB_QP_PATH_MIG_STATE), 1475 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1476 IB_QP_ALT_PATH | 1477 IB_QP_ACCESS_FLAGS | 1478 IB_QP_PATH_MIG_STATE), 1479 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1480 IB_QP_ALT_PATH | 1481 IB_QP_ACCESS_FLAGS | 1482 IB_QP_MIN_RNR_TIMER | 1483 IB_QP_PATH_MIG_STATE), 1484 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1485 IB_QP_QKEY), 1486 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1487 IB_QP_QKEY), 1488 } 1489 }, 1490 [IB_QPS_SQD] = { 1491 .valid = 1, 1492 .opt_param = { 1493 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1494 IB_QP_QKEY), 1495 [IB_QPT_UC] = (IB_QP_AV | 1496 IB_QP_ALT_PATH | 1497 IB_QP_ACCESS_FLAGS | 1498 IB_QP_PKEY_INDEX | 1499 IB_QP_PATH_MIG_STATE), 1500 [IB_QPT_RC] = (IB_QP_PORT | 1501 IB_QP_AV | 1502 IB_QP_TIMEOUT | 1503 IB_QP_RETRY_CNT | 1504 IB_QP_RNR_RETRY | 1505 IB_QP_MAX_QP_RD_ATOMIC | 1506 IB_QP_MAX_DEST_RD_ATOMIC | 1507 IB_QP_ALT_PATH | 1508 IB_QP_ACCESS_FLAGS | 1509 IB_QP_PKEY_INDEX | 1510 IB_QP_MIN_RNR_TIMER | 1511 IB_QP_PATH_MIG_STATE), 1512 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1513 IB_QP_AV | 1514 IB_QP_TIMEOUT | 1515 IB_QP_RETRY_CNT | 1516 IB_QP_RNR_RETRY | 1517 IB_QP_MAX_QP_RD_ATOMIC | 1518 IB_QP_ALT_PATH | 1519 IB_QP_ACCESS_FLAGS | 1520 IB_QP_PKEY_INDEX | 1521 IB_QP_PATH_MIG_STATE), 1522 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1523 IB_QP_AV | 1524 IB_QP_TIMEOUT | 1525 IB_QP_MAX_DEST_RD_ATOMIC | 1526 IB_QP_ALT_PATH | 1527 IB_QP_ACCESS_FLAGS | 1528 IB_QP_PKEY_INDEX | 1529 IB_QP_MIN_RNR_TIMER | 1530 IB_QP_PATH_MIG_STATE), 1531 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1532 IB_QP_QKEY), 1533 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1534 IB_QP_QKEY), 1535 } 1536 } 1537 }, 1538 [IB_QPS_SQE] = { 1539 [IB_QPS_RESET] = { .valid = 1 }, 1540 [IB_QPS_ERR] = { .valid = 1 }, 1541 [IB_QPS_RTS] = { 1542 .valid = 1, 1543 .opt_param = { 1544 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1545 IB_QP_QKEY), 1546 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1547 IB_QP_ACCESS_FLAGS), 1548 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1549 IB_QP_QKEY), 1550 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1551 IB_QP_QKEY), 1552 } 1553 } 1554 }, 1555 [IB_QPS_ERR] = { 1556 [IB_QPS_RESET] = { .valid = 1 }, 1557 [IB_QPS_ERR] = { .valid = 1 } 1558 } 1559 }; 1560 1561 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1562 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1563 { 1564 enum ib_qp_attr_mask req_param, opt_param; 1565 1566 if (mask & IB_QP_CUR_STATE && 1567 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1568 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1569 return false; 1570 1571 if (!qp_state_table[cur_state][next_state].valid) 1572 return false; 1573 1574 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1575 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1576 1577 if ((mask & req_param) != req_param) 1578 return false; 1579 1580 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1581 return false; 1582 1583 return true; 1584 } 1585 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1586 1587 /** 1588 * ib_resolve_eth_dmac - Resolve destination mac address 1589 * @device: Device to consider 1590 * @ah_attr: address handle attribute which describes the 1591 * source and destination parameters 1592 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1593 * returns 0 on success or appropriate error code. It initializes the 1594 * necessary ah_attr fields when call is successful. 1595 */ 1596 static int ib_resolve_eth_dmac(struct ib_device *device, 1597 struct rdma_ah_attr *ah_attr) 1598 { 1599 int ret = 0; 1600 1601 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1602 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1603 __be32 addr = 0; 1604 1605 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1606 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1607 } else { 1608 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1609 (char *)ah_attr->roce.dmac); 1610 } 1611 } else { 1612 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1613 } 1614 return ret; 1615 } 1616 1617 static bool is_qp_type_connected(const struct ib_qp *qp) 1618 { 1619 return (qp->qp_type == IB_QPT_UC || 1620 qp->qp_type == IB_QPT_RC || 1621 qp->qp_type == IB_QPT_XRC_INI || 1622 qp->qp_type == IB_QPT_XRC_TGT); 1623 } 1624 1625 /** 1626 * IB core internal function to perform QP attributes modification. 1627 */ 1628 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1629 int attr_mask, struct ib_udata *udata) 1630 { 1631 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1632 const struct ib_gid_attr *old_sgid_attr_av; 1633 const struct ib_gid_attr *old_sgid_attr_alt_av; 1634 int ret; 1635 1636 if (attr_mask & IB_QP_AV) { 1637 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1638 &old_sgid_attr_av); 1639 if (ret) 1640 return ret; 1641 } 1642 if (attr_mask & IB_QP_ALT_PATH) { 1643 /* 1644 * FIXME: This does not track the migration state, so if the 1645 * user loads a new alternate path after the HW has migrated 1646 * from primary->alternate we will keep the wrong 1647 * references. This is OK for IB because the reference 1648 * counting does not serve any functional purpose. 1649 */ 1650 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1651 &old_sgid_attr_alt_av); 1652 if (ret) 1653 goto out_av; 1654 1655 /* 1656 * Today the core code can only handle alternate paths and APM 1657 * for IB. Ban them in roce mode. 1658 */ 1659 if (!(rdma_protocol_ib(qp->device, 1660 attr->alt_ah_attr.port_num) && 1661 rdma_protocol_ib(qp->device, port))) { 1662 ret = EINVAL; 1663 goto out; 1664 } 1665 } 1666 1667 /* 1668 * If the user provided the qp_attr then we have to resolve it. Kernel 1669 * users have to provide already resolved rdma_ah_attr's 1670 */ 1671 if (udata && (attr_mask & IB_QP_AV) && 1672 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1673 is_qp_type_connected(qp)) { 1674 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1675 if (ret) 1676 goto out; 1677 } 1678 1679 if (rdma_ib_or_roce(qp->device, port)) { 1680 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1681 dev_warn(&qp->device->dev, 1682 "%s rq_psn overflow, masking to 24 bits\n", 1683 __func__); 1684 attr->rq_psn &= 0xffffff; 1685 } 1686 1687 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1688 dev_warn(&qp->device->dev, 1689 " %s sq_psn overflow, masking to 24 bits\n", 1690 __func__); 1691 attr->sq_psn &= 0xffffff; 1692 } 1693 } 1694 1695 /* 1696 * Bind this qp to a counter automatically based on the rdma counter 1697 * rules. This only set in RST2INIT with port specified 1698 */ 1699 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1700 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1701 rdma_counter_bind_qp_auto(qp, attr->port_num); 1702 1703 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1704 if (ret) 1705 goto out; 1706 1707 if (attr_mask & IB_QP_PORT) 1708 qp->port = attr->port_num; 1709 if (attr_mask & IB_QP_AV) 1710 qp->av_sgid_attr = 1711 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1712 if (attr_mask & IB_QP_ALT_PATH) 1713 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1714 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1715 1716 out: 1717 if (attr_mask & IB_QP_ALT_PATH) 1718 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1719 out_av: 1720 if (attr_mask & IB_QP_AV) 1721 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1722 return ret; 1723 } 1724 1725 /** 1726 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1727 * @ib_qp: The QP to modify. 1728 * @attr: On input, specifies the QP attributes to modify. On output, 1729 * the current values of selected QP attributes are returned. 1730 * @attr_mask: A bit-mask used to specify which attributes of the QP 1731 * are being modified. 1732 * @udata: pointer to user's input output buffer information 1733 * are being modified. 1734 * It returns 0 on success and returns appropriate error code on error. 1735 */ 1736 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1737 int attr_mask, struct ib_udata *udata) 1738 { 1739 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1740 } 1741 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1742 1743 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1744 { 1745 int rc; 1746 u32 netdev_speed; 1747 struct net_device *netdev; 1748 struct ethtool_link_ksettings lksettings; 1749 1750 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1751 return -EINVAL; 1752 1753 netdev = ib_device_get_netdev(dev, port_num); 1754 if (!netdev) 1755 return -ENODEV; 1756 1757 rtnl_lock(); 1758 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1759 rtnl_unlock(); 1760 1761 dev_put(netdev); 1762 1763 if (!rc) { 1764 netdev_speed = lksettings.base.speed; 1765 } else { 1766 netdev_speed = SPEED_1000; 1767 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1768 netdev_speed); 1769 } 1770 1771 if (netdev_speed <= SPEED_1000) { 1772 *width = IB_WIDTH_1X; 1773 *speed = IB_SPEED_SDR; 1774 } else if (netdev_speed <= SPEED_10000) { 1775 *width = IB_WIDTH_1X; 1776 *speed = IB_SPEED_FDR10; 1777 } else if (netdev_speed <= SPEED_20000) { 1778 *width = IB_WIDTH_4X; 1779 *speed = IB_SPEED_DDR; 1780 } else if (netdev_speed <= SPEED_25000) { 1781 *width = IB_WIDTH_1X; 1782 *speed = IB_SPEED_EDR; 1783 } else if (netdev_speed <= SPEED_40000) { 1784 *width = IB_WIDTH_4X; 1785 *speed = IB_SPEED_FDR10; 1786 } else { 1787 *width = IB_WIDTH_4X; 1788 *speed = IB_SPEED_EDR; 1789 } 1790 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(ib_get_eth_speed); 1794 1795 int ib_modify_qp(struct ib_qp *qp, 1796 struct ib_qp_attr *qp_attr, 1797 int qp_attr_mask) 1798 { 1799 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1800 } 1801 EXPORT_SYMBOL(ib_modify_qp); 1802 1803 int ib_query_qp(struct ib_qp *qp, 1804 struct ib_qp_attr *qp_attr, 1805 int qp_attr_mask, 1806 struct ib_qp_init_attr *qp_init_attr) 1807 { 1808 qp_attr->ah_attr.grh.sgid_attr = NULL; 1809 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1810 1811 return qp->device->ops.query_qp ? 1812 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1813 qp_init_attr) : -EOPNOTSUPP; 1814 } 1815 EXPORT_SYMBOL(ib_query_qp); 1816 1817 int ib_close_qp(struct ib_qp *qp) 1818 { 1819 struct ib_qp *real_qp; 1820 unsigned long flags; 1821 1822 real_qp = qp->real_qp; 1823 if (real_qp == qp) 1824 return -EINVAL; 1825 1826 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1827 list_del(&qp->open_list); 1828 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1829 1830 atomic_dec(&real_qp->usecnt); 1831 if (qp->qp_sec) 1832 ib_close_shared_qp_security(qp->qp_sec); 1833 kfree(qp); 1834 1835 return 0; 1836 } 1837 EXPORT_SYMBOL(ib_close_qp); 1838 1839 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1840 { 1841 struct ib_xrcd *xrcd; 1842 struct ib_qp *real_qp; 1843 int ret; 1844 1845 real_qp = qp->real_qp; 1846 xrcd = real_qp->xrcd; 1847 1848 mutex_lock(&xrcd->tgt_qp_mutex); 1849 ib_close_qp(qp); 1850 if (atomic_read(&real_qp->usecnt) == 0) 1851 list_del(&real_qp->xrcd_list); 1852 else 1853 real_qp = NULL; 1854 mutex_unlock(&xrcd->tgt_qp_mutex); 1855 1856 if (real_qp) { 1857 ret = ib_destroy_qp(real_qp); 1858 if (!ret) 1859 atomic_dec(&xrcd->usecnt); 1860 else 1861 __ib_insert_xrcd_qp(xrcd, real_qp); 1862 } 1863 1864 return 0; 1865 } 1866 1867 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 1868 { 1869 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 1870 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 1871 struct ib_pd *pd; 1872 struct ib_cq *scq, *rcq; 1873 struct ib_srq *srq; 1874 struct ib_rwq_ind_table *ind_tbl; 1875 struct ib_qp_security *sec; 1876 int ret; 1877 1878 WARN_ON_ONCE(qp->mrs_used > 0); 1879 1880 if (atomic_read(&qp->usecnt)) 1881 return -EBUSY; 1882 1883 if (qp->real_qp != qp) 1884 return __ib_destroy_shared_qp(qp); 1885 1886 pd = qp->pd; 1887 scq = qp->send_cq; 1888 rcq = qp->recv_cq; 1889 srq = qp->srq; 1890 ind_tbl = qp->rwq_ind_tbl; 1891 sec = qp->qp_sec; 1892 if (sec) 1893 ib_destroy_qp_security_begin(sec); 1894 1895 if (!qp->uobject) 1896 rdma_rw_cleanup_mrs(qp); 1897 1898 rdma_counter_unbind_qp(qp, true); 1899 rdma_restrack_del(&qp->res); 1900 ret = qp->device->ops.destroy_qp(qp, udata); 1901 if (!ret) { 1902 if (alt_path_sgid_attr) 1903 rdma_put_gid_attr(alt_path_sgid_attr); 1904 if (av_sgid_attr) 1905 rdma_put_gid_attr(av_sgid_attr); 1906 if (pd) 1907 atomic_dec(&pd->usecnt); 1908 if (scq) 1909 atomic_dec(&scq->usecnt); 1910 if (rcq) 1911 atomic_dec(&rcq->usecnt); 1912 if (srq) 1913 atomic_dec(&srq->usecnt); 1914 if (ind_tbl) 1915 atomic_dec(&ind_tbl->usecnt); 1916 if (sec) 1917 ib_destroy_qp_security_end(sec); 1918 } else { 1919 if (sec) 1920 ib_destroy_qp_security_abort(sec); 1921 } 1922 1923 return ret; 1924 } 1925 EXPORT_SYMBOL(ib_destroy_qp_user); 1926 1927 /* Completion queues */ 1928 1929 struct ib_cq *__ib_create_cq(struct ib_device *device, 1930 ib_comp_handler comp_handler, 1931 void (*event_handler)(struct ib_event *, void *), 1932 void *cq_context, 1933 const struct ib_cq_init_attr *cq_attr, 1934 const char *caller) 1935 { 1936 struct ib_cq *cq; 1937 int ret; 1938 1939 cq = rdma_zalloc_drv_obj(device, ib_cq); 1940 if (!cq) 1941 return ERR_PTR(-ENOMEM); 1942 1943 cq->device = device; 1944 cq->uobject = NULL; 1945 cq->comp_handler = comp_handler; 1946 cq->event_handler = event_handler; 1947 cq->cq_context = cq_context; 1948 atomic_set(&cq->usecnt, 0); 1949 cq->res.type = RDMA_RESTRACK_CQ; 1950 rdma_restrack_set_task(&cq->res, caller); 1951 1952 ret = device->ops.create_cq(cq, cq_attr, NULL); 1953 if (ret) { 1954 kfree(cq); 1955 return ERR_PTR(ret); 1956 } 1957 1958 rdma_restrack_kadd(&cq->res); 1959 return cq; 1960 } 1961 EXPORT_SYMBOL(__ib_create_cq); 1962 1963 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1964 { 1965 return cq->device->ops.modify_cq ? 1966 cq->device->ops.modify_cq(cq, cq_count, 1967 cq_period) : -EOPNOTSUPP; 1968 } 1969 EXPORT_SYMBOL(rdma_set_cq_moderation); 1970 1971 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 1972 { 1973 if (atomic_read(&cq->usecnt)) 1974 return -EBUSY; 1975 1976 rdma_restrack_del(&cq->res); 1977 cq->device->ops.destroy_cq(cq, udata); 1978 kfree(cq); 1979 return 0; 1980 } 1981 EXPORT_SYMBOL(ib_destroy_cq_user); 1982 1983 int ib_resize_cq(struct ib_cq *cq, int cqe) 1984 { 1985 return cq->device->ops.resize_cq ? 1986 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 1987 } 1988 EXPORT_SYMBOL(ib_resize_cq); 1989 1990 /* Memory regions */ 1991 1992 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1993 u64 virt_addr, int access_flags) 1994 { 1995 struct ib_mr *mr; 1996 1997 if (access_flags & IB_ACCESS_ON_DEMAND) { 1998 if (!(pd->device->attrs.device_cap_flags & 1999 IB_DEVICE_ON_DEMAND_PAGING)) { 2000 pr_debug("ODP support not available\n"); 2001 return ERR_PTR(-EINVAL); 2002 } 2003 } 2004 2005 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, 2006 access_flags, NULL); 2007 2008 if (IS_ERR(mr)) 2009 return mr; 2010 2011 mr->device = pd->device; 2012 mr->pd = pd; 2013 mr->dm = NULL; 2014 atomic_inc(&pd->usecnt); 2015 mr->res.type = RDMA_RESTRACK_MR; 2016 rdma_restrack_kadd(&mr->res); 2017 2018 return mr; 2019 } 2020 EXPORT_SYMBOL(ib_reg_user_mr); 2021 2022 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 2023 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2024 { 2025 if (!pd->device->ops.advise_mr) 2026 return -EOPNOTSUPP; 2027 2028 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, 2029 NULL); 2030 } 2031 EXPORT_SYMBOL(ib_advise_mr); 2032 2033 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 2034 { 2035 struct ib_pd *pd = mr->pd; 2036 struct ib_dm *dm = mr->dm; 2037 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 2038 int ret; 2039 2040 trace_mr_dereg(mr); 2041 rdma_restrack_del(&mr->res); 2042 ret = mr->device->ops.dereg_mr(mr, udata); 2043 if (!ret) { 2044 atomic_dec(&pd->usecnt); 2045 if (dm) 2046 atomic_dec(&dm->usecnt); 2047 kfree(sig_attrs); 2048 } 2049 2050 return ret; 2051 } 2052 EXPORT_SYMBOL(ib_dereg_mr_user); 2053 2054 /** 2055 * ib_alloc_mr_user() - Allocates a memory region 2056 * @pd: protection domain associated with the region 2057 * @mr_type: memory region type 2058 * @max_num_sg: maximum sg entries available for registration. 2059 * @udata: user data or null for kernel objects 2060 * 2061 * Notes: 2062 * Memory registeration page/sg lists must not exceed max_num_sg. 2063 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2064 * max_num_sg * used_page_size. 2065 * 2066 */ 2067 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 2068 u32 max_num_sg, struct ib_udata *udata) 2069 { 2070 struct ib_mr *mr; 2071 2072 if (!pd->device->ops.alloc_mr) { 2073 mr = ERR_PTR(-EOPNOTSUPP); 2074 goto out; 2075 } 2076 2077 if (mr_type == IB_MR_TYPE_INTEGRITY) { 2078 WARN_ON_ONCE(1); 2079 mr = ERR_PTR(-EINVAL); 2080 goto out; 2081 } 2082 2083 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata); 2084 if (!IS_ERR(mr)) { 2085 mr->device = pd->device; 2086 mr->pd = pd; 2087 mr->dm = NULL; 2088 mr->uobject = NULL; 2089 atomic_inc(&pd->usecnt); 2090 mr->need_inval = false; 2091 mr->res.type = RDMA_RESTRACK_MR; 2092 rdma_restrack_kadd(&mr->res); 2093 mr->type = mr_type; 2094 mr->sig_attrs = NULL; 2095 } 2096 2097 out: 2098 trace_mr_alloc(pd, mr_type, max_num_sg, mr); 2099 return mr; 2100 } 2101 EXPORT_SYMBOL(ib_alloc_mr_user); 2102 2103 /** 2104 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2105 * @pd: protection domain associated with the region 2106 * @max_num_data_sg: maximum data sg entries available for registration 2107 * @max_num_meta_sg: maximum metadata sg entries available for 2108 * registration 2109 * 2110 * Notes: 2111 * Memory registration page/sg lists must not exceed max_num_sg, 2112 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2113 * 2114 */ 2115 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2116 u32 max_num_data_sg, 2117 u32 max_num_meta_sg) 2118 { 2119 struct ib_mr *mr; 2120 struct ib_sig_attrs *sig_attrs; 2121 2122 if (!pd->device->ops.alloc_mr_integrity || 2123 !pd->device->ops.map_mr_sg_pi) { 2124 mr = ERR_PTR(-EOPNOTSUPP); 2125 goto out; 2126 } 2127 2128 if (!max_num_meta_sg) { 2129 mr = ERR_PTR(-EINVAL); 2130 goto out; 2131 } 2132 2133 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2134 if (!sig_attrs) { 2135 mr = ERR_PTR(-ENOMEM); 2136 goto out; 2137 } 2138 2139 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2140 max_num_meta_sg); 2141 if (IS_ERR(mr)) { 2142 kfree(sig_attrs); 2143 goto out; 2144 } 2145 2146 mr->device = pd->device; 2147 mr->pd = pd; 2148 mr->dm = NULL; 2149 mr->uobject = NULL; 2150 atomic_inc(&pd->usecnt); 2151 mr->need_inval = false; 2152 mr->res.type = RDMA_RESTRACK_MR; 2153 rdma_restrack_kadd(&mr->res); 2154 mr->type = IB_MR_TYPE_INTEGRITY; 2155 mr->sig_attrs = sig_attrs; 2156 2157 out: 2158 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); 2159 return mr; 2160 } 2161 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2162 2163 /* "Fast" memory regions */ 2164 2165 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2166 int mr_access_flags, 2167 struct ib_fmr_attr *fmr_attr) 2168 { 2169 struct ib_fmr *fmr; 2170 2171 if (!pd->device->ops.alloc_fmr) 2172 return ERR_PTR(-EOPNOTSUPP); 2173 2174 fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr); 2175 if (!IS_ERR(fmr)) { 2176 fmr->device = pd->device; 2177 fmr->pd = pd; 2178 atomic_inc(&pd->usecnt); 2179 } 2180 2181 return fmr; 2182 } 2183 EXPORT_SYMBOL(ib_alloc_fmr); 2184 2185 int ib_unmap_fmr(struct list_head *fmr_list) 2186 { 2187 struct ib_fmr *fmr; 2188 2189 if (list_empty(fmr_list)) 2190 return 0; 2191 2192 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 2193 return fmr->device->ops.unmap_fmr(fmr_list); 2194 } 2195 EXPORT_SYMBOL(ib_unmap_fmr); 2196 2197 int ib_dealloc_fmr(struct ib_fmr *fmr) 2198 { 2199 struct ib_pd *pd; 2200 int ret; 2201 2202 pd = fmr->pd; 2203 ret = fmr->device->ops.dealloc_fmr(fmr); 2204 if (!ret) 2205 atomic_dec(&pd->usecnt); 2206 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(ib_dealloc_fmr); 2210 2211 /* Multicast groups */ 2212 2213 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2214 { 2215 struct ib_qp_init_attr init_attr = {}; 2216 struct ib_qp_attr attr = {}; 2217 int num_eth_ports = 0; 2218 int port; 2219 2220 /* If QP state >= init, it is assigned to a port and we can check this 2221 * port only. 2222 */ 2223 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2224 if (attr.qp_state >= IB_QPS_INIT) { 2225 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2226 IB_LINK_LAYER_INFINIBAND) 2227 return true; 2228 goto lid_check; 2229 } 2230 } 2231 2232 /* Can't get a quick answer, iterate over all ports */ 2233 for (port = 0; port < qp->device->phys_port_cnt; port++) 2234 if (rdma_port_get_link_layer(qp->device, port) != 2235 IB_LINK_LAYER_INFINIBAND) 2236 num_eth_ports++; 2237 2238 /* If we have at lease one Ethernet port, RoCE annex declares that 2239 * multicast LID should be ignored. We can't tell at this step if the 2240 * QP belongs to an IB or Ethernet port. 2241 */ 2242 if (num_eth_ports) 2243 return true; 2244 2245 /* If all the ports are IB, we can check according to IB spec. */ 2246 lid_check: 2247 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2248 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2249 } 2250 2251 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2252 { 2253 int ret; 2254 2255 if (!qp->device->ops.attach_mcast) 2256 return -EOPNOTSUPP; 2257 2258 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2259 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2260 return -EINVAL; 2261 2262 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2263 if (!ret) 2264 atomic_inc(&qp->usecnt); 2265 return ret; 2266 } 2267 EXPORT_SYMBOL(ib_attach_mcast); 2268 2269 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2270 { 2271 int ret; 2272 2273 if (!qp->device->ops.detach_mcast) 2274 return -EOPNOTSUPP; 2275 2276 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2277 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2278 return -EINVAL; 2279 2280 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2281 if (!ret) 2282 atomic_dec(&qp->usecnt); 2283 return ret; 2284 } 2285 EXPORT_SYMBOL(ib_detach_mcast); 2286 2287 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 2288 { 2289 struct ib_xrcd *xrcd; 2290 2291 if (!device->ops.alloc_xrcd) 2292 return ERR_PTR(-EOPNOTSUPP); 2293 2294 xrcd = device->ops.alloc_xrcd(device, NULL); 2295 if (!IS_ERR(xrcd)) { 2296 xrcd->device = device; 2297 xrcd->inode = NULL; 2298 atomic_set(&xrcd->usecnt, 0); 2299 mutex_init(&xrcd->tgt_qp_mutex); 2300 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 2301 } 2302 2303 return xrcd; 2304 } 2305 EXPORT_SYMBOL(__ib_alloc_xrcd); 2306 2307 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata) 2308 { 2309 struct ib_qp *qp; 2310 int ret; 2311 2312 if (atomic_read(&xrcd->usecnt)) 2313 return -EBUSY; 2314 2315 while (!list_empty(&xrcd->tgt_qp_list)) { 2316 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 2317 ret = ib_destroy_qp(qp); 2318 if (ret) 2319 return ret; 2320 } 2321 mutex_destroy(&xrcd->tgt_qp_mutex); 2322 2323 return xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2324 } 2325 EXPORT_SYMBOL(ib_dealloc_xrcd); 2326 2327 /** 2328 * ib_create_wq - Creates a WQ associated with the specified protection 2329 * domain. 2330 * @pd: The protection domain associated with the WQ. 2331 * @wq_attr: A list of initial attributes required to create the 2332 * WQ. If WQ creation succeeds, then the attributes are updated to 2333 * the actual capabilities of the created WQ. 2334 * 2335 * wq_attr->max_wr and wq_attr->max_sge determine 2336 * the requested size of the WQ, and set to the actual values allocated 2337 * on return. 2338 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2339 * at least as large as the requested values. 2340 */ 2341 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2342 struct ib_wq_init_attr *wq_attr) 2343 { 2344 struct ib_wq *wq; 2345 2346 if (!pd->device->ops.create_wq) 2347 return ERR_PTR(-EOPNOTSUPP); 2348 2349 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2350 if (!IS_ERR(wq)) { 2351 wq->event_handler = wq_attr->event_handler; 2352 wq->wq_context = wq_attr->wq_context; 2353 wq->wq_type = wq_attr->wq_type; 2354 wq->cq = wq_attr->cq; 2355 wq->device = pd->device; 2356 wq->pd = pd; 2357 wq->uobject = NULL; 2358 atomic_inc(&pd->usecnt); 2359 atomic_inc(&wq_attr->cq->usecnt); 2360 atomic_set(&wq->usecnt, 0); 2361 } 2362 return wq; 2363 } 2364 EXPORT_SYMBOL(ib_create_wq); 2365 2366 /** 2367 * ib_destroy_wq - Destroys the specified user WQ. 2368 * @wq: The WQ to destroy. 2369 * @udata: Valid user data 2370 */ 2371 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata) 2372 { 2373 struct ib_cq *cq = wq->cq; 2374 struct ib_pd *pd = wq->pd; 2375 2376 if (atomic_read(&wq->usecnt)) 2377 return -EBUSY; 2378 2379 wq->device->ops.destroy_wq(wq, udata); 2380 atomic_dec(&pd->usecnt); 2381 atomic_dec(&cq->usecnt); 2382 2383 return 0; 2384 } 2385 EXPORT_SYMBOL(ib_destroy_wq); 2386 2387 /** 2388 * ib_modify_wq - Modifies the specified WQ. 2389 * @wq: The WQ to modify. 2390 * @wq_attr: On input, specifies the WQ attributes to modify. 2391 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 2392 * are being modified. 2393 * On output, the current values of selected WQ attributes are returned. 2394 */ 2395 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 2396 u32 wq_attr_mask) 2397 { 2398 int err; 2399 2400 if (!wq->device->ops.modify_wq) 2401 return -EOPNOTSUPP; 2402 2403 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL); 2404 return err; 2405 } 2406 EXPORT_SYMBOL(ib_modify_wq); 2407 2408 /* 2409 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 2410 * @device: The device on which to create the rwq indirection table. 2411 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 2412 * create the Indirection Table. 2413 * 2414 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 2415 * than the created ib_rwq_ind_table object and the caller is responsible 2416 * for its memory allocation/free. 2417 */ 2418 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 2419 struct ib_rwq_ind_table_init_attr *init_attr) 2420 { 2421 struct ib_rwq_ind_table *rwq_ind_table; 2422 int i; 2423 u32 table_size; 2424 2425 if (!device->ops.create_rwq_ind_table) 2426 return ERR_PTR(-EOPNOTSUPP); 2427 2428 table_size = (1 << init_attr->log_ind_tbl_size); 2429 rwq_ind_table = device->ops.create_rwq_ind_table(device, 2430 init_attr, NULL); 2431 if (IS_ERR(rwq_ind_table)) 2432 return rwq_ind_table; 2433 2434 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 2435 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 2436 rwq_ind_table->device = device; 2437 rwq_ind_table->uobject = NULL; 2438 atomic_set(&rwq_ind_table->usecnt, 0); 2439 2440 for (i = 0; i < table_size; i++) 2441 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 2442 2443 return rwq_ind_table; 2444 } 2445 EXPORT_SYMBOL(ib_create_rwq_ind_table); 2446 2447 /* 2448 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 2449 * @wq_ind_table: The Indirection Table to destroy. 2450 */ 2451 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 2452 { 2453 int err, i; 2454 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 2455 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 2456 2457 if (atomic_read(&rwq_ind_table->usecnt)) 2458 return -EBUSY; 2459 2460 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table); 2461 if (!err) { 2462 for (i = 0; i < table_size; i++) 2463 atomic_dec(&ind_tbl[i]->usecnt); 2464 } 2465 2466 return err; 2467 } 2468 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 2469 2470 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2471 struct ib_mr_status *mr_status) 2472 { 2473 if (!mr->device->ops.check_mr_status) 2474 return -EOPNOTSUPP; 2475 2476 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2477 } 2478 EXPORT_SYMBOL(ib_check_mr_status); 2479 2480 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2481 int state) 2482 { 2483 if (!device->ops.set_vf_link_state) 2484 return -EOPNOTSUPP; 2485 2486 return device->ops.set_vf_link_state(device, vf, port, state); 2487 } 2488 EXPORT_SYMBOL(ib_set_vf_link_state); 2489 2490 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2491 struct ifla_vf_info *info) 2492 { 2493 if (!device->ops.get_vf_config) 2494 return -EOPNOTSUPP; 2495 2496 return device->ops.get_vf_config(device, vf, port, info); 2497 } 2498 EXPORT_SYMBOL(ib_get_vf_config); 2499 2500 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2501 struct ifla_vf_stats *stats) 2502 { 2503 if (!device->ops.get_vf_stats) 2504 return -EOPNOTSUPP; 2505 2506 return device->ops.get_vf_stats(device, vf, port, stats); 2507 } 2508 EXPORT_SYMBOL(ib_get_vf_stats); 2509 2510 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2511 int type) 2512 { 2513 if (!device->ops.set_vf_guid) 2514 return -EOPNOTSUPP; 2515 2516 return device->ops.set_vf_guid(device, vf, port, guid, type); 2517 } 2518 EXPORT_SYMBOL(ib_set_vf_guid); 2519 2520 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 2521 struct ifla_vf_guid *node_guid, 2522 struct ifla_vf_guid *port_guid) 2523 { 2524 if (!device->ops.get_vf_guid) 2525 return -EOPNOTSUPP; 2526 2527 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2528 } 2529 EXPORT_SYMBOL(ib_get_vf_guid); 2530 /** 2531 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2532 * information) and set an appropriate memory region for registration. 2533 * @mr: memory region 2534 * @data_sg: dma mapped scatterlist for data 2535 * @data_sg_nents: number of entries in data_sg 2536 * @data_sg_offset: offset in bytes into data_sg 2537 * @meta_sg: dma mapped scatterlist for metadata 2538 * @meta_sg_nents: number of entries in meta_sg 2539 * @meta_sg_offset: offset in bytes into meta_sg 2540 * @page_size: page vector desired page size 2541 * 2542 * Constraints: 2543 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2544 * 2545 * Return: 0 on success. 2546 * 2547 * After this completes successfully, the memory region 2548 * is ready for registration. 2549 */ 2550 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2551 int data_sg_nents, unsigned int *data_sg_offset, 2552 struct scatterlist *meta_sg, int meta_sg_nents, 2553 unsigned int *meta_sg_offset, unsigned int page_size) 2554 { 2555 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2556 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2557 return -EOPNOTSUPP; 2558 2559 mr->page_size = page_size; 2560 2561 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2562 data_sg_offset, meta_sg, 2563 meta_sg_nents, meta_sg_offset); 2564 } 2565 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2566 2567 /** 2568 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2569 * and set it the memory region. 2570 * @mr: memory region 2571 * @sg: dma mapped scatterlist 2572 * @sg_nents: number of entries in sg 2573 * @sg_offset: offset in bytes into sg 2574 * @page_size: page vector desired page size 2575 * 2576 * Constraints: 2577 * - The first sg element is allowed to have an offset. 2578 * - Each sg element must either be aligned to page_size or virtually 2579 * contiguous to the previous element. In case an sg element has a 2580 * non-contiguous offset, the mapping prefix will not include it. 2581 * - The last sg element is allowed to have length less than page_size. 2582 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2583 * then only max_num_sg entries will be mapped. 2584 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2585 * constraints holds and the page_size argument is ignored. 2586 * 2587 * Returns the number of sg elements that were mapped to the memory region. 2588 * 2589 * After this completes successfully, the memory region 2590 * is ready for registration. 2591 */ 2592 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2593 unsigned int *sg_offset, unsigned int page_size) 2594 { 2595 if (unlikely(!mr->device->ops.map_mr_sg)) 2596 return -EOPNOTSUPP; 2597 2598 mr->page_size = page_size; 2599 2600 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2601 } 2602 EXPORT_SYMBOL(ib_map_mr_sg); 2603 2604 /** 2605 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2606 * to a page vector 2607 * @mr: memory region 2608 * @sgl: dma mapped scatterlist 2609 * @sg_nents: number of entries in sg 2610 * @sg_offset_p: IN: start offset in bytes into sg 2611 * OUT: offset in bytes for element n of the sg of the first 2612 * byte that has not been processed where n is the return 2613 * value of this function. 2614 * @set_page: driver page assignment function pointer 2615 * 2616 * Core service helper for drivers to convert the largest 2617 * prefix of given sg list to a page vector. The sg list 2618 * prefix converted is the prefix that meet the requirements 2619 * of ib_map_mr_sg. 2620 * 2621 * Returns the number of sg elements that were assigned to 2622 * a page vector. 2623 */ 2624 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2625 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2626 { 2627 struct scatterlist *sg; 2628 u64 last_end_dma_addr = 0; 2629 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2630 unsigned int last_page_off = 0; 2631 u64 page_mask = ~((u64)mr->page_size - 1); 2632 int i, ret; 2633 2634 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2635 return -EINVAL; 2636 2637 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2638 mr->length = 0; 2639 2640 for_each_sg(sgl, sg, sg_nents, i) { 2641 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2642 u64 prev_addr = dma_addr; 2643 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2644 u64 end_dma_addr = dma_addr + dma_len; 2645 u64 page_addr = dma_addr & page_mask; 2646 2647 /* 2648 * For the second and later elements, check whether either the 2649 * end of element i-1 or the start of element i is not aligned 2650 * on a page boundary. 2651 */ 2652 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2653 /* Stop mapping if there is a gap. */ 2654 if (last_end_dma_addr != dma_addr) 2655 break; 2656 2657 /* 2658 * Coalesce this element with the last. If it is small 2659 * enough just update mr->length. Otherwise start 2660 * mapping from the next page. 2661 */ 2662 goto next_page; 2663 } 2664 2665 do { 2666 ret = set_page(mr, page_addr); 2667 if (unlikely(ret < 0)) { 2668 sg_offset = prev_addr - sg_dma_address(sg); 2669 mr->length += prev_addr - dma_addr; 2670 if (sg_offset_p) 2671 *sg_offset_p = sg_offset; 2672 return i || sg_offset ? i : ret; 2673 } 2674 prev_addr = page_addr; 2675 next_page: 2676 page_addr += mr->page_size; 2677 } while (page_addr < end_dma_addr); 2678 2679 mr->length += dma_len; 2680 last_end_dma_addr = end_dma_addr; 2681 last_page_off = end_dma_addr & ~page_mask; 2682 2683 sg_offset = 0; 2684 } 2685 2686 if (sg_offset_p) 2687 *sg_offset_p = 0; 2688 return i; 2689 } 2690 EXPORT_SYMBOL(ib_sg_to_pages); 2691 2692 struct ib_drain_cqe { 2693 struct ib_cqe cqe; 2694 struct completion done; 2695 }; 2696 2697 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2698 { 2699 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2700 cqe); 2701 2702 complete(&cqe->done); 2703 } 2704 2705 /* 2706 * Post a WR and block until its completion is reaped for the SQ. 2707 */ 2708 static void __ib_drain_sq(struct ib_qp *qp) 2709 { 2710 struct ib_cq *cq = qp->send_cq; 2711 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2712 struct ib_drain_cqe sdrain; 2713 struct ib_rdma_wr swr = { 2714 .wr = { 2715 .next = NULL, 2716 { .wr_cqe = &sdrain.cqe, }, 2717 .opcode = IB_WR_RDMA_WRITE, 2718 }, 2719 }; 2720 int ret; 2721 2722 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2723 if (ret) { 2724 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2725 return; 2726 } 2727 2728 sdrain.cqe.done = ib_drain_qp_done; 2729 init_completion(&sdrain.done); 2730 2731 ret = ib_post_send(qp, &swr.wr, NULL); 2732 if (ret) { 2733 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2734 return; 2735 } 2736 2737 if (cq->poll_ctx == IB_POLL_DIRECT) 2738 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2739 ib_process_cq_direct(cq, -1); 2740 else 2741 wait_for_completion(&sdrain.done); 2742 } 2743 2744 /* 2745 * Post a WR and block until its completion is reaped for the RQ. 2746 */ 2747 static void __ib_drain_rq(struct ib_qp *qp) 2748 { 2749 struct ib_cq *cq = qp->recv_cq; 2750 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2751 struct ib_drain_cqe rdrain; 2752 struct ib_recv_wr rwr = {}; 2753 int ret; 2754 2755 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2756 if (ret) { 2757 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2758 return; 2759 } 2760 2761 rwr.wr_cqe = &rdrain.cqe; 2762 rdrain.cqe.done = ib_drain_qp_done; 2763 init_completion(&rdrain.done); 2764 2765 ret = ib_post_recv(qp, &rwr, NULL); 2766 if (ret) { 2767 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2768 return; 2769 } 2770 2771 if (cq->poll_ctx == IB_POLL_DIRECT) 2772 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2773 ib_process_cq_direct(cq, -1); 2774 else 2775 wait_for_completion(&rdrain.done); 2776 } 2777 2778 /** 2779 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2780 * application. 2781 * @qp: queue pair to drain 2782 * 2783 * If the device has a provider-specific drain function, then 2784 * call that. Otherwise call the generic drain function 2785 * __ib_drain_sq(). 2786 * 2787 * The caller must: 2788 * 2789 * ensure there is room in the CQ and SQ for the drain work request and 2790 * completion. 2791 * 2792 * allocate the CQ using ib_alloc_cq(). 2793 * 2794 * ensure that there are no other contexts that are posting WRs concurrently. 2795 * Otherwise the drain is not guaranteed. 2796 */ 2797 void ib_drain_sq(struct ib_qp *qp) 2798 { 2799 if (qp->device->ops.drain_sq) 2800 qp->device->ops.drain_sq(qp); 2801 else 2802 __ib_drain_sq(qp); 2803 trace_cq_drain_complete(qp->send_cq); 2804 } 2805 EXPORT_SYMBOL(ib_drain_sq); 2806 2807 /** 2808 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2809 * application. 2810 * @qp: queue pair to drain 2811 * 2812 * If the device has a provider-specific drain function, then 2813 * call that. Otherwise call the generic drain function 2814 * __ib_drain_rq(). 2815 * 2816 * The caller must: 2817 * 2818 * ensure there is room in the CQ and RQ for the drain work request and 2819 * completion. 2820 * 2821 * allocate the CQ using ib_alloc_cq(). 2822 * 2823 * ensure that there are no other contexts that are posting WRs concurrently. 2824 * Otherwise the drain is not guaranteed. 2825 */ 2826 void ib_drain_rq(struct ib_qp *qp) 2827 { 2828 if (qp->device->ops.drain_rq) 2829 qp->device->ops.drain_rq(qp); 2830 else 2831 __ib_drain_rq(qp); 2832 trace_cq_drain_complete(qp->recv_cq); 2833 } 2834 EXPORT_SYMBOL(ib_drain_rq); 2835 2836 /** 2837 * ib_drain_qp() - Block until all CQEs have been consumed by the 2838 * application on both the RQ and SQ. 2839 * @qp: queue pair to drain 2840 * 2841 * The caller must: 2842 * 2843 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2844 * and completions. 2845 * 2846 * allocate the CQs using ib_alloc_cq(). 2847 * 2848 * ensure that there are no other contexts that are posting WRs concurrently. 2849 * Otherwise the drain is not guaranteed. 2850 */ 2851 void ib_drain_qp(struct ib_qp *qp) 2852 { 2853 ib_drain_sq(qp); 2854 if (!qp->srq) 2855 ib_drain_rq(qp); 2856 } 2857 EXPORT_SYMBOL(ib_drain_qp); 2858 2859 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 2860 enum rdma_netdev_t type, const char *name, 2861 unsigned char name_assign_type, 2862 void (*setup)(struct net_device *)) 2863 { 2864 struct rdma_netdev_alloc_params params; 2865 struct net_device *netdev; 2866 int rc; 2867 2868 if (!device->ops.rdma_netdev_get_params) 2869 return ERR_PTR(-EOPNOTSUPP); 2870 2871 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2872 ¶ms); 2873 if (rc) 2874 return ERR_PTR(rc); 2875 2876 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2877 setup, params.txqs, params.rxqs); 2878 if (!netdev) 2879 return ERR_PTR(-ENOMEM); 2880 2881 return netdev; 2882 } 2883 EXPORT_SYMBOL(rdma_alloc_netdev); 2884 2885 int rdma_init_netdev(struct ib_device *device, u8 port_num, 2886 enum rdma_netdev_t type, const char *name, 2887 unsigned char name_assign_type, 2888 void (*setup)(struct net_device *), 2889 struct net_device *netdev) 2890 { 2891 struct rdma_netdev_alloc_params params; 2892 int rc; 2893 2894 if (!device->ops.rdma_netdev_get_params) 2895 return -EOPNOTSUPP; 2896 2897 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2898 ¶ms); 2899 if (rc) 2900 return rc; 2901 2902 return params.initialize_rdma_netdev(device, port_num, 2903 netdev, params.param); 2904 } 2905 EXPORT_SYMBOL(rdma_init_netdev); 2906 2907 void __rdma_block_iter_start(struct ib_block_iter *biter, 2908 struct scatterlist *sglist, unsigned int nents, 2909 unsigned long pgsz) 2910 { 2911 memset(biter, 0, sizeof(struct ib_block_iter)); 2912 biter->__sg = sglist; 2913 biter->__sg_nents = nents; 2914 2915 /* Driver provides best block size to use */ 2916 biter->__pg_bit = __fls(pgsz); 2917 } 2918 EXPORT_SYMBOL(__rdma_block_iter_start); 2919 2920 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2921 { 2922 unsigned int block_offset; 2923 2924 if (!biter->__sg_nents || !biter->__sg) 2925 return false; 2926 2927 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2928 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2929 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; 2930 2931 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { 2932 biter->__sg_advance = 0; 2933 biter->__sg = sg_next(biter->__sg); 2934 biter->__sg_nents--; 2935 } 2936 2937 return true; 2938 } 2939 EXPORT_SYMBOL(__rdma_block_iter_next); 2940