1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 #include <rdma/lag.h> 54 55 #include "core_priv.h" 56 #include <trace/events/rdma_core.h> 57 58 static int ib_resolve_eth_dmac(struct ib_device *device, 59 struct rdma_ah_attr *ah_attr); 60 61 static const char * const ib_events[] = { 62 [IB_EVENT_CQ_ERR] = "CQ error", 63 [IB_EVENT_QP_FATAL] = "QP fatal error", 64 [IB_EVENT_QP_REQ_ERR] = "QP request error", 65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 66 [IB_EVENT_COMM_EST] = "communication established", 67 [IB_EVENT_SQ_DRAINED] = "send queue drained", 68 [IB_EVENT_PATH_MIG] = "path migration successful", 69 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 70 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 71 [IB_EVENT_PORT_ACTIVE] = "port active", 72 [IB_EVENT_PORT_ERR] = "port error", 73 [IB_EVENT_LID_CHANGE] = "LID change", 74 [IB_EVENT_PKEY_CHANGE] = "P_key change", 75 [IB_EVENT_SM_CHANGE] = "SM change", 76 [IB_EVENT_SRQ_ERR] = "SRQ error", 77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 80 [IB_EVENT_GID_CHANGE] = "GID changed", 81 }; 82 83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 84 { 85 size_t index = event; 86 87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 88 ib_events[index] : "unrecognized event"; 89 } 90 EXPORT_SYMBOL(ib_event_msg); 91 92 static const char * const wc_statuses[] = { 93 [IB_WC_SUCCESS] = "success", 94 [IB_WC_LOC_LEN_ERR] = "local length error", 95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 97 [IB_WC_LOC_PROT_ERR] = "local protection error", 98 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 99 [IB_WC_MW_BIND_ERR] = "memory bind operation error", 100 [IB_WC_BAD_RESP_ERR] = "bad response error", 101 [IB_WC_LOC_ACCESS_ERR] = "local access error", 102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error", 103 [IB_WC_REM_ACCESS_ERR] = "remote access error", 104 [IB_WC_REM_OP_ERR] = "remote operation error", 105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 109 [IB_WC_REM_ABORT_ERR] = "operation aborted", 110 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 112 [IB_WC_FATAL_ERR] = "fatal error", 113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 114 [IB_WC_GENERAL_ERR] = "general error", 115 }; 116 117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 118 { 119 size_t index = status; 120 121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 122 wc_statuses[index] : "unrecognized status"; 123 } 124 EXPORT_SYMBOL(ib_wc_status_msg); 125 126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 127 { 128 switch (rate) { 129 case IB_RATE_2_5_GBPS: return 1; 130 case IB_RATE_5_GBPS: return 2; 131 case IB_RATE_10_GBPS: return 4; 132 case IB_RATE_20_GBPS: return 8; 133 case IB_RATE_30_GBPS: return 12; 134 case IB_RATE_40_GBPS: return 16; 135 case IB_RATE_60_GBPS: return 24; 136 case IB_RATE_80_GBPS: return 32; 137 case IB_RATE_120_GBPS: return 48; 138 case IB_RATE_14_GBPS: return 6; 139 case IB_RATE_56_GBPS: return 22; 140 case IB_RATE_112_GBPS: return 45; 141 case IB_RATE_168_GBPS: return 67; 142 case IB_RATE_25_GBPS: return 10; 143 case IB_RATE_100_GBPS: return 40; 144 case IB_RATE_200_GBPS: return 80; 145 case IB_RATE_300_GBPS: return 120; 146 case IB_RATE_28_GBPS: return 11; 147 case IB_RATE_50_GBPS: return 20; 148 case IB_RATE_400_GBPS: return 160; 149 case IB_RATE_600_GBPS: return 240; 150 case IB_RATE_800_GBPS: return 320; 151 default: return -1; 152 } 153 } 154 EXPORT_SYMBOL(ib_rate_to_mult); 155 156 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 157 { 158 switch (mult) { 159 case 1: return IB_RATE_2_5_GBPS; 160 case 2: return IB_RATE_5_GBPS; 161 case 4: return IB_RATE_10_GBPS; 162 case 8: return IB_RATE_20_GBPS; 163 case 12: return IB_RATE_30_GBPS; 164 case 16: return IB_RATE_40_GBPS; 165 case 24: return IB_RATE_60_GBPS; 166 case 32: return IB_RATE_80_GBPS; 167 case 48: return IB_RATE_120_GBPS; 168 case 6: return IB_RATE_14_GBPS; 169 case 22: return IB_RATE_56_GBPS; 170 case 45: return IB_RATE_112_GBPS; 171 case 67: return IB_RATE_168_GBPS; 172 case 10: return IB_RATE_25_GBPS; 173 case 40: return IB_RATE_100_GBPS; 174 case 80: return IB_RATE_200_GBPS; 175 case 120: return IB_RATE_300_GBPS; 176 case 11: return IB_RATE_28_GBPS; 177 case 20: return IB_RATE_50_GBPS; 178 case 160: return IB_RATE_400_GBPS; 179 case 240: return IB_RATE_600_GBPS; 180 case 320: return IB_RATE_800_GBPS; 181 default: return IB_RATE_PORT_CURRENT; 182 } 183 } 184 EXPORT_SYMBOL(mult_to_ib_rate); 185 186 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 187 { 188 switch (rate) { 189 case IB_RATE_2_5_GBPS: return 2500; 190 case IB_RATE_5_GBPS: return 5000; 191 case IB_RATE_10_GBPS: return 10000; 192 case IB_RATE_20_GBPS: return 20000; 193 case IB_RATE_30_GBPS: return 30000; 194 case IB_RATE_40_GBPS: return 40000; 195 case IB_RATE_60_GBPS: return 60000; 196 case IB_RATE_80_GBPS: return 80000; 197 case IB_RATE_120_GBPS: return 120000; 198 case IB_RATE_14_GBPS: return 14062; 199 case IB_RATE_56_GBPS: return 56250; 200 case IB_RATE_112_GBPS: return 112500; 201 case IB_RATE_168_GBPS: return 168750; 202 case IB_RATE_25_GBPS: return 25781; 203 case IB_RATE_100_GBPS: return 103125; 204 case IB_RATE_200_GBPS: return 206250; 205 case IB_RATE_300_GBPS: return 309375; 206 case IB_RATE_28_GBPS: return 28125; 207 case IB_RATE_50_GBPS: return 53125; 208 case IB_RATE_400_GBPS: return 425000; 209 case IB_RATE_600_GBPS: return 637500; 210 case IB_RATE_800_GBPS: return 850000; 211 default: return -1; 212 } 213 } 214 EXPORT_SYMBOL(ib_rate_to_mbps); 215 216 __attribute_const__ enum rdma_transport_type 217 rdma_node_get_transport(unsigned int node_type) 218 { 219 220 if (node_type == RDMA_NODE_USNIC) 221 return RDMA_TRANSPORT_USNIC; 222 if (node_type == RDMA_NODE_USNIC_UDP) 223 return RDMA_TRANSPORT_USNIC_UDP; 224 if (node_type == RDMA_NODE_RNIC) 225 return RDMA_TRANSPORT_IWARP; 226 if (node_type == RDMA_NODE_UNSPECIFIED) 227 return RDMA_TRANSPORT_UNSPECIFIED; 228 229 return RDMA_TRANSPORT_IB; 230 } 231 EXPORT_SYMBOL(rdma_node_get_transport); 232 233 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 234 u32 port_num) 235 { 236 enum rdma_transport_type lt; 237 if (device->ops.get_link_layer) 238 return device->ops.get_link_layer(device, port_num); 239 240 lt = rdma_node_get_transport(device->node_type); 241 if (lt == RDMA_TRANSPORT_IB) 242 return IB_LINK_LAYER_INFINIBAND; 243 244 return IB_LINK_LAYER_ETHERNET; 245 } 246 EXPORT_SYMBOL(rdma_port_get_link_layer); 247 248 /* Protection domains */ 249 250 /** 251 * __ib_alloc_pd - Allocates an unused protection domain. 252 * @device: The device on which to allocate the protection domain. 253 * @flags: protection domain flags 254 * @caller: caller's build-time module name 255 * 256 * A protection domain object provides an association between QPs, shared 257 * receive queues, address handles, memory regions, and memory windows. 258 * 259 * Every PD has a local_dma_lkey which can be used as the lkey value for local 260 * memory operations. 261 */ 262 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 263 const char *caller) 264 { 265 struct ib_pd *pd; 266 int mr_access_flags = 0; 267 int ret; 268 269 pd = rdma_zalloc_drv_obj(device, ib_pd); 270 if (!pd) 271 return ERR_PTR(-ENOMEM); 272 273 pd->device = device; 274 pd->flags = flags; 275 276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD); 277 rdma_restrack_set_name(&pd->res, caller); 278 279 ret = device->ops.alloc_pd(pd, NULL); 280 if (ret) { 281 rdma_restrack_put(&pd->res); 282 kfree(pd); 283 return ERR_PTR(ret); 284 } 285 rdma_restrack_add(&pd->res); 286 287 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY) 288 pd->local_dma_lkey = device->local_dma_lkey; 289 else 290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 291 292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 293 pr_warn("%s: enabling unsafe global rkey\n", caller); 294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 295 } 296 297 if (mr_access_flags) { 298 struct ib_mr *mr; 299 300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 301 if (IS_ERR(mr)) { 302 ib_dealloc_pd(pd); 303 return ERR_CAST(mr); 304 } 305 306 mr->device = pd->device; 307 mr->pd = pd; 308 mr->type = IB_MR_TYPE_DMA; 309 mr->uobject = NULL; 310 mr->need_inval = false; 311 312 pd->__internal_mr = mr; 313 314 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)) 315 pd->local_dma_lkey = pd->__internal_mr->lkey; 316 317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 318 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 319 } 320 321 return pd; 322 } 323 EXPORT_SYMBOL(__ib_alloc_pd); 324 325 /** 326 * ib_dealloc_pd_user - Deallocates a protection domain. 327 * @pd: The protection domain to deallocate. 328 * @udata: Valid user data or NULL for kernel object 329 * 330 * It is an error to call this function while any resources in the pd still 331 * exist. The caller is responsible to synchronously destroy them and 332 * guarantee no new allocations will happen. 333 */ 334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 335 { 336 int ret; 337 338 if (pd->__internal_mr) { 339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 340 WARN_ON(ret); 341 pd->__internal_mr = NULL; 342 } 343 344 ret = pd->device->ops.dealloc_pd(pd, udata); 345 if (ret) 346 return ret; 347 348 rdma_restrack_del(&pd->res); 349 kfree(pd); 350 return ret; 351 } 352 EXPORT_SYMBOL(ib_dealloc_pd_user); 353 354 /* Address handles */ 355 356 /** 357 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 358 * @dest: Pointer to destination ah_attr. Contents of the destination 359 * pointer is assumed to be invalid and attribute are overwritten. 360 * @src: Pointer to source ah_attr. 361 */ 362 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 363 const struct rdma_ah_attr *src) 364 { 365 *dest = *src; 366 if (dest->grh.sgid_attr) 367 rdma_hold_gid_attr(dest->grh.sgid_attr); 368 } 369 EXPORT_SYMBOL(rdma_copy_ah_attr); 370 371 /** 372 * rdma_replace_ah_attr - Replace valid ah_attr with new one. 373 * @old: Pointer to existing ah_attr which needs to be replaced. 374 * old is assumed to be valid or zero'd 375 * @new: Pointer to the new ah_attr. 376 * 377 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 378 * old the ah_attr is valid; after that it copies the new attribute and holds 379 * the reference to the replaced ah_attr. 380 */ 381 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 382 const struct rdma_ah_attr *new) 383 { 384 rdma_destroy_ah_attr(old); 385 *old = *new; 386 if (old->grh.sgid_attr) 387 rdma_hold_gid_attr(old->grh.sgid_attr); 388 } 389 EXPORT_SYMBOL(rdma_replace_ah_attr); 390 391 /** 392 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 393 * @dest: Pointer to destination ah_attr to copy to. 394 * dest is assumed to be valid or zero'd 395 * @src: Pointer to the new ah_attr. 396 * 397 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 398 * if it is valid. This also transfers ownership of internal references from 399 * src to dest, making src invalid in the process. No new reference of the src 400 * ah_attr is taken. 401 */ 402 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 403 { 404 rdma_destroy_ah_attr(dest); 405 *dest = *src; 406 src->grh.sgid_attr = NULL; 407 } 408 EXPORT_SYMBOL(rdma_move_ah_attr); 409 410 /* 411 * Validate that the rdma_ah_attr is valid for the device before passing it 412 * off to the driver. 413 */ 414 static int rdma_check_ah_attr(struct ib_device *device, 415 struct rdma_ah_attr *ah_attr) 416 { 417 if (!rdma_is_port_valid(device, ah_attr->port_num)) 418 return -EINVAL; 419 420 if ((rdma_is_grh_required(device, ah_attr->port_num) || 421 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 422 !(ah_attr->ah_flags & IB_AH_GRH)) 423 return -EINVAL; 424 425 if (ah_attr->grh.sgid_attr) { 426 /* 427 * Make sure the passed sgid_attr is consistent with the 428 * parameters 429 */ 430 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 431 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 432 return -EINVAL; 433 } 434 return 0; 435 } 436 437 /* 438 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 439 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 440 */ 441 static int rdma_fill_sgid_attr(struct ib_device *device, 442 struct rdma_ah_attr *ah_attr, 443 const struct ib_gid_attr **old_sgid_attr) 444 { 445 const struct ib_gid_attr *sgid_attr; 446 struct ib_global_route *grh; 447 int ret; 448 449 *old_sgid_attr = ah_attr->grh.sgid_attr; 450 451 ret = rdma_check_ah_attr(device, ah_attr); 452 if (ret) 453 return ret; 454 455 if (!(ah_attr->ah_flags & IB_AH_GRH)) 456 return 0; 457 458 grh = rdma_ah_retrieve_grh(ah_attr); 459 if (grh->sgid_attr) 460 return 0; 461 462 sgid_attr = 463 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 464 if (IS_ERR(sgid_attr)) 465 return PTR_ERR(sgid_attr); 466 467 /* Move ownerhip of the kref into the ah_attr */ 468 grh->sgid_attr = sgid_attr; 469 return 0; 470 } 471 472 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 473 const struct ib_gid_attr *old_sgid_attr) 474 { 475 /* 476 * Fill didn't change anything, the caller retains ownership of 477 * whatever it passed 478 */ 479 if (ah_attr->grh.sgid_attr == old_sgid_attr) 480 return; 481 482 /* 483 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 484 * doesn't see any change in the rdma_ah_attr. If we get here 485 * old_sgid_attr is NULL. 486 */ 487 rdma_destroy_ah_attr(ah_attr); 488 } 489 490 static const struct ib_gid_attr * 491 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 492 const struct ib_gid_attr *old_attr) 493 { 494 if (old_attr) 495 rdma_put_gid_attr(old_attr); 496 if (ah_attr->ah_flags & IB_AH_GRH) { 497 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 498 return ah_attr->grh.sgid_attr; 499 } 500 return NULL; 501 } 502 503 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 504 struct rdma_ah_attr *ah_attr, 505 u32 flags, 506 struct ib_udata *udata, 507 struct net_device *xmit_slave) 508 { 509 struct rdma_ah_init_attr init_attr = {}; 510 struct ib_device *device = pd->device; 511 struct ib_ah *ah; 512 int ret; 513 514 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 515 516 if (!udata && !device->ops.create_ah) 517 return ERR_PTR(-EOPNOTSUPP); 518 519 ah = rdma_zalloc_drv_obj_gfp( 520 device, ib_ah, 521 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 522 if (!ah) 523 return ERR_PTR(-ENOMEM); 524 525 ah->device = device; 526 ah->pd = pd; 527 ah->type = ah_attr->type; 528 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 529 init_attr.ah_attr = ah_attr; 530 init_attr.flags = flags; 531 init_attr.xmit_slave = xmit_slave; 532 533 if (udata) 534 ret = device->ops.create_user_ah(ah, &init_attr, udata); 535 else 536 ret = device->ops.create_ah(ah, &init_attr, NULL); 537 if (ret) { 538 if (ah->sgid_attr) 539 rdma_put_gid_attr(ah->sgid_attr); 540 kfree(ah); 541 return ERR_PTR(ret); 542 } 543 544 atomic_inc(&pd->usecnt); 545 return ah; 546 } 547 548 /** 549 * rdma_create_ah - Creates an address handle for the 550 * given address vector. 551 * @pd: The protection domain associated with the address handle. 552 * @ah_attr: The attributes of the address vector. 553 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 554 * 555 * It returns 0 on success and returns appropriate error code on error. 556 * The address handle is used to reference a local or global destination 557 * in all UD QP post sends. 558 */ 559 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 560 u32 flags) 561 { 562 const struct ib_gid_attr *old_sgid_attr; 563 struct net_device *slave; 564 struct ib_ah *ah; 565 int ret; 566 567 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 568 if (ret) 569 return ERR_PTR(ret); 570 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr, 571 (flags & RDMA_CREATE_AH_SLEEPABLE) ? 572 GFP_KERNEL : GFP_ATOMIC); 573 if (IS_ERR(slave)) { 574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 575 return (void *)slave; 576 } 577 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave); 578 rdma_lag_put_ah_roce_slave(slave); 579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 580 return ah; 581 } 582 EXPORT_SYMBOL(rdma_create_ah); 583 584 /** 585 * rdma_create_user_ah - Creates an address handle for the 586 * given address vector. 587 * It resolves destination mac address for ah attribute of RoCE type. 588 * @pd: The protection domain associated with the address handle. 589 * @ah_attr: The attributes of the address vector. 590 * @udata: pointer to user's input output buffer information need by 591 * provider driver. 592 * 593 * It returns 0 on success and returns appropriate error code on error. 594 * The address handle is used to reference a local or global destination 595 * in all UD QP post sends. 596 */ 597 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 598 struct rdma_ah_attr *ah_attr, 599 struct ib_udata *udata) 600 { 601 const struct ib_gid_attr *old_sgid_attr; 602 struct ib_ah *ah; 603 int err; 604 605 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 606 if (err) 607 return ERR_PTR(err); 608 609 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 610 err = ib_resolve_eth_dmac(pd->device, ah_attr); 611 if (err) { 612 ah = ERR_PTR(err); 613 goto out; 614 } 615 } 616 617 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, 618 udata, NULL); 619 620 out: 621 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 622 return ah; 623 } 624 EXPORT_SYMBOL(rdma_create_user_ah); 625 626 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 627 { 628 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 629 struct iphdr ip4h_checked; 630 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 631 632 /* If it's IPv6, the version must be 6, otherwise, the first 633 * 20 bytes (before the IPv4 header) are garbled. 634 */ 635 if (ip6h->version != 6) 636 return (ip4h->version == 4) ? 4 : 0; 637 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 638 639 /* RoCE v2 requires no options, thus header length 640 * must be 5 words 641 */ 642 if (ip4h->ihl != 5) 643 return 6; 644 645 /* Verify checksum. 646 * We can't write on scattered buffers so we need to copy to 647 * temp buffer. 648 */ 649 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 650 ip4h_checked.check = 0; 651 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 652 /* if IPv4 header checksum is OK, believe it */ 653 if (ip4h->check == ip4h_checked.check) 654 return 4; 655 return 6; 656 } 657 EXPORT_SYMBOL(ib_get_rdma_header_version); 658 659 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 660 u32 port_num, 661 const struct ib_grh *grh) 662 { 663 int grh_version; 664 665 if (rdma_protocol_ib(device, port_num)) 666 return RDMA_NETWORK_IB; 667 668 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 669 670 if (grh_version == 4) 671 return RDMA_NETWORK_IPV4; 672 673 if (grh->next_hdr == IPPROTO_UDP) 674 return RDMA_NETWORK_IPV6; 675 676 return RDMA_NETWORK_ROCE_V1; 677 } 678 679 struct find_gid_index_context { 680 u16 vlan_id; 681 enum ib_gid_type gid_type; 682 }; 683 684 static bool find_gid_index(const union ib_gid *gid, 685 const struct ib_gid_attr *gid_attr, 686 void *context) 687 { 688 struct find_gid_index_context *ctx = context; 689 u16 vlan_id = 0xffff; 690 int ret; 691 692 if (ctx->gid_type != gid_attr->gid_type) 693 return false; 694 695 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 696 if (ret) 697 return false; 698 699 return ctx->vlan_id == vlan_id; 700 } 701 702 static const struct ib_gid_attr * 703 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num, 704 u16 vlan_id, const union ib_gid *sgid, 705 enum ib_gid_type gid_type) 706 { 707 struct find_gid_index_context context = {.vlan_id = vlan_id, 708 .gid_type = gid_type}; 709 710 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 711 &context); 712 } 713 714 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 715 enum rdma_network_type net_type, 716 union ib_gid *sgid, union ib_gid *dgid) 717 { 718 struct sockaddr_in src_in; 719 struct sockaddr_in dst_in; 720 __be32 src_saddr, dst_saddr; 721 722 if (!sgid || !dgid) 723 return -EINVAL; 724 725 if (net_type == RDMA_NETWORK_IPV4) { 726 memcpy(&src_in.sin_addr.s_addr, 727 &hdr->roce4grh.saddr, 4); 728 memcpy(&dst_in.sin_addr.s_addr, 729 &hdr->roce4grh.daddr, 4); 730 src_saddr = src_in.sin_addr.s_addr; 731 dst_saddr = dst_in.sin_addr.s_addr; 732 ipv6_addr_set_v4mapped(src_saddr, 733 (struct in6_addr *)sgid); 734 ipv6_addr_set_v4mapped(dst_saddr, 735 (struct in6_addr *)dgid); 736 return 0; 737 } else if (net_type == RDMA_NETWORK_IPV6 || 738 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) { 739 *dgid = hdr->ibgrh.dgid; 740 *sgid = hdr->ibgrh.sgid; 741 return 0; 742 } else { 743 return -EINVAL; 744 } 745 } 746 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 747 748 /* Resolve destination mac address and hop limit for unicast destination 749 * GID entry, considering the source GID entry as well. 750 * ah_attribute must have valid port_num, sgid_index. 751 */ 752 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 753 struct rdma_ah_attr *ah_attr) 754 { 755 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 756 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 757 int hop_limit = 0xff; 758 int ret = 0; 759 760 /* If destination is link local and source GID is RoCEv1, 761 * IP stack is not used. 762 */ 763 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 764 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 765 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 766 ah_attr->roce.dmac); 767 return ret; 768 } 769 770 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 771 ah_attr->roce.dmac, 772 sgid_attr, &hop_limit); 773 774 grh->hop_limit = hop_limit; 775 return ret; 776 } 777 778 /* 779 * This function initializes address handle attributes from the incoming packet. 780 * Incoming packet has dgid of the receiver node on which this code is 781 * getting executed and, sgid contains the GID of the sender. 782 * 783 * When resolving mac address of destination, the arrived dgid is used 784 * as sgid and, sgid is used as dgid because sgid contains destinations 785 * GID whom to respond to. 786 * 787 * On success the caller is responsible to call rdma_destroy_ah_attr on the 788 * attr. 789 */ 790 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 791 const struct ib_wc *wc, const struct ib_grh *grh, 792 struct rdma_ah_attr *ah_attr) 793 { 794 u32 flow_class; 795 int ret; 796 enum rdma_network_type net_type = RDMA_NETWORK_IB; 797 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 798 const struct ib_gid_attr *sgid_attr; 799 int hoplimit = 0xff; 800 union ib_gid dgid; 801 union ib_gid sgid; 802 803 might_sleep(); 804 805 memset(ah_attr, 0, sizeof *ah_attr); 806 ah_attr->type = rdma_ah_find_type(device, port_num); 807 if (rdma_cap_eth_ah(device, port_num)) { 808 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 809 net_type = wc->network_hdr_type; 810 else 811 net_type = ib_get_net_type_by_grh(device, port_num, grh); 812 gid_type = ib_network_to_gid_type(net_type); 813 } 814 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 815 &sgid, &dgid); 816 if (ret) 817 return ret; 818 819 rdma_ah_set_sl(ah_attr, wc->sl); 820 rdma_ah_set_port_num(ah_attr, port_num); 821 822 if (rdma_protocol_roce(device, port_num)) { 823 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 824 wc->vlan_id : 0xffff; 825 826 if (!(wc->wc_flags & IB_WC_GRH)) 827 return -EPROTOTYPE; 828 829 sgid_attr = get_sgid_attr_from_eth(device, port_num, 830 vlan_id, &dgid, 831 gid_type); 832 if (IS_ERR(sgid_attr)) 833 return PTR_ERR(sgid_attr); 834 835 flow_class = be32_to_cpu(grh->version_tclass_flow); 836 rdma_move_grh_sgid_attr(ah_attr, 837 &sgid, 838 flow_class & 0xFFFFF, 839 hoplimit, 840 (flow_class >> 20) & 0xFF, 841 sgid_attr); 842 843 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 844 if (ret) 845 rdma_destroy_ah_attr(ah_attr); 846 847 return ret; 848 } else { 849 rdma_ah_set_dlid(ah_attr, wc->slid); 850 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 851 852 if ((wc->wc_flags & IB_WC_GRH) == 0) 853 return 0; 854 855 if (dgid.global.interface_id != 856 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 857 sgid_attr = rdma_find_gid_by_port( 858 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 859 } else 860 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 861 862 if (IS_ERR(sgid_attr)) 863 return PTR_ERR(sgid_attr); 864 flow_class = be32_to_cpu(grh->version_tclass_flow); 865 rdma_move_grh_sgid_attr(ah_attr, 866 &sgid, 867 flow_class & 0xFFFFF, 868 hoplimit, 869 (flow_class >> 20) & 0xFF, 870 sgid_attr); 871 872 return 0; 873 } 874 } 875 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 876 877 /** 878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 879 * of the reference 880 * 881 * @attr: Pointer to AH attribute structure 882 * @dgid: Destination GID 883 * @flow_label: Flow label 884 * @hop_limit: Hop limit 885 * @traffic_class: traffic class 886 * @sgid_attr: Pointer to SGID attribute 887 * 888 * This takes ownership of the sgid_attr reference. The caller must ensure 889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 890 * calling this function. 891 */ 892 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 893 u32 flow_label, u8 hop_limit, u8 traffic_class, 894 const struct ib_gid_attr *sgid_attr) 895 { 896 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 897 traffic_class); 898 attr->grh.sgid_attr = sgid_attr; 899 } 900 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 901 902 /** 903 * rdma_destroy_ah_attr - Release reference to SGID attribute of 904 * ah attribute. 905 * @ah_attr: Pointer to ah attribute 906 * 907 * Release reference to the SGID attribute of the ah attribute if it is 908 * non NULL. It is safe to call this multiple times, and safe to call it on 909 * a zero initialized ah_attr. 910 */ 911 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 912 { 913 if (ah_attr->grh.sgid_attr) { 914 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 915 ah_attr->grh.sgid_attr = NULL; 916 } 917 } 918 EXPORT_SYMBOL(rdma_destroy_ah_attr); 919 920 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 921 const struct ib_grh *grh, u32 port_num) 922 { 923 struct rdma_ah_attr ah_attr; 924 struct ib_ah *ah; 925 int ret; 926 927 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 928 if (ret) 929 return ERR_PTR(ret); 930 931 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 932 933 rdma_destroy_ah_attr(&ah_attr); 934 return ah; 935 } 936 EXPORT_SYMBOL(ib_create_ah_from_wc); 937 938 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 939 { 940 const struct ib_gid_attr *old_sgid_attr; 941 int ret; 942 943 if (ah->type != ah_attr->type) 944 return -EINVAL; 945 946 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 947 if (ret) 948 return ret; 949 950 ret = ah->device->ops.modify_ah ? 951 ah->device->ops.modify_ah(ah, ah_attr) : 952 -EOPNOTSUPP; 953 954 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 955 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 956 return ret; 957 } 958 EXPORT_SYMBOL(rdma_modify_ah); 959 960 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 961 { 962 ah_attr->grh.sgid_attr = NULL; 963 964 return ah->device->ops.query_ah ? 965 ah->device->ops.query_ah(ah, ah_attr) : 966 -EOPNOTSUPP; 967 } 968 EXPORT_SYMBOL(rdma_query_ah); 969 970 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 971 { 972 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 973 struct ib_pd *pd; 974 int ret; 975 976 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 977 978 pd = ah->pd; 979 980 ret = ah->device->ops.destroy_ah(ah, flags); 981 if (ret) 982 return ret; 983 984 atomic_dec(&pd->usecnt); 985 if (sgid_attr) 986 rdma_put_gid_attr(sgid_attr); 987 988 kfree(ah); 989 return ret; 990 } 991 EXPORT_SYMBOL(rdma_destroy_ah_user); 992 993 /* Shared receive queues */ 994 995 /** 996 * ib_create_srq_user - Creates a SRQ associated with the specified protection 997 * domain. 998 * @pd: The protection domain associated with the SRQ. 999 * @srq_init_attr: A list of initial attributes required to create the 1000 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1001 * the actual capabilities of the created SRQ. 1002 * @uobject: uobject pointer if this is not a kernel SRQ 1003 * @udata: udata pointer if this is not a kernel SRQ 1004 * 1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1006 * requested size of the SRQ, and set to the actual values allocated 1007 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1008 * will always be at least as large as the requested values. 1009 */ 1010 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 1011 struct ib_srq_init_attr *srq_init_attr, 1012 struct ib_usrq_object *uobject, 1013 struct ib_udata *udata) 1014 { 1015 struct ib_srq *srq; 1016 int ret; 1017 1018 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 1019 if (!srq) 1020 return ERR_PTR(-ENOMEM); 1021 1022 srq->device = pd->device; 1023 srq->pd = pd; 1024 srq->event_handler = srq_init_attr->event_handler; 1025 srq->srq_context = srq_init_attr->srq_context; 1026 srq->srq_type = srq_init_attr->srq_type; 1027 srq->uobject = uobject; 1028 1029 if (ib_srq_has_cq(srq->srq_type)) { 1030 srq->ext.cq = srq_init_attr->ext.cq; 1031 atomic_inc(&srq->ext.cq->usecnt); 1032 } 1033 if (srq->srq_type == IB_SRQT_XRC) { 1034 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 1035 if (srq->ext.xrc.xrcd) 1036 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 1037 } 1038 atomic_inc(&pd->usecnt); 1039 1040 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ); 1041 rdma_restrack_parent_name(&srq->res, &pd->res); 1042 1043 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata); 1044 if (ret) { 1045 rdma_restrack_put(&srq->res); 1046 atomic_dec(&pd->usecnt); 1047 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1048 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1049 if (ib_srq_has_cq(srq->srq_type)) 1050 atomic_dec(&srq->ext.cq->usecnt); 1051 kfree(srq); 1052 return ERR_PTR(ret); 1053 } 1054 1055 rdma_restrack_add(&srq->res); 1056 1057 return srq; 1058 } 1059 EXPORT_SYMBOL(ib_create_srq_user); 1060 1061 int ib_modify_srq(struct ib_srq *srq, 1062 struct ib_srq_attr *srq_attr, 1063 enum ib_srq_attr_mask srq_attr_mask) 1064 { 1065 return srq->device->ops.modify_srq ? 1066 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1067 NULL) : -EOPNOTSUPP; 1068 } 1069 EXPORT_SYMBOL(ib_modify_srq); 1070 1071 int ib_query_srq(struct ib_srq *srq, 1072 struct ib_srq_attr *srq_attr) 1073 { 1074 return srq->device->ops.query_srq ? 1075 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1076 } 1077 EXPORT_SYMBOL(ib_query_srq); 1078 1079 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1080 { 1081 int ret; 1082 1083 if (atomic_read(&srq->usecnt)) 1084 return -EBUSY; 1085 1086 ret = srq->device->ops.destroy_srq(srq, udata); 1087 if (ret) 1088 return ret; 1089 1090 atomic_dec(&srq->pd->usecnt); 1091 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1092 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1093 if (ib_srq_has_cq(srq->srq_type)) 1094 atomic_dec(&srq->ext.cq->usecnt); 1095 rdma_restrack_del(&srq->res); 1096 kfree(srq); 1097 1098 return ret; 1099 } 1100 EXPORT_SYMBOL(ib_destroy_srq_user); 1101 1102 /* Queue pairs */ 1103 1104 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1105 { 1106 struct ib_qp *qp = context; 1107 unsigned long flags; 1108 1109 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); 1110 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1111 if (event->element.qp->event_handler) 1112 event->element.qp->event_handler(event, event->element.qp->qp_context); 1113 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); 1114 } 1115 1116 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1117 void (*event_handler)(struct ib_event *, void *), 1118 void *qp_context) 1119 { 1120 struct ib_qp *qp; 1121 unsigned long flags; 1122 int err; 1123 1124 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1125 if (!qp) 1126 return ERR_PTR(-ENOMEM); 1127 1128 qp->real_qp = real_qp; 1129 err = ib_open_shared_qp_security(qp, real_qp->device); 1130 if (err) { 1131 kfree(qp); 1132 return ERR_PTR(err); 1133 } 1134 1135 qp->real_qp = real_qp; 1136 atomic_inc(&real_qp->usecnt); 1137 qp->device = real_qp->device; 1138 qp->event_handler = event_handler; 1139 qp->qp_context = qp_context; 1140 qp->qp_num = real_qp->qp_num; 1141 qp->qp_type = real_qp->qp_type; 1142 1143 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1144 list_add(&qp->open_list, &real_qp->open_list); 1145 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1146 1147 return qp; 1148 } 1149 1150 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1151 struct ib_qp_open_attr *qp_open_attr) 1152 { 1153 struct ib_qp *qp, *real_qp; 1154 1155 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1156 return ERR_PTR(-EINVAL); 1157 1158 down_read(&xrcd->tgt_qps_rwsem); 1159 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num); 1160 if (!real_qp) { 1161 up_read(&xrcd->tgt_qps_rwsem); 1162 return ERR_PTR(-EINVAL); 1163 } 1164 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1165 qp_open_attr->qp_context); 1166 up_read(&xrcd->tgt_qps_rwsem); 1167 return qp; 1168 } 1169 EXPORT_SYMBOL(ib_open_qp); 1170 1171 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1172 struct ib_qp_init_attr *qp_init_attr) 1173 { 1174 struct ib_qp *real_qp = qp; 1175 int err; 1176 1177 qp->event_handler = __ib_shared_qp_event_handler; 1178 qp->qp_context = qp; 1179 qp->pd = NULL; 1180 qp->send_cq = qp->recv_cq = NULL; 1181 qp->srq = NULL; 1182 qp->xrcd = qp_init_attr->xrcd; 1183 atomic_inc(&qp_init_attr->xrcd->usecnt); 1184 INIT_LIST_HEAD(&qp->open_list); 1185 1186 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1187 qp_init_attr->qp_context); 1188 if (IS_ERR(qp)) 1189 return qp; 1190 1191 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num, 1192 real_qp, GFP_KERNEL)); 1193 if (err) { 1194 ib_close_qp(qp); 1195 return ERR_PTR(err); 1196 } 1197 return qp; 1198 } 1199 1200 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd, 1201 struct ib_qp_init_attr *attr, 1202 struct ib_udata *udata, 1203 struct ib_uqp_object *uobj, const char *caller) 1204 { 1205 struct ib_udata dummy = {}; 1206 struct ib_qp *qp; 1207 int ret; 1208 1209 if (!dev->ops.create_qp) 1210 return ERR_PTR(-EOPNOTSUPP); 1211 1212 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp); 1213 if (!qp) 1214 return ERR_PTR(-ENOMEM); 1215 1216 qp->device = dev; 1217 qp->pd = pd; 1218 qp->uobject = uobj; 1219 qp->real_qp = qp; 1220 1221 qp->qp_type = attr->qp_type; 1222 qp->rwq_ind_tbl = attr->rwq_ind_tbl; 1223 qp->srq = attr->srq; 1224 qp->event_handler = attr->event_handler; 1225 qp->port = attr->port_num; 1226 qp->qp_context = attr->qp_context; 1227 1228 spin_lock_init(&qp->mr_lock); 1229 INIT_LIST_HEAD(&qp->rdma_mrs); 1230 INIT_LIST_HEAD(&qp->sig_mrs); 1231 1232 qp->send_cq = attr->send_cq; 1233 qp->recv_cq = attr->recv_cq; 1234 1235 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP); 1236 WARN_ONCE(!udata && !caller, "Missing kernel QP owner"); 1237 rdma_restrack_set_name(&qp->res, udata ? NULL : caller); 1238 ret = dev->ops.create_qp(qp, attr, udata); 1239 if (ret) 1240 goto err_create; 1241 1242 /* 1243 * TODO: The mlx4 internally overwrites send_cq and recv_cq. 1244 * Unfortunately, it is not an easy task to fix that driver. 1245 */ 1246 qp->send_cq = attr->send_cq; 1247 qp->recv_cq = attr->recv_cq; 1248 1249 ret = ib_create_qp_security(qp, dev); 1250 if (ret) 1251 goto err_security; 1252 1253 rdma_restrack_add(&qp->res); 1254 return qp; 1255 1256 err_security: 1257 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL); 1258 err_create: 1259 rdma_restrack_put(&qp->res); 1260 kfree(qp); 1261 return ERR_PTR(ret); 1262 1263 } 1264 1265 /** 1266 * ib_create_qp_user - Creates a QP associated with the specified protection 1267 * domain. 1268 * @dev: IB device 1269 * @pd: The protection domain associated with the QP. 1270 * @attr: A list of initial attributes required to create the 1271 * QP. If QP creation succeeds, then the attributes are updated to 1272 * the actual capabilities of the created QP. 1273 * @udata: User data 1274 * @uobj: uverbs obect 1275 * @caller: caller's build-time module name 1276 */ 1277 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd, 1278 struct ib_qp_init_attr *attr, 1279 struct ib_udata *udata, 1280 struct ib_uqp_object *uobj, const char *caller) 1281 { 1282 struct ib_qp *qp, *xrc_qp; 1283 1284 if (attr->qp_type == IB_QPT_XRC_TGT) 1285 qp = create_qp(dev, pd, attr, NULL, NULL, caller); 1286 else 1287 qp = create_qp(dev, pd, attr, udata, uobj, NULL); 1288 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp)) 1289 return qp; 1290 1291 xrc_qp = create_xrc_qp_user(qp, attr); 1292 if (IS_ERR(xrc_qp)) { 1293 ib_destroy_qp(qp); 1294 return xrc_qp; 1295 } 1296 1297 xrc_qp->uobject = uobj; 1298 return xrc_qp; 1299 } 1300 EXPORT_SYMBOL(ib_create_qp_user); 1301 1302 void ib_qp_usecnt_inc(struct ib_qp *qp) 1303 { 1304 if (qp->pd) 1305 atomic_inc(&qp->pd->usecnt); 1306 if (qp->send_cq) 1307 atomic_inc(&qp->send_cq->usecnt); 1308 if (qp->recv_cq) 1309 atomic_inc(&qp->recv_cq->usecnt); 1310 if (qp->srq) 1311 atomic_inc(&qp->srq->usecnt); 1312 if (qp->rwq_ind_tbl) 1313 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1314 } 1315 EXPORT_SYMBOL(ib_qp_usecnt_inc); 1316 1317 void ib_qp_usecnt_dec(struct ib_qp *qp) 1318 { 1319 if (qp->rwq_ind_tbl) 1320 atomic_dec(&qp->rwq_ind_tbl->usecnt); 1321 if (qp->srq) 1322 atomic_dec(&qp->srq->usecnt); 1323 if (qp->recv_cq) 1324 atomic_dec(&qp->recv_cq->usecnt); 1325 if (qp->send_cq) 1326 atomic_dec(&qp->send_cq->usecnt); 1327 if (qp->pd) 1328 atomic_dec(&qp->pd->usecnt); 1329 } 1330 EXPORT_SYMBOL(ib_qp_usecnt_dec); 1331 1332 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 1333 struct ib_qp_init_attr *qp_init_attr, 1334 const char *caller) 1335 { 1336 struct ib_device *device = pd->device; 1337 struct ib_qp *qp; 1338 int ret; 1339 1340 /* 1341 * If the callers is using the RDMA API calculate the resources 1342 * needed for the RDMA READ/WRITE operations. 1343 * 1344 * Note that these callers need to pass in a port number. 1345 */ 1346 if (qp_init_attr->cap.max_rdma_ctxs) 1347 rdma_rw_init_qp(device, qp_init_attr); 1348 1349 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller); 1350 if (IS_ERR(qp)) 1351 return qp; 1352 1353 ib_qp_usecnt_inc(qp); 1354 1355 if (qp_init_attr->cap.max_rdma_ctxs) { 1356 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1357 if (ret) 1358 goto err; 1359 } 1360 1361 /* 1362 * Note: all hw drivers guarantee that max_send_sge is lower than 1363 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1364 * max_send_sge <= max_sge_rd. 1365 */ 1366 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1367 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1368 device->attrs.max_sge_rd); 1369 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1370 qp->integrity_en = true; 1371 1372 return qp; 1373 1374 err: 1375 ib_destroy_qp(qp); 1376 return ERR_PTR(ret); 1377 1378 } 1379 EXPORT_SYMBOL(ib_create_qp_kernel); 1380 1381 static const struct { 1382 int valid; 1383 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1384 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1385 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1386 [IB_QPS_RESET] = { 1387 [IB_QPS_RESET] = { .valid = 1 }, 1388 [IB_QPS_INIT] = { 1389 .valid = 1, 1390 .req_param = { 1391 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1392 IB_QP_PORT | 1393 IB_QP_QKEY), 1394 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1395 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1396 IB_QP_PORT | 1397 IB_QP_ACCESS_FLAGS), 1398 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1399 IB_QP_PORT | 1400 IB_QP_ACCESS_FLAGS), 1401 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1402 IB_QP_PORT | 1403 IB_QP_ACCESS_FLAGS), 1404 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1405 IB_QP_PORT | 1406 IB_QP_ACCESS_FLAGS), 1407 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1408 IB_QP_QKEY), 1409 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1410 IB_QP_QKEY), 1411 } 1412 }, 1413 }, 1414 [IB_QPS_INIT] = { 1415 [IB_QPS_RESET] = { .valid = 1 }, 1416 [IB_QPS_ERR] = { .valid = 1 }, 1417 [IB_QPS_INIT] = { 1418 .valid = 1, 1419 .opt_param = { 1420 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1421 IB_QP_PORT | 1422 IB_QP_QKEY), 1423 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1424 IB_QP_PORT | 1425 IB_QP_ACCESS_FLAGS), 1426 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1427 IB_QP_PORT | 1428 IB_QP_ACCESS_FLAGS), 1429 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1430 IB_QP_PORT | 1431 IB_QP_ACCESS_FLAGS), 1432 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1433 IB_QP_PORT | 1434 IB_QP_ACCESS_FLAGS), 1435 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1436 IB_QP_QKEY), 1437 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1438 IB_QP_QKEY), 1439 } 1440 }, 1441 [IB_QPS_RTR] = { 1442 .valid = 1, 1443 .req_param = { 1444 [IB_QPT_UC] = (IB_QP_AV | 1445 IB_QP_PATH_MTU | 1446 IB_QP_DEST_QPN | 1447 IB_QP_RQ_PSN), 1448 [IB_QPT_RC] = (IB_QP_AV | 1449 IB_QP_PATH_MTU | 1450 IB_QP_DEST_QPN | 1451 IB_QP_RQ_PSN | 1452 IB_QP_MAX_DEST_RD_ATOMIC | 1453 IB_QP_MIN_RNR_TIMER), 1454 [IB_QPT_XRC_INI] = (IB_QP_AV | 1455 IB_QP_PATH_MTU | 1456 IB_QP_DEST_QPN | 1457 IB_QP_RQ_PSN), 1458 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1459 IB_QP_PATH_MTU | 1460 IB_QP_DEST_QPN | 1461 IB_QP_RQ_PSN | 1462 IB_QP_MAX_DEST_RD_ATOMIC | 1463 IB_QP_MIN_RNR_TIMER), 1464 }, 1465 .opt_param = { 1466 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1467 IB_QP_QKEY), 1468 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1469 IB_QP_ACCESS_FLAGS | 1470 IB_QP_PKEY_INDEX), 1471 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1472 IB_QP_ACCESS_FLAGS | 1473 IB_QP_PKEY_INDEX), 1474 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1475 IB_QP_ACCESS_FLAGS | 1476 IB_QP_PKEY_INDEX), 1477 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1478 IB_QP_ACCESS_FLAGS | 1479 IB_QP_PKEY_INDEX), 1480 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1481 IB_QP_QKEY), 1482 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1483 IB_QP_QKEY), 1484 }, 1485 }, 1486 }, 1487 [IB_QPS_RTR] = { 1488 [IB_QPS_RESET] = { .valid = 1 }, 1489 [IB_QPS_ERR] = { .valid = 1 }, 1490 [IB_QPS_RTS] = { 1491 .valid = 1, 1492 .req_param = { 1493 [IB_QPT_UD] = IB_QP_SQ_PSN, 1494 [IB_QPT_UC] = IB_QP_SQ_PSN, 1495 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1496 IB_QP_RETRY_CNT | 1497 IB_QP_RNR_RETRY | 1498 IB_QP_SQ_PSN | 1499 IB_QP_MAX_QP_RD_ATOMIC), 1500 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1501 IB_QP_RETRY_CNT | 1502 IB_QP_RNR_RETRY | 1503 IB_QP_SQ_PSN | 1504 IB_QP_MAX_QP_RD_ATOMIC), 1505 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1506 IB_QP_SQ_PSN), 1507 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1508 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1509 }, 1510 .opt_param = { 1511 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1512 IB_QP_QKEY), 1513 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1514 IB_QP_ALT_PATH | 1515 IB_QP_ACCESS_FLAGS | 1516 IB_QP_PATH_MIG_STATE), 1517 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1518 IB_QP_ALT_PATH | 1519 IB_QP_ACCESS_FLAGS | 1520 IB_QP_MIN_RNR_TIMER | 1521 IB_QP_PATH_MIG_STATE), 1522 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1523 IB_QP_ALT_PATH | 1524 IB_QP_ACCESS_FLAGS | 1525 IB_QP_PATH_MIG_STATE), 1526 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1527 IB_QP_ALT_PATH | 1528 IB_QP_ACCESS_FLAGS | 1529 IB_QP_MIN_RNR_TIMER | 1530 IB_QP_PATH_MIG_STATE), 1531 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1532 IB_QP_QKEY), 1533 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1534 IB_QP_QKEY), 1535 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1536 } 1537 } 1538 }, 1539 [IB_QPS_RTS] = { 1540 [IB_QPS_RESET] = { .valid = 1 }, 1541 [IB_QPS_ERR] = { .valid = 1 }, 1542 [IB_QPS_RTS] = { 1543 .valid = 1, 1544 .opt_param = { 1545 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1546 IB_QP_QKEY), 1547 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1548 IB_QP_ACCESS_FLAGS | 1549 IB_QP_ALT_PATH | 1550 IB_QP_PATH_MIG_STATE), 1551 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1552 IB_QP_ACCESS_FLAGS | 1553 IB_QP_ALT_PATH | 1554 IB_QP_PATH_MIG_STATE | 1555 IB_QP_MIN_RNR_TIMER), 1556 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1557 IB_QP_ACCESS_FLAGS | 1558 IB_QP_ALT_PATH | 1559 IB_QP_PATH_MIG_STATE), 1560 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1561 IB_QP_ACCESS_FLAGS | 1562 IB_QP_ALT_PATH | 1563 IB_QP_PATH_MIG_STATE | 1564 IB_QP_MIN_RNR_TIMER), 1565 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1566 IB_QP_QKEY), 1567 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1568 IB_QP_QKEY), 1569 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1570 } 1571 }, 1572 [IB_QPS_SQD] = { 1573 .valid = 1, 1574 .opt_param = { 1575 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1576 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1577 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1578 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1579 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1580 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1581 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1582 } 1583 }, 1584 }, 1585 [IB_QPS_SQD] = { 1586 [IB_QPS_RESET] = { .valid = 1 }, 1587 [IB_QPS_ERR] = { .valid = 1 }, 1588 [IB_QPS_RTS] = { 1589 .valid = 1, 1590 .opt_param = { 1591 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1592 IB_QP_QKEY), 1593 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1594 IB_QP_ALT_PATH | 1595 IB_QP_ACCESS_FLAGS | 1596 IB_QP_PATH_MIG_STATE), 1597 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1598 IB_QP_ALT_PATH | 1599 IB_QP_ACCESS_FLAGS | 1600 IB_QP_MIN_RNR_TIMER | 1601 IB_QP_PATH_MIG_STATE), 1602 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1603 IB_QP_ALT_PATH | 1604 IB_QP_ACCESS_FLAGS | 1605 IB_QP_PATH_MIG_STATE), 1606 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1607 IB_QP_ALT_PATH | 1608 IB_QP_ACCESS_FLAGS | 1609 IB_QP_MIN_RNR_TIMER | 1610 IB_QP_PATH_MIG_STATE), 1611 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1612 IB_QP_QKEY), 1613 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1614 IB_QP_QKEY), 1615 } 1616 }, 1617 [IB_QPS_SQD] = { 1618 .valid = 1, 1619 .opt_param = { 1620 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1621 IB_QP_QKEY), 1622 [IB_QPT_UC] = (IB_QP_AV | 1623 IB_QP_ALT_PATH | 1624 IB_QP_ACCESS_FLAGS | 1625 IB_QP_PKEY_INDEX | 1626 IB_QP_PATH_MIG_STATE), 1627 [IB_QPT_RC] = (IB_QP_PORT | 1628 IB_QP_AV | 1629 IB_QP_TIMEOUT | 1630 IB_QP_RETRY_CNT | 1631 IB_QP_RNR_RETRY | 1632 IB_QP_MAX_QP_RD_ATOMIC | 1633 IB_QP_MAX_DEST_RD_ATOMIC | 1634 IB_QP_ALT_PATH | 1635 IB_QP_ACCESS_FLAGS | 1636 IB_QP_PKEY_INDEX | 1637 IB_QP_MIN_RNR_TIMER | 1638 IB_QP_PATH_MIG_STATE), 1639 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1640 IB_QP_AV | 1641 IB_QP_TIMEOUT | 1642 IB_QP_RETRY_CNT | 1643 IB_QP_RNR_RETRY | 1644 IB_QP_MAX_QP_RD_ATOMIC | 1645 IB_QP_ALT_PATH | 1646 IB_QP_ACCESS_FLAGS | 1647 IB_QP_PKEY_INDEX | 1648 IB_QP_PATH_MIG_STATE), 1649 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1650 IB_QP_AV | 1651 IB_QP_TIMEOUT | 1652 IB_QP_MAX_DEST_RD_ATOMIC | 1653 IB_QP_ALT_PATH | 1654 IB_QP_ACCESS_FLAGS | 1655 IB_QP_PKEY_INDEX | 1656 IB_QP_MIN_RNR_TIMER | 1657 IB_QP_PATH_MIG_STATE), 1658 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1659 IB_QP_QKEY), 1660 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1661 IB_QP_QKEY), 1662 } 1663 } 1664 }, 1665 [IB_QPS_SQE] = { 1666 [IB_QPS_RESET] = { .valid = 1 }, 1667 [IB_QPS_ERR] = { .valid = 1 }, 1668 [IB_QPS_RTS] = { 1669 .valid = 1, 1670 .opt_param = { 1671 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1672 IB_QP_QKEY), 1673 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1674 IB_QP_ACCESS_FLAGS), 1675 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1676 IB_QP_QKEY), 1677 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1678 IB_QP_QKEY), 1679 } 1680 } 1681 }, 1682 [IB_QPS_ERR] = { 1683 [IB_QPS_RESET] = { .valid = 1 }, 1684 [IB_QPS_ERR] = { .valid = 1 } 1685 } 1686 }; 1687 1688 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1689 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1690 { 1691 enum ib_qp_attr_mask req_param, opt_param; 1692 1693 if (mask & IB_QP_CUR_STATE && 1694 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1695 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1696 return false; 1697 1698 if (!qp_state_table[cur_state][next_state].valid) 1699 return false; 1700 1701 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1702 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1703 1704 if ((mask & req_param) != req_param) 1705 return false; 1706 1707 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1708 return false; 1709 1710 return true; 1711 } 1712 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1713 1714 /** 1715 * ib_resolve_eth_dmac - Resolve destination mac address 1716 * @device: Device to consider 1717 * @ah_attr: address handle attribute which describes the 1718 * source and destination parameters 1719 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1720 * returns 0 on success or appropriate error code. It initializes the 1721 * necessary ah_attr fields when call is successful. 1722 */ 1723 static int ib_resolve_eth_dmac(struct ib_device *device, 1724 struct rdma_ah_attr *ah_attr) 1725 { 1726 int ret = 0; 1727 1728 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1729 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1730 __be32 addr = 0; 1731 1732 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1733 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1734 } else { 1735 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1736 (char *)ah_attr->roce.dmac); 1737 } 1738 } else { 1739 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1740 } 1741 return ret; 1742 } 1743 1744 static bool is_qp_type_connected(const struct ib_qp *qp) 1745 { 1746 return (qp->qp_type == IB_QPT_UC || 1747 qp->qp_type == IB_QPT_RC || 1748 qp->qp_type == IB_QPT_XRC_INI || 1749 qp->qp_type == IB_QPT_XRC_TGT); 1750 } 1751 1752 /* 1753 * IB core internal function to perform QP attributes modification. 1754 */ 1755 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1756 int attr_mask, struct ib_udata *udata) 1757 { 1758 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1759 const struct ib_gid_attr *old_sgid_attr_av; 1760 const struct ib_gid_attr *old_sgid_attr_alt_av; 1761 int ret; 1762 1763 attr->xmit_slave = NULL; 1764 if (attr_mask & IB_QP_AV) { 1765 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1766 &old_sgid_attr_av); 1767 if (ret) 1768 return ret; 1769 1770 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1771 is_qp_type_connected(qp)) { 1772 struct net_device *slave; 1773 1774 /* 1775 * If the user provided the qp_attr then we have to 1776 * resolve it. Kerne users have to provide already 1777 * resolved rdma_ah_attr's. 1778 */ 1779 if (udata) { 1780 ret = ib_resolve_eth_dmac(qp->device, 1781 &attr->ah_attr); 1782 if (ret) 1783 goto out_av; 1784 } 1785 slave = rdma_lag_get_ah_roce_slave(qp->device, 1786 &attr->ah_attr, 1787 GFP_KERNEL); 1788 if (IS_ERR(slave)) { 1789 ret = PTR_ERR(slave); 1790 goto out_av; 1791 } 1792 attr->xmit_slave = slave; 1793 } 1794 } 1795 if (attr_mask & IB_QP_ALT_PATH) { 1796 /* 1797 * FIXME: This does not track the migration state, so if the 1798 * user loads a new alternate path after the HW has migrated 1799 * from primary->alternate we will keep the wrong 1800 * references. This is OK for IB because the reference 1801 * counting does not serve any functional purpose. 1802 */ 1803 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1804 &old_sgid_attr_alt_av); 1805 if (ret) 1806 goto out_av; 1807 1808 /* 1809 * Today the core code can only handle alternate paths and APM 1810 * for IB. Ban them in roce mode. 1811 */ 1812 if (!(rdma_protocol_ib(qp->device, 1813 attr->alt_ah_attr.port_num) && 1814 rdma_protocol_ib(qp->device, port))) { 1815 ret = -EINVAL; 1816 goto out; 1817 } 1818 } 1819 1820 if (rdma_ib_or_roce(qp->device, port)) { 1821 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1822 dev_warn(&qp->device->dev, 1823 "%s rq_psn overflow, masking to 24 bits\n", 1824 __func__); 1825 attr->rq_psn &= 0xffffff; 1826 } 1827 1828 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1829 dev_warn(&qp->device->dev, 1830 " %s sq_psn overflow, masking to 24 bits\n", 1831 __func__); 1832 attr->sq_psn &= 0xffffff; 1833 } 1834 } 1835 1836 /* 1837 * Bind this qp to a counter automatically based on the rdma counter 1838 * rules. This only set in RST2INIT with port specified 1839 */ 1840 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1841 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1842 rdma_counter_bind_qp_auto(qp, attr->port_num); 1843 1844 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1845 if (ret) 1846 goto out; 1847 1848 if (attr_mask & IB_QP_PORT) 1849 qp->port = attr->port_num; 1850 if (attr_mask & IB_QP_AV) 1851 qp->av_sgid_attr = 1852 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1853 if (attr_mask & IB_QP_ALT_PATH) 1854 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1855 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1856 1857 out: 1858 if (attr_mask & IB_QP_ALT_PATH) 1859 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1860 out_av: 1861 if (attr_mask & IB_QP_AV) { 1862 rdma_lag_put_ah_roce_slave(attr->xmit_slave); 1863 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1864 } 1865 return ret; 1866 } 1867 1868 /** 1869 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1870 * @ib_qp: The QP to modify. 1871 * @attr: On input, specifies the QP attributes to modify. On output, 1872 * the current values of selected QP attributes are returned. 1873 * @attr_mask: A bit-mask used to specify which attributes of the QP 1874 * are being modified. 1875 * @udata: pointer to user's input output buffer information 1876 * are being modified. 1877 * It returns 0 on success and returns appropriate error code on error. 1878 */ 1879 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1880 int attr_mask, struct ib_udata *udata) 1881 { 1882 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1883 } 1884 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1885 1886 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes, 1887 u16 *speed, u8 *width) 1888 { 1889 if (!lanes) { 1890 if (netdev_speed <= SPEED_1000) { 1891 *width = IB_WIDTH_1X; 1892 *speed = IB_SPEED_SDR; 1893 } else if (netdev_speed <= SPEED_10000) { 1894 *width = IB_WIDTH_1X; 1895 *speed = IB_SPEED_FDR10; 1896 } else if (netdev_speed <= SPEED_20000) { 1897 *width = IB_WIDTH_4X; 1898 *speed = IB_SPEED_DDR; 1899 } else if (netdev_speed <= SPEED_25000) { 1900 *width = IB_WIDTH_1X; 1901 *speed = IB_SPEED_EDR; 1902 } else if (netdev_speed <= SPEED_40000) { 1903 *width = IB_WIDTH_4X; 1904 *speed = IB_SPEED_FDR10; 1905 } else if (netdev_speed <= SPEED_50000) { 1906 *width = IB_WIDTH_2X; 1907 *speed = IB_SPEED_EDR; 1908 } else if (netdev_speed <= SPEED_100000) { 1909 *width = IB_WIDTH_4X; 1910 *speed = IB_SPEED_EDR; 1911 } else if (netdev_speed <= SPEED_200000) { 1912 *width = IB_WIDTH_4X; 1913 *speed = IB_SPEED_HDR; 1914 } else { 1915 *width = IB_WIDTH_4X; 1916 *speed = IB_SPEED_NDR; 1917 } 1918 1919 return; 1920 } 1921 1922 switch (lanes) { 1923 case 1: 1924 *width = IB_WIDTH_1X; 1925 break; 1926 case 2: 1927 *width = IB_WIDTH_2X; 1928 break; 1929 case 4: 1930 *width = IB_WIDTH_4X; 1931 break; 1932 case 8: 1933 *width = IB_WIDTH_8X; 1934 break; 1935 case 12: 1936 *width = IB_WIDTH_12X; 1937 break; 1938 default: 1939 *width = IB_WIDTH_1X; 1940 } 1941 1942 switch (netdev_speed / lanes) { 1943 case SPEED_2500: 1944 *speed = IB_SPEED_SDR; 1945 break; 1946 case SPEED_5000: 1947 *speed = IB_SPEED_DDR; 1948 break; 1949 case SPEED_10000: 1950 *speed = IB_SPEED_FDR10; 1951 break; 1952 case SPEED_14000: 1953 *speed = IB_SPEED_FDR; 1954 break; 1955 case SPEED_25000: 1956 *speed = IB_SPEED_EDR; 1957 break; 1958 case SPEED_50000: 1959 *speed = IB_SPEED_HDR; 1960 break; 1961 case SPEED_100000: 1962 *speed = IB_SPEED_NDR; 1963 break; 1964 default: 1965 *speed = IB_SPEED_SDR; 1966 } 1967 } 1968 1969 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width) 1970 { 1971 int rc; 1972 u32 netdev_speed; 1973 struct net_device *netdev; 1974 struct ethtool_link_ksettings lksettings; 1975 1976 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1977 return -EINVAL; 1978 1979 netdev = ib_device_get_netdev(dev, port_num); 1980 if (!netdev) 1981 return -ENODEV; 1982 1983 rtnl_lock(); 1984 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1985 rtnl_unlock(); 1986 1987 dev_put(netdev); 1988 1989 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) { 1990 netdev_speed = lksettings.base.speed; 1991 } else { 1992 netdev_speed = SPEED_1000; 1993 if (rc) 1994 pr_warn("%s speed is unknown, defaulting to %u\n", 1995 netdev->name, netdev_speed); 1996 } 1997 1998 ib_get_width_and_speed(netdev_speed, lksettings.lanes, 1999 speed, width); 2000 2001 return 0; 2002 } 2003 EXPORT_SYMBOL(ib_get_eth_speed); 2004 2005 int ib_modify_qp(struct ib_qp *qp, 2006 struct ib_qp_attr *qp_attr, 2007 int qp_attr_mask) 2008 { 2009 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 2010 } 2011 EXPORT_SYMBOL(ib_modify_qp); 2012 2013 int ib_query_qp(struct ib_qp *qp, 2014 struct ib_qp_attr *qp_attr, 2015 int qp_attr_mask, 2016 struct ib_qp_init_attr *qp_init_attr) 2017 { 2018 qp_attr->ah_attr.grh.sgid_attr = NULL; 2019 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 2020 2021 return qp->device->ops.query_qp ? 2022 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 2023 qp_init_attr) : -EOPNOTSUPP; 2024 } 2025 EXPORT_SYMBOL(ib_query_qp); 2026 2027 int ib_close_qp(struct ib_qp *qp) 2028 { 2029 struct ib_qp *real_qp; 2030 unsigned long flags; 2031 2032 real_qp = qp->real_qp; 2033 if (real_qp == qp) 2034 return -EINVAL; 2035 2036 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 2037 list_del(&qp->open_list); 2038 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 2039 2040 atomic_dec(&real_qp->usecnt); 2041 if (qp->qp_sec) 2042 ib_close_shared_qp_security(qp->qp_sec); 2043 kfree(qp); 2044 2045 return 0; 2046 } 2047 EXPORT_SYMBOL(ib_close_qp); 2048 2049 static int __ib_destroy_shared_qp(struct ib_qp *qp) 2050 { 2051 struct ib_xrcd *xrcd; 2052 struct ib_qp *real_qp; 2053 int ret; 2054 2055 real_qp = qp->real_qp; 2056 xrcd = real_qp->xrcd; 2057 down_write(&xrcd->tgt_qps_rwsem); 2058 ib_close_qp(qp); 2059 if (atomic_read(&real_qp->usecnt) == 0) 2060 xa_erase(&xrcd->tgt_qps, real_qp->qp_num); 2061 else 2062 real_qp = NULL; 2063 up_write(&xrcd->tgt_qps_rwsem); 2064 2065 if (real_qp) { 2066 ret = ib_destroy_qp(real_qp); 2067 if (!ret) 2068 atomic_dec(&xrcd->usecnt); 2069 } 2070 2071 return 0; 2072 } 2073 2074 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 2075 { 2076 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 2077 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 2078 struct ib_qp_security *sec; 2079 int ret; 2080 2081 WARN_ON_ONCE(qp->mrs_used > 0); 2082 2083 if (atomic_read(&qp->usecnt)) 2084 return -EBUSY; 2085 2086 if (qp->real_qp != qp) 2087 return __ib_destroy_shared_qp(qp); 2088 2089 sec = qp->qp_sec; 2090 if (sec) 2091 ib_destroy_qp_security_begin(sec); 2092 2093 if (!qp->uobject) 2094 rdma_rw_cleanup_mrs(qp); 2095 2096 rdma_counter_unbind_qp(qp, true); 2097 ret = qp->device->ops.destroy_qp(qp, udata); 2098 if (ret) { 2099 if (sec) 2100 ib_destroy_qp_security_abort(sec); 2101 return ret; 2102 } 2103 2104 if (alt_path_sgid_attr) 2105 rdma_put_gid_attr(alt_path_sgid_attr); 2106 if (av_sgid_attr) 2107 rdma_put_gid_attr(av_sgid_attr); 2108 2109 ib_qp_usecnt_dec(qp); 2110 if (sec) 2111 ib_destroy_qp_security_end(sec); 2112 2113 rdma_restrack_del(&qp->res); 2114 kfree(qp); 2115 return ret; 2116 } 2117 EXPORT_SYMBOL(ib_destroy_qp_user); 2118 2119 /* Completion queues */ 2120 2121 struct ib_cq *__ib_create_cq(struct ib_device *device, 2122 ib_comp_handler comp_handler, 2123 void (*event_handler)(struct ib_event *, void *), 2124 void *cq_context, 2125 const struct ib_cq_init_attr *cq_attr, 2126 const char *caller) 2127 { 2128 struct ib_cq *cq; 2129 int ret; 2130 2131 cq = rdma_zalloc_drv_obj(device, ib_cq); 2132 if (!cq) 2133 return ERR_PTR(-ENOMEM); 2134 2135 cq->device = device; 2136 cq->uobject = NULL; 2137 cq->comp_handler = comp_handler; 2138 cq->event_handler = event_handler; 2139 cq->cq_context = cq_context; 2140 atomic_set(&cq->usecnt, 0); 2141 2142 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); 2143 rdma_restrack_set_name(&cq->res, caller); 2144 2145 ret = device->ops.create_cq(cq, cq_attr, NULL); 2146 if (ret) { 2147 rdma_restrack_put(&cq->res); 2148 kfree(cq); 2149 return ERR_PTR(ret); 2150 } 2151 2152 rdma_restrack_add(&cq->res); 2153 return cq; 2154 } 2155 EXPORT_SYMBOL(__ib_create_cq); 2156 2157 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 2158 { 2159 if (cq->shared) 2160 return -EOPNOTSUPP; 2161 2162 return cq->device->ops.modify_cq ? 2163 cq->device->ops.modify_cq(cq, cq_count, 2164 cq_period) : -EOPNOTSUPP; 2165 } 2166 EXPORT_SYMBOL(rdma_set_cq_moderation); 2167 2168 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 2169 { 2170 int ret; 2171 2172 if (WARN_ON_ONCE(cq->shared)) 2173 return -EOPNOTSUPP; 2174 2175 if (atomic_read(&cq->usecnt)) 2176 return -EBUSY; 2177 2178 ret = cq->device->ops.destroy_cq(cq, udata); 2179 if (ret) 2180 return ret; 2181 2182 rdma_restrack_del(&cq->res); 2183 kfree(cq); 2184 return ret; 2185 } 2186 EXPORT_SYMBOL(ib_destroy_cq_user); 2187 2188 int ib_resize_cq(struct ib_cq *cq, int cqe) 2189 { 2190 if (cq->shared) 2191 return -EOPNOTSUPP; 2192 2193 return cq->device->ops.resize_cq ? 2194 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 2195 } 2196 EXPORT_SYMBOL(ib_resize_cq); 2197 2198 /* Memory regions */ 2199 2200 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 2201 u64 virt_addr, int access_flags) 2202 { 2203 struct ib_mr *mr; 2204 2205 if (access_flags & IB_ACCESS_ON_DEMAND) { 2206 if (!(pd->device->attrs.kernel_cap_flags & 2207 IBK_ON_DEMAND_PAGING)) { 2208 pr_debug("ODP support not available\n"); 2209 return ERR_PTR(-EINVAL); 2210 } 2211 } 2212 2213 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, 2214 access_flags, NULL); 2215 2216 if (IS_ERR(mr)) 2217 return mr; 2218 2219 mr->device = pd->device; 2220 mr->type = IB_MR_TYPE_USER; 2221 mr->pd = pd; 2222 mr->dm = NULL; 2223 atomic_inc(&pd->usecnt); 2224 mr->iova = virt_addr; 2225 mr->length = length; 2226 2227 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2228 rdma_restrack_parent_name(&mr->res, &pd->res); 2229 rdma_restrack_add(&mr->res); 2230 2231 return mr; 2232 } 2233 EXPORT_SYMBOL(ib_reg_user_mr); 2234 2235 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 2236 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2237 { 2238 if (!pd->device->ops.advise_mr) 2239 return -EOPNOTSUPP; 2240 2241 if (!num_sge) 2242 return 0; 2243 2244 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, 2245 NULL); 2246 } 2247 EXPORT_SYMBOL(ib_advise_mr); 2248 2249 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 2250 { 2251 struct ib_pd *pd = mr->pd; 2252 struct ib_dm *dm = mr->dm; 2253 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 2254 int ret; 2255 2256 trace_mr_dereg(mr); 2257 rdma_restrack_del(&mr->res); 2258 ret = mr->device->ops.dereg_mr(mr, udata); 2259 if (!ret) { 2260 atomic_dec(&pd->usecnt); 2261 if (dm) 2262 atomic_dec(&dm->usecnt); 2263 kfree(sig_attrs); 2264 } 2265 2266 return ret; 2267 } 2268 EXPORT_SYMBOL(ib_dereg_mr_user); 2269 2270 /** 2271 * ib_alloc_mr() - Allocates a memory region 2272 * @pd: protection domain associated with the region 2273 * @mr_type: memory region type 2274 * @max_num_sg: maximum sg entries available for registration. 2275 * 2276 * Notes: 2277 * Memory registeration page/sg lists must not exceed max_num_sg. 2278 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2279 * max_num_sg * used_page_size. 2280 * 2281 */ 2282 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2283 u32 max_num_sg) 2284 { 2285 struct ib_mr *mr; 2286 2287 if (!pd->device->ops.alloc_mr) { 2288 mr = ERR_PTR(-EOPNOTSUPP); 2289 goto out; 2290 } 2291 2292 if (mr_type == IB_MR_TYPE_INTEGRITY) { 2293 WARN_ON_ONCE(1); 2294 mr = ERR_PTR(-EINVAL); 2295 goto out; 2296 } 2297 2298 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); 2299 if (IS_ERR(mr)) 2300 goto out; 2301 2302 mr->device = pd->device; 2303 mr->pd = pd; 2304 mr->dm = NULL; 2305 mr->uobject = NULL; 2306 atomic_inc(&pd->usecnt); 2307 mr->need_inval = false; 2308 mr->type = mr_type; 2309 mr->sig_attrs = NULL; 2310 2311 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2312 rdma_restrack_parent_name(&mr->res, &pd->res); 2313 rdma_restrack_add(&mr->res); 2314 out: 2315 trace_mr_alloc(pd, mr_type, max_num_sg, mr); 2316 return mr; 2317 } 2318 EXPORT_SYMBOL(ib_alloc_mr); 2319 2320 /** 2321 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2322 * @pd: protection domain associated with the region 2323 * @max_num_data_sg: maximum data sg entries available for registration 2324 * @max_num_meta_sg: maximum metadata sg entries available for 2325 * registration 2326 * 2327 * Notes: 2328 * Memory registration page/sg lists must not exceed max_num_sg, 2329 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2330 * 2331 */ 2332 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2333 u32 max_num_data_sg, 2334 u32 max_num_meta_sg) 2335 { 2336 struct ib_mr *mr; 2337 struct ib_sig_attrs *sig_attrs; 2338 2339 if (!pd->device->ops.alloc_mr_integrity || 2340 !pd->device->ops.map_mr_sg_pi) { 2341 mr = ERR_PTR(-EOPNOTSUPP); 2342 goto out; 2343 } 2344 2345 if (!max_num_meta_sg) { 2346 mr = ERR_PTR(-EINVAL); 2347 goto out; 2348 } 2349 2350 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2351 if (!sig_attrs) { 2352 mr = ERR_PTR(-ENOMEM); 2353 goto out; 2354 } 2355 2356 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2357 max_num_meta_sg); 2358 if (IS_ERR(mr)) { 2359 kfree(sig_attrs); 2360 goto out; 2361 } 2362 2363 mr->device = pd->device; 2364 mr->pd = pd; 2365 mr->dm = NULL; 2366 mr->uobject = NULL; 2367 atomic_inc(&pd->usecnt); 2368 mr->need_inval = false; 2369 mr->type = IB_MR_TYPE_INTEGRITY; 2370 mr->sig_attrs = sig_attrs; 2371 2372 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2373 rdma_restrack_parent_name(&mr->res, &pd->res); 2374 rdma_restrack_add(&mr->res); 2375 out: 2376 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); 2377 return mr; 2378 } 2379 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2380 2381 /* Multicast groups */ 2382 2383 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2384 { 2385 struct ib_qp_init_attr init_attr = {}; 2386 struct ib_qp_attr attr = {}; 2387 int num_eth_ports = 0; 2388 unsigned int port; 2389 2390 /* If QP state >= init, it is assigned to a port and we can check this 2391 * port only. 2392 */ 2393 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2394 if (attr.qp_state >= IB_QPS_INIT) { 2395 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2396 IB_LINK_LAYER_INFINIBAND) 2397 return true; 2398 goto lid_check; 2399 } 2400 } 2401 2402 /* Can't get a quick answer, iterate over all ports */ 2403 rdma_for_each_port(qp->device, port) 2404 if (rdma_port_get_link_layer(qp->device, port) != 2405 IB_LINK_LAYER_INFINIBAND) 2406 num_eth_ports++; 2407 2408 /* If we have at lease one Ethernet port, RoCE annex declares that 2409 * multicast LID should be ignored. We can't tell at this step if the 2410 * QP belongs to an IB or Ethernet port. 2411 */ 2412 if (num_eth_ports) 2413 return true; 2414 2415 /* If all the ports are IB, we can check according to IB spec. */ 2416 lid_check: 2417 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2418 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2419 } 2420 2421 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2422 { 2423 int ret; 2424 2425 if (!qp->device->ops.attach_mcast) 2426 return -EOPNOTSUPP; 2427 2428 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2429 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2430 return -EINVAL; 2431 2432 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2433 if (!ret) 2434 atomic_inc(&qp->usecnt); 2435 return ret; 2436 } 2437 EXPORT_SYMBOL(ib_attach_mcast); 2438 2439 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2440 { 2441 int ret; 2442 2443 if (!qp->device->ops.detach_mcast) 2444 return -EOPNOTSUPP; 2445 2446 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2447 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2448 return -EINVAL; 2449 2450 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2451 if (!ret) 2452 atomic_dec(&qp->usecnt); 2453 return ret; 2454 } 2455 EXPORT_SYMBOL(ib_detach_mcast); 2456 2457 /** 2458 * ib_alloc_xrcd_user - Allocates an XRC domain. 2459 * @device: The device on which to allocate the XRC domain. 2460 * @inode: inode to connect XRCD 2461 * @udata: Valid user data or NULL for kernel object 2462 */ 2463 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 2464 struct inode *inode, struct ib_udata *udata) 2465 { 2466 struct ib_xrcd *xrcd; 2467 int ret; 2468 2469 if (!device->ops.alloc_xrcd) 2470 return ERR_PTR(-EOPNOTSUPP); 2471 2472 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd); 2473 if (!xrcd) 2474 return ERR_PTR(-ENOMEM); 2475 2476 xrcd->device = device; 2477 xrcd->inode = inode; 2478 atomic_set(&xrcd->usecnt, 0); 2479 init_rwsem(&xrcd->tgt_qps_rwsem); 2480 xa_init(&xrcd->tgt_qps); 2481 2482 ret = device->ops.alloc_xrcd(xrcd, udata); 2483 if (ret) 2484 goto err; 2485 return xrcd; 2486 err: 2487 kfree(xrcd); 2488 return ERR_PTR(ret); 2489 } 2490 EXPORT_SYMBOL(ib_alloc_xrcd_user); 2491 2492 /** 2493 * ib_dealloc_xrcd_user - Deallocates an XRC domain. 2494 * @xrcd: The XRC domain to deallocate. 2495 * @udata: Valid user data or NULL for kernel object 2496 */ 2497 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata) 2498 { 2499 int ret; 2500 2501 if (atomic_read(&xrcd->usecnt)) 2502 return -EBUSY; 2503 2504 WARN_ON(!xa_empty(&xrcd->tgt_qps)); 2505 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2506 if (ret) 2507 return ret; 2508 kfree(xrcd); 2509 return ret; 2510 } 2511 EXPORT_SYMBOL(ib_dealloc_xrcd_user); 2512 2513 /** 2514 * ib_create_wq - Creates a WQ associated with the specified protection 2515 * domain. 2516 * @pd: The protection domain associated with the WQ. 2517 * @wq_attr: A list of initial attributes required to create the 2518 * WQ. If WQ creation succeeds, then the attributes are updated to 2519 * the actual capabilities of the created WQ. 2520 * 2521 * wq_attr->max_wr and wq_attr->max_sge determine 2522 * the requested size of the WQ, and set to the actual values allocated 2523 * on return. 2524 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2525 * at least as large as the requested values. 2526 */ 2527 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2528 struct ib_wq_init_attr *wq_attr) 2529 { 2530 struct ib_wq *wq; 2531 2532 if (!pd->device->ops.create_wq) 2533 return ERR_PTR(-EOPNOTSUPP); 2534 2535 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2536 if (!IS_ERR(wq)) { 2537 wq->event_handler = wq_attr->event_handler; 2538 wq->wq_context = wq_attr->wq_context; 2539 wq->wq_type = wq_attr->wq_type; 2540 wq->cq = wq_attr->cq; 2541 wq->device = pd->device; 2542 wq->pd = pd; 2543 wq->uobject = NULL; 2544 atomic_inc(&pd->usecnt); 2545 atomic_inc(&wq_attr->cq->usecnt); 2546 atomic_set(&wq->usecnt, 0); 2547 } 2548 return wq; 2549 } 2550 EXPORT_SYMBOL(ib_create_wq); 2551 2552 /** 2553 * ib_destroy_wq_user - Destroys the specified user WQ. 2554 * @wq: The WQ to destroy. 2555 * @udata: Valid user data 2556 */ 2557 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata) 2558 { 2559 struct ib_cq *cq = wq->cq; 2560 struct ib_pd *pd = wq->pd; 2561 int ret; 2562 2563 if (atomic_read(&wq->usecnt)) 2564 return -EBUSY; 2565 2566 ret = wq->device->ops.destroy_wq(wq, udata); 2567 if (ret) 2568 return ret; 2569 2570 atomic_dec(&pd->usecnt); 2571 atomic_dec(&cq->usecnt); 2572 return ret; 2573 } 2574 EXPORT_SYMBOL(ib_destroy_wq_user); 2575 2576 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2577 struct ib_mr_status *mr_status) 2578 { 2579 if (!mr->device->ops.check_mr_status) 2580 return -EOPNOTSUPP; 2581 2582 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2583 } 2584 EXPORT_SYMBOL(ib_check_mr_status); 2585 2586 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 2587 int state) 2588 { 2589 if (!device->ops.set_vf_link_state) 2590 return -EOPNOTSUPP; 2591 2592 return device->ops.set_vf_link_state(device, vf, port, state); 2593 } 2594 EXPORT_SYMBOL(ib_set_vf_link_state); 2595 2596 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 2597 struct ifla_vf_info *info) 2598 { 2599 if (!device->ops.get_vf_config) 2600 return -EOPNOTSUPP; 2601 2602 return device->ops.get_vf_config(device, vf, port, info); 2603 } 2604 EXPORT_SYMBOL(ib_get_vf_config); 2605 2606 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 2607 struct ifla_vf_stats *stats) 2608 { 2609 if (!device->ops.get_vf_stats) 2610 return -EOPNOTSUPP; 2611 2612 return device->ops.get_vf_stats(device, vf, port, stats); 2613 } 2614 EXPORT_SYMBOL(ib_get_vf_stats); 2615 2616 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 2617 int type) 2618 { 2619 if (!device->ops.set_vf_guid) 2620 return -EOPNOTSUPP; 2621 2622 return device->ops.set_vf_guid(device, vf, port, guid, type); 2623 } 2624 EXPORT_SYMBOL(ib_set_vf_guid); 2625 2626 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 2627 struct ifla_vf_guid *node_guid, 2628 struct ifla_vf_guid *port_guid) 2629 { 2630 if (!device->ops.get_vf_guid) 2631 return -EOPNOTSUPP; 2632 2633 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2634 } 2635 EXPORT_SYMBOL(ib_get_vf_guid); 2636 /** 2637 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2638 * information) and set an appropriate memory region for registration. 2639 * @mr: memory region 2640 * @data_sg: dma mapped scatterlist for data 2641 * @data_sg_nents: number of entries in data_sg 2642 * @data_sg_offset: offset in bytes into data_sg 2643 * @meta_sg: dma mapped scatterlist for metadata 2644 * @meta_sg_nents: number of entries in meta_sg 2645 * @meta_sg_offset: offset in bytes into meta_sg 2646 * @page_size: page vector desired page size 2647 * 2648 * Constraints: 2649 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2650 * 2651 * Return: 0 on success. 2652 * 2653 * After this completes successfully, the memory region 2654 * is ready for registration. 2655 */ 2656 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2657 int data_sg_nents, unsigned int *data_sg_offset, 2658 struct scatterlist *meta_sg, int meta_sg_nents, 2659 unsigned int *meta_sg_offset, unsigned int page_size) 2660 { 2661 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2662 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2663 return -EOPNOTSUPP; 2664 2665 mr->page_size = page_size; 2666 2667 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2668 data_sg_offset, meta_sg, 2669 meta_sg_nents, meta_sg_offset); 2670 } 2671 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2672 2673 /** 2674 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2675 * and set it the memory region. 2676 * @mr: memory region 2677 * @sg: dma mapped scatterlist 2678 * @sg_nents: number of entries in sg 2679 * @sg_offset: offset in bytes into sg 2680 * @page_size: page vector desired page size 2681 * 2682 * Constraints: 2683 * 2684 * - The first sg element is allowed to have an offset. 2685 * - Each sg element must either be aligned to page_size or virtually 2686 * contiguous to the previous element. In case an sg element has a 2687 * non-contiguous offset, the mapping prefix will not include it. 2688 * - The last sg element is allowed to have length less than page_size. 2689 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2690 * then only max_num_sg entries will be mapped. 2691 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2692 * constraints holds and the page_size argument is ignored. 2693 * 2694 * Returns the number of sg elements that were mapped to the memory region. 2695 * 2696 * After this completes successfully, the memory region 2697 * is ready for registration. 2698 */ 2699 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2700 unsigned int *sg_offset, unsigned int page_size) 2701 { 2702 if (unlikely(!mr->device->ops.map_mr_sg)) 2703 return -EOPNOTSUPP; 2704 2705 mr->page_size = page_size; 2706 2707 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2708 } 2709 EXPORT_SYMBOL(ib_map_mr_sg); 2710 2711 /** 2712 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2713 * to a page vector 2714 * @mr: memory region 2715 * @sgl: dma mapped scatterlist 2716 * @sg_nents: number of entries in sg 2717 * @sg_offset_p: ==== ======================================================= 2718 * IN start offset in bytes into sg 2719 * OUT offset in bytes for element n of the sg of the first 2720 * byte that has not been processed where n is the return 2721 * value of this function. 2722 * ==== ======================================================= 2723 * @set_page: driver page assignment function pointer 2724 * 2725 * Core service helper for drivers to convert the largest 2726 * prefix of given sg list to a page vector. The sg list 2727 * prefix converted is the prefix that meet the requirements 2728 * of ib_map_mr_sg. 2729 * 2730 * Returns the number of sg elements that were assigned to 2731 * a page vector. 2732 */ 2733 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2734 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2735 { 2736 struct scatterlist *sg; 2737 u64 last_end_dma_addr = 0; 2738 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2739 unsigned int last_page_off = 0; 2740 u64 page_mask = ~((u64)mr->page_size - 1); 2741 int i, ret; 2742 2743 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2744 return -EINVAL; 2745 2746 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2747 mr->length = 0; 2748 2749 for_each_sg(sgl, sg, sg_nents, i) { 2750 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2751 u64 prev_addr = dma_addr; 2752 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2753 u64 end_dma_addr = dma_addr + dma_len; 2754 u64 page_addr = dma_addr & page_mask; 2755 2756 /* 2757 * For the second and later elements, check whether either the 2758 * end of element i-1 or the start of element i is not aligned 2759 * on a page boundary. 2760 */ 2761 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2762 /* Stop mapping if there is a gap. */ 2763 if (last_end_dma_addr != dma_addr) 2764 break; 2765 2766 /* 2767 * Coalesce this element with the last. If it is small 2768 * enough just update mr->length. Otherwise start 2769 * mapping from the next page. 2770 */ 2771 goto next_page; 2772 } 2773 2774 do { 2775 ret = set_page(mr, page_addr); 2776 if (unlikely(ret < 0)) { 2777 sg_offset = prev_addr - sg_dma_address(sg); 2778 mr->length += prev_addr - dma_addr; 2779 if (sg_offset_p) 2780 *sg_offset_p = sg_offset; 2781 return i || sg_offset ? i : ret; 2782 } 2783 prev_addr = page_addr; 2784 next_page: 2785 page_addr += mr->page_size; 2786 } while (page_addr < end_dma_addr); 2787 2788 mr->length += dma_len; 2789 last_end_dma_addr = end_dma_addr; 2790 last_page_off = end_dma_addr & ~page_mask; 2791 2792 sg_offset = 0; 2793 } 2794 2795 if (sg_offset_p) 2796 *sg_offset_p = 0; 2797 return i; 2798 } 2799 EXPORT_SYMBOL(ib_sg_to_pages); 2800 2801 struct ib_drain_cqe { 2802 struct ib_cqe cqe; 2803 struct completion done; 2804 }; 2805 2806 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2807 { 2808 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2809 cqe); 2810 2811 complete(&cqe->done); 2812 } 2813 2814 /* 2815 * Post a WR and block until its completion is reaped for the SQ. 2816 */ 2817 static void __ib_drain_sq(struct ib_qp *qp) 2818 { 2819 struct ib_cq *cq = qp->send_cq; 2820 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2821 struct ib_drain_cqe sdrain; 2822 struct ib_rdma_wr swr = { 2823 .wr = { 2824 .next = NULL, 2825 { .wr_cqe = &sdrain.cqe, }, 2826 .opcode = IB_WR_RDMA_WRITE, 2827 }, 2828 }; 2829 int ret; 2830 2831 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2832 if (ret) { 2833 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2834 return; 2835 } 2836 2837 sdrain.cqe.done = ib_drain_qp_done; 2838 init_completion(&sdrain.done); 2839 2840 ret = ib_post_send(qp, &swr.wr, NULL); 2841 if (ret) { 2842 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2843 return; 2844 } 2845 2846 if (cq->poll_ctx == IB_POLL_DIRECT) 2847 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2848 ib_process_cq_direct(cq, -1); 2849 else 2850 wait_for_completion(&sdrain.done); 2851 } 2852 2853 /* 2854 * Post a WR and block until its completion is reaped for the RQ. 2855 */ 2856 static void __ib_drain_rq(struct ib_qp *qp) 2857 { 2858 struct ib_cq *cq = qp->recv_cq; 2859 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2860 struct ib_drain_cqe rdrain; 2861 struct ib_recv_wr rwr = {}; 2862 int ret; 2863 2864 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2865 if (ret) { 2866 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2867 return; 2868 } 2869 2870 rwr.wr_cqe = &rdrain.cqe; 2871 rdrain.cqe.done = ib_drain_qp_done; 2872 init_completion(&rdrain.done); 2873 2874 ret = ib_post_recv(qp, &rwr, NULL); 2875 if (ret) { 2876 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2877 return; 2878 } 2879 2880 if (cq->poll_ctx == IB_POLL_DIRECT) 2881 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2882 ib_process_cq_direct(cq, -1); 2883 else 2884 wait_for_completion(&rdrain.done); 2885 } 2886 2887 /** 2888 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2889 * application. 2890 * @qp: queue pair to drain 2891 * 2892 * If the device has a provider-specific drain function, then 2893 * call that. Otherwise call the generic drain function 2894 * __ib_drain_sq(). 2895 * 2896 * The caller must: 2897 * 2898 * ensure there is room in the CQ and SQ for the drain work request and 2899 * completion. 2900 * 2901 * allocate the CQ using ib_alloc_cq(). 2902 * 2903 * ensure that there are no other contexts that are posting WRs concurrently. 2904 * Otherwise the drain is not guaranteed. 2905 */ 2906 void ib_drain_sq(struct ib_qp *qp) 2907 { 2908 if (qp->device->ops.drain_sq) 2909 qp->device->ops.drain_sq(qp); 2910 else 2911 __ib_drain_sq(qp); 2912 trace_cq_drain_complete(qp->send_cq); 2913 } 2914 EXPORT_SYMBOL(ib_drain_sq); 2915 2916 /** 2917 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2918 * application. 2919 * @qp: queue pair to drain 2920 * 2921 * If the device has a provider-specific drain function, then 2922 * call that. Otherwise call the generic drain function 2923 * __ib_drain_rq(). 2924 * 2925 * The caller must: 2926 * 2927 * ensure there is room in the CQ and RQ for the drain work request and 2928 * completion. 2929 * 2930 * allocate the CQ using ib_alloc_cq(). 2931 * 2932 * ensure that there are no other contexts that are posting WRs concurrently. 2933 * Otherwise the drain is not guaranteed. 2934 */ 2935 void ib_drain_rq(struct ib_qp *qp) 2936 { 2937 if (qp->device->ops.drain_rq) 2938 qp->device->ops.drain_rq(qp); 2939 else 2940 __ib_drain_rq(qp); 2941 trace_cq_drain_complete(qp->recv_cq); 2942 } 2943 EXPORT_SYMBOL(ib_drain_rq); 2944 2945 /** 2946 * ib_drain_qp() - Block until all CQEs have been consumed by the 2947 * application on both the RQ and SQ. 2948 * @qp: queue pair to drain 2949 * 2950 * The caller must: 2951 * 2952 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2953 * and completions. 2954 * 2955 * allocate the CQs using ib_alloc_cq(). 2956 * 2957 * ensure that there are no other contexts that are posting WRs concurrently. 2958 * Otherwise the drain is not guaranteed. 2959 */ 2960 void ib_drain_qp(struct ib_qp *qp) 2961 { 2962 ib_drain_sq(qp); 2963 if (!qp->srq) 2964 ib_drain_rq(qp); 2965 } 2966 EXPORT_SYMBOL(ib_drain_qp); 2967 2968 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 2969 enum rdma_netdev_t type, const char *name, 2970 unsigned char name_assign_type, 2971 void (*setup)(struct net_device *)) 2972 { 2973 struct rdma_netdev_alloc_params params; 2974 struct net_device *netdev; 2975 int rc; 2976 2977 if (!device->ops.rdma_netdev_get_params) 2978 return ERR_PTR(-EOPNOTSUPP); 2979 2980 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2981 ¶ms); 2982 if (rc) 2983 return ERR_PTR(rc); 2984 2985 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2986 setup, params.txqs, params.rxqs); 2987 if (!netdev) 2988 return ERR_PTR(-ENOMEM); 2989 2990 return netdev; 2991 } 2992 EXPORT_SYMBOL(rdma_alloc_netdev); 2993 2994 int rdma_init_netdev(struct ib_device *device, u32 port_num, 2995 enum rdma_netdev_t type, const char *name, 2996 unsigned char name_assign_type, 2997 void (*setup)(struct net_device *), 2998 struct net_device *netdev) 2999 { 3000 struct rdma_netdev_alloc_params params; 3001 int rc; 3002 3003 if (!device->ops.rdma_netdev_get_params) 3004 return -EOPNOTSUPP; 3005 3006 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 3007 ¶ms); 3008 if (rc) 3009 return rc; 3010 3011 return params.initialize_rdma_netdev(device, port_num, 3012 netdev, params.param); 3013 } 3014 EXPORT_SYMBOL(rdma_init_netdev); 3015 3016 void __rdma_block_iter_start(struct ib_block_iter *biter, 3017 struct scatterlist *sglist, unsigned int nents, 3018 unsigned long pgsz) 3019 { 3020 memset(biter, 0, sizeof(struct ib_block_iter)); 3021 biter->__sg = sglist; 3022 biter->__sg_nents = nents; 3023 3024 /* Driver provides best block size to use */ 3025 biter->__pg_bit = __fls(pgsz); 3026 } 3027 EXPORT_SYMBOL(__rdma_block_iter_start); 3028 3029 bool __rdma_block_iter_next(struct ib_block_iter *biter) 3030 { 3031 unsigned int block_offset; 3032 unsigned int sg_delta; 3033 3034 if (!biter->__sg_nents || !biter->__sg) 3035 return false; 3036 3037 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 3038 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 3039 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset; 3040 3041 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) { 3042 biter->__sg_advance += sg_delta; 3043 } else { 3044 biter->__sg_advance = 0; 3045 biter->__sg = sg_next(biter->__sg); 3046 biter->__sg_nents--; 3047 } 3048 3049 return true; 3050 } 3051 EXPORT_SYMBOL(__rdma_block_iter_next); 3052 3053 /** 3054 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 3055 * for the drivers. 3056 * @descs: array of static descriptors 3057 * @num_counters: number of elements in array 3058 * @lifespan: milliseconds between updates 3059 */ 3060 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 3061 const struct rdma_stat_desc *descs, int num_counters, 3062 unsigned long lifespan) 3063 { 3064 struct rdma_hw_stats *stats; 3065 3066 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL); 3067 if (!stats) 3068 return NULL; 3069 3070 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters), 3071 sizeof(*stats->is_disabled), GFP_KERNEL); 3072 if (!stats->is_disabled) 3073 goto err; 3074 3075 stats->descs = descs; 3076 stats->num_counters = num_counters; 3077 stats->lifespan = msecs_to_jiffies(lifespan); 3078 mutex_init(&stats->lock); 3079 3080 return stats; 3081 3082 err: 3083 kfree(stats); 3084 return NULL; 3085 } 3086 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct); 3087 3088 /** 3089 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats 3090 * @stats: statistics to release 3091 */ 3092 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats) 3093 { 3094 if (!stats) 3095 return; 3096 3097 kfree(stats->is_disabled); 3098 kfree(stats); 3099 } 3100 EXPORT_SYMBOL(rdma_free_hw_stats_struct); 3101