xref: /linux/drivers/infiniband/core/verbs.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 
54 #include "core_priv.h"
55 
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57 			       struct rdma_ah_attr *ah_attr);
58 
59 static const char * const ib_events[] = {
60 	[IB_EVENT_CQ_ERR]		= "CQ error",
61 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
62 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
63 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
64 	[IB_EVENT_COMM_EST]		= "communication established",
65 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
66 	[IB_EVENT_PATH_MIG]		= "path migration successful",
67 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
68 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
69 	[IB_EVENT_PORT_ACTIVE]		= "port active",
70 	[IB_EVENT_PORT_ERR]		= "port error",
71 	[IB_EVENT_LID_CHANGE]		= "LID change",
72 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
73 	[IB_EVENT_SM_CHANGE]		= "SM change",
74 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
75 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
76 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
77 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
78 	[IB_EVENT_GID_CHANGE]		= "GID changed",
79 };
80 
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83 	size_t index = event;
84 
85 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86 			ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89 
90 static const char * const wc_statuses[] = {
91 	[IB_WC_SUCCESS]			= "success",
92 	[IB_WC_LOC_LEN_ERR]		= "local length error",
93 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
94 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
95 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
96 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
97 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
98 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
99 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
100 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
101 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
102 	[IB_WC_REM_OP_ERR]		= "remote operation error",
103 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
104 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
105 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
106 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
107 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
108 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
109 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
110 	[IB_WC_FATAL_ERR]		= "fatal error",
111 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
112 	[IB_WC_GENERAL_ERR]		= "general error",
113 };
114 
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117 	size_t index = status;
118 
119 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120 			wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123 
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126 	switch (rate) {
127 	case IB_RATE_2_5_GBPS: return   1;
128 	case IB_RATE_5_GBPS:   return   2;
129 	case IB_RATE_10_GBPS:  return   4;
130 	case IB_RATE_20_GBPS:  return   8;
131 	case IB_RATE_30_GBPS:  return  12;
132 	case IB_RATE_40_GBPS:  return  16;
133 	case IB_RATE_60_GBPS:  return  24;
134 	case IB_RATE_80_GBPS:  return  32;
135 	case IB_RATE_120_GBPS: return  48;
136 	case IB_RATE_14_GBPS:  return   6;
137 	case IB_RATE_56_GBPS:  return  22;
138 	case IB_RATE_112_GBPS: return  45;
139 	case IB_RATE_168_GBPS: return  67;
140 	case IB_RATE_25_GBPS:  return  10;
141 	case IB_RATE_100_GBPS: return  40;
142 	case IB_RATE_200_GBPS: return  80;
143 	case IB_RATE_300_GBPS: return 120;
144 	default:	       return  -1;
145 	}
146 }
147 EXPORT_SYMBOL(ib_rate_to_mult);
148 
149 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
150 {
151 	switch (mult) {
152 	case 1:   return IB_RATE_2_5_GBPS;
153 	case 2:   return IB_RATE_5_GBPS;
154 	case 4:   return IB_RATE_10_GBPS;
155 	case 8:   return IB_RATE_20_GBPS;
156 	case 12:  return IB_RATE_30_GBPS;
157 	case 16:  return IB_RATE_40_GBPS;
158 	case 24:  return IB_RATE_60_GBPS;
159 	case 32:  return IB_RATE_80_GBPS;
160 	case 48:  return IB_RATE_120_GBPS;
161 	case 6:   return IB_RATE_14_GBPS;
162 	case 22:  return IB_RATE_56_GBPS;
163 	case 45:  return IB_RATE_112_GBPS;
164 	case 67:  return IB_RATE_168_GBPS;
165 	case 10:  return IB_RATE_25_GBPS;
166 	case 40:  return IB_RATE_100_GBPS;
167 	case 80:  return IB_RATE_200_GBPS;
168 	case 120: return IB_RATE_300_GBPS;
169 	default:  return IB_RATE_PORT_CURRENT;
170 	}
171 }
172 EXPORT_SYMBOL(mult_to_ib_rate);
173 
174 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
175 {
176 	switch (rate) {
177 	case IB_RATE_2_5_GBPS: return 2500;
178 	case IB_RATE_5_GBPS:   return 5000;
179 	case IB_RATE_10_GBPS:  return 10000;
180 	case IB_RATE_20_GBPS:  return 20000;
181 	case IB_RATE_30_GBPS:  return 30000;
182 	case IB_RATE_40_GBPS:  return 40000;
183 	case IB_RATE_60_GBPS:  return 60000;
184 	case IB_RATE_80_GBPS:  return 80000;
185 	case IB_RATE_120_GBPS: return 120000;
186 	case IB_RATE_14_GBPS:  return 14062;
187 	case IB_RATE_56_GBPS:  return 56250;
188 	case IB_RATE_112_GBPS: return 112500;
189 	case IB_RATE_168_GBPS: return 168750;
190 	case IB_RATE_25_GBPS:  return 25781;
191 	case IB_RATE_100_GBPS: return 103125;
192 	case IB_RATE_200_GBPS: return 206250;
193 	case IB_RATE_300_GBPS: return 309375;
194 	default:	       return -1;
195 	}
196 }
197 EXPORT_SYMBOL(ib_rate_to_mbps);
198 
199 __attribute_const__ enum rdma_transport_type
200 rdma_node_get_transport(enum rdma_node_type node_type)
201 {
202 
203 	if (node_type == RDMA_NODE_USNIC)
204 		return RDMA_TRANSPORT_USNIC;
205 	if (node_type == RDMA_NODE_USNIC_UDP)
206 		return RDMA_TRANSPORT_USNIC_UDP;
207 	if (node_type == RDMA_NODE_RNIC)
208 		return RDMA_TRANSPORT_IWARP;
209 
210 	return RDMA_TRANSPORT_IB;
211 }
212 EXPORT_SYMBOL(rdma_node_get_transport);
213 
214 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
215 {
216 	enum rdma_transport_type lt;
217 	if (device->get_link_layer)
218 		return device->get_link_layer(device, port_num);
219 
220 	lt = rdma_node_get_transport(device->node_type);
221 	if (lt == RDMA_TRANSPORT_IB)
222 		return IB_LINK_LAYER_INFINIBAND;
223 
224 	return IB_LINK_LAYER_ETHERNET;
225 }
226 EXPORT_SYMBOL(rdma_port_get_link_layer);
227 
228 /* Protection domains */
229 
230 /**
231  * ib_alloc_pd - Allocates an unused protection domain.
232  * @device: The device on which to allocate the protection domain.
233  *
234  * A protection domain object provides an association between QPs, shared
235  * receive queues, address handles, memory regions, and memory windows.
236  *
237  * Every PD has a local_dma_lkey which can be used as the lkey value for local
238  * memory operations.
239  */
240 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
241 		const char *caller)
242 {
243 	struct ib_pd *pd;
244 	int mr_access_flags = 0;
245 
246 	pd = device->alloc_pd(device, NULL, NULL);
247 	if (IS_ERR(pd))
248 		return pd;
249 
250 	pd->device = device;
251 	pd->uobject = NULL;
252 	pd->__internal_mr = NULL;
253 	atomic_set(&pd->usecnt, 0);
254 	pd->flags = flags;
255 
256 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
257 		pd->local_dma_lkey = device->local_dma_lkey;
258 	else
259 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
260 
261 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
262 		pr_warn("%s: enabling unsafe global rkey\n", caller);
263 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
264 	}
265 
266 	pd->res.type = RDMA_RESTRACK_PD;
267 	pd->res.kern_name = caller;
268 	rdma_restrack_add(&pd->res);
269 
270 	if (mr_access_flags) {
271 		struct ib_mr *mr;
272 
273 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
274 		if (IS_ERR(mr)) {
275 			ib_dealloc_pd(pd);
276 			return ERR_CAST(mr);
277 		}
278 
279 		mr->device	= pd->device;
280 		mr->pd		= pd;
281 		mr->uobject	= NULL;
282 		mr->need_inval	= false;
283 
284 		pd->__internal_mr = mr;
285 
286 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
287 			pd->local_dma_lkey = pd->__internal_mr->lkey;
288 
289 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
290 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
291 	}
292 
293 	return pd;
294 }
295 EXPORT_SYMBOL(__ib_alloc_pd);
296 
297 /**
298  * ib_dealloc_pd - Deallocates a protection domain.
299  * @pd: The protection domain to deallocate.
300  *
301  * It is an error to call this function while any resources in the pd still
302  * exist.  The caller is responsible to synchronously destroy them and
303  * guarantee no new allocations will happen.
304  */
305 void ib_dealloc_pd(struct ib_pd *pd)
306 {
307 	int ret;
308 
309 	if (pd->__internal_mr) {
310 		ret = pd->device->dereg_mr(pd->__internal_mr);
311 		WARN_ON(ret);
312 		pd->__internal_mr = NULL;
313 	}
314 
315 	/* uverbs manipulates usecnt with proper locking, while the kabi
316 	   requires the caller to guarantee we can't race here. */
317 	WARN_ON(atomic_read(&pd->usecnt));
318 
319 	rdma_restrack_del(&pd->res);
320 	/* Making delalloc_pd a void return is a WIP, no driver should return
321 	   an error here. */
322 	ret = pd->device->dealloc_pd(pd);
323 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
324 }
325 EXPORT_SYMBOL(ib_dealloc_pd);
326 
327 /* Address handles */
328 
329 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
330 				     struct rdma_ah_attr *ah_attr,
331 				     struct ib_udata *udata)
332 {
333 	struct ib_ah *ah;
334 
335 	ah = pd->device->create_ah(pd, ah_attr, udata);
336 
337 	if (!IS_ERR(ah)) {
338 		ah->device  = pd->device;
339 		ah->pd      = pd;
340 		ah->uobject = NULL;
341 		ah->type    = ah_attr->type;
342 		atomic_inc(&pd->usecnt);
343 	}
344 
345 	return ah;
346 }
347 
348 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
349 {
350 	return _rdma_create_ah(pd, ah_attr, NULL);
351 }
352 EXPORT_SYMBOL(rdma_create_ah);
353 
354 /**
355  * rdma_create_user_ah - Creates an address handle for the
356  * given address vector.
357  * It resolves destination mac address for ah attribute of RoCE type.
358  * @pd: The protection domain associated with the address handle.
359  * @ah_attr: The attributes of the address vector.
360  * @udata: pointer to user's input output buffer information need by
361  *         provider driver.
362  *
363  * It returns 0 on success and returns appropriate error code on error.
364  * The address handle is used to reference a local or global destination
365  * in all UD QP post sends.
366  */
367 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
368 				  struct rdma_ah_attr *ah_attr,
369 				  struct ib_udata *udata)
370 {
371 	int err;
372 
373 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
374 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
375 		if (err)
376 			return ERR_PTR(err);
377 	}
378 
379 	return _rdma_create_ah(pd, ah_attr, udata);
380 }
381 EXPORT_SYMBOL(rdma_create_user_ah);
382 
383 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
384 {
385 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
386 	struct iphdr ip4h_checked;
387 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
388 
389 	/* If it's IPv6, the version must be 6, otherwise, the first
390 	 * 20 bytes (before the IPv4 header) are garbled.
391 	 */
392 	if (ip6h->version != 6)
393 		return (ip4h->version == 4) ? 4 : 0;
394 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
395 
396 	/* RoCE v2 requires no options, thus header length
397 	 * must be 5 words
398 	 */
399 	if (ip4h->ihl != 5)
400 		return 6;
401 
402 	/* Verify checksum.
403 	 * We can't write on scattered buffers so we need to copy to
404 	 * temp buffer.
405 	 */
406 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
407 	ip4h_checked.check = 0;
408 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
409 	/* if IPv4 header checksum is OK, believe it */
410 	if (ip4h->check == ip4h_checked.check)
411 		return 4;
412 	return 6;
413 }
414 EXPORT_SYMBOL(ib_get_rdma_header_version);
415 
416 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
417 						     u8 port_num,
418 						     const struct ib_grh *grh)
419 {
420 	int grh_version;
421 
422 	if (rdma_protocol_ib(device, port_num))
423 		return RDMA_NETWORK_IB;
424 
425 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
426 
427 	if (grh_version == 4)
428 		return RDMA_NETWORK_IPV4;
429 
430 	if (grh->next_hdr == IPPROTO_UDP)
431 		return RDMA_NETWORK_IPV6;
432 
433 	return RDMA_NETWORK_ROCE_V1;
434 }
435 
436 struct find_gid_index_context {
437 	u16 vlan_id;
438 	enum ib_gid_type gid_type;
439 };
440 
441 static bool find_gid_index(const union ib_gid *gid,
442 			   const struct ib_gid_attr *gid_attr,
443 			   void *context)
444 {
445 	struct find_gid_index_context *ctx = context;
446 
447 	if (ctx->gid_type != gid_attr->gid_type)
448 		return false;
449 
450 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
451 	    (is_vlan_dev(gid_attr->ndev) &&
452 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
453 		return false;
454 
455 	return true;
456 }
457 
458 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
459 				   u16 vlan_id, const union ib_gid *sgid,
460 				   enum ib_gid_type gid_type,
461 				   u16 *gid_index)
462 {
463 	struct find_gid_index_context context = {.vlan_id = vlan_id,
464 						 .gid_type = gid_type};
465 
466 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
467 				     &context, gid_index);
468 }
469 
470 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
471 			      enum rdma_network_type net_type,
472 			      union ib_gid *sgid, union ib_gid *dgid)
473 {
474 	struct sockaddr_in  src_in;
475 	struct sockaddr_in  dst_in;
476 	__be32 src_saddr, dst_saddr;
477 
478 	if (!sgid || !dgid)
479 		return -EINVAL;
480 
481 	if (net_type == RDMA_NETWORK_IPV4) {
482 		memcpy(&src_in.sin_addr.s_addr,
483 		       &hdr->roce4grh.saddr, 4);
484 		memcpy(&dst_in.sin_addr.s_addr,
485 		       &hdr->roce4grh.daddr, 4);
486 		src_saddr = src_in.sin_addr.s_addr;
487 		dst_saddr = dst_in.sin_addr.s_addr;
488 		ipv6_addr_set_v4mapped(src_saddr,
489 				       (struct in6_addr *)sgid);
490 		ipv6_addr_set_v4mapped(dst_saddr,
491 				       (struct in6_addr *)dgid);
492 		return 0;
493 	} else if (net_type == RDMA_NETWORK_IPV6 ||
494 		   net_type == RDMA_NETWORK_IB) {
495 		*dgid = hdr->ibgrh.dgid;
496 		*sgid = hdr->ibgrh.sgid;
497 		return 0;
498 	} else {
499 		return -EINVAL;
500 	}
501 }
502 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
503 
504 /* Resolve destination mac address and hop limit for unicast destination
505  * GID entry, considering the source GID entry as well.
506  * ah_attribute must have have valid port_num, sgid_index.
507  */
508 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
509 				       struct rdma_ah_attr *ah_attr)
510 {
511 	struct ib_gid_attr sgid_attr;
512 	struct ib_global_route *grh;
513 	int hop_limit = 0xff;
514 	union ib_gid sgid;
515 	int ret;
516 
517 	grh = rdma_ah_retrieve_grh(ah_attr);
518 
519 	ret = ib_query_gid(device,
520 			   rdma_ah_get_port_num(ah_attr),
521 			   grh->sgid_index,
522 			   &sgid, &sgid_attr);
523 	if (ret || !sgid_attr.ndev) {
524 		if (!ret)
525 			ret = -ENXIO;
526 		return ret;
527 	}
528 
529 	/* If destination is link local and source GID is RoCEv1,
530 	 * IP stack is not used.
531 	 */
532 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
533 	    sgid_attr.gid_type == IB_GID_TYPE_ROCE) {
534 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
535 				ah_attr->roce.dmac);
536 		goto done;
537 	}
538 
539 	ret = rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
540 					   ah_attr->roce.dmac,
541 					   sgid_attr.ndev, &hop_limit);
542 done:
543 	dev_put(sgid_attr.ndev);
544 
545 	grh->hop_limit = hop_limit;
546 	return ret;
547 }
548 
549 /*
550  * This function initializes address handle attributes from the incoming packet.
551  * Incoming packet has dgid of the receiver node on which this code is
552  * getting executed and, sgid contains the GID of the sender.
553  *
554  * When resolving mac address of destination, the arrived dgid is used
555  * as sgid and, sgid is used as dgid because sgid contains destinations
556  * GID whom to respond to.
557  *
558  */
559 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
560 			    const struct ib_wc *wc, const struct ib_grh *grh,
561 			    struct rdma_ah_attr *ah_attr)
562 {
563 	u32 flow_class;
564 	u16 gid_index;
565 	int ret;
566 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
567 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
568 	int hoplimit = 0xff;
569 	union ib_gid dgid;
570 	union ib_gid sgid;
571 
572 	might_sleep();
573 
574 	memset(ah_attr, 0, sizeof *ah_attr);
575 	ah_attr->type = rdma_ah_find_type(device, port_num);
576 	if (rdma_cap_eth_ah(device, port_num)) {
577 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
578 			net_type = wc->network_hdr_type;
579 		else
580 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
581 		gid_type = ib_network_to_gid_type(net_type);
582 	}
583 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
584 					&sgid, &dgid);
585 	if (ret)
586 		return ret;
587 
588 	rdma_ah_set_sl(ah_attr, wc->sl);
589 	rdma_ah_set_port_num(ah_attr, port_num);
590 
591 	if (rdma_protocol_roce(device, port_num)) {
592 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
593 				wc->vlan_id : 0xffff;
594 
595 		if (!(wc->wc_flags & IB_WC_GRH))
596 			return -EPROTOTYPE;
597 
598 		ret = get_sgid_index_from_eth(device, port_num,
599 					      vlan_id, &dgid,
600 					      gid_type, &gid_index);
601 		if (ret)
602 			return ret;
603 
604 		flow_class = be32_to_cpu(grh->version_tclass_flow);
605 		rdma_ah_set_grh(ah_attr, &sgid,
606 				flow_class & 0xFFFFF,
607 				(u8)gid_index, hoplimit,
608 				(flow_class >> 20) & 0xFF);
609 		return ib_resolve_unicast_gid_dmac(device, ah_attr);
610 	} else {
611 		rdma_ah_set_dlid(ah_attr, wc->slid);
612 		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
613 
614 		if (wc->wc_flags & IB_WC_GRH) {
615 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
616 				ret = ib_find_cached_gid_by_port(device, &dgid,
617 								 IB_GID_TYPE_IB,
618 								 port_num, NULL,
619 								 &gid_index);
620 				if (ret)
621 					return ret;
622 			} else {
623 				gid_index = 0;
624 			}
625 
626 			flow_class = be32_to_cpu(grh->version_tclass_flow);
627 			rdma_ah_set_grh(ah_attr, &sgid,
628 					flow_class & 0xFFFFF,
629 					(u8)gid_index, hoplimit,
630 					(flow_class >> 20) & 0xFF);
631 		}
632 		return 0;
633 	}
634 }
635 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
636 
637 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
638 				   const struct ib_grh *grh, u8 port_num)
639 {
640 	struct rdma_ah_attr ah_attr;
641 	int ret;
642 
643 	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
644 	if (ret)
645 		return ERR_PTR(ret);
646 
647 	return rdma_create_ah(pd, &ah_attr);
648 }
649 EXPORT_SYMBOL(ib_create_ah_from_wc);
650 
651 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
652 {
653 	if (ah->type != ah_attr->type)
654 		return -EINVAL;
655 
656 	return ah->device->modify_ah ?
657 		ah->device->modify_ah(ah, ah_attr) :
658 		-ENOSYS;
659 }
660 EXPORT_SYMBOL(rdma_modify_ah);
661 
662 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
663 {
664 	return ah->device->query_ah ?
665 		ah->device->query_ah(ah, ah_attr) :
666 		-ENOSYS;
667 }
668 EXPORT_SYMBOL(rdma_query_ah);
669 
670 int rdma_destroy_ah(struct ib_ah *ah)
671 {
672 	struct ib_pd *pd;
673 	int ret;
674 
675 	pd = ah->pd;
676 	ret = ah->device->destroy_ah(ah);
677 	if (!ret)
678 		atomic_dec(&pd->usecnt);
679 
680 	return ret;
681 }
682 EXPORT_SYMBOL(rdma_destroy_ah);
683 
684 /* Shared receive queues */
685 
686 struct ib_srq *ib_create_srq(struct ib_pd *pd,
687 			     struct ib_srq_init_attr *srq_init_attr)
688 {
689 	struct ib_srq *srq;
690 
691 	if (!pd->device->create_srq)
692 		return ERR_PTR(-ENOSYS);
693 
694 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
695 
696 	if (!IS_ERR(srq)) {
697 		srq->device    	   = pd->device;
698 		srq->pd        	   = pd;
699 		srq->uobject       = NULL;
700 		srq->event_handler = srq_init_attr->event_handler;
701 		srq->srq_context   = srq_init_attr->srq_context;
702 		srq->srq_type      = srq_init_attr->srq_type;
703 		if (ib_srq_has_cq(srq->srq_type)) {
704 			srq->ext.cq   = srq_init_attr->ext.cq;
705 			atomic_inc(&srq->ext.cq->usecnt);
706 		}
707 		if (srq->srq_type == IB_SRQT_XRC) {
708 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
709 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
710 		}
711 		atomic_inc(&pd->usecnt);
712 		atomic_set(&srq->usecnt, 0);
713 	}
714 
715 	return srq;
716 }
717 EXPORT_SYMBOL(ib_create_srq);
718 
719 int ib_modify_srq(struct ib_srq *srq,
720 		  struct ib_srq_attr *srq_attr,
721 		  enum ib_srq_attr_mask srq_attr_mask)
722 {
723 	return srq->device->modify_srq ?
724 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
725 		-ENOSYS;
726 }
727 EXPORT_SYMBOL(ib_modify_srq);
728 
729 int ib_query_srq(struct ib_srq *srq,
730 		 struct ib_srq_attr *srq_attr)
731 {
732 	return srq->device->query_srq ?
733 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
734 }
735 EXPORT_SYMBOL(ib_query_srq);
736 
737 int ib_destroy_srq(struct ib_srq *srq)
738 {
739 	struct ib_pd *pd;
740 	enum ib_srq_type srq_type;
741 	struct ib_xrcd *uninitialized_var(xrcd);
742 	struct ib_cq *uninitialized_var(cq);
743 	int ret;
744 
745 	if (atomic_read(&srq->usecnt))
746 		return -EBUSY;
747 
748 	pd = srq->pd;
749 	srq_type = srq->srq_type;
750 	if (ib_srq_has_cq(srq_type))
751 		cq = srq->ext.cq;
752 	if (srq_type == IB_SRQT_XRC)
753 		xrcd = srq->ext.xrc.xrcd;
754 
755 	ret = srq->device->destroy_srq(srq);
756 	if (!ret) {
757 		atomic_dec(&pd->usecnt);
758 		if (srq_type == IB_SRQT_XRC)
759 			atomic_dec(&xrcd->usecnt);
760 		if (ib_srq_has_cq(srq_type))
761 			atomic_dec(&cq->usecnt);
762 	}
763 
764 	return ret;
765 }
766 EXPORT_SYMBOL(ib_destroy_srq);
767 
768 /* Queue pairs */
769 
770 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
771 {
772 	struct ib_qp *qp = context;
773 	unsigned long flags;
774 
775 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
776 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
777 		if (event->element.qp->event_handler)
778 			event->element.qp->event_handler(event, event->element.qp->qp_context);
779 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
780 }
781 
782 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
783 {
784 	mutex_lock(&xrcd->tgt_qp_mutex);
785 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
786 	mutex_unlock(&xrcd->tgt_qp_mutex);
787 }
788 
789 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
790 				  void (*event_handler)(struct ib_event *, void *),
791 				  void *qp_context)
792 {
793 	struct ib_qp *qp;
794 	unsigned long flags;
795 	int err;
796 
797 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
798 	if (!qp)
799 		return ERR_PTR(-ENOMEM);
800 
801 	qp->real_qp = real_qp;
802 	err = ib_open_shared_qp_security(qp, real_qp->device);
803 	if (err) {
804 		kfree(qp);
805 		return ERR_PTR(err);
806 	}
807 
808 	qp->real_qp = real_qp;
809 	atomic_inc(&real_qp->usecnt);
810 	qp->device = real_qp->device;
811 	qp->event_handler = event_handler;
812 	qp->qp_context = qp_context;
813 	qp->qp_num = real_qp->qp_num;
814 	qp->qp_type = real_qp->qp_type;
815 
816 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
817 	list_add(&qp->open_list, &real_qp->open_list);
818 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
819 
820 	return qp;
821 }
822 
823 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
824 			 struct ib_qp_open_attr *qp_open_attr)
825 {
826 	struct ib_qp *qp, *real_qp;
827 
828 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
829 		return ERR_PTR(-EINVAL);
830 
831 	qp = ERR_PTR(-EINVAL);
832 	mutex_lock(&xrcd->tgt_qp_mutex);
833 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
834 		if (real_qp->qp_num == qp_open_attr->qp_num) {
835 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
836 					  qp_open_attr->qp_context);
837 			break;
838 		}
839 	}
840 	mutex_unlock(&xrcd->tgt_qp_mutex);
841 	return qp;
842 }
843 EXPORT_SYMBOL(ib_open_qp);
844 
845 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
846 		struct ib_qp_init_attr *qp_init_attr)
847 {
848 	struct ib_qp *real_qp = qp;
849 
850 	qp->event_handler = __ib_shared_qp_event_handler;
851 	qp->qp_context = qp;
852 	qp->pd = NULL;
853 	qp->send_cq = qp->recv_cq = NULL;
854 	qp->srq = NULL;
855 	qp->xrcd = qp_init_attr->xrcd;
856 	atomic_inc(&qp_init_attr->xrcd->usecnt);
857 	INIT_LIST_HEAD(&qp->open_list);
858 
859 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
860 			  qp_init_attr->qp_context);
861 	if (!IS_ERR(qp))
862 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
863 	else
864 		real_qp->device->destroy_qp(real_qp);
865 	return qp;
866 }
867 
868 struct ib_qp *ib_create_qp(struct ib_pd *pd,
869 			   struct ib_qp_init_attr *qp_init_attr)
870 {
871 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
872 	struct ib_qp *qp;
873 	int ret;
874 
875 	if (qp_init_attr->rwq_ind_tbl &&
876 	    (qp_init_attr->recv_cq ||
877 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
878 	    qp_init_attr->cap.max_recv_sge))
879 		return ERR_PTR(-EINVAL);
880 
881 	/*
882 	 * If the callers is using the RDMA API calculate the resources
883 	 * needed for the RDMA READ/WRITE operations.
884 	 *
885 	 * Note that these callers need to pass in a port number.
886 	 */
887 	if (qp_init_attr->cap.max_rdma_ctxs)
888 		rdma_rw_init_qp(device, qp_init_attr);
889 
890 	qp = _ib_create_qp(device, pd, qp_init_attr, NULL);
891 	if (IS_ERR(qp))
892 		return qp;
893 
894 	ret = ib_create_qp_security(qp, device);
895 	if (ret) {
896 		ib_destroy_qp(qp);
897 		return ERR_PTR(ret);
898 	}
899 
900 	qp->real_qp    = qp;
901 	qp->uobject    = NULL;
902 	qp->qp_type    = qp_init_attr->qp_type;
903 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
904 
905 	atomic_set(&qp->usecnt, 0);
906 	qp->mrs_used = 0;
907 	spin_lock_init(&qp->mr_lock);
908 	INIT_LIST_HEAD(&qp->rdma_mrs);
909 	INIT_LIST_HEAD(&qp->sig_mrs);
910 	qp->port = 0;
911 
912 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
913 		return ib_create_xrc_qp(qp, qp_init_attr);
914 
915 	qp->event_handler = qp_init_attr->event_handler;
916 	qp->qp_context = qp_init_attr->qp_context;
917 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
918 		qp->recv_cq = NULL;
919 		qp->srq = NULL;
920 	} else {
921 		qp->recv_cq = qp_init_attr->recv_cq;
922 		if (qp_init_attr->recv_cq)
923 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
924 		qp->srq = qp_init_attr->srq;
925 		if (qp->srq)
926 			atomic_inc(&qp_init_attr->srq->usecnt);
927 	}
928 
929 	qp->send_cq = qp_init_attr->send_cq;
930 	qp->xrcd    = NULL;
931 
932 	atomic_inc(&pd->usecnt);
933 	if (qp_init_attr->send_cq)
934 		atomic_inc(&qp_init_attr->send_cq->usecnt);
935 	if (qp_init_attr->rwq_ind_tbl)
936 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
937 
938 	if (qp_init_attr->cap.max_rdma_ctxs) {
939 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
940 		if (ret) {
941 			pr_err("failed to init MR pool ret= %d\n", ret);
942 			ib_destroy_qp(qp);
943 			return ERR_PTR(ret);
944 		}
945 	}
946 
947 	/*
948 	 * Note: all hw drivers guarantee that max_send_sge is lower than
949 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
950 	 * max_send_sge <= max_sge_rd.
951 	 */
952 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
953 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
954 				 device->attrs.max_sge_rd);
955 
956 	return qp;
957 }
958 EXPORT_SYMBOL(ib_create_qp);
959 
960 static const struct {
961 	int			valid;
962 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
963 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
964 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
965 	[IB_QPS_RESET] = {
966 		[IB_QPS_RESET] = { .valid = 1 },
967 		[IB_QPS_INIT]  = {
968 			.valid = 1,
969 			.req_param = {
970 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
971 						IB_QP_PORT			|
972 						IB_QP_QKEY),
973 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
974 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
975 						IB_QP_PORT			|
976 						IB_QP_ACCESS_FLAGS),
977 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
978 						IB_QP_PORT			|
979 						IB_QP_ACCESS_FLAGS),
980 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
981 						IB_QP_PORT			|
982 						IB_QP_ACCESS_FLAGS),
983 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
984 						IB_QP_PORT			|
985 						IB_QP_ACCESS_FLAGS),
986 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
987 						IB_QP_QKEY),
988 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
989 						IB_QP_QKEY),
990 			}
991 		},
992 	},
993 	[IB_QPS_INIT]  = {
994 		[IB_QPS_RESET] = { .valid = 1 },
995 		[IB_QPS_ERR] =   { .valid = 1 },
996 		[IB_QPS_INIT]  = {
997 			.valid = 1,
998 			.opt_param = {
999 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1000 						IB_QP_PORT			|
1001 						IB_QP_QKEY),
1002 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1003 						IB_QP_PORT			|
1004 						IB_QP_ACCESS_FLAGS),
1005 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1006 						IB_QP_PORT			|
1007 						IB_QP_ACCESS_FLAGS),
1008 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1009 						IB_QP_PORT			|
1010 						IB_QP_ACCESS_FLAGS),
1011 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1012 						IB_QP_PORT			|
1013 						IB_QP_ACCESS_FLAGS),
1014 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1015 						IB_QP_QKEY),
1016 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1017 						IB_QP_QKEY),
1018 			}
1019 		},
1020 		[IB_QPS_RTR]   = {
1021 			.valid = 1,
1022 			.req_param = {
1023 				[IB_QPT_UC]  = (IB_QP_AV			|
1024 						IB_QP_PATH_MTU			|
1025 						IB_QP_DEST_QPN			|
1026 						IB_QP_RQ_PSN),
1027 				[IB_QPT_RC]  = (IB_QP_AV			|
1028 						IB_QP_PATH_MTU			|
1029 						IB_QP_DEST_QPN			|
1030 						IB_QP_RQ_PSN			|
1031 						IB_QP_MAX_DEST_RD_ATOMIC	|
1032 						IB_QP_MIN_RNR_TIMER),
1033 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1034 						IB_QP_PATH_MTU			|
1035 						IB_QP_DEST_QPN			|
1036 						IB_QP_RQ_PSN),
1037 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1038 						IB_QP_PATH_MTU			|
1039 						IB_QP_DEST_QPN			|
1040 						IB_QP_RQ_PSN			|
1041 						IB_QP_MAX_DEST_RD_ATOMIC	|
1042 						IB_QP_MIN_RNR_TIMER),
1043 			},
1044 			.opt_param = {
1045 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1046 						 IB_QP_QKEY),
1047 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1048 						 IB_QP_ACCESS_FLAGS		|
1049 						 IB_QP_PKEY_INDEX),
1050 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1051 						 IB_QP_ACCESS_FLAGS		|
1052 						 IB_QP_PKEY_INDEX),
1053 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1054 						 IB_QP_ACCESS_FLAGS		|
1055 						 IB_QP_PKEY_INDEX),
1056 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1057 						 IB_QP_ACCESS_FLAGS		|
1058 						 IB_QP_PKEY_INDEX),
1059 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1060 						 IB_QP_QKEY),
1061 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1062 						 IB_QP_QKEY),
1063 			 },
1064 		},
1065 	},
1066 	[IB_QPS_RTR]   = {
1067 		[IB_QPS_RESET] = { .valid = 1 },
1068 		[IB_QPS_ERR] =   { .valid = 1 },
1069 		[IB_QPS_RTS]   = {
1070 			.valid = 1,
1071 			.req_param = {
1072 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1073 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1074 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1075 						IB_QP_RETRY_CNT			|
1076 						IB_QP_RNR_RETRY			|
1077 						IB_QP_SQ_PSN			|
1078 						IB_QP_MAX_QP_RD_ATOMIC),
1079 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1080 						IB_QP_RETRY_CNT			|
1081 						IB_QP_RNR_RETRY			|
1082 						IB_QP_SQ_PSN			|
1083 						IB_QP_MAX_QP_RD_ATOMIC),
1084 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1085 						IB_QP_SQ_PSN),
1086 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1087 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1088 			},
1089 			.opt_param = {
1090 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1091 						 IB_QP_QKEY),
1092 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1093 						 IB_QP_ALT_PATH			|
1094 						 IB_QP_ACCESS_FLAGS		|
1095 						 IB_QP_PATH_MIG_STATE),
1096 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1097 						 IB_QP_ALT_PATH			|
1098 						 IB_QP_ACCESS_FLAGS		|
1099 						 IB_QP_MIN_RNR_TIMER		|
1100 						 IB_QP_PATH_MIG_STATE),
1101 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1102 						 IB_QP_ALT_PATH			|
1103 						 IB_QP_ACCESS_FLAGS		|
1104 						 IB_QP_PATH_MIG_STATE),
1105 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1106 						 IB_QP_ALT_PATH			|
1107 						 IB_QP_ACCESS_FLAGS		|
1108 						 IB_QP_MIN_RNR_TIMER		|
1109 						 IB_QP_PATH_MIG_STATE),
1110 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1111 						 IB_QP_QKEY),
1112 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1113 						 IB_QP_QKEY),
1114 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1115 			 }
1116 		}
1117 	},
1118 	[IB_QPS_RTS]   = {
1119 		[IB_QPS_RESET] = { .valid = 1 },
1120 		[IB_QPS_ERR] =   { .valid = 1 },
1121 		[IB_QPS_RTS]   = {
1122 			.valid = 1,
1123 			.opt_param = {
1124 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1125 						IB_QP_QKEY),
1126 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1127 						IB_QP_ACCESS_FLAGS		|
1128 						IB_QP_ALT_PATH			|
1129 						IB_QP_PATH_MIG_STATE),
1130 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1131 						IB_QP_ACCESS_FLAGS		|
1132 						IB_QP_ALT_PATH			|
1133 						IB_QP_PATH_MIG_STATE		|
1134 						IB_QP_MIN_RNR_TIMER),
1135 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1136 						IB_QP_ACCESS_FLAGS		|
1137 						IB_QP_ALT_PATH			|
1138 						IB_QP_PATH_MIG_STATE),
1139 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1140 						IB_QP_ACCESS_FLAGS		|
1141 						IB_QP_ALT_PATH			|
1142 						IB_QP_PATH_MIG_STATE		|
1143 						IB_QP_MIN_RNR_TIMER),
1144 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1145 						IB_QP_QKEY),
1146 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1147 						IB_QP_QKEY),
1148 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1149 			}
1150 		},
1151 		[IB_QPS_SQD]   = {
1152 			.valid = 1,
1153 			.opt_param = {
1154 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1155 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1156 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1157 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1158 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1159 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1160 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1161 			}
1162 		},
1163 	},
1164 	[IB_QPS_SQD]   = {
1165 		[IB_QPS_RESET] = { .valid = 1 },
1166 		[IB_QPS_ERR] =   { .valid = 1 },
1167 		[IB_QPS_RTS]   = {
1168 			.valid = 1,
1169 			.opt_param = {
1170 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1171 						IB_QP_QKEY),
1172 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1173 						IB_QP_ALT_PATH			|
1174 						IB_QP_ACCESS_FLAGS		|
1175 						IB_QP_PATH_MIG_STATE),
1176 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1177 						IB_QP_ALT_PATH			|
1178 						IB_QP_ACCESS_FLAGS		|
1179 						IB_QP_MIN_RNR_TIMER		|
1180 						IB_QP_PATH_MIG_STATE),
1181 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1182 						IB_QP_ALT_PATH			|
1183 						IB_QP_ACCESS_FLAGS		|
1184 						IB_QP_PATH_MIG_STATE),
1185 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1186 						IB_QP_ALT_PATH			|
1187 						IB_QP_ACCESS_FLAGS		|
1188 						IB_QP_MIN_RNR_TIMER		|
1189 						IB_QP_PATH_MIG_STATE),
1190 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1191 						IB_QP_QKEY),
1192 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1193 						IB_QP_QKEY),
1194 			}
1195 		},
1196 		[IB_QPS_SQD]   = {
1197 			.valid = 1,
1198 			.opt_param = {
1199 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1200 						IB_QP_QKEY),
1201 				[IB_QPT_UC]  = (IB_QP_AV			|
1202 						IB_QP_ALT_PATH			|
1203 						IB_QP_ACCESS_FLAGS		|
1204 						IB_QP_PKEY_INDEX		|
1205 						IB_QP_PATH_MIG_STATE),
1206 				[IB_QPT_RC]  = (IB_QP_PORT			|
1207 						IB_QP_AV			|
1208 						IB_QP_TIMEOUT			|
1209 						IB_QP_RETRY_CNT			|
1210 						IB_QP_RNR_RETRY			|
1211 						IB_QP_MAX_QP_RD_ATOMIC		|
1212 						IB_QP_MAX_DEST_RD_ATOMIC	|
1213 						IB_QP_ALT_PATH			|
1214 						IB_QP_ACCESS_FLAGS		|
1215 						IB_QP_PKEY_INDEX		|
1216 						IB_QP_MIN_RNR_TIMER		|
1217 						IB_QP_PATH_MIG_STATE),
1218 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1219 						IB_QP_AV			|
1220 						IB_QP_TIMEOUT			|
1221 						IB_QP_RETRY_CNT			|
1222 						IB_QP_RNR_RETRY			|
1223 						IB_QP_MAX_QP_RD_ATOMIC		|
1224 						IB_QP_ALT_PATH			|
1225 						IB_QP_ACCESS_FLAGS		|
1226 						IB_QP_PKEY_INDEX		|
1227 						IB_QP_PATH_MIG_STATE),
1228 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1229 						IB_QP_AV			|
1230 						IB_QP_TIMEOUT			|
1231 						IB_QP_MAX_DEST_RD_ATOMIC	|
1232 						IB_QP_ALT_PATH			|
1233 						IB_QP_ACCESS_FLAGS		|
1234 						IB_QP_PKEY_INDEX		|
1235 						IB_QP_MIN_RNR_TIMER		|
1236 						IB_QP_PATH_MIG_STATE),
1237 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1238 						IB_QP_QKEY),
1239 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1240 						IB_QP_QKEY),
1241 			}
1242 		}
1243 	},
1244 	[IB_QPS_SQE]   = {
1245 		[IB_QPS_RESET] = { .valid = 1 },
1246 		[IB_QPS_ERR] =   { .valid = 1 },
1247 		[IB_QPS_RTS]   = {
1248 			.valid = 1,
1249 			.opt_param = {
1250 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1251 						IB_QP_QKEY),
1252 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1253 						IB_QP_ACCESS_FLAGS),
1254 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1255 						IB_QP_QKEY),
1256 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1257 						IB_QP_QKEY),
1258 			}
1259 		}
1260 	},
1261 	[IB_QPS_ERR] = {
1262 		[IB_QPS_RESET] = { .valid = 1 },
1263 		[IB_QPS_ERR] =   { .valid = 1 }
1264 	}
1265 };
1266 
1267 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1268 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1269 		       enum rdma_link_layer ll)
1270 {
1271 	enum ib_qp_attr_mask req_param, opt_param;
1272 
1273 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1274 	    next_state < 0 || next_state > IB_QPS_ERR)
1275 		return 0;
1276 
1277 	if (mask & IB_QP_CUR_STATE  &&
1278 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1279 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1280 		return 0;
1281 
1282 	if (!qp_state_table[cur_state][next_state].valid)
1283 		return 0;
1284 
1285 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1286 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1287 
1288 	if ((mask & req_param) != req_param)
1289 		return 0;
1290 
1291 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1292 		return 0;
1293 
1294 	return 1;
1295 }
1296 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1297 
1298 static int ib_resolve_eth_dmac(struct ib_device *device,
1299 			       struct rdma_ah_attr *ah_attr)
1300 {
1301 	int           ret = 0;
1302 	struct ib_global_route *grh;
1303 
1304 	if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1305 		return -EINVAL;
1306 
1307 	grh = rdma_ah_retrieve_grh(ah_attr);
1308 
1309 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1310 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1311 			__be32 addr = 0;
1312 
1313 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1314 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1315 		} else {
1316 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1317 					(char *)ah_attr->roce.dmac);
1318 		}
1319 	} else {
1320 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1321 	}
1322 	return ret;
1323 }
1324 
1325 /**
1326  * IB core internal function to perform QP attributes modification.
1327  */
1328 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1329 			 int attr_mask, struct ib_udata *udata)
1330 {
1331 	u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1332 	int ret;
1333 
1334 	if (rdma_ib_or_roce(qp->device, port)) {
1335 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1336 			pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
1337 				__func__, qp->device->name);
1338 			attr->rq_psn &= 0xffffff;
1339 		}
1340 
1341 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1342 			pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
1343 				__func__, qp->device->name);
1344 			attr->sq_psn &= 0xffffff;
1345 		}
1346 	}
1347 
1348 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1349 	if (!ret && (attr_mask & IB_QP_PORT))
1350 		qp->port = attr->port_num;
1351 
1352 	return ret;
1353 }
1354 
1355 static bool is_qp_type_connected(const struct ib_qp *qp)
1356 {
1357 	return (qp->qp_type == IB_QPT_UC ||
1358 		qp->qp_type == IB_QPT_RC ||
1359 		qp->qp_type == IB_QPT_XRC_INI ||
1360 		qp->qp_type == IB_QPT_XRC_TGT);
1361 }
1362 
1363 /**
1364  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1365  * @ib_qp: The QP to modify.
1366  * @attr: On input, specifies the QP attributes to modify.  On output,
1367  *   the current values of selected QP attributes are returned.
1368  * @attr_mask: A bit-mask used to specify which attributes of the QP
1369  *   are being modified.
1370  * @udata: pointer to user's input output buffer information
1371  *   are being modified.
1372  * It returns 0 on success and returns appropriate error code on error.
1373  */
1374 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1375 			    int attr_mask, struct ib_udata *udata)
1376 {
1377 	struct ib_qp *qp = ib_qp->real_qp;
1378 	int ret;
1379 
1380 	if (attr_mask & IB_QP_AV &&
1381 	    attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1382 	    is_qp_type_connected(qp)) {
1383 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1384 		if (ret)
1385 			return ret;
1386 	}
1387 	return _ib_modify_qp(qp, attr, attr_mask, udata);
1388 }
1389 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1390 
1391 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1392 {
1393 	int rc;
1394 	u32 netdev_speed;
1395 	struct net_device *netdev;
1396 	struct ethtool_link_ksettings lksettings;
1397 
1398 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1399 		return -EINVAL;
1400 
1401 	if (!dev->get_netdev)
1402 		return -EOPNOTSUPP;
1403 
1404 	netdev = dev->get_netdev(dev, port_num);
1405 	if (!netdev)
1406 		return -ENODEV;
1407 
1408 	rtnl_lock();
1409 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1410 	rtnl_unlock();
1411 
1412 	dev_put(netdev);
1413 
1414 	if (!rc) {
1415 		netdev_speed = lksettings.base.speed;
1416 	} else {
1417 		netdev_speed = SPEED_1000;
1418 		pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1419 			netdev_speed);
1420 	}
1421 
1422 	if (netdev_speed <= SPEED_1000) {
1423 		*width = IB_WIDTH_1X;
1424 		*speed = IB_SPEED_SDR;
1425 	} else if (netdev_speed <= SPEED_10000) {
1426 		*width = IB_WIDTH_1X;
1427 		*speed = IB_SPEED_FDR10;
1428 	} else if (netdev_speed <= SPEED_20000) {
1429 		*width = IB_WIDTH_4X;
1430 		*speed = IB_SPEED_DDR;
1431 	} else if (netdev_speed <= SPEED_25000) {
1432 		*width = IB_WIDTH_1X;
1433 		*speed = IB_SPEED_EDR;
1434 	} else if (netdev_speed <= SPEED_40000) {
1435 		*width = IB_WIDTH_4X;
1436 		*speed = IB_SPEED_FDR10;
1437 	} else {
1438 		*width = IB_WIDTH_4X;
1439 		*speed = IB_SPEED_EDR;
1440 	}
1441 
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL(ib_get_eth_speed);
1445 
1446 int ib_modify_qp(struct ib_qp *qp,
1447 		 struct ib_qp_attr *qp_attr,
1448 		 int qp_attr_mask)
1449 {
1450 	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1451 }
1452 EXPORT_SYMBOL(ib_modify_qp);
1453 
1454 int ib_query_qp(struct ib_qp *qp,
1455 		struct ib_qp_attr *qp_attr,
1456 		int qp_attr_mask,
1457 		struct ib_qp_init_attr *qp_init_attr)
1458 {
1459 	return qp->device->query_qp ?
1460 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1461 		-ENOSYS;
1462 }
1463 EXPORT_SYMBOL(ib_query_qp);
1464 
1465 int ib_close_qp(struct ib_qp *qp)
1466 {
1467 	struct ib_qp *real_qp;
1468 	unsigned long flags;
1469 
1470 	real_qp = qp->real_qp;
1471 	if (real_qp == qp)
1472 		return -EINVAL;
1473 
1474 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1475 	list_del(&qp->open_list);
1476 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1477 
1478 	atomic_dec(&real_qp->usecnt);
1479 	if (qp->qp_sec)
1480 		ib_close_shared_qp_security(qp->qp_sec);
1481 	kfree(qp);
1482 
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL(ib_close_qp);
1486 
1487 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1488 {
1489 	struct ib_xrcd *xrcd;
1490 	struct ib_qp *real_qp;
1491 	int ret;
1492 
1493 	real_qp = qp->real_qp;
1494 	xrcd = real_qp->xrcd;
1495 
1496 	mutex_lock(&xrcd->tgt_qp_mutex);
1497 	ib_close_qp(qp);
1498 	if (atomic_read(&real_qp->usecnt) == 0)
1499 		list_del(&real_qp->xrcd_list);
1500 	else
1501 		real_qp = NULL;
1502 	mutex_unlock(&xrcd->tgt_qp_mutex);
1503 
1504 	if (real_qp) {
1505 		ret = ib_destroy_qp(real_qp);
1506 		if (!ret)
1507 			atomic_dec(&xrcd->usecnt);
1508 		else
1509 			__ib_insert_xrcd_qp(xrcd, real_qp);
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 int ib_destroy_qp(struct ib_qp *qp)
1516 {
1517 	struct ib_pd *pd;
1518 	struct ib_cq *scq, *rcq;
1519 	struct ib_srq *srq;
1520 	struct ib_rwq_ind_table *ind_tbl;
1521 	struct ib_qp_security *sec;
1522 	int ret;
1523 
1524 	WARN_ON_ONCE(qp->mrs_used > 0);
1525 
1526 	if (atomic_read(&qp->usecnt))
1527 		return -EBUSY;
1528 
1529 	if (qp->real_qp != qp)
1530 		return __ib_destroy_shared_qp(qp);
1531 
1532 	pd   = qp->pd;
1533 	scq  = qp->send_cq;
1534 	rcq  = qp->recv_cq;
1535 	srq  = qp->srq;
1536 	ind_tbl = qp->rwq_ind_tbl;
1537 	sec  = qp->qp_sec;
1538 	if (sec)
1539 		ib_destroy_qp_security_begin(sec);
1540 
1541 	if (!qp->uobject)
1542 		rdma_rw_cleanup_mrs(qp);
1543 
1544 	rdma_restrack_del(&qp->res);
1545 	ret = qp->device->destroy_qp(qp);
1546 	if (!ret) {
1547 		if (pd)
1548 			atomic_dec(&pd->usecnt);
1549 		if (scq)
1550 			atomic_dec(&scq->usecnt);
1551 		if (rcq)
1552 			atomic_dec(&rcq->usecnt);
1553 		if (srq)
1554 			atomic_dec(&srq->usecnt);
1555 		if (ind_tbl)
1556 			atomic_dec(&ind_tbl->usecnt);
1557 		if (sec)
1558 			ib_destroy_qp_security_end(sec);
1559 	} else {
1560 		if (sec)
1561 			ib_destroy_qp_security_abort(sec);
1562 	}
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(ib_destroy_qp);
1567 
1568 /* Completion queues */
1569 
1570 struct ib_cq *ib_create_cq(struct ib_device *device,
1571 			   ib_comp_handler comp_handler,
1572 			   void (*event_handler)(struct ib_event *, void *),
1573 			   void *cq_context,
1574 			   const struct ib_cq_init_attr *cq_attr)
1575 {
1576 	struct ib_cq *cq;
1577 
1578 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1579 
1580 	if (!IS_ERR(cq)) {
1581 		cq->device        = device;
1582 		cq->uobject       = NULL;
1583 		cq->comp_handler  = comp_handler;
1584 		cq->event_handler = event_handler;
1585 		cq->cq_context    = cq_context;
1586 		atomic_set(&cq->usecnt, 0);
1587 		cq->res.type = RDMA_RESTRACK_CQ;
1588 		rdma_restrack_add(&cq->res);
1589 	}
1590 
1591 	return cq;
1592 }
1593 EXPORT_SYMBOL(ib_create_cq);
1594 
1595 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1596 {
1597 	return cq->device->modify_cq ?
1598 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1599 }
1600 EXPORT_SYMBOL(rdma_set_cq_moderation);
1601 
1602 int ib_destroy_cq(struct ib_cq *cq)
1603 {
1604 	if (atomic_read(&cq->usecnt))
1605 		return -EBUSY;
1606 
1607 	rdma_restrack_del(&cq->res);
1608 	return cq->device->destroy_cq(cq);
1609 }
1610 EXPORT_SYMBOL(ib_destroy_cq);
1611 
1612 int ib_resize_cq(struct ib_cq *cq, int cqe)
1613 {
1614 	return cq->device->resize_cq ?
1615 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1616 }
1617 EXPORT_SYMBOL(ib_resize_cq);
1618 
1619 /* Memory regions */
1620 
1621 int ib_dereg_mr(struct ib_mr *mr)
1622 {
1623 	struct ib_pd *pd = mr->pd;
1624 	int ret;
1625 
1626 	ret = mr->device->dereg_mr(mr);
1627 	if (!ret)
1628 		atomic_dec(&pd->usecnt);
1629 
1630 	return ret;
1631 }
1632 EXPORT_SYMBOL(ib_dereg_mr);
1633 
1634 /**
1635  * ib_alloc_mr() - Allocates a memory region
1636  * @pd:            protection domain associated with the region
1637  * @mr_type:       memory region type
1638  * @max_num_sg:    maximum sg entries available for registration.
1639  *
1640  * Notes:
1641  * Memory registeration page/sg lists must not exceed max_num_sg.
1642  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1643  * max_num_sg * used_page_size.
1644  *
1645  */
1646 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1647 			  enum ib_mr_type mr_type,
1648 			  u32 max_num_sg)
1649 {
1650 	struct ib_mr *mr;
1651 
1652 	if (!pd->device->alloc_mr)
1653 		return ERR_PTR(-ENOSYS);
1654 
1655 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1656 	if (!IS_ERR(mr)) {
1657 		mr->device  = pd->device;
1658 		mr->pd      = pd;
1659 		mr->uobject = NULL;
1660 		atomic_inc(&pd->usecnt);
1661 		mr->need_inval = false;
1662 	}
1663 
1664 	return mr;
1665 }
1666 EXPORT_SYMBOL(ib_alloc_mr);
1667 
1668 /* "Fast" memory regions */
1669 
1670 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1671 			    int mr_access_flags,
1672 			    struct ib_fmr_attr *fmr_attr)
1673 {
1674 	struct ib_fmr *fmr;
1675 
1676 	if (!pd->device->alloc_fmr)
1677 		return ERR_PTR(-ENOSYS);
1678 
1679 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1680 	if (!IS_ERR(fmr)) {
1681 		fmr->device = pd->device;
1682 		fmr->pd     = pd;
1683 		atomic_inc(&pd->usecnt);
1684 	}
1685 
1686 	return fmr;
1687 }
1688 EXPORT_SYMBOL(ib_alloc_fmr);
1689 
1690 int ib_unmap_fmr(struct list_head *fmr_list)
1691 {
1692 	struct ib_fmr *fmr;
1693 
1694 	if (list_empty(fmr_list))
1695 		return 0;
1696 
1697 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1698 	return fmr->device->unmap_fmr(fmr_list);
1699 }
1700 EXPORT_SYMBOL(ib_unmap_fmr);
1701 
1702 int ib_dealloc_fmr(struct ib_fmr *fmr)
1703 {
1704 	struct ib_pd *pd;
1705 	int ret;
1706 
1707 	pd = fmr->pd;
1708 	ret = fmr->device->dealloc_fmr(fmr);
1709 	if (!ret)
1710 		atomic_dec(&pd->usecnt);
1711 
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL(ib_dealloc_fmr);
1715 
1716 /* Multicast groups */
1717 
1718 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1719 {
1720 	struct ib_qp_init_attr init_attr = {};
1721 	struct ib_qp_attr attr = {};
1722 	int num_eth_ports = 0;
1723 	int port;
1724 
1725 	/* If QP state >= init, it is assigned to a port and we can check this
1726 	 * port only.
1727 	 */
1728 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1729 		if (attr.qp_state >= IB_QPS_INIT) {
1730 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1731 			    IB_LINK_LAYER_INFINIBAND)
1732 				return true;
1733 			goto lid_check;
1734 		}
1735 	}
1736 
1737 	/* Can't get a quick answer, iterate over all ports */
1738 	for (port = 0; port < qp->device->phys_port_cnt; port++)
1739 		if (rdma_port_get_link_layer(qp->device, port) !=
1740 		    IB_LINK_LAYER_INFINIBAND)
1741 			num_eth_ports++;
1742 
1743 	/* If we have at lease one Ethernet port, RoCE annex declares that
1744 	 * multicast LID should be ignored. We can't tell at this step if the
1745 	 * QP belongs to an IB or Ethernet port.
1746 	 */
1747 	if (num_eth_ports)
1748 		return true;
1749 
1750 	/* If all the ports are IB, we can check according to IB spec. */
1751 lid_check:
1752 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1753 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1754 }
1755 
1756 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1757 {
1758 	int ret;
1759 
1760 	if (!qp->device->attach_mcast)
1761 		return -ENOSYS;
1762 
1763 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1764 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1765 		return -EINVAL;
1766 
1767 	ret = qp->device->attach_mcast(qp, gid, lid);
1768 	if (!ret)
1769 		atomic_inc(&qp->usecnt);
1770 	return ret;
1771 }
1772 EXPORT_SYMBOL(ib_attach_mcast);
1773 
1774 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1775 {
1776 	int ret;
1777 
1778 	if (!qp->device->detach_mcast)
1779 		return -ENOSYS;
1780 
1781 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1782 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1783 		return -EINVAL;
1784 
1785 	ret = qp->device->detach_mcast(qp, gid, lid);
1786 	if (!ret)
1787 		atomic_dec(&qp->usecnt);
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL(ib_detach_mcast);
1791 
1792 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
1793 {
1794 	struct ib_xrcd *xrcd;
1795 
1796 	if (!device->alloc_xrcd)
1797 		return ERR_PTR(-ENOSYS);
1798 
1799 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1800 	if (!IS_ERR(xrcd)) {
1801 		xrcd->device = device;
1802 		xrcd->inode = NULL;
1803 		atomic_set(&xrcd->usecnt, 0);
1804 		mutex_init(&xrcd->tgt_qp_mutex);
1805 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1806 	}
1807 
1808 	return xrcd;
1809 }
1810 EXPORT_SYMBOL(__ib_alloc_xrcd);
1811 
1812 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1813 {
1814 	struct ib_qp *qp;
1815 	int ret;
1816 
1817 	if (atomic_read(&xrcd->usecnt))
1818 		return -EBUSY;
1819 
1820 	while (!list_empty(&xrcd->tgt_qp_list)) {
1821 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1822 		ret = ib_destroy_qp(qp);
1823 		if (ret)
1824 			return ret;
1825 	}
1826 
1827 	return xrcd->device->dealloc_xrcd(xrcd);
1828 }
1829 EXPORT_SYMBOL(ib_dealloc_xrcd);
1830 
1831 /**
1832  * ib_create_wq - Creates a WQ associated with the specified protection
1833  * domain.
1834  * @pd: The protection domain associated with the WQ.
1835  * @wq_attr: A list of initial attributes required to create the
1836  * WQ. If WQ creation succeeds, then the attributes are updated to
1837  * the actual capabilities of the created WQ.
1838  *
1839  * wq_attr->max_wr and wq_attr->max_sge determine
1840  * the requested size of the WQ, and set to the actual values allocated
1841  * on return.
1842  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1843  * at least as large as the requested values.
1844  */
1845 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1846 			   struct ib_wq_init_attr *wq_attr)
1847 {
1848 	struct ib_wq *wq;
1849 
1850 	if (!pd->device->create_wq)
1851 		return ERR_PTR(-ENOSYS);
1852 
1853 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1854 	if (!IS_ERR(wq)) {
1855 		wq->event_handler = wq_attr->event_handler;
1856 		wq->wq_context = wq_attr->wq_context;
1857 		wq->wq_type = wq_attr->wq_type;
1858 		wq->cq = wq_attr->cq;
1859 		wq->device = pd->device;
1860 		wq->pd = pd;
1861 		wq->uobject = NULL;
1862 		atomic_inc(&pd->usecnt);
1863 		atomic_inc(&wq_attr->cq->usecnt);
1864 		atomic_set(&wq->usecnt, 0);
1865 	}
1866 	return wq;
1867 }
1868 EXPORT_SYMBOL(ib_create_wq);
1869 
1870 /**
1871  * ib_destroy_wq - Destroys the specified WQ.
1872  * @wq: The WQ to destroy.
1873  */
1874 int ib_destroy_wq(struct ib_wq *wq)
1875 {
1876 	int err;
1877 	struct ib_cq *cq = wq->cq;
1878 	struct ib_pd *pd = wq->pd;
1879 
1880 	if (atomic_read(&wq->usecnt))
1881 		return -EBUSY;
1882 
1883 	err = wq->device->destroy_wq(wq);
1884 	if (!err) {
1885 		atomic_dec(&pd->usecnt);
1886 		atomic_dec(&cq->usecnt);
1887 	}
1888 	return err;
1889 }
1890 EXPORT_SYMBOL(ib_destroy_wq);
1891 
1892 /**
1893  * ib_modify_wq - Modifies the specified WQ.
1894  * @wq: The WQ to modify.
1895  * @wq_attr: On input, specifies the WQ attributes to modify.
1896  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1897  *   are being modified.
1898  * On output, the current values of selected WQ attributes are returned.
1899  */
1900 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1901 		 u32 wq_attr_mask)
1902 {
1903 	int err;
1904 
1905 	if (!wq->device->modify_wq)
1906 		return -ENOSYS;
1907 
1908 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1909 	return err;
1910 }
1911 EXPORT_SYMBOL(ib_modify_wq);
1912 
1913 /*
1914  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1915  * @device: The device on which to create the rwq indirection table.
1916  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1917  * create the Indirection Table.
1918  *
1919  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1920  *	than the created ib_rwq_ind_table object and the caller is responsible
1921  *	for its memory allocation/free.
1922  */
1923 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1924 						 struct ib_rwq_ind_table_init_attr *init_attr)
1925 {
1926 	struct ib_rwq_ind_table *rwq_ind_table;
1927 	int i;
1928 	u32 table_size;
1929 
1930 	if (!device->create_rwq_ind_table)
1931 		return ERR_PTR(-ENOSYS);
1932 
1933 	table_size = (1 << init_attr->log_ind_tbl_size);
1934 	rwq_ind_table = device->create_rwq_ind_table(device,
1935 				init_attr, NULL);
1936 	if (IS_ERR(rwq_ind_table))
1937 		return rwq_ind_table;
1938 
1939 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1940 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1941 	rwq_ind_table->device = device;
1942 	rwq_ind_table->uobject = NULL;
1943 	atomic_set(&rwq_ind_table->usecnt, 0);
1944 
1945 	for (i = 0; i < table_size; i++)
1946 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1947 
1948 	return rwq_ind_table;
1949 }
1950 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1951 
1952 /*
1953  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1954  * @wq_ind_table: The Indirection Table to destroy.
1955 */
1956 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1957 {
1958 	int err, i;
1959 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1960 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1961 
1962 	if (atomic_read(&rwq_ind_table->usecnt))
1963 		return -EBUSY;
1964 
1965 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1966 	if (!err) {
1967 		for (i = 0; i < table_size; i++)
1968 			atomic_dec(&ind_tbl[i]->usecnt);
1969 	}
1970 
1971 	return err;
1972 }
1973 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1974 
1975 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1976 			       struct ib_flow_attr *flow_attr,
1977 			       int domain)
1978 {
1979 	struct ib_flow *flow_id;
1980 	if (!qp->device->create_flow)
1981 		return ERR_PTR(-ENOSYS);
1982 
1983 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1984 	if (!IS_ERR(flow_id)) {
1985 		atomic_inc(&qp->usecnt);
1986 		flow_id->qp = qp;
1987 	}
1988 	return flow_id;
1989 }
1990 EXPORT_SYMBOL(ib_create_flow);
1991 
1992 int ib_destroy_flow(struct ib_flow *flow_id)
1993 {
1994 	int err;
1995 	struct ib_qp *qp = flow_id->qp;
1996 
1997 	err = qp->device->destroy_flow(flow_id);
1998 	if (!err)
1999 		atomic_dec(&qp->usecnt);
2000 	return err;
2001 }
2002 EXPORT_SYMBOL(ib_destroy_flow);
2003 
2004 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2005 		       struct ib_mr_status *mr_status)
2006 {
2007 	return mr->device->check_mr_status ?
2008 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
2009 }
2010 EXPORT_SYMBOL(ib_check_mr_status);
2011 
2012 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2013 			 int state)
2014 {
2015 	if (!device->set_vf_link_state)
2016 		return -ENOSYS;
2017 
2018 	return device->set_vf_link_state(device, vf, port, state);
2019 }
2020 EXPORT_SYMBOL(ib_set_vf_link_state);
2021 
2022 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2023 		     struct ifla_vf_info *info)
2024 {
2025 	if (!device->get_vf_config)
2026 		return -ENOSYS;
2027 
2028 	return device->get_vf_config(device, vf, port, info);
2029 }
2030 EXPORT_SYMBOL(ib_get_vf_config);
2031 
2032 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2033 		    struct ifla_vf_stats *stats)
2034 {
2035 	if (!device->get_vf_stats)
2036 		return -ENOSYS;
2037 
2038 	return device->get_vf_stats(device, vf, port, stats);
2039 }
2040 EXPORT_SYMBOL(ib_get_vf_stats);
2041 
2042 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2043 		   int type)
2044 {
2045 	if (!device->set_vf_guid)
2046 		return -ENOSYS;
2047 
2048 	return device->set_vf_guid(device, vf, port, guid, type);
2049 }
2050 EXPORT_SYMBOL(ib_set_vf_guid);
2051 
2052 /**
2053  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2054  *     and set it the memory region.
2055  * @mr:            memory region
2056  * @sg:            dma mapped scatterlist
2057  * @sg_nents:      number of entries in sg
2058  * @sg_offset:     offset in bytes into sg
2059  * @page_size:     page vector desired page size
2060  *
2061  * Constraints:
2062  * - The first sg element is allowed to have an offset.
2063  * - Each sg element must either be aligned to page_size or virtually
2064  *   contiguous to the previous element. In case an sg element has a
2065  *   non-contiguous offset, the mapping prefix will not include it.
2066  * - The last sg element is allowed to have length less than page_size.
2067  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2068  *   then only max_num_sg entries will be mapped.
2069  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2070  *   constraints holds and the page_size argument is ignored.
2071  *
2072  * Returns the number of sg elements that were mapped to the memory region.
2073  *
2074  * After this completes successfully, the  memory region
2075  * is ready for registration.
2076  */
2077 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2078 		 unsigned int *sg_offset, unsigned int page_size)
2079 {
2080 	if (unlikely(!mr->device->map_mr_sg))
2081 		return -ENOSYS;
2082 
2083 	mr->page_size = page_size;
2084 
2085 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2086 }
2087 EXPORT_SYMBOL(ib_map_mr_sg);
2088 
2089 /**
2090  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2091  *     to a page vector
2092  * @mr:            memory region
2093  * @sgl:           dma mapped scatterlist
2094  * @sg_nents:      number of entries in sg
2095  * @sg_offset_p:   IN:  start offset in bytes into sg
2096  *                 OUT: offset in bytes for element n of the sg of the first
2097  *                      byte that has not been processed where n is the return
2098  *                      value of this function.
2099  * @set_page:      driver page assignment function pointer
2100  *
2101  * Core service helper for drivers to convert the largest
2102  * prefix of given sg list to a page vector. The sg list
2103  * prefix converted is the prefix that meet the requirements
2104  * of ib_map_mr_sg.
2105  *
2106  * Returns the number of sg elements that were assigned to
2107  * a page vector.
2108  */
2109 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2110 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2111 {
2112 	struct scatterlist *sg;
2113 	u64 last_end_dma_addr = 0;
2114 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2115 	unsigned int last_page_off = 0;
2116 	u64 page_mask = ~((u64)mr->page_size - 1);
2117 	int i, ret;
2118 
2119 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2120 		return -EINVAL;
2121 
2122 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2123 	mr->length = 0;
2124 
2125 	for_each_sg(sgl, sg, sg_nents, i) {
2126 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2127 		u64 prev_addr = dma_addr;
2128 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2129 		u64 end_dma_addr = dma_addr + dma_len;
2130 		u64 page_addr = dma_addr & page_mask;
2131 
2132 		/*
2133 		 * For the second and later elements, check whether either the
2134 		 * end of element i-1 or the start of element i is not aligned
2135 		 * on a page boundary.
2136 		 */
2137 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2138 			/* Stop mapping if there is a gap. */
2139 			if (last_end_dma_addr != dma_addr)
2140 				break;
2141 
2142 			/*
2143 			 * Coalesce this element with the last. If it is small
2144 			 * enough just update mr->length. Otherwise start
2145 			 * mapping from the next page.
2146 			 */
2147 			goto next_page;
2148 		}
2149 
2150 		do {
2151 			ret = set_page(mr, page_addr);
2152 			if (unlikely(ret < 0)) {
2153 				sg_offset = prev_addr - sg_dma_address(sg);
2154 				mr->length += prev_addr - dma_addr;
2155 				if (sg_offset_p)
2156 					*sg_offset_p = sg_offset;
2157 				return i || sg_offset ? i : ret;
2158 			}
2159 			prev_addr = page_addr;
2160 next_page:
2161 			page_addr += mr->page_size;
2162 		} while (page_addr < end_dma_addr);
2163 
2164 		mr->length += dma_len;
2165 		last_end_dma_addr = end_dma_addr;
2166 		last_page_off = end_dma_addr & ~page_mask;
2167 
2168 		sg_offset = 0;
2169 	}
2170 
2171 	if (sg_offset_p)
2172 		*sg_offset_p = 0;
2173 	return i;
2174 }
2175 EXPORT_SYMBOL(ib_sg_to_pages);
2176 
2177 struct ib_drain_cqe {
2178 	struct ib_cqe cqe;
2179 	struct completion done;
2180 };
2181 
2182 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2183 {
2184 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2185 						cqe);
2186 
2187 	complete(&cqe->done);
2188 }
2189 
2190 /*
2191  * Post a WR and block until its completion is reaped for the SQ.
2192  */
2193 static void __ib_drain_sq(struct ib_qp *qp)
2194 {
2195 	struct ib_cq *cq = qp->send_cq;
2196 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2197 	struct ib_drain_cqe sdrain;
2198 	struct ib_send_wr swr = {}, *bad_swr;
2199 	int ret;
2200 
2201 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2202 	if (ret) {
2203 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2204 		return;
2205 	}
2206 
2207 	swr.wr_cqe = &sdrain.cqe;
2208 	sdrain.cqe.done = ib_drain_qp_done;
2209 	init_completion(&sdrain.done);
2210 
2211 	ret = ib_post_send(qp, &swr, &bad_swr);
2212 	if (ret) {
2213 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2214 		return;
2215 	}
2216 
2217 	if (cq->poll_ctx == IB_POLL_DIRECT)
2218 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2219 			ib_process_cq_direct(cq, -1);
2220 	else
2221 		wait_for_completion(&sdrain.done);
2222 }
2223 
2224 /*
2225  * Post a WR and block until its completion is reaped for the RQ.
2226  */
2227 static void __ib_drain_rq(struct ib_qp *qp)
2228 {
2229 	struct ib_cq *cq = qp->recv_cq;
2230 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2231 	struct ib_drain_cqe rdrain;
2232 	struct ib_recv_wr rwr = {}, *bad_rwr;
2233 	int ret;
2234 
2235 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2236 	if (ret) {
2237 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2238 		return;
2239 	}
2240 
2241 	rwr.wr_cqe = &rdrain.cqe;
2242 	rdrain.cqe.done = ib_drain_qp_done;
2243 	init_completion(&rdrain.done);
2244 
2245 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2246 	if (ret) {
2247 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2248 		return;
2249 	}
2250 
2251 	if (cq->poll_ctx == IB_POLL_DIRECT)
2252 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2253 			ib_process_cq_direct(cq, -1);
2254 	else
2255 		wait_for_completion(&rdrain.done);
2256 }
2257 
2258 /**
2259  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2260  *		   application.
2261  * @qp:            queue pair to drain
2262  *
2263  * If the device has a provider-specific drain function, then
2264  * call that.  Otherwise call the generic drain function
2265  * __ib_drain_sq().
2266  *
2267  * The caller must:
2268  *
2269  * ensure there is room in the CQ and SQ for the drain work request and
2270  * completion.
2271  *
2272  * allocate the CQ using ib_alloc_cq().
2273  *
2274  * ensure that there are no other contexts that are posting WRs concurrently.
2275  * Otherwise the drain is not guaranteed.
2276  */
2277 void ib_drain_sq(struct ib_qp *qp)
2278 {
2279 	if (qp->device->drain_sq)
2280 		qp->device->drain_sq(qp);
2281 	else
2282 		__ib_drain_sq(qp);
2283 }
2284 EXPORT_SYMBOL(ib_drain_sq);
2285 
2286 /**
2287  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2288  *		   application.
2289  * @qp:            queue pair to drain
2290  *
2291  * If the device has a provider-specific drain function, then
2292  * call that.  Otherwise call the generic drain function
2293  * __ib_drain_rq().
2294  *
2295  * The caller must:
2296  *
2297  * ensure there is room in the CQ and RQ for the drain work request and
2298  * completion.
2299  *
2300  * allocate the CQ using ib_alloc_cq().
2301  *
2302  * ensure that there are no other contexts that are posting WRs concurrently.
2303  * Otherwise the drain is not guaranteed.
2304  */
2305 void ib_drain_rq(struct ib_qp *qp)
2306 {
2307 	if (qp->device->drain_rq)
2308 		qp->device->drain_rq(qp);
2309 	else
2310 		__ib_drain_rq(qp);
2311 }
2312 EXPORT_SYMBOL(ib_drain_rq);
2313 
2314 /**
2315  * ib_drain_qp() - Block until all CQEs have been consumed by the
2316  *		   application on both the RQ and SQ.
2317  * @qp:            queue pair to drain
2318  *
2319  * The caller must:
2320  *
2321  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2322  * and completions.
2323  *
2324  * allocate the CQs using ib_alloc_cq().
2325  *
2326  * ensure that there are no other contexts that are posting WRs concurrently.
2327  * Otherwise the drain is not guaranteed.
2328  */
2329 void ib_drain_qp(struct ib_qp *qp)
2330 {
2331 	ib_drain_sq(qp);
2332 	if (!qp->srq)
2333 		ib_drain_rq(qp);
2334 }
2335 EXPORT_SYMBOL(ib_drain_qp);
2336