1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 48 #include <rdma/ib_verbs.h> 49 #include <rdma/ib_cache.h> 50 #include <rdma/ib_addr.h> 51 #include <rdma/rw.h> 52 53 #include "core_priv.h" 54 55 static const char * const ib_events[] = { 56 [IB_EVENT_CQ_ERR] = "CQ error", 57 [IB_EVENT_QP_FATAL] = "QP fatal error", 58 [IB_EVENT_QP_REQ_ERR] = "QP request error", 59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 60 [IB_EVENT_COMM_EST] = "communication established", 61 [IB_EVENT_SQ_DRAINED] = "send queue drained", 62 [IB_EVENT_PATH_MIG] = "path migration successful", 63 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 64 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 65 [IB_EVENT_PORT_ACTIVE] = "port active", 66 [IB_EVENT_PORT_ERR] = "port error", 67 [IB_EVENT_LID_CHANGE] = "LID change", 68 [IB_EVENT_PKEY_CHANGE] = "P_key change", 69 [IB_EVENT_SM_CHANGE] = "SM change", 70 [IB_EVENT_SRQ_ERR] = "SRQ error", 71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 74 [IB_EVENT_GID_CHANGE] = "GID changed", 75 }; 76 77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 78 { 79 size_t index = event; 80 81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 82 ib_events[index] : "unrecognized event"; 83 } 84 EXPORT_SYMBOL(ib_event_msg); 85 86 static const char * const wc_statuses[] = { 87 [IB_WC_SUCCESS] = "success", 88 [IB_WC_LOC_LEN_ERR] = "local length error", 89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 91 [IB_WC_LOC_PROT_ERR] = "local protection error", 92 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 93 [IB_WC_MW_BIND_ERR] = "memory management operation error", 94 [IB_WC_BAD_RESP_ERR] = "bad response error", 95 [IB_WC_LOC_ACCESS_ERR] = "local access error", 96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 97 [IB_WC_REM_ACCESS_ERR] = "remote access error", 98 [IB_WC_REM_OP_ERR] = "remote operation error", 99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 103 [IB_WC_REM_ABORT_ERR] = "operation aborted", 104 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 106 [IB_WC_FATAL_ERR] = "fatal error", 107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 108 [IB_WC_GENERAL_ERR] = "general error", 109 }; 110 111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 112 { 113 size_t index = status; 114 115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 116 wc_statuses[index] : "unrecognized status"; 117 } 118 EXPORT_SYMBOL(ib_wc_status_msg); 119 120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 121 { 122 switch (rate) { 123 case IB_RATE_2_5_GBPS: return 1; 124 case IB_RATE_5_GBPS: return 2; 125 case IB_RATE_10_GBPS: return 4; 126 case IB_RATE_20_GBPS: return 8; 127 case IB_RATE_30_GBPS: return 12; 128 case IB_RATE_40_GBPS: return 16; 129 case IB_RATE_60_GBPS: return 24; 130 case IB_RATE_80_GBPS: return 32; 131 case IB_RATE_120_GBPS: return 48; 132 default: return -1; 133 } 134 } 135 EXPORT_SYMBOL(ib_rate_to_mult); 136 137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 138 { 139 switch (mult) { 140 case 1: return IB_RATE_2_5_GBPS; 141 case 2: return IB_RATE_5_GBPS; 142 case 4: return IB_RATE_10_GBPS; 143 case 8: return IB_RATE_20_GBPS; 144 case 12: return IB_RATE_30_GBPS; 145 case 16: return IB_RATE_40_GBPS; 146 case 24: return IB_RATE_60_GBPS; 147 case 32: return IB_RATE_80_GBPS; 148 case 48: return IB_RATE_120_GBPS; 149 default: return IB_RATE_PORT_CURRENT; 150 } 151 } 152 EXPORT_SYMBOL(mult_to_ib_rate); 153 154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 155 { 156 switch (rate) { 157 case IB_RATE_2_5_GBPS: return 2500; 158 case IB_RATE_5_GBPS: return 5000; 159 case IB_RATE_10_GBPS: return 10000; 160 case IB_RATE_20_GBPS: return 20000; 161 case IB_RATE_30_GBPS: return 30000; 162 case IB_RATE_40_GBPS: return 40000; 163 case IB_RATE_60_GBPS: return 60000; 164 case IB_RATE_80_GBPS: return 80000; 165 case IB_RATE_120_GBPS: return 120000; 166 case IB_RATE_14_GBPS: return 14062; 167 case IB_RATE_56_GBPS: return 56250; 168 case IB_RATE_112_GBPS: return 112500; 169 case IB_RATE_168_GBPS: return 168750; 170 case IB_RATE_25_GBPS: return 25781; 171 case IB_RATE_100_GBPS: return 103125; 172 case IB_RATE_200_GBPS: return 206250; 173 case IB_RATE_300_GBPS: return 309375; 174 default: return -1; 175 } 176 } 177 EXPORT_SYMBOL(ib_rate_to_mbps); 178 179 __attribute_const__ enum rdma_transport_type 180 rdma_node_get_transport(enum rdma_node_type node_type) 181 { 182 switch (node_type) { 183 case RDMA_NODE_IB_CA: 184 case RDMA_NODE_IB_SWITCH: 185 case RDMA_NODE_IB_ROUTER: 186 return RDMA_TRANSPORT_IB; 187 case RDMA_NODE_RNIC: 188 return RDMA_TRANSPORT_IWARP; 189 case RDMA_NODE_USNIC: 190 return RDMA_TRANSPORT_USNIC; 191 case RDMA_NODE_USNIC_UDP: 192 return RDMA_TRANSPORT_USNIC_UDP; 193 default: 194 BUG(); 195 return 0; 196 } 197 } 198 EXPORT_SYMBOL(rdma_node_get_transport); 199 200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 201 { 202 if (device->get_link_layer) 203 return device->get_link_layer(device, port_num); 204 205 switch (rdma_node_get_transport(device->node_type)) { 206 case RDMA_TRANSPORT_IB: 207 return IB_LINK_LAYER_INFINIBAND; 208 case RDMA_TRANSPORT_IWARP: 209 case RDMA_TRANSPORT_USNIC: 210 case RDMA_TRANSPORT_USNIC_UDP: 211 return IB_LINK_LAYER_ETHERNET; 212 default: 213 return IB_LINK_LAYER_UNSPECIFIED; 214 } 215 } 216 EXPORT_SYMBOL(rdma_port_get_link_layer); 217 218 /* Protection domains */ 219 220 /** 221 * ib_alloc_pd - Allocates an unused protection domain. 222 * @device: The device on which to allocate the protection domain. 223 * 224 * A protection domain object provides an association between QPs, shared 225 * receive queues, address handles, memory regions, and memory windows. 226 * 227 * Every PD has a local_dma_lkey which can be used as the lkey value for local 228 * memory operations. 229 */ 230 struct ib_pd *ib_alloc_pd(struct ib_device *device) 231 { 232 struct ib_pd *pd; 233 234 pd = device->alloc_pd(device, NULL, NULL); 235 if (IS_ERR(pd)) 236 return pd; 237 238 pd->device = device; 239 pd->uobject = NULL; 240 pd->local_mr = NULL; 241 atomic_set(&pd->usecnt, 0); 242 243 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 244 pd->local_dma_lkey = device->local_dma_lkey; 245 else { 246 struct ib_mr *mr; 247 248 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE); 249 if (IS_ERR(mr)) { 250 ib_dealloc_pd(pd); 251 return (struct ib_pd *)mr; 252 } 253 254 pd->local_mr = mr; 255 pd->local_dma_lkey = pd->local_mr->lkey; 256 } 257 return pd; 258 } 259 EXPORT_SYMBOL(ib_alloc_pd); 260 261 /** 262 * ib_dealloc_pd - Deallocates a protection domain. 263 * @pd: The protection domain to deallocate. 264 * 265 * It is an error to call this function while any resources in the pd still 266 * exist. The caller is responsible to synchronously destroy them and 267 * guarantee no new allocations will happen. 268 */ 269 void ib_dealloc_pd(struct ib_pd *pd) 270 { 271 int ret; 272 273 if (pd->local_mr) { 274 ret = ib_dereg_mr(pd->local_mr); 275 WARN_ON(ret); 276 pd->local_mr = NULL; 277 } 278 279 /* uverbs manipulates usecnt with proper locking, while the kabi 280 requires the caller to guarantee we can't race here. */ 281 WARN_ON(atomic_read(&pd->usecnt)); 282 283 /* Making delalloc_pd a void return is a WIP, no driver should return 284 an error here. */ 285 ret = pd->device->dealloc_pd(pd); 286 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 287 } 288 EXPORT_SYMBOL(ib_dealloc_pd); 289 290 /* Address handles */ 291 292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr) 293 { 294 struct ib_ah *ah; 295 296 ah = pd->device->create_ah(pd, ah_attr); 297 298 if (!IS_ERR(ah)) { 299 ah->device = pd->device; 300 ah->pd = pd; 301 ah->uobject = NULL; 302 atomic_inc(&pd->usecnt); 303 } 304 305 return ah; 306 } 307 EXPORT_SYMBOL(ib_create_ah); 308 309 static int ib_get_header_version(const union rdma_network_hdr *hdr) 310 { 311 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 312 struct iphdr ip4h_checked; 313 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 314 315 /* If it's IPv6, the version must be 6, otherwise, the first 316 * 20 bytes (before the IPv4 header) are garbled. 317 */ 318 if (ip6h->version != 6) 319 return (ip4h->version == 4) ? 4 : 0; 320 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 321 322 /* RoCE v2 requires no options, thus header length 323 * must be 5 words 324 */ 325 if (ip4h->ihl != 5) 326 return 6; 327 328 /* Verify checksum. 329 * We can't write on scattered buffers so we need to copy to 330 * temp buffer. 331 */ 332 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 333 ip4h_checked.check = 0; 334 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 335 /* if IPv4 header checksum is OK, believe it */ 336 if (ip4h->check == ip4h_checked.check) 337 return 4; 338 return 6; 339 } 340 341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 342 u8 port_num, 343 const struct ib_grh *grh) 344 { 345 int grh_version; 346 347 if (rdma_protocol_ib(device, port_num)) 348 return RDMA_NETWORK_IB; 349 350 grh_version = ib_get_header_version((union rdma_network_hdr *)grh); 351 352 if (grh_version == 4) 353 return RDMA_NETWORK_IPV4; 354 355 if (grh->next_hdr == IPPROTO_UDP) 356 return RDMA_NETWORK_IPV6; 357 358 return RDMA_NETWORK_ROCE_V1; 359 } 360 361 struct find_gid_index_context { 362 u16 vlan_id; 363 enum ib_gid_type gid_type; 364 }; 365 366 static bool find_gid_index(const union ib_gid *gid, 367 const struct ib_gid_attr *gid_attr, 368 void *context) 369 { 370 struct find_gid_index_context *ctx = 371 (struct find_gid_index_context *)context; 372 373 if (ctx->gid_type != gid_attr->gid_type) 374 return false; 375 376 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 377 (is_vlan_dev(gid_attr->ndev) && 378 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 379 return false; 380 381 return true; 382 } 383 384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, 385 u16 vlan_id, const union ib_gid *sgid, 386 enum ib_gid_type gid_type, 387 u16 *gid_index) 388 { 389 struct find_gid_index_context context = {.vlan_id = vlan_id, 390 .gid_type = gid_type}; 391 392 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, 393 &context, gid_index); 394 } 395 396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr, 397 enum rdma_network_type net_type, 398 union ib_gid *sgid, union ib_gid *dgid) 399 { 400 struct sockaddr_in src_in; 401 struct sockaddr_in dst_in; 402 __be32 src_saddr, dst_saddr; 403 404 if (!sgid || !dgid) 405 return -EINVAL; 406 407 if (net_type == RDMA_NETWORK_IPV4) { 408 memcpy(&src_in.sin_addr.s_addr, 409 &hdr->roce4grh.saddr, 4); 410 memcpy(&dst_in.sin_addr.s_addr, 411 &hdr->roce4grh.daddr, 4); 412 src_saddr = src_in.sin_addr.s_addr; 413 dst_saddr = dst_in.sin_addr.s_addr; 414 ipv6_addr_set_v4mapped(src_saddr, 415 (struct in6_addr *)sgid); 416 ipv6_addr_set_v4mapped(dst_saddr, 417 (struct in6_addr *)dgid); 418 return 0; 419 } else if (net_type == RDMA_NETWORK_IPV6 || 420 net_type == RDMA_NETWORK_IB) { 421 *dgid = hdr->ibgrh.dgid; 422 *sgid = hdr->ibgrh.sgid; 423 return 0; 424 } else { 425 return -EINVAL; 426 } 427 } 428 429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 430 const struct ib_wc *wc, const struct ib_grh *grh, 431 struct ib_ah_attr *ah_attr) 432 { 433 u32 flow_class; 434 u16 gid_index; 435 int ret; 436 enum rdma_network_type net_type = RDMA_NETWORK_IB; 437 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 438 int hoplimit = 0xff; 439 union ib_gid dgid; 440 union ib_gid sgid; 441 442 memset(ah_attr, 0, sizeof *ah_attr); 443 if (rdma_cap_eth_ah(device, port_num)) { 444 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 445 net_type = wc->network_hdr_type; 446 else 447 net_type = ib_get_net_type_by_grh(device, port_num, grh); 448 gid_type = ib_network_to_gid_type(net_type); 449 } 450 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 451 &sgid, &dgid); 452 if (ret) 453 return ret; 454 455 if (rdma_protocol_roce(device, port_num)) { 456 int if_index = 0; 457 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 458 wc->vlan_id : 0xffff; 459 struct net_device *idev; 460 struct net_device *resolved_dev; 461 462 if (!(wc->wc_flags & IB_WC_GRH)) 463 return -EPROTOTYPE; 464 465 if (!device->get_netdev) 466 return -EOPNOTSUPP; 467 468 idev = device->get_netdev(device, port_num); 469 if (!idev) 470 return -ENODEV; 471 472 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, 473 ah_attr->dmac, 474 wc->wc_flags & IB_WC_WITH_VLAN ? 475 NULL : &vlan_id, 476 &if_index, &hoplimit); 477 if (ret) { 478 dev_put(idev); 479 return ret; 480 } 481 482 resolved_dev = dev_get_by_index(&init_net, if_index); 483 if (resolved_dev->flags & IFF_LOOPBACK) { 484 dev_put(resolved_dev); 485 resolved_dev = idev; 486 dev_hold(resolved_dev); 487 } 488 rcu_read_lock(); 489 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev, 490 resolved_dev)) 491 ret = -EHOSTUNREACH; 492 rcu_read_unlock(); 493 dev_put(idev); 494 dev_put(resolved_dev); 495 if (ret) 496 return ret; 497 498 ret = get_sgid_index_from_eth(device, port_num, vlan_id, 499 &dgid, gid_type, &gid_index); 500 if (ret) 501 return ret; 502 } 503 504 ah_attr->dlid = wc->slid; 505 ah_attr->sl = wc->sl; 506 ah_attr->src_path_bits = wc->dlid_path_bits; 507 ah_attr->port_num = port_num; 508 509 if (wc->wc_flags & IB_WC_GRH) { 510 ah_attr->ah_flags = IB_AH_GRH; 511 ah_attr->grh.dgid = sgid; 512 513 if (!rdma_cap_eth_ah(device, port_num)) { 514 ret = ib_find_cached_gid_by_port(device, &dgid, 515 IB_GID_TYPE_IB, 516 port_num, NULL, 517 &gid_index); 518 if (ret) 519 return ret; 520 } 521 522 ah_attr->grh.sgid_index = (u8) gid_index; 523 flow_class = be32_to_cpu(grh->version_tclass_flow); 524 ah_attr->grh.flow_label = flow_class & 0xFFFFF; 525 ah_attr->grh.hop_limit = hoplimit; 526 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF; 527 } 528 return 0; 529 } 530 EXPORT_SYMBOL(ib_init_ah_from_wc); 531 532 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 533 const struct ib_grh *grh, u8 port_num) 534 { 535 struct ib_ah_attr ah_attr; 536 int ret; 537 538 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); 539 if (ret) 540 return ERR_PTR(ret); 541 542 return ib_create_ah(pd, &ah_attr); 543 } 544 EXPORT_SYMBOL(ib_create_ah_from_wc); 545 546 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr) 547 { 548 return ah->device->modify_ah ? 549 ah->device->modify_ah(ah, ah_attr) : 550 -ENOSYS; 551 } 552 EXPORT_SYMBOL(ib_modify_ah); 553 554 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr) 555 { 556 return ah->device->query_ah ? 557 ah->device->query_ah(ah, ah_attr) : 558 -ENOSYS; 559 } 560 EXPORT_SYMBOL(ib_query_ah); 561 562 int ib_destroy_ah(struct ib_ah *ah) 563 { 564 struct ib_pd *pd; 565 int ret; 566 567 pd = ah->pd; 568 ret = ah->device->destroy_ah(ah); 569 if (!ret) 570 atomic_dec(&pd->usecnt); 571 572 return ret; 573 } 574 EXPORT_SYMBOL(ib_destroy_ah); 575 576 /* Shared receive queues */ 577 578 struct ib_srq *ib_create_srq(struct ib_pd *pd, 579 struct ib_srq_init_attr *srq_init_attr) 580 { 581 struct ib_srq *srq; 582 583 if (!pd->device->create_srq) 584 return ERR_PTR(-ENOSYS); 585 586 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 587 588 if (!IS_ERR(srq)) { 589 srq->device = pd->device; 590 srq->pd = pd; 591 srq->uobject = NULL; 592 srq->event_handler = srq_init_attr->event_handler; 593 srq->srq_context = srq_init_attr->srq_context; 594 srq->srq_type = srq_init_attr->srq_type; 595 if (srq->srq_type == IB_SRQT_XRC) { 596 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 597 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq; 598 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 599 atomic_inc(&srq->ext.xrc.cq->usecnt); 600 } 601 atomic_inc(&pd->usecnt); 602 atomic_set(&srq->usecnt, 0); 603 } 604 605 return srq; 606 } 607 EXPORT_SYMBOL(ib_create_srq); 608 609 int ib_modify_srq(struct ib_srq *srq, 610 struct ib_srq_attr *srq_attr, 611 enum ib_srq_attr_mask srq_attr_mask) 612 { 613 return srq->device->modify_srq ? 614 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 615 -ENOSYS; 616 } 617 EXPORT_SYMBOL(ib_modify_srq); 618 619 int ib_query_srq(struct ib_srq *srq, 620 struct ib_srq_attr *srq_attr) 621 { 622 return srq->device->query_srq ? 623 srq->device->query_srq(srq, srq_attr) : -ENOSYS; 624 } 625 EXPORT_SYMBOL(ib_query_srq); 626 627 int ib_destroy_srq(struct ib_srq *srq) 628 { 629 struct ib_pd *pd; 630 enum ib_srq_type srq_type; 631 struct ib_xrcd *uninitialized_var(xrcd); 632 struct ib_cq *uninitialized_var(cq); 633 int ret; 634 635 if (atomic_read(&srq->usecnt)) 636 return -EBUSY; 637 638 pd = srq->pd; 639 srq_type = srq->srq_type; 640 if (srq_type == IB_SRQT_XRC) { 641 xrcd = srq->ext.xrc.xrcd; 642 cq = srq->ext.xrc.cq; 643 } 644 645 ret = srq->device->destroy_srq(srq); 646 if (!ret) { 647 atomic_dec(&pd->usecnt); 648 if (srq_type == IB_SRQT_XRC) { 649 atomic_dec(&xrcd->usecnt); 650 atomic_dec(&cq->usecnt); 651 } 652 } 653 654 return ret; 655 } 656 EXPORT_SYMBOL(ib_destroy_srq); 657 658 /* Queue pairs */ 659 660 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 661 { 662 struct ib_qp *qp = context; 663 unsigned long flags; 664 665 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 666 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 667 if (event->element.qp->event_handler) 668 event->element.qp->event_handler(event, event->element.qp->qp_context); 669 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 670 } 671 672 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 673 { 674 mutex_lock(&xrcd->tgt_qp_mutex); 675 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 676 mutex_unlock(&xrcd->tgt_qp_mutex); 677 } 678 679 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 680 void (*event_handler)(struct ib_event *, void *), 681 void *qp_context) 682 { 683 struct ib_qp *qp; 684 unsigned long flags; 685 686 qp = kzalloc(sizeof *qp, GFP_KERNEL); 687 if (!qp) 688 return ERR_PTR(-ENOMEM); 689 690 qp->real_qp = real_qp; 691 atomic_inc(&real_qp->usecnt); 692 qp->device = real_qp->device; 693 qp->event_handler = event_handler; 694 qp->qp_context = qp_context; 695 qp->qp_num = real_qp->qp_num; 696 qp->qp_type = real_qp->qp_type; 697 698 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 699 list_add(&qp->open_list, &real_qp->open_list); 700 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 701 702 return qp; 703 } 704 705 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 706 struct ib_qp_open_attr *qp_open_attr) 707 { 708 struct ib_qp *qp, *real_qp; 709 710 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 711 return ERR_PTR(-EINVAL); 712 713 qp = ERR_PTR(-EINVAL); 714 mutex_lock(&xrcd->tgt_qp_mutex); 715 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 716 if (real_qp->qp_num == qp_open_attr->qp_num) { 717 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 718 qp_open_attr->qp_context); 719 break; 720 } 721 } 722 mutex_unlock(&xrcd->tgt_qp_mutex); 723 return qp; 724 } 725 EXPORT_SYMBOL(ib_open_qp); 726 727 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, 728 struct ib_qp_init_attr *qp_init_attr) 729 { 730 struct ib_qp *real_qp = qp; 731 732 qp->event_handler = __ib_shared_qp_event_handler; 733 qp->qp_context = qp; 734 qp->pd = NULL; 735 qp->send_cq = qp->recv_cq = NULL; 736 qp->srq = NULL; 737 qp->xrcd = qp_init_attr->xrcd; 738 atomic_inc(&qp_init_attr->xrcd->usecnt); 739 INIT_LIST_HEAD(&qp->open_list); 740 741 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 742 qp_init_attr->qp_context); 743 if (!IS_ERR(qp)) 744 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 745 else 746 real_qp->device->destroy_qp(real_qp); 747 return qp; 748 } 749 750 struct ib_qp *ib_create_qp(struct ib_pd *pd, 751 struct ib_qp_init_attr *qp_init_attr) 752 { 753 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 754 struct ib_qp *qp; 755 int ret; 756 757 /* 758 * If the callers is using the RDMA API calculate the resources 759 * needed for the RDMA READ/WRITE operations. 760 * 761 * Note that these callers need to pass in a port number. 762 */ 763 if (qp_init_attr->cap.max_rdma_ctxs) 764 rdma_rw_init_qp(device, qp_init_attr); 765 766 qp = device->create_qp(pd, qp_init_attr, NULL); 767 if (IS_ERR(qp)) 768 return qp; 769 770 qp->device = device; 771 qp->real_qp = qp; 772 qp->uobject = NULL; 773 qp->qp_type = qp_init_attr->qp_type; 774 775 atomic_set(&qp->usecnt, 0); 776 qp->mrs_used = 0; 777 spin_lock_init(&qp->mr_lock); 778 INIT_LIST_HEAD(&qp->rdma_mrs); 779 INIT_LIST_HEAD(&qp->sig_mrs); 780 781 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) 782 return ib_create_xrc_qp(qp, qp_init_attr); 783 784 qp->event_handler = qp_init_attr->event_handler; 785 qp->qp_context = qp_init_attr->qp_context; 786 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 787 qp->recv_cq = NULL; 788 qp->srq = NULL; 789 } else { 790 qp->recv_cq = qp_init_attr->recv_cq; 791 atomic_inc(&qp_init_attr->recv_cq->usecnt); 792 qp->srq = qp_init_attr->srq; 793 if (qp->srq) 794 atomic_inc(&qp_init_attr->srq->usecnt); 795 } 796 797 qp->pd = pd; 798 qp->send_cq = qp_init_attr->send_cq; 799 qp->xrcd = NULL; 800 801 atomic_inc(&pd->usecnt); 802 atomic_inc(&qp_init_attr->send_cq->usecnt); 803 804 if (qp_init_attr->cap.max_rdma_ctxs) { 805 ret = rdma_rw_init_mrs(qp, qp_init_attr); 806 if (ret) { 807 pr_err("failed to init MR pool ret= %d\n", ret); 808 ib_destroy_qp(qp); 809 qp = ERR_PTR(ret); 810 } 811 } 812 813 return qp; 814 } 815 EXPORT_SYMBOL(ib_create_qp); 816 817 static const struct { 818 int valid; 819 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 820 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 821 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 822 [IB_QPS_RESET] = { 823 [IB_QPS_RESET] = { .valid = 1 }, 824 [IB_QPS_INIT] = { 825 .valid = 1, 826 .req_param = { 827 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 828 IB_QP_PORT | 829 IB_QP_QKEY), 830 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 831 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 832 IB_QP_PORT | 833 IB_QP_ACCESS_FLAGS), 834 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 835 IB_QP_PORT | 836 IB_QP_ACCESS_FLAGS), 837 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 838 IB_QP_PORT | 839 IB_QP_ACCESS_FLAGS), 840 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 841 IB_QP_PORT | 842 IB_QP_ACCESS_FLAGS), 843 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 844 IB_QP_QKEY), 845 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 846 IB_QP_QKEY), 847 } 848 }, 849 }, 850 [IB_QPS_INIT] = { 851 [IB_QPS_RESET] = { .valid = 1 }, 852 [IB_QPS_ERR] = { .valid = 1 }, 853 [IB_QPS_INIT] = { 854 .valid = 1, 855 .opt_param = { 856 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 857 IB_QP_PORT | 858 IB_QP_QKEY), 859 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 860 IB_QP_PORT | 861 IB_QP_ACCESS_FLAGS), 862 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 863 IB_QP_PORT | 864 IB_QP_ACCESS_FLAGS), 865 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 866 IB_QP_PORT | 867 IB_QP_ACCESS_FLAGS), 868 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 869 IB_QP_PORT | 870 IB_QP_ACCESS_FLAGS), 871 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 872 IB_QP_QKEY), 873 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 874 IB_QP_QKEY), 875 } 876 }, 877 [IB_QPS_RTR] = { 878 .valid = 1, 879 .req_param = { 880 [IB_QPT_UC] = (IB_QP_AV | 881 IB_QP_PATH_MTU | 882 IB_QP_DEST_QPN | 883 IB_QP_RQ_PSN), 884 [IB_QPT_RC] = (IB_QP_AV | 885 IB_QP_PATH_MTU | 886 IB_QP_DEST_QPN | 887 IB_QP_RQ_PSN | 888 IB_QP_MAX_DEST_RD_ATOMIC | 889 IB_QP_MIN_RNR_TIMER), 890 [IB_QPT_XRC_INI] = (IB_QP_AV | 891 IB_QP_PATH_MTU | 892 IB_QP_DEST_QPN | 893 IB_QP_RQ_PSN), 894 [IB_QPT_XRC_TGT] = (IB_QP_AV | 895 IB_QP_PATH_MTU | 896 IB_QP_DEST_QPN | 897 IB_QP_RQ_PSN | 898 IB_QP_MAX_DEST_RD_ATOMIC | 899 IB_QP_MIN_RNR_TIMER), 900 }, 901 .opt_param = { 902 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 903 IB_QP_QKEY), 904 [IB_QPT_UC] = (IB_QP_ALT_PATH | 905 IB_QP_ACCESS_FLAGS | 906 IB_QP_PKEY_INDEX), 907 [IB_QPT_RC] = (IB_QP_ALT_PATH | 908 IB_QP_ACCESS_FLAGS | 909 IB_QP_PKEY_INDEX), 910 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 911 IB_QP_ACCESS_FLAGS | 912 IB_QP_PKEY_INDEX), 913 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 914 IB_QP_ACCESS_FLAGS | 915 IB_QP_PKEY_INDEX), 916 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 917 IB_QP_QKEY), 918 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 919 IB_QP_QKEY), 920 }, 921 }, 922 }, 923 [IB_QPS_RTR] = { 924 [IB_QPS_RESET] = { .valid = 1 }, 925 [IB_QPS_ERR] = { .valid = 1 }, 926 [IB_QPS_RTS] = { 927 .valid = 1, 928 .req_param = { 929 [IB_QPT_UD] = IB_QP_SQ_PSN, 930 [IB_QPT_UC] = IB_QP_SQ_PSN, 931 [IB_QPT_RC] = (IB_QP_TIMEOUT | 932 IB_QP_RETRY_CNT | 933 IB_QP_RNR_RETRY | 934 IB_QP_SQ_PSN | 935 IB_QP_MAX_QP_RD_ATOMIC), 936 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 937 IB_QP_RETRY_CNT | 938 IB_QP_RNR_RETRY | 939 IB_QP_SQ_PSN | 940 IB_QP_MAX_QP_RD_ATOMIC), 941 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 942 IB_QP_SQ_PSN), 943 [IB_QPT_SMI] = IB_QP_SQ_PSN, 944 [IB_QPT_GSI] = IB_QP_SQ_PSN, 945 }, 946 .opt_param = { 947 [IB_QPT_UD] = (IB_QP_CUR_STATE | 948 IB_QP_QKEY), 949 [IB_QPT_UC] = (IB_QP_CUR_STATE | 950 IB_QP_ALT_PATH | 951 IB_QP_ACCESS_FLAGS | 952 IB_QP_PATH_MIG_STATE), 953 [IB_QPT_RC] = (IB_QP_CUR_STATE | 954 IB_QP_ALT_PATH | 955 IB_QP_ACCESS_FLAGS | 956 IB_QP_MIN_RNR_TIMER | 957 IB_QP_PATH_MIG_STATE), 958 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 959 IB_QP_ALT_PATH | 960 IB_QP_ACCESS_FLAGS | 961 IB_QP_PATH_MIG_STATE), 962 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 963 IB_QP_ALT_PATH | 964 IB_QP_ACCESS_FLAGS | 965 IB_QP_MIN_RNR_TIMER | 966 IB_QP_PATH_MIG_STATE), 967 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 968 IB_QP_QKEY), 969 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 970 IB_QP_QKEY), 971 } 972 } 973 }, 974 [IB_QPS_RTS] = { 975 [IB_QPS_RESET] = { .valid = 1 }, 976 [IB_QPS_ERR] = { .valid = 1 }, 977 [IB_QPS_RTS] = { 978 .valid = 1, 979 .opt_param = { 980 [IB_QPT_UD] = (IB_QP_CUR_STATE | 981 IB_QP_QKEY), 982 [IB_QPT_UC] = (IB_QP_CUR_STATE | 983 IB_QP_ACCESS_FLAGS | 984 IB_QP_ALT_PATH | 985 IB_QP_PATH_MIG_STATE), 986 [IB_QPT_RC] = (IB_QP_CUR_STATE | 987 IB_QP_ACCESS_FLAGS | 988 IB_QP_ALT_PATH | 989 IB_QP_PATH_MIG_STATE | 990 IB_QP_MIN_RNR_TIMER), 991 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 992 IB_QP_ACCESS_FLAGS | 993 IB_QP_ALT_PATH | 994 IB_QP_PATH_MIG_STATE), 995 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 996 IB_QP_ACCESS_FLAGS | 997 IB_QP_ALT_PATH | 998 IB_QP_PATH_MIG_STATE | 999 IB_QP_MIN_RNR_TIMER), 1000 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1001 IB_QP_QKEY), 1002 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1003 IB_QP_QKEY), 1004 } 1005 }, 1006 [IB_QPS_SQD] = { 1007 .valid = 1, 1008 .opt_param = { 1009 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1010 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1011 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1012 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1013 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1014 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1015 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1016 } 1017 }, 1018 }, 1019 [IB_QPS_SQD] = { 1020 [IB_QPS_RESET] = { .valid = 1 }, 1021 [IB_QPS_ERR] = { .valid = 1 }, 1022 [IB_QPS_RTS] = { 1023 .valid = 1, 1024 .opt_param = { 1025 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1026 IB_QP_QKEY), 1027 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1028 IB_QP_ALT_PATH | 1029 IB_QP_ACCESS_FLAGS | 1030 IB_QP_PATH_MIG_STATE), 1031 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1032 IB_QP_ALT_PATH | 1033 IB_QP_ACCESS_FLAGS | 1034 IB_QP_MIN_RNR_TIMER | 1035 IB_QP_PATH_MIG_STATE), 1036 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1037 IB_QP_ALT_PATH | 1038 IB_QP_ACCESS_FLAGS | 1039 IB_QP_PATH_MIG_STATE), 1040 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1041 IB_QP_ALT_PATH | 1042 IB_QP_ACCESS_FLAGS | 1043 IB_QP_MIN_RNR_TIMER | 1044 IB_QP_PATH_MIG_STATE), 1045 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1046 IB_QP_QKEY), 1047 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1048 IB_QP_QKEY), 1049 } 1050 }, 1051 [IB_QPS_SQD] = { 1052 .valid = 1, 1053 .opt_param = { 1054 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1055 IB_QP_QKEY), 1056 [IB_QPT_UC] = (IB_QP_AV | 1057 IB_QP_ALT_PATH | 1058 IB_QP_ACCESS_FLAGS | 1059 IB_QP_PKEY_INDEX | 1060 IB_QP_PATH_MIG_STATE), 1061 [IB_QPT_RC] = (IB_QP_PORT | 1062 IB_QP_AV | 1063 IB_QP_TIMEOUT | 1064 IB_QP_RETRY_CNT | 1065 IB_QP_RNR_RETRY | 1066 IB_QP_MAX_QP_RD_ATOMIC | 1067 IB_QP_MAX_DEST_RD_ATOMIC | 1068 IB_QP_ALT_PATH | 1069 IB_QP_ACCESS_FLAGS | 1070 IB_QP_PKEY_INDEX | 1071 IB_QP_MIN_RNR_TIMER | 1072 IB_QP_PATH_MIG_STATE), 1073 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1074 IB_QP_AV | 1075 IB_QP_TIMEOUT | 1076 IB_QP_RETRY_CNT | 1077 IB_QP_RNR_RETRY | 1078 IB_QP_MAX_QP_RD_ATOMIC | 1079 IB_QP_ALT_PATH | 1080 IB_QP_ACCESS_FLAGS | 1081 IB_QP_PKEY_INDEX | 1082 IB_QP_PATH_MIG_STATE), 1083 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1084 IB_QP_AV | 1085 IB_QP_TIMEOUT | 1086 IB_QP_MAX_DEST_RD_ATOMIC | 1087 IB_QP_ALT_PATH | 1088 IB_QP_ACCESS_FLAGS | 1089 IB_QP_PKEY_INDEX | 1090 IB_QP_MIN_RNR_TIMER | 1091 IB_QP_PATH_MIG_STATE), 1092 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1093 IB_QP_QKEY), 1094 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1095 IB_QP_QKEY), 1096 } 1097 } 1098 }, 1099 [IB_QPS_SQE] = { 1100 [IB_QPS_RESET] = { .valid = 1 }, 1101 [IB_QPS_ERR] = { .valid = 1 }, 1102 [IB_QPS_RTS] = { 1103 .valid = 1, 1104 .opt_param = { 1105 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1106 IB_QP_QKEY), 1107 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1108 IB_QP_ACCESS_FLAGS), 1109 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1110 IB_QP_QKEY), 1111 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1112 IB_QP_QKEY), 1113 } 1114 } 1115 }, 1116 [IB_QPS_ERR] = { 1117 [IB_QPS_RESET] = { .valid = 1 }, 1118 [IB_QPS_ERR] = { .valid = 1 } 1119 } 1120 }; 1121 1122 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1123 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1124 enum rdma_link_layer ll) 1125 { 1126 enum ib_qp_attr_mask req_param, opt_param; 1127 1128 if (cur_state < 0 || cur_state > IB_QPS_ERR || 1129 next_state < 0 || next_state > IB_QPS_ERR) 1130 return 0; 1131 1132 if (mask & IB_QP_CUR_STATE && 1133 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1134 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1135 return 0; 1136 1137 if (!qp_state_table[cur_state][next_state].valid) 1138 return 0; 1139 1140 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1141 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1142 1143 if ((mask & req_param) != req_param) 1144 return 0; 1145 1146 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1147 return 0; 1148 1149 return 1; 1150 } 1151 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1152 1153 int ib_resolve_eth_dmac(struct ib_qp *qp, 1154 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1155 { 1156 int ret = 0; 1157 1158 if (*qp_attr_mask & IB_QP_AV) { 1159 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) || 1160 qp_attr->ah_attr.port_num > rdma_end_port(qp->device)) 1161 return -EINVAL; 1162 1163 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num)) 1164 return 0; 1165 1166 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) { 1167 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw, 1168 qp_attr->ah_attr.dmac); 1169 } else { 1170 union ib_gid sgid; 1171 struct ib_gid_attr sgid_attr; 1172 int ifindex; 1173 int hop_limit; 1174 1175 ret = ib_query_gid(qp->device, 1176 qp_attr->ah_attr.port_num, 1177 qp_attr->ah_attr.grh.sgid_index, 1178 &sgid, &sgid_attr); 1179 1180 if (ret || !sgid_attr.ndev) { 1181 if (!ret) 1182 ret = -ENXIO; 1183 goto out; 1184 } 1185 1186 ifindex = sgid_attr.ndev->ifindex; 1187 1188 ret = rdma_addr_find_l2_eth_by_grh(&sgid, 1189 &qp_attr->ah_attr.grh.dgid, 1190 qp_attr->ah_attr.dmac, 1191 NULL, &ifindex, &hop_limit); 1192 1193 dev_put(sgid_attr.ndev); 1194 1195 qp_attr->ah_attr.grh.hop_limit = hop_limit; 1196 } 1197 } 1198 out: 1199 return ret; 1200 } 1201 EXPORT_SYMBOL(ib_resolve_eth_dmac); 1202 1203 1204 int ib_modify_qp(struct ib_qp *qp, 1205 struct ib_qp_attr *qp_attr, 1206 int qp_attr_mask) 1207 { 1208 int ret; 1209 1210 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask); 1211 if (ret) 1212 return ret; 1213 1214 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1215 } 1216 EXPORT_SYMBOL(ib_modify_qp); 1217 1218 int ib_query_qp(struct ib_qp *qp, 1219 struct ib_qp_attr *qp_attr, 1220 int qp_attr_mask, 1221 struct ib_qp_init_attr *qp_init_attr) 1222 { 1223 return qp->device->query_qp ? 1224 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1225 -ENOSYS; 1226 } 1227 EXPORT_SYMBOL(ib_query_qp); 1228 1229 int ib_close_qp(struct ib_qp *qp) 1230 { 1231 struct ib_qp *real_qp; 1232 unsigned long flags; 1233 1234 real_qp = qp->real_qp; 1235 if (real_qp == qp) 1236 return -EINVAL; 1237 1238 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1239 list_del(&qp->open_list); 1240 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1241 1242 atomic_dec(&real_qp->usecnt); 1243 kfree(qp); 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL(ib_close_qp); 1248 1249 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1250 { 1251 struct ib_xrcd *xrcd; 1252 struct ib_qp *real_qp; 1253 int ret; 1254 1255 real_qp = qp->real_qp; 1256 xrcd = real_qp->xrcd; 1257 1258 mutex_lock(&xrcd->tgt_qp_mutex); 1259 ib_close_qp(qp); 1260 if (atomic_read(&real_qp->usecnt) == 0) 1261 list_del(&real_qp->xrcd_list); 1262 else 1263 real_qp = NULL; 1264 mutex_unlock(&xrcd->tgt_qp_mutex); 1265 1266 if (real_qp) { 1267 ret = ib_destroy_qp(real_qp); 1268 if (!ret) 1269 atomic_dec(&xrcd->usecnt); 1270 else 1271 __ib_insert_xrcd_qp(xrcd, real_qp); 1272 } 1273 1274 return 0; 1275 } 1276 1277 int ib_destroy_qp(struct ib_qp *qp) 1278 { 1279 struct ib_pd *pd; 1280 struct ib_cq *scq, *rcq; 1281 struct ib_srq *srq; 1282 int ret; 1283 1284 WARN_ON_ONCE(qp->mrs_used > 0); 1285 1286 if (atomic_read(&qp->usecnt)) 1287 return -EBUSY; 1288 1289 if (qp->real_qp != qp) 1290 return __ib_destroy_shared_qp(qp); 1291 1292 pd = qp->pd; 1293 scq = qp->send_cq; 1294 rcq = qp->recv_cq; 1295 srq = qp->srq; 1296 1297 if (!qp->uobject) 1298 rdma_rw_cleanup_mrs(qp); 1299 1300 ret = qp->device->destroy_qp(qp); 1301 if (!ret) { 1302 if (pd) 1303 atomic_dec(&pd->usecnt); 1304 if (scq) 1305 atomic_dec(&scq->usecnt); 1306 if (rcq) 1307 atomic_dec(&rcq->usecnt); 1308 if (srq) 1309 atomic_dec(&srq->usecnt); 1310 } 1311 1312 return ret; 1313 } 1314 EXPORT_SYMBOL(ib_destroy_qp); 1315 1316 /* Completion queues */ 1317 1318 struct ib_cq *ib_create_cq(struct ib_device *device, 1319 ib_comp_handler comp_handler, 1320 void (*event_handler)(struct ib_event *, void *), 1321 void *cq_context, 1322 const struct ib_cq_init_attr *cq_attr) 1323 { 1324 struct ib_cq *cq; 1325 1326 cq = device->create_cq(device, cq_attr, NULL, NULL); 1327 1328 if (!IS_ERR(cq)) { 1329 cq->device = device; 1330 cq->uobject = NULL; 1331 cq->comp_handler = comp_handler; 1332 cq->event_handler = event_handler; 1333 cq->cq_context = cq_context; 1334 atomic_set(&cq->usecnt, 0); 1335 } 1336 1337 return cq; 1338 } 1339 EXPORT_SYMBOL(ib_create_cq); 1340 1341 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1342 { 1343 return cq->device->modify_cq ? 1344 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; 1345 } 1346 EXPORT_SYMBOL(ib_modify_cq); 1347 1348 int ib_destroy_cq(struct ib_cq *cq) 1349 { 1350 if (atomic_read(&cq->usecnt)) 1351 return -EBUSY; 1352 1353 return cq->device->destroy_cq(cq); 1354 } 1355 EXPORT_SYMBOL(ib_destroy_cq); 1356 1357 int ib_resize_cq(struct ib_cq *cq, int cqe) 1358 { 1359 return cq->device->resize_cq ? 1360 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; 1361 } 1362 EXPORT_SYMBOL(ib_resize_cq); 1363 1364 /* Memory regions */ 1365 1366 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags) 1367 { 1368 struct ib_mr *mr; 1369 int err; 1370 1371 err = ib_check_mr_access(mr_access_flags); 1372 if (err) 1373 return ERR_PTR(err); 1374 1375 mr = pd->device->get_dma_mr(pd, mr_access_flags); 1376 1377 if (!IS_ERR(mr)) { 1378 mr->device = pd->device; 1379 mr->pd = pd; 1380 mr->uobject = NULL; 1381 atomic_inc(&pd->usecnt); 1382 mr->need_inval = false; 1383 } 1384 1385 return mr; 1386 } 1387 EXPORT_SYMBOL(ib_get_dma_mr); 1388 1389 int ib_dereg_mr(struct ib_mr *mr) 1390 { 1391 struct ib_pd *pd = mr->pd; 1392 int ret; 1393 1394 ret = mr->device->dereg_mr(mr); 1395 if (!ret) 1396 atomic_dec(&pd->usecnt); 1397 1398 return ret; 1399 } 1400 EXPORT_SYMBOL(ib_dereg_mr); 1401 1402 /** 1403 * ib_alloc_mr() - Allocates a memory region 1404 * @pd: protection domain associated with the region 1405 * @mr_type: memory region type 1406 * @max_num_sg: maximum sg entries available for registration. 1407 * 1408 * Notes: 1409 * Memory registeration page/sg lists must not exceed max_num_sg. 1410 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1411 * max_num_sg * used_page_size. 1412 * 1413 */ 1414 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1415 enum ib_mr_type mr_type, 1416 u32 max_num_sg) 1417 { 1418 struct ib_mr *mr; 1419 1420 if (!pd->device->alloc_mr) 1421 return ERR_PTR(-ENOSYS); 1422 1423 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1424 if (!IS_ERR(mr)) { 1425 mr->device = pd->device; 1426 mr->pd = pd; 1427 mr->uobject = NULL; 1428 atomic_inc(&pd->usecnt); 1429 mr->need_inval = false; 1430 } 1431 1432 return mr; 1433 } 1434 EXPORT_SYMBOL(ib_alloc_mr); 1435 1436 /* "Fast" memory regions */ 1437 1438 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1439 int mr_access_flags, 1440 struct ib_fmr_attr *fmr_attr) 1441 { 1442 struct ib_fmr *fmr; 1443 1444 if (!pd->device->alloc_fmr) 1445 return ERR_PTR(-ENOSYS); 1446 1447 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1448 if (!IS_ERR(fmr)) { 1449 fmr->device = pd->device; 1450 fmr->pd = pd; 1451 atomic_inc(&pd->usecnt); 1452 } 1453 1454 return fmr; 1455 } 1456 EXPORT_SYMBOL(ib_alloc_fmr); 1457 1458 int ib_unmap_fmr(struct list_head *fmr_list) 1459 { 1460 struct ib_fmr *fmr; 1461 1462 if (list_empty(fmr_list)) 1463 return 0; 1464 1465 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 1466 return fmr->device->unmap_fmr(fmr_list); 1467 } 1468 EXPORT_SYMBOL(ib_unmap_fmr); 1469 1470 int ib_dealloc_fmr(struct ib_fmr *fmr) 1471 { 1472 struct ib_pd *pd; 1473 int ret; 1474 1475 pd = fmr->pd; 1476 ret = fmr->device->dealloc_fmr(fmr); 1477 if (!ret) 1478 atomic_dec(&pd->usecnt); 1479 1480 return ret; 1481 } 1482 EXPORT_SYMBOL(ib_dealloc_fmr); 1483 1484 /* Multicast groups */ 1485 1486 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1487 { 1488 int ret; 1489 1490 if (!qp->device->attach_mcast) 1491 return -ENOSYS; 1492 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD) 1493 return -EINVAL; 1494 1495 ret = qp->device->attach_mcast(qp, gid, lid); 1496 if (!ret) 1497 atomic_inc(&qp->usecnt); 1498 return ret; 1499 } 1500 EXPORT_SYMBOL(ib_attach_mcast); 1501 1502 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1503 { 1504 int ret; 1505 1506 if (!qp->device->detach_mcast) 1507 return -ENOSYS; 1508 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD) 1509 return -EINVAL; 1510 1511 ret = qp->device->detach_mcast(qp, gid, lid); 1512 if (!ret) 1513 atomic_dec(&qp->usecnt); 1514 return ret; 1515 } 1516 EXPORT_SYMBOL(ib_detach_mcast); 1517 1518 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) 1519 { 1520 struct ib_xrcd *xrcd; 1521 1522 if (!device->alloc_xrcd) 1523 return ERR_PTR(-ENOSYS); 1524 1525 xrcd = device->alloc_xrcd(device, NULL, NULL); 1526 if (!IS_ERR(xrcd)) { 1527 xrcd->device = device; 1528 xrcd->inode = NULL; 1529 atomic_set(&xrcd->usecnt, 0); 1530 mutex_init(&xrcd->tgt_qp_mutex); 1531 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 1532 } 1533 1534 return xrcd; 1535 } 1536 EXPORT_SYMBOL(ib_alloc_xrcd); 1537 1538 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 1539 { 1540 struct ib_qp *qp; 1541 int ret; 1542 1543 if (atomic_read(&xrcd->usecnt)) 1544 return -EBUSY; 1545 1546 while (!list_empty(&xrcd->tgt_qp_list)) { 1547 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 1548 ret = ib_destroy_qp(qp); 1549 if (ret) 1550 return ret; 1551 } 1552 1553 return xrcd->device->dealloc_xrcd(xrcd); 1554 } 1555 EXPORT_SYMBOL(ib_dealloc_xrcd); 1556 1557 struct ib_flow *ib_create_flow(struct ib_qp *qp, 1558 struct ib_flow_attr *flow_attr, 1559 int domain) 1560 { 1561 struct ib_flow *flow_id; 1562 if (!qp->device->create_flow) 1563 return ERR_PTR(-ENOSYS); 1564 1565 flow_id = qp->device->create_flow(qp, flow_attr, domain); 1566 if (!IS_ERR(flow_id)) 1567 atomic_inc(&qp->usecnt); 1568 return flow_id; 1569 } 1570 EXPORT_SYMBOL(ib_create_flow); 1571 1572 int ib_destroy_flow(struct ib_flow *flow_id) 1573 { 1574 int err; 1575 struct ib_qp *qp = flow_id->qp; 1576 1577 err = qp->device->destroy_flow(flow_id); 1578 if (!err) 1579 atomic_dec(&qp->usecnt); 1580 return err; 1581 } 1582 EXPORT_SYMBOL(ib_destroy_flow); 1583 1584 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 1585 struct ib_mr_status *mr_status) 1586 { 1587 return mr->device->check_mr_status ? 1588 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; 1589 } 1590 EXPORT_SYMBOL(ib_check_mr_status); 1591 1592 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 1593 int state) 1594 { 1595 if (!device->set_vf_link_state) 1596 return -ENOSYS; 1597 1598 return device->set_vf_link_state(device, vf, port, state); 1599 } 1600 EXPORT_SYMBOL(ib_set_vf_link_state); 1601 1602 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 1603 struct ifla_vf_info *info) 1604 { 1605 if (!device->get_vf_config) 1606 return -ENOSYS; 1607 1608 return device->get_vf_config(device, vf, port, info); 1609 } 1610 EXPORT_SYMBOL(ib_get_vf_config); 1611 1612 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 1613 struct ifla_vf_stats *stats) 1614 { 1615 if (!device->get_vf_stats) 1616 return -ENOSYS; 1617 1618 return device->get_vf_stats(device, vf, port, stats); 1619 } 1620 EXPORT_SYMBOL(ib_get_vf_stats); 1621 1622 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 1623 int type) 1624 { 1625 if (!device->set_vf_guid) 1626 return -ENOSYS; 1627 1628 return device->set_vf_guid(device, vf, port, guid, type); 1629 } 1630 EXPORT_SYMBOL(ib_set_vf_guid); 1631 1632 /** 1633 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 1634 * and set it the memory region. 1635 * @mr: memory region 1636 * @sg: dma mapped scatterlist 1637 * @sg_nents: number of entries in sg 1638 * @sg_offset: offset in bytes into sg 1639 * @page_size: page vector desired page size 1640 * 1641 * Constraints: 1642 * - The first sg element is allowed to have an offset. 1643 * - Each sg element must be aligned to page_size (or physically 1644 * contiguous to the previous element). In case an sg element has a 1645 * non contiguous offset, the mapping prefix will not include it. 1646 * - The last sg element is allowed to have length less than page_size. 1647 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 1648 * then only max_num_sg entries will be mapped. 1649 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these 1650 * constraints holds and the page_size argument is ignored. 1651 * 1652 * Returns the number of sg elements that were mapped to the memory region. 1653 * 1654 * After this completes successfully, the memory region 1655 * is ready for registration. 1656 */ 1657 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 1658 unsigned int *sg_offset, unsigned int page_size) 1659 { 1660 if (unlikely(!mr->device->map_mr_sg)) 1661 return -ENOSYS; 1662 1663 mr->page_size = page_size; 1664 1665 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); 1666 } 1667 EXPORT_SYMBOL(ib_map_mr_sg); 1668 1669 /** 1670 * ib_sg_to_pages() - Convert the largest prefix of a sg list 1671 * to a page vector 1672 * @mr: memory region 1673 * @sgl: dma mapped scatterlist 1674 * @sg_nents: number of entries in sg 1675 * @sg_offset_p: IN: start offset in bytes into sg 1676 * OUT: offset in bytes for element n of the sg of the first 1677 * byte that has not been processed where n is the return 1678 * value of this function. 1679 * @set_page: driver page assignment function pointer 1680 * 1681 * Core service helper for drivers to convert the largest 1682 * prefix of given sg list to a page vector. The sg list 1683 * prefix converted is the prefix that meet the requirements 1684 * of ib_map_mr_sg. 1685 * 1686 * Returns the number of sg elements that were assigned to 1687 * a page vector. 1688 */ 1689 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 1690 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 1691 { 1692 struct scatterlist *sg; 1693 u64 last_end_dma_addr = 0; 1694 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 1695 unsigned int last_page_off = 0; 1696 u64 page_mask = ~((u64)mr->page_size - 1); 1697 int i, ret; 1698 1699 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 1700 return -EINVAL; 1701 1702 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 1703 mr->length = 0; 1704 1705 for_each_sg(sgl, sg, sg_nents, i) { 1706 u64 dma_addr = sg_dma_address(sg) + sg_offset; 1707 u64 prev_addr = dma_addr; 1708 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 1709 u64 end_dma_addr = dma_addr + dma_len; 1710 u64 page_addr = dma_addr & page_mask; 1711 1712 /* 1713 * For the second and later elements, check whether either the 1714 * end of element i-1 or the start of element i is not aligned 1715 * on a page boundary. 1716 */ 1717 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 1718 /* Stop mapping if there is a gap. */ 1719 if (last_end_dma_addr != dma_addr) 1720 break; 1721 1722 /* 1723 * Coalesce this element with the last. If it is small 1724 * enough just update mr->length. Otherwise start 1725 * mapping from the next page. 1726 */ 1727 goto next_page; 1728 } 1729 1730 do { 1731 ret = set_page(mr, page_addr); 1732 if (unlikely(ret < 0)) { 1733 sg_offset = prev_addr - sg_dma_address(sg); 1734 mr->length += prev_addr - dma_addr; 1735 if (sg_offset_p) 1736 *sg_offset_p = sg_offset; 1737 return i || sg_offset ? i : ret; 1738 } 1739 prev_addr = page_addr; 1740 next_page: 1741 page_addr += mr->page_size; 1742 } while (page_addr < end_dma_addr); 1743 1744 mr->length += dma_len; 1745 last_end_dma_addr = end_dma_addr; 1746 last_page_off = end_dma_addr & ~page_mask; 1747 1748 sg_offset = 0; 1749 } 1750 1751 if (sg_offset_p) 1752 *sg_offset_p = 0; 1753 return i; 1754 } 1755 EXPORT_SYMBOL(ib_sg_to_pages); 1756 1757 struct ib_drain_cqe { 1758 struct ib_cqe cqe; 1759 struct completion done; 1760 }; 1761 1762 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 1763 { 1764 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 1765 cqe); 1766 1767 complete(&cqe->done); 1768 } 1769 1770 /* 1771 * Post a WR and block until its completion is reaped for the SQ. 1772 */ 1773 static void __ib_drain_sq(struct ib_qp *qp) 1774 { 1775 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 1776 struct ib_drain_cqe sdrain; 1777 struct ib_send_wr swr = {}, *bad_swr; 1778 int ret; 1779 1780 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) { 1781 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT, 1782 "IB_POLL_DIRECT poll_ctx not supported for drain\n"); 1783 return; 1784 } 1785 1786 swr.wr_cqe = &sdrain.cqe; 1787 sdrain.cqe.done = ib_drain_qp_done; 1788 init_completion(&sdrain.done); 1789 1790 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 1791 if (ret) { 1792 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 1793 return; 1794 } 1795 1796 ret = ib_post_send(qp, &swr, &bad_swr); 1797 if (ret) { 1798 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 1799 return; 1800 } 1801 1802 wait_for_completion(&sdrain.done); 1803 } 1804 1805 /* 1806 * Post a WR and block until its completion is reaped for the RQ. 1807 */ 1808 static void __ib_drain_rq(struct ib_qp *qp) 1809 { 1810 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 1811 struct ib_drain_cqe rdrain; 1812 struct ib_recv_wr rwr = {}, *bad_rwr; 1813 int ret; 1814 1815 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) { 1816 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT, 1817 "IB_POLL_DIRECT poll_ctx not supported for drain\n"); 1818 return; 1819 } 1820 1821 rwr.wr_cqe = &rdrain.cqe; 1822 rdrain.cqe.done = ib_drain_qp_done; 1823 init_completion(&rdrain.done); 1824 1825 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 1826 if (ret) { 1827 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 1828 return; 1829 } 1830 1831 ret = ib_post_recv(qp, &rwr, &bad_rwr); 1832 if (ret) { 1833 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 1834 return; 1835 } 1836 1837 wait_for_completion(&rdrain.done); 1838 } 1839 1840 /** 1841 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 1842 * application. 1843 * @qp: queue pair to drain 1844 * 1845 * If the device has a provider-specific drain function, then 1846 * call that. Otherwise call the generic drain function 1847 * __ib_drain_sq(). 1848 * 1849 * The caller must: 1850 * 1851 * ensure there is room in the CQ and SQ for the drain work request and 1852 * completion. 1853 * 1854 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be 1855 * IB_POLL_DIRECT. 1856 * 1857 * ensure that there are no other contexts that are posting WRs concurrently. 1858 * Otherwise the drain is not guaranteed. 1859 */ 1860 void ib_drain_sq(struct ib_qp *qp) 1861 { 1862 if (qp->device->drain_sq) 1863 qp->device->drain_sq(qp); 1864 else 1865 __ib_drain_sq(qp); 1866 } 1867 EXPORT_SYMBOL(ib_drain_sq); 1868 1869 /** 1870 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 1871 * application. 1872 * @qp: queue pair to drain 1873 * 1874 * If the device has a provider-specific drain function, then 1875 * call that. Otherwise call the generic drain function 1876 * __ib_drain_rq(). 1877 * 1878 * The caller must: 1879 * 1880 * ensure there is room in the CQ and RQ for the drain work request and 1881 * completion. 1882 * 1883 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be 1884 * IB_POLL_DIRECT. 1885 * 1886 * ensure that there are no other contexts that are posting WRs concurrently. 1887 * Otherwise the drain is not guaranteed. 1888 */ 1889 void ib_drain_rq(struct ib_qp *qp) 1890 { 1891 if (qp->device->drain_rq) 1892 qp->device->drain_rq(qp); 1893 else 1894 __ib_drain_rq(qp); 1895 } 1896 EXPORT_SYMBOL(ib_drain_rq); 1897 1898 /** 1899 * ib_drain_qp() - Block until all CQEs have been consumed by the 1900 * application on both the RQ and SQ. 1901 * @qp: queue pair to drain 1902 * 1903 * The caller must: 1904 * 1905 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 1906 * and completions. 1907 * 1908 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be 1909 * IB_POLL_DIRECT. 1910 * 1911 * ensure that there are no other contexts that are posting WRs concurrently. 1912 * Otherwise the drain is not guaranteed. 1913 */ 1914 void ib_drain_qp(struct ib_qp *qp) 1915 { 1916 ib_drain_sq(qp); 1917 if (!qp->srq) 1918 ib_drain_rq(qp); 1919 } 1920 EXPORT_SYMBOL(ib_drain_qp); 1921