1 /* 2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/task.h> 37 #include <linux/pid.h> 38 #include <linux/slab.h> 39 #include <linux/export.h> 40 #include <linux/vmalloc.h> 41 #include <linux/hugetlb.h> 42 #include <linux/interval_tree_generic.h> 43 44 #include <rdma/ib_verbs.h> 45 #include <rdma/ib_umem.h> 46 #include <rdma/ib_umem_odp.h> 47 48 /* 49 * The ib_umem list keeps track of memory regions for which the HW 50 * device request to receive notification when the related memory 51 * mapping is changed. 52 * 53 * ib_umem_lock protects the list. 54 */ 55 56 static u64 node_start(struct umem_odp_node *n) 57 { 58 struct ib_umem_odp *umem_odp = 59 container_of(n, struct ib_umem_odp, interval_tree); 60 61 return ib_umem_start(umem_odp->umem); 62 } 63 64 /* Note that the representation of the intervals in the interval tree 65 * considers the ending point as contained in the interval, while the 66 * function ib_umem_end returns the first address which is not contained 67 * in the umem. 68 */ 69 static u64 node_last(struct umem_odp_node *n) 70 { 71 struct ib_umem_odp *umem_odp = 72 container_of(n, struct ib_umem_odp, interval_tree); 73 74 return ib_umem_end(umem_odp->umem) - 1; 75 } 76 77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, 78 node_start, node_last, static, rbt_ib_umem) 79 80 static void ib_umem_notifier_start_account(struct ib_umem *item) 81 { 82 mutex_lock(&item->odp_data->umem_mutex); 83 84 /* Only update private counters for this umem if it has them. 85 * Otherwise skip it. All page faults will be delayed for this umem. */ 86 if (item->odp_data->mn_counters_active) { 87 int notifiers_count = item->odp_data->notifiers_count++; 88 89 if (notifiers_count == 0) 90 /* Initialize the completion object for waiting on 91 * notifiers. Since notifier_count is zero, no one 92 * should be waiting right now. */ 93 reinit_completion(&item->odp_data->notifier_completion); 94 } 95 mutex_unlock(&item->odp_data->umem_mutex); 96 } 97 98 static void ib_umem_notifier_end_account(struct ib_umem *item) 99 { 100 mutex_lock(&item->odp_data->umem_mutex); 101 102 /* Only update private counters for this umem if it has them. 103 * Otherwise skip it. All page faults will be delayed for this umem. */ 104 if (item->odp_data->mn_counters_active) { 105 /* 106 * This sequence increase will notify the QP page fault that 107 * the page that is going to be mapped in the spte could have 108 * been freed. 109 */ 110 ++item->odp_data->notifiers_seq; 111 if (--item->odp_data->notifiers_count == 0) 112 complete_all(&item->odp_data->notifier_completion); 113 } 114 mutex_unlock(&item->odp_data->umem_mutex); 115 } 116 117 /* Account for a new mmu notifier in an ib_ucontext. */ 118 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context) 119 { 120 atomic_inc(&context->notifier_count); 121 } 122 123 /* Account for a terminating mmu notifier in an ib_ucontext. 124 * 125 * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since 126 * the function takes the semaphore itself. */ 127 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context) 128 { 129 int zero_notifiers = atomic_dec_and_test(&context->notifier_count); 130 131 if (zero_notifiers && 132 !list_empty(&context->no_private_counters)) { 133 /* No currently running mmu notifiers. Now is the chance to 134 * add private accounting to all previously added umems. */ 135 struct ib_umem_odp *odp_data, *next; 136 137 /* Prevent concurrent mmu notifiers from working on the 138 * no_private_counters list. */ 139 down_write(&context->umem_rwsem); 140 141 /* Read the notifier_count again, with the umem_rwsem 142 * semaphore taken for write. */ 143 if (!atomic_read(&context->notifier_count)) { 144 list_for_each_entry_safe(odp_data, next, 145 &context->no_private_counters, 146 no_private_counters) { 147 mutex_lock(&odp_data->umem_mutex); 148 odp_data->mn_counters_active = true; 149 list_del(&odp_data->no_private_counters); 150 complete_all(&odp_data->notifier_completion); 151 mutex_unlock(&odp_data->umem_mutex); 152 } 153 } 154 155 up_write(&context->umem_rwsem); 156 } 157 } 158 159 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start, 160 u64 end, void *cookie) { 161 /* 162 * Increase the number of notifiers running, to 163 * prevent any further fault handling on this MR. 164 */ 165 ib_umem_notifier_start_account(item); 166 item->odp_data->dying = 1; 167 /* Make sure that the fact the umem is dying is out before we release 168 * all pending page faults. */ 169 smp_wmb(); 170 complete_all(&item->odp_data->notifier_completion); 171 item->context->invalidate_range(item, ib_umem_start(item), 172 ib_umem_end(item)); 173 return 0; 174 } 175 176 static void ib_umem_notifier_release(struct mmu_notifier *mn, 177 struct mm_struct *mm) 178 { 179 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn); 180 181 if (!context->invalidate_range) 182 return; 183 184 ib_ucontext_notifier_start_account(context); 185 down_read(&context->umem_rwsem); 186 rbt_ib_umem_for_each_in_range(&context->umem_tree, 0, 187 ULLONG_MAX, 188 ib_umem_notifier_release_trampoline, 189 NULL); 190 up_read(&context->umem_rwsem); 191 } 192 193 static int invalidate_page_trampoline(struct ib_umem *item, u64 start, 194 u64 end, void *cookie) 195 { 196 ib_umem_notifier_start_account(item); 197 item->context->invalidate_range(item, start, start + PAGE_SIZE); 198 ib_umem_notifier_end_account(item); 199 return 0; 200 } 201 202 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start, 203 u64 end, void *cookie) 204 { 205 ib_umem_notifier_start_account(item); 206 item->context->invalidate_range(item, start, end); 207 return 0; 208 } 209 210 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, 211 struct mm_struct *mm, 212 unsigned long start, 213 unsigned long end) 214 { 215 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn); 216 217 if (!context->invalidate_range) 218 return; 219 220 ib_ucontext_notifier_start_account(context); 221 down_read(&context->umem_rwsem); 222 rbt_ib_umem_for_each_in_range(&context->umem_tree, start, 223 end, 224 invalidate_range_start_trampoline, NULL); 225 up_read(&context->umem_rwsem); 226 } 227 228 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start, 229 u64 end, void *cookie) 230 { 231 ib_umem_notifier_end_account(item); 232 return 0; 233 } 234 235 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, 236 struct mm_struct *mm, 237 unsigned long start, 238 unsigned long end) 239 { 240 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn); 241 242 if (!context->invalidate_range) 243 return; 244 245 down_read(&context->umem_rwsem); 246 rbt_ib_umem_for_each_in_range(&context->umem_tree, start, 247 end, 248 invalidate_range_end_trampoline, NULL); 249 up_read(&context->umem_rwsem); 250 ib_ucontext_notifier_end_account(context); 251 } 252 253 static const struct mmu_notifier_ops ib_umem_notifiers = { 254 .release = ib_umem_notifier_release, 255 .invalidate_range_start = ib_umem_notifier_invalidate_range_start, 256 .invalidate_range_end = ib_umem_notifier_invalidate_range_end, 257 }; 258 259 struct ib_umem *ib_alloc_odp_umem(struct ib_ucontext *context, 260 unsigned long addr, 261 size_t size) 262 { 263 struct ib_umem *umem; 264 struct ib_umem_odp *odp_data; 265 int pages = size >> PAGE_SHIFT; 266 int ret; 267 268 umem = kzalloc(sizeof(*umem), GFP_KERNEL); 269 if (!umem) 270 return ERR_PTR(-ENOMEM); 271 272 umem->context = context; 273 umem->length = size; 274 umem->address = addr; 275 umem->page_shift = PAGE_SHIFT; 276 umem->writable = 1; 277 278 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); 279 if (!odp_data) { 280 ret = -ENOMEM; 281 goto out_umem; 282 } 283 odp_data->umem = umem; 284 285 mutex_init(&odp_data->umem_mutex); 286 init_completion(&odp_data->notifier_completion); 287 288 odp_data->page_list = 289 vzalloc(array_size(pages, sizeof(*odp_data->page_list))); 290 if (!odp_data->page_list) { 291 ret = -ENOMEM; 292 goto out_odp_data; 293 } 294 295 odp_data->dma_list = 296 vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); 297 if (!odp_data->dma_list) { 298 ret = -ENOMEM; 299 goto out_page_list; 300 } 301 302 down_write(&context->umem_rwsem); 303 context->odp_mrs_count++; 304 rbt_ib_umem_insert(&odp_data->interval_tree, &context->umem_tree); 305 if (likely(!atomic_read(&context->notifier_count))) 306 odp_data->mn_counters_active = true; 307 else 308 list_add(&odp_data->no_private_counters, 309 &context->no_private_counters); 310 up_write(&context->umem_rwsem); 311 312 umem->odp_data = odp_data; 313 314 return umem; 315 316 out_page_list: 317 vfree(odp_data->page_list); 318 out_odp_data: 319 kfree(odp_data); 320 out_umem: 321 kfree(umem); 322 return ERR_PTR(ret); 323 } 324 EXPORT_SYMBOL(ib_alloc_odp_umem); 325 326 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem, 327 int access) 328 { 329 int ret_val; 330 struct pid *our_pid; 331 struct mm_struct *mm = get_task_mm(current); 332 333 if (!mm) 334 return -EINVAL; 335 336 if (access & IB_ACCESS_HUGETLB) { 337 struct vm_area_struct *vma; 338 struct hstate *h; 339 340 down_read(&mm->mmap_sem); 341 vma = find_vma(mm, ib_umem_start(umem)); 342 if (!vma || !is_vm_hugetlb_page(vma)) { 343 up_read(&mm->mmap_sem); 344 return -EINVAL; 345 } 346 h = hstate_vma(vma); 347 umem->page_shift = huge_page_shift(h); 348 up_read(&mm->mmap_sem); 349 umem->hugetlb = 1; 350 } else { 351 umem->hugetlb = 0; 352 } 353 354 /* Prevent creating ODP MRs in child processes */ 355 rcu_read_lock(); 356 our_pid = get_task_pid(current->group_leader, PIDTYPE_PID); 357 rcu_read_unlock(); 358 put_pid(our_pid); 359 if (context->tgid != our_pid) { 360 ret_val = -EINVAL; 361 goto out_mm; 362 } 363 364 umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL); 365 if (!umem->odp_data) { 366 ret_val = -ENOMEM; 367 goto out_mm; 368 } 369 umem->odp_data->umem = umem; 370 371 mutex_init(&umem->odp_data->umem_mutex); 372 373 init_completion(&umem->odp_data->notifier_completion); 374 375 if (ib_umem_num_pages(umem)) { 376 umem->odp_data->page_list = 377 vzalloc(array_size(sizeof(*umem->odp_data->page_list), 378 ib_umem_num_pages(umem))); 379 if (!umem->odp_data->page_list) { 380 ret_val = -ENOMEM; 381 goto out_odp_data; 382 } 383 384 umem->odp_data->dma_list = 385 vzalloc(array_size(sizeof(*umem->odp_data->dma_list), 386 ib_umem_num_pages(umem))); 387 if (!umem->odp_data->dma_list) { 388 ret_val = -ENOMEM; 389 goto out_page_list; 390 } 391 } 392 393 /* 394 * When using MMU notifiers, we will get a 395 * notification before the "current" task (and MM) is 396 * destroyed. We use the umem_rwsem semaphore to synchronize. 397 */ 398 down_write(&context->umem_rwsem); 399 context->odp_mrs_count++; 400 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 401 rbt_ib_umem_insert(&umem->odp_data->interval_tree, 402 &context->umem_tree); 403 if (likely(!atomic_read(&context->notifier_count)) || 404 context->odp_mrs_count == 1) 405 umem->odp_data->mn_counters_active = true; 406 else 407 list_add(&umem->odp_data->no_private_counters, 408 &context->no_private_counters); 409 downgrade_write(&context->umem_rwsem); 410 411 if (context->odp_mrs_count == 1) { 412 /* 413 * Note that at this point, no MMU notifier is running 414 * for this context! 415 */ 416 atomic_set(&context->notifier_count, 0); 417 INIT_HLIST_NODE(&context->mn.hlist); 418 context->mn.ops = &ib_umem_notifiers; 419 /* 420 * Lock-dep detects a false positive for mmap_sem vs. 421 * umem_rwsem, due to not grasping downgrade_write correctly. 422 */ 423 lockdep_off(); 424 ret_val = mmu_notifier_register(&context->mn, mm); 425 lockdep_on(); 426 if (ret_val) { 427 pr_err("Failed to register mmu_notifier %d\n", ret_val); 428 ret_val = -EBUSY; 429 goto out_mutex; 430 } 431 } 432 433 up_read(&context->umem_rwsem); 434 435 /* 436 * Note that doing an mmput can cause a notifier for the relevant mm. 437 * If the notifier is called while we hold the umem_rwsem, this will 438 * cause a deadlock. Therefore, we release the reference only after we 439 * released the semaphore. 440 */ 441 mmput(mm); 442 return 0; 443 444 out_mutex: 445 up_read(&context->umem_rwsem); 446 vfree(umem->odp_data->dma_list); 447 out_page_list: 448 vfree(umem->odp_data->page_list); 449 out_odp_data: 450 kfree(umem->odp_data); 451 out_mm: 452 mmput(mm); 453 return ret_val; 454 } 455 456 void ib_umem_odp_release(struct ib_umem *umem) 457 { 458 struct ib_ucontext *context = umem->context; 459 460 /* 461 * Ensure that no more pages are mapped in the umem. 462 * 463 * It is the driver's responsibility to ensure, before calling us, 464 * that the hardware will not attempt to access the MR any more. 465 */ 466 ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem), 467 ib_umem_end(umem)); 468 469 down_write(&context->umem_rwsem); 470 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 471 rbt_ib_umem_remove(&umem->odp_data->interval_tree, 472 &context->umem_tree); 473 context->odp_mrs_count--; 474 if (!umem->odp_data->mn_counters_active) { 475 list_del(&umem->odp_data->no_private_counters); 476 complete_all(&umem->odp_data->notifier_completion); 477 } 478 479 /* 480 * Downgrade the lock to a read lock. This ensures that the notifiers 481 * (who lock the mutex for reading) will be able to finish, and we 482 * will be able to enventually obtain the mmu notifiers SRCU. Note 483 * that since we are doing it atomically, no other user could register 484 * and unregister while we do the check. 485 */ 486 downgrade_write(&context->umem_rwsem); 487 if (!context->odp_mrs_count) { 488 struct task_struct *owning_process = NULL; 489 struct mm_struct *owning_mm = NULL; 490 491 owning_process = get_pid_task(context->tgid, 492 PIDTYPE_PID); 493 if (owning_process == NULL) 494 /* 495 * The process is already dead, notifier were removed 496 * already. 497 */ 498 goto out; 499 500 owning_mm = get_task_mm(owning_process); 501 if (owning_mm == NULL) 502 /* 503 * The process' mm is already dead, notifier were 504 * removed already. 505 */ 506 goto out_put_task; 507 mmu_notifier_unregister(&context->mn, owning_mm); 508 509 mmput(owning_mm); 510 511 out_put_task: 512 put_task_struct(owning_process); 513 } 514 out: 515 up_read(&context->umem_rwsem); 516 517 vfree(umem->odp_data->dma_list); 518 vfree(umem->odp_data->page_list); 519 kfree(umem->odp_data); 520 kfree(umem); 521 } 522 523 /* 524 * Map for DMA and insert a single page into the on-demand paging page tables. 525 * 526 * @umem: the umem to insert the page to. 527 * @page_index: index in the umem to add the page to. 528 * @page: the page struct to map and add. 529 * @access_mask: access permissions needed for this page. 530 * @current_seq: sequence number for synchronization with invalidations. 531 * the sequence number is taken from 532 * umem->odp_data->notifiers_seq. 533 * 534 * The function returns -EFAULT if the DMA mapping operation fails. It returns 535 * -EAGAIN if a concurrent invalidation prevents us from updating the page. 536 * 537 * The page is released via put_page even if the operation failed. For 538 * on-demand pinning, the page is released whenever it isn't stored in the 539 * umem. 540 */ 541 static int ib_umem_odp_map_dma_single_page( 542 struct ib_umem *umem, 543 int page_index, 544 struct page *page, 545 u64 access_mask, 546 unsigned long current_seq) 547 { 548 struct ib_device *dev = umem->context->device; 549 dma_addr_t dma_addr; 550 int stored_page = 0; 551 int remove_existing_mapping = 0; 552 int ret = 0; 553 554 /* 555 * Note: we avoid writing if seq is different from the initial seq, to 556 * handle case of a racing notifier. This check also allows us to bail 557 * early if we have a notifier running in parallel with us. 558 */ 559 if (ib_umem_mmu_notifier_retry(umem, current_seq)) { 560 ret = -EAGAIN; 561 goto out; 562 } 563 if (!(umem->odp_data->dma_list[page_index])) { 564 dma_addr = ib_dma_map_page(dev, 565 page, 566 0, BIT(umem->page_shift), 567 DMA_BIDIRECTIONAL); 568 if (ib_dma_mapping_error(dev, dma_addr)) { 569 ret = -EFAULT; 570 goto out; 571 } 572 umem->odp_data->dma_list[page_index] = dma_addr | access_mask; 573 umem->odp_data->page_list[page_index] = page; 574 umem->npages++; 575 stored_page = 1; 576 } else if (umem->odp_data->page_list[page_index] == page) { 577 umem->odp_data->dma_list[page_index] |= access_mask; 578 } else { 579 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", 580 umem->odp_data->page_list[page_index], page); 581 /* Better remove the mapping now, to prevent any further 582 * damage. */ 583 remove_existing_mapping = 1; 584 } 585 586 out: 587 /* On Demand Paging - avoid pinning the page */ 588 if (umem->context->invalidate_range || !stored_page) 589 put_page(page); 590 591 if (remove_existing_mapping && umem->context->invalidate_range) { 592 invalidate_page_trampoline( 593 umem, 594 ib_umem_start(umem) + (page_index >> umem->page_shift), 595 ib_umem_start(umem) + ((page_index + 1) >> 596 umem->page_shift), 597 NULL); 598 ret = -EAGAIN; 599 } 600 601 return ret; 602 } 603 604 /** 605 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. 606 * 607 * Pins the range of pages passed in the argument, and maps them to 608 * DMA addresses. The DMA addresses of the mapped pages is updated in 609 * umem->odp_data->dma_list. 610 * 611 * Returns the number of pages mapped in success, negative error code 612 * for failure. 613 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents 614 * the function from completing its task. 615 * An -ENOENT error code indicates that userspace process is being terminated 616 * and mm was already destroyed. 617 * @umem: the umem to map and pin 618 * @user_virt: the address from which we need to map. 619 * @bcnt: the minimal number of bytes to pin and map. The mapping might be 620 * bigger due to alignment, and may also be smaller in case of an error 621 * pinning or mapping a page. The actual pages mapped is returned in 622 * the return value. 623 * @access_mask: bit mask of the requested access permissions for the given 624 * range. 625 * @current_seq: the MMU notifiers sequance value for synchronization with 626 * invalidations. the sequance number is read from 627 * umem->odp_data->notifiers_seq before calling this function 628 */ 629 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt, 630 u64 access_mask, unsigned long current_seq) 631 { 632 struct task_struct *owning_process = NULL; 633 struct mm_struct *owning_mm = NULL; 634 struct page **local_page_list = NULL; 635 u64 page_mask, off; 636 int j, k, ret = 0, start_idx, npages = 0, page_shift; 637 unsigned int flags = 0; 638 phys_addr_t p = 0; 639 640 if (access_mask == 0) 641 return -EINVAL; 642 643 if (user_virt < ib_umem_start(umem) || 644 user_virt + bcnt > ib_umem_end(umem)) 645 return -EFAULT; 646 647 local_page_list = (struct page **)__get_free_page(GFP_KERNEL); 648 if (!local_page_list) 649 return -ENOMEM; 650 651 page_shift = umem->page_shift; 652 page_mask = ~(BIT(page_shift) - 1); 653 off = user_virt & (~page_mask); 654 user_virt = user_virt & page_mask; 655 bcnt += off; /* Charge for the first page offset as well. */ 656 657 owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID); 658 if (owning_process == NULL) { 659 ret = -EINVAL; 660 goto out_no_task; 661 } 662 663 owning_mm = get_task_mm(owning_process); 664 if (owning_mm == NULL) { 665 ret = -ENOENT; 666 goto out_put_task; 667 } 668 669 if (access_mask & ODP_WRITE_ALLOWED_BIT) 670 flags |= FOLL_WRITE; 671 672 start_idx = (user_virt - ib_umem_start(umem)) >> page_shift; 673 k = start_idx; 674 675 while (bcnt > 0) { 676 const size_t gup_num_pages = min_t(size_t, 677 (bcnt + BIT(page_shift) - 1) >> page_shift, 678 PAGE_SIZE / sizeof(struct page *)); 679 680 down_read(&owning_mm->mmap_sem); 681 /* 682 * Note: this might result in redundent page getting. We can 683 * avoid this by checking dma_list to be 0 before calling 684 * get_user_pages. However, this make the code much more 685 * complex (and doesn't gain us much performance in most use 686 * cases). 687 */ 688 npages = get_user_pages_remote(owning_process, owning_mm, 689 user_virt, gup_num_pages, 690 flags, local_page_list, NULL, NULL); 691 up_read(&owning_mm->mmap_sem); 692 693 if (npages < 0) 694 break; 695 696 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); 697 mutex_lock(&umem->odp_data->umem_mutex); 698 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { 699 if (user_virt & ~page_mask) { 700 p += PAGE_SIZE; 701 if (page_to_phys(local_page_list[j]) != p) { 702 ret = -EFAULT; 703 break; 704 } 705 put_page(local_page_list[j]); 706 continue; 707 } 708 709 ret = ib_umem_odp_map_dma_single_page( 710 umem, k, local_page_list[j], 711 access_mask, current_seq); 712 if (ret < 0) 713 break; 714 715 p = page_to_phys(local_page_list[j]); 716 k++; 717 } 718 mutex_unlock(&umem->odp_data->umem_mutex); 719 720 if (ret < 0) { 721 /* Release left over pages when handling errors. */ 722 for (++j; j < npages; ++j) 723 put_page(local_page_list[j]); 724 break; 725 } 726 } 727 728 if (ret >= 0) { 729 if (npages < 0 && k == start_idx) 730 ret = npages; 731 else 732 ret = k - start_idx; 733 } 734 735 mmput(owning_mm); 736 out_put_task: 737 put_task_struct(owning_process); 738 out_no_task: 739 free_page((unsigned long)local_page_list); 740 return ret; 741 } 742 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); 743 744 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt, 745 u64 bound) 746 { 747 int idx; 748 u64 addr; 749 struct ib_device *dev = umem->context->device; 750 751 virt = max_t(u64, virt, ib_umem_start(umem)); 752 bound = min_t(u64, bound, ib_umem_end(umem)); 753 /* Note that during the run of this function, the 754 * notifiers_count of the MR is > 0, preventing any racing 755 * faults from completion. We might be racing with other 756 * invalidations, so we must make sure we free each page only 757 * once. */ 758 mutex_lock(&umem->odp_data->umem_mutex); 759 for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) { 760 idx = (addr - ib_umem_start(umem)) >> umem->page_shift; 761 if (umem->odp_data->page_list[idx]) { 762 struct page *page = umem->odp_data->page_list[idx]; 763 dma_addr_t dma = umem->odp_data->dma_list[idx]; 764 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; 765 766 WARN_ON(!dma_addr); 767 768 ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE, 769 DMA_BIDIRECTIONAL); 770 if (dma & ODP_WRITE_ALLOWED_BIT) { 771 struct page *head_page = compound_head(page); 772 /* 773 * set_page_dirty prefers being called with 774 * the page lock. However, MMU notifiers are 775 * called sometimes with and sometimes without 776 * the lock. We rely on the umem_mutex instead 777 * to prevent other mmu notifiers from 778 * continuing and allowing the page mapping to 779 * be removed. 780 */ 781 set_page_dirty(head_page); 782 } 783 /* on demand pinning support */ 784 if (!umem->context->invalidate_range) 785 put_page(page); 786 umem->odp_data->page_list[idx] = NULL; 787 umem->odp_data->dma_list[idx] = 0; 788 umem->npages--; 789 } 790 } 791 mutex_unlock(&umem->odp_data->umem_mutex); 792 } 793 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); 794 795 /* @last is not a part of the interval. See comment for function 796 * node_last. 797 */ 798 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, 799 u64 start, u64 last, 800 umem_call_back cb, 801 void *cookie) 802 { 803 int ret_val = 0; 804 struct umem_odp_node *node, *next; 805 struct ib_umem_odp *umem; 806 807 if (unlikely(start == last)) 808 return ret_val; 809 810 for (node = rbt_ib_umem_iter_first(root, start, last - 1); 811 node; node = next) { 812 next = rbt_ib_umem_iter_next(node, start, last - 1); 813 umem = container_of(node, struct ib_umem_odp, interval_tree); 814 ret_val = cb(umem->umem, start, last, cookie) || ret_val; 815 } 816 817 return ret_val; 818 } 819 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); 820 821 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, 822 u64 addr, u64 length) 823 { 824 struct umem_odp_node *node; 825 826 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); 827 if (node) 828 return container_of(node, struct ib_umem_odp, interval_tree); 829 return NULL; 830 831 } 832 EXPORT_SYMBOL(rbt_ib_umem_lookup); 833