xref: /linux/drivers/infiniband/core/umem_odp.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree_generic.h>
43 
44 #include <rdma/ib_verbs.h>
45 #include <rdma/ib_umem.h>
46 #include <rdma/ib_umem_odp.h>
47 
48 /*
49  * The ib_umem list keeps track of memory regions for which the HW
50  * device request to receive notification when the related memory
51  * mapping is changed.
52  *
53  * ib_umem_lock protects the list.
54  */
55 
56 static u64 node_start(struct umem_odp_node *n)
57 {
58 	struct ib_umem_odp *umem_odp =
59 			container_of(n, struct ib_umem_odp, interval_tree);
60 
61 	return ib_umem_start(umem_odp->umem);
62 }
63 
64 /* Note that the representation of the intervals in the interval tree
65  * considers the ending point as contained in the interval, while the
66  * function ib_umem_end returns the first address which is not contained
67  * in the umem.
68  */
69 static u64 node_last(struct umem_odp_node *n)
70 {
71 	struct ib_umem_odp *umem_odp =
72 			container_of(n, struct ib_umem_odp, interval_tree);
73 
74 	return ib_umem_end(umem_odp->umem) - 1;
75 }
76 
77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last,
78 		     node_start, node_last, static, rbt_ib_umem)
79 
80 static void ib_umem_notifier_start_account(struct ib_umem *item)
81 {
82 	mutex_lock(&item->odp_data->umem_mutex);
83 
84 	/* Only update private counters for this umem if it has them.
85 	 * Otherwise skip it. All page faults will be delayed for this umem. */
86 	if (item->odp_data->mn_counters_active) {
87 		int notifiers_count = item->odp_data->notifiers_count++;
88 
89 		if (notifiers_count == 0)
90 			/* Initialize the completion object for waiting on
91 			 * notifiers. Since notifier_count is zero, no one
92 			 * should be waiting right now. */
93 			reinit_completion(&item->odp_data->notifier_completion);
94 	}
95 	mutex_unlock(&item->odp_data->umem_mutex);
96 }
97 
98 static void ib_umem_notifier_end_account(struct ib_umem *item)
99 {
100 	mutex_lock(&item->odp_data->umem_mutex);
101 
102 	/* Only update private counters for this umem if it has them.
103 	 * Otherwise skip it. All page faults will be delayed for this umem. */
104 	if (item->odp_data->mn_counters_active) {
105 		/*
106 		 * This sequence increase will notify the QP page fault that
107 		 * the page that is going to be mapped in the spte could have
108 		 * been freed.
109 		 */
110 		++item->odp_data->notifiers_seq;
111 		if (--item->odp_data->notifiers_count == 0)
112 			complete_all(&item->odp_data->notifier_completion);
113 	}
114 	mutex_unlock(&item->odp_data->umem_mutex);
115 }
116 
117 /* Account for a new mmu notifier in an ib_ucontext. */
118 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
119 {
120 	atomic_inc(&context->notifier_count);
121 }
122 
123 /* Account for a terminating mmu notifier in an ib_ucontext.
124  *
125  * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
126  * the function takes the semaphore itself. */
127 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
128 {
129 	int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
130 
131 	if (zero_notifiers &&
132 	    !list_empty(&context->no_private_counters)) {
133 		/* No currently running mmu notifiers. Now is the chance to
134 		 * add private accounting to all previously added umems. */
135 		struct ib_umem_odp *odp_data, *next;
136 
137 		/* Prevent concurrent mmu notifiers from working on the
138 		 * no_private_counters list. */
139 		down_write(&context->umem_rwsem);
140 
141 		/* Read the notifier_count again, with the umem_rwsem
142 		 * semaphore taken for write. */
143 		if (!atomic_read(&context->notifier_count)) {
144 			list_for_each_entry_safe(odp_data, next,
145 						 &context->no_private_counters,
146 						 no_private_counters) {
147 				mutex_lock(&odp_data->umem_mutex);
148 				odp_data->mn_counters_active = true;
149 				list_del(&odp_data->no_private_counters);
150 				complete_all(&odp_data->notifier_completion);
151 				mutex_unlock(&odp_data->umem_mutex);
152 			}
153 		}
154 
155 		up_write(&context->umem_rwsem);
156 	}
157 }
158 
159 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
160 					       u64 end, void *cookie) {
161 	/*
162 	 * Increase the number of notifiers running, to
163 	 * prevent any further fault handling on this MR.
164 	 */
165 	ib_umem_notifier_start_account(item);
166 	item->odp_data->dying = 1;
167 	/* Make sure that the fact the umem is dying is out before we release
168 	 * all pending page faults. */
169 	smp_wmb();
170 	complete_all(&item->odp_data->notifier_completion);
171 	item->context->invalidate_range(item, ib_umem_start(item),
172 					ib_umem_end(item));
173 	return 0;
174 }
175 
176 static void ib_umem_notifier_release(struct mmu_notifier *mn,
177 				     struct mm_struct *mm)
178 {
179 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
180 
181 	if (!context->invalidate_range)
182 		return;
183 
184 	ib_ucontext_notifier_start_account(context);
185 	down_read(&context->umem_rwsem);
186 	rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
187 				      ULLONG_MAX,
188 				      ib_umem_notifier_release_trampoline,
189 				      NULL);
190 	up_read(&context->umem_rwsem);
191 }
192 
193 static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
194 				      u64 end, void *cookie)
195 {
196 	ib_umem_notifier_start_account(item);
197 	item->context->invalidate_range(item, start, start + PAGE_SIZE);
198 	ib_umem_notifier_end_account(item);
199 	return 0;
200 }
201 
202 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
203 					     u64 end, void *cookie)
204 {
205 	ib_umem_notifier_start_account(item);
206 	item->context->invalidate_range(item, start, end);
207 	return 0;
208 }
209 
210 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
211 						    struct mm_struct *mm,
212 						    unsigned long start,
213 						    unsigned long end)
214 {
215 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
216 
217 	if (!context->invalidate_range)
218 		return;
219 
220 	ib_ucontext_notifier_start_account(context);
221 	down_read(&context->umem_rwsem);
222 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
223 				      end,
224 				      invalidate_range_start_trampoline, NULL);
225 	up_read(&context->umem_rwsem);
226 }
227 
228 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
229 					   u64 end, void *cookie)
230 {
231 	ib_umem_notifier_end_account(item);
232 	return 0;
233 }
234 
235 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
236 						  struct mm_struct *mm,
237 						  unsigned long start,
238 						  unsigned long end)
239 {
240 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
241 
242 	if (!context->invalidate_range)
243 		return;
244 
245 	down_read(&context->umem_rwsem);
246 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
247 				      end,
248 				      invalidate_range_end_trampoline, NULL);
249 	up_read(&context->umem_rwsem);
250 	ib_ucontext_notifier_end_account(context);
251 }
252 
253 static const struct mmu_notifier_ops ib_umem_notifiers = {
254 	.release                    = ib_umem_notifier_release,
255 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
256 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
257 };
258 
259 struct ib_umem *ib_alloc_odp_umem(struct ib_ucontext *context,
260 				  unsigned long addr,
261 				  size_t size)
262 {
263 	struct ib_umem *umem;
264 	struct ib_umem_odp *odp_data;
265 	int pages = size >> PAGE_SHIFT;
266 	int ret;
267 
268 	umem = kzalloc(sizeof(*umem), GFP_KERNEL);
269 	if (!umem)
270 		return ERR_PTR(-ENOMEM);
271 
272 	umem->context    = context;
273 	umem->length     = size;
274 	umem->address    = addr;
275 	umem->page_shift = PAGE_SHIFT;
276 	umem->writable   = 1;
277 
278 	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
279 	if (!odp_data) {
280 		ret = -ENOMEM;
281 		goto out_umem;
282 	}
283 	odp_data->umem = umem;
284 
285 	mutex_init(&odp_data->umem_mutex);
286 	init_completion(&odp_data->notifier_completion);
287 
288 	odp_data->page_list =
289 		vzalloc(array_size(pages, sizeof(*odp_data->page_list)));
290 	if (!odp_data->page_list) {
291 		ret = -ENOMEM;
292 		goto out_odp_data;
293 	}
294 
295 	odp_data->dma_list =
296 		vzalloc(array_size(pages, sizeof(*odp_data->dma_list)));
297 	if (!odp_data->dma_list) {
298 		ret = -ENOMEM;
299 		goto out_page_list;
300 	}
301 
302 	down_write(&context->umem_rwsem);
303 	context->odp_mrs_count++;
304 	rbt_ib_umem_insert(&odp_data->interval_tree, &context->umem_tree);
305 	if (likely(!atomic_read(&context->notifier_count)))
306 		odp_data->mn_counters_active = true;
307 	else
308 		list_add(&odp_data->no_private_counters,
309 			 &context->no_private_counters);
310 	up_write(&context->umem_rwsem);
311 
312 	umem->odp_data = odp_data;
313 
314 	return umem;
315 
316 out_page_list:
317 	vfree(odp_data->page_list);
318 out_odp_data:
319 	kfree(odp_data);
320 out_umem:
321 	kfree(umem);
322 	return ERR_PTR(ret);
323 }
324 EXPORT_SYMBOL(ib_alloc_odp_umem);
325 
326 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem,
327 		    int access)
328 {
329 	int ret_val;
330 	struct pid *our_pid;
331 	struct mm_struct *mm = get_task_mm(current);
332 
333 	if (!mm)
334 		return -EINVAL;
335 
336 	if (access & IB_ACCESS_HUGETLB) {
337 		struct vm_area_struct *vma;
338 		struct hstate *h;
339 
340 		down_read(&mm->mmap_sem);
341 		vma = find_vma(mm, ib_umem_start(umem));
342 		if (!vma || !is_vm_hugetlb_page(vma)) {
343 			up_read(&mm->mmap_sem);
344 			return -EINVAL;
345 		}
346 		h = hstate_vma(vma);
347 		umem->page_shift = huge_page_shift(h);
348 		up_read(&mm->mmap_sem);
349 		umem->hugetlb = 1;
350 	} else {
351 		umem->hugetlb = 0;
352 	}
353 
354 	/* Prevent creating ODP MRs in child processes */
355 	rcu_read_lock();
356 	our_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
357 	rcu_read_unlock();
358 	put_pid(our_pid);
359 	if (context->tgid != our_pid) {
360 		ret_val = -EINVAL;
361 		goto out_mm;
362 	}
363 
364 	umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
365 	if (!umem->odp_data) {
366 		ret_val = -ENOMEM;
367 		goto out_mm;
368 	}
369 	umem->odp_data->umem = umem;
370 
371 	mutex_init(&umem->odp_data->umem_mutex);
372 
373 	init_completion(&umem->odp_data->notifier_completion);
374 
375 	if (ib_umem_num_pages(umem)) {
376 		umem->odp_data->page_list =
377 			vzalloc(array_size(sizeof(*umem->odp_data->page_list),
378 					   ib_umem_num_pages(umem)));
379 		if (!umem->odp_data->page_list) {
380 			ret_val = -ENOMEM;
381 			goto out_odp_data;
382 		}
383 
384 		umem->odp_data->dma_list =
385 			vzalloc(array_size(sizeof(*umem->odp_data->dma_list),
386 					   ib_umem_num_pages(umem)));
387 		if (!umem->odp_data->dma_list) {
388 			ret_val = -ENOMEM;
389 			goto out_page_list;
390 		}
391 	}
392 
393 	/*
394 	 * When using MMU notifiers, we will get a
395 	 * notification before the "current" task (and MM) is
396 	 * destroyed. We use the umem_rwsem semaphore to synchronize.
397 	 */
398 	down_write(&context->umem_rwsem);
399 	context->odp_mrs_count++;
400 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
401 		rbt_ib_umem_insert(&umem->odp_data->interval_tree,
402 				   &context->umem_tree);
403 	if (likely(!atomic_read(&context->notifier_count)) ||
404 	    context->odp_mrs_count == 1)
405 		umem->odp_data->mn_counters_active = true;
406 	else
407 		list_add(&umem->odp_data->no_private_counters,
408 			 &context->no_private_counters);
409 	downgrade_write(&context->umem_rwsem);
410 
411 	if (context->odp_mrs_count == 1) {
412 		/*
413 		 * Note that at this point, no MMU notifier is running
414 		 * for this context!
415 		 */
416 		atomic_set(&context->notifier_count, 0);
417 		INIT_HLIST_NODE(&context->mn.hlist);
418 		context->mn.ops = &ib_umem_notifiers;
419 		/*
420 		 * Lock-dep detects a false positive for mmap_sem vs.
421 		 * umem_rwsem, due to not grasping downgrade_write correctly.
422 		 */
423 		lockdep_off();
424 		ret_val = mmu_notifier_register(&context->mn, mm);
425 		lockdep_on();
426 		if (ret_val) {
427 			pr_err("Failed to register mmu_notifier %d\n", ret_val);
428 			ret_val = -EBUSY;
429 			goto out_mutex;
430 		}
431 	}
432 
433 	up_read(&context->umem_rwsem);
434 
435 	/*
436 	 * Note that doing an mmput can cause a notifier for the relevant mm.
437 	 * If the notifier is called while we hold the umem_rwsem, this will
438 	 * cause a deadlock. Therefore, we release the reference only after we
439 	 * released the semaphore.
440 	 */
441 	mmput(mm);
442 	return 0;
443 
444 out_mutex:
445 	up_read(&context->umem_rwsem);
446 	vfree(umem->odp_data->dma_list);
447 out_page_list:
448 	vfree(umem->odp_data->page_list);
449 out_odp_data:
450 	kfree(umem->odp_data);
451 out_mm:
452 	mmput(mm);
453 	return ret_val;
454 }
455 
456 void ib_umem_odp_release(struct ib_umem *umem)
457 {
458 	struct ib_ucontext *context = umem->context;
459 
460 	/*
461 	 * Ensure that no more pages are mapped in the umem.
462 	 *
463 	 * It is the driver's responsibility to ensure, before calling us,
464 	 * that the hardware will not attempt to access the MR any more.
465 	 */
466 	ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
467 				    ib_umem_end(umem));
468 
469 	down_write(&context->umem_rwsem);
470 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
471 		rbt_ib_umem_remove(&umem->odp_data->interval_tree,
472 				   &context->umem_tree);
473 	context->odp_mrs_count--;
474 	if (!umem->odp_data->mn_counters_active) {
475 		list_del(&umem->odp_data->no_private_counters);
476 		complete_all(&umem->odp_data->notifier_completion);
477 	}
478 
479 	/*
480 	 * Downgrade the lock to a read lock. This ensures that the notifiers
481 	 * (who lock the mutex for reading) will be able to finish, and we
482 	 * will be able to enventually obtain the mmu notifiers SRCU. Note
483 	 * that since we are doing it atomically, no other user could register
484 	 * and unregister while we do the check.
485 	 */
486 	downgrade_write(&context->umem_rwsem);
487 	if (!context->odp_mrs_count) {
488 		struct task_struct *owning_process = NULL;
489 		struct mm_struct *owning_mm        = NULL;
490 
491 		owning_process = get_pid_task(context->tgid,
492 					      PIDTYPE_PID);
493 		if (owning_process == NULL)
494 			/*
495 			 * The process is already dead, notifier were removed
496 			 * already.
497 			 */
498 			goto out;
499 
500 		owning_mm = get_task_mm(owning_process);
501 		if (owning_mm == NULL)
502 			/*
503 			 * The process' mm is already dead, notifier were
504 			 * removed already.
505 			 */
506 			goto out_put_task;
507 		mmu_notifier_unregister(&context->mn, owning_mm);
508 
509 		mmput(owning_mm);
510 
511 out_put_task:
512 		put_task_struct(owning_process);
513 	}
514 out:
515 	up_read(&context->umem_rwsem);
516 
517 	vfree(umem->odp_data->dma_list);
518 	vfree(umem->odp_data->page_list);
519 	kfree(umem->odp_data);
520 	kfree(umem);
521 }
522 
523 /*
524  * Map for DMA and insert a single page into the on-demand paging page tables.
525  *
526  * @umem: the umem to insert the page to.
527  * @page_index: index in the umem to add the page to.
528  * @page: the page struct to map and add.
529  * @access_mask: access permissions needed for this page.
530  * @current_seq: sequence number for synchronization with invalidations.
531  *               the sequence number is taken from
532  *               umem->odp_data->notifiers_seq.
533  *
534  * The function returns -EFAULT if the DMA mapping operation fails. It returns
535  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
536  *
537  * The page is released via put_page even if the operation failed. For
538  * on-demand pinning, the page is released whenever it isn't stored in the
539  * umem.
540  */
541 static int ib_umem_odp_map_dma_single_page(
542 		struct ib_umem *umem,
543 		int page_index,
544 		struct page *page,
545 		u64 access_mask,
546 		unsigned long current_seq)
547 {
548 	struct ib_device *dev = umem->context->device;
549 	dma_addr_t dma_addr;
550 	int stored_page = 0;
551 	int remove_existing_mapping = 0;
552 	int ret = 0;
553 
554 	/*
555 	 * Note: we avoid writing if seq is different from the initial seq, to
556 	 * handle case of a racing notifier. This check also allows us to bail
557 	 * early if we have a notifier running in parallel with us.
558 	 */
559 	if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
560 		ret = -EAGAIN;
561 		goto out;
562 	}
563 	if (!(umem->odp_data->dma_list[page_index])) {
564 		dma_addr = ib_dma_map_page(dev,
565 					   page,
566 					   0, BIT(umem->page_shift),
567 					   DMA_BIDIRECTIONAL);
568 		if (ib_dma_mapping_error(dev, dma_addr)) {
569 			ret = -EFAULT;
570 			goto out;
571 		}
572 		umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
573 		umem->odp_data->page_list[page_index] = page;
574 		umem->npages++;
575 		stored_page = 1;
576 	} else if (umem->odp_data->page_list[page_index] == page) {
577 		umem->odp_data->dma_list[page_index] |= access_mask;
578 	} else {
579 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
580 		       umem->odp_data->page_list[page_index], page);
581 		/* Better remove the mapping now, to prevent any further
582 		 * damage. */
583 		remove_existing_mapping = 1;
584 	}
585 
586 out:
587 	/* On Demand Paging - avoid pinning the page */
588 	if (umem->context->invalidate_range || !stored_page)
589 		put_page(page);
590 
591 	if (remove_existing_mapping && umem->context->invalidate_range) {
592 		invalidate_page_trampoline(
593 			umem,
594 			ib_umem_start(umem) + (page_index >> umem->page_shift),
595 			ib_umem_start(umem) + ((page_index + 1) >>
596 					       umem->page_shift),
597 			NULL);
598 		ret = -EAGAIN;
599 	}
600 
601 	return ret;
602 }
603 
604 /**
605  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
606  *
607  * Pins the range of pages passed in the argument, and maps them to
608  * DMA addresses. The DMA addresses of the mapped pages is updated in
609  * umem->odp_data->dma_list.
610  *
611  * Returns the number of pages mapped in success, negative error code
612  * for failure.
613  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
614  * the function from completing its task.
615  * An -ENOENT error code indicates that userspace process is being terminated
616  * and mm was already destroyed.
617  * @umem: the umem to map and pin
618  * @user_virt: the address from which we need to map.
619  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
620  *        bigger due to alignment, and may also be smaller in case of an error
621  *        pinning or mapping a page. The actual pages mapped is returned in
622  *        the return value.
623  * @access_mask: bit mask of the requested access permissions for the given
624  *               range.
625  * @current_seq: the MMU notifiers sequance value for synchronization with
626  *               invalidations. the sequance number is read from
627  *               umem->odp_data->notifiers_seq before calling this function
628  */
629 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
630 			      u64 access_mask, unsigned long current_seq)
631 {
632 	struct task_struct *owning_process  = NULL;
633 	struct mm_struct   *owning_mm       = NULL;
634 	struct page       **local_page_list = NULL;
635 	u64 page_mask, off;
636 	int j, k, ret = 0, start_idx, npages = 0, page_shift;
637 	unsigned int flags = 0;
638 	phys_addr_t p = 0;
639 
640 	if (access_mask == 0)
641 		return -EINVAL;
642 
643 	if (user_virt < ib_umem_start(umem) ||
644 	    user_virt + bcnt > ib_umem_end(umem))
645 		return -EFAULT;
646 
647 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
648 	if (!local_page_list)
649 		return -ENOMEM;
650 
651 	page_shift = umem->page_shift;
652 	page_mask = ~(BIT(page_shift) - 1);
653 	off = user_virt & (~page_mask);
654 	user_virt = user_virt & page_mask;
655 	bcnt += off; /* Charge for the first page offset as well. */
656 
657 	owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
658 	if (owning_process == NULL) {
659 		ret = -EINVAL;
660 		goto out_no_task;
661 	}
662 
663 	owning_mm = get_task_mm(owning_process);
664 	if (owning_mm == NULL) {
665 		ret = -ENOENT;
666 		goto out_put_task;
667 	}
668 
669 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
670 		flags |= FOLL_WRITE;
671 
672 	start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
673 	k = start_idx;
674 
675 	while (bcnt > 0) {
676 		const size_t gup_num_pages = min_t(size_t,
677 				(bcnt + BIT(page_shift) - 1) >> page_shift,
678 				PAGE_SIZE / sizeof(struct page *));
679 
680 		down_read(&owning_mm->mmap_sem);
681 		/*
682 		 * Note: this might result in redundent page getting. We can
683 		 * avoid this by checking dma_list to be 0 before calling
684 		 * get_user_pages. However, this make the code much more
685 		 * complex (and doesn't gain us much performance in most use
686 		 * cases).
687 		 */
688 		npages = get_user_pages_remote(owning_process, owning_mm,
689 				user_virt, gup_num_pages,
690 				flags, local_page_list, NULL, NULL);
691 		up_read(&owning_mm->mmap_sem);
692 
693 		if (npages < 0)
694 			break;
695 
696 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
697 		mutex_lock(&umem->odp_data->umem_mutex);
698 		for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
699 			if (user_virt & ~page_mask) {
700 				p += PAGE_SIZE;
701 				if (page_to_phys(local_page_list[j]) != p) {
702 					ret = -EFAULT;
703 					break;
704 				}
705 				put_page(local_page_list[j]);
706 				continue;
707 			}
708 
709 			ret = ib_umem_odp_map_dma_single_page(
710 					umem, k, local_page_list[j],
711 					access_mask, current_seq);
712 			if (ret < 0)
713 				break;
714 
715 			p = page_to_phys(local_page_list[j]);
716 			k++;
717 		}
718 		mutex_unlock(&umem->odp_data->umem_mutex);
719 
720 		if (ret < 0) {
721 			/* Release left over pages when handling errors. */
722 			for (++j; j < npages; ++j)
723 				put_page(local_page_list[j]);
724 			break;
725 		}
726 	}
727 
728 	if (ret >= 0) {
729 		if (npages < 0 && k == start_idx)
730 			ret = npages;
731 		else
732 			ret = k - start_idx;
733 	}
734 
735 	mmput(owning_mm);
736 out_put_task:
737 	put_task_struct(owning_process);
738 out_no_task:
739 	free_page((unsigned long)local_page_list);
740 	return ret;
741 }
742 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
743 
744 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
745 				 u64 bound)
746 {
747 	int idx;
748 	u64 addr;
749 	struct ib_device *dev = umem->context->device;
750 
751 	virt  = max_t(u64, virt,  ib_umem_start(umem));
752 	bound = min_t(u64, bound, ib_umem_end(umem));
753 	/* Note that during the run of this function, the
754 	 * notifiers_count of the MR is > 0, preventing any racing
755 	 * faults from completion. We might be racing with other
756 	 * invalidations, so we must make sure we free each page only
757 	 * once. */
758 	mutex_lock(&umem->odp_data->umem_mutex);
759 	for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
760 		idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
761 		if (umem->odp_data->page_list[idx]) {
762 			struct page *page = umem->odp_data->page_list[idx];
763 			dma_addr_t dma = umem->odp_data->dma_list[idx];
764 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
765 
766 			WARN_ON(!dma_addr);
767 
768 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
769 					  DMA_BIDIRECTIONAL);
770 			if (dma & ODP_WRITE_ALLOWED_BIT) {
771 				struct page *head_page = compound_head(page);
772 				/*
773 				 * set_page_dirty prefers being called with
774 				 * the page lock. However, MMU notifiers are
775 				 * called sometimes with and sometimes without
776 				 * the lock. We rely on the umem_mutex instead
777 				 * to prevent other mmu notifiers from
778 				 * continuing and allowing the page mapping to
779 				 * be removed.
780 				 */
781 				set_page_dirty(head_page);
782 			}
783 			/* on demand pinning support */
784 			if (!umem->context->invalidate_range)
785 				put_page(page);
786 			umem->odp_data->page_list[idx] = NULL;
787 			umem->odp_data->dma_list[idx] = 0;
788 			umem->npages--;
789 		}
790 	}
791 	mutex_unlock(&umem->odp_data->umem_mutex);
792 }
793 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
794 
795 /* @last is not a part of the interval. See comment for function
796  * node_last.
797  */
798 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
799 				  u64 start, u64 last,
800 				  umem_call_back cb,
801 				  void *cookie)
802 {
803 	int ret_val = 0;
804 	struct umem_odp_node *node, *next;
805 	struct ib_umem_odp *umem;
806 
807 	if (unlikely(start == last))
808 		return ret_val;
809 
810 	for (node = rbt_ib_umem_iter_first(root, start, last - 1);
811 			node; node = next) {
812 		next = rbt_ib_umem_iter_next(node, start, last - 1);
813 		umem = container_of(node, struct ib_umem_odp, interval_tree);
814 		ret_val = cb(umem->umem, start, last, cookie) || ret_val;
815 	}
816 
817 	return ret_val;
818 }
819 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range);
820 
821 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root,
822 				       u64 addr, u64 length)
823 {
824 	struct umem_odp_node *node;
825 
826 	node = rbt_ib_umem_iter_first(root, addr, addr + length - 1);
827 	if (node)
828 		return container_of(node, struct ib_umem_odp, interval_tree);
829 	return NULL;
830 
831 }
832 EXPORT_SYMBOL(rbt_ib_umem_lookup);
833