1 /* 2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/task.h> 37 #include <linux/pid.h> 38 #include <linux/slab.h> 39 #include <linux/export.h> 40 #include <linux/vmalloc.h> 41 #include <linux/hugetlb.h> 42 #include <linux/interval_tree_generic.h> 43 44 #include <rdma/ib_verbs.h> 45 #include <rdma/ib_umem.h> 46 #include <rdma/ib_umem_odp.h> 47 48 /* 49 * The ib_umem list keeps track of memory regions for which the HW 50 * device request to receive notification when the related memory 51 * mapping is changed. 52 * 53 * ib_umem_lock protects the list. 54 */ 55 56 static u64 node_start(struct umem_odp_node *n) 57 { 58 struct ib_umem_odp *umem_odp = 59 container_of(n, struct ib_umem_odp, interval_tree); 60 61 return ib_umem_start(umem_odp->umem); 62 } 63 64 /* Note that the representation of the intervals in the interval tree 65 * considers the ending point as contained in the interval, while the 66 * function ib_umem_end returns the first address which is not contained 67 * in the umem. 68 */ 69 static u64 node_last(struct umem_odp_node *n) 70 { 71 struct ib_umem_odp *umem_odp = 72 container_of(n, struct ib_umem_odp, interval_tree); 73 74 return ib_umem_end(umem_odp->umem) - 1; 75 } 76 77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, 78 node_start, node_last, static, rbt_ib_umem) 79 80 static void ib_umem_notifier_start_account(struct ib_umem *item) 81 { 82 mutex_lock(&item->odp_data->umem_mutex); 83 84 /* Only update private counters for this umem if it has them. 85 * Otherwise skip it. All page faults will be delayed for this umem. */ 86 if (item->odp_data->mn_counters_active) { 87 int notifiers_count = item->odp_data->notifiers_count++; 88 89 if (notifiers_count == 0) 90 /* Initialize the completion object for waiting on 91 * notifiers. Since notifier_count is zero, no one 92 * should be waiting right now. */ 93 reinit_completion(&item->odp_data->notifier_completion); 94 } 95 mutex_unlock(&item->odp_data->umem_mutex); 96 } 97 98 static void ib_umem_notifier_end_account(struct ib_umem *item) 99 { 100 mutex_lock(&item->odp_data->umem_mutex); 101 102 /* Only update private counters for this umem if it has them. 103 * Otherwise skip it. All page faults will be delayed for this umem. */ 104 if (item->odp_data->mn_counters_active) { 105 /* 106 * This sequence increase will notify the QP page fault that 107 * the page that is going to be mapped in the spte could have 108 * been freed. 109 */ 110 ++item->odp_data->notifiers_seq; 111 if (--item->odp_data->notifiers_count == 0) 112 complete_all(&item->odp_data->notifier_completion); 113 } 114 mutex_unlock(&item->odp_data->umem_mutex); 115 } 116 117 /* Account for a new mmu notifier in an ib_ucontext. */ 118 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context) 119 { 120 atomic_inc(&context->notifier_count); 121 } 122 123 /* Account for a terminating mmu notifier in an ib_ucontext. 124 * 125 * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since 126 * the function takes the semaphore itself. */ 127 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context) 128 { 129 int zero_notifiers = atomic_dec_and_test(&context->notifier_count); 130 131 if (zero_notifiers && 132 !list_empty(&context->no_private_counters)) { 133 /* No currently running mmu notifiers. Now is the chance to 134 * add private accounting to all previously added umems. */ 135 struct ib_umem_odp *odp_data, *next; 136 137 /* Prevent concurrent mmu notifiers from working on the 138 * no_private_counters list. */ 139 down_write(&context->umem_rwsem); 140 141 /* Read the notifier_count again, with the umem_rwsem 142 * semaphore taken for write. */ 143 if (!atomic_read(&context->notifier_count)) { 144 list_for_each_entry_safe(odp_data, next, 145 &context->no_private_counters, 146 no_private_counters) { 147 mutex_lock(&odp_data->umem_mutex); 148 odp_data->mn_counters_active = true; 149 list_del(&odp_data->no_private_counters); 150 complete_all(&odp_data->notifier_completion); 151 mutex_unlock(&odp_data->umem_mutex); 152 } 153 } 154 155 up_write(&context->umem_rwsem); 156 } 157 } 158 159 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start, 160 u64 end, void *cookie) { 161 /* 162 * Increase the number of notifiers running, to 163 * prevent any further fault handling on this MR. 164 */ 165 ib_umem_notifier_start_account(item); 166 item->odp_data->dying = 1; 167 /* Make sure that the fact the umem is dying is out before we release 168 * all pending page faults. */ 169 smp_wmb(); 170 complete_all(&item->odp_data->notifier_completion); 171 item->context->invalidate_range(item, ib_umem_start(item), 172 ib_umem_end(item)); 173 return 0; 174 } 175 176 static void ib_umem_notifier_release(struct mmu_notifier *mn, 177 struct mm_struct *mm) 178 { 179 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn); 180 181 if (!context->invalidate_range) 182 return; 183 184 ib_ucontext_notifier_start_account(context); 185 down_read(&context->umem_rwsem); 186 rbt_ib_umem_for_each_in_range(&context->umem_tree, 0, 187 ULLONG_MAX, 188 ib_umem_notifier_release_trampoline, 189 NULL); 190 up_read(&context->umem_rwsem); 191 } 192 193 static int invalidate_page_trampoline(struct ib_umem *item, u64 start, 194 u64 end, void *cookie) 195 { 196 ib_umem_notifier_start_account(item); 197 item->context->invalidate_range(item, start, start + PAGE_SIZE); 198 ib_umem_notifier_end_account(item); 199 return 0; 200 } 201 202 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start, 203 u64 end, void *cookie) 204 { 205 ib_umem_notifier_start_account(item); 206 item->context->invalidate_range(item, start, end); 207 return 0; 208 } 209 210 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, 211 struct mm_struct *mm, 212 unsigned long start, 213 unsigned long end) 214 { 215 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn); 216 217 if (!context->invalidate_range) 218 return; 219 220 ib_ucontext_notifier_start_account(context); 221 down_read(&context->umem_rwsem); 222 rbt_ib_umem_for_each_in_range(&context->umem_tree, start, 223 end, 224 invalidate_range_start_trampoline, NULL); 225 up_read(&context->umem_rwsem); 226 } 227 228 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start, 229 u64 end, void *cookie) 230 { 231 ib_umem_notifier_end_account(item); 232 return 0; 233 } 234 235 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, 236 struct mm_struct *mm, 237 unsigned long start, 238 unsigned long end) 239 { 240 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn); 241 242 if (!context->invalidate_range) 243 return; 244 245 down_read(&context->umem_rwsem); 246 rbt_ib_umem_for_each_in_range(&context->umem_tree, start, 247 end, 248 invalidate_range_end_trampoline, NULL); 249 up_read(&context->umem_rwsem); 250 ib_ucontext_notifier_end_account(context); 251 } 252 253 static const struct mmu_notifier_ops ib_umem_notifiers = { 254 .release = ib_umem_notifier_release, 255 .invalidate_range_start = ib_umem_notifier_invalidate_range_start, 256 .invalidate_range_end = ib_umem_notifier_invalidate_range_end, 257 }; 258 259 struct ib_umem *ib_alloc_odp_umem(struct ib_ucontext *context, 260 unsigned long addr, 261 size_t size) 262 { 263 struct ib_umem *umem; 264 struct ib_umem_odp *odp_data; 265 int pages = size >> PAGE_SHIFT; 266 int ret; 267 268 umem = kzalloc(sizeof(*umem), GFP_KERNEL); 269 if (!umem) 270 return ERR_PTR(-ENOMEM); 271 272 umem->context = context; 273 umem->length = size; 274 umem->address = addr; 275 umem->page_shift = PAGE_SHIFT; 276 umem->writable = 1; 277 278 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); 279 if (!odp_data) { 280 ret = -ENOMEM; 281 goto out_umem; 282 } 283 odp_data->umem = umem; 284 285 mutex_init(&odp_data->umem_mutex); 286 init_completion(&odp_data->notifier_completion); 287 288 odp_data->page_list = vzalloc(pages * sizeof(*odp_data->page_list)); 289 if (!odp_data->page_list) { 290 ret = -ENOMEM; 291 goto out_odp_data; 292 } 293 294 odp_data->dma_list = vzalloc(pages * sizeof(*odp_data->dma_list)); 295 if (!odp_data->dma_list) { 296 ret = -ENOMEM; 297 goto out_page_list; 298 } 299 300 down_write(&context->umem_rwsem); 301 context->odp_mrs_count++; 302 rbt_ib_umem_insert(&odp_data->interval_tree, &context->umem_tree); 303 if (likely(!atomic_read(&context->notifier_count))) 304 odp_data->mn_counters_active = true; 305 else 306 list_add(&odp_data->no_private_counters, 307 &context->no_private_counters); 308 up_write(&context->umem_rwsem); 309 310 umem->odp_data = odp_data; 311 312 return umem; 313 314 out_page_list: 315 vfree(odp_data->page_list); 316 out_odp_data: 317 kfree(odp_data); 318 out_umem: 319 kfree(umem); 320 return ERR_PTR(ret); 321 } 322 EXPORT_SYMBOL(ib_alloc_odp_umem); 323 324 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem, 325 int access) 326 { 327 int ret_val; 328 struct pid *our_pid; 329 struct mm_struct *mm = get_task_mm(current); 330 331 if (!mm) 332 return -EINVAL; 333 334 if (access & IB_ACCESS_HUGETLB) { 335 struct vm_area_struct *vma; 336 struct hstate *h; 337 338 down_read(&mm->mmap_sem); 339 vma = find_vma(mm, ib_umem_start(umem)); 340 if (!vma || !is_vm_hugetlb_page(vma)) { 341 up_read(&mm->mmap_sem); 342 return -EINVAL; 343 } 344 h = hstate_vma(vma); 345 umem->page_shift = huge_page_shift(h); 346 up_read(&mm->mmap_sem); 347 umem->hugetlb = 1; 348 } else { 349 umem->hugetlb = 0; 350 } 351 352 /* Prevent creating ODP MRs in child processes */ 353 rcu_read_lock(); 354 our_pid = get_task_pid(current->group_leader, PIDTYPE_PID); 355 rcu_read_unlock(); 356 put_pid(our_pid); 357 if (context->tgid != our_pid) { 358 ret_val = -EINVAL; 359 goto out_mm; 360 } 361 362 umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL); 363 if (!umem->odp_data) { 364 ret_val = -ENOMEM; 365 goto out_mm; 366 } 367 umem->odp_data->umem = umem; 368 369 mutex_init(&umem->odp_data->umem_mutex); 370 371 init_completion(&umem->odp_data->notifier_completion); 372 373 if (ib_umem_num_pages(umem)) { 374 umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) * 375 sizeof(*umem->odp_data->page_list)); 376 if (!umem->odp_data->page_list) { 377 ret_val = -ENOMEM; 378 goto out_odp_data; 379 } 380 381 umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) * 382 sizeof(*umem->odp_data->dma_list)); 383 if (!umem->odp_data->dma_list) { 384 ret_val = -ENOMEM; 385 goto out_page_list; 386 } 387 } 388 389 /* 390 * When using MMU notifiers, we will get a 391 * notification before the "current" task (and MM) is 392 * destroyed. We use the umem_rwsem semaphore to synchronize. 393 */ 394 down_write(&context->umem_rwsem); 395 context->odp_mrs_count++; 396 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 397 rbt_ib_umem_insert(&umem->odp_data->interval_tree, 398 &context->umem_tree); 399 if (likely(!atomic_read(&context->notifier_count)) || 400 context->odp_mrs_count == 1) 401 umem->odp_data->mn_counters_active = true; 402 else 403 list_add(&umem->odp_data->no_private_counters, 404 &context->no_private_counters); 405 downgrade_write(&context->umem_rwsem); 406 407 if (context->odp_mrs_count == 1) { 408 /* 409 * Note that at this point, no MMU notifier is running 410 * for this context! 411 */ 412 atomic_set(&context->notifier_count, 0); 413 INIT_HLIST_NODE(&context->mn.hlist); 414 context->mn.ops = &ib_umem_notifiers; 415 /* 416 * Lock-dep detects a false positive for mmap_sem vs. 417 * umem_rwsem, due to not grasping downgrade_write correctly. 418 */ 419 lockdep_off(); 420 ret_val = mmu_notifier_register(&context->mn, mm); 421 lockdep_on(); 422 if (ret_val) { 423 pr_err("Failed to register mmu_notifier %d\n", ret_val); 424 ret_val = -EBUSY; 425 goto out_mutex; 426 } 427 } 428 429 up_read(&context->umem_rwsem); 430 431 /* 432 * Note that doing an mmput can cause a notifier for the relevant mm. 433 * If the notifier is called while we hold the umem_rwsem, this will 434 * cause a deadlock. Therefore, we release the reference only after we 435 * released the semaphore. 436 */ 437 mmput(mm); 438 return 0; 439 440 out_mutex: 441 up_read(&context->umem_rwsem); 442 vfree(umem->odp_data->dma_list); 443 out_page_list: 444 vfree(umem->odp_data->page_list); 445 out_odp_data: 446 kfree(umem->odp_data); 447 out_mm: 448 mmput(mm); 449 return ret_val; 450 } 451 452 void ib_umem_odp_release(struct ib_umem *umem) 453 { 454 struct ib_ucontext *context = umem->context; 455 456 /* 457 * Ensure that no more pages are mapped in the umem. 458 * 459 * It is the driver's responsibility to ensure, before calling us, 460 * that the hardware will not attempt to access the MR any more. 461 */ 462 ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem), 463 ib_umem_end(umem)); 464 465 down_write(&context->umem_rwsem); 466 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 467 rbt_ib_umem_remove(&umem->odp_data->interval_tree, 468 &context->umem_tree); 469 context->odp_mrs_count--; 470 if (!umem->odp_data->mn_counters_active) { 471 list_del(&umem->odp_data->no_private_counters); 472 complete_all(&umem->odp_data->notifier_completion); 473 } 474 475 /* 476 * Downgrade the lock to a read lock. This ensures that the notifiers 477 * (who lock the mutex for reading) will be able to finish, and we 478 * will be able to enventually obtain the mmu notifiers SRCU. Note 479 * that since we are doing it atomically, no other user could register 480 * and unregister while we do the check. 481 */ 482 downgrade_write(&context->umem_rwsem); 483 if (!context->odp_mrs_count) { 484 struct task_struct *owning_process = NULL; 485 struct mm_struct *owning_mm = NULL; 486 487 owning_process = get_pid_task(context->tgid, 488 PIDTYPE_PID); 489 if (owning_process == NULL) 490 /* 491 * The process is already dead, notifier were removed 492 * already. 493 */ 494 goto out; 495 496 owning_mm = get_task_mm(owning_process); 497 if (owning_mm == NULL) 498 /* 499 * The process' mm is already dead, notifier were 500 * removed already. 501 */ 502 goto out_put_task; 503 mmu_notifier_unregister(&context->mn, owning_mm); 504 505 mmput(owning_mm); 506 507 out_put_task: 508 put_task_struct(owning_process); 509 } 510 out: 511 up_read(&context->umem_rwsem); 512 513 vfree(umem->odp_data->dma_list); 514 vfree(umem->odp_data->page_list); 515 kfree(umem->odp_data); 516 kfree(umem); 517 } 518 519 /* 520 * Map for DMA and insert a single page into the on-demand paging page tables. 521 * 522 * @umem: the umem to insert the page to. 523 * @page_index: index in the umem to add the page to. 524 * @page: the page struct to map and add. 525 * @access_mask: access permissions needed for this page. 526 * @current_seq: sequence number for synchronization with invalidations. 527 * the sequence number is taken from 528 * umem->odp_data->notifiers_seq. 529 * 530 * The function returns -EFAULT if the DMA mapping operation fails. It returns 531 * -EAGAIN if a concurrent invalidation prevents us from updating the page. 532 * 533 * The page is released via put_page even if the operation failed. For 534 * on-demand pinning, the page is released whenever it isn't stored in the 535 * umem. 536 */ 537 static int ib_umem_odp_map_dma_single_page( 538 struct ib_umem *umem, 539 int page_index, 540 struct page *page, 541 u64 access_mask, 542 unsigned long current_seq) 543 { 544 struct ib_device *dev = umem->context->device; 545 dma_addr_t dma_addr; 546 int stored_page = 0; 547 int remove_existing_mapping = 0; 548 int ret = 0; 549 550 /* 551 * Note: we avoid writing if seq is different from the initial seq, to 552 * handle case of a racing notifier. This check also allows us to bail 553 * early if we have a notifier running in parallel with us. 554 */ 555 if (ib_umem_mmu_notifier_retry(umem, current_seq)) { 556 ret = -EAGAIN; 557 goto out; 558 } 559 if (!(umem->odp_data->dma_list[page_index])) { 560 dma_addr = ib_dma_map_page(dev, 561 page, 562 0, BIT(umem->page_shift), 563 DMA_BIDIRECTIONAL); 564 if (ib_dma_mapping_error(dev, dma_addr)) { 565 ret = -EFAULT; 566 goto out; 567 } 568 umem->odp_data->dma_list[page_index] = dma_addr | access_mask; 569 umem->odp_data->page_list[page_index] = page; 570 umem->npages++; 571 stored_page = 1; 572 } else if (umem->odp_data->page_list[page_index] == page) { 573 umem->odp_data->dma_list[page_index] |= access_mask; 574 } else { 575 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", 576 umem->odp_data->page_list[page_index], page); 577 /* Better remove the mapping now, to prevent any further 578 * damage. */ 579 remove_existing_mapping = 1; 580 } 581 582 out: 583 /* On Demand Paging - avoid pinning the page */ 584 if (umem->context->invalidate_range || !stored_page) 585 put_page(page); 586 587 if (remove_existing_mapping && umem->context->invalidate_range) { 588 invalidate_page_trampoline( 589 umem, 590 ib_umem_start(umem) + (page_index >> umem->page_shift), 591 ib_umem_start(umem) + ((page_index + 1) >> 592 umem->page_shift), 593 NULL); 594 ret = -EAGAIN; 595 } 596 597 return ret; 598 } 599 600 /** 601 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. 602 * 603 * Pins the range of pages passed in the argument, and maps them to 604 * DMA addresses. The DMA addresses of the mapped pages is updated in 605 * umem->odp_data->dma_list. 606 * 607 * Returns the number of pages mapped in success, negative error code 608 * for failure. 609 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents 610 * the function from completing its task. 611 * An -ENOENT error code indicates that userspace process is being terminated 612 * and mm was already destroyed. 613 * @umem: the umem to map and pin 614 * @user_virt: the address from which we need to map. 615 * @bcnt: the minimal number of bytes to pin and map. The mapping might be 616 * bigger due to alignment, and may also be smaller in case of an error 617 * pinning or mapping a page. The actual pages mapped is returned in 618 * the return value. 619 * @access_mask: bit mask of the requested access permissions for the given 620 * range. 621 * @current_seq: the MMU notifiers sequance value for synchronization with 622 * invalidations. the sequance number is read from 623 * umem->odp_data->notifiers_seq before calling this function 624 */ 625 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt, 626 u64 access_mask, unsigned long current_seq) 627 { 628 struct task_struct *owning_process = NULL; 629 struct mm_struct *owning_mm = NULL; 630 struct page **local_page_list = NULL; 631 u64 page_mask, off; 632 int j, k, ret = 0, start_idx, npages = 0, page_shift; 633 unsigned int flags = 0; 634 phys_addr_t p = 0; 635 636 if (access_mask == 0) 637 return -EINVAL; 638 639 if (user_virt < ib_umem_start(umem) || 640 user_virt + bcnt > ib_umem_end(umem)) 641 return -EFAULT; 642 643 local_page_list = (struct page **)__get_free_page(GFP_KERNEL); 644 if (!local_page_list) 645 return -ENOMEM; 646 647 page_shift = umem->page_shift; 648 page_mask = ~(BIT(page_shift) - 1); 649 off = user_virt & (~page_mask); 650 user_virt = user_virt & page_mask; 651 bcnt += off; /* Charge for the first page offset as well. */ 652 653 owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID); 654 if (owning_process == NULL) { 655 ret = -EINVAL; 656 goto out_no_task; 657 } 658 659 owning_mm = get_task_mm(owning_process); 660 if (owning_mm == NULL) { 661 ret = -ENOENT; 662 goto out_put_task; 663 } 664 665 if (access_mask & ODP_WRITE_ALLOWED_BIT) 666 flags |= FOLL_WRITE; 667 668 start_idx = (user_virt - ib_umem_start(umem)) >> page_shift; 669 k = start_idx; 670 671 while (bcnt > 0) { 672 const size_t gup_num_pages = min_t(size_t, 673 (bcnt + BIT(page_shift) - 1) >> page_shift, 674 PAGE_SIZE / sizeof(struct page *)); 675 676 down_read(&owning_mm->mmap_sem); 677 /* 678 * Note: this might result in redundent page getting. We can 679 * avoid this by checking dma_list to be 0 before calling 680 * get_user_pages. However, this make the code much more 681 * complex (and doesn't gain us much performance in most use 682 * cases). 683 */ 684 npages = get_user_pages_remote(owning_process, owning_mm, 685 user_virt, gup_num_pages, 686 flags, local_page_list, NULL, NULL); 687 up_read(&owning_mm->mmap_sem); 688 689 if (npages < 0) 690 break; 691 692 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); 693 mutex_lock(&umem->odp_data->umem_mutex); 694 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { 695 if (user_virt & ~page_mask) { 696 p += PAGE_SIZE; 697 if (page_to_phys(local_page_list[j]) != p) { 698 ret = -EFAULT; 699 break; 700 } 701 put_page(local_page_list[j]); 702 continue; 703 } 704 705 ret = ib_umem_odp_map_dma_single_page( 706 umem, k, local_page_list[j], 707 access_mask, current_seq); 708 if (ret < 0) 709 break; 710 711 p = page_to_phys(local_page_list[j]); 712 k++; 713 } 714 mutex_unlock(&umem->odp_data->umem_mutex); 715 716 if (ret < 0) { 717 /* Release left over pages when handling errors. */ 718 for (++j; j < npages; ++j) 719 put_page(local_page_list[j]); 720 break; 721 } 722 } 723 724 if (ret >= 0) { 725 if (npages < 0 && k == start_idx) 726 ret = npages; 727 else 728 ret = k - start_idx; 729 } 730 731 mmput(owning_mm); 732 out_put_task: 733 put_task_struct(owning_process); 734 out_no_task: 735 free_page((unsigned long)local_page_list); 736 return ret; 737 } 738 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); 739 740 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt, 741 u64 bound) 742 { 743 int idx; 744 u64 addr; 745 struct ib_device *dev = umem->context->device; 746 747 virt = max_t(u64, virt, ib_umem_start(umem)); 748 bound = min_t(u64, bound, ib_umem_end(umem)); 749 /* Note that during the run of this function, the 750 * notifiers_count of the MR is > 0, preventing any racing 751 * faults from completion. We might be racing with other 752 * invalidations, so we must make sure we free each page only 753 * once. */ 754 mutex_lock(&umem->odp_data->umem_mutex); 755 for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) { 756 idx = (addr - ib_umem_start(umem)) >> umem->page_shift; 757 if (umem->odp_data->page_list[idx]) { 758 struct page *page = umem->odp_data->page_list[idx]; 759 dma_addr_t dma = umem->odp_data->dma_list[idx]; 760 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; 761 762 WARN_ON(!dma_addr); 763 764 ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE, 765 DMA_BIDIRECTIONAL); 766 if (dma & ODP_WRITE_ALLOWED_BIT) { 767 struct page *head_page = compound_head(page); 768 /* 769 * set_page_dirty prefers being called with 770 * the page lock. However, MMU notifiers are 771 * called sometimes with and sometimes without 772 * the lock. We rely on the umem_mutex instead 773 * to prevent other mmu notifiers from 774 * continuing and allowing the page mapping to 775 * be removed. 776 */ 777 set_page_dirty(head_page); 778 } 779 /* on demand pinning support */ 780 if (!umem->context->invalidate_range) 781 put_page(page); 782 umem->odp_data->page_list[idx] = NULL; 783 umem->odp_data->dma_list[idx] = 0; 784 umem->npages--; 785 } 786 } 787 mutex_unlock(&umem->odp_data->umem_mutex); 788 } 789 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); 790 791 /* @last is not a part of the interval. See comment for function 792 * node_last. 793 */ 794 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, 795 u64 start, u64 last, 796 umem_call_back cb, 797 void *cookie) 798 { 799 int ret_val = 0; 800 struct umem_odp_node *node, *next; 801 struct ib_umem_odp *umem; 802 803 if (unlikely(start == last)) 804 return ret_val; 805 806 for (node = rbt_ib_umem_iter_first(root, start, last - 1); 807 node; node = next) { 808 next = rbt_ib_umem_iter_next(node, start, last - 1); 809 umem = container_of(node, struct ib_umem_odp, interval_tree); 810 ret_val = cb(umem->umem, start, last, cookie) || ret_val; 811 } 812 813 return ret_val; 814 } 815 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); 816 817 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, 818 u64 addr, u64 length) 819 { 820 struct umem_odp_node *node; 821 822 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); 823 if (node) 824 return container_of(node, struct ib_umem_odp, interval_tree); 825 return NULL; 826 827 } 828 EXPORT_SYMBOL(rbt_ib_umem_lookup); 829