1 /* 2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/task.h> 37 #include <linux/pid.h> 38 #include <linux/slab.h> 39 #include <linux/export.h> 40 #include <linux/vmalloc.h> 41 #include <linux/hugetlb.h> 42 #include <linux/interval_tree_generic.h> 43 44 #include <rdma/ib_verbs.h> 45 #include <rdma/ib_umem.h> 46 #include <rdma/ib_umem_odp.h> 47 48 /* 49 * The ib_umem list keeps track of memory regions for which the HW 50 * device request to receive notification when the related memory 51 * mapping is changed. 52 * 53 * ib_umem_lock protects the list. 54 */ 55 56 static u64 node_start(struct umem_odp_node *n) 57 { 58 struct ib_umem_odp *umem_odp = 59 container_of(n, struct ib_umem_odp, interval_tree); 60 61 return ib_umem_start(&umem_odp->umem); 62 } 63 64 /* Note that the representation of the intervals in the interval tree 65 * considers the ending point as contained in the interval, while the 66 * function ib_umem_end returns the first address which is not contained 67 * in the umem. 68 */ 69 static u64 node_last(struct umem_odp_node *n) 70 { 71 struct ib_umem_odp *umem_odp = 72 container_of(n, struct ib_umem_odp, interval_tree); 73 74 return ib_umem_end(&umem_odp->umem) - 1; 75 } 76 77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, 78 node_start, node_last, static, rbt_ib_umem) 79 80 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) 81 { 82 mutex_lock(&umem_odp->umem_mutex); 83 if (umem_odp->notifiers_count++ == 0) 84 /* 85 * Initialize the completion object for waiting on 86 * notifiers. Since notifier_count is zero, no one should be 87 * waiting right now. 88 */ 89 reinit_completion(&umem_odp->notifier_completion); 90 mutex_unlock(&umem_odp->umem_mutex); 91 } 92 93 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) 94 { 95 mutex_lock(&umem_odp->umem_mutex); 96 /* 97 * This sequence increase will notify the QP page fault that the page 98 * that is going to be mapped in the spte could have been freed. 99 */ 100 ++umem_odp->notifiers_seq; 101 if (--umem_odp->notifiers_count == 0) 102 complete_all(&umem_odp->notifier_completion); 103 mutex_unlock(&umem_odp->umem_mutex); 104 } 105 106 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp, 107 u64 start, u64 end, void *cookie) 108 { 109 struct ib_umem *umem = &umem_odp->umem; 110 111 /* 112 * Increase the number of notifiers running, to 113 * prevent any further fault handling on this MR. 114 */ 115 ib_umem_notifier_start_account(umem_odp); 116 umem_odp->dying = 1; 117 /* Make sure that the fact the umem is dying is out before we release 118 * all pending page faults. */ 119 smp_wmb(); 120 complete_all(&umem_odp->notifier_completion); 121 umem->context->invalidate_range(umem_odp, ib_umem_start(umem), 122 ib_umem_end(umem)); 123 return 0; 124 } 125 126 static void ib_umem_notifier_release(struct mmu_notifier *mn, 127 struct mm_struct *mm) 128 { 129 struct ib_ucontext_per_mm *per_mm = 130 container_of(mn, struct ib_ucontext_per_mm, mn); 131 132 down_read(&per_mm->umem_rwsem); 133 if (per_mm->active) 134 rbt_ib_umem_for_each_in_range( 135 &per_mm->umem_tree, 0, ULLONG_MAX, 136 ib_umem_notifier_release_trampoline, true, NULL); 137 up_read(&per_mm->umem_rwsem); 138 } 139 140 static int invalidate_range_start_trampoline(struct ib_umem_odp *item, 141 u64 start, u64 end, void *cookie) 142 { 143 ib_umem_notifier_start_account(item); 144 item->umem.context->invalidate_range(item, start, end); 145 return 0; 146 } 147 148 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, 149 const struct mmu_notifier_range *range) 150 { 151 struct ib_ucontext_per_mm *per_mm = 152 container_of(mn, struct ib_ucontext_per_mm, mn); 153 154 if (range->blockable) 155 down_read(&per_mm->umem_rwsem); 156 else if (!down_read_trylock(&per_mm->umem_rwsem)) 157 return -EAGAIN; 158 159 if (!per_mm->active) { 160 up_read(&per_mm->umem_rwsem); 161 /* 162 * At this point active is permanently set and visible to this 163 * CPU without a lock, that fact is relied on to skip the unlock 164 * in range_end. 165 */ 166 return 0; 167 } 168 169 return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 170 range->end, 171 invalidate_range_start_trampoline, 172 range->blockable, NULL); 173 } 174 175 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, 176 u64 end, void *cookie) 177 { 178 ib_umem_notifier_end_account(item); 179 return 0; 180 } 181 182 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, 183 const struct mmu_notifier_range *range) 184 { 185 struct ib_ucontext_per_mm *per_mm = 186 container_of(mn, struct ib_ucontext_per_mm, mn); 187 188 if (unlikely(!per_mm->active)) 189 return; 190 191 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 192 range->end, 193 invalidate_range_end_trampoline, true, NULL); 194 up_read(&per_mm->umem_rwsem); 195 } 196 197 static const struct mmu_notifier_ops ib_umem_notifiers = { 198 .release = ib_umem_notifier_release, 199 .invalidate_range_start = ib_umem_notifier_invalidate_range_start, 200 .invalidate_range_end = ib_umem_notifier_invalidate_range_end, 201 }; 202 203 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp) 204 { 205 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 206 struct ib_umem *umem = &umem_odp->umem; 207 208 down_write(&per_mm->umem_rwsem); 209 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 210 rbt_ib_umem_insert(&umem_odp->interval_tree, 211 &per_mm->umem_tree); 212 up_write(&per_mm->umem_rwsem); 213 } 214 215 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp) 216 { 217 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 218 struct ib_umem *umem = &umem_odp->umem; 219 220 down_write(&per_mm->umem_rwsem); 221 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 222 rbt_ib_umem_remove(&umem_odp->interval_tree, 223 &per_mm->umem_tree); 224 complete_all(&umem_odp->notifier_completion); 225 226 up_write(&per_mm->umem_rwsem); 227 } 228 229 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx, 230 struct mm_struct *mm) 231 { 232 struct ib_ucontext_per_mm *per_mm; 233 int ret; 234 235 per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); 236 if (!per_mm) 237 return ERR_PTR(-ENOMEM); 238 239 per_mm->context = ctx; 240 per_mm->mm = mm; 241 per_mm->umem_tree = RB_ROOT_CACHED; 242 init_rwsem(&per_mm->umem_rwsem); 243 per_mm->active = ctx->invalidate_range; 244 245 rcu_read_lock(); 246 per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); 247 rcu_read_unlock(); 248 249 WARN_ON(mm != current->mm); 250 251 per_mm->mn.ops = &ib_umem_notifiers; 252 ret = mmu_notifier_register(&per_mm->mn, per_mm->mm); 253 if (ret) { 254 dev_err(&ctx->device->dev, 255 "Failed to register mmu_notifier %d\n", ret); 256 goto out_pid; 257 } 258 259 list_add(&per_mm->ucontext_list, &ctx->per_mm_list); 260 return per_mm; 261 262 out_pid: 263 put_pid(per_mm->tgid); 264 kfree(per_mm); 265 return ERR_PTR(ret); 266 } 267 268 static int get_per_mm(struct ib_umem_odp *umem_odp) 269 { 270 struct ib_ucontext *ctx = umem_odp->umem.context; 271 struct ib_ucontext_per_mm *per_mm; 272 273 /* 274 * Generally speaking we expect only one or two per_mm in this list, 275 * so no reason to optimize this search today. 276 */ 277 mutex_lock(&ctx->per_mm_list_lock); 278 list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) { 279 if (per_mm->mm == umem_odp->umem.owning_mm) 280 goto found; 281 } 282 283 per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm); 284 if (IS_ERR(per_mm)) { 285 mutex_unlock(&ctx->per_mm_list_lock); 286 return PTR_ERR(per_mm); 287 } 288 289 found: 290 umem_odp->per_mm = per_mm; 291 per_mm->odp_mrs_count++; 292 mutex_unlock(&ctx->per_mm_list_lock); 293 294 return 0; 295 } 296 297 static void free_per_mm(struct rcu_head *rcu) 298 { 299 kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu)); 300 } 301 302 void put_per_mm(struct ib_umem_odp *umem_odp) 303 { 304 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 305 struct ib_ucontext *ctx = umem_odp->umem.context; 306 bool need_free; 307 308 mutex_lock(&ctx->per_mm_list_lock); 309 umem_odp->per_mm = NULL; 310 per_mm->odp_mrs_count--; 311 need_free = per_mm->odp_mrs_count == 0; 312 if (need_free) 313 list_del(&per_mm->ucontext_list); 314 mutex_unlock(&ctx->per_mm_list_lock); 315 316 if (!need_free) 317 return; 318 319 /* 320 * NOTE! mmu_notifier_unregister() can happen between a start/end 321 * callback, resulting in an start/end, and thus an unbalanced 322 * lock. This doesn't really matter to us since we are about to kfree 323 * the memory that holds the lock, however LOCKDEP doesn't like this. 324 */ 325 down_write(&per_mm->umem_rwsem); 326 per_mm->active = false; 327 up_write(&per_mm->umem_rwsem); 328 329 WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); 330 mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm); 331 put_pid(per_mm->tgid); 332 mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm); 333 } 334 335 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_ucontext_per_mm *per_mm, 336 unsigned long addr, size_t size) 337 { 338 struct ib_ucontext *ctx = per_mm->context; 339 struct ib_umem_odp *odp_data; 340 struct ib_umem *umem; 341 int pages = size >> PAGE_SHIFT; 342 int ret; 343 344 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); 345 if (!odp_data) 346 return ERR_PTR(-ENOMEM); 347 umem = &odp_data->umem; 348 umem->context = ctx; 349 umem->length = size; 350 umem->address = addr; 351 umem->page_shift = PAGE_SHIFT; 352 umem->writable = 1; 353 umem->is_odp = 1; 354 odp_data->per_mm = per_mm; 355 umem->owning_mm = per_mm->mm; 356 mmgrab(umem->owning_mm); 357 358 mutex_init(&odp_data->umem_mutex); 359 init_completion(&odp_data->notifier_completion); 360 361 odp_data->page_list = 362 vzalloc(array_size(pages, sizeof(*odp_data->page_list))); 363 if (!odp_data->page_list) { 364 ret = -ENOMEM; 365 goto out_odp_data; 366 } 367 368 odp_data->dma_list = 369 vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); 370 if (!odp_data->dma_list) { 371 ret = -ENOMEM; 372 goto out_page_list; 373 } 374 375 /* 376 * Caller must ensure that the umem_odp that the per_mm came from 377 * cannot be freed during the call to ib_alloc_odp_umem. 378 */ 379 mutex_lock(&ctx->per_mm_list_lock); 380 per_mm->odp_mrs_count++; 381 mutex_unlock(&ctx->per_mm_list_lock); 382 add_umem_to_per_mm(odp_data); 383 384 return odp_data; 385 386 out_page_list: 387 vfree(odp_data->page_list); 388 out_odp_data: 389 mmdrop(umem->owning_mm); 390 kfree(odp_data); 391 return ERR_PTR(ret); 392 } 393 EXPORT_SYMBOL(ib_alloc_odp_umem); 394 395 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access) 396 { 397 struct ib_umem *umem = &umem_odp->umem; 398 /* 399 * NOTE: This must called in a process context where umem->owning_mm 400 * == current->mm 401 */ 402 struct mm_struct *mm = umem->owning_mm; 403 int ret_val; 404 405 if (access & IB_ACCESS_HUGETLB) { 406 struct vm_area_struct *vma; 407 struct hstate *h; 408 409 down_read(&mm->mmap_sem); 410 vma = find_vma(mm, ib_umem_start(umem)); 411 if (!vma || !is_vm_hugetlb_page(vma)) { 412 up_read(&mm->mmap_sem); 413 return -EINVAL; 414 } 415 h = hstate_vma(vma); 416 umem->page_shift = huge_page_shift(h); 417 up_read(&mm->mmap_sem); 418 umem->hugetlb = 1; 419 } else { 420 umem->hugetlb = 0; 421 } 422 423 mutex_init(&umem_odp->umem_mutex); 424 425 init_completion(&umem_odp->notifier_completion); 426 427 if (ib_umem_num_pages(umem)) { 428 umem_odp->page_list = 429 vzalloc(array_size(sizeof(*umem_odp->page_list), 430 ib_umem_num_pages(umem))); 431 if (!umem_odp->page_list) 432 return -ENOMEM; 433 434 umem_odp->dma_list = 435 vzalloc(array_size(sizeof(*umem_odp->dma_list), 436 ib_umem_num_pages(umem))); 437 if (!umem_odp->dma_list) { 438 ret_val = -ENOMEM; 439 goto out_page_list; 440 } 441 } 442 443 ret_val = get_per_mm(umem_odp); 444 if (ret_val) 445 goto out_dma_list; 446 add_umem_to_per_mm(umem_odp); 447 448 return 0; 449 450 out_dma_list: 451 vfree(umem_odp->dma_list); 452 out_page_list: 453 vfree(umem_odp->page_list); 454 return ret_val; 455 } 456 457 void ib_umem_odp_release(struct ib_umem_odp *umem_odp) 458 { 459 struct ib_umem *umem = &umem_odp->umem; 460 461 /* 462 * Ensure that no more pages are mapped in the umem. 463 * 464 * It is the driver's responsibility to ensure, before calling us, 465 * that the hardware will not attempt to access the MR any more. 466 */ 467 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem), 468 ib_umem_end(umem)); 469 470 remove_umem_from_per_mm(umem_odp); 471 put_per_mm(umem_odp); 472 vfree(umem_odp->dma_list); 473 vfree(umem_odp->page_list); 474 } 475 476 /* 477 * Map for DMA and insert a single page into the on-demand paging page tables. 478 * 479 * @umem: the umem to insert the page to. 480 * @page_index: index in the umem to add the page to. 481 * @page: the page struct to map and add. 482 * @access_mask: access permissions needed for this page. 483 * @current_seq: sequence number for synchronization with invalidations. 484 * the sequence number is taken from 485 * umem_odp->notifiers_seq. 486 * 487 * The function returns -EFAULT if the DMA mapping operation fails. It returns 488 * -EAGAIN if a concurrent invalidation prevents us from updating the page. 489 * 490 * The page is released via put_page even if the operation failed. For 491 * on-demand pinning, the page is released whenever it isn't stored in the 492 * umem. 493 */ 494 static int ib_umem_odp_map_dma_single_page( 495 struct ib_umem_odp *umem_odp, 496 int page_index, 497 struct page *page, 498 u64 access_mask, 499 unsigned long current_seq) 500 { 501 struct ib_umem *umem = &umem_odp->umem; 502 struct ib_device *dev = umem->context->device; 503 dma_addr_t dma_addr; 504 int stored_page = 0; 505 int remove_existing_mapping = 0; 506 int ret = 0; 507 508 /* 509 * Note: we avoid writing if seq is different from the initial seq, to 510 * handle case of a racing notifier. This check also allows us to bail 511 * early if we have a notifier running in parallel with us. 512 */ 513 if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { 514 ret = -EAGAIN; 515 goto out; 516 } 517 if (!(umem_odp->dma_list[page_index])) { 518 dma_addr = ib_dma_map_page(dev, 519 page, 520 0, BIT(umem->page_shift), 521 DMA_BIDIRECTIONAL); 522 if (ib_dma_mapping_error(dev, dma_addr)) { 523 ret = -EFAULT; 524 goto out; 525 } 526 umem_odp->dma_list[page_index] = dma_addr | access_mask; 527 umem_odp->page_list[page_index] = page; 528 umem->npages++; 529 stored_page = 1; 530 } else if (umem_odp->page_list[page_index] == page) { 531 umem_odp->dma_list[page_index] |= access_mask; 532 } else { 533 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", 534 umem_odp->page_list[page_index], page); 535 /* Better remove the mapping now, to prevent any further 536 * damage. */ 537 remove_existing_mapping = 1; 538 } 539 540 out: 541 /* On Demand Paging - avoid pinning the page */ 542 if (umem->context->invalidate_range || !stored_page) 543 put_page(page); 544 545 if (remove_existing_mapping && umem->context->invalidate_range) { 546 ib_umem_notifier_start_account(umem_odp); 547 umem->context->invalidate_range( 548 umem_odp, 549 ib_umem_start(umem) + (page_index << umem->page_shift), 550 ib_umem_start(umem) + 551 ((page_index + 1) << umem->page_shift)); 552 ib_umem_notifier_end_account(umem_odp); 553 ret = -EAGAIN; 554 } 555 556 return ret; 557 } 558 559 /** 560 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. 561 * 562 * Pins the range of pages passed in the argument, and maps them to 563 * DMA addresses. The DMA addresses of the mapped pages is updated in 564 * umem_odp->dma_list. 565 * 566 * Returns the number of pages mapped in success, negative error code 567 * for failure. 568 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents 569 * the function from completing its task. 570 * An -ENOENT error code indicates that userspace process is being terminated 571 * and mm was already destroyed. 572 * @umem_odp: the umem to map and pin 573 * @user_virt: the address from which we need to map. 574 * @bcnt: the minimal number of bytes to pin and map. The mapping might be 575 * bigger due to alignment, and may also be smaller in case of an error 576 * pinning or mapping a page. The actual pages mapped is returned in 577 * the return value. 578 * @access_mask: bit mask of the requested access permissions for the given 579 * range. 580 * @current_seq: the MMU notifiers sequance value for synchronization with 581 * invalidations. the sequance number is read from 582 * umem_odp->notifiers_seq before calling this function 583 */ 584 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, 585 u64 bcnt, u64 access_mask, 586 unsigned long current_seq) 587 { 588 struct ib_umem *umem = &umem_odp->umem; 589 struct task_struct *owning_process = NULL; 590 struct mm_struct *owning_mm = umem_odp->umem.owning_mm; 591 struct page **local_page_list = NULL; 592 u64 page_mask, off; 593 int j, k, ret = 0, start_idx, npages = 0, page_shift; 594 unsigned int flags = 0; 595 phys_addr_t p = 0; 596 597 if (access_mask == 0) 598 return -EINVAL; 599 600 if (user_virt < ib_umem_start(umem) || 601 user_virt + bcnt > ib_umem_end(umem)) 602 return -EFAULT; 603 604 local_page_list = (struct page **)__get_free_page(GFP_KERNEL); 605 if (!local_page_list) 606 return -ENOMEM; 607 608 page_shift = umem->page_shift; 609 page_mask = ~(BIT(page_shift) - 1); 610 off = user_virt & (~page_mask); 611 user_virt = user_virt & page_mask; 612 bcnt += off; /* Charge for the first page offset as well. */ 613 614 /* 615 * owning_process is allowed to be NULL, this means somehow the mm is 616 * existing beyond the lifetime of the originating process.. Presumably 617 * mmget_not_zero will fail in this case. 618 */ 619 owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); 620 if (WARN_ON(!mmget_not_zero(umem_odp->umem.owning_mm))) { 621 ret = -EINVAL; 622 goto out_put_task; 623 } 624 625 if (access_mask & ODP_WRITE_ALLOWED_BIT) 626 flags |= FOLL_WRITE; 627 628 start_idx = (user_virt - ib_umem_start(umem)) >> page_shift; 629 k = start_idx; 630 631 while (bcnt > 0) { 632 const size_t gup_num_pages = min_t(size_t, 633 (bcnt + BIT(page_shift) - 1) >> page_shift, 634 PAGE_SIZE / sizeof(struct page *)); 635 636 down_read(&owning_mm->mmap_sem); 637 /* 638 * Note: this might result in redundent page getting. We can 639 * avoid this by checking dma_list to be 0 before calling 640 * get_user_pages. However, this make the code much more 641 * complex (and doesn't gain us much performance in most use 642 * cases). 643 */ 644 npages = get_user_pages_remote(owning_process, owning_mm, 645 user_virt, gup_num_pages, 646 flags, local_page_list, NULL, NULL); 647 up_read(&owning_mm->mmap_sem); 648 649 if (npages < 0) { 650 if (npages != -EAGAIN) 651 pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 652 else 653 pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 654 break; 655 } 656 657 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); 658 mutex_lock(&umem_odp->umem_mutex); 659 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { 660 if (user_virt & ~page_mask) { 661 p += PAGE_SIZE; 662 if (page_to_phys(local_page_list[j]) != p) { 663 ret = -EFAULT; 664 break; 665 } 666 put_page(local_page_list[j]); 667 continue; 668 } 669 670 ret = ib_umem_odp_map_dma_single_page( 671 umem_odp, k, local_page_list[j], 672 access_mask, current_seq); 673 if (ret < 0) { 674 if (ret != -EAGAIN) 675 pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 676 else 677 pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 678 break; 679 } 680 681 p = page_to_phys(local_page_list[j]); 682 k++; 683 } 684 mutex_unlock(&umem_odp->umem_mutex); 685 686 if (ret < 0) { 687 /* Release left over pages when handling errors. */ 688 for (++j; j < npages; ++j) 689 put_page(local_page_list[j]); 690 break; 691 } 692 } 693 694 if (ret >= 0) { 695 if (npages < 0 && k == start_idx) 696 ret = npages; 697 else 698 ret = k - start_idx; 699 } 700 701 mmput(owning_mm); 702 out_put_task: 703 if (owning_process) 704 put_task_struct(owning_process); 705 free_page((unsigned long)local_page_list); 706 return ret; 707 } 708 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); 709 710 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, 711 u64 bound) 712 { 713 struct ib_umem *umem = &umem_odp->umem; 714 int idx; 715 u64 addr; 716 struct ib_device *dev = umem->context->device; 717 718 virt = max_t(u64, virt, ib_umem_start(umem)); 719 bound = min_t(u64, bound, ib_umem_end(umem)); 720 /* Note that during the run of this function, the 721 * notifiers_count of the MR is > 0, preventing any racing 722 * faults from completion. We might be racing with other 723 * invalidations, so we must make sure we free each page only 724 * once. */ 725 mutex_lock(&umem_odp->umem_mutex); 726 for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) { 727 idx = (addr - ib_umem_start(umem)) >> umem->page_shift; 728 if (umem_odp->page_list[idx]) { 729 struct page *page = umem_odp->page_list[idx]; 730 dma_addr_t dma = umem_odp->dma_list[idx]; 731 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; 732 733 WARN_ON(!dma_addr); 734 735 ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE, 736 DMA_BIDIRECTIONAL); 737 if (dma & ODP_WRITE_ALLOWED_BIT) { 738 struct page *head_page = compound_head(page); 739 /* 740 * set_page_dirty prefers being called with 741 * the page lock. However, MMU notifiers are 742 * called sometimes with and sometimes without 743 * the lock. We rely on the umem_mutex instead 744 * to prevent other mmu notifiers from 745 * continuing and allowing the page mapping to 746 * be removed. 747 */ 748 set_page_dirty(head_page); 749 } 750 /* on demand pinning support */ 751 if (!umem->context->invalidate_range) 752 put_page(page); 753 umem_odp->page_list[idx] = NULL; 754 umem_odp->dma_list[idx] = 0; 755 umem->npages--; 756 } 757 } 758 mutex_unlock(&umem_odp->umem_mutex); 759 } 760 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); 761 762 /* @last is not a part of the interval. See comment for function 763 * node_last. 764 */ 765 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, 766 u64 start, u64 last, 767 umem_call_back cb, 768 bool blockable, 769 void *cookie) 770 { 771 int ret_val = 0; 772 struct umem_odp_node *node, *next; 773 struct ib_umem_odp *umem; 774 775 if (unlikely(start == last)) 776 return ret_val; 777 778 for (node = rbt_ib_umem_iter_first(root, start, last - 1); 779 node; node = next) { 780 /* TODO move the blockable decision up to the callback */ 781 if (!blockable) 782 return -EAGAIN; 783 next = rbt_ib_umem_iter_next(node, start, last - 1); 784 umem = container_of(node, struct ib_umem_odp, interval_tree); 785 ret_val = cb(umem, start, last, cookie) || ret_val; 786 } 787 788 return ret_val; 789 } 790 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); 791 792 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, 793 u64 addr, u64 length) 794 { 795 struct umem_odp_node *node; 796 797 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); 798 if (node) 799 return container_of(node, struct ib_umem_odp, interval_tree); 800 return NULL; 801 802 } 803 EXPORT_SYMBOL(rbt_ib_umem_lookup); 804