1 /* 2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/task.h> 37 #include <linux/pid.h> 38 #include <linux/slab.h> 39 #include <linux/export.h> 40 #include <linux/vmalloc.h> 41 #include <linux/hugetlb.h> 42 #include <linux/interval_tree_generic.h> 43 #include <linux/pagemap.h> 44 45 #include <rdma/ib_verbs.h> 46 #include <rdma/ib_umem.h> 47 #include <rdma/ib_umem_odp.h> 48 49 /* 50 * The ib_umem list keeps track of memory regions for which the HW 51 * device request to receive notification when the related memory 52 * mapping is changed. 53 * 54 * ib_umem_lock protects the list. 55 */ 56 57 static u64 node_start(struct umem_odp_node *n) 58 { 59 struct ib_umem_odp *umem_odp = 60 container_of(n, struct ib_umem_odp, interval_tree); 61 62 return ib_umem_start(&umem_odp->umem); 63 } 64 65 /* Note that the representation of the intervals in the interval tree 66 * considers the ending point as contained in the interval, while the 67 * function ib_umem_end returns the first address which is not contained 68 * in the umem. 69 */ 70 static u64 node_last(struct umem_odp_node *n) 71 { 72 struct ib_umem_odp *umem_odp = 73 container_of(n, struct ib_umem_odp, interval_tree); 74 75 return ib_umem_end(&umem_odp->umem) - 1; 76 } 77 78 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, 79 node_start, node_last, static, rbt_ib_umem) 80 81 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) 82 { 83 mutex_lock(&umem_odp->umem_mutex); 84 if (umem_odp->notifiers_count++ == 0) 85 /* 86 * Initialize the completion object for waiting on 87 * notifiers. Since notifier_count is zero, no one should be 88 * waiting right now. 89 */ 90 reinit_completion(&umem_odp->notifier_completion); 91 mutex_unlock(&umem_odp->umem_mutex); 92 } 93 94 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) 95 { 96 mutex_lock(&umem_odp->umem_mutex); 97 /* 98 * This sequence increase will notify the QP page fault that the page 99 * that is going to be mapped in the spte could have been freed. 100 */ 101 ++umem_odp->notifiers_seq; 102 if (--umem_odp->notifiers_count == 0) 103 complete_all(&umem_odp->notifier_completion); 104 mutex_unlock(&umem_odp->umem_mutex); 105 } 106 107 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp, 108 u64 start, u64 end, void *cookie) 109 { 110 struct ib_umem *umem = &umem_odp->umem; 111 112 /* 113 * Increase the number of notifiers running, to 114 * prevent any further fault handling on this MR. 115 */ 116 ib_umem_notifier_start_account(umem_odp); 117 umem_odp->dying = 1; 118 /* Make sure that the fact the umem is dying is out before we release 119 * all pending page faults. */ 120 smp_wmb(); 121 complete_all(&umem_odp->notifier_completion); 122 umem->context->invalidate_range(umem_odp, ib_umem_start(umem), 123 ib_umem_end(umem)); 124 return 0; 125 } 126 127 static void ib_umem_notifier_release(struct mmu_notifier *mn, 128 struct mm_struct *mm) 129 { 130 struct ib_ucontext_per_mm *per_mm = 131 container_of(mn, struct ib_ucontext_per_mm, mn); 132 133 down_read(&per_mm->umem_rwsem); 134 if (per_mm->active) 135 rbt_ib_umem_for_each_in_range( 136 &per_mm->umem_tree, 0, ULLONG_MAX, 137 ib_umem_notifier_release_trampoline, true, NULL); 138 up_read(&per_mm->umem_rwsem); 139 } 140 141 static int invalidate_range_start_trampoline(struct ib_umem_odp *item, 142 u64 start, u64 end, void *cookie) 143 { 144 ib_umem_notifier_start_account(item); 145 item->umem.context->invalidate_range(item, start, end); 146 return 0; 147 } 148 149 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, 150 const struct mmu_notifier_range *range) 151 { 152 struct ib_ucontext_per_mm *per_mm = 153 container_of(mn, struct ib_ucontext_per_mm, mn); 154 155 if (range->blockable) 156 down_read(&per_mm->umem_rwsem); 157 else if (!down_read_trylock(&per_mm->umem_rwsem)) 158 return -EAGAIN; 159 160 if (!per_mm->active) { 161 up_read(&per_mm->umem_rwsem); 162 /* 163 * At this point active is permanently set and visible to this 164 * CPU without a lock, that fact is relied on to skip the unlock 165 * in range_end. 166 */ 167 return 0; 168 } 169 170 return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 171 range->end, 172 invalidate_range_start_trampoline, 173 range->blockable, NULL); 174 } 175 176 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, 177 u64 end, void *cookie) 178 { 179 ib_umem_notifier_end_account(item); 180 return 0; 181 } 182 183 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, 184 const struct mmu_notifier_range *range) 185 { 186 struct ib_ucontext_per_mm *per_mm = 187 container_of(mn, struct ib_ucontext_per_mm, mn); 188 189 if (unlikely(!per_mm->active)) 190 return; 191 192 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 193 range->end, 194 invalidate_range_end_trampoline, true, NULL); 195 up_read(&per_mm->umem_rwsem); 196 } 197 198 static const struct mmu_notifier_ops ib_umem_notifiers = { 199 .release = ib_umem_notifier_release, 200 .invalidate_range_start = ib_umem_notifier_invalidate_range_start, 201 .invalidate_range_end = ib_umem_notifier_invalidate_range_end, 202 }; 203 204 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp) 205 { 206 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 207 struct ib_umem *umem = &umem_odp->umem; 208 209 down_write(&per_mm->umem_rwsem); 210 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 211 rbt_ib_umem_insert(&umem_odp->interval_tree, 212 &per_mm->umem_tree); 213 up_write(&per_mm->umem_rwsem); 214 } 215 216 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp) 217 { 218 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 219 struct ib_umem *umem = &umem_odp->umem; 220 221 down_write(&per_mm->umem_rwsem); 222 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 223 rbt_ib_umem_remove(&umem_odp->interval_tree, 224 &per_mm->umem_tree); 225 complete_all(&umem_odp->notifier_completion); 226 227 up_write(&per_mm->umem_rwsem); 228 } 229 230 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx, 231 struct mm_struct *mm) 232 { 233 struct ib_ucontext_per_mm *per_mm; 234 int ret; 235 236 per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); 237 if (!per_mm) 238 return ERR_PTR(-ENOMEM); 239 240 per_mm->context = ctx; 241 per_mm->mm = mm; 242 per_mm->umem_tree = RB_ROOT_CACHED; 243 init_rwsem(&per_mm->umem_rwsem); 244 per_mm->active = ctx->invalidate_range; 245 246 rcu_read_lock(); 247 per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); 248 rcu_read_unlock(); 249 250 WARN_ON(mm != current->mm); 251 252 per_mm->mn.ops = &ib_umem_notifiers; 253 ret = mmu_notifier_register(&per_mm->mn, per_mm->mm); 254 if (ret) { 255 dev_err(&ctx->device->dev, 256 "Failed to register mmu_notifier %d\n", ret); 257 goto out_pid; 258 } 259 260 list_add(&per_mm->ucontext_list, &ctx->per_mm_list); 261 return per_mm; 262 263 out_pid: 264 put_pid(per_mm->tgid); 265 kfree(per_mm); 266 return ERR_PTR(ret); 267 } 268 269 static int get_per_mm(struct ib_umem_odp *umem_odp) 270 { 271 struct ib_ucontext *ctx = umem_odp->umem.context; 272 struct ib_ucontext_per_mm *per_mm; 273 274 /* 275 * Generally speaking we expect only one or two per_mm in this list, 276 * so no reason to optimize this search today. 277 */ 278 mutex_lock(&ctx->per_mm_list_lock); 279 list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) { 280 if (per_mm->mm == umem_odp->umem.owning_mm) 281 goto found; 282 } 283 284 per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm); 285 if (IS_ERR(per_mm)) { 286 mutex_unlock(&ctx->per_mm_list_lock); 287 return PTR_ERR(per_mm); 288 } 289 290 found: 291 umem_odp->per_mm = per_mm; 292 per_mm->odp_mrs_count++; 293 mutex_unlock(&ctx->per_mm_list_lock); 294 295 return 0; 296 } 297 298 static void free_per_mm(struct rcu_head *rcu) 299 { 300 kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu)); 301 } 302 303 static void put_per_mm(struct ib_umem_odp *umem_odp) 304 { 305 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 306 struct ib_ucontext *ctx = umem_odp->umem.context; 307 bool need_free; 308 309 mutex_lock(&ctx->per_mm_list_lock); 310 umem_odp->per_mm = NULL; 311 per_mm->odp_mrs_count--; 312 need_free = per_mm->odp_mrs_count == 0; 313 if (need_free) 314 list_del(&per_mm->ucontext_list); 315 mutex_unlock(&ctx->per_mm_list_lock); 316 317 if (!need_free) 318 return; 319 320 /* 321 * NOTE! mmu_notifier_unregister() can happen between a start/end 322 * callback, resulting in an start/end, and thus an unbalanced 323 * lock. This doesn't really matter to us since we are about to kfree 324 * the memory that holds the lock, however LOCKDEP doesn't like this. 325 */ 326 down_write(&per_mm->umem_rwsem); 327 per_mm->active = false; 328 up_write(&per_mm->umem_rwsem); 329 330 WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); 331 mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm); 332 put_pid(per_mm->tgid); 333 mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm); 334 } 335 336 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_umem_odp *root, 337 unsigned long addr, size_t size) 338 { 339 struct ib_ucontext_per_mm *per_mm = root->per_mm; 340 struct ib_ucontext *ctx = per_mm->context; 341 struct ib_umem_odp *odp_data; 342 struct ib_umem *umem; 343 int pages = size >> PAGE_SHIFT; 344 int ret; 345 346 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); 347 if (!odp_data) 348 return ERR_PTR(-ENOMEM); 349 umem = &odp_data->umem; 350 umem->context = ctx; 351 umem->length = size; 352 umem->address = addr; 353 umem->page_shift = PAGE_SHIFT; 354 umem->writable = root->umem.writable; 355 umem->is_odp = 1; 356 odp_data->per_mm = per_mm; 357 umem->owning_mm = per_mm->mm; 358 mmgrab(umem->owning_mm); 359 360 mutex_init(&odp_data->umem_mutex); 361 init_completion(&odp_data->notifier_completion); 362 363 odp_data->page_list = 364 vzalloc(array_size(pages, sizeof(*odp_data->page_list))); 365 if (!odp_data->page_list) { 366 ret = -ENOMEM; 367 goto out_odp_data; 368 } 369 370 odp_data->dma_list = 371 vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); 372 if (!odp_data->dma_list) { 373 ret = -ENOMEM; 374 goto out_page_list; 375 } 376 377 /* 378 * Caller must ensure that the umem_odp that the per_mm came from 379 * cannot be freed during the call to ib_alloc_odp_umem. 380 */ 381 mutex_lock(&ctx->per_mm_list_lock); 382 per_mm->odp_mrs_count++; 383 mutex_unlock(&ctx->per_mm_list_lock); 384 add_umem_to_per_mm(odp_data); 385 386 return odp_data; 387 388 out_page_list: 389 vfree(odp_data->page_list); 390 out_odp_data: 391 mmdrop(umem->owning_mm); 392 kfree(odp_data); 393 return ERR_PTR(ret); 394 } 395 EXPORT_SYMBOL(ib_alloc_odp_umem); 396 397 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access) 398 { 399 struct ib_umem *umem = &umem_odp->umem; 400 /* 401 * NOTE: This must called in a process context where umem->owning_mm 402 * == current->mm 403 */ 404 struct mm_struct *mm = umem->owning_mm; 405 int ret_val; 406 407 if (access & IB_ACCESS_HUGETLB) { 408 struct vm_area_struct *vma; 409 struct hstate *h; 410 411 down_read(&mm->mmap_sem); 412 vma = find_vma(mm, ib_umem_start(umem)); 413 if (!vma || !is_vm_hugetlb_page(vma)) { 414 up_read(&mm->mmap_sem); 415 return -EINVAL; 416 } 417 h = hstate_vma(vma); 418 umem->page_shift = huge_page_shift(h); 419 up_read(&mm->mmap_sem); 420 umem->hugetlb = 1; 421 } else { 422 umem->hugetlb = 0; 423 } 424 425 mutex_init(&umem_odp->umem_mutex); 426 427 init_completion(&umem_odp->notifier_completion); 428 429 if (ib_umem_num_pages(umem)) { 430 umem_odp->page_list = 431 vzalloc(array_size(sizeof(*umem_odp->page_list), 432 ib_umem_num_pages(umem))); 433 if (!umem_odp->page_list) 434 return -ENOMEM; 435 436 umem_odp->dma_list = 437 vzalloc(array_size(sizeof(*umem_odp->dma_list), 438 ib_umem_num_pages(umem))); 439 if (!umem_odp->dma_list) { 440 ret_val = -ENOMEM; 441 goto out_page_list; 442 } 443 } 444 445 ret_val = get_per_mm(umem_odp); 446 if (ret_val) 447 goto out_dma_list; 448 add_umem_to_per_mm(umem_odp); 449 450 return 0; 451 452 out_dma_list: 453 vfree(umem_odp->dma_list); 454 out_page_list: 455 vfree(umem_odp->page_list); 456 return ret_val; 457 } 458 459 void ib_umem_odp_release(struct ib_umem_odp *umem_odp) 460 { 461 struct ib_umem *umem = &umem_odp->umem; 462 463 /* 464 * Ensure that no more pages are mapped in the umem. 465 * 466 * It is the driver's responsibility to ensure, before calling us, 467 * that the hardware will not attempt to access the MR any more. 468 */ 469 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem), 470 ib_umem_end(umem)); 471 472 remove_umem_from_per_mm(umem_odp); 473 put_per_mm(umem_odp); 474 vfree(umem_odp->dma_list); 475 vfree(umem_odp->page_list); 476 } 477 478 /* 479 * Map for DMA and insert a single page into the on-demand paging page tables. 480 * 481 * @umem: the umem to insert the page to. 482 * @page_index: index in the umem to add the page to. 483 * @page: the page struct to map and add. 484 * @access_mask: access permissions needed for this page. 485 * @current_seq: sequence number for synchronization with invalidations. 486 * the sequence number is taken from 487 * umem_odp->notifiers_seq. 488 * 489 * The function returns -EFAULT if the DMA mapping operation fails. It returns 490 * -EAGAIN if a concurrent invalidation prevents us from updating the page. 491 * 492 * The page is released via put_page even if the operation failed. For 493 * on-demand pinning, the page is released whenever it isn't stored in the 494 * umem. 495 */ 496 static int ib_umem_odp_map_dma_single_page( 497 struct ib_umem_odp *umem_odp, 498 int page_index, 499 struct page *page, 500 u64 access_mask, 501 unsigned long current_seq) 502 { 503 struct ib_umem *umem = &umem_odp->umem; 504 struct ib_device *dev = umem->context->device; 505 dma_addr_t dma_addr; 506 int stored_page = 0; 507 int remove_existing_mapping = 0; 508 int ret = 0; 509 510 /* 511 * Note: we avoid writing if seq is different from the initial seq, to 512 * handle case of a racing notifier. This check also allows us to bail 513 * early if we have a notifier running in parallel with us. 514 */ 515 if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { 516 ret = -EAGAIN; 517 goto out; 518 } 519 if (!(umem_odp->dma_list[page_index])) { 520 dma_addr = ib_dma_map_page(dev, 521 page, 522 0, BIT(umem->page_shift), 523 DMA_BIDIRECTIONAL); 524 if (ib_dma_mapping_error(dev, dma_addr)) { 525 ret = -EFAULT; 526 goto out; 527 } 528 umem_odp->dma_list[page_index] = dma_addr | access_mask; 529 umem_odp->page_list[page_index] = page; 530 umem->npages++; 531 stored_page = 1; 532 } else if (umem_odp->page_list[page_index] == page) { 533 umem_odp->dma_list[page_index] |= access_mask; 534 } else { 535 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", 536 umem_odp->page_list[page_index], page); 537 /* Better remove the mapping now, to prevent any further 538 * damage. */ 539 remove_existing_mapping = 1; 540 } 541 542 out: 543 /* On Demand Paging - avoid pinning the page */ 544 if (umem->context->invalidate_range || !stored_page) 545 put_page(page); 546 547 if (remove_existing_mapping && umem->context->invalidate_range) { 548 ib_umem_notifier_start_account(umem_odp); 549 umem->context->invalidate_range( 550 umem_odp, 551 ib_umem_start(umem) + (page_index << umem->page_shift), 552 ib_umem_start(umem) + 553 ((page_index + 1) << umem->page_shift)); 554 ib_umem_notifier_end_account(umem_odp); 555 ret = -EAGAIN; 556 } 557 558 return ret; 559 } 560 561 /** 562 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. 563 * 564 * Pins the range of pages passed in the argument, and maps them to 565 * DMA addresses. The DMA addresses of the mapped pages is updated in 566 * umem_odp->dma_list. 567 * 568 * Returns the number of pages mapped in success, negative error code 569 * for failure. 570 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents 571 * the function from completing its task. 572 * An -ENOENT error code indicates that userspace process is being terminated 573 * and mm was already destroyed. 574 * @umem_odp: the umem to map and pin 575 * @user_virt: the address from which we need to map. 576 * @bcnt: the minimal number of bytes to pin and map. The mapping might be 577 * bigger due to alignment, and may also be smaller in case of an error 578 * pinning or mapping a page. The actual pages mapped is returned in 579 * the return value. 580 * @access_mask: bit mask of the requested access permissions for the given 581 * range. 582 * @current_seq: the MMU notifiers sequance value for synchronization with 583 * invalidations. the sequance number is read from 584 * umem_odp->notifiers_seq before calling this function 585 */ 586 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, 587 u64 bcnt, u64 access_mask, 588 unsigned long current_seq) 589 { 590 struct ib_umem *umem = &umem_odp->umem; 591 struct task_struct *owning_process = NULL; 592 struct mm_struct *owning_mm = umem_odp->umem.owning_mm; 593 struct page **local_page_list = NULL; 594 u64 page_mask, off; 595 int j, k, ret = 0, start_idx, npages = 0, page_shift; 596 unsigned int flags = 0; 597 phys_addr_t p = 0; 598 599 if (access_mask == 0) 600 return -EINVAL; 601 602 if (user_virt < ib_umem_start(umem) || 603 user_virt + bcnt > ib_umem_end(umem)) 604 return -EFAULT; 605 606 local_page_list = (struct page **)__get_free_page(GFP_KERNEL); 607 if (!local_page_list) 608 return -ENOMEM; 609 610 page_shift = umem->page_shift; 611 page_mask = ~(BIT(page_shift) - 1); 612 off = user_virt & (~page_mask); 613 user_virt = user_virt & page_mask; 614 bcnt += off; /* Charge for the first page offset as well. */ 615 616 /* 617 * owning_process is allowed to be NULL, this means somehow the mm is 618 * existing beyond the lifetime of the originating process.. Presumably 619 * mmget_not_zero will fail in this case. 620 */ 621 owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); 622 if (!owning_process || !mmget_not_zero(owning_mm)) { 623 ret = -EINVAL; 624 goto out_put_task; 625 } 626 627 if (access_mask & ODP_WRITE_ALLOWED_BIT) 628 flags |= FOLL_WRITE; 629 630 start_idx = (user_virt - ib_umem_start(umem)) >> page_shift; 631 k = start_idx; 632 633 while (bcnt > 0) { 634 const size_t gup_num_pages = min_t(size_t, 635 (bcnt + BIT(page_shift) - 1) >> page_shift, 636 PAGE_SIZE / sizeof(struct page *)); 637 638 down_read(&owning_mm->mmap_sem); 639 /* 640 * Note: this might result in redundent page getting. We can 641 * avoid this by checking dma_list to be 0 before calling 642 * get_user_pages. However, this make the code much more 643 * complex (and doesn't gain us much performance in most use 644 * cases). 645 */ 646 npages = get_user_pages_remote(owning_process, owning_mm, 647 user_virt, gup_num_pages, 648 flags, local_page_list, NULL, NULL); 649 up_read(&owning_mm->mmap_sem); 650 651 if (npages < 0) { 652 if (npages != -EAGAIN) 653 pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 654 else 655 pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 656 break; 657 } 658 659 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); 660 mutex_lock(&umem_odp->umem_mutex); 661 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { 662 if (user_virt & ~page_mask) { 663 p += PAGE_SIZE; 664 if (page_to_phys(local_page_list[j]) != p) { 665 ret = -EFAULT; 666 break; 667 } 668 put_page(local_page_list[j]); 669 continue; 670 } 671 672 ret = ib_umem_odp_map_dma_single_page( 673 umem_odp, k, local_page_list[j], 674 access_mask, current_seq); 675 if (ret < 0) { 676 if (ret != -EAGAIN) 677 pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 678 else 679 pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 680 break; 681 } 682 683 p = page_to_phys(local_page_list[j]); 684 k++; 685 } 686 mutex_unlock(&umem_odp->umem_mutex); 687 688 if (ret < 0) { 689 /* 690 * Release pages, remembering that the first page 691 * to hit an error was already released by 692 * ib_umem_odp_map_dma_single_page(). 693 */ 694 if (npages - (j + 1) > 0) 695 release_pages(&local_page_list[j+1], 696 npages - (j + 1)); 697 break; 698 } 699 } 700 701 if (ret >= 0) { 702 if (npages < 0 && k == start_idx) 703 ret = npages; 704 else 705 ret = k - start_idx; 706 } 707 708 mmput(owning_mm); 709 out_put_task: 710 if (owning_process) 711 put_task_struct(owning_process); 712 free_page((unsigned long)local_page_list); 713 return ret; 714 } 715 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); 716 717 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, 718 u64 bound) 719 { 720 struct ib_umem *umem = &umem_odp->umem; 721 int idx; 722 u64 addr; 723 struct ib_device *dev = umem->context->device; 724 725 virt = max_t(u64, virt, ib_umem_start(umem)); 726 bound = min_t(u64, bound, ib_umem_end(umem)); 727 /* Note that during the run of this function, the 728 * notifiers_count of the MR is > 0, preventing any racing 729 * faults from completion. We might be racing with other 730 * invalidations, so we must make sure we free each page only 731 * once. */ 732 mutex_lock(&umem_odp->umem_mutex); 733 for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) { 734 idx = (addr - ib_umem_start(umem)) >> umem->page_shift; 735 if (umem_odp->page_list[idx]) { 736 struct page *page = umem_odp->page_list[idx]; 737 dma_addr_t dma = umem_odp->dma_list[idx]; 738 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; 739 740 WARN_ON(!dma_addr); 741 742 ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE, 743 DMA_BIDIRECTIONAL); 744 if (dma & ODP_WRITE_ALLOWED_BIT) { 745 struct page *head_page = compound_head(page); 746 /* 747 * set_page_dirty prefers being called with 748 * the page lock. However, MMU notifiers are 749 * called sometimes with and sometimes without 750 * the lock. We rely on the umem_mutex instead 751 * to prevent other mmu notifiers from 752 * continuing and allowing the page mapping to 753 * be removed. 754 */ 755 set_page_dirty(head_page); 756 } 757 /* on demand pinning support */ 758 if (!umem->context->invalidate_range) 759 put_page(page); 760 umem_odp->page_list[idx] = NULL; 761 umem_odp->dma_list[idx] = 0; 762 umem->npages--; 763 } 764 } 765 mutex_unlock(&umem_odp->umem_mutex); 766 } 767 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); 768 769 /* @last is not a part of the interval. See comment for function 770 * node_last. 771 */ 772 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, 773 u64 start, u64 last, 774 umem_call_back cb, 775 bool blockable, 776 void *cookie) 777 { 778 int ret_val = 0; 779 struct umem_odp_node *node, *next; 780 struct ib_umem_odp *umem; 781 782 if (unlikely(start == last)) 783 return ret_val; 784 785 for (node = rbt_ib_umem_iter_first(root, start, last - 1); 786 node; node = next) { 787 /* TODO move the blockable decision up to the callback */ 788 if (!blockable) 789 return -EAGAIN; 790 next = rbt_ib_umem_iter_next(node, start, last - 1); 791 umem = container_of(node, struct ib_umem_odp, interval_tree); 792 ret_val = cb(umem, start, last, cookie) || ret_val; 793 } 794 795 return ret_val; 796 } 797 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); 798 799 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, 800 u64 addr, u64 length) 801 { 802 struct umem_odp_node *node; 803 804 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); 805 if (node) 806 return container_of(node, struct ib_umem_odp, interval_tree); 807 return NULL; 808 809 } 810 EXPORT_SYMBOL(rbt_ib_umem_lookup); 811