xref: /linux/drivers/infiniband/core/umem_odp.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/pid.h>
36 #include <linux/slab.h>
37 #include <linux/export.h>
38 #include <linux/vmalloc.h>
39 
40 #include <rdma/ib_verbs.h>
41 #include <rdma/ib_umem.h>
42 #include <rdma/ib_umem_odp.h>
43 
44 static void ib_umem_notifier_start_account(struct ib_umem *item)
45 {
46 	mutex_lock(&item->odp_data->umem_mutex);
47 
48 	/* Only update private counters for this umem if it has them.
49 	 * Otherwise skip it. All page faults will be delayed for this umem. */
50 	if (item->odp_data->mn_counters_active) {
51 		int notifiers_count = item->odp_data->notifiers_count++;
52 
53 		if (notifiers_count == 0)
54 			/* Initialize the completion object for waiting on
55 			 * notifiers. Since notifier_count is zero, no one
56 			 * should be waiting right now. */
57 			reinit_completion(&item->odp_data->notifier_completion);
58 	}
59 	mutex_unlock(&item->odp_data->umem_mutex);
60 }
61 
62 static void ib_umem_notifier_end_account(struct ib_umem *item)
63 {
64 	mutex_lock(&item->odp_data->umem_mutex);
65 
66 	/* Only update private counters for this umem if it has them.
67 	 * Otherwise skip it. All page faults will be delayed for this umem. */
68 	if (item->odp_data->mn_counters_active) {
69 		/*
70 		 * This sequence increase will notify the QP page fault that
71 		 * the page that is going to be mapped in the spte could have
72 		 * been freed.
73 		 */
74 		++item->odp_data->notifiers_seq;
75 		if (--item->odp_data->notifiers_count == 0)
76 			complete_all(&item->odp_data->notifier_completion);
77 	}
78 	mutex_unlock(&item->odp_data->umem_mutex);
79 }
80 
81 /* Account for a new mmu notifier in an ib_ucontext. */
82 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
83 {
84 	atomic_inc(&context->notifier_count);
85 }
86 
87 /* Account for a terminating mmu notifier in an ib_ucontext.
88  *
89  * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
90  * the function takes the semaphore itself. */
91 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
92 {
93 	int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
94 
95 	if (zero_notifiers &&
96 	    !list_empty(&context->no_private_counters)) {
97 		/* No currently running mmu notifiers. Now is the chance to
98 		 * add private accounting to all previously added umems. */
99 		struct ib_umem_odp *odp_data, *next;
100 
101 		/* Prevent concurrent mmu notifiers from working on the
102 		 * no_private_counters list. */
103 		down_write(&context->umem_rwsem);
104 
105 		/* Read the notifier_count again, with the umem_rwsem
106 		 * semaphore taken for write. */
107 		if (!atomic_read(&context->notifier_count)) {
108 			list_for_each_entry_safe(odp_data, next,
109 						 &context->no_private_counters,
110 						 no_private_counters) {
111 				mutex_lock(&odp_data->umem_mutex);
112 				odp_data->mn_counters_active = true;
113 				list_del(&odp_data->no_private_counters);
114 				complete_all(&odp_data->notifier_completion);
115 				mutex_unlock(&odp_data->umem_mutex);
116 			}
117 		}
118 
119 		up_write(&context->umem_rwsem);
120 	}
121 }
122 
123 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
124 					       u64 end, void *cookie) {
125 	/*
126 	 * Increase the number of notifiers running, to
127 	 * prevent any further fault handling on this MR.
128 	 */
129 	ib_umem_notifier_start_account(item);
130 	item->odp_data->dying = 1;
131 	/* Make sure that the fact the umem is dying is out before we release
132 	 * all pending page faults. */
133 	smp_wmb();
134 	complete_all(&item->odp_data->notifier_completion);
135 	item->context->invalidate_range(item, ib_umem_start(item),
136 					ib_umem_end(item));
137 	return 0;
138 }
139 
140 static void ib_umem_notifier_release(struct mmu_notifier *mn,
141 				     struct mm_struct *mm)
142 {
143 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
144 
145 	if (!context->invalidate_range)
146 		return;
147 
148 	ib_ucontext_notifier_start_account(context);
149 	down_read(&context->umem_rwsem);
150 	rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
151 				      ULLONG_MAX,
152 				      ib_umem_notifier_release_trampoline,
153 				      NULL);
154 	up_read(&context->umem_rwsem);
155 }
156 
157 static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
158 				      u64 end, void *cookie)
159 {
160 	ib_umem_notifier_start_account(item);
161 	item->context->invalidate_range(item, start, start + PAGE_SIZE);
162 	ib_umem_notifier_end_account(item);
163 	return 0;
164 }
165 
166 static void ib_umem_notifier_invalidate_page(struct mmu_notifier *mn,
167 					     struct mm_struct *mm,
168 					     unsigned long address)
169 {
170 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
171 
172 	if (!context->invalidate_range)
173 		return;
174 
175 	ib_ucontext_notifier_start_account(context);
176 	down_read(&context->umem_rwsem);
177 	rbt_ib_umem_for_each_in_range(&context->umem_tree, address,
178 				      address + PAGE_SIZE,
179 				      invalidate_page_trampoline, NULL);
180 	up_read(&context->umem_rwsem);
181 	ib_ucontext_notifier_end_account(context);
182 }
183 
184 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
185 					     u64 end, void *cookie)
186 {
187 	ib_umem_notifier_start_account(item);
188 	item->context->invalidate_range(item, start, end);
189 	return 0;
190 }
191 
192 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
193 						    struct mm_struct *mm,
194 						    unsigned long start,
195 						    unsigned long end)
196 {
197 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
198 
199 	if (!context->invalidate_range)
200 		return;
201 
202 	ib_ucontext_notifier_start_account(context);
203 	down_read(&context->umem_rwsem);
204 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
205 				      end,
206 				      invalidate_range_start_trampoline, NULL);
207 	up_read(&context->umem_rwsem);
208 }
209 
210 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
211 					   u64 end, void *cookie)
212 {
213 	ib_umem_notifier_end_account(item);
214 	return 0;
215 }
216 
217 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
218 						  struct mm_struct *mm,
219 						  unsigned long start,
220 						  unsigned long end)
221 {
222 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
223 
224 	if (!context->invalidate_range)
225 		return;
226 
227 	down_read(&context->umem_rwsem);
228 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
229 				      end,
230 				      invalidate_range_end_trampoline, NULL);
231 	up_read(&context->umem_rwsem);
232 	ib_ucontext_notifier_end_account(context);
233 }
234 
235 static const struct mmu_notifier_ops ib_umem_notifiers = {
236 	.release                    = ib_umem_notifier_release,
237 	.invalidate_page            = ib_umem_notifier_invalidate_page,
238 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
239 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
240 };
241 
242 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem)
243 {
244 	int ret_val;
245 	struct pid *our_pid;
246 	struct mm_struct *mm = get_task_mm(current);
247 
248 	if (!mm)
249 		return -EINVAL;
250 
251 	/* Prevent creating ODP MRs in child processes */
252 	rcu_read_lock();
253 	our_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
254 	rcu_read_unlock();
255 	put_pid(our_pid);
256 	if (context->tgid != our_pid) {
257 		ret_val = -EINVAL;
258 		goto out_mm;
259 	}
260 
261 	umem->hugetlb = 0;
262 	umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
263 	if (!umem->odp_data) {
264 		ret_val = -ENOMEM;
265 		goto out_mm;
266 	}
267 	umem->odp_data->umem = umem;
268 
269 	mutex_init(&umem->odp_data->umem_mutex);
270 
271 	init_completion(&umem->odp_data->notifier_completion);
272 
273 	umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) *
274 					    sizeof(*umem->odp_data->page_list));
275 	if (!umem->odp_data->page_list) {
276 		ret_val = -ENOMEM;
277 		goto out_odp_data;
278 	}
279 
280 	umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) *
281 					  sizeof(*umem->odp_data->dma_list));
282 	if (!umem->odp_data->dma_list) {
283 		ret_val = -ENOMEM;
284 		goto out_page_list;
285 	}
286 
287 	/*
288 	 * When using MMU notifiers, we will get a
289 	 * notification before the "current" task (and MM) is
290 	 * destroyed. We use the umem_rwsem semaphore to synchronize.
291 	 */
292 	down_write(&context->umem_rwsem);
293 	context->odp_mrs_count++;
294 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
295 		rbt_ib_umem_insert(&umem->odp_data->interval_tree,
296 				   &context->umem_tree);
297 	if (likely(!atomic_read(&context->notifier_count)) ||
298 	    context->odp_mrs_count == 1)
299 		umem->odp_data->mn_counters_active = true;
300 	else
301 		list_add(&umem->odp_data->no_private_counters,
302 			 &context->no_private_counters);
303 	downgrade_write(&context->umem_rwsem);
304 
305 	if (context->odp_mrs_count == 1) {
306 		/*
307 		 * Note that at this point, no MMU notifier is running
308 		 * for this context!
309 		 */
310 		atomic_set(&context->notifier_count, 0);
311 		INIT_HLIST_NODE(&context->mn.hlist);
312 		context->mn.ops = &ib_umem_notifiers;
313 		/*
314 		 * Lock-dep detects a false positive for mmap_sem vs.
315 		 * umem_rwsem, due to not grasping downgrade_write correctly.
316 		 */
317 		lockdep_off();
318 		ret_val = mmu_notifier_register(&context->mn, mm);
319 		lockdep_on();
320 		if (ret_val) {
321 			pr_err("Failed to register mmu_notifier %d\n", ret_val);
322 			ret_val = -EBUSY;
323 			goto out_mutex;
324 		}
325 	}
326 
327 	up_read(&context->umem_rwsem);
328 
329 	/*
330 	 * Note that doing an mmput can cause a notifier for the relevant mm.
331 	 * If the notifier is called while we hold the umem_rwsem, this will
332 	 * cause a deadlock. Therefore, we release the reference only after we
333 	 * released the semaphore.
334 	 */
335 	mmput(mm);
336 	return 0;
337 
338 out_mutex:
339 	up_read(&context->umem_rwsem);
340 	vfree(umem->odp_data->dma_list);
341 out_page_list:
342 	vfree(umem->odp_data->page_list);
343 out_odp_data:
344 	kfree(umem->odp_data);
345 out_mm:
346 	mmput(mm);
347 	return ret_val;
348 }
349 
350 void ib_umem_odp_release(struct ib_umem *umem)
351 {
352 	struct ib_ucontext *context = umem->context;
353 
354 	/*
355 	 * Ensure that no more pages are mapped in the umem.
356 	 *
357 	 * It is the driver's responsibility to ensure, before calling us,
358 	 * that the hardware will not attempt to access the MR any more.
359 	 */
360 	ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
361 				    ib_umem_end(umem));
362 
363 	down_write(&context->umem_rwsem);
364 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
365 		rbt_ib_umem_remove(&umem->odp_data->interval_tree,
366 				   &context->umem_tree);
367 	context->odp_mrs_count--;
368 	if (!umem->odp_data->mn_counters_active) {
369 		list_del(&umem->odp_data->no_private_counters);
370 		complete_all(&umem->odp_data->notifier_completion);
371 	}
372 
373 	/*
374 	 * Downgrade the lock to a read lock. This ensures that the notifiers
375 	 * (who lock the mutex for reading) will be able to finish, and we
376 	 * will be able to enventually obtain the mmu notifiers SRCU. Note
377 	 * that since we are doing it atomically, no other user could register
378 	 * and unregister while we do the check.
379 	 */
380 	downgrade_write(&context->umem_rwsem);
381 	if (!context->odp_mrs_count) {
382 		struct task_struct *owning_process = NULL;
383 		struct mm_struct *owning_mm        = NULL;
384 
385 		owning_process = get_pid_task(context->tgid,
386 					      PIDTYPE_PID);
387 		if (owning_process == NULL)
388 			/*
389 			 * The process is already dead, notifier were removed
390 			 * already.
391 			 */
392 			goto out;
393 
394 		owning_mm = get_task_mm(owning_process);
395 		if (owning_mm == NULL)
396 			/*
397 			 * The process' mm is already dead, notifier were
398 			 * removed already.
399 			 */
400 			goto out_put_task;
401 		mmu_notifier_unregister(&context->mn, owning_mm);
402 
403 		mmput(owning_mm);
404 
405 out_put_task:
406 		put_task_struct(owning_process);
407 	}
408 out:
409 	up_read(&context->umem_rwsem);
410 
411 	vfree(umem->odp_data->dma_list);
412 	vfree(umem->odp_data->page_list);
413 	kfree(umem->odp_data);
414 	kfree(umem);
415 }
416 
417 /*
418  * Map for DMA and insert a single page into the on-demand paging page tables.
419  *
420  * @umem: the umem to insert the page to.
421  * @page_index: index in the umem to add the page to.
422  * @page: the page struct to map and add.
423  * @access_mask: access permissions needed for this page.
424  * @current_seq: sequence number for synchronization with invalidations.
425  *               the sequence number is taken from
426  *               umem->odp_data->notifiers_seq.
427  *
428  * The function returns -EFAULT if the DMA mapping operation fails. It returns
429  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
430  *
431  * The page is released via put_page even if the operation failed. For
432  * on-demand pinning, the page is released whenever it isn't stored in the
433  * umem.
434  */
435 static int ib_umem_odp_map_dma_single_page(
436 		struct ib_umem *umem,
437 		int page_index,
438 		u64 base_virt_addr,
439 		struct page *page,
440 		u64 access_mask,
441 		unsigned long current_seq)
442 {
443 	struct ib_device *dev = umem->context->device;
444 	dma_addr_t dma_addr;
445 	int stored_page = 0;
446 	int remove_existing_mapping = 0;
447 	int ret = 0;
448 
449 	/*
450 	 * Note: we avoid writing if seq is different from the initial seq, to
451 	 * handle case of a racing notifier. This check also allows us to bail
452 	 * early if we have a notifier running in parallel with us.
453 	 */
454 	if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
455 		ret = -EAGAIN;
456 		goto out;
457 	}
458 	if (!(umem->odp_data->dma_list[page_index])) {
459 		dma_addr = ib_dma_map_page(dev,
460 					   page,
461 					   0, PAGE_SIZE,
462 					   DMA_BIDIRECTIONAL);
463 		if (ib_dma_mapping_error(dev, dma_addr)) {
464 			ret = -EFAULT;
465 			goto out;
466 		}
467 		umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
468 		umem->odp_data->page_list[page_index] = page;
469 		stored_page = 1;
470 	} else if (umem->odp_data->page_list[page_index] == page) {
471 		umem->odp_data->dma_list[page_index] |= access_mask;
472 	} else {
473 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
474 		       umem->odp_data->page_list[page_index], page);
475 		/* Better remove the mapping now, to prevent any further
476 		 * damage. */
477 		remove_existing_mapping = 1;
478 	}
479 
480 out:
481 	/* On Demand Paging - avoid pinning the page */
482 	if (umem->context->invalidate_range || !stored_page)
483 		put_page(page);
484 
485 	if (remove_existing_mapping && umem->context->invalidate_range) {
486 		invalidate_page_trampoline(
487 			umem,
488 			base_virt_addr + (page_index * PAGE_SIZE),
489 			base_virt_addr + ((page_index+1)*PAGE_SIZE),
490 			NULL);
491 		ret = -EAGAIN;
492 	}
493 
494 	return ret;
495 }
496 
497 /**
498  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
499  *
500  * Pins the range of pages passed in the argument, and maps them to
501  * DMA addresses. The DMA addresses of the mapped pages is updated in
502  * umem->odp_data->dma_list.
503  *
504  * Returns the number of pages mapped in success, negative error code
505  * for failure.
506  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
507  * the function from completing its task.
508  *
509  * @umem: the umem to map and pin
510  * @user_virt: the address from which we need to map.
511  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
512  *        bigger due to alignment, and may also be smaller in case of an error
513  *        pinning or mapping a page. The actual pages mapped is returned in
514  *        the return value.
515  * @access_mask: bit mask of the requested access permissions for the given
516  *               range.
517  * @current_seq: the MMU notifiers sequance value for synchronization with
518  *               invalidations. the sequance number is read from
519  *               umem->odp_data->notifiers_seq before calling this function
520  */
521 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
522 			      u64 access_mask, unsigned long current_seq)
523 {
524 	struct task_struct *owning_process  = NULL;
525 	struct mm_struct   *owning_mm       = NULL;
526 	struct page       **local_page_list = NULL;
527 	u64 off;
528 	int j, k, ret = 0, start_idx, npages = 0;
529 	u64 base_virt_addr;
530 
531 	if (access_mask == 0)
532 		return -EINVAL;
533 
534 	if (user_virt < ib_umem_start(umem) ||
535 	    user_virt + bcnt > ib_umem_end(umem))
536 		return -EFAULT;
537 
538 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
539 	if (!local_page_list)
540 		return -ENOMEM;
541 
542 	off = user_virt & (~PAGE_MASK);
543 	user_virt = user_virt & PAGE_MASK;
544 	base_virt_addr = user_virt;
545 	bcnt += off; /* Charge for the first page offset as well. */
546 
547 	owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
548 	if (owning_process == NULL) {
549 		ret = -EINVAL;
550 		goto out_no_task;
551 	}
552 
553 	owning_mm = get_task_mm(owning_process);
554 	if (owning_mm == NULL) {
555 		ret = -EINVAL;
556 		goto out_put_task;
557 	}
558 
559 	start_idx = (user_virt - ib_umem_start(umem)) >> PAGE_SHIFT;
560 	k = start_idx;
561 
562 	while (bcnt > 0) {
563 		const size_t gup_num_pages =
564 			min_t(size_t, ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE,
565 			      PAGE_SIZE / sizeof(struct page *));
566 
567 		down_read(&owning_mm->mmap_sem);
568 		/*
569 		 * Note: this might result in redundent page getting. We can
570 		 * avoid this by checking dma_list to be 0 before calling
571 		 * get_user_pages. However, this make the code much more
572 		 * complex (and doesn't gain us much performance in most use
573 		 * cases).
574 		 */
575 		npages = get_user_pages_remote(owning_process, owning_mm,
576 				user_virt, gup_num_pages,
577 				access_mask & ODP_WRITE_ALLOWED_BIT,
578 				0, local_page_list, NULL);
579 		up_read(&owning_mm->mmap_sem);
580 
581 		if (npages < 0)
582 			break;
583 
584 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
585 		user_virt += npages << PAGE_SHIFT;
586 		mutex_lock(&umem->odp_data->umem_mutex);
587 		for (j = 0; j < npages; ++j) {
588 			ret = ib_umem_odp_map_dma_single_page(
589 				umem, k, base_virt_addr, local_page_list[j],
590 				access_mask, current_seq);
591 			if (ret < 0)
592 				break;
593 			k++;
594 		}
595 		mutex_unlock(&umem->odp_data->umem_mutex);
596 
597 		if (ret < 0) {
598 			/* Release left over pages when handling errors. */
599 			for (++j; j < npages; ++j)
600 				put_page(local_page_list[j]);
601 			break;
602 		}
603 	}
604 
605 	if (ret >= 0) {
606 		if (npages < 0 && k == start_idx)
607 			ret = npages;
608 		else
609 			ret = k - start_idx;
610 	}
611 
612 	mmput(owning_mm);
613 out_put_task:
614 	put_task_struct(owning_process);
615 out_no_task:
616 	free_page((unsigned long)local_page_list);
617 	return ret;
618 }
619 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
620 
621 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
622 				 u64 bound)
623 {
624 	int idx;
625 	u64 addr;
626 	struct ib_device *dev = umem->context->device;
627 
628 	virt  = max_t(u64, virt,  ib_umem_start(umem));
629 	bound = min_t(u64, bound, ib_umem_end(umem));
630 	/* Note that during the run of this function, the
631 	 * notifiers_count of the MR is > 0, preventing any racing
632 	 * faults from completion. We might be racing with other
633 	 * invalidations, so we must make sure we free each page only
634 	 * once. */
635 	mutex_lock(&umem->odp_data->umem_mutex);
636 	for (addr = virt; addr < bound; addr += (u64)umem->page_size) {
637 		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
638 		if (umem->odp_data->page_list[idx]) {
639 			struct page *page = umem->odp_data->page_list[idx];
640 			dma_addr_t dma = umem->odp_data->dma_list[idx];
641 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
642 
643 			WARN_ON(!dma_addr);
644 
645 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
646 					  DMA_BIDIRECTIONAL);
647 			if (dma & ODP_WRITE_ALLOWED_BIT) {
648 				struct page *head_page = compound_head(page);
649 				/*
650 				 * set_page_dirty prefers being called with
651 				 * the page lock. However, MMU notifiers are
652 				 * called sometimes with and sometimes without
653 				 * the lock. We rely on the umem_mutex instead
654 				 * to prevent other mmu notifiers from
655 				 * continuing and allowing the page mapping to
656 				 * be removed.
657 				 */
658 				set_page_dirty(head_page);
659 			}
660 			/* on demand pinning support */
661 			if (!umem->context->invalidate_range)
662 				put_page(page);
663 			umem->odp_data->page_list[idx] = NULL;
664 			umem->odp_data->dma_list[idx] = 0;
665 		}
666 	}
667 	mutex_unlock(&umem->odp_data->umem_mutex);
668 }
669 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
670