1 /* 2 * Copyright (c) 2016 HGST, a Western Digital Company. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 */ 13 #include <linux/moduleparam.h> 14 #include <linux/slab.h> 15 #include <linux/pci-p2pdma.h> 16 #include <rdma/mr_pool.h> 17 #include <rdma/rw.h> 18 19 enum { 20 RDMA_RW_SINGLE_WR, 21 RDMA_RW_MULTI_WR, 22 RDMA_RW_MR, 23 RDMA_RW_SIG_MR, 24 }; 25 26 static bool rdma_rw_force_mr; 27 module_param_named(force_mr, rdma_rw_force_mr, bool, 0); 28 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); 29 30 /* 31 * Check if the device might use memory registration. This is currently only 32 * true for iWarp devices. In the future we can hopefully fine tune this based 33 * on HCA driver input. 34 */ 35 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num) 36 { 37 if (rdma_protocol_iwarp(dev, port_num)) 38 return true; 39 if (unlikely(rdma_rw_force_mr)) 40 return true; 41 return false; 42 } 43 44 /* 45 * Check if the device will use memory registration for this RW operation. 46 * We currently always use memory registrations for iWarp RDMA READs, and 47 * have a debug option to force usage of MRs. 48 * 49 * XXX: In the future we can hopefully fine tune this based on HCA driver 50 * input. 51 */ 52 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num, 53 enum dma_data_direction dir, int dma_nents) 54 { 55 if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE) 56 return true; 57 if (unlikely(rdma_rw_force_mr)) 58 return true; 59 return false; 60 } 61 62 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev) 63 { 64 /* arbitrary limit to avoid allocating gigantic resources */ 65 return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256); 66 } 67 68 /* Caller must have zero-initialized *reg. */ 69 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num, 70 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, 71 u32 sg_cnt, u32 offset) 72 { 73 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 74 u32 nents = min(sg_cnt, pages_per_mr); 75 int count = 0, ret; 76 77 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); 78 if (!reg->mr) 79 return -EAGAIN; 80 81 if (reg->mr->need_inval) { 82 reg->inv_wr.opcode = IB_WR_LOCAL_INV; 83 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; 84 reg->inv_wr.next = ®->reg_wr.wr; 85 count++; 86 } else { 87 reg->inv_wr.next = NULL; 88 } 89 90 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); 91 if (ret < 0 || ret < nents) { 92 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); 93 return -EINVAL; 94 } 95 96 reg->reg_wr.wr.opcode = IB_WR_REG_MR; 97 reg->reg_wr.mr = reg->mr; 98 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 99 if (rdma_protocol_iwarp(qp->device, port_num)) 100 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 101 count++; 102 103 reg->sge.addr = reg->mr->iova; 104 reg->sge.length = reg->mr->length; 105 return count; 106 } 107 108 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 109 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, 110 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 111 { 112 struct rdma_rw_reg_ctx *prev = NULL; 113 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 114 int i, j, ret = 0, count = 0; 115 116 ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr; 117 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); 118 if (!ctx->reg) { 119 ret = -ENOMEM; 120 goto out; 121 } 122 123 for (i = 0; i < ctx->nr_ops; i++) { 124 struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; 125 u32 nents = min(sg_cnt, pages_per_mr); 126 127 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, 128 offset); 129 if (ret < 0) 130 goto out_free; 131 count += ret; 132 133 if (prev) { 134 if (reg->mr->need_inval) 135 prev->wr.wr.next = ®->inv_wr; 136 else 137 prev->wr.wr.next = ®->reg_wr.wr; 138 } 139 140 reg->reg_wr.wr.next = ®->wr.wr; 141 142 reg->wr.wr.sg_list = ®->sge; 143 reg->wr.wr.num_sge = 1; 144 reg->wr.remote_addr = remote_addr; 145 reg->wr.rkey = rkey; 146 if (dir == DMA_TO_DEVICE) { 147 reg->wr.wr.opcode = IB_WR_RDMA_WRITE; 148 } else if (!rdma_cap_read_inv(qp->device, port_num)) { 149 reg->wr.wr.opcode = IB_WR_RDMA_READ; 150 } else { 151 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; 152 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; 153 } 154 count++; 155 156 remote_addr += reg->sge.length; 157 sg_cnt -= nents; 158 for (j = 0; j < nents; j++) 159 sg = sg_next(sg); 160 prev = reg; 161 offset = 0; 162 } 163 164 if (prev) 165 prev->wr.wr.next = NULL; 166 167 ctx->type = RDMA_RW_MR; 168 return count; 169 170 out_free: 171 while (--i >= 0) 172 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 173 kfree(ctx->reg); 174 out: 175 return ret; 176 } 177 178 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 179 struct scatterlist *sg, u32 sg_cnt, u32 offset, 180 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 181 { 182 struct ib_device *dev = qp->pd->device; 183 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : 184 qp->max_read_sge; 185 struct ib_sge *sge; 186 u32 total_len = 0, i, j; 187 188 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); 189 190 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); 191 if (!ctx->map.sges) 192 goto out; 193 194 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); 195 if (!ctx->map.wrs) 196 goto out_free_sges; 197 198 for (i = 0; i < ctx->nr_ops; i++) { 199 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; 200 u32 nr_sge = min(sg_cnt, max_sge); 201 202 if (dir == DMA_TO_DEVICE) 203 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 204 else 205 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 206 rdma_wr->remote_addr = remote_addr + total_len; 207 rdma_wr->rkey = rkey; 208 rdma_wr->wr.num_sge = nr_sge; 209 rdma_wr->wr.sg_list = sge; 210 211 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { 212 sge->addr = ib_sg_dma_address(dev, sg) + offset; 213 sge->length = ib_sg_dma_len(dev, sg) - offset; 214 sge->lkey = qp->pd->local_dma_lkey; 215 216 total_len += sge->length; 217 sge++; 218 sg_cnt--; 219 offset = 0; 220 } 221 222 rdma_wr->wr.next = i + 1 < ctx->nr_ops ? 223 &ctx->map.wrs[i + 1].wr : NULL; 224 } 225 226 ctx->type = RDMA_RW_MULTI_WR; 227 return ctx->nr_ops; 228 229 out_free_sges: 230 kfree(ctx->map.sges); 231 out: 232 return -ENOMEM; 233 } 234 235 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 236 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, 237 enum dma_data_direction dir) 238 { 239 struct ib_device *dev = qp->pd->device; 240 struct ib_rdma_wr *rdma_wr = &ctx->single.wr; 241 242 ctx->nr_ops = 1; 243 244 ctx->single.sge.lkey = qp->pd->local_dma_lkey; 245 ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset; 246 ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset; 247 248 memset(rdma_wr, 0, sizeof(*rdma_wr)); 249 if (dir == DMA_TO_DEVICE) 250 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 251 else 252 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 253 rdma_wr->wr.sg_list = &ctx->single.sge; 254 rdma_wr->wr.num_sge = 1; 255 rdma_wr->remote_addr = remote_addr; 256 rdma_wr->rkey = rkey; 257 258 ctx->type = RDMA_RW_SINGLE_WR; 259 return 1; 260 } 261 262 /** 263 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context 264 * @ctx: context to initialize 265 * @qp: queue pair to operate on 266 * @port_num: port num to which the connection is bound 267 * @sg: scatterlist to READ/WRITE from/to 268 * @sg_cnt: number of entries in @sg 269 * @sg_offset: current byte offset into @sg 270 * @remote_addr:remote address to read/write (relative to @rkey) 271 * @rkey: remote key to operate on 272 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 273 * 274 * Returns the number of WQEs that will be needed on the workqueue if 275 * successful, or a negative error code. 276 */ 277 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 278 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, 279 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 280 { 281 struct ib_device *dev = qp->pd->device; 282 int ret; 283 284 if (is_pci_p2pdma_page(sg_page(sg))) 285 ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir); 286 else 287 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 288 289 if (!ret) 290 return -ENOMEM; 291 sg_cnt = ret; 292 293 /* 294 * Skip to the S/G entry that sg_offset falls into: 295 */ 296 for (;;) { 297 u32 len = ib_sg_dma_len(dev, sg); 298 299 if (sg_offset < len) 300 break; 301 302 sg = sg_next(sg); 303 sg_offset -= len; 304 sg_cnt--; 305 } 306 307 ret = -EIO; 308 if (WARN_ON_ONCE(sg_cnt == 0)) 309 goto out_unmap_sg; 310 311 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { 312 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, 313 sg_offset, remote_addr, rkey, dir); 314 } else if (sg_cnt > 1) { 315 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, 316 remote_addr, rkey, dir); 317 } else { 318 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, 319 remote_addr, rkey, dir); 320 } 321 322 if (ret < 0) 323 goto out_unmap_sg; 324 return ret; 325 326 out_unmap_sg: 327 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 328 return ret; 329 } 330 EXPORT_SYMBOL(rdma_rw_ctx_init); 331 332 /** 333 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload 334 * @ctx: context to initialize 335 * @qp: queue pair to operate on 336 * @port_num: port num to which the connection is bound 337 * @sg: scatterlist to READ/WRITE from/to 338 * @sg_cnt: number of entries in @sg 339 * @prot_sg: scatterlist to READ/WRITE protection information from/to 340 * @prot_sg_cnt: number of entries in @prot_sg 341 * @sig_attrs: signature offloading algorithms 342 * @remote_addr:remote address to read/write (relative to @rkey) 343 * @rkey: remote key to operate on 344 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 345 * 346 * Returns the number of WQEs that will be needed on the workqueue if 347 * successful, or a negative error code. 348 */ 349 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 350 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 351 struct scatterlist *prot_sg, u32 prot_sg_cnt, 352 struct ib_sig_attrs *sig_attrs, 353 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 354 { 355 struct ib_device *dev = qp->pd->device; 356 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 357 struct ib_rdma_wr *rdma_wr; 358 struct ib_send_wr *prev_wr = NULL; 359 int count = 0, ret; 360 361 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { 362 pr_err("SG count too large\n"); 363 return -EINVAL; 364 } 365 366 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 367 if (!ret) 368 return -ENOMEM; 369 sg_cnt = ret; 370 371 ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir); 372 if (!ret) { 373 ret = -ENOMEM; 374 goto out_unmap_sg; 375 } 376 prot_sg_cnt = ret; 377 378 ctx->type = RDMA_RW_SIG_MR; 379 ctx->nr_ops = 1; 380 ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL); 381 if (!ctx->sig) { 382 ret = -ENOMEM; 383 goto out_unmap_prot_sg; 384 } 385 386 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0); 387 if (ret < 0) 388 goto out_free_ctx; 389 count += ret; 390 prev_wr = &ctx->sig->data.reg_wr.wr; 391 392 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot, 393 prot_sg, prot_sg_cnt, 0); 394 if (ret < 0) 395 goto out_destroy_data_mr; 396 count += ret; 397 398 if (ctx->sig->prot.inv_wr.next) 399 prev_wr->next = &ctx->sig->prot.inv_wr; 400 else 401 prev_wr->next = &ctx->sig->prot.reg_wr.wr; 402 prev_wr = &ctx->sig->prot.reg_wr.wr; 403 404 ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs); 405 if (!ctx->sig->sig_mr) { 406 ret = -EAGAIN; 407 goto out_destroy_prot_mr; 408 } 409 410 if (ctx->sig->sig_mr->need_inval) { 411 memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr)); 412 413 ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV; 414 ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey; 415 416 prev_wr->next = &ctx->sig->sig_inv_wr; 417 prev_wr = &ctx->sig->sig_inv_wr; 418 } 419 420 ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR; 421 ctx->sig->sig_wr.wr.wr_cqe = NULL; 422 ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge; 423 ctx->sig->sig_wr.wr.num_sge = 1; 424 ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE; 425 ctx->sig->sig_wr.sig_attrs = sig_attrs; 426 ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr; 427 if (prot_sg_cnt) 428 ctx->sig->sig_wr.prot = &ctx->sig->prot.sge; 429 prev_wr->next = &ctx->sig->sig_wr.wr; 430 prev_wr = &ctx->sig->sig_wr.wr; 431 count++; 432 433 ctx->sig->sig_sge.addr = 0; 434 ctx->sig->sig_sge.length = ctx->sig->data.sge.length; 435 if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE) 436 ctx->sig->sig_sge.length += ctx->sig->prot.sge.length; 437 438 rdma_wr = &ctx->sig->data.wr; 439 rdma_wr->wr.sg_list = &ctx->sig->sig_sge; 440 rdma_wr->wr.num_sge = 1; 441 rdma_wr->remote_addr = remote_addr; 442 rdma_wr->rkey = rkey; 443 if (dir == DMA_TO_DEVICE) 444 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 445 else 446 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 447 prev_wr->next = &rdma_wr->wr; 448 prev_wr = &rdma_wr->wr; 449 count++; 450 451 return count; 452 453 out_destroy_prot_mr: 454 if (prot_sg_cnt) 455 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); 456 out_destroy_data_mr: 457 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); 458 out_free_ctx: 459 kfree(ctx->sig); 460 out_unmap_prot_sg: 461 ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir); 462 out_unmap_sg: 463 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 464 return ret; 465 } 466 EXPORT_SYMBOL(rdma_rw_ctx_signature_init); 467 468 /* 469 * Now that we are going to post the WRs we can update the lkey and need_inval 470 * state on the MRs. If we were doing this at init time, we would get double 471 * or missing invalidations if a context was initialized but not actually 472 * posted. 473 */ 474 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) 475 { 476 reg->mr->need_inval = need_inval; 477 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); 478 reg->reg_wr.key = reg->mr->lkey; 479 reg->sge.lkey = reg->mr->lkey; 480 } 481 482 /** 483 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation 484 * @ctx: context to operate on 485 * @qp: queue pair to operate on 486 * @port_num: port num to which the connection is bound 487 * @cqe: completion queue entry for the last WR 488 * @chain_wr: WR to append to the posted chain 489 * 490 * Return the WR chain for the set of RDMA READ/WRITE operations described by 491 * @ctx, as well as any memory registration operations needed. If @chain_wr 492 * is non-NULL the WR it points to will be appended to the chain of WRs posted. 493 * If @chain_wr is not set @cqe must be set so that the caller gets a 494 * completion notification. 495 */ 496 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 497 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 498 { 499 struct ib_send_wr *first_wr, *last_wr; 500 int i; 501 502 switch (ctx->type) { 503 case RDMA_RW_SIG_MR: 504 rdma_rw_update_lkey(&ctx->sig->data, true); 505 if (ctx->sig->prot.mr) 506 rdma_rw_update_lkey(&ctx->sig->prot, true); 507 508 ctx->sig->sig_mr->need_inval = true; 509 ib_update_fast_reg_key(ctx->sig->sig_mr, 510 ib_inc_rkey(ctx->sig->sig_mr->lkey)); 511 ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey; 512 513 if (ctx->sig->data.inv_wr.next) 514 first_wr = &ctx->sig->data.inv_wr; 515 else 516 first_wr = &ctx->sig->data.reg_wr.wr; 517 last_wr = &ctx->sig->data.wr.wr; 518 break; 519 case RDMA_RW_MR: 520 for (i = 0; i < ctx->nr_ops; i++) { 521 rdma_rw_update_lkey(&ctx->reg[i], 522 ctx->reg[i].wr.wr.opcode != 523 IB_WR_RDMA_READ_WITH_INV); 524 } 525 526 if (ctx->reg[0].inv_wr.next) 527 first_wr = &ctx->reg[0].inv_wr; 528 else 529 first_wr = &ctx->reg[0].reg_wr.wr; 530 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; 531 break; 532 case RDMA_RW_MULTI_WR: 533 first_wr = &ctx->map.wrs[0].wr; 534 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; 535 break; 536 case RDMA_RW_SINGLE_WR: 537 first_wr = &ctx->single.wr.wr; 538 last_wr = &ctx->single.wr.wr; 539 break; 540 default: 541 BUG(); 542 } 543 544 if (chain_wr) { 545 last_wr->next = chain_wr; 546 } else { 547 last_wr->wr_cqe = cqe; 548 last_wr->send_flags |= IB_SEND_SIGNALED; 549 } 550 551 return first_wr; 552 } 553 EXPORT_SYMBOL(rdma_rw_ctx_wrs); 554 555 /** 556 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation 557 * @ctx: context to operate on 558 * @qp: queue pair to operate on 559 * @port_num: port num to which the connection is bound 560 * @cqe: completion queue entry for the last WR 561 * @chain_wr: WR to append to the posted chain 562 * 563 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as 564 * any memory registration operations needed. If @chain_wr is non-NULL the 565 * WR it points to will be appended to the chain of WRs posted. If @chain_wr 566 * is not set @cqe must be set so that the caller gets a completion 567 * notification. 568 */ 569 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 570 struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 571 { 572 struct ib_send_wr *first_wr; 573 574 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); 575 return ib_post_send(qp, first_wr, NULL); 576 } 577 EXPORT_SYMBOL(rdma_rw_ctx_post); 578 579 /** 580 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init 581 * @ctx: context to release 582 * @qp: queue pair to operate on 583 * @port_num: port num to which the connection is bound 584 * @sg: scatterlist that was used for the READ/WRITE 585 * @sg_cnt: number of entries in @sg 586 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 587 */ 588 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 589 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) 590 { 591 int i; 592 593 switch (ctx->type) { 594 case RDMA_RW_MR: 595 for (i = 0; i < ctx->nr_ops; i++) 596 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 597 kfree(ctx->reg); 598 break; 599 case RDMA_RW_MULTI_WR: 600 kfree(ctx->map.wrs); 601 kfree(ctx->map.sges); 602 break; 603 case RDMA_RW_SINGLE_WR: 604 break; 605 default: 606 BUG(); 607 break; 608 } 609 610 /* P2PDMA contexts do not need to be unmapped */ 611 if (!is_pci_p2pdma_page(sg_page(sg))) 612 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 613 } 614 EXPORT_SYMBOL(rdma_rw_ctx_destroy); 615 616 /** 617 * rdma_rw_ctx_destroy_signature - release all resources allocated by 618 * rdma_rw_ctx_init_signature 619 * @ctx: context to release 620 * @qp: queue pair to operate on 621 * @port_num: port num to which the connection is bound 622 * @sg: scatterlist that was used for the READ/WRITE 623 * @sg_cnt: number of entries in @sg 624 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI 625 * @prot_sg_cnt: number of entries in @prot_sg 626 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 627 */ 628 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 629 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 630 struct scatterlist *prot_sg, u32 prot_sg_cnt, 631 enum dma_data_direction dir) 632 { 633 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) 634 return; 635 636 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); 637 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 638 639 if (ctx->sig->prot.mr) { 640 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); 641 ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); 642 } 643 644 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr); 645 kfree(ctx->sig); 646 } 647 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); 648 649 /** 650 * rdma_rw_mr_factor - return number of MRs required for a payload 651 * @device: device handling the connection 652 * @port_num: port num to which the connection is bound 653 * @maxpages: maximum payload pages per rdma_rw_ctx 654 * 655 * Returns the number of MRs the device requires to move @maxpayload 656 * bytes. The returned value is used during transport creation to 657 * compute max_rdma_ctxts and the size of the transport's Send and 658 * Send Completion Queues. 659 */ 660 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num, 661 unsigned int maxpages) 662 { 663 unsigned int mr_pages; 664 665 if (rdma_rw_can_use_mr(device, port_num)) 666 mr_pages = rdma_rw_fr_page_list_len(device); 667 else 668 mr_pages = device->attrs.max_sge_rd; 669 return DIV_ROUND_UP(maxpages, mr_pages); 670 } 671 EXPORT_SYMBOL(rdma_rw_mr_factor); 672 673 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) 674 { 675 u32 factor; 676 677 WARN_ON_ONCE(attr->port_num == 0); 678 679 /* 680 * Each context needs at least one RDMA READ or WRITE WR. 681 * 682 * For some hardware we might need more, eventually we should ask the 683 * HCA driver for a multiplier here. 684 */ 685 factor = 1; 686 687 /* 688 * If the devices needs MRs to perform RDMA READ or WRITE operations, 689 * we'll need two additional MRs for the registrations and the 690 * invalidation. 691 */ 692 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) 693 factor += 6; /* (inv + reg) * (data + prot + sig) */ 694 else if (rdma_rw_can_use_mr(dev, attr->port_num)) 695 factor += 2; /* inv + reg */ 696 697 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; 698 699 /* 700 * But maybe we were just too high in the sky and the device doesn't 701 * even support all we need, and we'll have to live with what we get.. 702 */ 703 attr->cap.max_send_wr = 704 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); 705 } 706 707 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) 708 { 709 struct ib_device *dev = qp->pd->device; 710 u32 nr_mrs = 0, nr_sig_mrs = 0; 711 int ret = 0; 712 713 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) { 714 nr_sig_mrs = attr->cap.max_rdma_ctxs; 715 nr_mrs = attr->cap.max_rdma_ctxs * 2; 716 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { 717 nr_mrs = attr->cap.max_rdma_ctxs; 718 } 719 720 if (nr_mrs) { 721 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, 722 IB_MR_TYPE_MEM_REG, 723 rdma_rw_fr_page_list_len(dev)); 724 if (ret) { 725 pr_err("%s: failed to allocated %d MRs\n", 726 __func__, nr_mrs); 727 return ret; 728 } 729 } 730 731 if (nr_sig_mrs) { 732 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, 733 IB_MR_TYPE_SIGNATURE, 2); 734 if (ret) { 735 pr_err("%s: failed to allocated %d SIG MRs\n", 736 __func__, nr_mrs); 737 goto out_free_rdma_mrs; 738 } 739 } 740 741 return 0; 742 743 out_free_rdma_mrs: 744 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 745 return ret; 746 } 747 748 void rdma_rw_cleanup_mrs(struct ib_qp *qp) 749 { 750 ib_mr_pool_destroy(qp, &qp->sig_mrs); 751 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 752 } 753