xref: /linux/drivers/infiniband/core/rw.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 /*
2  * Copyright (c) 2016 HGST, a Western Digital Company.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  */
13 #include <linux/moduleparam.h>
14 #include <linux/slab.h>
15 #include <rdma/mr_pool.h>
16 #include <rdma/rw.h>
17 
18 enum {
19 	RDMA_RW_SINGLE_WR,
20 	RDMA_RW_MULTI_WR,
21 	RDMA_RW_MR,
22 	RDMA_RW_SIG_MR,
23 };
24 
25 static bool rdma_rw_force_mr;
26 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
27 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
28 
29 /*
30  * Check if the device might use memory registration.  This is currently only
31  * true for iWarp devices. In the future we can hopefully fine tune this based
32  * on HCA driver input.
33  */
34 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
35 {
36 	if (rdma_protocol_iwarp(dev, port_num))
37 		return true;
38 	if (unlikely(rdma_rw_force_mr))
39 		return true;
40 	return false;
41 }
42 
43 /*
44  * Check if the device will use memory registration for this RW operation.
45  * We currently always use memory registrations for iWarp RDMA READs, and
46  * have a debug option to force usage of MRs.
47  *
48  * XXX: In the future we can hopefully fine tune this based on HCA driver
49  * input.
50  */
51 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
52 		enum dma_data_direction dir, int dma_nents)
53 {
54 	if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
55 		return true;
56 	if (unlikely(rdma_rw_force_mr))
57 		return true;
58 	return false;
59 }
60 
61 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
62 {
63 	/* arbitrary limit to avoid allocating gigantic resources */
64 	return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
65 }
66 
67 /* Caller must have zero-initialized *reg. */
68 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
69 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
70 		u32 sg_cnt, u32 offset)
71 {
72 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
73 	u32 nents = min(sg_cnt, pages_per_mr);
74 	int count = 0, ret;
75 
76 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
77 	if (!reg->mr)
78 		return -EAGAIN;
79 
80 	if (reg->mr->need_inval) {
81 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
82 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
83 		reg->inv_wr.next = &reg->reg_wr.wr;
84 		count++;
85 	} else {
86 		reg->inv_wr.next = NULL;
87 	}
88 
89 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
90 	if (ret < nents) {
91 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
92 		return -EINVAL;
93 	}
94 
95 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
96 	reg->reg_wr.mr = reg->mr;
97 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
98 	if (rdma_protocol_iwarp(qp->device, port_num))
99 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
100 	count++;
101 
102 	reg->sge.addr = reg->mr->iova;
103 	reg->sge.length = reg->mr->length;
104 	return count;
105 }
106 
107 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
108 		u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
109 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
110 {
111 	struct rdma_rw_reg_ctx *prev = NULL;
112 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
113 	int i, j, ret = 0, count = 0;
114 
115 	ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
116 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
117 	if (!ctx->reg) {
118 		ret = -ENOMEM;
119 		goto out;
120 	}
121 
122 	for (i = 0; i < ctx->nr_ops; i++) {
123 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
124 		u32 nents = min(sg_cnt, pages_per_mr);
125 
126 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
127 				offset);
128 		if (ret < 0)
129 			goto out_free;
130 		count += ret;
131 
132 		if (prev) {
133 			if (reg->mr->need_inval)
134 				prev->wr.wr.next = &reg->inv_wr;
135 			else
136 				prev->wr.wr.next = &reg->reg_wr.wr;
137 		}
138 
139 		reg->reg_wr.wr.next = &reg->wr.wr;
140 
141 		reg->wr.wr.sg_list = &reg->sge;
142 		reg->wr.wr.num_sge = 1;
143 		reg->wr.remote_addr = remote_addr;
144 		reg->wr.rkey = rkey;
145 		if (dir == DMA_TO_DEVICE) {
146 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
147 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
148 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
149 		} else {
150 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
151 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
152 		}
153 		count++;
154 
155 		remote_addr += reg->sge.length;
156 		sg_cnt -= nents;
157 		for (j = 0; j < nents; j++)
158 			sg = sg_next(sg);
159 		prev = reg;
160 		offset = 0;
161 	}
162 
163 	if (prev)
164 		prev->wr.wr.next = NULL;
165 
166 	ctx->type = RDMA_RW_MR;
167 	return count;
168 
169 out_free:
170 	while (--i >= 0)
171 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
172 	kfree(ctx->reg);
173 out:
174 	return ret;
175 }
176 
177 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
178 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
179 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
180 {
181 	struct ib_device *dev = qp->pd->device;
182 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
183 		      qp->max_read_sge;
184 	struct ib_sge *sge;
185 	u32 total_len = 0, i, j;
186 
187 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
188 
189 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
190 	if (!ctx->map.sges)
191 		goto out;
192 
193 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
194 	if (!ctx->map.wrs)
195 		goto out_free_sges;
196 
197 	for (i = 0; i < ctx->nr_ops; i++) {
198 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
199 		u32 nr_sge = min(sg_cnt, max_sge);
200 
201 		if (dir == DMA_TO_DEVICE)
202 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
203 		else
204 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
205 		rdma_wr->remote_addr = remote_addr + total_len;
206 		rdma_wr->rkey = rkey;
207 		rdma_wr->wr.num_sge = nr_sge;
208 		rdma_wr->wr.sg_list = sge;
209 
210 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
211 			sge->addr = ib_sg_dma_address(dev, sg) + offset;
212 			sge->length = ib_sg_dma_len(dev, sg) - offset;
213 			sge->lkey = qp->pd->local_dma_lkey;
214 
215 			total_len += sge->length;
216 			sge++;
217 			sg_cnt--;
218 			offset = 0;
219 		}
220 
221 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
222 			&ctx->map.wrs[i + 1].wr : NULL;
223 	}
224 
225 	ctx->type = RDMA_RW_MULTI_WR;
226 	return ctx->nr_ops;
227 
228 out_free_sges:
229 	kfree(ctx->map.sges);
230 out:
231 	return -ENOMEM;
232 }
233 
234 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
235 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
236 		enum dma_data_direction dir)
237 {
238 	struct ib_device *dev = qp->pd->device;
239 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
240 
241 	ctx->nr_ops = 1;
242 
243 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
244 	ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset;
245 	ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset;
246 
247 	memset(rdma_wr, 0, sizeof(*rdma_wr));
248 	if (dir == DMA_TO_DEVICE)
249 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
250 	else
251 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
252 	rdma_wr->wr.sg_list = &ctx->single.sge;
253 	rdma_wr->wr.num_sge = 1;
254 	rdma_wr->remote_addr = remote_addr;
255 	rdma_wr->rkey = rkey;
256 
257 	ctx->type = RDMA_RW_SINGLE_WR;
258 	return 1;
259 }
260 
261 /**
262  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
263  * @ctx:	context to initialize
264  * @qp:		queue pair to operate on
265  * @port_num:	port num to which the connection is bound
266  * @sg:		scatterlist to READ/WRITE from/to
267  * @sg_cnt:	number of entries in @sg
268  * @sg_offset:	current byte offset into @sg
269  * @remote_addr:remote address to read/write (relative to @rkey)
270  * @rkey:	remote key to operate on
271  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
272  *
273  * Returns the number of WQEs that will be needed on the workqueue if
274  * successful, or a negative error code.
275  */
276 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
277 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
278 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
279 {
280 	struct ib_device *dev = qp->pd->device;
281 	int ret;
282 
283 	ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
284 	if (!ret)
285 		return -ENOMEM;
286 	sg_cnt = ret;
287 
288 	/*
289 	 * Skip to the S/G entry that sg_offset falls into:
290 	 */
291 	for (;;) {
292 		u32 len = ib_sg_dma_len(dev, sg);
293 
294 		if (sg_offset < len)
295 			break;
296 
297 		sg = sg_next(sg);
298 		sg_offset -= len;
299 		sg_cnt--;
300 	}
301 
302 	ret = -EIO;
303 	if (WARN_ON_ONCE(sg_cnt == 0))
304 		goto out_unmap_sg;
305 
306 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
307 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
308 				sg_offset, remote_addr, rkey, dir);
309 	} else if (sg_cnt > 1) {
310 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
311 				remote_addr, rkey, dir);
312 	} else {
313 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
314 				remote_addr, rkey, dir);
315 	}
316 
317 	if (ret < 0)
318 		goto out_unmap_sg;
319 	return ret;
320 
321 out_unmap_sg:
322 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
323 	return ret;
324 }
325 EXPORT_SYMBOL(rdma_rw_ctx_init);
326 
327 /**
328  * rdma_rw_ctx_signature init - initialize a RW context with signature offload
329  * @ctx:	context to initialize
330  * @qp:		queue pair to operate on
331  * @port_num:	port num to which the connection is bound
332  * @sg:		scatterlist to READ/WRITE from/to
333  * @sg_cnt:	number of entries in @sg
334  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
335  * @prot_sg_cnt: number of entries in @prot_sg
336  * @sig_attrs:	signature offloading algorithms
337  * @remote_addr:remote address to read/write (relative to @rkey)
338  * @rkey:	remote key to operate on
339  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
340  *
341  * Returns the number of WQEs that will be needed on the workqueue if
342  * successful, or a negative error code.
343  */
344 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
345 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
346 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
347 		struct ib_sig_attrs *sig_attrs,
348 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
349 {
350 	struct ib_device *dev = qp->pd->device;
351 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
352 	struct ib_rdma_wr *rdma_wr;
353 	struct ib_send_wr *prev_wr = NULL;
354 	int count = 0, ret;
355 
356 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
357 		pr_err("SG count too large\n");
358 		return -EINVAL;
359 	}
360 
361 	ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
362 	if (!ret)
363 		return -ENOMEM;
364 	sg_cnt = ret;
365 
366 	ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
367 	if (!ret) {
368 		ret = -ENOMEM;
369 		goto out_unmap_sg;
370 	}
371 	prot_sg_cnt = ret;
372 
373 	ctx->type = RDMA_RW_SIG_MR;
374 	ctx->nr_ops = 1;
375 	ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
376 	if (!ctx->sig) {
377 		ret = -ENOMEM;
378 		goto out_unmap_prot_sg;
379 	}
380 
381 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
382 	if (ret < 0)
383 		goto out_free_ctx;
384 	count += ret;
385 	prev_wr = &ctx->sig->data.reg_wr.wr;
386 
387 	if (prot_sg_cnt) {
388 		ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
389 				prot_sg, prot_sg_cnt, 0);
390 		if (ret < 0)
391 			goto out_destroy_data_mr;
392 		count += ret;
393 
394 		if (ctx->sig->prot.inv_wr.next)
395 			prev_wr->next = &ctx->sig->prot.inv_wr;
396 		else
397 			prev_wr->next = &ctx->sig->prot.reg_wr.wr;
398 		prev_wr = &ctx->sig->prot.reg_wr.wr;
399 	} else {
400 		ctx->sig->prot.mr = NULL;
401 	}
402 
403 	ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
404 	if (!ctx->sig->sig_mr) {
405 		ret = -EAGAIN;
406 		goto out_destroy_prot_mr;
407 	}
408 
409 	if (ctx->sig->sig_mr->need_inval) {
410 		memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
411 
412 		ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
413 		ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
414 
415 		prev_wr->next = &ctx->sig->sig_inv_wr;
416 		prev_wr = &ctx->sig->sig_inv_wr;
417 	}
418 
419 	ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
420 	ctx->sig->sig_wr.wr.wr_cqe = NULL;
421 	ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
422 	ctx->sig->sig_wr.wr.num_sge = 1;
423 	ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
424 	ctx->sig->sig_wr.sig_attrs = sig_attrs;
425 	ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
426 	if (prot_sg_cnt)
427 		ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
428 	prev_wr->next = &ctx->sig->sig_wr.wr;
429 	prev_wr = &ctx->sig->sig_wr.wr;
430 	count++;
431 
432 	ctx->sig->sig_sge.addr = 0;
433 	ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
434 	if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
435 		ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
436 
437 	rdma_wr = &ctx->sig->data.wr;
438 	rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
439 	rdma_wr->wr.num_sge = 1;
440 	rdma_wr->remote_addr = remote_addr;
441 	rdma_wr->rkey = rkey;
442 	if (dir == DMA_TO_DEVICE)
443 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
444 	else
445 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
446 	prev_wr->next = &rdma_wr->wr;
447 	prev_wr = &rdma_wr->wr;
448 	count++;
449 
450 	return count;
451 
452 out_destroy_prot_mr:
453 	if (prot_sg_cnt)
454 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
455 out_destroy_data_mr:
456 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
457 out_free_ctx:
458 	kfree(ctx->sig);
459 out_unmap_prot_sg:
460 	ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
461 out_unmap_sg:
462 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
463 	return ret;
464 }
465 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
466 
467 /*
468  * Now that we are going to post the WRs we can update the lkey and need_inval
469  * state on the MRs.  If we were doing this at init time, we would get double
470  * or missing invalidations if a context was initialized but not actually
471  * posted.
472  */
473 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
474 {
475 	reg->mr->need_inval = need_inval;
476 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
477 	reg->reg_wr.key = reg->mr->lkey;
478 	reg->sge.lkey = reg->mr->lkey;
479 }
480 
481 /**
482  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
483  * @ctx:	context to operate on
484  * @qp:		queue pair to operate on
485  * @port_num:	port num to which the connection is bound
486  * @cqe:	completion queue entry for the last WR
487  * @chain_wr:	WR to append to the posted chain
488  *
489  * Return the WR chain for the set of RDMA READ/WRITE operations described by
490  * @ctx, as well as any memory registration operations needed.  If @chain_wr
491  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
492  * If @chain_wr is not set @cqe must be set so that the caller gets a
493  * completion notification.
494  */
495 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
496 		u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
497 {
498 	struct ib_send_wr *first_wr, *last_wr;
499 	int i;
500 
501 	switch (ctx->type) {
502 	case RDMA_RW_SIG_MR:
503 		rdma_rw_update_lkey(&ctx->sig->data, true);
504 		if (ctx->sig->prot.mr)
505 			rdma_rw_update_lkey(&ctx->sig->prot, true);
506 
507 		ctx->sig->sig_mr->need_inval = true;
508 		ib_update_fast_reg_key(ctx->sig->sig_mr,
509 			ib_inc_rkey(ctx->sig->sig_mr->lkey));
510 		ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
511 
512 		if (ctx->sig->data.inv_wr.next)
513 			first_wr = &ctx->sig->data.inv_wr;
514 		else
515 			first_wr = &ctx->sig->data.reg_wr.wr;
516 		last_wr = &ctx->sig->data.wr.wr;
517 		break;
518 	case RDMA_RW_MR:
519 		for (i = 0; i < ctx->nr_ops; i++) {
520 			rdma_rw_update_lkey(&ctx->reg[i],
521 				ctx->reg[i].wr.wr.opcode !=
522 					IB_WR_RDMA_READ_WITH_INV);
523 		}
524 
525 		if (ctx->reg[0].inv_wr.next)
526 			first_wr = &ctx->reg[0].inv_wr;
527 		else
528 			first_wr = &ctx->reg[0].reg_wr.wr;
529 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
530 		break;
531 	case RDMA_RW_MULTI_WR:
532 		first_wr = &ctx->map.wrs[0].wr;
533 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
534 		break;
535 	case RDMA_RW_SINGLE_WR:
536 		first_wr = &ctx->single.wr.wr;
537 		last_wr = &ctx->single.wr.wr;
538 		break;
539 	default:
540 		BUG();
541 	}
542 
543 	if (chain_wr) {
544 		last_wr->next = chain_wr;
545 	} else {
546 		last_wr->wr_cqe = cqe;
547 		last_wr->send_flags |= IB_SEND_SIGNALED;
548 	}
549 
550 	return first_wr;
551 }
552 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
553 
554 /**
555  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
556  * @ctx:	context to operate on
557  * @qp:		queue pair to operate on
558  * @port_num:	port num to which the connection is bound
559  * @cqe:	completion queue entry for the last WR
560  * @chain_wr:	WR to append to the posted chain
561  *
562  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
563  * any memory registration operations needed.  If @chain_wr is non-NULL the
564  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
565  * is not set @cqe must be set so that the caller gets a completion
566  * notification.
567  */
568 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
569 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
570 {
571 	struct ib_send_wr *first_wr, *bad_wr;
572 
573 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
574 	return ib_post_send(qp, first_wr, &bad_wr);
575 }
576 EXPORT_SYMBOL(rdma_rw_ctx_post);
577 
578 /**
579  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
580  * @ctx:	context to release
581  * @qp:		queue pair to operate on
582  * @port_num:	port num to which the connection is bound
583  * @sg:		scatterlist that was used for the READ/WRITE
584  * @sg_cnt:	number of entries in @sg
585  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
586  */
587 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
588 		struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
589 {
590 	int i;
591 
592 	switch (ctx->type) {
593 	case RDMA_RW_MR:
594 		for (i = 0; i < ctx->nr_ops; i++)
595 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
596 		kfree(ctx->reg);
597 		break;
598 	case RDMA_RW_MULTI_WR:
599 		kfree(ctx->map.wrs);
600 		kfree(ctx->map.sges);
601 		break;
602 	case RDMA_RW_SINGLE_WR:
603 		break;
604 	default:
605 		BUG();
606 		break;
607 	}
608 
609 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
610 }
611 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
612 
613 /**
614  * rdma_rw_ctx_destroy_signature - release all resources allocated by
615  *	rdma_rw_ctx_init_signature
616  * @ctx:	context to release
617  * @qp:		queue pair to operate on
618  * @port_num:	port num to which the connection is bound
619  * @sg:		scatterlist that was used for the READ/WRITE
620  * @sg_cnt:	number of entries in @sg
621  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
622  * @prot_sg_cnt: number of entries in @prot_sg
623  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
624  */
625 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
626 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
627 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
628 		enum dma_data_direction dir)
629 {
630 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
631 		return;
632 
633 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
634 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
635 
636 	if (ctx->sig->prot.mr) {
637 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
638 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
639 	}
640 
641 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
642 	kfree(ctx->sig);
643 }
644 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
645 
646 /**
647  * rdma_rw_mr_factor - return number of MRs required for a payload
648  * @device:	device handling the connection
649  * @port_num:	port num to which the connection is bound
650  * @maxpages:	maximum payload pages per rdma_rw_ctx
651  *
652  * Returns the number of MRs the device requires to move @maxpayload
653  * bytes. The returned value is used during transport creation to
654  * compute max_rdma_ctxts and the size of the transport's Send and
655  * Send Completion Queues.
656  */
657 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
658 			       unsigned int maxpages)
659 {
660 	unsigned int mr_pages;
661 
662 	if (rdma_rw_can_use_mr(device, port_num))
663 		mr_pages = rdma_rw_fr_page_list_len(device);
664 	else
665 		mr_pages = device->attrs.max_sge_rd;
666 	return DIV_ROUND_UP(maxpages, mr_pages);
667 }
668 EXPORT_SYMBOL(rdma_rw_mr_factor);
669 
670 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
671 {
672 	u32 factor;
673 
674 	WARN_ON_ONCE(attr->port_num == 0);
675 
676 	/*
677 	 * Each context needs at least one RDMA READ or WRITE WR.
678 	 *
679 	 * For some hardware we might need more, eventually we should ask the
680 	 * HCA driver for a multiplier here.
681 	 */
682 	factor = 1;
683 
684 	/*
685 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
686 	 * we'll need two additional MRs for the registrations and the
687 	 * invalidation.
688 	 */
689 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
690 		factor += 6;	/* (inv + reg) * (data + prot + sig) */
691 	else if (rdma_rw_can_use_mr(dev, attr->port_num))
692 		factor += 2;	/* inv + reg */
693 
694 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
695 
696 	/*
697 	 * But maybe we were just too high in the sky and the device doesn't
698 	 * even support all we need, and we'll have to live with what we get..
699 	 */
700 	attr->cap.max_send_wr =
701 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
702 }
703 
704 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
705 {
706 	struct ib_device *dev = qp->pd->device;
707 	u32 nr_mrs = 0, nr_sig_mrs = 0;
708 	int ret = 0;
709 
710 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
711 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
712 		nr_mrs = attr->cap.max_rdma_ctxs * 2;
713 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
714 		nr_mrs = attr->cap.max_rdma_ctxs;
715 	}
716 
717 	if (nr_mrs) {
718 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
719 				IB_MR_TYPE_MEM_REG,
720 				rdma_rw_fr_page_list_len(dev));
721 		if (ret) {
722 			pr_err("%s: failed to allocated %d MRs\n",
723 				__func__, nr_mrs);
724 			return ret;
725 		}
726 	}
727 
728 	if (nr_sig_mrs) {
729 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
730 				IB_MR_TYPE_SIGNATURE, 2);
731 		if (ret) {
732 			pr_err("%s: failed to allocated %d SIG MRs\n",
733 				__func__, nr_mrs);
734 			goto out_free_rdma_mrs;
735 		}
736 	}
737 
738 	return 0;
739 
740 out_free_rdma_mrs:
741 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
742 	return ret;
743 }
744 
745 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
746 {
747 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
748 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
749 }
750