1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016 HGST, a Western Digital Company. 4 */ 5 #include <linux/memremap.h> 6 #include <linux/moduleparam.h> 7 #include <linux/slab.h> 8 #include <linux/pci-p2pdma.h> 9 #include <rdma/mr_pool.h> 10 #include <rdma/rw.h> 11 12 enum { 13 RDMA_RW_SINGLE_WR, 14 RDMA_RW_MULTI_WR, 15 RDMA_RW_MR, 16 RDMA_RW_SIG_MR, 17 }; 18 19 static bool rdma_rw_force_mr; 20 module_param_named(force_mr, rdma_rw_force_mr, bool, 0); 21 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); 22 23 /* 24 * Report whether memory registration should be used. Memory registration must 25 * be used for iWarp devices because of iWARP-specific limitations. Memory 26 * registration is also enabled if registering memory might yield better 27 * performance than using multiple SGE entries, see rdma_rw_io_needs_mr() 28 */ 29 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num) 30 { 31 if (rdma_protocol_iwarp(dev, port_num)) 32 return true; 33 if (dev->attrs.max_sgl_rd) 34 return true; 35 if (unlikely(rdma_rw_force_mr)) 36 return true; 37 return false; 38 } 39 40 /* 41 * Check if the device will use memory registration for this RW operation. 42 * For RDMA READs we must use MRs on iWarp and can optionally use them as an 43 * optimization otherwise. Additionally we have a debug option to force usage 44 * of MRs to help testing this code path. 45 */ 46 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num, 47 enum dma_data_direction dir, int dma_nents) 48 { 49 if (dir == DMA_FROM_DEVICE) { 50 if (rdma_protocol_iwarp(dev, port_num)) 51 return true; 52 if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd) 53 return true; 54 } 55 if (unlikely(rdma_rw_force_mr)) 56 return true; 57 return false; 58 } 59 60 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev, 61 bool pi_support) 62 { 63 u32 max_pages; 64 65 if (pi_support) 66 max_pages = dev->attrs.max_pi_fast_reg_page_list_len; 67 else 68 max_pages = dev->attrs.max_fast_reg_page_list_len; 69 70 /* arbitrary limit to avoid allocating gigantic resources */ 71 return min_t(u32, max_pages, 256); 72 } 73 74 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg) 75 { 76 int count = 0; 77 78 if (reg->mr->need_inval) { 79 reg->inv_wr.opcode = IB_WR_LOCAL_INV; 80 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; 81 reg->inv_wr.next = ®->reg_wr.wr; 82 count++; 83 } else { 84 reg->inv_wr.next = NULL; 85 } 86 87 return count; 88 } 89 90 /* Caller must have zero-initialized *reg. */ 91 static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num, 92 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, 93 u32 sg_cnt, u32 offset) 94 { 95 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 96 qp->integrity_en); 97 u32 nents = min(sg_cnt, pages_per_mr); 98 int count = 0, ret; 99 100 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); 101 if (!reg->mr) 102 return -EAGAIN; 103 104 count += rdma_rw_inv_key(reg); 105 106 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); 107 if (ret < 0 || ret < nents) { 108 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); 109 return -EINVAL; 110 } 111 112 reg->reg_wr.wr.opcode = IB_WR_REG_MR; 113 reg->reg_wr.mr = reg->mr; 114 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 115 if (rdma_protocol_iwarp(qp->device, port_num)) 116 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 117 count++; 118 119 reg->sge.addr = reg->mr->iova; 120 reg->sge.length = reg->mr->length; 121 return count; 122 } 123 124 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 125 u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, 126 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 127 { 128 struct rdma_rw_reg_ctx *prev = NULL; 129 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 130 qp->integrity_en); 131 int i, j, ret = 0, count = 0; 132 133 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr); 134 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); 135 if (!ctx->reg) { 136 ret = -ENOMEM; 137 goto out; 138 } 139 140 for (i = 0; i < ctx->nr_ops; i++) { 141 struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; 142 u32 nents = min(sg_cnt, pages_per_mr); 143 144 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, 145 offset); 146 if (ret < 0) 147 goto out_free; 148 count += ret; 149 150 if (prev) { 151 if (reg->mr->need_inval) 152 prev->wr.wr.next = ®->inv_wr; 153 else 154 prev->wr.wr.next = ®->reg_wr.wr; 155 } 156 157 reg->reg_wr.wr.next = ®->wr.wr; 158 159 reg->wr.wr.sg_list = ®->sge; 160 reg->wr.wr.num_sge = 1; 161 reg->wr.remote_addr = remote_addr; 162 reg->wr.rkey = rkey; 163 if (dir == DMA_TO_DEVICE) { 164 reg->wr.wr.opcode = IB_WR_RDMA_WRITE; 165 } else if (!rdma_cap_read_inv(qp->device, port_num)) { 166 reg->wr.wr.opcode = IB_WR_RDMA_READ; 167 } else { 168 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; 169 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; 170 } 171 count++; 172 173 remote_addr += reg->sge.length; 174 sg_cnt -= nents; 175 for (j = 0; j < nents; j++) 176 sg = sg_next(sg); 177 prev = reg; 178 offset = 0; 179 } 180 181 if (prev) 182 prev->wr.wr.next = NULL; 183 184 ctx->type = RDMA_RW_MR; 185 return count; 186 187 out_free: 188 while (--i >= 0) 189 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 190 kfree(ctx->reg); 191 out: 192 return ret; 193 } 194 195 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 196 struct scatterlist *sg, u32 sg_cnt, u32 offset, 197 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 198 { 199 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : 200 qp->max_read_sge; 201 struct ib_sge *sge; 202 u32 total_len = 0, i, j; 203 204 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); 205 206 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); 207 if (!ctx->map.sges) 208 goto out; 209 210 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); 211 if (!ctx->map.wrs) 212 goto out_free_sges; 213 214 for (i = 0; i < ctx->nr_ops; i++) { 215 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; 216 u32 nr_sge = min(sg_cnt, max_sge); 217 218 if (dir == DMA_TO_DEVICE) 219 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 220 else 221 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 222 rdma_wr->remote_addr = remote_addr + total_len; 223 rdma_wr->rkey = rkey; 224 rdma_wr->wr.num_sge = nr_sge; 225 rdma_wr->wr.sg_list = sge; 226 227 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { 228 sge->addr = sg_dma_address(sg) + offset; 229 sge->length = sg_dma_len(sg) - offset; 230 sge->lkey = qp->pd->local_dma_lkey; 231 232 total_len += sge->length; 233 sge++; 234 sg_cnt--; 235 offset = 0; 236 } 237 238 rdma_wr->wr.next = i + 1 < ctx->nr_ops ? 239 &ctx->map.wrs[i + 1].wr : NULL; 240 } 241 242 ctx->type = RDMA_RW_MULTI_WR; 243 return ctx->nr_ops; 244 245 out_free_sges: 246 kfree(ctx->map.sges); 247 out: 248 return -ENOMEM; 249 } 250 251 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 252 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, 253 enum dma_data_direction dir) 254 { 255 struct ib_rdma_wr *rdma_wr = &ctx->single.wr; 256 257 ctx->nr_ops = 1; 258 259 ctx->single.sge.lkey = qp->pd->local_dma_lkey; 260 ctx->single.sge.addr = sg_dma_address(sg) + offset; 261 ctx->single.sge.length = sg_dma_len(sg) - offset; 262 263 memset(rdma_wr, 0, sizeof(*rdma_wr)); 264 if (dir == DMA_TO_DEVICE) 265 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 266 else 267 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 268 rdma_wr->wr.sg_list = &ctx->single.sge; 269 rdma_wr->wr.num_sge = 1; 270 rdma_wr->remote_addr = remote_addr; 271 rdma_wr->rkey = rkey; 272 273 ctx->type = RDMA_RW_SINGLE_WR; 274 return 1; 275 } 276 277 /** 278 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context 279 * @ctx: context to initialize 280 * @qp: queue pair to operate on 281 * @port_num: port num to which the connection is bound 282 * @sg: scatterlist to READ/WRITE from/to 283 * @sg_cnt: number of entries in @sg 284 * @sg_offset: current byte offset into @sg 285 * @remote_addr:remote address to read/write (relative to @rkey) 286 * @rkey: remote key to operate on 287 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 288 * 289 * Returns the number of WQEs that will be needed on the workqueue if 290 * successful, or a negative error code. 291 */ 292 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, 293 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, 294 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 295 { 296 struct ib_device *dev = qp->pd->device; 297 struct sg_table sgt = { 298 .sgl = sg, 299 .orig_nents = sg_cnt, 300 }; 301 int ret; 302 303 ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0); 304 if (ret) 305 return ret; 306 sg_cnt = sgt.nents; 307 308 /* 309 * Skip to the S/G entry that sg_offset falls into: 310 */ 311 for (;;) { 312 u32 len = sg_dma_len(sg); 313 314 if (sg_offset < len) 315 break; 316 317 sg = sg_next(sg); 318 sg_offset -= len; 319 sg_cnt--; 320 } 321 322 ret = -EIO; 323 if (WARN_ON_ONCE(sg_cnt == 0)) 324 goto out_unmap_sg; 325 326 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { 327 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, 328 sg_offset, remote_addr, rkey, dir); 329 } else if (sg_cnt > 1) { 330 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, 331 remote_addr, rkey, dir); 332 } else { 333 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, 334 remote_addr, rkey, dir); 335 } 336 337 if (ret < 0) 338 goto out_unmap_sg; 339 return ret; 340 341 out_unmap_sg: 342 ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0); 343 return ret; 344 } 345 EXPORT_SYMBOL(rdma_rw_ctx_init); 346 347 /** 348 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload 349 * @ctx: context to initialize 350 * @qp: queue pair to operate on 351 * @port_num: port num to which the connection is bound 352 * @sg: scatterlist to READ/WRITE from/to 353 * @sg_cnt: number of entries in @sg 354 * @prot_sg: scatterlist to READ/WRITE protection information from/to 355 * @prot_sg_cnt: number of entries in @prot_sg 356 * @sig_attrs: signature offloading algorithms 357 * @remote_addr:remote address to read/write (relative to @rkey) 358 * @rkey: remote key to operate on 359 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 360 * 361 * Returns the number of WQEs that will be needed on the workqueue if 362 * successful, or a negative error code. 363 */ 364 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 365 u32 port_num, struct scatterlist *sg, u32 sg_cnt, 366 struct scatterlist *prot_sg, u32 prot_sg_cnt, 367 struct ib_sig_attrs *sig_attrs, 368 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 369 { 370 struct ib_device *dev = qp->pd->device; 371 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 372 qp->integrity_en); 373 struct sg_table sgt = { 374 .sgl = sg, 375 .orig_nents = sg_cnt, 376 }; 377 struct sg_table prot_sgt = { 378 .sgl = prot_sg, 379 .orig_nents = prot_sg_cnt, 380 }; 381 struct ib_rdma_wr *rdma_wr; 382 int count = 0, ret; 383 384 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { 385 pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n", 386 sg_cnt, prot_sg_cnt, pages_per_mr); 387 return -EINVAL; 388 } 389 390 ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0); 391 if (ret) 392 return ret; 393 394 if (prot_sg_cnt) { 395 ret = ib_dma_map_sgtable_attrs(dev, &prot_sgt, dir, 0); 396 if (ret) 397 goto out_unmap_sg; 398 } 399 400 ctx->type = RDMA_RW_SIG_MR; 401 ctx->nr_ops = 1; 402 ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL); 403 if (!ctx->reg) { 404 ret = -ENOMEM; 405 goto out_unmap_prot_sg; 406 } 407 408 ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs); 409 if (!ctx->reg->mr) { 410 ret = -EAGAIN; 411 goto out_free_ctx; 412 } 413 414 count += rdma_rw_inv_key(ctx->reg); 415 416 memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs)); 417 418 ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg, 419 prot_sgt.nents, NULL, SZ_4K); 420 if (unlikely(ret)) { 421 pr_err("failed to map PI sg (%u)\n", 422 sgt.nents + prot_sgt.nents); 423 goto out_destroy_sig_mr; 424 } 425 426 ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY; 427 ctx->reg->reg_wr.wr.wr_cqe = NULL; 428 ctx->reg->reg_wr.wr.num_sge = 0; 429 ctx->reg->reg_wr.wr.send_flags = 0; 430 ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 431 if (rdma_protocol_iwarp(qp->device, port_num)) 432 ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 433 ctx->reg->reg_wr.mr = ctx->reg->mr; 434 ctx->reg->reg_wr.key = ctx->reg->mr->lkey; 435 count++; 436 437 ctx->reg->sge.addr = ctx->reg->mr->iova; 438 ctx->reg->sge.length = ctx->reg->mr->length; 439 if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE) 440 ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length; 441 442 rdma_wr = &ctx->reg->wr; 443 rdma_wr->wr.sg_list = &ctx->reg->sge; 444 rdma_wr->wr.num_sge = 1; 445 rdma_wr->remote_addr = remote_addr; 446 rdma_wr->rkey = rkey; 447 if (dir == DMA_TO_DEVICE) 448 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 449 else 450 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 451 ctx->reg->reg_wr.wr.next = &rdma_wr->wr; 452 count++; 453 454 return count; 455 456 out_destroy_sig_mr: 457 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 458 out_free_ctx: 459 kfree(ctx->reg); 460 out_unmap_prot_sg: 461 if (prot_sgt.nents) 462 ib_dma_unmap_sgtable_attrs(dev, &prot_sgt, dir, 0); 463 out_unmap_sg: 464 ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0); 465 return ret; 466 } 467 EXPORT_SYMBOL(rdma_rw_ctx_signature_init); 468 469 /* 470 * Now that we are going to post the WRs we can update the lkey and need_inval 471 * state on the MRs. If we were doing this at init time, we would get double 472 * or missing invalidations if a context was initialized but not actually 473 * posted. 474 */ 475 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) 476 { 477 reg->mr->need_inval = need_inval; 478 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); 479 reg->reg_wr.key = reg->mr->lkey; 480 reg->sge.lkey = reg->mr->lkey; 481 } 482 483 /** 484 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation 485 * @ctx: context to operate on 486 * @qp: queue pair to operate on 487 * @port_num: port num to which the connection is bound 488 * @cqe: completion queue entry for the last WR 489 * @chain_wr: WR to append to the posted chain 490 * 491 * Return the WR chain for the set of RDMA READ/WRITE operations described by 492 * @ctx, as well as any memory registration operations needed. If @chain_wr 493 * is non-NULL the WR it points to will be appended to the chain of WRs posted. 494 * If @chain_wr is not set @cqe must be set so that the caller gets a 495 * completion notification. 496 */ 497 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 498 u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 499 { 500 struct ib_send_wr *first_wr, *last_wr; 501 int i; 502 503 switch (ctx->type) { 504 case RDMA_RW_SIG_MR: 505 case RDMA_RW_MR: 506 for (i = 0; i < ctx->nr_ops; i++) { 507 rdma_rw_update_lkey(&ctx->reg[i], 508 ctx->reg[i].wr.wr.opcode != 509 IB_WR_RDMA_READ_WITH_INV); 510 } 511 512 if (ctx->reg[0].inv_wr.next) 513 first_wr = &ctx->reg[0].inv_wr; 514 else 515 first_wr = &ctx->reg[0].reg_wr.wr; 516 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; 517 break; 518 case RDMA_RW_MULTI_WR: 519 first_wr = &ctx->map.wrs[0].wr; 520 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; 521 break; 522 case RDMA_RW_SINGLE_WR: 523 first_wr = &ctx->single.wr.wr; 524 last_wr = &ctx->single.wr.wr; 525 break; 526 default: 527 BUG(); 528 } 529 530 if (chain_wr) { 531 last_wr->next = chain_wr; 532 } else { 533 last_wr->wr_cqe = cqe; 534 last_wr->send_flags |= IB_SEND_SIGNALED; 535 } 536 537 return first_wr; 538 } 539 EXPORT_SYMBOL(rdma_rw_ctx_wrs); 540 541 /** 542 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation 543 * @ctx: context to operate on 544 * @qp: queue pair to operate on 545 * @port_num: port num to which the connection is bound 546 * @cqe: completion queue entry for the last WR 547 * @chain_wr: WR to append to the posted chain 548 * 549 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as 550 * any memory registration operations needed. If @chain_wr is non-NULL the 551 * WR it points to will be appended to the chain of WRs posted. If @chain_wr 552 * is not set @cqe must be set so that the caller gets a completion 553 * notification. 554 */ 555 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, 556 struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 557 { 558 struct ib_send_wr *first_wr; 559 560 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); 561 return ib_post_send(qp, first_wr, NULL); 562 } 563 EXPORT_SYMBOL(rdma_rw_ctx_post); 564 565 /** 566 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init 567 * @ctx: context to release 568 * @qp: queue pair to operate on 569 * @port_num: port num to which the connection is bound 570 * @sg: scatterlist that was used for the READ/WRITE 571 * @sg_cnt: number of entries in @sg 572 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 573 */ 574 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 575 u32 port_num, struct scatterlist *sg, u32 sg_cnt, 576 enum dma_data_direction dir) 577 { 578 int i; 579 580 switch (ctx->type) { 581 case RDMA_RW_MR: 582 for (i = 0; i < ctx->nr_ops; i++) 583 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 584 kfree(ctx->reg); 585 break; 586 case RDMA_RW_MULTI_WR: 587 kfree(ctx->map.wrs); 588 kfree(ctx->map.sges); 589 break; 590 case RDMA_RW_SINGLE_WR: 591 break; 592 default: 593 BUG(); 594 break; 595 } 596 597 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 598 } 599 EXPORT_SYMBOL(rdma_rw_ctx_destroy); 600 601 /** 602 * rdma_rw_ctx_destroy_signature - release all resources allocated by 603 * rdma_rw_ctx_signature_init 604 * @ctx: context to release 605 * @qp: queue pair to operate on 606 * @port_num: port num to which the connection is bound 607 * @sg: scatterlist that was used for the READ/WRITE 608 * @sg_cnt: number of entries in @sg 609 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI 610 * @prot_sg_cnt: number of entries in @prot_sg 611 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 612 */ 613 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 614 u32 port_num, struct scatterlist *sg, u32 sg_cnt, 615 struct scatterlist *prot_sg, u32 prot_sg_cnt, 616 enum dma_data_direction dir) 617 { 618 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) 619 return; 620 621 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 622 kfree(ctx->reg); 623 624 if (prot_sg_cnt) 625 ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); 626 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 627 } 628 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); 629 630 /** 631 * rdma_rw_mr_factor - return number of MRs required for a payload 632 * @device: device handling the connection 633 * @port_num: port num to which the connection is bound 634 * @maxpages: maximum payload pages per rdma_rw_ctx 635 * 636 * Returns the number of MRs the device requires to move @maxpayload 637 * bytes. The returned value is used during transport creation to 638 * compute max_rdma_ctxts and the size of the transport's Send and 639 * Send Completion Queues. 640 */ 641 unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num, 642 unsigned int maxpages) 643 { 644 unsigned int mr_pages; 645 646 if (rdma_rw_can_use_mr(device, port_num)) 647 mr_pages = rdma_rw_fr_page_list_len(device, false); 648 else 649 mr_pages = device->attrs.max_sge_rd; 650 return DIV_ROUND_UP(maxpages, mr_pages); 651 } 652 EXPORT_SYMBOL(rdma_rw_mr_factor); 653 654 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) 655 { 656 u32 factor; 657 658 WARN_ON_ONCE(attr->port_num == 0); 659 660 /* 661 * Each context needs at least one RDMA READ or WRITE WR. 662 * 663 * For some hardware we might need more, eventually we should ask the 664 * HCA driver for a multiplier here. 665 */ 666 factor = 1; 667 668 /* 669 * If the devices needs MRs to perform RDMA READ or WRITE operations, 670 * we'll need two additional MRs for the registrations and the 671 * invalidation. 672 */ 673 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN || 674 rdma_rw_can_use_mr(dev, attr->port_num)) 675 factor += 2; /* inv + reg */ 676 677 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; 678 679 /* 680 * But maybe we were just too high in the sky and the device doesn't 681 * even support all we need, and we'll have to live with what we get.. 682 */ 683 attr->cap.max_send_wr = 684 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); 685 } 686 687 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) 688 { 689 struct ib_device *dev = qp->pd->device; 690 u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0; 691 int ret = 0; 692 693 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) { 694 nr_sig_mrs = attr->cap.max_rdma_ctxs; 695 nr_mrs = attr->cap.max_rdma_ctxs; 696 max_num_sg = rdma_rw_fr_page_list_len(dev, true); 697 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { 698 nr_mrs = attr->cap.max_rdma_ctxs; 699 max_num_sg = rdma_rw_fr_page_list_len(dev, false); 700 } 701 702 if (nr_mrs) { 703 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, 704 IB_MR_TYPE_MEM_REG, 705 max_num_sg, 0); 706 if (ret) { 707 pr_err("%s: failed to allocated %u MRs\n", 708 __func__, nr_mrs); 709 return ret; 710 } 711 } 712 713 if (nr_sig_mrs) { 714 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, 715 IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg); 716 if (ret) { 717 pr_err("%s: failed to allocated %u SIG MRs\n", 718 __func__, nr_sig_mrs); 719 goto out_free_rdma_mrs; 720 } 721 } 722 723 return 0; 724 725 out_free_rdma_mrs: 726 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 727 return ret; 728 } 729 730 void rdma_rw_cleanup_mrs(struct ib_qp *qp) 731 { 732 ib_mr_pool_destroy(qp, &qp->sig_mrs); 733 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 734 } 735