xref: /linux/drivers/infiniband/core/rw.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright (c) 2016 HGST, a Western Digital Company.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  */
13 #include <linux/moduleparam.h>
14 #include <linux/slab.h>
15 #include <linux/pci-p2pdma.h>
16 #include <rdma/mr_pool.h>
17 #include <rdma/rw.h>
18 
19 enum {
20 	RDMA_RW_SINGLE_WR,
21 	RDMA_RW_MULTI_WR,
22 	RDMA_RW_MR,
23 	RDMA_RW_SIG_MR,
24 };
25 
26 static bool rdma_rw_force_mr;
27 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
28 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
29 
30 /*
31  * Check if the device might use memory registration.  This is currently only
32  * true for iWarp devices. In the future we can hopefully fine tune this based
33  * on HCA driver input.
34  */
35 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
36 {
37 	if (rdma_protocol_iwarp(dev, port_num))
38 		return true;
39 	if (unlikely(rdma_rw_force_mr))
40 		return true;
41 	return false;
42 }
43 
44 /*
45  * Check if the device will use memory registration for this RW operation.
46  * We currently always use memory registrations for iWarp RDMA READs, and
47  * have a debug option to force usage of MRs.
48  *
49  * XXX: In the future we can hopefully fine tune this based on HCA driver
50  * input.
51  */
52 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
53 		enum dma_data_direction dir, int dma_nents)
54 {
55 	if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
56 		return true;
57 	if (unlikely(rdma_rw_force_mr))
58 		return true;
59 	return false;
60 }
61 
62 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
63 {
64 	/* arbitrary limit to avoid allocating gigantic resources */
65 	return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
66 }
67 
68 /* Caller must have zero-initialized *reg. */
69 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
70 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
71 		u32 sg_cnt, u32 offset)
72 {
73 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
74 	u32 nents = min(sg_cnt, pages_per_mr);
75 	int count = 0, ret;
76 
77 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
78 	if (!reg->mr)
79 		return -EAGAIN;
80 
81 	if (reg->mr->need_inval) {
82 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
83 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
84 		reg->inv_wr.next = &reg->reg_wr.wr;
85 		count++;
86 	} else {
87 		reg->inv_wr.next = NULL;
88 	}
89 
90 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
91 	if (ret < 0 || ret < nents) {
92 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
93 		return -EINVAL;
94 	}
95 
96 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
97 	reg->reg_wr.mr = reg->mr;
98 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
99 	if (rdma_protocol_iwarp(qp->device, port_num))
100 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
101 	count++;
102 
103 	reg->sge.addr = reg->mr->iova;
104 	reg->sge.length = reg->mr->length;
105 	return count;
106 }
107 
108 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
109 		u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
110 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
111 {
112 	struct rdma_rw_reg_ctx *prev = NULL;
113 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
114 	int i, j, ret = 0, count = 0;
115 
116 	ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
117 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
118 	if (!ctx->reg) {
119 		ret = -ENOMEM;
120 		goto out;
121 	}
122 
123 	for (i = 0; i < ctx->nr_ops; i++) {
124 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
125 		u32 nents = min(sg_cnt, pages_per_mr);
126 
127 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
128 				offset);
129 		if (ret < 0)
130 			goto out_free;
131 		count += ret;
132 
133 		if (prev) {
134 			if (reg->mr->need_inval)
135 				prev->wr.wr.next = &reg->inv_wr;
136 			else
137 				prev->wr.wr.next = &reg->reg_wr.wr;
138 		}
139 
140 		reg->reg_wr.wr.next = &reg->wr.wr;
141 
142 		reg->wr.wr.sg_list = &reg->sge;
143 		reg->wr.wr.num_sge = 1;
144 		reg->wr.remote_addr = remote_addr;
145 		reg->wr.rkey = rkey;
146 		if (dir == DMA_TO_DEVICE) {
147 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
148 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
149 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
150 		} else {
151 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
152 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
153 		}
154 		count++;
155 
156 		remote_addr += reg->sge.length;
157 		sg_cnt -= nents;
158 		for (j = 0; j < nents; j++)
159 			sg = sg_next(sg);
160 		prev = reg;
161 		offset = 0;
162 	}
163 
164 	if (prev)
165 		prev->wr.wr.next = NULL;
166 
167 	ctx->type = RDMA_RW_MR;
168 	return count;
169 
170 out_free:
171 	while (--i >= 0)
172 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
173 	kfree(ctx->reg);
174 out:
175 	return ret;
176 }
177 
178 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
179 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
180 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
181 {
182 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
183 		      qp->max_read_sge;
184 	struct ib_sge *sge;
185 	u32 total_len = 0, i, j;
186 
187 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
188 
189 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
190 	if (!ctx->map.sges)
191 		goto out;
192 
193 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
194 	if (!ctx->map.wrs)
195 		goto out_free_sges;
196 
197 	for (i = 0; i < ctx->nr_ops; i++) {
198 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
199 		u32 nr_sge = min(sg_cnt, max_sge);
200 
201 		if (dir == DMA_TO_DEVICE)
202 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
203 		else
204 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
205 		rdma_wr->remote_addr = remote_addr + total_len;
206 		rdma_wr->rkey = rkey;
207 		rdma_wr->wr.num_sge = nr_sge;
208 		rdma_wr->wr.sg_list = sge;
209 
210 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
211 			sge->addr = sg_dma_address(sg) + offset;
212 			sge->length = sg_dma_len(sg) - offset;
213 			sge->lkey = qp->pd->local_dma_lkey;
214 
215 			total_len += sge->length;
216 			sge++;
217 			sg_cnt--;
218 			offset = 0;
219 		}
220 
221 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
222 			&ctx->map.wrs[i + 1].wr : NULL;
223 	}
224 
225 	ctx->type = RDMA_RW_MULTI_WR;
226 	return ctx->nr_ops;
227 
228 out_free_sges:
229 	kfree(ctx->map.sges);
230 out:
231 	return -ENOMEM;
232 }
233 
234 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
235 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
236 		enum dma_data_direction dir)
237 {
238 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
239 
240 	ctx->nr_ops = 1;
241 
242 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
243 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
244 	ctx->single.sge.length = sg_dma_len(sg) - offset;
245 
246 	memset(rdma_wr, 0, sizeof(*rdma_wr));
247 	if (dir == DMA_TO_DEVICE)
248 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
249 	else
250 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
251 	rdma_wr->wr.sg_list = &ctx->single.sge;
252 	rdma_wr->wr.num_sge = 1;
253 	rdma_wr->remote_addr = remote_addr;
254 	rdma_wr->rkey = rkey;
255 
256 	ctx->type = RDMA_RW_SINGLE_WR;
257 	return 1;
258 }
259 
260 /**
261  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
262  * @ctx:	context to initialize
263  * @qp:		queue pair to operate on
264  * @port_num:	port num to which the connection is bound
265  * @sg:		scatterlist to READ/WRITE from/to
266  * @sg_cnt:	number of entries in @sg
267  * @sg_offset:	current byte offset into @sg
268  * @remote_addr:remote address to read/write (relative to @rkey)
269  * @rkey:	remote key to operate on
270  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
271  *
272  * Returns the number of WQEs that will be needed on the workqueue if
273  * successful, or a negative error code.
274  */
275 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
276 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
277 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
278 {
279 	struct ib_device *dev = qp->pd->device;
280 	int ret;
281 
282 	if (is_pci_p2pdma_page(sg_page(sg)))
283 		ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir);
284 	else
285 		ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
286 
287 	if (!ret)
288 		return -ENOMEM;
289 	sg_cnt = ret;
290 
291 	/*
292 	 * Skip to the S/G entry that sg_offset falls into:
293 	 */
294 	for (;;) {
295 		u32 len = sg_dma_len(sg);
296 
297 		if (sg_offset < len)
298 			break;
299 
300 		sg = sg_next(sg);
301 		sg_offset -= len;
302 		sg_cnt--;
303 	}
304 
305 	ret = -EIO;
306 	if (WARN_ON_ONCE(sg_cnt == 0))
307 		goto out_unmap_sg;
308 
309 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
310 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
311 				sg_offset, remote_addr, rkey, dir);
312 	} else if (sg_cnt > 1) {
313 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
314 				remote_addr, rkey, dir);
315 	} else {
316 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
317 				remote_addr, rkey, dir);
318 	}
319 
320 	if (ret < 0)
321 		goto out_unmap_sg;
322 	return ret;
323 
324 out_unmap_sg:
325 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
326 	return ret;
327 }
328 EXPORT_SYMBOL(rdma_rw_ctx_init);
329 
330 /**
331  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
332  * @ctx:	context to initialize
333  * @qp:		queue pair to operate on
334  * @port_num:	port num to which the connection is bound
335  * @sg:		scatterlist to READ/WRITE from/to
336  * @sg_cnt:	number of entries in @sg
337  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
338  * @prot_sg_cnt: number of entries in @prot_sg
339  * @sig_attrs:	signature offloading algorithms
340  * @remote_addr:remote address to read/write (relative to @rkey)
341  * @rkey:	remote key to operate on
342  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
343  *
344  * Returns the number of WQEs that will be needed on the workqueue if
345  * successful, or a negative error code.
346  */
347 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
348 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
349 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
350 		struct ib_sig_attrs *sig_attrs,
351 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
352 {
353 	struct ib_device *dev = qp->pd->device;
354 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
355 	struct ib_rdma_wr *rdma_wr;
356 	struct ib_send_wr *prev_wr = NULL;
357 	int count = 0, ret;
358 
359 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
360 		pr_err("SG count too large\n");
361 		return -EINVAL;
362 	}
363 
364 	ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
365 	if (!ret)
366 		return -ENOMEM;
367 	sg_cnt = ret;
368 
369 	ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
370 	if (!ret) {
371 		ret = -ENOMEM;
372 		goto out_unmap_sg;
373 	}
374 	prot_sg_cnt = ret;
375 
376 	ctx->type = RDMA_RW_SIG_MR;
377 	ctx->nr_ops = 1;
378 	ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
379 	if (!ctx->sig) {
380 		ret = -ENOMEM;
381 		goto out_unmap_prot_sg;
382 	}
383 
384 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
385 	if (ret < 0)
386 		goto out_free_ctx;
387 	count += ret;
388 	prev_wr = &ctx->sig->data.reg_wr.wr;
389 
390 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
391 				  prot_sg, prot_sg_cnt, 0);
392 	if (ret < 0)
393 		goto out_destroy_data_mr;
394 	count += ret;
395 
396 	if (ctx->sig->prot.inv_wr.next)
397 		prev_wr->next = &ctx->sig->prot.inv_wr;
398 	else
399 		prev_wr->next = &ctx->sig->prot.reg_wr.wr;
400 	prev_wr = &ctx->sig->prot.reg_wr.wr;
401 
402 	ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
403 	if (!ctx->sig->sig_mr) {
404 		ret = -EAGAIN;
405 		goto out_destroy_prot_mr;
406 	}
407 
408 	if (ctx->sig->sig_mr->need_inval) {
409 		memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
410 
411 		ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
412 		ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
413 
414 		prev_wr->next = &ctx->sig->sig_inv_wr;
415 		prev_wr = &ctx->sig->sig_inv_wr;
416 	}
417 
418 	ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
419 	ctx->sig->sig_wr.wr.wr_cqe = NULL;
420 	ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
421 	ctx->sig->sig_wr.wr.num_sge = 1;
422 	ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
423 	ctx->sig->sig_wr.sig_attrs = sig_attrs;
424 	ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
425 	if (prot_sg_cnt)
426 		ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
427 	prev_wr->next = &ctx->sig->sig_wr.wr;
428 	prev_wr = &ctx->sig->sig_wr.wr;
429 	count++;
430 
431 	ctx->sig->sig_sge.addr = 0;
432 	ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
433 	if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
434 		ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
435 
436 	rdma_wr = &ctx->sig->data.wr;
437 	rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
438 	rdma_wr->wr.num_sge = 1;
439 	rdma_wr->remote_addr = remote_addr;
440 	rdma_wr->rkey = rkey;
441 	if (dir == DMA_TO_DEVICE)
442 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
443 	else
444 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
445 	prev_wr->next = &rdma_wr->wr;
446 	prev_wr = &rdma_wr->wr;
447 	count++;
448 
449 	return count;
450 
451 out_destroy_prot_mr:
452 	if (prot_sg_cnt)
453 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
454 out_destroy_data_mr:
455 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
456 out_free_ctx:
457 	kfree(ctx->sig);
458 out_unmap_prot_sg:
459 	ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
460 out_unmap_sg:
461 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
462 	return ret;
463 }
464 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
465 
466 /*
467  * Now that we are going to post the WRs we can update the lkey and need_inval
468  * state on the MRs.  If we were doing this at init time, we would get double
469  * or missing invalidations if a context was initialized but not actually
470  * posted.
471  */
472 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
473 {
474 	reg->mr->need_inval = need_inval;
475 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
476 	reg->reg_wr.key = reg->mr->lkey;
477 	reg->sge.lkey = reg->mr->lkey;
478 }
479 
480 /**
481  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
482  * @ctx:	context to operate on
483  * @qp:		queue pair to operate on
484  * @port_num:	port num to which the connection is bound
485  * @cqe:	completion queue entry for the last WR
486  * @chain_wr:	WR to append to the posted chain
487  *
488  * Return the WR chain for the set of RDMA READ/WRITE operations described by
489  * @ctx, as well as any memory registration operations needed.  If @chain_wr
490  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
491  * If @chain_wr is not set @cqe must be set so that the caller gets a
492  * completion notification.
493  */
494 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
495 		u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
496 {
497 	struct ib_send_wr *first_wr, *last_wr;
498 	int i;
499 
500 	switch (ctx->type) {
501 	case RDMA_RW_SIG_MR:
502 		rdma_rw_update_lkey(&ctx->sig->data, true);
503 		if (ctx->sig->prot.mr)
504 			rdma_rw_update_lkey(&ctx->sig->prot, true);
505 
506 		ctx->sig->sig_mr->need_inval = true;
507 		ib_update_fast_reg_key(ctx->sig->sig_mr,
508 			ib_inc_rkey(ctx->sig->sig_mr->lkey));
509 		ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
510 
511 		if (ctx->sig->data.inv_wr.next)
512 			first_wr = &ctx->sig->data.inv_wr;
513 		else
514 			first_wr = &ctx->sig->data.reg_wr.wr;
515 		last_wr = &ctx->sig->data.wr.wr;
516 		break;
517 	case RDMA_RW_MR:
518 		for (i = 0; i < ctx->nr_ops; i++) {
519 			rdma_rw_update_lkey(&ctx->reg[i],
520 				ctx->reg[i].wr.wr.opcode !=
521 					IB_WR_RDMA_READ_WITH_INV);
522 		}
523 
524 		if (ctx->reg[0].inv_wr.next)
525 			first_wr = &ctx->reg[0].inv_wr;
526 		else
527 			first_wr = &ctx->reg[0].reg_wr.wr;
528 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
529 		break;
530 	case RDMA_RW_MULTI_WR:
531 		first_wr = &ctx->map.wrs[0].wr;
532 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
533 		break;
534 	case RDMA_RW_SINGLE_WR:
535 		first_wr = &ctx->single.wr.wr;
536 		last_wr = &ctx->single.wr.wr;
537 		break;
538 	default:
539 		BUG();
540 	}
541 
542 	if (chain_wr) {
543 		last_wr->next = chain_wr;
544 	} else {
545 		last_wr->wr_cqe = cqe;
546 		last_wr->send_flags |= IB_SEND_SIGNALED;
547 	}
548 
549 	return first_wr;
550 }
551 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
552 
553 /**
554  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
555  * @ctx:	context to operate on
556  * @qp:		queue pair to operate on
557  * @port_num:	port num to which the connection is bound
558  * @cqe:	completion queue entry for the last WR
559  * @chain_wr:	WR to append to the posted chain
560  *
561  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
562  * any memory registration operations needed.  If @chain_wr is non-NULL the
563  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
564  * is not set @cqe must be set so that the caller gets a completion
565  * notification.
566  */
567 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
568 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
569 {
570 	struct ib_send_wr *first_wr;
571 
572 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
573 	return ib_post_send(qp, first_wr, NULL);
574 }
575 EXPORT_SYMBOL(rdma_rw_ctx_post);
576 
577 /**
578  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
579  * @ctx:	context to release
580  * @qp:		queue pair to operate on
581  * @port_num:	port num to which the connection is bound
582  * @sg:		scatterlist that was used for the READ/WRITE
583  * @sg_cnt:	number of entries in @sg
584  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
585  */
586 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
587 		struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
588 {
589 	int i;
590 
591 	switch (ctx->type) {
592 	case RDMA_RW_MR:
593 		for (i = 0; i < ctx->nr_ops; i++)
594 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
595 		kfree(ctx->reg);
596 		break;
597 	case RDMA_RW_MULTI_WR:
598 		kfree(ctx->map.wrs);
599 		kfree(ctx->map.sges);
600 		break;
601 	case RDMA_RW_SINGLE_WR:
602 		break;
603 	default:
604 		BUG();
605 		break;
606 	}
607 
608 	/* P2PDMA contexts do not need to be unmapped */
609 	if (!is_pci_p2pdma_page(sg_page(sg)))
610 		ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
611 }
612 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
613 
614 /**
615  * rdma_rw_ctx_destroy_signature - release all resources allocated by
616  *	rdma_rw_ctx_init_signature
617  * @ctx:	context to release
618  * @qp:		queue pair to operate on
619  * @port_num:	port num to which the connection is bound
620  * @sg:		scatterlist that was used for the READ/WRITE
621  * @sg_cnt:	number of entries in @sg
622  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
623  * @prot_sg_cnt: number of entries in @prot_sg
624  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
625  */
626 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
627 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
628 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
629 		enum dma_data_direction dir)
630 {
631 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
632 		return;
633 
634 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
635 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
636 
637 	if (ctx->sig->prot.mr) {
638 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
639 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
640 	}
641 
642 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
643 	kfree(ctx->sig);
644 }
645 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
646 
647 /**
648  * rdma_rw_mr_factor - return number of MRs required for a payload
649  * @device:	device handling the connection
650  * @port_num:	port num to which the connection is bound
651  * @maxpages:	maximum payload pages per rdma_rw_ctx
652  *
653  * Returns the number of MRs the device requires to move @maxpayload
654  * bytes. The returned value is used during transport creation to
655  * compute max_rdma_ctxts and the size of the transport's Send and
656  * Send Completion Queues.
657  */
658 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
659 			       unsigned int maxpages)
660 {
661 	unsigned int mr_pages;
662 
663 	if (rdma_rw_can_use_mr(device, port_num))
664 		mr_pages = rdma_rw_fr_page_list_len(device);
665 	else
666 		mr_pages = device->attrs.max_sge_rd;
667 	return DIV_ROUND_UP(maxpages, mr_pages);
668 }
669 EXPORT_SYMBOL(rdma_rw_mr_factor);
670 
671 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
672 {
673 	u32 factor;
674 
675 	WARN_ON_ONCE(attr->port_num == 0);
676 
677 	/*
678 	 * Each context needs at least one RDMA READ or WRITE WR.
679 	 *
680 	 * For some hardware we might need more, eventually we should ask the
681 	 * HCA driver for a multiplier here.
682 	 */
683 	factor = 1;
684 
685 	/*
686 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
687 	 * we'll need two additional MRs for the registrations and the
688 	 * invalidation.
689 	 */
690 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
691 		factor += 6;	/* (inv + reg) * (data + prot + sig) */
692 	else if (rdma_rw_can_use_mr(dev, attr->port_num))
693 		factor += 2;	/* inv + reg */
694 
695 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
696 
697 	/*
698 	 * But maybe we were just too high in the sky and the device doesn't
699 	 * even support all we need, and we'll have to live with what we get..
700 	 */
701 	attr->cap.max_send_wr =
702 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
703 }
704 
705 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
706 {
707 	struct ib_device *dev = qp->pd->device;
708 	u32 nr_mrs = 0, nr_sig_mrs = 0;
709 	int ret = 0;
710 
711 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
712 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
713 		nr_mrs = attr->cap.max_rdma_ctxs * 2;
714 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
715 		nr_mrs = attr->cap.max_rdma_ctxs;
716 	}
717 
718 	if (nr_mrs) {
719 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
720 				IB_MR_TYPE_MEM_REG,
721 				rdma_rw_fr_page_list_len(dev));
722 		if (ret) {
723 			pr_err("%s: failed to allocated %d MRs\n",
724 				__func__, nr_mrs);
725 			return ret;
726 		}
727 	}
728 
729 	if (nr_sig_mrs) {
730 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
731 				IB_MR_TYPE_SIGNATURE, 2);
732 		if (ret) {
733 			pr_err("%s: failed to allocated %d SIG MRs\n",
734 				__func__, nr_mrs);
735 			goto out_free_rdma_mrs;
736 		}
737 	}
738 
739 	return 0;
740 
741 out_free_rdma_mrs:
742 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
743 	return ret;
744 }
745 
746 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
747 {
748 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
749 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
750 }
751