1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 62 /* 63 * Each of the three rwsem locks (devices, clients, client_data) protects the 64 * xarray of the same name. Specifically it allows the caller to assert that 65 * the MARK will/will not be changing under the lock, and for devices and 66 * clients, that the value in the xarray is still a valid pointer. Change of 67 * the MARK is linked to the object state, so holding the lock and testing the 68 * MARK also asserts that the contained object is in a certain state. 69 * 70 * This is used to build a two stage register/unregister flow where objects 71 * can continue to be in the xarray even though they are still in progress to 72 * register/unregister. 73 * 74 * The xarray itself provides additional locking, and restartable iteration, 75 * which is also relied on. 76 * 77 * Locks should not be nested, with the exception of client_data, which is 78 * allowed to nest under the read side of the other two locks. 79 * 80 * The devices_rwsem also protects the device name list, any change or 81 * assignment of device name must also hold the write side to guarantee unique 82 * names. 83 */ 84 85 /* 86 * devices contains devices that have had their names assigned. The 87 * devices may not be registered. Users that care about the registration 88 * status need to call ib_device_try_get() on the device to ensure it is 89 * registered, and keep it registered, for the required duration. 90 * 91 */ 92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 93 static DECLARE_RWSEM(devices_rwsem); 94 #define DEVICE_REGISTERED XA_MARK_1 95 96 static u32 highest_client_id; 97 #define CLIENT_REGISTERED XA_MARK_1 98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 99 static DECLARE_RWSEM(clients_rwsem); 100 101 static void ib_client_put(struct ib_client *client) 102 { 103 if (refcount_dec_and_test(&client->uses)) 104 complete(&client->uses_zero); 105 } 106 107 /* 108 * If client_data is registered then the corresponding client must also still 109 * be registered. 110 */ 111 #define CLIENT_DATA_REGISTERED XA_MARK_1 112 113 unsigned int rdma_dev_net_id; 114 115 /* 116 * A list of net namespaces is maintained in an xarray. This is necessary 117 * because we can't get the locking right using the existing net ns list. We 118 * would require a init_net callback after the list is updated. 119 */ 120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 121 /* 122 * rwsem to protect accessing the rdma_nets xarray entries. 123 */ 124 static DECLARE_RWSEM(rdma_nets_rwsem); 125 126 bool ib_devices_shared_netns = true; 127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 128 MODULE_PARM_DESC(netns_mode, 129 "Share device among net namespaces; default=1 (shared)"); 130 /** 131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 132 * from a specified net namespace or not. 133 * @dev: Pointer to rdma device which needs to be checked 134 * @net: Pointer to net namesapce for which access to be checked 135 * 136 * When the rdma device is in shared mode, it ignores the net namespace. 137 * When the rdma device is exclusive to a net namespace, rdma device net 138 * namespace is checked against the specified one. 139 */ 140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 141 { 142 return (ib_devices_shared_netns || 143 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 144 } 145 EXPORT_SYMBOL(rdma_dev_access_netns); 146 147 /* 148 * xarray has this behavior where it won't iterate over NULL values stored in 149 * allocated arrays. So we need our own iterator to see all values stored in 150 * the array. This does the same thing as xa_for_each except that it also 151 * returns NULL valued entries if the array is allocating. Simplified to only 152 * work on simple xarrays. 153 */ 154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 155 xa_mark_t filter) 156 { 157 XA_STATE(xas, xa, *indexp); 158 void *entry; 159 160 rcu_read_lock(); 161 do { 162 entry = xas_find_marked(&xas, ULONG_MAX, filter); 163 if (xa_is_zero(entry)) 164 break; 165 } while (xas_retry(&xas, entry)); 166 rcu_read_unlock(); 167 168 if (entry) { 169 *indexp = xas.xa_index; 170 if (xa_is_zero(entry)) 171 return NULL; 172 return entry; 173 } 174 return XA_ERROR(-ENOENT); 175 } 176 #define xan_for_each_marked(xa, index, entry, filter) \ 177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 178 !xa_is_err(entry); \ 179 (index)++, entry = xan_find_marked(xa, &(index), filter)) 180 181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 182 static DEFINE_SPINLOCK(ndev_hash_lock); 183 static DECLARE_HASHTABLE(ndev_hash, 5); 184 185 static void free_netdevs(struct ib_device *ib_dev); 186 static void ib_unregister_work(struct work_struct *work); 187 static void __ib_unregister_device(struct ib_device *device); 188 static int ib_security_change(struct notifier_block *nb, unsigned long event, 189 void *lsm_data); 190 static void ib_policy_change_task(struct work_struct *work); 191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 192 193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 194 struct va_format *vaf) 195 { 196 if (ibdev && ibdev->dev.parent) 197 dev_printk_emit(level[1] - '0', 198 ibdev->dev.parent, 199 "%s %s %s: %pV", 200 dev_driver_string(ibdev->dev.parent), 201 dev_name(ibdev->dev.parent), 202 dev_name(&ibdev->dev), 203 vaf); 204 else if (ibdev) 205 printk("%s%s: %pV", 206 level, dev_name(&ibdev->dev), vaf); 207 else 208 printk("%s(NULL ib_device): %pV", level, vaf); 209 } 210 211 void ibdev_printk(const char *level, const struct ib_device *ibdev, 212 const char *format, ...) 213 { 214 struct va_format vaf; 215 va_list args; 216 217 va_start(args, format); 218 219 vaf.fmt = format; 220 vaf.va = &args; 221 222 __ibdev_printk(level, ibdev, &vaf); 223 224 va_end(args); 225 } 226 EXPORT_SYMBOL(ibdev_printk); 227 228 #define define_ibdev_printk_level(func, level) \ 229 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 230 { \ 231 struct va_format vaf; \ 232 va_list args; \ 233 \ 234 va_start(args, fmt); \ 235 \ 236 vaf.fmt = fmt; \ 237 vaf.va = &args; \ 238 \ 239 __ibdev_printk(level, ibdev, &vaf); \ 240 \ 241 va_end(args); \ 242 } \ 243 EXPORT_SYMBOL(func); 244 245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 248 define_ibdev_printk_level(ibdev_err, KERN_ERR); 249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 251 define_ibdev_printk_level(ibdev_info, KERN_INFO); 252 253 static struct notifier_block ibdev_lsm_nb = { 254 .notifier_call = ib_security_change, 255 }; 256 257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 258 struct net *net); 259 260 /* Pointer to the RCU head at the start of the ib_port_data array */ 261 struct ib_port_data_rcu { 262 struct rcu_head rcu_head; 263 struct ib_port_data pdata[]; 264 }; 265 266 static void ib_device_check_mandatory(struct ib_device *device) 267 { 268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 269 static const struct { 270 size_t offset; 271 char *name; 272 } mandatory_table[] = { 273 IB_MANDATORY_FUNC(query_device), 274 IB_MANDATORY_FUNC(query_port), 275 IB_MANDATORY_FUNC(query_pkey), 276 IB_MANDATORY_FUNC(alloc_pd), 277 IB_MANDATORY_FUNC(dealloc_pd), 278 IB_MANDATORY_FUNC(create_qp), 279 IB_MANDATORY_FUNC(modify_qp), 280 IB_MANDATORY_FUNC(destroy_qp), 281 IB_MANDATORY_FUNC(post_send), 282 IB_MANDATORY_FUNC(post_recv), 283 IB_MANDATORY_FUNC(create_cq), 284 IB_MANDATORY_FUNC(destroy_cq), 285 IB_MANDATORY_FUNC(poll_cq), 286 IB_MANDATORY_FUNC(req_notify_cq), 287 IB_MANDATORY_FUNC(get_dma_mr), 288 IB_MANDATORY_FUNC(dereg_mr), 289 IB_MANDATORY_FUNC(get_port_immutable) 290 }; 291 int i; 292 293 device->kverbs_provider = true; 294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 295 if (!*(void **) ((void *) &device->ops + 296 mandatory_table[i].offset)) { 297 device->kverbs_provider = false; 298 break; 299 } 300 } 301 } 302 303 /* 304 * Caller must perform ib_device_put() to return the device reference count 305 * when ib_device_get_by_index() returns valid device pointer. 306 */ 307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 308 { 309 struct ib_device *device; 310 311 down_read(&devices_rwsem); 312 device = xa_load(&devices, index); 313 if (device) { 314 if (!rdma_dev_access_netns(device, net)) { 315 device = NULL; 316 goto out; 317 } 318 319 if (!ib_device_try_get(device)) 320 device = NULL; 321 } 322 out: 323 up_read(&devices_rwsem); 324 return device; 325 } 326 327 /** 328 * ib_device_put - Release IB device reference 329 * @device: device whose reference to be released 330 * 331 * ib_device_put() releases reference to the IB device to allow it to be 332 * unregistered and eventually free. 333 */ 334 void ib_device_put(struct ib_device *device) 335 { 336 if (refcount_dec_and_test(&device->refcount)) 337 complete(&device->unreg_completion); 338 } 339 EXPORT_SYMBOL(ib_device_put); 340 341 static struct ib_device *__ib_device_get_by_name(const char *name) 342 { 343 struct ib_device *device; 344 unsigned long index; 345 346 xa_for_each (&devices, index, device) 347 if (!strcmp(name, dev_name(&device->dev))) 348 return device; 349 350 return NULL; 351 } 352 353 /** 354 * ib_device_get_by_name - Find an IB device by name 355 * @name: The name to look for 356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 357 * 358 * Find and hold an ib_device by its name. The caller must call 359 * ib_device_put() on the returned pointer. 360 */ 361 struct ib_device *ib_device_get_by_name(const char *name, 362 enum rdma_driver_id driver_id) 363 { 364 struct ib_device *device; 365 366 down_read(&devices_rwsem); 367 device = __ib_device_get_by_name(name); 368 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 369 device->ops.driver_id != driver_id) 370 device = NULL; 371 372 if (device) { 373 if (!ib_device_try_get(device)) 374 device = NULL; 375 } 376 up_read(&devices_rwsem); 377 return device; 378 } 379 EXPORT_SYMBOL(ib_device_get_by_name); 380 381 static int rename_compat_devs(struct ib_device *device) 382 { 383 struct ib_core_device *cdev; 384 unsigned long index; 385 int ret = 0; 386 387 mutex_lock(&device->compat_devs_mutex); 388 xa_for_each (&device->compat_devs, index, cdev) { 389 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 390 if (ret) { 391 dev_warn(&cdev->dev, 392 "Fail to rename compatdev to new name %s\n", 393 dev_name(&device->dev)); 394 break; 395 } 396 } 397 mutex_unlock(&device->compat_devs_mutex); 398 return ret; 399 } 400 401 int ib_device_rename(struct ib_device *ibdev, const char *name) 402 { 403 unsigned long index; 404 void *client_data; 405 int ret; 406 407 down_write(&devices_rwsem); 408 if (!strcmp(name, dev_name(&ibdev->dev))) { 409 up_write(&devices_rwsem); 410 return 0; 411 } 412 413 if (__ib_device_get_by_name(name)) { 414 up_write(&devices_rwsem); 415 return -EEXIST; 416 } 417 418 ret = device_rename(&ibdev->dev, name); 419 if (ret) { 420 up_write(&devices_rwsem); 421 return ret; 422 } 423 424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 425 ret = rename_compat_devs(ibdev); 426 427 downgrade_write(&devices_rwsem); 428 down_read(&ibdev->client_data_rwsem); 429 xan_for_each_marked(&ibdev->client_data, index, client_data, 430 CLIENT_DATA_REGISTERED) { 431 struct ib_client *client = xa_load(&clients, index); 432 433 if (!client || !client->rename) 434 continue; 435 436 client->rename(ibdev, client_data); 437 } 438 up_read(&ibdev->client_data_rwsem); 439 up_read(&devices_rwsem); 440 return 0; 441 } 442 443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 444 { 445 if (use_dim > 1) 446 return -EINVAL; 447 ibdev->use_cq_dim = use_dim; 448 449 return 0; 450 } 451 452 static int alloc_name(struct ib_device *ibdev, const char *name) 453 { 454 struct ib_device *device; 455 unsigned long index; 456 struct ida inuse; 457 int rc; 458 int i; 459 460 lockdep_assert_held_write(&devices_rwsem); 461 ida_init(&inuse); 462 xa_for_each (&devices, index, device) { 463 char buf[IB_DEVICE_NAME_MAX]; 464 465 if (sscanf(dev_name(&device->dev), name, &i) != 1) 466 continue; 467 if (i < 0 || i >= INT_MAX) 468 continue; 469 snprintf(buf, sizeof buf, name, i); 470 if (strcmp(buf, dev_name(&device->dev)) != 0) 471 continue; 472 473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 474 if (rc < 0) 475 goto out; 476 } 477 478 rc = ida_alloc(&inuse, GFP_KERNEL); 479 if (rc < 0) 480 goto out; 481 482 rc = dev_set_name(&ibdev->dev, name, rc); 483 out: 484 ida_destroy(&inuse); 485 return rc; 486 } 487 488 static void ib_device_release(struct device *device) 489 { 490 struct ib_device *dev = container_of(device, struct ib_device, dev); 491 492 free_netdevs(dev); 493 WARN_ON(refcount_read(&dev->refcount)); 494 if (dev->port_data) { 495 ib_cache_release_one(dev); 496 ib_security_release_port_pkey_list(dev); 497 rdma_counter_release(dev); 498 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 499 pdata[0]), 500 rcu_head); 501 } 502 503 mutex_destroy(&dev->unregistration_lock); 504 mutex_destroy(&dev->compat_devs_mutex); 505 506 xa_destroy(&dev->compat_devs); 507 xa_destroy(&dev->client_data); 508 kfree_rcu(dev, rcu_head); 509 } 510 511 static int ib_device_uevent(struct device *device, 512 struct kobj_uevent_env *env) 513 { 514 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 515 return -ENOMEM; 516 517 /* 518 * It would be nice to pass the node GUID with the event... 519 */ 520 521 return 0; 522 } 523 524 static const void *net_namespace(struct device *d) 525 { 526 struct ib_core_device *coredev = 527 container_of(d, struct ib_core_device, dev); 528 529 return read_pnet(&coredev->rdma_net); 530 } 531 532 static struct class ib_class = { 533 .name = "infiniband", 534 .dev_release = ib_device_release, 535 .dev_uevent = ib_device_uevent, 536 .ns_type = &net_ns_type_operations, 537 .namespace = net_namespace, 538 }; 539 540 static void rdma_init_coredev(struct ib_core_device *coredev, 541 struct ib_device *dev, struct net *net) 542 { 543 /* This BUILD_BUG_ON is intended to catch layout change 544 * of union of ib_core_device and device. 545 * dev must be the first element as ib_core and providers 546 * driver uses it. Adding anything in ib_core_device before 547 * device will break this assumption. 548 */ 549 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 550 offsetof(struct ib_device, dev)); 551 552 coredev->dev.class = &ib_class; 553 coredev->dev.groups = dev->groups; 554 device_initialize(&coredev->dev); 555 coredev->owner = dev; 556 INIT_LIST_HEAD(&coredev->port_list); 557 write_pnet(&coredev->rdma_net, net); 558 } 559 560 /** 561 * _ib_alloc_device - allocate an IB device struct 562 * @size:size of structure to allocate 563 * 564 * Low-level drivers should use ib_alloc_device() to allocate &struct 565 * ib_device. @size is the size of the structure to be allocated, 566 * including any private data used by the low-level driver. 567 * ib_dealloc_device() must be used to free structures allocated with 568 * ib_alloc_device(). 569 */ 570 struct ib_device *_ib_alloc_device(size_t size) 571 { 572 struct ib_device *device; 573 574 if (WARN_ON(size < sizeof(struct ib_device))) 575 return NULL; 576 577 device = kzalloc(size, GFP_KERNEL); 578 if (!device) 579 return NULL; 580 581 if (rdma_restrack_init(device)) { 582 kfree(device); 583 return NULL; 584 } 585 586 device->groups[0] = &ib_dev_attr_group; 587 rdma_init_coredev(&device->coredev, device, &init_net); 588 589 INIT_LIST_HEAD(&device->event_handler_list); 590 spin_lock_init(&device->qp_open_list_lock); 591 init_rwsem(&device->event_handler_rwsem); 592 mutex_init(&device->unregistration_lock); 593 /* 594 * client_data needs to be alloc because we don't want our mark to be 595 * destroyed if the user stores NULL in the client data. 596 */ 597 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 598 init_rwsem(&device->client_data_rwsem); 599 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 600 mutex_init(&device->compat_devs_mutex); 601 init_completion(&device->unreg_completion); 602 INIT_WORK(&device->unregistration_work, ib_unregister_work); 603 604 return device; 605 } 606 EXPORT_SYMBOL(_ib_alloc_device); 607 608 /** 609 * ib_dealloc_device - free an IB device struct 610 * @device:structure to free 611 * 612 * Free a structure allocated with ib_alloc_device(). 613 */ 614 void ib_dealloc_device(struct ib_device *device) 615 { 616 if (device->ops.dealloc_driver) 617 device->ops.dealloc_driver(device); 618 619 /* 620 * ib_unregister_driver() requires all devices to remain in the xarray 621 * while their ops are callable. The last op we call is dealloc_driver 622 * above. This is needed to create a fence on op callbacks prior to 623 * allowing the driver module to unload. 624 */ 625 down_write(&devices_rwsem); 626 if (xa_load(&devices, device->index) == device) 627 xa_erase(&devices, device->index); 628 up_write(&devices_rwsem); 629 630 /* Expedite releasing netdev references */ 631 free_netdevs(device); 632 633 WARN_ON(!xa_empty(&device->compat_devs)); 634 WARN_ON(!xa_empty(&device->client_data)); 635 WARN_ON(refcount_read(&device->refcount)); 636 rdma_restrack_clean(device); 637 /* Balances with device_initialize */ 638 put_device(&device->dev); 639 } 640 EXPORT_SYMBOL(ib_dealloc_device); 641 642 /* 643 * add_client_context() and remove_client_context() must be safe against 644 * parallel calls on the same device - registration/unregistration of both the 645 * device and client can be occurring in parallel. 646 * 647 * The routines need to be a fence, any caller must not return until the add 648 * or remove is fully completed. 649 */ 650 static int add_client_context(struct ib_device *device, 651 struct ib_client *client) 652 { 653 int ret = 0; 654 655 if (!device->kverbs_provider && !client->no_kverbs_req) 656 return 0; 657 658 down_write(&device->client_data_rwsem); 659 /* 660 * So long as the client is registered hold both the client and device 661 * unregistration locks. 662 */ 663 if (!refcount_inc_not_zero(&client->uses)) 664 goto out_unlock; 665 refcount_inc(&device->refcount); 666 667 /* 668 * Another caller to add_client_context got here first and has already 669 * completely initialized context. 670 */ 671 if (xa_get_mark(&device->client_data, client->client_id, 672 CLIENT_DATA_REGISTERED)) 673 goto out; 674 675 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 676 GFP_KERNEL)); 677 if (ret) 678 goto out; 679 downgrade_write(&device->client_data_rwsem); 680 if (client->add) { 681 if (client->add(device)) { 682 /* 683 * If a client fails to add then the error code is 684 * ignored, but we won't call any more ops on this 685 * client. 686 */ 687 xa_erase(&device->client_data, client->client_id); 688 up_read(&device->client_data_rwsem); 689 ib_device_put(device); 690 ib_client_put(client); 691 return 0; 692 } 693 } 694 695 /* Readers shall not see a client until add has been completed */ 696 xa_set_mark(&device->client_data, client->client_id, 697 CLIENT_DATA_REGISTERED); 698 up_read(&device->client_data_rwsem); 699 return 0; 700 701 out: 702 ib_device_put(device); 703 ib_client_put(client); 704 out_unlock: 705 up_write(&device->client_data_rwsem); 706 return ret; 707 } 708 709 static void remove_client_context(struct ib_device *device, 710 unsigned int client_id) 711 { 712 struct ib_client *client; 713 void *client_data; 714 715 down_write(&device->client_data_rwsem); 716 if (!xa_get_mark(&device->client_data, client_id, 717 CLIENT_DATA_REGISTERED)) { 718 up_write(&device->client_data_rwsem); 719 return; 720 } 721 client_data = xa_load(&device->client_data, client_id); 722 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 723 client = xa_load(&clients, client_id); 724 up_write(&device->client_data_rwsem); 725 726 /* 727 * Notice we cannot be holding any exclusive locks when calling the 728 * remove callback as the remove callback can recurse back into any 729 * public functions in this module and thus try for any locks those 730 * functions take. 731 * 732 * For this reason clients and drivers should not call the 733 * unregistration functions will holdling any locks. 734 */ 735 if (client->remove) 736 client->remove(device, client_data); 737 738 xa_erase(&device->client_data, client_id); 739 ib_device_put(device); 740 ib_client_put(client); 741 } 742 743 static int alloc_port_data(struct ib_device *device) 744 { 745 struct ib_port_data_rcu *pdata_rcu; 746 unsigned int port; 747 748 if (device->port_data) 749 return 0; 750 751 /* This can only be called once the physical port range is defined */ 752 if (WARN_ON(!device->phys_port_cnt)) 753 return -EINVAL; 754 755 /* 756 * device->port_data is indexed directly by the port number to make 757 * access to this data as efficient as possible. 758 * 759 * Therefore port_data is declared as a 1 based array with potential 760 * empty slots at the beginning. 761 */ 762 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 763 rdma_end_port(device) + 1), 764 GFP_KERNEL); 765 if (!pdata_rcu) 766 return -ENOMEM; 767 /* 768 * The rcu_head is put in front of the port data array and the stored 769 * pointer is adjusted since we never need to see that member until 770 * kfree_rcu. 771 */ 772 device->port_data = pdata_rcu->pdata; 773 774 rdma_for_each_port (device, port) { 775 struct ib_port_data *pdata = &device->port_data[port]; 776 777 pdata->ib_dev = device; 778 spin_lock_init(&pdata->pkey_list_lock); 779 INIT_LIST_HEAD(&pdata->pkey_list); 780 spin_lock_init(&pdata->netdev_lock); 781 INIT_HLIST_NODE(&pdata->ndev_hash_link); 782 } 783 return 0; 784 } 785 786 static int verify_immutable(const struct ib_device *dev, u8 port) 787 { 788 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 789 rdma_max_mad_size(dev, port) != 0); 790 } 791 792 static int setup_port_data(struct ib_device *device) 793 { 794 unsigned int port; 795 int ret; 796 797 ret = alloc_port_data(device); 798 if (ret) 799 return ret; 800 801 rdma_for_each_port (device, port) { 802 struct ib_port_data *pdata = &device->port_data[port]; 803 804 ret = device->ops.get_port_immutable(device, port, 805 &pdata->immutable); 806 if (ret) 807 return ret; 808 809 if (verify_immutable(device, port)) 810 return -EINVAL; 811 } 812 return 0; 813 } 814 815 void ib_get_device_fw_str(struct ib_device *dev, char *str) 816 { 817 if (dev->ops.get_dev_fw_str) 818 dev->ops.get_dev_fw_str(dev, str); 819 else 820 str[0] = '\0'; 821 } 822 EXPORT_SYMBOL(ib_get_device_fw_str); 823 824 static void ib_policy_change_task(struct work_struct *work) 825 { 826 struct ib_device *dev; 827 unsigned long index; 828 829 down_read(&devices_rwsem); 830 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 831 unsigned int i; 832 833 rdma_for_each_port (dev, i) { 834 u64 sp; 835 int ret = ib_get_cached_subnet_prefix(dev, 836 i, 837 &sp); 838 839 WARN_ONCE(ret, 840 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 841 ret); 842 if (!ret) 843 ib_security_cache_change(dev, i, sp); 844 } 845 } 846 up_read(&devices_rwsem); 847 } 848 849 static int ib_security_change(struct notifier_block *nb, unsigned long event, 850 void *lsm_data) 851 { 852 if (event != LSM_POLICY_CHANGE) 853 return NOTIFY_DONE; 854 855 schedule_work(&ib_policy_change_work); 856 ib_mad_agent_security_change(); 857 858 return NOTIFY_OK; 859 } 860 861 static void compatdev_release(struct device *dev) 862 { 863 struct ib_core_device *cdev = 864 container_of(dev, struct ib_core_device, dev); 865 866 kfree(cdev); 867 } 868 869 static int add_one_compat_dev(struct ib_device *device, 870 struct rdma_dev_net *rnet) 871 { 872 struct ib_core_device *cdev; 873 int ret; 874 875 lockdep_assert_held(&rdma_nets_rwsem); 876 if (!ib_devices_shared_netns) 877 return 0; 878 879 /* 880 * Create and add compat device in all namespaces other than where it 881 * is currently bound to. 882 */ 883 if (net_eq(read_pnet(&rnet->net), 884 read_pnet(&device->coredev.rdma_net))) 885 return 0; 886 887 /* 888 * The first of init_net() or ib_register_device() to take the 889 * compat_devs_mutex wins and gets to add the device. Others will wait 890 * for completion here. 891 */ 892 mutex_lock(&device->compat_devs_mutex); 893 cdev = xa_load(&device->compat_devs, rnet->id); 894 if (cdev) { 895 ret = 0; 896 goto done; 897 } 898 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 899 if (ret) 900 goto done; 901 902 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 903 if (!cdev) { 904 ret = -ENOMEM; 905 goto cdev_err; 906 } 907 908 cdev->dev.parent = device->dev.parent; 909 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 910 cdev->dev.release = compatdev_release; 911 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 912 if (ret) 913 goto add_err; 914 915 ret = device_add(&cdev->dev); 916 if (ret) 917 goto add_err; 918 ret = ib_setup_port_attrs(cdev); 919 if (ret) 920 goto port_err; 921 922 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 923 cdev, GFP_KERNEL)); 924 if (ret) 925 goto insert_err; 926 927 mutex_unlock(&device->compat_devs_mutex); 928 return 0; 929 930 insert_err: 931 ib_free_port_attrs(cdev); 932 port_err: 933 device_del(&cdev->dev); 934 add_err: 935 put_device(&cdev->dev); 936 cdev_err: 937 xa_release(&device->compat_devs, rnet->id); 938 done: 939 mutex_unlock(&device->compat_devs_mutex); 940 return ret; 941 } 942 943 static void remove_one_compat_dev(struct ib_device *device, u32 id) 944 { 945 struct ib_core_device *cdev; 946 947 mutex_lock(&device->compat_devs_mutex); 948 cdev = xa_erase(&device->compat_devs, id); 949 mutex_unlock(&device->compat_devs_mutex); 950 if (cdev) { 951 ib_free_port_attrs(cdev); 952 device_del(&cdev->dev); 953 put_device(&cdev->dev); 954 } 955 } 956 957 static void remove_compat_devs(struct ib_device *device) 958 { 959 struct ib_core_device *cdev; 960 unsigned long index; 961 962 xa_for_each (&device->compat_devs, index, cdev) 963 remove_one_compat_dev(device, index); 964 } 965 966 static int add_compat_devs(struct ib_device *device) 967 { 968 struct rdma_dev_net *rnet; 969 unsigned long index; 970 int ret = 0; 971 972 lockdep_assert_held(&devices_rwsem); 973 974 down_read(&rdma_nets_rwsem); 975 xa_for_each (&rdma_nets, index, rnet) { 976 ret = add_one_compat_dev(device, rnet); 977 if (ret) 978 break; 979 } 980 up_read(&rdma_nets_rwsem); 981 return ret; 982 } 983 984 static void remove_all_compat_devs(void) 985 { 986 struct ib_compat_device *cdev; 987 struct ib_device *dev; 988 unsigned long index; 989 990 down_read(&devices_rwsem); 991 xa_for_each (&devices, index, dev) { 992 unsigned long c_index = 0; 993 994 /* Hold nets_rwsem so that any other thread modifying this 995 * system param can sync with this thread. 996 */ 997 down_read(&rdma_nets_rwsem); 998 xa_for_each (&dev->compat_devs, c_index, cdev) 999 remove_one_compat_dev(dev, c_index); 1000 up_read(&rdma_nets_rwsem); 1001 } 1002 up_read(&devices_rwsem); 1003 } 1004 1005 static int add_all_compat_devs(void) 1006 { 1007 struct rdma_dev_net *rnet; 1008 struct ib_device *dev; 1009 unsigned long index; 1010 int ret = 0; 1011 1012 down_read(&devices_rwsem); 1013 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1014 unsigned long net_index = 0; 1015 1016 /* Hold nets_rwsem so that any other thread modifying this 1017 * system param can sync with this thread. 1018 */ 1019 down_read(&rdma_nets_rwsem); 1020 xa_for_each (&rdma_nets, net_index, rnet) { 1021 ret = add_one_compat_dev(dev, rnet); 1022 if (ret) 1023 break; 1024 } 1025 up_read(&rdma_nets_rwsem); 1026 } 1027 up_read(&devices_rwsem); 1028 if (ret) 1029 remove_all_compat_devs(); 1030 return ret; 1031 } 1032 1033 int rdma_compatdev_set(u8 enable) 1034 { 1035 struct rdma_dev_net *rnet; 1036 unsigned long index; 1037 int ret = 0; 1038 1039 down_write(&rdma_nets_rwsem); 1040 if (ib_devices_shared_netns == enable) { 1041 up_write(&rdma_nets_rwsem); 1042 return 0; 1043 } 1044 1045 /* enable/disable of compat devices is not supported 1046 * when more than default init_net exists. 1047 */ 1048 xa_for_each (&rdma_nets, index, rnet) { 1049 ret++; 1050 break; 1051 } 1052 if (!ret) 1053 ib_devices_shared_netns = enable; 1054 up_write(&rdma_nets_rwsem); 1055 if (ret) 1056 return -EBUSY; 1057 1058 if (enable) 1059 ret = add_all_compat_devs(); 1060 else 1061 remove_all_compat_devs(); 1062 return ret; 1063 } 1064 1065 static void rdma_dev_exit_net(struct net *net) 1066 { 1067 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1068 struct ib_device *dev; 1069 unsigned long index; 1070 int ret; 1071 1072 down_write(&rdma_nets_rwsem); 1073 /* 1074 * Prevent the ID from being re-used and hide the id from xa_for_each. 1075 */ 1076 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1077 WARN_ON(ret); 1078 up_write(&rdma_nets_rwsem); 1079 1080 down_read(&devices_rwsem); 1081 xa_for_each (&devices, index, dev) { 1082 get_device(&dev->dev); 1083 /* 1084 * Release the devices_rwsem so that pontentially blocking 1085 * device_del, doesn't hold the devices_rwsem for too long. 1086 */ 1087 up_read(&devices_rwsem); 1088 1089 remove_one_compat_dev(dev, rnet->id); 1090 1091 /* 1092 * If the real device is in the NS then move it back to init. 1093 */ 1094 rdma_dev_change_netns(dev, net, &init_net); 1095 1096 put_device(&dev->dev); 1097 down_read(&devices_rwsem); 1098 } 1099 up_read(&devices_rwsem); 1100 1101 rdma_nl_net_exit(rnet); 1102 xa_erase(&rdma_nets, rnet->id); 1103 } 1104 1105 static __net_init int rdma_dev_init_net(struct net *net) 1106 { 1107 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1108 unsigned long index; 1109 struct ib_device *dev; 1110 int ret; 1111 1112 write_pnet(&rnet->net, net); 1113 1114 ret = rdma_nl_net_init(rnet); 1115 if (ret) 1116 return ret; 1117 1118 /* No need to create any compat devices in default init_net. */ 1119 if (net_eq(net, &init_net)) 1120 return 0; 1121 1122 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1123 if (ret) { 1124 rdma_nl_net_exit(rnet); 1125 return ret; 1126 } 1127 1128 down_read(&devices_rwsem); 1129 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1130 /* Hold nets_rwsem so that netlink command cannot change 1131 * system configuration for device sharing mode. 1132 */ 1133 down_read(&rdma_nets_rwsem); 1134 ret = add_one_compat_dev(dev, rnet); 1135 up_read(&rdma_nets_rwsem); 1136 if (ret) 1137 break; 1138 } 1139 up_read(&devices_rwsem); 1140 1141 if (ret) 1142 rdma_dev_exit_net(net); 1143 1144 return ret; 1145 } 1146 1147 /* 1148 * Assign the unique string device name and the unique device index. This is 1149 * undone by ib_dealloc_device. 1150 */ 1151 static int assign_name(struct ib_device *device, const char *name) 1152 { 1153 static u32 last_id; 1154 int ret; 1155 1156 down_write(&devices_rwsem); 1157 /* Assign a unique name to the device */ 1158 if (strchr(name, '%')) 1159 ret = alloc_name(device, name); 1160 else 1161 ret = dev_set_name(&device->dev, name); 1162 if (ret) 1163 goto out; 1164 1165 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1166 ret = -ENFILE; 1167 goto out; 1168 } 1169 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1170 1171 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1172 &last_id, GFP_KERNEL); 1173 if (ret > 0) 1174 ret = 0; 1175 1176 out: 1177 up_write(&devices_rwsem); 1178 return ret; 1179 } 1180 1181 static void setup_dma_device(struct ib_device *device) 1182 { 1183 struct device *parent = device->dev.parent; 1184 1185 WARN_ON_ONCE(device->dma_device); 1186 if (device->dev.dma_ops) { 1187 /* 1188 * The caller provided custom DMA operations. Copy the 1189 * DMA-related fields that are used by e.g. dma_alloc_coherent() 1190 * into device->dev. 1191 */ 1192 device->dma_device = &device->dev; 1193 if (!device->dev.dma_mask) { 1194 if (parent) 1195 device->dev.dma_mask = parent->dma_mask; 1196 else 1197 WARN_ON_ONCE(true); 1198 } 1199 if (!device->dev.coherent_dma_mask) { 1200 if (parent) 1201 device->dev.coherent_dma_mask = 1202 parent->coherent_dma_mask; 1203 else 1204 WARN_ON_ONCE(true); 1205 } 1206 } else { 1207 /* 1208 * The caller did not provide custom DMA operations. Use the 1209 * DMA mapping operations of the parent device. 1210 */ 1211 WARN_ON_ONCE(!parent); 1212 device->dma_device = parent; 1213 } 1214 1215 if (!device->dev.dma_parms) { 1216 if (parent) { 1217 /* 1218 * The caller did not provide DMA parameters, so 1219 * 'parent' probably represents a PCI device. The PCI 1220 * core sets the maximum segment size to 64 1221 * KB. Increase this parameter to 2 GB. 1222 */ 1223 device->dev.dma_parms = parent->dma_parms; 1224 dma_set_max_seg_size(device->dma_device, SZ_2G); 1225 } else { 1226 WARN_ON_ONCE(true); 1227 } 1228 } 1229 } 1230 1231 /* 1232 * setup_device() allocates memory and sets up data that requires calling the 1233 * device ops, this is the only reason these actions are not done during 1234 * ib_alloc_device. It is undone by ib_dealloc_device(). 1235 */ 1236 static int setup_device(struct ib_device *device) 1237 { 1238 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1239 int ret; 1240 1241 setup_dma_device(device); 1242 ib_device_check_mandatory(device); 1243 1244 ret = setup_port_data(device); 1245 if (ret) { 1246 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1247 return ret; 1248 } 1249 1250 memset(&device->attrs, 0, sizeof(device->attrs)); 1251 ret = device->ops.query_device(device, &device->attrs, &uhw); 1252 if (ret) { 1253 dev_warn(&device->dev, 1254 "Couldn't query the device attributes\n"); 1255 return ret; 1256 } 1257 1258 return 0; 1259 } 1260 1261 static void disable_device(struct ib_device *device) 1262 { 1263 u32 cid; 1264 1265 WARN_ON(!refcount_read(&device->refcount)); 1266 1267 down_write(&devices_rwsem); 1268 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1269 up_write(&devices_rwsem); 1270 1271 /* 1272 * Remove clients in LIFO order, see assign_client_id. This could be 1273 * more efficient if xarray learns to reverse iterate. Since no new 1274 * clients can be added to this ib_device past this point we only need 1275 * the maximum possible client_id value here. 1276 */ 1277 down_read(&clients_rwsem); 1278 cid = highest_client_id; 1279 up_read(&clients_rwsem); 1280 while (cid) { 1281 cid--; 1282 remove_client_context(device, cid); 1283 } 1284 1285 /* Pairs with refcount_set in enable_device */ 1286 ib_device_put(device); 1287 wait_for_completion(&device->unreg_completion); 1288 1289 /* 1290 * compat devices must be removed after device refcount drops to zero. 1291 * Otherwise init_net() may add more compatdevs after removing compat 1292 * devices and before device is disabled. 1293 */ 1294 remove_compat_devs(device); 1295 } 1296 1297 /* 1298 * An enabled device is visible to all clients and to all the public facing 1299 * APIs that return a device pointer. This always returns with a new get, even 1300 * if it fails. 1301 */ 1302 static int enable_device_and_get(struct ib_device *device) 1303 { 1304 struct ib_client *client; 1305 unsigned long index; 1306 int ret = 0; 1307 1308 /* 1309 * One ref belongs to the xa and the other belongs to this 1310 * thread. This is needed to guard against parallel unregistration. 1311 */ 1312 refcount_set(&device->refcount, 2); 1313 down_write(&devices_rwsem); 1314 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1315 1316 /* 1317 * By using downgrade_write() we ensure that no other thread can clear 1318 * DEVICE_REGISTERED while we are completing the client setup. 1319 */ 1320 downgrade_write(&devices_rwsem); 1321 1322 if (device->ops.enable_driver) { 1323 ret = device->ops.enable_driver(device); 1324 if (ret) 1325 goto out; 1326 } 1327 1328 down_read(&clients_rwsem); 1329 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1330 ret = add_client_context(device, client); 1331 if (ret) 1332 break; 1333 } 1334 up_read(&clients_rwsem); 1335 if (!ret) 1336 ret = add_compat_devs(device); 1337 out: 1338 up_read(&devices_rwsem); 1339 return ret; 1340 } 1341 1342 /** 1343 * ib_register_device - Register an IB device with IB core 1344 * @device: Device to register 1345 * @name: unique string device name. This may include a '%' which will 1346 * cause a unique index to be added to the passed device name. 1347 * 1348 * Low-level drivers use ib_register_device() to register their 1349 * devices with the IB core. All registered clients will receive a 1350 * callback for each device that is added. @device must be allocated 1351 * with ib_alloc_device(). 1352 * 1353 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1354 * asynchronously then the device pointer may become freed as soon as this 1355 * function returns. 1356 */ 1357 int ib_register_device(struct ib_device *device, const char *name) 1358 { 1359 int ret; 1360 1361 ret = assign_name(device, name); 1362 if (ret) 1363 return ret; 1364 1365 ret = setup_device(device); 1366 if (ret) 1367 return ret; 1368 1369 ret = ib_cache_setup_one(device); 1370 if (ret) { 1371 dev_warn(&device->dev, 1372 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1373 return ret; 1374 } 1375 1376 ib_device_register_rdmacg(device); 1377 1378 rdma_counter_init(device); 1379 1380 /* 1381 * Ensure that ADD uevent is not fired because it 1382 * is too early amd device is not initialized yet. 1383 */ 1384 dev_set_uevent_suppress(&device->dev, true); 1385 ret = device_add(&device->dev); 1386 if (ret) 1387 goto cg_cleanup; 1388 1389 ret = ib_device_register_sysfs(device); 1390 if (ret) { 1391 dev_warn(&device->dev, 1392 "Couldn't register device with driver model\n"); 1393 goto dev_cleanup; 1394 } 1395 1396 ret = enable_device_and_get(device); 1397 dev_set_uevent_suppress(&device->dev, false); 1398 /* Mark for userspace that device is ready */ 1399 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1400 if (ret) { 1401 void (*dealloc_fn)(struct ib_device *); 1402 1403 /* 1404 * If we hit this error flow then we don't want to 1405 * automatically dealloc the device since the caller is 1406 * expected to call ib_dealloc_device() after 1407 * ib_register_device() fails. This is tricky due to the 1408 * possibility for a parallel unregistration along with this 1409 * error flow. Since we have a refcount here we know any 1410 * parallel flow is stopped in disable_device and will see the 1411 * NULL pointers, causing the responsibility to 1412 * ib_dealloc_device() to revert back to this thread. 1413 */ 1414 dealloc_fn = device->ops.dealloc_driver; 1415 device->ops.dealloc_driver = NULL; 1416 ib_device_put(device); 1417 __ib_unregister_device(device); 1418 device->ops.dealloc_driver = dealloc_fn; 1419 return ret; 1420 } 1421 ib_device_put(device); 1422 1423 return 0; 1424 1425 dev_cleanup: 1426 device_del(&device->dev); 1427 cg_cleanup: 1428 dev_set_uevent_suppress(&device->dev, false); 1429 ib_device_unregister_rdmacg(device); 1430 ib_cache_cleanup_one(device); 1431 return ret; 1432 } 1433 EXPORT_SYMBOL(ib_register_device); 1434 1435 /* Callers must hold a get on the device. */ 1436 static void __ib_unregister_device(struct ib_device *ib_dev) 1437 { 1438 /* 1439 * We have a registration lock so that all the calls to unregister are 1440 * fully fenced, once any unregister returns the device is truely 1441 * unregistered even if multiple callers are unregistering it at the 1442 * same time. This also interacts with the registration flow and 1443 * provides sane semantics if register and unregister are racing. 1444 */ 1445 mutex_lock(&ib_dev->unregistration_lock); 1446 if (!refcount_read(&ib_dev->refcount)) 1447 goto out; 1448 1449 disable_device(ib_dev); 1450 1451 /* Expedite removing unregistered pointers from the hash table */ 1452 free_netdevs(ib_dev); 1453 1454 ib_device_unregister_sysfs(ib_dev); 1455 device_del(&ib_dev->dev); 1456 ib_device_unregister_rdmacg(ib_dev); 1457 ib_cache_cleanup_one(ib_dev); 1458 1459 /* 1460 * Drivers using the new flow may not call ib_dealloc_device except 1461 * in error unwind prior to registration success. 1462 */ 1463 if (ib_dev->ops.dealloc_driver) { 1464 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1465 ib_dealloc_device(ib_dev); 1466 } 1467 out: 1468 mutex_unlock(&ib_dev->unregistration_lock); 1469 } 1470 1471 /** 1472 * ib_unregister_device - Unregister an IB device 1473 * @ib_dev: The device to unregister 1474 * 1475 * Unregister an IB device. All clients will receive a remove callback. 1476 * 1477 * Callers should call this routine only once, and protect against races with 1478 * registration. Typically it should only be called as part of a remove 1479 * callback in an implementation of driver core's struct device_driver and 1480 * related. 1481 * 1482 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1483 * this function. 1484 */ 1485 void ib_unregister_device(struct ib_device *ib_dev) 1486 { 1487 get_device(&ib_dev->dev); 1488 __ib_unregister_device(ib_dev); 1489 put_device(&ib_dev->dev); 1490 } 1491 EXPORT_SYMBOL(ib_unregister_device); 1492 1493 /** 1494 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1495 * @ib_dev: The device to unregister 1496 * 1497 * This is the same as ib_unregister_device(), except it includes an internal 1498 * ib_device_put() that should match a 'get' obtained by the caller. 1499 * 1500 * It is safe to call this routine concurrently from multiple threads while 1501 * holding the 'get'. When the function returns the device is fully 1502 * unregistered. 1503 * 1504 * Drivers using this flow MUST use the driver_unregister callback to clean up 1505 * their resources associated with the device and dealloc it. 1506 */ 1507 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1508 { 1509 WARN_ON(!ib_dev->ops.dealloc_driver); 1510 get_device(&ib_dev->dev); 1511 ib_device_put(ib_dev); 1512 __ib_unregister_device(ib_dev); 1513 put_device(&ib_dev->dev); 1514 } 1515 EXPORT_SYMBOL(ib_unregister_device_and_put); 1516 1517 /** 1518 * ib_unregister_driver - Unregister all IB devices for a driver 1519 * @driver_id: The driver to unregister 1520 * 1521 * This implements a fence for device unregistration. It only returns once all 1522 * devices associated with the driver_id have fully completed their 1523 * unregistration and returned from ib_unregister_device*(). 1524 * 1525 * If device's are not yet unregistered it goes ahead and starts unregistering 1526 * them. 1527 * 1528 * This does not block creation of new devices with the given driver_id, that 1529 * is the responsibility of the caller. 1530 */ 1531 void ib_unregister_driver(enum rdma_driver_id driver_id) 1532 { 1533 struct ib_device *ib_dev; 1534 unsigned long index; 1535 1536 down_read(&devices_rwsem); 1537 xa_for_each (&devices, index, ib_dev) { 1538 if (ib_dev->ops.driver_id != driver_id) 1539 continue; 1540 1541 get_device(&ib_dev->dev); 1542 up_read(&devices_rwsem); 1543 1544 WARN_ON(!ib_dev->ops.dealloc_driver); 1545 __ib_unregister_device(ib_dev); 1546 1547 put_device(&ib_dev->dev); 1548 down_read(&devices_rwsem); 1549 } 1550 up_read(&devices_rwsem); 1551 } 1552 EXPORT_SYMBOL(ib_unregister_driver); 1553 1554 static void ib_unregister_work(struct work_struct *work) 1555 { 1556 struct ib_device *ib_dev = 1557 container_of(work, struct ib_device, unregistration_work); 1558 1559 __ib_unregister_device(ib_dev); 1560 put_device(&ib_dev->dev); 1561 } 1562 1563 /** 1564 * ib_unregister_device_queued - Unregister a device using a work queue 1565 * @ib_dev: The device to unregister 1566 * 1567 * This schedules an asynchronous unregistration using a WQ for the device. A 1568 * driver should use this to avoid holding locks while doing unregistration, 1569 * such as holding the RTNL lock. 1570 * 1571 * Drivers using this API must use ib_unregister_driver before module unload 1572 * to ensure that all scheduled unregistrations have completed. 1573 */ 1574 void ib_unregister_device_queued(struct ib_device *ib_dev) 1575 { 1576 WARN_ON(!refcount_read(&ib_dev->refcount)); 1577 WARN_ON(!ib_dev->ops.dealloc_driver); 1578 get_device(&ib_dev->dev); 1579 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work)) 1580 put_device(&ib_dev->dev); 1581 } 1582 EXPORT_SYMBOL(ib_unregister_device_queued); 1583 1584 /* 1585 * The caller must pass in a device that has the kref held and the refcount 1586 * released. If the device is in cur_net and still registered then it is moved 1587 * into net. 1588 */ 1589 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1590 struct net *net) 1591 { 1592 int ret2 = -EINVAL; 1593 int ret; 1594 1595 mutex_lock(&device->unregistration_lock); 1596 1597 /* 1598 * If a device not under ib_device_get() or if the unregistration_lock 1599 * is not held, the namespace can be changed, or it can be unregistered. 1600 * Check again under the lock. 1601 */ 1602 if (refcount_read(&device->refcount) == 0 || 1603 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1604 ret = -ENODEV; 1605 goto out; 1606 } 1607 1608 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1609 disable_device(device); 1610 1611 /* 1612 * At this point no one can be using the device, so it is safe to 1613 * change the namespace. 1614 */ 1615 write_pnet(&device->coredev.rdma_net, net); 1616 1617 down_read(&devices_rwsem); 1618 /* 1619 * Currently rdma devices are system wide unique. So the device name 1620 * is guaranteed free in the new namespace. Publish the new namespace 1621 * at the sysfs level. 1622 */ 1623 ret = device_rename(&device->dev, dev_name(&device->dev)); 1624 up_read(&devices_rwsem); 1625 if (ret) { 1626 dev_warn(&device->dev, 1627 "%s: Couldn't rename device after namespace change\n", 1628 __func__); 1629 /* Try and put things back and re-enable the device */ 1630 write_pnet(&device->coredev.rdma_net, cur_net); 1631 } 1632 1633 ret2 = enable_device_and_get(device); 1634 if (ret2) { 1635 /* 1636 * This shouldn't really happen, but if it does, let the user 1637 * retry at later point. So don't disable the device. 1638 */ 1639 dev_warn(&device->dev, 1640 "%s: Couldn't re-enable device after namespace change\n", 1641 __func__); 1642 } 1643 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1644 1645 ib_device_put(device); 1646 out: 1647 mutex_unlock(&device->unregistration_lock); 1648 if (ret) 1649 return ret; 1650 return ret2; 1651 } 1652 1653 int ib_device_set_netns_put(struct sk_buff *skb, 1654 struct ib_device *dev, u32 ns_fd) 1655 { 1656 struct net *net; 1657 int ret; 1658 1659 net = get_net_ns_by_fd(ns_fd); 1660 if (IS_ERR(net)) { 1661 ret = PTR_ERR(net); 1662 goto net_err; 1663 } 1664 1665 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1666 ret = -EPERM; 1667 goto ns_err; 1668 } 1669 1670 /* 1671 * Currently supported only for those providers which support 1672 * disassociation and don't do port specific sysfs init. Once a 1673 * port_cleanup infrastructure is implemented, this limitation will be 1674 * removed. 1675 */ 1676 if (!dev->ops.disassociate_ucontext || dev->ops.init_port || 1677 ib_devices_shared_netns) { 1678 ret = -EOPNOTSUPP; 1679 goto ns_err; 1680 } 1681 1682 get_device(&dev->dev); 1683 ib_device_put(dev); 1684 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1685 put_device(&dev->dev); 1686 1687 put_net(net); 1688 return ret; 1689 1690 ns_err: 1691 put_net(net); 1692 net_err: 1693 ib_device_put(dev); 1694 return ret; 1695 } 1696 1697 static struct pernet_operations rdma_dev_net_ops = { 1698 .init = rdma_dev_init_net, 1699 .exit = rdma_dev_exit_net, 1700 .id = &rdma_dev_net_id, 1701 .size = sizeof(struct rdma_dev_net), 1702 }; 1703 1704 static int assign_client_id(struct ib_client *client) 1705 { 1706 int ret; 1707 1708 down_write(&clients_rwsem); 1709 /* 1710 * The add/remove callbacks must be called in FIFO/LIFO order. To 1711 * achieve this we assign client_ids so they are sorted in 1712 * registration order. 1713 */ 1714 client->client_id = highest_client_id; 1715 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1716 if (ret) 1717 goto out; 1718 1719 highest_client_id++; 1720 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1721 1722 out: 1723 up_write(&clients_rwsem); 1724 return ret; 1725 } 1726 1727 static void remove_client_id(struct ib_client *client) 1728 { 1729 down_write(&clients_rwsem); 1730 xa_erase(&clients, client->client_id); 1731 for (; highest_client_id; highest_client_id--) 1732 if (xa_load(&clients, highest_client_id - 1)) 1733 break; 1734 up_write(&clients_rwsem); 1735 } 1736 1737 /** 1738 * ib_register_client - Register an IB client 1739 * @client:Client to register 1740 * 1741 * Upper level users of the IB drivers can use ib_register_client() to 1742 * register callbacks for IB device addition and removal. When an IB 1743 * device is added, each registered client's add method will be called 1744 * (in the order the clients were registered), and when a device is 1745 * removed, each client's remove method will be called (in the reverse 1746 * order that clients were registered). In addition, when 1747 * ib_register_client() is called, the client will receive an add 1748 * callback for all devices already registered. 1749 */ 1750 int ib_register_client(struct ib_client *client) 1751 { 1752 struct ib_device *device; 1753 unsigned long index; 1754 int ret; 1755 1756 refcount_set(&client->uses, 1); 1757 init_completion(&client->uses_zero); 1758 ret = assign_client_id(client); 1759 if (ret) 1760 return ret; 1761 1762 down_read(&devices_rwsem); 1763 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1764 ret = add_client_context(device, client); 1765 if (ret) { 1766 up_read(&devices_rwsem); 1767 ib_unregister_client(client); 1768 return ret; 1769 } 1770 } 1771 up_read(&devices_rwsem); 1772 return 0; 1773 } 1774 EXPORT_SYMBOL(ib_register_client); 1775 1776 /** 1777 * ib_unregister_client - Unregister an IB client 1778 * @client:Client to unregister 1779 * 1780 * Upper level users use ib_unregister_client() to remove their client 1781 * registration. When ib_unregister_client() is called, the client 1782 * will receive a remove callback for each IB device still registered. 1783 * 1784 * This is a full fence, once it returns no client callbacks will be called, 1785 * or are running in another thread. 1786 */ 1787 void ib_unregister_client(struct ib_client *client) 1788 { 1789 struct ib_device *device; 1790 unsigned long index; 1791 1792 down_write(&clients_rwsem); 1793 ib_client_put(client); 1794 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1795 up_write(&clients_rwsem); 1796 1797 /* We do not want to have locks while calling client->remove() */ 1798 rcu_read_lock(); 1799 xa_for_each (&devices, index, device) { 1800 if (!ib_device_try_get(device)) 1801 continue; 1802 rcu_read_unlock(); 1803 1804 remove_client_context(device, client->client_id); 1805 1806 ib_device_put(device); 1807 rcu_read_lock(); 1808 } 1809 rcu_read_unlock(); 1810 1811 /* 1812 * remove_client_context() is not a fence, it can return even though a 1813 * removal is ongoing. Wait until all removals are completed. 1814 */ 1815 wait_for_completion(&client->uses_zero); 1816 remove_client_id(client); 1817 } 1818 EXPORT_SYMBOL(ib_unregister_client); 1819 1820 static int __ib_get_global_client_nl_info(const char *client_name, 1821 struct ib_client_nl_info *res) 1822 { 1823 struct ib_client *client; 1824 unsigned long index; 1825 int ret = -ENOENT; 1826 1827 down_read(&clients_rwsem); 1828 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1829 if (strcmp(client->name, client_name) != 0) 1830 continue; 1831 if (!client->get_global_nl_info) { 1832 ret = -EOPNOTSUPP; 1833 break; 1834 } 1835 ret = client->get_global_nl_info(res); 1836 if (WARN_ON(ret == -ENOENT)) 1837 ret = -EINVAL; 1838 if (!ret && res->cdev) 1839 get_device(res->cdev); 1840 break; 1841 } 1842 up_read(&clients_rwsem); 1843 return ret; 1844 } 1845 1846 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1847 const char *client_name, 1848 struct ib_client_nl_info *res) 1849 { 1850 unsigned long index; 1851 void *client_data; 1852 int ret = -ENOENT; 1853 1854 down_read(&ibdev->client_data_rwsem); 1855 xan_for_each_marked (&ibdev->client_data, index, client_data, 1856 CLIENT_DATA_REGISTERED) { 1857 struct ib_client *client = xa_load(&clients, index); 1858 1859 if (!client || strcmp(client->name, client_name) != 0) 1860 continue; 1861 if (!client->get_nl_info) { 1862 ret = -EOPNOTSUPP; 1863 break; 1864 } 1865 ret = client->get_nl_info(ibdev, client_data, res); 1866 if (WARN_ON(ret == -ENOENT)) 1867 ret = -EINVAL; 1868 1869 /* 1870 * The cdev is guaranteed valid as long as we are inside the 1871 * client_data_rwsem as remove_one can't be called. Keep it 1872 * valid for the caller. 1873 */ 1874 if (!ret && res->cdev) 1875 get_device(res->cdev); 1876 break; 1877 } 1878 up_read(&ibdev->client_data_rwsem); 1879 1880 return ret; 1881 } 1882 1883 /** 1884 * ib_get_client_nl_info - Fetch the nl_info from a client 1885 * @device - IB device 1886 * @client_name - Name of the client 1887 * @res - Result of the query 1888 */ 1889 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1890 struct ib_client_nl_info *res) 1891 { 1892 int ret; 1893 1894 if (ibdev) 1895 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1896 else 1897 ret = __ib_get_global_client_nl_info(client_name, res); 1898 #ifdef CONFIG_MODULES 1899 if (ret == -ENOENT) { 1900 request_module("rdma-client-%s", client_name); 1901 if (ibdev) 1902 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1903 else 1904 ret = __ib_get_global_client_nl_info(client_name, res); 1905 } 1906 #endif 1907 if (ret) { 1908 if (ret == -ENOENT) 1909 return -EOPNOTSUPP; 1910 return ret; 1911 } 1912 1913 if (WARN_ON(!res->cdev)) 1914 return -EINVAL; 1915 return 0; 1916 } 1917 1918 /** 1919 * ib_set_client_data - Set IB client context 1920 * @device:Device to set context for 1921 * @client:Client to set context for 1922 * @data:Context to set 1923 * 1924 * ib_set_client_data() sets client context data that can be retrieved with 1925 * ib_get_client_data(). This can only be called while the client is 1926 * registered to the device, once the ib_client remove() callback returns this 1927 * cannot be called. 1928 */ 1929 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1930 void *data) 1931 { 1932 void *rc; 1933 1934 if (WARN_ON(IS_ERR(data))) 1935 data = NULL; 1936 1937 rc = xa_store(&device->client_data, client->client_id, data, 1938 GFP_KERNEL); 1939 WARN_ON(xa_is_err(rc)); 1940 } 1941 EXPORT_SYMBOL(ib_set_client_data); 1942 1943 /** 1944 * ib_register_event_handler - Register an IB event handler 1945 * @event_handler:Handler to register 1946 * 1947 * ib_register_event_handler() registers an event handler that will be 1948 * called back when asynchronous IB events occur (as defined in 1949 * chapter 11 of the InfiniBand Architecture Specification). This 1950 * callback occurs in workqueue context. 1951 */ 1952 void ib_register_event_handler(struct ib_event_handler *event_handler) 1953 { 1954 down_write(&event_handler->device->event_handler_rwsem); 1955 list_add_tail(&event_handler->list, 1956 &event_handler->device->event_handler_list); 1957 up_write(&event_handler->device->event_handler_rwsem); 1958 } 1959 EXPORT_SYMBOL(ib_register_event_handler); 1960 1961 /** 1962 * ib_unregister_event_handler - Unregister an event handler 1963 * @event_handler:Handler to unregister 1964 * 1965 * Unregister an event handler registered with 1966 * ib_register_event_handler(). 1967 */ 1968 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 1969 { 1970 down_write(&event_handler->device->event_handler_rwsem); 1971 list_del(&event_handler->list); 1972 up_write(&event_handler->device->event_handler_rwsem); 1973 } 1974 EXPORT_SYMBOL(ib_unregister_event_handler); 1975 1976 void ib_dispatch_event_clients(struct ib_event *event) 1977 { 1978 struct ib_event_handler *handler; 1979 1980 down_read(&event->device->event_handler_rwsem); 1981 1982 list_for_each_entry(handler, &event->device->event_handler_list, list) 1983 handler->handler(handler, event); 1984 1985 up_read(&event->device->event_handler_rwsem); 1986 } 1987 1988 static int iw_query_port(struct ib_device *device, 1989 u8 port_num, 1990 struct ib_port_attr *port_attr) 1991 { 1992 struct in_device *inetdev; 1993 struct net_device *netdev; 1994 1995 memset(port_attr, 0, sizeof(*port_attr)); 1996 1997 netdev = ib_device_get_netdev(device, port_num); 1998 if (!netdev) 1999 return -ENODEV; 2000 2001 port_attr->max_mtu = IB_MTU_4096; 2002 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 2003 2004 if (!netif_carrier_ok(netdev)) { 2005 port_attr->state = IB_PORT_DOWN; 2006 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 2007 } else { 2008 rcu_read_lock(); 2009 inetdev = __in_dev_get_rcu(netdev); 2010 2011 if (inetdev && inetdev->ifa_list) { 2012 port_attr->state = IB_PORT_ACTIVE; 2013 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2014 } else { 2015 port_attr->state = IB_PORT_INIT; 2016 port_attr->phys_state = 2017 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2018 } 2019 2020 rcu_read_unlock(); 2021 } 2022 2023 dev_put(netdev); 2024 return device->ops.query_port(device, port_num, port_attr); 2025 } 2026 2027 static int __ib_query_port(struct ib_device *device, 2028 u8 port_num, 2029 struct ib_port_attr *port_attr) 2030 { 2031 union ib_gid gid = {}; 2032 int err; 2033 2034 memset(port_attr, 0, sizeof(*port_attr)); 2035 2036 err = device->ops.query_port(device, port_num, port_attr); 2037 if (err || port_attr->subnet_prefix) 2038 return err; 2039 2040 if (rdma_port_get_link_layer(device, port_num) != 2041 IB_LINK_LAYER_INFINIBAND) 2042 return 0; 2043 2044 err = device->ops.query_gid(device, port_num, 0, &gid); 2045 if (err) 2046 return err; 2047 2048 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 2049 return 0; 2050 } 2051 2052 /** 2053 * ib_query_port - Query IB port attributes 2054 * @device:Device to query 2055 * @port_num:Port number to query 2056 * @port_attr:Port attributes 2057 * 2058 * ib_query_port() returns the attributes of a port through the 2059 * @port_attr pointer. 2060 */ 2061 int ib_query_port(struct ib_device *device, 2062 u8 port_num, 2063 struct ib_port_attr *port_attr) 2064 { 2065 if (!rdma_is_port_valid(device, port_num)) 2066 return -EINVAL; 2067 2068 if (rdma_protocol_iwarp(device, port_num)) 2069 return iw_query_port(device, port_num, port_attr); 2070 else 2071 return __ib_query_port(device, port_num, port_attr); 2072 } 2073 EXPORT_SYMBOL(ib_query_port); 2074 2075 static void add_ndev_hash(struct ib_port_data *pdata) 2076 { 2077 unsigned long flags; 2078 2079 might_sleep(); 2080 2081 spin_lock_irqsave(&ndev_hash_lock, flags); 2082 if (hash_hashed(&pdata->ndev_hash_link)) { 2083 hash_del_rcu(&pdata->ndev_hash_link); 2084 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2085 /* 2086 * We cannot do hash_add_rcu after a hash_del_rcu until the 2087 * grace period 2088 */ 2089 synchronize_rcu(); 2090 spin_lock_irqsave(&ndev_hash_lock, flags); 2091 } 2092 if (pdata->netdev) 2093 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2094 (uintptr_t)pdata->netdev); 2095 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2096 } 2097 2098 /** 2099 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2100 * @ib_dev: Device to modify 2101 * @ndev: net_device to affiliate, may be NULL 2102 * @port: IB port the net_device is connected to 2103 * 2104 * Drivers should use this to link the ib_device to a netdev so the netdev 2105 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2106 * affiliated with any port. 2107 * 2108 * The caller must ensure that the given ndev is not unregistered or 2109 * unregistering, and that either the ib_device is unregistered or 2110 * ib_device_set_netdev() is called with NULL when the ndev sends a 2111 * NETDEV_UNREGISTER event. 2112 */ 2113 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2114 unsigned int port) 2115 { 2116 struct net_device *old_ndev; 2117 struct ib_port_data *pdata; 2118 unsigned long flags; 2119 int ret; 2120 2121 /* 2122 * Drivers wish to call this before ib_register_driver, so we have to 2123 * setup the port data early. 2124 */ 2125 ret = alloc_port_data(ib_dev); 2126 if (ret) 2127 return ret; 2128 2129 if (!rdma_is_port_valid(ib_dev, port)) 2130 return -EINVAL; 2131 2132 pdata = &ib_dev->port_data[port]; 2133 spin_lock_irqsave(&pdata->netdev_lock, flags); 2134 old_ndev = rcu_dereference_protected( 2135 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2136 if (old_ndev == ndev) { 2137 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2138 return 0; 2139 } 2140 2141 if (ndev) 2142 dev_hold(ndev); 2143 rcu_assign_pointer(pdata->netdev, ndev); 2144 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2145 2146 add_ndev_hash(pdata); 2147 if (old_ndev) 2148 dev_put(old_ndev); 2149 2150 return 0; 2151 } 2152 EXPORT_SYMBOL(ib_device_set_netdev); 2153 2154 static void free_netdevs(struct ib_device *ib_dev) 2155 { 2156 unsigned long flags; 2157 unsigned int port; 2158 2159 if (!ib_dev->port_data) 2160 return; 2161 2162 rdma_for_each_port (ib_dev, port) { 2163 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2164 struct net_device *ndev; 2165 2166 spin_lock_irqsave(&pdata->netdev_lock, flags); 2167 ndev = rcu_dereference_protected( 2168 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2169 if (ndev) { 2170 spin_lock(&ndev_hash_lock); 2171 hash_del_rcu(&pdata->ndev_hash_link); 2172 spin_unlock(&ndev_hash_lock); 2173 2174 /* 2175 * If this is the last dev_put there is still a 2176 * synchronize_rcu before the netdev is kfreed, so we 2177 * can continue to rely on unlocked pointer 2178 * comparisons after the put 2179 */ 2180 rcu_assign_pointer(pdata->netdev, NULL); 2181 dev_put(ndev); 2182 } 2183 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2184 } 2185 } 2186 2187 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2188 unsigned int port) 2189 { 2190 struct ib_port_data *pdata; 2191 struct net_device *res; 2192 2193 if (!rdma_is_port_valid(ib_dev, port)) 2194 return NULL; 2195 2196 pdata = &ib_dev->port_data[port]; 2197 2198 /* 2199 * New drivers should use ib_device_set_netdev() not the legacy 2200 * get_netdev(). 2201 */ 2202 if (ib_dev->ops.get_netdev) 2203 res = ib_dev->ops.get_netdev(ib_dev, port); 2204 else { 2205 spin_lock(&pdata->netdev_lock); 2206 res = rcu_dereference_protected( 2207 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2208 if (res) 2209 dev_hold(res); 2210 spin_unlock(&pdata->netdev_lock); 2211 } 2212 2213 /* 2214 * If we are starting to unregister expedite things by preventing 2215 * propagation of an unregistering netdev. 2216 */ 2217 if (res && res->reg_state != NETREG_REGISTERED) { 2218 dev_put(res); 2219 return NULL; 2220 } 2221 2222 return res; 2223 } 2224 2225 /** 2226 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2227 * @ndev: netdev to locate 2228 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2229 * 2230 * Find and hold an ib_device that is associated with a netdev via 2231 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2232 * returned pointer. 2233 */ 2234 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2235 enum rdma_driver_id driver_id) 2236 { 2237 struct ib_device *res = NULL; 2238 struct ib_port_data *cur; 2239 2240 rcu_read_lock(); 2241 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2242 (uintptr_t)ndev) { 2243 if (rcu_access_pointer(cur->netdev) == ndev && 2244 (driver_id == RDMA_DRIVER_UNKNOWN || 2245 cur->ib_dev->ops.driver_id == driver_id) && 2246 ib_device_try_get(cur->ib_dev)) { 2247 res = cur->ib_dev; 2248 break; 2249 } 2250 } 2251 rcu_read_unlock(); 2252 2253 return res; 2254 } 2255 EXPORT_SYMBOL(ib_device_get_by_netdev); 2256 2257 /** 2258 * ib_enum_roce_netdev - enumerate all RoCE ports 2259 * @ib_dev : IB device we want to query 2260 * @filter: Should we call the callback? 2261 * @filter_cookie: Cookie passed to filter 2262 * @cb: Callback to call for each found RoCE ports 2263 * @cookie: Cookie passed back to the callback 2264 * 2265 * Enumerates all of the physical RoCE ports of ib_dev 2266 * which are related to netdevice and calls callback() on each 2267 * device for which filter() function returns non zero. 2268 */ 2269 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2270 roce_netdev_filter filter, 2271 void *filter_cookie, 2272 roce_netdev_callback cb, 2273 void *cookie) 2274 { 2275 unsigned int port; 2276 2277 rdma_for_each_port (ib_dev, port) 2278 if (rdma_protocol_roce(ib_dev, port)) { 2279 struct net_device *idev = 2280 ib_device_get_netdev(ib_dev, port); 2281 2282 if (filter(ib_dev, port, idev, filter_cookie)) 2283 cb(ib_dev, port, idev, cookie); 2284 2285 if (idev) 2286 dev_put(idev); 2287 } 2288 } 2289 2290 /** 2291 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2292 * @filter: Should we call the callback? 2293 * @filter_cookie: Cookie passed to filter 2294 * @cb: Callback to call for each found RoCE ports 2295 * @cookie: Cookie passed back to the callback 2296 * 2297 * Enumerates all RoCE devices' physical ports which are related 2298 * to netdevices and calls callback() on each device for which 2299 * filter() function returns non zero. 2300 */ 2301 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2302 void *filter_cookie, 2303 roce_netdev_callback cb, 2304 void *cookie) 2305 { 2306 struct ib_device *dev; 2307 unsigned long index; 2308 2309 down_read(&devices_rwsem); 2310 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2311 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2312 up_read(&devices_rwsem); 2313 } 2314 2315 /** 2316 * ib_enum_all_devs - enumerate all ib_devices 2317 * @cb: Callback to call for each found ib_device 2318 * 2319 * Enumerates all ib_devices and calls callback() on each device. 2320 */ 2321 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2322 struct netlink_callback *cb) 2323 { 2324 unsigned long index; 2325 struct ib_device *dev; 2326 unsigned int idx = 0; 2327 int ret = 0; 2328 2329 down_read(&devices_rwsem); 2330 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2331 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2332 continue; 2333 2334 ret = nldev_cb(dev, skb, cb, idx); 2335 if (ret) 2336 break; 2337 idx++; 2338 } 2339 up_read(&devices_rwsem); 2340 return ret; 2341 } 2342 2343 /** 2344 * ib_query_pkey - Get P_Key table entry 2345 * @device:Device to query 2346 * @port_num:Port number to query 2347 * @index:P_Key table index to query 2348 * @pkey:Returned P_Key 2349 * 2350 * ib_query_pkey() fetches the specified P_Key table entry. 2351 */ 2352 int ib_query_pkey(struct ib_device *device, 2353 u8 port_num, u16 index, u16 *pkey) 2354 { 2355 if (!rdma_is_port_valid(device, port_num)) 2356 return -EINVAL; 2357 2358 return device->ops.query_pkey(device, port_num, index, pkey); 2359 } 2360 EXPORT_SYMBOL(ib_query_pkey); 2361 2362 /** 2363 * ib_modify_device - Change IB device attributes 2364 * @device:Device to modify 2365 * @device_modify_mask:Mask of attributes to change 2366 * @device_modify:New attribute values 2367 * 2368 * ib_modify_device() changes a device's attributes as specified by 2369 * the @device_modify_mask and @device_modify structure. 2370 */ 2371 int ib_modify_device(struct ib_device *device, 2372 int device_modify_mask, 2373 struct ib_device_modify *device_modify) 2374 { 2375 if (!device->ops.modify_device) 2376 return -EOPNOTSUPP; 2377 2378 return device->ops.modify_device(device, device_modify_mask, 2379 device_modify); 2380 } 2381 EXPORT_SYMBOL(ib_modify_device); 2382 2383 /** 2384 * ib_modify_port - Modifies the attributes for the specified port. 2385 * @device: The device to modify. 2386 * @port_num: The number of the port to modify. 2387 * @port_modify_mask: Mask used to specify which attributes of the port 2388 * to change. 2389 * @port_modify: New attribute values for the port. 2390 * 2391 * ib_modify_port() changes a port's attributes as specified by the 2392 * @port_modify_mask and @port_modify structure. 2393 */ 2394 int ib_modify_port(struct ib_device *device, 2395 u8 port_num, int port_modify_mask, 2396 struct ib_port_modify *port_modify) 2397 { 2398 int rc; 2399 2400 if (!rdma_is_port_valid(device, port_num)) 2401 return -EINVAL; 2402 2403 if (device->ops.modify_port) 2404 rc = device->ops.modify_port(device, port_num, 2405 port_modify_mask, 2406 port_modify); 2407 else if (rdma_protocol_roce(device, port_num) && 2408 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2409 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2410 rc = 0; 2411 else 2412 rc = -EOPNOTSUPP; 2413 return rc; 2414 } 2415 EXPORT_SYMBOL(ib_modify_port); 2416 2417 /** 2418 * ib_find_gid - Returns the port number and GID table index where 2419 * a specified GID value occurs. Its searches only for IB link layer. 2420 * @device: The device to query. 2421 * @gid: The GID value to search for. 2422 * @port_num: The port number of the device where the GID value was found. 2423 * @index: The index into the GID table where the GID was found. This 2424 * parameter may be NULL. 2425 */ 2426 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2427 u8 *port_num, u16 *index) 2428 { 2429 union ib_gid tmp_gid; 2430 unsigned int port; 2431 int ret, i; 2432 2433 rdma_for_each_port (device, port) { 2434 if (!rdma_protocol_ib(device, port)) 2435 continue; 2436 2437 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2438 ++i) { 2439 ret = rdma_query_gid(device, port, i, &tmp_gid); 2440 if (ret) 2441 return ret; 2442 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2443 *port_num = port; 2444 if (index) 2445 *index = i; 2446 return 0; 2447 } 2448 } 2449 } 2450 2451 return -ENOENT; 2452 } 2453 EXPORT_SYMBOL(ib_find_gid); 2454 2455 /** 2456 * ib_find_pkey - Returns the PKey table index where a specified 2457 * PKey value occurs. 2458 * @device: The device to query. 2459 * @port_num: The port number of the device to search for the PKey. 2460 * @pkey: The PKey value to search for. 2461 * @index: The index into the PKey table where the PKey was found. 2462 */ 2463 int ib_find_pkey(struct ib_device *device, 2464 u8 port_num, u16 pkey, u16 *index) 2465 { 2466 int ret, i; 2467 u16 tmp_pkey; 2468 int partial_ix = -1; 2469 2470 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2471 ++i) { 2472 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2473 if (ret) 2474 return ret; 2475 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2476 /* if there is full-member pkey take it.*/ 2477 if (tmp_pkey & 0x8000) { 2478 *index = i; 2479 return 0; 2480 } 2481 if (partial_ix < 0) 2482 partial_ix = i; 2483 } 2484 } 2485 2486 /*no full-member, if exists take the limited*/ 2487 if (partial_ix >= 0) { 2488 *index = partial_ix; 2489 return 0; 2490 } 2491 return -ENOENT; 2492 } 2493 EXPORT_SYMBOL(ib_find_pkey); 2494 2495 /** 2496 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2497 * for a received CM request 2498 * @dev: An RDMA device on which the request has been received. 2499 * @port: Port number on the RDMA device. 2500 * @pkey: The Pkey the request came on. 2501 * @gid: A GID that the net_dev uses to communicate. 2502 * @addr: Contains the IP address that the request specified as its 2503 * destination. 2504 * 2505 */ 2506 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2507 u8 port, 2508 u16 pkey, 2509 const union ib_gid *gid, 2510 const struct sockaddr *addr) 2511 { 2512 struct net_device *net_dev = NULL; 2513 unsigned long index; 2514 void *client_data; 2515 2516 if (!rdma_protocol_ib(dev, port)) 2517 return NULL; 2518 2519 /* 2520 * Holding the read side guarantees that the client will not become 2521 * unregistered while we are calling get_net_dev_by_params() 2522 */ 2523 down_read(&dev->client_data_rwsem); 2524 xan_for_each_marked (&dev->client_data, index, client_data, 2525 CLIENT_DATA_REGISTERED) { 2526 struct ib_client *client = xa_load(&clients, index); 2527 2528 if (!client || !client->get_net_dev_by_params) 2529 continue; 2530 2531 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2532 addr, client_data); 2533 if (net_dev) 2534 break; 2535 } 2536 up_read(&dev->client_data_rwsem); 2537 2538 return net_dev; 2539 } 2540 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2541 2542 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2543 { 2544 struct ib_device_ops *dev_ops = &dev->ops; 2545 #define SET_DEVICE_OP(ptr, name) \ 2546 do { \ 2547 if (ops->name) \ 2548 if (!((ptr)->name)) \ 2549 (ptr)->name = ops->name; \ 2550 } while (0) 2551 2552 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2553 2554 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2555 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2556 dev_ops->driver_id != ops->driver_id); 2557 dev_ops->driver_id = ops->driver_id; 2558 } 2559 if (ops->owner) { 2560 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2561 dev_ops->owner = ops->owner; 2562 } 2563 if (ops->uverbs_abi_ver) 2564 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2565 2566 dev_ops->uverbs_no_driver_id_binding |= 2567 ops->uverbs_no_driver_id_binding; 2568 2569 SET_DEVICE_OP(dev_ops, add_gid); 2570 SET_DEVICE_OP(dev_ops, advise_mr); 2571 SET_DEVICE_OP(dev_ops, alloc_dm); 2572 SET_DEVICE_OP(dev_ops, alloc_fmr); 2573 SET_DEVICE_OP(dev_ops, alloc_hw_stats); 2574 SET_DEVICE_OP(dev_ops, alloc_mr); 2575 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2576 SET_DEVICE_OP(dev_ops, alloc_mw); 2577 SET_DEVICE_OP(dev_ops, alloc_pd); 2578 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2579 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2580 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2581 SET_DEVICE_OP(dev_ops, attach_mcast); 2582 SET_DEVICE_OP(dev_ops, check_mr_status); 2583 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2584 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2585 SET_DEVICE_OP(dev_ops, counter_dealloc); 2586 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2587 SET_DEVICE_OP(dev_ops, counter_update_stats); 2588 SET_DEVICE_OP(dev_ops, create_ah); 2589 SET_DEVICE_OP(dev_ops, create_counters); 2590 SET_DEVICE_OP(dev_ops, create_cq); 2591 SET_DEVICE_OP(dev_ops, create_flow); 2592 SET_DEVICE_OP(dev_ops, create_flow_action_esp); 2593 SET_DEVICE_OP(dev_ops, create_qp); 2594 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2595 SET_DEVICE_OP(dev_ops, create_srq); 2596 SET_DEVICE_OP(dev_ops, create_wq); 2597 SET_DEVICE_OP(dev_ops, dealloc_dm); 2598 SET_DEVICE_OP(dev_ops, dealloc_driver); 2599 SET_DEVICE_OP(dev_ops, dealloc_fmr); 2600 SET_DEVICE_OP(dev_ops, dealloc_mw); 2601 SET_DEVICE_OP(dev_ops, dealloc_pd); 2602 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2603 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2604 SET_DEVICE_OP(dev_ops, del_gid); 2605 SET_DEVICE_OP(dev_ops, dereg_mr); 2606 SET_DEVICE_OP(dev_ops, destroy_ah); 2607 SET_DEVICE_OP(dev_ops, destroy_counters); 2608 SET_DEVICE_OP(dev_ops, destroy_cq); 2609 SET_DEVICE_OP(dev_ops, destroy_flow); 2610 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2611 SET_DEVICE_OP(dev_ops, destroy_qp); 2612 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2613 SET_DEVICE_OP(dev_ops, destroy_srq); 2614 SET_DEVICE_OP(dev_ops, destroy_wq); 2615 SET_DEVICE_OP(dev_ops, detach_mcast); 2616 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2617 SET_DEVICE_OP(dev_ops, drain_rq); 2618 SET_DEVICE_OP(dev_ops, drain_sq); 2619 SET_DEVICE_OP(dev_ops, enable_driver); 2620 SET_DEVICE_OP(dev_ops, fill_res_entry); 2621 SET_DEVICE_OP(dev_ops, fill_stat_entry); 2622 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2623 SET_DEVICE_OP(dev_ops, get_dma_mr); 2624 SET_DEVICE_OP(dev_ops, get_hw_stats); 2625 SET_DEVICE_OP(dev_ops, get_link_layer); 2626 SET_DEVICE_OP(dev_ops, get_netdev); 2627 SET_DEVICE_OP(dev_ops, get_port_immutable); 2628 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2629 SET_DEVICE_OP(dev_ops, get_vf_config); 2630 SET_DEVICE_OP(dev_ops, get_vf_guid); 2631 SET_DEVICE_OP(dev_ops, get_vf_stats); 2632 SET_DEVICE_OP(dev_ops, init_port); 2633 SET_DEVICE_OP(dev_ops, iw_accept); 2634 SET_DEVICE_OP(dev_ops, iw_add_ref); 2635 SET_DEVICE_OP(dev_ops, iw_connect); 2636 SET_DEVICE_OP(dev_ops, iw_create_listen); 2637 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2638 SET_DEVICE_OP(dev_ops, iw_get_qp); 2639 SET_DEVICE_OP(dev_ops, iw_reject); 2640 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2641 SET_DEVICE_OP(dev_ops, map_mr_sg); 2642 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2643 SET_DEVICE_OP(dev_ops, map_phys_fmr); 2644 SET_DEVICE_OP(dev_ops, mmap); 2645 SET_DEVICE_OP(dev_ops, mmap_free); 2646 SET_DEVICE_OP(dev_ops, modify_ah); 2647 SET_DEVICE_OP(dev_ops, modify_cq); 2648 SET_DEVICE_OP(dev_ops, modify_device); 2649 SET_DEVICE_OP(dev_ops, modify_flow_action_esp); 2650 SET_DEVICE_OP(dev_ops, modify_port); 2651 SET_DEVICE_OP(dev_ops, modify_qp); 2652 SET_DEVICE_OP(dev_ops, modify_srq); 2653 SET_DEVICE_OP(dev_ops, modify_wq); 2654 SET_DEVICE_OP(dev_ops, peek_cq); 2655 SET_DEVICE_OP(dev_ops, poll_cq); 2656 SET_DEVICE_OP(dev_ops, post_recv); 2657 SET_DEVICE_OP(dev_ops, post_send); 2658 SET_DEVICE_OP(dev_ops, post_srq_recv); 2659 SET_DEVICE_OP(dev_ops, process_mad); 2660 SET_DEVICE_OP(dev_ops, query_ah); 2661 SET_DEVICE_OP(dev_ops, query_device); 2662 SET_DEVICE_OP(dev_ops, query_gid); 2663 SET_DEVICE_OP(dev_ops, query_pkey); 2664 SET_DEVICE_OP(dev_ops, query_port); 2665 SET_DEVICE_OP(dev_ops, query_qp); 2666 SET_DEVICE_OP(dev_ops, query_srq); 2667 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2668 SET_DEVICE_OP(dev_ops, read_counters); 2669 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2670 SET_DEVICE_OP(dev_ops, reg_user_mr); 2671 SET_DEVICE_OP(dev_ops, req_ncomp_notif); 2672 SET_DEVICE_OP(dev_ops, req_notify_cq); 2673 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2674 SET_DEVICE_OP(dev_ops, resize_cq); 2675 SET_DEVICE_OP(dev_ops, set_vf_guid); 2676 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2677 SET_DEVICE_OP(dev_ops, unmap_fmr); 2678 2679 SET_OBJ_SIZE(dev_ops, ib_ah); 2680 SET_OBJ_SIZE(dev_ops, ib_cq); 2681 SET_OBJ_SIZE(dev_ops, ib_pd); 2682 SET_OBJ_SIZE(dev_ops, ib_srq); 2683 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2684 } 2685 EXPORT_SYMBOL(ib_set_device_ops); 2686 2687 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2688 [RDMA_NL_LS_OP_RESOLVE] = { 2689 .doit = ib_nl_handle_resolve_resp, 2690 .flags = RDMA_NL_ADMIN_PERM, 2691 }, 2692 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2693 .doit = ib_nl_handle_set_timeout, 2694 .flags = RDMA_NL_ADMIN_PERM, 2695 }, 2696 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2697 .doit = ib_nl_handle_ip_res_resp, 2698 .flags = RDMA_NL_ADMIN_PERM, 2699 }, 2700 }; 2701 2702 static int __init ib_core_init(void) 2703 { 2704 int ret; 2705 2706 ib_wq = alloc_workqueue("infiniband", 0, 0); 2707 if (!ib_wq) 2708 return -ENOMEM; 2709 2710 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2711 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2712 if (!ib_comp_wq) { 2713 ret = -ENOMEM; 2714 goto err; 2715 } 2716 2717 ib_comp_unbound_wq = 2718 alloc_workqueue("ib-comp-unb-wq", 2719 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2720 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2721 if (!ib_comp_unbound_wq) { 2722 ret = -ENOMEM; 2723 goto err_comp; 2724 } 2725 2726 ret = class_register(&ib_class); 2727 if (ret) { 2728 pr_warn("Couldn't create InfiniBand device class\n"); 2729 goto err_comp_unbound; 2730 } 2731 2732 rdma_nl_init(); 2733 2734 ret = addr_init(); 2735 if (ret) { 2736 pr_warn("Could't init IB address resolution\n"); 2737 goto err_ibnl; 2738 } 2739 2740 ret = ib_mad_init(); 2741 if (ret) { 2742 pr_warn("Couldn't init IB MAD\n"); 2743 goto err_addr; 2744 } 2745 2746 ret = ib_sa_init(); 2747 if (ret) { 2748 pr_warn("Couldn't init SA\n"); 2749 goto err_mad; 2750 } 2751 2752 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 2753 if (ret) { 2754 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 2755 goto err_sa; 2756 } 2757 2758 ret = register_pernet_device(&rdma_dev_net_ops); 2759 if (ret) { 2760 pr_warn("Couldn't init compat dev. ret %d\n", ret); 2761 goto err_compat; 2762 } 2763 2764 nldev_init(); 2765 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 2766 roce_gid_mgmt_init(); 2767 2768 return 0; 2769 2770 err_compat: 2771 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2772 err_sa: 2773 ib_sa_cleanup(); 2774 err_mad: 2775 ib_mad_cleanup(); 2776 err_addr: 2777 addr_cleanup(); 2778 err_ibnl: 2779 class_unregister(&ib_class); 2780 err_comp_unbound: 2781 destroy_workqueue(ib_comp_unbound_wq); 2782 err_comp: 2783 destroy_workqueue(ib_comp_wq); 2784 err: 2785 destroy_workqueue(ib_wq); 2786 return ret; 2787 } 2788 2789 static void __exit ib_core_cleanup(void) 2790 { 2791 roce_gid_mgmt_cleanup(); 2792 nldev_exit(); 2793 rdma_nl_unregister(RDMA_NL_LS); 2794 unregister_pernet_device(&rdma_dev_net_ops); 2795 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2796 ib_sa_cleanup(); 2797 ib_mad_cleanup(); 2798 addr_cleanup(); 2799 rdma_nl_exit(); 2800 class_unregister(&ib_class); 2801 destroy_workqueue(ib_comp_unbound_wq); 2802 destroy_workqueue(ib_comp_wq); 2803 /* Make sure that any pending umem accounting work is done. */ 2804 destroy_workqueue(ib_wq); 2805 flush_workqueue(system_unbound_wq); 2806 WARN_ON(!xa_empty(&clients)); 2807 WARN_ON(!xa_empty(&devices)); 2808 } 2809 2810 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 2811 2812 /* ib core relies on netdev stack to first register net_ns_type_operations 2813 * ns kobject type before ib_core initialization. 2814 */ 2815 fs_initcall(ib_core_init); 2816 module_exit(ib_core_cleanup); 2817