xref: /linux/drivers/infiniband/core/device.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(query_pkey),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 
574 	if (WARN_ON(size < sizeof(struct ib_device)))
575 		return NULL;
576 
577 	device = kzalloc(size, GFP_KERNEL);
578 	if (!device)
579 		return NULL;
580 
581 	if (rdma_restrack_init(device)) {
582 		kfree(device);
583 		return NULL;
584 	}
585 
586 	device->groups[0] = &ib_dev_attr_group;
587 	rdma_init_coredev(&device->coredev, device, &init_net);
588 
589 	INIT_LIST_HEAD(&device->event_handler_list);
590 	spin_lock_init(&device->qp_open_list_lock);
591 	init_rwsem(&device->event_handler_rwsem);
592 	mutex_init(&device->unregistration_lock);
593 	/*
594 	 * client_data needs to be alloc because we don't want our mark to be
595 	 * destroyed if the user stores NULL in the client data.
596 	 */
597 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
598 	init_rwsem(&device->client_data_rwsem);
599 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
600 	mutex_init(&device->compat_devs_mutex);
601 	init_completion(&device->unreg_completion);
602 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
603 
604 	return device;
605 }
606 EXPORT_SYMBOL(_ib_alloc_device);
607 
608 /**
609  * ib_dealloc_device - free an IB device struct
610  * @device:structure to free
611  *
612  * Free a structure allocated with ib_alloc_device().
613  */
614 void ib_dealloc_device(struct ib_device *device)
615 {
616 	if (device->ops.dealloc_driver)
617 		device->ops.dealloc_driver(device);
618 
619 	/*
620 	 * ib_unregister_driver() requires all devices to remain in the xarray
621 	 * while their ops are callable. The last op we call is dealloc_driver
622 	 * above.  This is needed to create a fence on op callbacks prior to
623 	 * allowing the driver module to unload.
624 	 */
625 	down_write(&devices_rwsem);
626 	if (xa_load(&devices, device->index) == device)
627 		xa_erase(&devices, device->index);
628 	up_write(&devices_rwsem);
629 
630 	/* Expedite releasing netdev references */
631 	free_netdevs(device);
632 
633 	WARN_ON(!xa_empty(&device->compat_devs));
634 	WARN_ON(!xa_empty(&device->client_data));
635 	WARN_ON(refcount_read(&device->refcount));
636 	rdma_restrack_clean(device);
637 	/* Balances with device_initialize */
638 	put_device(&device->dev);
639 }
640 EXPORT_SYMBOL(ib_dealloc_device);
641 
642 /*
643  * add_client_context() and remove_client_context() must be safe against
644  * parallel calls on the same device - registration/unregistration of both the
645  * device and client can be occurring in parallel.
646  *
647  * The routines need to be a fence, any caller must not return until the add
648  * or remove is fully completed.
649  */
650 static int add_client_context(struct ib_device *device,
651 			      struct ib_client *client)
652 {
653 	int ret = 0;
654 
655 	if (!device->kverbs_provider && !client->no_kverbs_req)
656 		return 0;
657 
658 	down_write(&device->client_data_rwsem);
659 	/*
660 	 * So long as the client is registered hold both the client and device
661 	 * unregistration locks.
662 	 */
663 	if (!refcount_inc_not_zero(&client->uses))
664 		goto out_unlock;
665 	refcount_inc(&device->refcount);
666 
667 	/*
668 	 * Another caller to add_client_context got here first and has already
669 	 * completely initialized context.
670 	 */
671 	if (xa_get_mark(&device->client_data, client->client_id,
672 		    CLIENT_DATA_REGISTERED))
673 		goto out;
674 
675 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
676 			      GFP_KERNEL));
677 	if (ret)
678 		goto out;
679 	downgrade_write(&device->client_data_rwsem);
680 	if (client->add) {
681 		if (client->add(device)) {
682 			/*
683 			 * If a client fails to add then the error code is
684 			 * ignored, but we won't call any more ops on this
685 			 * client.
686 			 */
687 			xa_erase(&device->client_data, client->client_id);
688 			up_read(&device->client_data_rwsem);
689 			ib_device_put(device);
690 			ib_client_put(client);
691 			return 0;
692 		}
693 	}
694 
695 	/* Readers shall not see a client until add has been completed */
696 	xa_set_mark(&device->client_data, client->client_id,
697 		    CLIENT_DATA_REGISTERED);
698 	up_read(&device->client_data_rwsem);
699 	return 0;
700 
701 out:
702 	ib_device_put(device);
703 	ib_client_put(client);
704 out_unlock:
705 	up_write(&device->client_data_rwsem);
706 	return ret;
707 }
708 
709 static void remove_client_context(struct ib_device *device,
710 				  unsigned int client_id)
711 {
712 	struct ib_client *client;
713 	void *client_data;
714 
715 	down_write(&device->client_data_rwsem);
716 	if (!xa_get_mark(&device->client_data, client_id,
717 			 CLIENT_DATA_REGISTERED)) {
718 		up_write(&device->client_data_rwsem);
719 		return;
720 	}
721 	client_data = xa_load(&device->client_data, client_id);
722 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
723 	client = xa_load(&clients, client_id);
724 	up_write(&device->client_data_rwsem);
725 
726 	/*
727 	 * Notice we cannot be holding any exclusive locks when calling the
728 	 * remove callback as the remove callback can recurse back into any
729 	 * public functions in this module and thus try for any locks those
730 	 * functions take.
731 	 *
732 	 * For this reason clients and drivers should not call the
733 	 * unregistration functions will holdling any locks.
734 	 */
735 	if (client->remove)
736 		client->remove(device, client_data);
737 
738 	xa_erase(&device->client_data, client_id);
739 	ib_device_put(device);
740 	ib_client_put(client);
741 }
742 
743 static int alloc_port_data(struct ib_device *device)
744 {
745 	struct ib_port_data_rcu *pdata_rcu;
746 	unsigned int port;
747 
748 	if (device->port_data)
749 		return 0;
750 
751 	/* This can only be called once the physical port range is defined */
752 	if (WARN_ON(!device->phys_port_cnt))
753 		return -EINVAL;
754 
755 	/*
756 	 * device->port_data is indexed directly by the port number to make
757 	 * access to this data as efficient as possible.
758 	 *
759 	 * Therefore port_data is declared as a 1 based array with potential
760 	 * empty slots at the beginning.
761 	 */
762 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
763 					rdma_end_port(device) + 1),
764 			    GFP_KERNEL);
765 	if (!pdata_rcu)
766 		return -ENOMEM;
767 	/*
768 	 * The rcu_head is put in front of the port data array and the stored
769 	 * pointer is adjusted since we never need to see that member until
770 	 * kfree_rcu.
771 	 */
772 	device->port_data = pdata_rcu->pdata;
773 
774 	rdma_for_each_port (device, port) {
775 		struct ib_port_data *pdata = &device->port_data[port];
776 
777 		pdata->ib_dev = device;
778 		spin_lock_init(&pdata->pkey_list_lock);
779 		INIT_LIST_HEAD(&pdata->pkey_list);
780 		spin_lock_init(&pdata->netdev_lock);
781 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
782 	}
783 	return 0;
784 }
785 
786 static int verify_immutable(const struct ib_device *dev, u8 port)
787 {
788 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
789 			    rdma_max_mad_size(dev, port) != 0);
790 }
791 
792 static int setup_port_data(struct ib_device *device)
793 {
794 	unsigned int port;
795 	int ret;
796 
797 	ret = alloc_port_data(device);
798 	if (ret)
799 		return ret;
800 
801 	rdma_for_each_port (device, port) {
802 		struct ib_port_data *pdata = &device->port_data[port];
803 
804 		ret = device->ops.get_port_immutable(device, port,
805 						     &pdata->immutable);
806 		if (ret)
807 			return ret;
808 
809 		if (verify_immutable(device, port))
810 			return -EINVAL;
811 	}
812 	return 0;
813 }
814 
815 void ib_get_device_fw_str(struct ib_device *dev, char *str)
816 {
817 	if (dev->ops.get_dev_fw_str)
818 		dev->ops.get_dev_fw_str(dev, str);
819 	else
820 		str[0] = '\0';
821 }
822 EXPORT_SYMBOL(ib_get_device_fw_str);
823 
824 static void ib_policy_change_task(struct work_struct *work)
825 {
826 	struct ib_device *dev;
827 	unsigned long index;
828 
829 	down_read(&devices_rwsem);
830 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
831 		unsigned int i;
832 
833 		rdma_for_each_port (dev, i) {
834 			u64 sp;
835 			int ret = ib_get_cached_subnet_prefix(dev,
836 							      i,
837 							      &sp);
838 
839 			WARN_ONCE(ret,
840 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
841 				  ret);
842 			if (!ret)
843 				ib_security_cache_change(dev, i, sp);
844 		}
845 	}
846 	up_read(&devices_rwsem);
847 }
848 
849 static int ib_security_change(struct notifier_block *nb, unsigned long event,
850 			      void *lsm_data)
851 {
852 	if (event != LSM_POLICY_CHANGE)
853 		return NOTIFY_DONE;
854 
855 	schedule_work(&ib_policy_change_work);
856 	ib_mad_agent_security_change();
857 
858 	return NOTIFY_OK;
859 }
860 
861 static void compatdev_release(struct device *dev)
862 {
863 	struct ib_core_device *cdev =
864 		container_of(dev, struct ib_core_device, dev);
865 
866 	kfree(cdev);
867 }
868 
869 static int add_one_compat_dev(struct ib_device *device,
870 			      struct rdma_dev_net *rnet)
871 {
872 	struct ib_core_device *cdev;
873 	int ret;
874 
875 	lockdep_assert_held(&rdma_nets_rwsem);
876 	if (!ib_devices_shared_netns)
877 		return 0;
878 
879 	/*
880 	 * Create and add compat device in all namespaces other than where it
881 	 * is currently bound to.
882 	 */
883 	if (net_eq(read_pnet(&rnet->net),
884 		   read_pnet(&device->coredev.rdma_net)))
885 		return 0;
886 
887 	/*
888 	 * The first of init_net() or ib_register_device() to take the
889 	 * compat_devs_mutex wins and gets to add the device. Others will wait
890 	 * for completion here.
891 	 */
892 	mutex_lock(&device->compat_devs_mutex);
893 	cdev = xa_load(&device->compat_devs, rnet->id);
894 	if (cdev) {
895 		ret = 0;
896 		goto done;
897 	}
898 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
899 	if (ret)
900 		goto done;
901 
902 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
903 	if (!cdev) {
904 		ret = -ENOMEM;
905 		goto cdev_err;
906 	}
907 
908 	cdev->dev.parent = device->dev.parent;
909 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
910 	cdev->dev.release = compatdev_release;
911 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
912 	if (ret)
913 		goto add_err;
914 
915 	ret = device_add(&cdev->dev);
916 	if (ret)
917 		goto add_err;
918 	ret = ib_setup_port_attrs(cdev);
919 	if (ret)
920 		goto port_err;
921 
922 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
923 			      cdev, GFP_KERNEL));
924 	if (ret)
925 		goto insert_err;
926 
927 	mutex_unlock(&device->compat_devs_mutex);
928 	return 0;
929 
930 insert_err:
931 	ib_free_port_attrs(cdev);
932 port_err:
933 	device_del(&cdev->dev);
934 add_err:
935 	put_device(&cdev->dev);
936 cdev_err:
937 	xa_release(&device->compat_devs, rnet->id);
938 done:
939 	mutex_unlock(&device->compat_devs_mutex);
940 	return ret;
941 }
942 
943 static void remove_one_compat_dev(struct ib_device *device, u32 id)
944 {
945 	struct ib_core_device *cdev;
946 
947 	mutex_lock(&device->compat_devs_mutex);
948 	cdev = xa_erase(&device->compat_devs, id);
949 	mutex_unlock(&device->compat_devs_mutex);
950 	if (cdev) {
951 		ib_free_port_attrs(cdev);
952 		device_del(&cdev->dev);
953 		put_device(&cdev->dev);
954 	}
955 }
956 
957 static void remove_compat_devs(struct ib_device *device)
958 {
959 	struct ib_core_device *cdev;
960 	unsigned long index;
961 
962 	xa_for_each (&device->compat_devs, index, cdev)
963 		remove_one_compat_dev(device, index);
964 }
965 
966 static int add_compat_devs(struct ib_device *device)
967 {
968 	struct rdma_dev_net *rnet;
969 	unsigned long index;
970 	int ret = 0;
971 
972 	lockdep_assert_held(&devices_rwsem);
973 
974 	down_read(&rdma_nets_rwsem);
975 	xa_for_each (&rdma_nets, index, rnet) {
976 		ret = add_one_compat_dev(device, rnet);
977 		if (ret)
978 			break;
979 	}
980 	up_read(&rdma_nets_rwsem);
981 	return ret;
982 }
983 
984 static void remove_all_compat_devs(void)
985 {
986 	struct ib_compat_device *cdev;
987 	struct ib_device *dev;
988 	unsigned long index;
989 
990 	down_read(&devices_rwsem);
991 	xa_for_each (&devices, index, dev) {
992 		unsigned long c_index = 0;
993 
994 		/* Hold nets_rwsem so that any other thread modifying this
995 		 * system param can sync with this thread.
996 		 */
997 		down_read(&rdma_nets_rwsem);
998 		xa_for_each (&dev->compat_devs, c_index, cdev)
999 			remove_one_compat_dev(dev, c_index);
1000 		up_read(&rdma_nets_rwsem);
1001 	}
1002 	up_read(&devices_rwsem);
1003 }
1004 
1005 static int add_all_compat_devs(void)
1006 {
1007 	struct rdma_dev_net *rnet;
1008 	struct ib_device *dev;
1009 	unsigned long index;
1010 	int ret = 0;
1011 
1012 	down_read(&devices_rwsem);
1013 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1014 		unsigned long net_index = 0;
1015 
1016 		/* Hold nets_rwsem so that any other thread modifying this
1017 		 * system param can sync with this thread.
1018 		 */
1019 		down_read(&rdma_nets_rwsem);
1020 		xa_for_each (&rdma_nets, net_index, rnet) {
1021 			ret = add_one_compat_dev(dev, rnet);
1022 			if (ret)
1023 				break;
1024 		}
1025 		up_read(&rdma_nets_rwsem);
1026 	}
1027 	up_read(&devices_rwsem);
1028 	if (ret)
1029 		remove_all_compat_devs();
1030 	return ret;
1031 }
1032 
1033 int rdma_compatdev_set(u8 enable)
1034 {
1035 	struct rdma_dev_net *rnet;
1036 	unsigned long index;
1037 	int ret = 0;
1038 
1039 	down_write(&rdma_nets_rwsem);
1040 	if (ib_devices_shared_netns == enable) {
1041 		up_write(&rdma_nets_rwsem);
1042 		return 0;
1043 	}
1044 
1045 	/* enable/disable of compat devices is not supported
1046 	 * when more than default init_net exists.
1047 	 */
1048 	xa_for_each (&rdma_nets, index, rnet) {
1049 		ret++;
1050 		break;
1051 	}
1052 	if (!ret)
1053 		ib_devices_shared_netns = enable;
1054 	up_write(&rdma_nets_rwsem);
1055 	if (ret)
1056 		return -EBUSY;
1057 
1058 	if (enable)
1059 		ret = add_all_compat_devs();
1060 	else
1061 		remove_all_compat_devs();
1062 	return ret;
1063 }
1064 
1065 static void rdma_dev_exit_net(struct net *net)
1066 {
1067 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1068 	struct ib_device *dev;
1069 	unsigned long index;
1070 	int ret;
1071 
1072 	down_write(&rdma_nets_rwsem);
1073 	/*
1074 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1075 	 */
1076 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1077 	WARN_ON(ret);
1078 	up_write(&rdma_nets_rwsem);
1079 
1080 	down_read(&devices_rwsem);
1081 	xa_for_each (&devices, index, dev) {
1082 		get_device(&dev->dev);
1083 		/*
1084 		 * Release the devices_rwsem so that pontentially blocking
1085 		 * device_del, doesn't hold the devices_rwsem for too long.
1086 		 */
1087 		up_read(&devices_rwsem);
1088 
1089 		remove_one_compat_dev(dev, rnet->id);
1090 
1091 		/*
1092 		 * If the real device is in the NS then move it back to init.
1093 		 */
1094 		rdma_dev_change_netns(dev, net, &init_net);
1095 
1096 		put_device(&dev->dev);
1097 		down_read(&devices_rwsem);
1098 	}
1099 	up_read(&devices_rwsem);
1100 
1101 	rdma_nl_net_exit(rnet);
1102 	xa_erase(&rdma_nets, rnet->id);
1103 }
1104 
1105 static __net_init int rdma_dev_init_net(struct net *net)
1106 {
1107 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1108 	unsigned long index;
1109 	struct ib_device *dev;
1110 	int ret;
1111 
1112 	write_pnet(&rnet->net, net);
1113 
1114 	ret = rdma_nl_net_init(rnet);
1115 	if (ret)
1116 		return ret;
1117 
1118 	/* No need to create any compat devices in default init_net. */
1119 	if (net_eq(net, &init_net))
1120 		return 0;
1121 
1122 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1123 	if (ret) {
1124 		rdma_nl_net_exit(rnet);
1125 		return ret;
1126 	}
1127 
1128 	down_read(&devices_rwsem);
1129 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1130 		/* Hold nets_rwsem so that netlink command cannot change
1131 		 * system configuration for device sharing mode.
1132 		 */
1133 		down_read(&rdma_nets_rwsem);
1134 		ret = add_one_compat_dev(dev, rnet);
1135 		up_read(&rdma_nets_rwsem);
1136 		if (ret)
1137 			break;
1138 	}
1139 	up_read(&devices_rwsem);
1140 
1141 	if (ret)
1142 		rdma_dev_exit_net(net);
1143 
1144 	return ret;
1145 }
1146 
1147 /*
1148  * Assign the unique string device name and the unique device index. This is
1149  * undone by ib_dealloc_device.
1150  */
1151 static int assign_name(struct ib_device *device, const char *name)
1152 {
1153 	static u32 last_id;
1154 	int ret;
1155 
1156 	down_write(&devices_rwsem);
1157 	/* Assign a unique name to the device */
1158 	if (strchr(name, '%'))
1159 		ret = alloc_name(device, name);
1160 	else
1161 		ret = dev_set_name(&device->dev, name);
1162 	if (ret)
1163 		goto out;
1164 
1165 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1166 		ret = -ENFILE;
1167 		goto out;
1168 	}
1169 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1170 
1171 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1172 			&last_id, GFP_KERNEL);
1173 	if (ret > 0)
1174 		ret = 0;
1175 
1176 out:
1177 	up_write(&devices_rwsem);
1178 	return ret;
1179 }
1180 
1181 static void setup_dma_device(struct ib_device *device)
1182 {
1183 	struct device *parent = device->dev.parent;
1184 
1185 	WARN_ON_ONCE(device->dma_device);
1186 	if (device->dev.dma_ops) {
1187 		/*
1188 		 * The caller provided custom DMA operations. Copy the
1189 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1190 		 * into device->dev.
1191 		 */
1192 		device->dma_device = &device->dev;
1193 		if (!device->dev.dma_mask) {
1194 			if (parent)
1195 				device->dev.dma_mask = parent->dma_mask;
1196 			else
1197 				WARN_ON_ONCE(true);
1198 		}
1199 		if (!device->dev.coherent_dma_mask) {
1200 			if (parent)
1201 				device->dev.coherent_dma_mask =
1202 					parent->coherent_dma_mask;
1203 			else
1204 				WARN_ON_ONCE(true);
1205 		}
1206 	} else {
1207 		/*
1208 		 * The caller did not provide custom DMA operations. Use the
1209 		 * DMA mapping operations of the parent device.
1210 		 */
1211 		WARN_ON_ONCE(!parent);
1212 		device->dma_device = parent;
1213 	}
1214 
1215 	if (!device->dev.dma_parms) {
1216 		if (parent) {
1217 			/*
1218 			 * The caller did not provide DMA parameters, so
1219 			 * 'parent' probably represents a PCI device. The PCI
1220 			 * core sets the maximum segment size to 64
1221 			 * KB. Increase this parameter to 2 GB.
1222 			 */
1223 			device->dev.dma_parms = parent->dma_parms;
1224 			dma_set_max_seg_size(device->dma_device, SZ_2G);
1225 		} else {
1226 			WARN_ON_ONCE(true);
1227 		}
1228 	}
1229 }
1230 
1231 /*
1232  * setup_device() allocates memory and sets up data that requires calling the
1233  * device ops, this is the only reason these actions are not done during
1234  * ib_alloc_device. It is undone by ib_dealloc_device().
1235  */
1236 static int setup_device(struct ib_device *device)
1237 {
1238 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1239 	int ret;
1240 
1241 	setup_dma_device(device);
1242 	ib_device_check_mandatory(device);
1243 
1244 	ret = setup_port_data(device);
1245 	if (ret) {
1246 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1247 		return ret;
1248 	}
1249 
1250 	memset(&device->attrs, 0, sizeof(device->attrs));
1251 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1252 	if (ret) {
1253 		dev_warn(&device->dev,
1254 			 "Couldn't query the device attributes\n");
1255 		return ret;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static void disable_device(struct ib_device *device)
1262 {
1263 	u32 cid;
1264 
1265 	WARN_ON(!refcount_read(&device->refcount));
1266 
1267 	down_write(&devices_rwsem);
1268 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1269 	up_write(&devices_rwsem);
1270 
1271 	/*
1272 	 * Remove clients in LIFO order, see assign_client_id. This could be
1273 	 * more efficient if xarray learns to reverse iterate. Since no new
1274 	 * clients can be added to this ib_device past this point we only need
1275 	 * the maximum possible client_id value here.
1276 	 */
1277 	down_read(&clients_rwsem);
1278 	cid = highest_client_id;
1279 	up_read(&clients_rwsem);
1280 	while (cid) {
1281 		cid--;
1282 		remove_client_context(device, cid);
1283 	}
1284 
1285 	/* Pairs with refcount_set in enable_device */
1286 	ib_device_put(device);
1287 	wait_for_completion(&device->unreg_completion);
1288 
1289 	/*
1290 	 * compat devices must be removed after device refcount drops to zero.
1291 	 * Otherwise init_net() may add more compatdevs after removing compat
1292 	 * devices and before device is disabled.
1293 	 */
1294 	remove_compat_devs(device);
1295 }
1296 
1297 /*
1298  * An enabled device is visible to all clients and to all the public facing
1299  * APIs that return a device pointer. This always returns with a new get, even
1300  * if it fails.
1301  */
1302 static int enable_device_and_get(struct ib_device *device)
1303 {
1304 	struct ib_client *client;
1305 	unsigned long index;
1306 	int ret = 0;
1307 
1308 	/*
1309 	 * One ref belongs to the xa and the other belongs to this
1310 	 * thread. This is needed to guard against parallel unregistration.
1311 	 */
1312 	refcount_set(&device->refcount, 2);
1313 	down_write(&devices_rwsem);
1314 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1315 
1316 	/*
1317 	 * By using downgrade_write() we ensure that no other thread can clear
1318 	 * DEVICE_REGISTERED while we are completing the client setup.
1319 	 */
1320 	downgrade_write(&devices_rwsem);
1321 
1322 	if (device->ops.enable_driver) {
1323 		ret = device->ops.enable_driver(device);
1324 		if (ret)
1325 			goto out;
1326 	}
1327 
1328 	down_read(&clients_rwsem);
1329 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1330 		ret = add_client_context(device, client);
1331 		if (ret)
1332 			break;
1333 	}
1334 	up_read(&clients_rwsem);
1335 	if (!ret)
1336 		ret = add_compat_devs(device);
1337 out:
1338 	up_read(&devices_rwsem);
1339 	return ret;
1340 }
1341 
1342 /**
1343  * ib_register_device - Register an IB device with IB core
1344  * @device: Device to register
1345  * @name: unique string device name. This may include a '%' which will
1346  * cause a unique index to be added to the passed device name.
1347  *
1348  * Low-level drivers use ib_register_device() to register their
1349  * devices with the IB core.  All registered clients will receive a
1350  * callback for each device that is added. @device must be allocated
1351  * with ib_alloc_device().
1352  *
1353  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1354  * asynchronously then the device pointer may become freed as soon as this
1355  * function returns.
1356  */
1357 int ib_register_device(struct ib_device *device, const char *name)
1358 {
1359 	int ret;
1360 
1361 	ret = assign_name(device, name);
1362 	if (ret)
1363 		return ret;
1364 
1365 	ret = setup_device(device);
1366 	if (ret)
1367 		return ret;
1368 
1369 	ret = ib_cache_setup_one(device);
1370 	if (ret) {
1371 		dev_warn(&device->dev,
1372 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1373 		return ret;
1374 	}
1375 
1376 	ib_device_register_rdmacg(device);
1377 
1378 	rdma_counter_init(device);
1379 
1380 	/*
1381 	 * Ensure that ADD uevent is not fired because it
1382 	 * is too early amd device is not initialized yet.
1383 	 */
1384 	dev_set_uevent_suppress(&device->dev, true);
1385 	ret = device_add(&device->dev);
1386 	if (ret)
1387 		goto cg_cleanup;
1388 
1389 	ret = ib_device_register_sysfs(device);
1390 	if (ret) {
1391 		dev_warn(&device->dev,
1392 			 "Couldn't register device with driver model\n");
1393 		goto dev_cleanup;
1394 	}
1395 
1396 	ib_cq_pool_init(device);
1397 	ret = enable_device_and_get(device);
1398 	dev_set_uevent_suppress(&device->dev, false);
1399 	/* Mark for userspace that device is ready */
1400 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1401 	if (ret) {
1402 		void (*dealloc_fn)(struct ib_device *);
1403 
1404 		/*
1405 		 * If we hit this error flow then we don't want to
1406 		 * automatically dealloc the device since the caller is
1407 		 * expected to call ib_dealloc_device() after
1408 		 * ib_register_device() fails. This is tricky due to the
1409 		 * possibility for a parallel unregistration along with this
1410 		 * error flow. Since we have a refcount here we know any
1411 		 * parallel flow is stopped in disable_device and will see the
1412 		 * NULL pointers, causing the responsibility to
1413 		 * ib_dealloc_device() to revert back to this thread.
1414 		 */
1415 		dealloc_fn = device->ops.dealloc_driver;
1416 		device->ops.dealloc_driver = NULL;
1417 		ib_device_put(device);
1418 		__ib_unregister_device(device);
1419 		device->ops.dealloc_driver = dealloc_fn;
1420 		return ret;
1421 	}
1422 	ib_device_put(device);
1423 
1424 	return 0;
1425 
1426 dev_cleanup:
1427 	device_del(&device->dev);
1428 cg_cleanup:
1429 	dev_set_uevent_suppress(&device->dev, false);
1430 	ib_device_unregister_rdmacg(device);
1431 	ib_cache_cleanup_one(device);
1432 	return ret;
1433 }
1434 EXPORT_SYMBOL(ib_register_device);
1435 
1436 /* Callers must hold a get on the device. */
1437 static void __ib_unregister_device(struct ib_device *ib_dev)
1438 {
1439 	/*
1440 	 * We have a registration lock so that all the calls to unregister are
1441 	 * fully fenced, once any unregister returns the device is truely
1442 	 * unregistered even if multiple callers are unregistering it at the
1443 	 * same time. This also interacts with the registration flow and
1444 	 * provides sane semantics if register and unregister are racing.
1445 	 */
1446 	mutex_lock(&ib_dev->unregistration_lock);
1447 	if (!refcount_read(&ib_dev->refcount))
1448 		goto out;
1449 
1450 	disable_device(ib_dev);
1451 	ib_cq_pool_destroy(ib_dev);
1452 
1453 	/* Expedite removing unregistered pointers from the hash table */
1454 	free_netdevs(ib_dev);
1455 
1456 	ib_device_unregister_sysfs(ib_dev);
1457 	device_del(&ib_dev->dev);
1458 	ib_device_unregister_rdmacg(ib_dev);
1459 	ib_cache_cleanup_one(ib_dev);
1460 
1461 	/*
1462 	 * Drivers using the new flow may not call ib_dealloc_device except
1463 	 * in error unwind prior to registration success.
1464 	 */
1465 	if (ib_dev->ops.dealloc_driver) {
1466 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1467 		ib_dealloc_device(ib_dev);
1468 	}
1469 out:
1470 	mutex_unlock(&ib_dev->unregistration_lock);
1471 }
1472 
1473 /**
1474  * ib_unregister_device - Unregister an IB device
1475  * @ib_dev: The device to unregister
1476  *
1477  * Unregister an IB device.  All clients will receive a remove callback.
1478  *
1479  * Callers should call this routine only once, and protect against races with
1480  * registration. Typically it should only be called as part of a remove
1481  * callback in an implementation of driver core's struct device_driver and
1482  * related.
1483  *
1484  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1485  * this function.
1486  */
1487 void ib_unregister_device(struct ib_device *ib_dev)
1488 {
1489 	get_device(&ib_dev->dev);
1490 	__ib_unregister_device(ib_dev);
1491 	put_device(&ib_dev->dev);
1492 }
1493 EXPORT_SYMBOL(ib_unregister_device);
1494 
1495 /**
1496  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1497  * @ib_dev: The device to unregister
1498  *
1499  * This is the same as ib_unregister_device(), except it includes an internal
1500  * ib_device_put() that should match a 'get' obtained by the caller.
1501  *
1502  * It is safe to call this routine concurrently from multiple threads while
1503  * holding the 'get'. When the function returns the device is fully
1504  * unregistered.
1505  *
1506  * Drivers using this flow MUST use the driver_unregister callback to clean up
1507  * their resources associated with the device and dealloc it.
1508  */
1509 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1510 {
1511 	WARN_ON(!ib_dev->ops.dealloc_driver);
1512 	get_device(&ib_dev->dev);
1513 	ib_device_put(ib_dev);
1514 	__ib_unregister_device(ib_dev);
1515 	put_device(&ib_dev->dev);
1516 }
1517 EXPORT_SYMBOL(ib_unregister_device_and_put);
1518 
1519 /**
1520  * ib_unregister_driver - Unregister all IB devices for a driver
1521  * @driver_id: The driver to unregister
1522  *
1523  * This implements a fence for device unregistration. It only returns once all
1524  * devices associated with the driver_id have fully completed their
1525  * unregistration and returned from ib_unregister_device*().
1526  *
1527  * If device's are not yet unregistered it goes ahead and starts unregistering
1528  * them.
1529  *
1530  * This does not block creation of new devices with the given driver_id, that
1531  * is the responsibility of the caller.
1532  */
1533 void ib_unregister_driver(enum rdma_driver_id driver_id)
1534 {
1535 	struct ib_device *ib_dev;
1536 	unsigned long index;
1537 
1538 	down_read(&devices_rwsem);
1539 	xa_for_each (&devices, index, ib_dev) {
1540 		if (ib_dev->ops.driver_id != driver_id)
1541 			continue;
1542 
1543 		get_device(&ib_dev->dev);
1544 		up_read(&devices_rwsem);
1545 
1546 		WARN_ON(!ib_dev->ops.dealloc_driver);
1547 		__ib_unregister_device(ib_dev);
1548 
1549 		put_device(&ib_dev->dev);
1550 		down_read(&devices_rwsem);
1551 	}
1552 	up_read(&devices_rwsem);
1553 }
1554 EXPORT_SYMBOL(ib_unregister_driver);
1555 
1556 static void ib_unregister_work(struct work_struct *work)
1557 {
1558 	struct ib_device *ib_dev =
1559 		container_of(work, struct ib_device, unregistration_work);
1560 
1561 	__ib_unregister_device(ib_dev);
1562 	put_device(&ib_dev->dev);
1563 }
1564 
1565 /**
1566  * ib_unregister_device_queued - Unregister a device using a work queue
1567  * @ib_dev: The device to unregister
1568  *
1569  * This schedules an asynchronous unregistration using a WQ for the device. A
1570  * driver should use this to avoid holding locks while doing unregistration,
1571  * such as holding the RTNL lock.
1572  *
1573  * Drivers using this API must use ib_unregister_driver before module unload
1574  * to ensure that all scheduled unregistrations have completed.
1575  */
1576 void ib_unregister_device_queued(struct ib_device *ib_dev)
1577 {
1578 	WARN_ON(!refcount_read(&ib_dev->refcount));
1579 	WARN_ON(!ib_dev->ops.dealloc_driver);
1580 	get_device(&ib_dev->dev);
1581 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1582 		put_device(&ib_dev->dev);
1583 }
1584 EXPORT_SYMBOL(ib_unregister_device_queued);
1585 
1586 /*
1587  * The caller must pass in a device that has the kref held and the refcount
1588  * released. If the device is in cur_net and still registered then it is moved
1589  * into net.
1590  */
1591 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1592 				 struct net *net)
1593 {
1594 	int ret2 = -EINVAL;
1595 	int ret;
1596 
1597 	mutex_lock(&device->unregistration_lock);
1598 
1599 	/*
1600 	 * If a device not under ib_device_get() or if the unregistration_lock
1601 	 * is not held, the namespace can be changed, or it can be unregistered.
1602 	 * Check again under the lock.
1603 	 */
1604 	if (refcount_read(&device->refcount) == 0 ||
1605 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1606 		ret = -ENODEV;
1607 		goto out;
1608 	}
1609 
1610 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1611 	disable_device(device);
1612 
1613 	/*
1614 	 * At this point no one can be using the device, so it is safe to
1615 	 * change the namespace.
1616 	 */
1617 	write_pnet(&device->coredev.rdma_net, net);
1618 
1619 	down_read(&devices_rwsem);
1620 	/*
1621 	 * Currently rdma devices are system wide unique. So the device name
1622 	 * is guaranteed free in the new namespace. Publish the new namespace
1623 	 * at the sysfs level.
1624 	 */
1625 	ret = device_rename(&device->dev, dev_name(&device->dev));
1626 	up_read(&devices_rwsem);
1627 	if (ret) {
1628 		dev_warn(&device->dev,
1629 			 "%s: Couldn't rename device after namespace change\n",
1630 			 __func__);
1631 		/* Try and put things back and re-enable the device */
1632 		write_pnet(&device->coredev.rdma_net, cur_net);
1633 	}
1634 
1635 	ret2 = enable_device_and_get(device);
1636 	if (ret2) {
1637 		/*
1638 		 * This shouldn't really happen, but if it does, let the user
1639 		 * retry at later point. So don't disable the device.
1640 		 */
1641 		dev_warn(&device->dev,
1642 			 "%s: Couldn't re-enable device after namespace change\n",
1643 			 __func__);
1644 	}
1645 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1646 
1647 	ib_device_put(device);
1648 out:
1649 	mutex_unlock(&device->unregistration_lock);
1650 	if (ret)
1651 		return ret;
1652 	return ret2;
1653 }
1654 
1655 int ib_device_set_netns_put(struct sk_buff *skb,
1656 			    struct ib_device *dev, u32 ns_fd)
1657 {
1658 	struct net *net;
1659 	int ret;
1660 
1661 	net = get_net_ns_by_fd(ns_fd);
1662 	if (IS_ERR(net)) {
1663 		ret = PTR_ERR(net);
1664 		goto net_err;
1665 	}
1666 
1667 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1668 		ret = -EPERM;
1669 		goto ns_err;
1670 	}
1671 
1672 	/*
1673 	 * Currently supported only for those providers which support
1674 	 * disassociation and don't do port specific sysfs init. Once a
1675 	 * port_cleanup infrastructure is implemented, this limitation will be
1676 	 * removed.
1677 	 */
1678 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1679 	    ib_devices_shared_netns) {
1680 		ret = -EOPNOTSUPP;
1681 		goto ns_err;
1682 	}
1683 
1684 	get_device(&dev->dev);
1685 	ib_device_put(dev);
1686 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1687 	put_device(&dev->dev);
1688 
1689 	put_net(net);
1690 	return ret;
1691 
1692 ns_err:
1693 	put_net(net);
1694 net_err:
1695 	ib_device_put(dev);
1696 	return ret;
1697 }
1698 
1699 static struct pernet_operations rdma_dev_net_ops = {
1700 	.init = rdma_dev_init_net,
1701 	.exit = rdma_dev_exit_net,
1702 	.id = &rdma_dev_net_id,
1703 	.size = sizeof(struct rdma_dev_net),
1704 };
1705 
1706 static int assign_client_id(struct ib_client *client)
1707 {
1708 	int ret;
1709 
1710 	down_write(&clients_rwsem);
1711 	/*
1712 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1713 	 * achieve this we assign client_ids so they are sorted in
1714 	 * registration order.
1715 	 */
1716 	client->client_id = highest_client_id;
1717 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1718 	if (ret)
1719 		goto out;
1720 
1721 	highest_client_id++;
1722 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1723 
1724 out:
1725 	up_write(&clients_rwsem);
1726 	return ret;
1727 }
1728 
1729 static void remove_client_id(struct ib_client *client)
1730 {
1731 	down_write(&clients_rwsem);
1732 	xa_erase(&clients, client->client_id);
1733 	for (; highest_client_id; highest_client_id--)
1734 		if (xa_load(&clients, highest_client_id - 1))
1735 			break;
1736 	up_write(&clients_rwsem);
1737 }
1738 
1739 /**
1740  * ib_register_client - Register an IB client
1741  * @client:Client to register
1742  *
1743  * Upper level users of the IB drivers can use ib_register_client() to
1744  * register callbacks for IB device addition and removal.  When an IB
1745  * device is added, each registered client's add method will be called
1746  * (in the order the clients were registered), and when a device is
1747  * removed, each client's remove method will be called (in the reverse
1748  * order that clients were registered).  In addition, when
1749  * ib_register_client() is called, the client will receive an add
1750  * callback for all devices already registered.
1751  */
1752 int ib_register_client(struct ib_client *client)
1753 {
1754 	struct ib_device *device;
1755 	unsigned long index;
1756 	int ret;
1757 
1758 	refcount_set(&client->uses, 1);
1759 	init_completion(&client->uses_zero);
1760 	ret = assign_client_id(client);
1761 	if (ret)
1762 		return ret;
1763 
1764 	down_read(&devices_rwsem);
1765 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1766 		ret = add_client_context(device, client);
1767 		if (ret) {
1768 			up_read(&devices_rwsem);
1769 			ib_unregister_client(client);
1770 			return ret;
1771 		}
1772 	}
1773 	up_read(&devices_rwsem);
1774 	return 0;
1775 }
1776 EXPORT_SYMBOL(ib_register_client);
1777 
1778 /**
1779  * ib_unregister_client - Unregister an IB client
1780  * @client:Client to unregister
1781  *
1782  * Upper level users use ib_unregister_client() to remove their client
1783  * registration.  When ib_unregister_client() is called, the client
1784  * will receive a remove callback for each IB device still registered.
1785  *
1786  * This is a full fence, once it returns no client callbacks will be called,
1787  * or are running in another thread.
1788  */
1789 void ib_unregister_client(struct ib_client *client)
1790 {
1791 	struct ib_device *device;
1792 	unsigned long index;
1793 
1794 	down_write(&clients_rwsem);
1795 	ib_client_put(client);
1796 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1797 	up_write(&clients_rwsem);
1798 
1799 	/* We do not want to have locks while calling client->remove() */
1800 	rcu_read_lock();
1801 	xa_for_each (&devices, index, device) {
1802 		if (!ib_device_try_get(device))
1803 			continue;
1804 		rcu_read_unlock();
1805 
1806 		remove_client_context(device, client->client_id);
1807 
1808 		ib_device_put(device);
1809 		rcu_read_lock();
1810 	}
1811 	rcu_read_unlock();
1812 
1813 	/*
1814 	 * remove_client_context() is not a fence, it can return even though a
1815 	 * removal is ongoing. Wait until all removals are completed.
1816 	 */
1817 	wait_for_completion(&client->uses_zero);
1818 	remove_client_id(client);
1819 }
1820 EXPORT_SYMBOL(ib_unregister_client);
1821 
1822 static int __ib_get_global_client_nl_info(const char *client_name,
1823 					  struct ib_client_nl_info *res)
1824 {
1825 	struct ib_client *client;
1826 	unsigned long index;
1827 	int ret = -ENOENT;
1828 
1829 	down_read(&clients_rwsem);
1830 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1831 		if (strcmp(client->name, client_name) != 0)
1832 			continue;
1833 		if (!client->get_global_nl_info) {
1834 			ret = -EOPNOTSUPP;
1835 			break;
1836 		}
1837 		ret = client->get_global_nl_info(res);
1838 		if (WARN_ON(ret == -ENOENT))
1839 			ret = -EINVAL;
1840 		if (!ret && res->cdev)
1841 			get_device(res->cdev);
1842 		break;
1843 	}
1844 	up_read(&clients_rwsem);
1845 	return ret;
1846 }
1847 
1848 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1849 				   const char *client_name,
1850 				   struct ib_client_nl_info *res)
1851 {
1852 	unsigned long index;
1853 	void *client_data;
1854 	int ret = -ENOENT;
1855 
1856 	down_read(&ibdev->client_data_rwsem);
1857 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1858 			     CLIENT_DATA_REGISTERED) {
1859 		struct ib_client *client = xa_load(&clients, index);
1860 
1861 		if (!client || strcmp(client->name, client_name) != 0)
1862 			continue;
1863 		if (!client->get_nl_info) {
1864 			ret = -EOPNOTSUPP;
1865 			break;
1866 		}
1867 		ret = client->get_nl_info(ibdev, client_data, res);
1868 		if (WARN_ON(ret == -ENOENT))
1869 			ret = -EINVAL;
1870 
1871 		/*
1872 		 * The cdev is guaranteed valid as long as we are inside the
1873 		 * client_data_rwsem as remove_one can't be called. Keep it
1874 		 * valid for the caller.
1875 		 */
1876 		if (!ret && res->cdev)
1877 			get_device(res->cdev);
1878 		break;
1879 	}
1880 	up_read(&ibdev->client_data_rwsem);
1881 
1882 	return ret;
1883 }
1884 
1885 /**
1886  * ib_get_client_nl_info - Fetch the nl_info from a client
1887  * @device - IB device
1888  * @client_name - Name of the client
1889  * @res - Result of the query
1890  */
1891 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1892 			  struct ib_client_nl_info *res)
1893 {
1894 	int ret;
1895 
1896 	if (ibdev)
1897 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1898 	else
1899 		ret = __ib_get_global_client_nl_info(client_name, res);
1900 #ifdef CONFIG_MODULES
1901 	if (ret == -ENOENT) {
1902 		request_module("rdma-client-%s", client_name);
1903 		if (ibdev)
1904 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1905 		else
1906 			ret = __ib_get_global_client_nl_info(client_name, res);
1907 	}
1908 #endif
1909 	if (ret) {
1910 		if (ret == -ENOENT)
1911 			return -EOPNOTSUPP;
1912 		return ret;
1913 	}
1914 
1915 	if (WARN_ON(!res->cdev))
1916 		return -EINVAL;
1917 	return 0;
1918 }
1919 
1920 /**
1921  * ib_set_client_data - Set IB client context
1922  * @device:Device to set context for
1923  * @client:Client to set context for
1924  * @data:Context to set
1925  *
1926  * ib_set_client_data() sets client context data that can be retrieved with
1927  * ib_get_client_data(). This can only be called while the client is
1928  * registered to the device, once the ib_client remove() callback returns this
1929  * cannot be called.
1930  */
1931 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1932 			void *data)
1933 {
1934 	void *rc;
1935 
1936 	if (WARN_ON(IS_ERR(data)))
1937 		data = NULL;
1938 
1939 	rc = xa_store(&device->client_data, client->client_id, data,
1940 		      GFP_KERNEL);
1941 	WARN_ON(xa_is_err(rc));
1942 }
1943 EXPORT_SYMBOL(ib_set_client_data);
1944 
1945 /**
1946  * ib_register_event_handler - Register an IB event handler
1947  * @event_handler:Handler to register
1948  *
1949  * ib_register_event_handler() registers an event handler that will be
1950  * called back when asynchronous IB events occur (as defined in
1951  * chapter 11 of the InfiniBand Architecture Specification). This
1952  * callback occurs in workqueue context.
1953  */
1954 void ib_register_event_handler(struct ib_event_handler *event_handler)
1955 {
1956 	down_write(&event_handler->device->event_handler_rwsem);
1957 	list_add_tail(&event_handler->list,
1958 		      &event_handler->device->event_handler_list);
1959 	up_write(&event_handler->device->event_handler_rwsem);
1960 }
1961 EXPORT_SYMBOL(ib_register_event_handler);
1962 
1963 /**
1964  * ib_unregister_event_handler - Unregister an event handler
1965  * @event_handler:Handler to unregister
1966  *
1967  * Unregister an event handler registered with
1968  * ib_register_event_handler().
1969  */
1970 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1971 {
1972 	down_write(&event_handler->device->event_handler_rwsem);
1973 	list_del(&event_handler->list);
1974 	up_write(&event_handler->device->event_handler_rwsem);
1975 }
1976 EXPORT_SYMBOL(ib_unregister_event_handler);
1977 
1978 void ib_dispatch_event_clients(struct ib_event *event)
1979 {
1980 	struct ib_event_handler *handler;
1981 
1982 	down_read(&event->device->event_handler_rwsem);
1983 
1984 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1985 		handler->handler(handler, event);
1986 
1987 	up_read(&event->device->event_handler_rwsem);
1988 }
1989 
1990 static int iw_query_port(struct ib_device *device,
1991 			   u8 port_num,
1992 			   struct ib_port_attr *port_attr)
1993 {
1994 	struct in_device *inetdev;
1995 	struct net_device *netdev;
1996 
1997 	memset(port_attr, 0, sizeof(*port_attr));
1998 
1999 	netdev = ib_device_get_netdev(device, port_num);
2000 	if (!netdev)
2001 		return -ENODEV;
2002 
2003 	port_attr->max_mtu = IB_MTU_4096;
2004 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2005 
2006 	if (!netif_carrier_ok(netdev)) {
2007 		port_attr->state = IB_PORT_DOWN;
2008 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2009 	} else {
2010 		rcu_read_lock();
2011 		inetdev = __in_dev_get_rcu(netdev);
2012 
2013 		if (inetdev && inetdev->ifa_list) {
2014 			port_attr->state = IB_PORT_ACTIVE;
2015 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2016 		} else {
2017 			port_attr->state = IB_PORT_INIT;
2018 			port_attr->phys_state =
2019 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2020 		}
2021 
2022 		rcu_read_unlock();
2023 	}
2024 
2025 	dev_put(netdev);
2026 	return device->ops.query_port(device, port_num, port_attr);
2027 }
2028 
2029 static int __ib_query_port(struct ib_device *device,
2030 			   u8 port_num,
2031 			   struct ib_port_attr *port_attr)
2032 {
2033 	union ib_gid gid = {};
2034 	int err;
2035 
2036 	memset(port_attr, 0, sizeof(*port_attr));
2037 
2038 	err = device->ops.query_port(device, port_num, port_attr);
2039 	if (err || port_attr->subnet_prefix)
2040 		return err;
2041 
2042 	if (rdma_port_get_link_layer(device, port_num) !=
2043 	    IB_LINK_LAYER_INFINIBAND)
2044 		return 0;
2045 
2046 	err = device->ops.query_gid(device, port_num, 0, &gid);
2047 	if (err)
2048 		return err;
2049 
2050 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2051 	return 0;
2052 }
2053 
2054 /**
2055  * ib_query_port - Query IB port attributes
2056  * @device:Device to query
2057  * @port_num:Port number to query
2058  * @port_attr:Port attributes
2059  *
2060  * ib_query_port() returns the attributes of a port through the
2061  * @port_attr pointer.
2062  */
2063 int ib_query_port(struct ib_device *device,
2064 		  u8 port_num,
2065 		  struct ib_port_attr *port_attr)
2066 {
2067 	if (!rdma_is_port_valid(device, port_num))
2068 		return -EINVAL;
2069 
2070 	if (rdma_protocol_iwarp(device, port_num))
2071 		return iw_query_port(device, port_num, port_attr);
2072 	else
2073 		return __ib_query_port(device, port_num, port_attr);
2074 }
2075 EXPORT_SYMBOL(ib_query_port);
2076 
2077 static void add_ndev_hash(struct ib_port_data *pdata)
2078 {
2079 	unsigned long flags;
2080 
2081 	might_sleep();
2082 
2083 	spin_lock_irqsave(&ndev_hash_lock, flags);
2084 	if (hash_hashed(&pdata->ndev_hash_link)) {
2085 		hash_del_rcu(&pdata->ndev_hash_link);
2086 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2087 		/*
2088 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2089 		 * grace period
2090 		 */
2091 		synchronize_rcu();
2092 		spin_lock_irqsave(&ndev_hash_lock, flags);
2093 	}
2094 	if (pdata->netdev)
2095 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2096 			     (uintptr_t)pdata->netdev);
2097 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2098 }
2099 
2100 /**
2101  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2102  * @ib_dev: Device to modify
2103  * @ndev: net_device to affiliate, may be NULL
2104  * @port: IB port the net_device is connected to
2105  *
2106  * Drivers should use this to link the ib_device to a netdev so the netdev
2107  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2108  * affiliated with any port.
2109  *
2110  * The caller must ensure that the given ndev is not unregistered or
2111  * unregistering, and that either the ib_device is unregistered or
2112  * ib_device_set_netdev() is called with NULL when the ndev sends a
2113  * NETDEV_UNREGISTER event.
2114  */
2115 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2116 			 unsigned int port)
2117 {
2118 	struct net_device *old_ndev;
2119 	struct ib_port_data *pdata;
2120 	unsigned long flags;
2121 	int ret;
2122 
2123 	/*
2124 	 * Drivers wish to call this before ib_register_driver, so we have to
2125 	 * setup the port data early.
2126 	 */
2127 	ret = alloc_port_data(ib_dev);
2128 	if (ret)
2129 		return ret;
2130 
2131 	if (!rdma_is_port_valid(ib_dev, port))
2132 		return -EINVAL;
2133 
2134 	pdata = &ib_dev->port_data[port];
2135 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2136 	old_ndev = rcu_dereference_protected(
2137 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2138 	if (old_ndev == ndev) {
2139 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2140 		return 0;
2141 	}
2142 
2143 	if (ndev)
2144 		dev_hold(ndev);
2145 	rcu_assign_pointer(pdata->netdev, ndev);
2146 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2147 
2148 	add_ndev_hash(pdata);
2149 	if (old_ndev)
2150 		dev_put(old_ndev);
2151 
2152 	return 0;
2153 }
2154 EXPORT_SYMBOL(ib_device_set_netdev);
2155 
2156 static void free_netdevs(struct ib_device *ib_dev)
2157 {
2158 	unsigned long flags;
2159 	unsigned int port;
2160 
2161 	if (!ib_dev->port_data)
2162 		return;
2163 
2164 	rdma_for_each_port (ib_dev, port) {
2165 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2166 		struct net_device *ndev;
2167 
2168 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2169 		ndev = rcu_dereference_protected(
2170 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2171 		if (ndev) {
2172 			spin_lock(&ndev_hash_lock);
2173 			hash_del_rcu(&pdata->ndev_hash_link);
2174 			spin_unlock(&ndev_hash_lock);
2175 
2176 			/*
2177 			 * If this is the last dev_put there is still a
2178 			 * synchronize_rcu before the netdev is kfreed, so we
2179 			 * can continue to rely on unlocked pointer
2180 			 * comparisons after the put
2181 			 */
2182 			rcu_assign_pointer(pdata->netdev, NULL);
2183 			dev_put(ndev);
2184 		}
2185 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2186 	}
2187 }
2188 
2189 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2190 					unsigned int port)
2191 {
2192 	struct ib_port_data *pdata;
2193 	struct net_device *res;
2194 
2195 	if (!rdma_is_port_valid(ib_dev, port))
2196 		return NULL;
2197 
2198 	pdata = &ib_dev->port_data[port];
2199 
2200 	/*
2201 	 * New drivers should use ib_device_set_netdev() not the legacy
2202 	 * get_netdev().
2203 	 */
2204 	if (ib_dev->ops.get_netdev)
2205 		res = ib_dev->ops.get_netdev(ib_dev, port);
2206 	else {
2207 		spin_lock(&pdata->netdev_lock);
2208 		res = rcu_dereference_protected(
2209 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2210 		if (res)
2211 			dev_hold(res);
2212 		spin_unlock(&pdata->netdev_lock);
2213 	}
2214 
2215 	/*
2216 	 * If we are starting to unregister expedite things by preventing
2217 	 * propagation of an unregistering netdev.
2218 	 */
2219 	if (res && res->reg_state != NETREG_REGISTERED) {
2220 		dev_put(res);
2221 		return NULL;
2222 	}
2223 
2224 	return res;
2225 }
2226 
2227 /**
2228  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2229  * @ndev: netdev to locate
2230  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2231  *
2232  * Find and hold an ib_device that is associated with a netdev via
2233  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2234  * returned pointer.
2235  */
2236 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2237 					  enum rdma_driver_id driver_id)
2238 {
2239 	struct ib_device *res = NULL;
2240 	struct ib_port_data *cur;
2241 
2242 	rcu_read_lock();
2243 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2244 				    (uintptr_t)ndev) {
2245 		if (rcu_access_pointer(cur->netdev) == ndev &&
2246 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2247 		     cur->ib_dev->ops.driver_id == driver_id) &&
2248 		    ib_device_try_get(cur->ib_dev)) {
2249 			res = cur->ib_dev;
2250 			break;
2251 		}
2252 	}
2253 	rcu_read_unlock();
2254 
2255 	return res;
2256 }
2257 EXPORT_SYMBOL(ib_device_get_by_netdev);
2258 
2259 /**
2260  * ib_enum_roce_netdev - enumerate all RoCE ports
2261  * @ib_dev : IB device we want to query
2262  * @filter: Should we call the callback?
2263  * @filter_cookie: Cookie passed to filter
2264  * @cb: Callback to call for each found RoCE ports
2265  * @cookie: Cookie passed back to the callback
2266  *
2267  * Enumerates all of the physical RoCE ports of ib_dev
2268  * which are related to netdevice and calls callback() on each
2269  * device for which filter() function returns non zero.
2270  */
2271 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2272 			 roce_netdev_filter filter,
2273 			 void *filter_cookie,
2274 			 roce_netdev_callback cb,
2275 			 void *cookie)
2276 {
2277 	unsigned int port;
2278 
2279 	rdma_for_each_port (ib_dev, port)
2280 		if (rdma_protocol_roce(ib_dev, port)) {
2281 			struct net_device *idev =
2282 				ib_device_get_netdev(ib_dev, port);
2283 
2284 			if (filter(ib_dev, port, idev, filter_cookie))
2285 				cb(ib_dev, port, idev, cookie);
2286 
2287 			if (idev)
2288 				dev_put(idev);
2289 		}
2290 }
2291 
2292 /**
2293  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2294  * @filter: Should we call the callback?
2295  * @filter_cookie: Cookie passed to filter
2296  * @cb: Callback to call for each found RoCE ports
2297  * @cookie: Cookie passed back to the callback
2298  *
2299  * Enumerates all RoCE devices' physical ports which are related
2300  * to netdevices and calls callback() on each device for which
2301  * filter() function returns non zero.
2302  */
2303 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2304 			      void *filter_cookie,
2305 			      roce_netdev_callback cb,
2306 			      void *cookie)
2307 {
2308 	struct ib_device *dev;
2309 	unsigned long index;
2310 
2311 	down_read(&devices_rwsem);
2312 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2313 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2314 	up_read(&devices_rwsem);
2315 }
2316 
2317 /**
2318  * ib_enum_all_devs - enumerate all ib_devices
2319  * @cb: Callback to call for each found ib_device
2320  *
2321  * Enumerates all ib_devices and calls callback() on each device.
2322  */
2323 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2324 		     struct netlink_callback *cb)
2325 {
2326 	unsigned long index;
2327 	struct ib_device *dev;
2328 	unsigned int idx = 0;
2329 	int ret = 0;
2330 
2331 	down_read(&devices_rwsem);
2332 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2333 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2334 			continue;
2335 
2336 		ret = nldev_cb(dev, skb, cb, idx);
2337 		if (ret)
2338 			break;
2339 		idx++;
2340 	}
2341 	up_read(&devices_rwsem);
2342 	return ret;
2343 }
2344 
2345 /**
2346  * ib_query_pkey - Get P_Key table entry
2347  * @device:Device to query
2348  * @port_num:Port number to query
2349  * @index:P_Key table index to query
2350  * @pkey:Returned P_Key
2351  *
2352  * ib_query_pkey() fetches the specified P_Key table entry.
2353  */
2354 int ib_query_pkey(struct ib_device *device,
2355 		  u8 port_num, u16 index, u16 *pkey)
2356 {
2357 	if (!rdma_is_port_valid(device, port_num))
2358 		return -EINVAL;
2359 
2360 	return device->ops.query_pkey(device, port_num, index, pkey);
2361 }
2362 EXPORT_SYMBOL(ib_query_pkey);
2363 
2364 /**
2365  * ib_modify_device - Change IB device attributes
2366  * @device:Device to modify
2367  * @device_modify_mask:Mask of attributes to change
2368  * @device_modify:New attribute values
2369  *
2370  * ib_modify_device() changes a device's attributes as specified by
2371  * the @device_modify_mask and @device_modify structure.
2372  */
2373 int ib_modify_device(struct ib_device *device,
2374 		     int device_modify_mask,
2375 		     struct ib_device_modify *device_modify)
2376 {
2377 	if (!device->ops.modify_device)
2378 		return -EOPNOTSUPP;
2379 
2380 	return device->ops.modify_device(device, device_modify_mask,
2381 					 device_modify);
2382 }
2383 EXPORT_SYMBOL(ib_modify_device);
2384 
2385 /**
2386  * ib_modify_port - Modifies the attributes for the specified port.
2387  * @device: The device to modify.
2388  * @port_num: The number of the port to modify.
2389  * @port_modify_mask: Mask used to specify which attributes of the port
2390  *   to change.
2391  * @port_modify: New attribute values for the port.
2392  *
2393  * ib_modify_port() changes a port's attributes as specified by the
2394  * @port_modify_mask and @port_modify structure.
2395  */
2396 int ib_modify_port(struct ib_device *device,
2397 		   u8 port_num, int port_modify_mask,
2398 		   struct ib_port_modify *port_modify)
2399 {
2400 	int rc;
2401 
2402 	if (!rdma_is_port_valid(device, port_num))
2403 		return -EINVAL;
2404 
2405 	if (device->ops.modify_port)
2406 		rc = device->ops.modify_port(device, port_num,
2407 					     port_modify_mask,
2408 					     port_modify);
2409 	else if (rdma_protocol_roce(device, port_num) &&
2410 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2411 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2412 		rc = 0;
2413 	else
2414 		rc = -EOPNOTSUPP;
2415 	return rc;
2416 }
2417 EXPORT_SYMBOL(ib_modify_port);
2418 
2419 /**
2420  * ib_find_gid - Returns the port number and GID table index where
2421  *   a specified GID value occurs. Its searches only for IB link layer.
2422  * @device: The device to query.
2423  * @gid: The GID value to search for.
2424  * @port_num: The port number of the device where the GID value was found.
2425  * @index: The index into the GID table where the GID was found.  This
2426  *   parameter may be NULL.
2427  */
2428 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2429 		u8 *port_num, u16 *index)
2430 {
2431 	union ib_gid tmp_gid;
2432 	unsigned int port;
2433 	int ret, i;
2434 
2435 	rdma_for_each_port (device, port) {
2436 		if (!rdma_protocol_ib(device, port))
2437 			continue;
2438 
2439 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2440 		     ++i) {
2441 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2442 			if (ret)
2443 				return ret;
2444 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2445 				*port_num = port;
2446 				if (index)
2447 					*index = i;
2448 				return 0;
2449 			}
2450 		}
2451 	}
2452 
2453 	return -ENOENT;
2454 }
2455 EXPORT_SYMBOL(ib_find_gid);
2456 
2457 /**
2458  * ib_find_pkey - Returns the PKey table index where a specified
2459  *   PKey value occurs.
2460  * @device: The device to query.
2461  * @port_num: The port number of the device to search for the PKey.
2462  * @pkey: The PKey value to search for.
2463  * @index: The index into the PKey table where the PKey was found.
2464  */
2465 int ib_find_pkey(struct ib_device *device,
2466 		 u8 port_num, u16 pkey, u16 *index)
2467 {
2468 	int ret, i;
2469 	u16 tmp_pkey;
2470 	int partial_ix = -1;
2471 
2472 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2473 	     ++i) {
2474 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2475 		if (ret)
2476 			return ret;
2477 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2478 			/* if there is full-member pkey take it.*/
2479 			if (tmp_pkey & 0x8000) {
2480 				*index = i;
2481 				return 0;
2482 			}
2483 			if (partial_ix < 0)
2484 				partial_ix = i;
2485 		}
2486 	}
2487 
2488 	/*no full-member, if exists take the limited*/
2489 	if (partial_ix >= 0) {
2490 		*index = partial_ix;
2491 		return 0;
2492 	}
2493 	return -ENOENT;
2494 }
2495 EXPORT_SYMBOL(ib_find_pkey);
2496 
2497 /**
2498  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2499  * for a received CM request
2500  * @dev:	An RDMA device on which the request has been received.
2501  * @port:	Port number on the RDMA device.
2502  * @pkey:	The Pkey the request came on.
2503  * @gid:	A GID that the net_dev uses to communicate.
2504  * @addr:	Contains the IP address that the request specified as its
2505  *		destination.
2506  *
2507  */
2508 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2509 					    u8 port,
2510 					    u16 pkey,
2511 					    const union ib_gid *gid,
2512 					    const struct sockaddr *addr)
2513 {
2514 	struct net_device *net_dev = NULL;
2515 	unsigned long index;
2516 	void *client_data;
2517 
2518 	if (!rdma_protocol_ib(dev, port))
2519 		return NULL;
2520 
2521 	/*
2522 	 * Holding the read side guarantees that the client will not become
2523 	 * unregistered while we are calling get_net_dev_by_params()
2524 	 */
2525 	down_read(&dev->client_data_rwsem);
2526 	xan_for_each_marked (&dev->client_data, index, client_data,
2527 			     CLIENT_DATA_REGISTERED) {
2528 		struct ib_client *client = xa_load(&clients, index);
2529 
2530 		if (!client || !client->get_net_dev_by_params)
2531 			continue;
2532 
2533 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2534 							addr, client_data);
2535 		if (net_dev)
2536 			break;
2537 	}
2538 	up_read(&dev->client_data_rwsem);
2539 
2540 	return net_dev;
2541 }
2542 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2543 
2544 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2545 {
2546 	struct ib_device_ops *dev_ops = &dev->ops;
2547 #define SET_DEVICE_OP(ptr, name)                                               \
2548 	do {                                                                   \
2549 		if (ops->name)                                                 \
2550 			if (!((ptr)->name))				       \
2551 				(ptr)->name = ops->name;                       \
2552 	} while (0)
2553 
2554 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2555 
2556 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2557 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2558 			dev_ops->driver_id != ops->driver_id);
2559 		dev_ops->driver_id = ops->driver_id;
2560 	}
2561 	if (ops->owner) {
2562 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2563 		dev_ops->owner = ops->owner;
2564 	}
2565 	if (ops->uverbs_abi_ver)
2566 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2567 
2568 	dev_ops->uverbs_no_driver_id_binding |=
2569 		ops->uverbs_no_driver_id_binding;
2570 
2571 	SET_DEVICE_OP(dev_ops, add_gid);
2572 	SET_DEVICE_OP(dev_ops, advise_mr);
2573 	SET_DEVICE_OP(dev_ops, alloc_dm);
2574 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2575 	SET_DEVICE_OP(dev_ops, alloc_mr);
2576 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2577 	SET_DEVICE_OP(dev_ops, alloc_mw);
2578 	SET_DEVICE_OP(dev_ops, alloc_pd);
2579 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2580 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2581 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2582 	SET_DEVICE_OP(dev_ops, attach_mcast);
2583 	SET_DEVICE_OP(dev_ops, check_mr_status);
2584 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2585 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2586 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2587 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2588 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2589 	SET_DEVICE_OP(dev_ops, create_ah);
2590 	SET_DEVICE_OP(dev_ops, create_counters);
2591 	SET_DEVICE_OP(dev_ops, create_cq);
2592 	SET_DEVICE_OP(dev_ops, create_flow);
2593 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2594 	SET_DEVICE_OP(dev_ops, create_qp);
2595 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2596 	SET_DEVICE_OP(dev_ops, create_srq);
2597 	SET_DEVICE_OP(dev_ops, create_wq);
2598 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2599 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2600 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2601 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2602 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2603 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2604 	SET_DEVICE_OP(dev_ops, del_gid);
2605 	SET_DEVICE_OP(dev_ops, dereg_mr);
2606 	SET_DEVICE_OP(dev_ops, destroy_ah);
2607 	SET_DEVICE_OP(dev_ops, destroy_counters);
2608 	SET_DEVICE_OP(dev_ops, destroy_cq);
2609 	SET_DEVICE_OP(dev_ops, destroy_flow);
2610 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2611 	SET_DEVICE_OP(dev_ops, destroy_qp);
2612 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2613 	SET_DEVICE_OP(dev_ops, destroy_srq);
2614 	SET_DEVICE_OP(dev_ops, destroy_wq);
2615 	SET_DEVICE_OP(dev_ops, detach_mcast);
2616 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2617 	SET_DEVICE_OP(dev_ops, drain_rq);
2618 	SET_DEVICE_OP(dev_ops, drain_sq);
2619 	SET_DEVICE_OP(dev_ops, enable_driver);
2620 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2621 	SET_DEVICE_OP(dev_ops, fill_stat_entry);
2622 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2623 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2624 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2625 	SET_DEVICE_OP(dev_ops, get_link_layer);
2626 	SET_DEVICE_OP(dev_ops, get_netdev);
2627 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2628 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2629 	SET_DEVICE_OP(dev_ops, get_vf_config);
2630 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2631 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2632 	SET_DEVICE_OP(dev_ops, init_port);
2633 	SET_DEVICE_OP(dev_ops, iw_accept);
2634 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2635 	SET_DEVICE_OP(dev_ops, iw_connect);
2636 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2637 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2638 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2639 	SET_DEVICE_OP(dev_ops, iw_reject);
2640 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2641 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2642 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2643 	SET_DEVICE_OP(dev_ops, mmap);
2644 	SET_DEVICE_OP(dev_ops, mmap_free);
2645 	SET_DEVICE_OP(dev_ops, modify_ah);
2646 	SET_DEVICE_OP(dev_ops, modify_cq);
2647 	SET_DEVICE_OP(dev_ops, modify_device);
2648 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2649 	SET_DEVICE_OP(dev_ops, modify_port);
2650 	SET_DEVICE_OP(dev_ops, modify_qp);
2651 	SET_DEVICE_OP(dev_ops, modify_srq);
2652 	SET_DEVICE_OP(dev_ops, modify_wq);
2653 	SET_DEVICE_OP(dev_ops, peek_cq);
2654 	SET_DEVICE_OP(dev_ops, poll_cq);
2655 	SET_DEVICE_OP(dev_ops, post_recv);
2656 	SET_DEVICE_OP(dev_ops, post_send);
2657 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2658 	SET_DEVICE_OP(dev_ops, process_mad);
2659 	SET_DEVICE_OP(dev_ops, query_ah);
2660 	SET_DEVICE_OP(dev_ops, query_device);
2661 	SET_DEVICE_OP(dev_ops, query_gid);
2662 	SET_DEVICE_OP(dev_ops, query_pkey);
2663 	SET_DEVICE_OP(dev_ops, query_port);
2664 	SET_DEVICE_OP(dev_ops, query_qp);
2665 	SET_DEVICE_OP(dev_ops, query_srq);
2666 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2667 	SET_DEVICE_OP(dev_ops, read_counters);
2668 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2669 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2670 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2671 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2672 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2673 	SET_DEVICE_OP(dev_ops, resize_cq);
2674 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2675 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2676 
2677 	SET_OBJ_SIZE(dev_ops, ib_ah);
2678 	SET_OBJ_SIZE(dev_ops, ib_cq);
2679 	SET_OBJ_SIZE(dev_ops, ib_pd);
2680 	SET_OBJ_SIZE(dev_ops, ib_srq);
2681 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2682 }
2683 EXPORT_SYMBOL(ib_set_device_ops);
2684 
2685 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2686 	[RDMA_NL_LS_OP_RESOLVE] = {
2687 		.doit = ib_nl_handle_resolve_resp,
2688 		.flags = RDMA_NL_ADMIN_PERM,
2689 	},
2690 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2691 		.doit = ib_nl_handle_set_timeout,
2692 		.flags = RDMA_NL_ADMIN_PERM,
2693 	},
2694 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2695 		.doit = ib_nl_handle_ip_res_resp,
2696 		.flags = RDMA_NL_ADMIN_PERM,
2697 	},
2698 };
2699 
2700 static int __init ib_core_init(void)
2701 {
2702 	int ret;
2703 
2704 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2705 	if (!ib_wq)
2706 		return -ENOMEM;
2707 
2708 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2709 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2710 	if (!ib_comp_wq) {
2711 		ret = -ENOMEM;
2712 		goto err;
2713 	}
2714 
2715 	ib_comp_unbound_wq =
2716 		alloc_workqueue("ib-comp-unb-wq",
2717 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2718 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2719 	if (!ib_comp_unbound_wq) {
2720 		ret = -ENOMEM;
2721 		goto err_comp;
2722 	}
2723 
2724 	ret = class_register(&ib_class);
2725 	if (ret) {
2726 		pr_warn("Couldn't create InfiniBand device class\n");
2727 		goto err_comp_unbound;
2728 	}
2729 
2730 	rdma_nl_init();
2731 
2732 	ret = addr_init();
2733 	if (ret) {
2734 		pr_warn("Could't init IB address resolution\n");
2735 		goto err_ibnl;
2736 	}
2737 
2738 	ret = ib_mad_init();
2739 	if (ret) {
2740 		pr_warn("Couldn't init IB MAD\n");
2741 		goto err_addr;
2742 	}
2743 
2744 	ret = ib_sa_init();
2745 	if (ret) {
2746 		pr_warn("Couldn't init SA\n");
2747 		goto err_mad;
2748 	}
2749 
2750 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2751 	if (ret) {
2752 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2753 		goto err_sa;
2754 	}
2755 
2756 	ret = register_pernet_device(&rdma_dev_net_ops);
2757 	if (ret) {
2758 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2759 		goto err_compat;
2760 	}
2761 
2762 	nldev_init();
2763 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2764 	roce_gid_mgmt_init();
2765 
2766 	return 0;
2767 
2768 err_compat:
2769 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2770 err_sa:
2771 	ib_sa_cleanup();
2772 err_mad:
2773 	ib_mad_cleanup();
2774 err_addr:
2775 	addr_cleanup();
2776 err_ibnl:
2777 	class_unregister(&ib_class);
2778 err_comp_unbound:
2779 	destroy_workqueue(ib_comp_unbound_wq);
2780 err_comp:
2781 	destroy_workqueue(ib_comp_wq);
2782 err:
2783 	destroy_workqueue(ib_wq);
2784 	return ret;
2785 }
2786 
2787 static void __exit ib_core_cleanup(void)
2788 {
2789 	roce_gid_mgmt_cleanup();
2790 	nldev_exit();
2791 	rdma_nl_unregister(RDMA_NL_LS);
2792 	unregister_pernet_device(&rdma_dev_net_ops);
2793 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2794 	ib_sa_cleanup();
2795 	ib_mad_cleanup();
2796 	addr_cleanup();
2797 	rdma_nl_exit();
2798 	class_unregister(&ib_class);
2799 	destroy_workqueue(ib_comp_unbound_wq);
2800 	destroy_workqueue(ib_comp_wq);
2801 	/* Make sure that any pending umem accounting work is done. */
2802 	destroy_workqueue(ib_wq);
2803 	flush_workqueue(system_unbound_wq);
2804 	WARN_ON(!xa_empty(&clients));
2805 	WARN_ON(!xa_empty(&devices));
2806 }
2807 
2808 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2809 
2810 /* ib core relies on netdev stack to first register net_ns_type_operations
2811  * ns kobject type before ib_core initialization.
2812  */
2813 fs_initcall(ib_core_init);
2814 module_exit(ib_core_cleanup);
2815