xref: /linux/drivers/infiniband/core/device.c (revision f4915455dcf07c4f237d6160a4b6adb0575d2909)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <net/netns/generic.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/hashtable.h>
46 #include <rdma/rdma_netlink.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 #include <rdma/rdma_counter.h>
50 
51 #include "core_priv.h"
52 #include "restrack.h"
53 
54 MODULE_AUTHOR("Roland Dreier");
55 MODULE_DESCRIPTION("core kernel InfiniBand API");
56 MODULE_LICENSE("Dual BSD/GPL");
57 
58 struct workqueue_struct *ib_comp_wq;
59 struct workqueue_struct *ib_comp_unbound_wq;
60 struct workqueue_struct *ib_wq;
61 EXPORT_SYMBOL_GPL(ib_wq);
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static LIST_HEAD(client_list);
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
102 /*
103  * If client_data is registered then the corresponding client must also still
104  * be registered.
105  */
106 #define CLIENT_DATA_REGISTERED XA_MARK_1
107 
108 /**
109  * struct rdma_dev_net - rdma net namespace metadata for a net
110  * @net:	Pointer to owner net namespace
111  * @id:		xarray id to identify the net namespace.
112  */
113 struct rdma_dev_net {
114 	possible_net_t net;
115 	u32 id;
116 };
117 
118 static unsigned int rdma_dev_net_id;
119 
120 /*
121  * A list of net namespaces is maintained in an xarray. This is necessary
122  * because we can't get the locking right using the existing net ns list. We
123  * would require a init_net callback after the list is updated.
124  */
125 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
126 /*
127  * rwsem to protect accessing the rdma_nets xarray entries.
128  */
129 static DECLARE_RWSEM(rdma_nets_rwsem);
130 
131 bool ib_devices_shared_netns = true;
132 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
133 MODULE_PARM_DESC(netns_mode,
134 		 "Share device among net namespaces; default=1 (shared)");
135 /**
136  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
137  *			     from a specified net namespace or not.
138  * @device:	Pointer to rdma device which needs to be checked
139  * @net:	Pointer to net namesapce for which access to be checked
140  *
141  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
142  *			     from a specified net namespace or not. When
143  *			     rdma device is in shared mode, it ignores the
144  *			     net namespace. When rdma device is exclusive
145  *			     to a net namespace, rdma device net namespace is
146  *			     checked against the specified one.
147  */
148 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
149 {
150 	return (ib_devices_shared_netns ||
151 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
152 }
153 EXPORT_SYMBOL(rdma_dev_access_netns);
154 
155 /*
156  * xarray has this behavior where it won't iterate over NULL values stored in
157  * allocated arrays.  So we need our own iterator to see all values stored in
158  * the array. This does the same thing as xa_for_each except that it also
159  * returns NULL valued entries if the array is allocating. Simplified to only
160  * work on simple xarrays.
161  */
162 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
163 			     xa_mark_t filter)
164 {
165 	XA_STATE(xas, xa, *indexp);
166 	void *entry;
167 
168 	rcu_read_lock();
169 	do {
170 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
171 		if (xa_is_zero(entry))
172 			break;
173 	} while (xas_retry(&xas, entry));
174 	rcu_read_unlock();
175 
176 	if (entry) {
177 		*indexp = xas.xa_index;
178 		if (xa_is_zero(entry))
179 			return NULL;
180 		return entry;
181 	}
182 	return XA_ERROR(-ENOENT);
183 }
184 #define xan_for_each_marked(xa, index, entry, filter)                          \
185 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
186 	     !xa_is_err(entry);                                                \
187 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
188 
189 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
190 static DEFINE_SPINLOCK(ndev_hash_lock);
191 static DECLARE_HASHTABLE(ndev_hash, 5);
192 
193 static void free_netdevs(struct ib_device *ib_dev);
194 static void ib_unregister_work(struct work_struct *work);
195 static void __ib_unregister_device(struct ib_device *device);
196 static int ib_security_change(struct notifier_block *nb, unsigned long event,
197 			      void *lsm_data);
198 static void ib_policy_change_task(struct work_struct *work);
199 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
200 
201 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
202 			   struct va_format *vaf)
203 {
204 	if (ibdev && ibdev->dev.parent)
205 		dev_printk_emit(level[1] - '0',
206 				ibdev->dev.parent,
207 				"%s %s %s: %pV",
208 				dev_driver_string(ibdev->dev.parent),
209 				dev_name(ibdev->dev.parent),
210 				dev_name(&ibdev->dev),
211 				vaf);
212 	else if (ibdev)
213 		printk("%s%s: %pV",
214 		       level, dev_name(&ibdev->dev), vaf);
215 	else
216 		printk("%s(NULL ib_device): %pV", level, vaf);
217 }
218 
219 void ibdev_printk(const char *level, const struct ib_device *ibdev,
220 		  const char *format, ...)
221 {
222 	struct va_format vaf;
223 	va_list args;
224 
225 	va_start(args, format);
226 
227 	vaf.fmt = format;
228 	vaf.va = &args;
229 
230 	__ibdev_printk(level, ibdev, &vaf);
231 
232 	va_end(args);
233 }
234 EXPORT_SYMBOL(ibdev_printk);
235 
236 #define define_ibdev_printk_level(func, level)                  \
237 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
238 {                                                               \
239 	struct va_format vaf;                                   \
240 	va_list args;                                           \
241 								\
242 	va_start(args, fmt);                                    \
243 								\
244 	vaf.fmt = fmt;                                          \
245 	vaf.va = &args;                                         \
246 								\
247 	__ibdev_printk(level, ibdev, &vaf);                     \
248 								\
249 	va_end(args);                                           \
250 }                                                               \
251 EXPORT_SYMBOL(func);
252 
253 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
254 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
255 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
256 define_ibdev_printk_level(ibdev_err, KERN_ERR);
257 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
258 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
259 define_ibdev_printk_level(ibdev_info, KERN_INFO);
260 
261 static struct notifier_block ibdev_lsm_nb = {
262 	.notifier_call = ib_security_change,
263 };
264 
265 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
266 				 struct net *net);
267 
268 /* Pointer to the RCU head at the start of the ib_port_data array */
269 struct ib_port_data_rcu {
270 	struct rcu_head rcu_head;
271 	struct ib_port_data pdata[];
272 };
273 
274 static void ib_device_check_mandatory(struct ib_device *device)
275 {
276 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
277 	static const struct {
278 		size_t offset;
279 		char  *name;
280 	} mandatory_table[] = {
281 		IB_MANDATORY_FUNC(query_device),
282 		IB_MANDATORY_FUNC(query_port),
283 		IB_MANDATORY_FUNC(query_pkey),
284 		IB_MANDATORY_FUNC(alloc_pd),
285 		IB_MANDATORY_FUNC(dealloc_pd),
286 		IB_MANDATORY_FUNC(create_qp),
287 		IB_MANDATORY_FUNC(modify_qp),
288 		IB_MANDATORY_FUNC(destroy_qp),
289 		IB_MANDATORY_FUNC(post_send),
290 		IB_MANDATORY_FUNC(post_recv),
291 		IB_MANDATORY_FUNC(create_cq),
292 		IB_MANDATORY_FUNC(destroy_cq),
293 		IB_MANDATORY_FUNC(poll_cq),
294 		IB_MANDATORY_FUNC(req_notify_cq),
295 		IB_MANDATORY_FUNC(get_dma_mr),
296 		IB_MANDATORY_FUNC(dereg_mr),
297 		IB_MANDATORY_FUNC(get_port_immutable)
298 	};
299 	int i;
300 
301 	device->kverbs_provider = true;
302 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
303 		if (!*(void **) ((void *) &device->ops +
304 				 mandatory_table[i].offset)) {
305 			device->kverbs_provider = false;
306 			break;
307 		}
308 	}
309 }
310 
311 /*
312  * Caller must perform ib_device_put() to return the device reference count
313  * when ib_device_get_by_index() returns valid device pointer.
314  */
315 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
316 {
317 	struct ib_device *device;
318 
319 	down_read(&devices_rwsem);
320 	device = xa_load(&devices, index);
321 	if (device) {
322 		if (!rdma_dev_access_netns(device, net)) {
323 			device = NULL;
324 			goto out;
325 		}
326 
327 		if (!ib_device_try_get(device))
328 			device = NULL;
329 	}
330 out:
331 	up_read(&devices_rwsem);
332 	return device;
333 }
334 
335 /**
336  * ib_device_put - Release IB device reference
337  * @device: device whose reference to be released
338  *
339  * ib_device_put() releases reference to the IB device to allow it to be
340  * unregistered and eventually free.
341  */
342 void ib_device_put(struct ib_device *device)
343 {
344 	if (refcount_dec_and_test(&device->refcount))
345 		complete(&device->unreg_completion);
346 }
347 EXPORT_SYMBOL(ib_device_put);
348 
349 static struct ib_device *__ib_device_get_by_name(const char *name)
350 {
351 	struct ib_device *device;
352 	unsigned long index;
353 
354 	xa_for_each (&devices, index, device)
355 		if (!strcmp(name, dev_name(&device->dev)))
356 			return device;
357 
358 	return NULL;
359 }
360 
361 /**
362  * ib_device_get_by_name - Find an IB device by name
363  * @name: The name to look for
364  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
365  *
366  * Find and hold an ib_device by its name. The caller must call
367  * ib_device_put() on the returned pointer.
368  */
369 struct ib_device *ib_device_get_by_name(const char *name,
370 					enum rdma_driver_id driver_id)
371 {
372 	struct ib_device *device;
373 
374 	down_read(&devices_rwsem);
375 	device = __ib_device_get_by_name(name);
376 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
377 	    device->ops.driver_id != driver_id)
378 		device = NULL;
379 
380 	if (device) {
381 		if (!ib_device_try_get(device))
382 			device = NULL;
383 	}
384 	up_read(&devices_rwsem);
385 	return device;
386 }
387 EXPORT_SYMBOL(ib_device_get_by_name);
388 
389 static int rename_compat_devs(struct ib_device *device)
390 {
391 	struct ib_core_device *cdev;
392 	unsigned long index;
393 	int ret = 0;
394 
395 	mutex_lock(&device->compat_devs_mutex);
396 	xa_for_each (&device->compat_devs, index, cdev) {
397 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
398 		if (ret) {
399 			dev_warn(&cdev->dev,
400 				 "Fail to rename compatdev to new name %s\n",
401 				 dev_name(&device->dev));
402 			break;
403 		}
404 	}
405 	mutex_unlock(&device->compat_devs_mutex);
406 	return ret;
407 }
408 
409 int ib_device_rename(struct ib_device *ibdev, const char *name)
410 {
411 	unsigned long index;
412 	void *client_data;
413 	int ret;
414 
415 	down_write(&devices_rwsem);
416 	if (!strcmp(name, dev_name(&ibdev->dev))) {
417 		up_write(&devices_rwsem);
418 		return 0;
419 	}
420 
421 	if (__ib_device_get_by_name(name)) {
422 		up_write(&devices_rwsem);
423 		return -EEXIST;
424 	}
425 
426 	ret = device_rename(&ibdev->dev, name);
427 	if (ret) {
428 		up_write(&devices_rwsem);
429 		return ret;
430 	}
431 
432 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
433 	ret = rename_compat_devs(ibdev);
434 
435 	downgrade_write(&devices_rwsem);
436 	down_read(&ibdev->client_data_rwsem);
437 	xan_for_each_marked(&ibdev->client_data, index, client_data,
438 			    CLIENT_DATA_REGISTERED) {
439 		struct ib_client *client = xa_load(&clients, index);
440 
441 		if (!client || !client->rename)
442 			continue;
443 
444 		client->rename(ibdev, client_data);
445 	}
446 	up_read(&ibdev->client_data_rwsem);
447 	up_read(&devices_rwsem);
448 	return 0;
449 }
450 
451 static int alloc_name(struct ib_device *ibdev, const char *name)
452 {
453 	struct ib_device *device;
454 	unsigned long index;
455 	struct ida inuse;
456 	int rc;
457 	int i;
458 
459 	lockdep_assert_held_exclusive(&devices_rwsem);
460 	ida_init(&inuse);
461 	xa_for_each (&devices, index, device) {
462 		char buf[IB_DEVICE_NAME_MAX];
463 
464 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
465 			continue;
466 		if (i < 0 || i >= INT_MAX)
467 			continue;
468 		snprintf(buf, sizeof buf, name, i);
469 		if (strcmp(buf, dev_name(&device->dev)) != 0)
470 			continue;
471 
472 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
473 		if (rc < 0)
474 			goto out;
475 	}
476 
477 	rc = ida_alloc(&inuse, GFP_KERNEL);
478 	if (rc < 0)
479 		goto out;
480 
481 	rc = dev_set_name(&ibdev->dev, name, rc);
482 out:
483 	ida_destroy(&inuse);
484 	return rc;
485 }
486 
487 static void ib_device_release(struct device *device)
488 {
489 	struct ib_device *dev = container_of(device, struct ib_device, dev);
490 
491 	free_netdevs(dev);
492 	WARN_ON(refcount_read(&dev->refcount));
493 	if (dev->port_data) {
494 		ib_cache_release_one(dev);
495 		ib_security_release_port_pkey_list(dev);
496 		rdma_counter_release(dev);
497 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
498 				       pdata[0]),
499 			  rcu_head);
500 	}
501 
502 	xa_destroy(&dev->compat_devs);
503 	xa_destroy(&dev->client_data);
504 	kfree_rcu(dev, rcu_head);
505 }
506 
507 static int ib_device_uevent(struct device *device,
508 			    struct kobj_uevent_env *env)
509 {
510 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
511 		return -ENOMEM;
512 
513 	/*
514 	 * It would be nice to pass the node GUID with the event...
515 	 */
516 
517 	return 0;
518 }
519 
520 static const void *net_namespace(struct device *d)
521 {
522 	struct ib_core_device *coredev =
523 			container_of(d, struct ib_core_device, dev);
524 
525 	return read_pnet(&coredev->rdma_net);
526 }
527 
528 static struct class ib_class = {
529 	.name    = "infiniband",
530 	.dev_release = ib_device_release,
531 	.dev_uevent = ib_device_uevent,
532 	.ns_type = &net_ns_type_operations,
533 	.namespace = net_namespace,
534 };
535 
536 static void rdma_init_coredev(struct ib_core_device *coredev,
537 			      struct ib_device *dev, struct net *net)
538 {
539 	/* This BUILD_BUG_ON is intended to catch layout change
540 	 * of union of ib_core_device and device.
541 	 * dev must be the first element as ib_core and providers
542 	 * driver uses it. Adding anything in ib_core_device before
543 	 * device will break this assumption.
544 	 */
545 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
546 		     offsetof(struct ib_device, dev));
547 
548 	coredev->dev.class = &ib_class;
549 	coredev->dev.groups = dev->groups;
550 	device_initialize(&coredev->dev);
551 	coredev->owner = dev;
552 	INIT_LIST_HEAD(&coredev->port_list);
553 	write_pnet(&coredev->rdma_net, net);
554 }
555 
556 /**
557  * _ib_alloc_device - allocate an IB device struct
558  * @size:size of structure to allocate
559  *
560  * Low-level drivers should use ib_alloc_device() to allocate &struct
561  * ib_device.  @size is the size of the structure to be allocated,
562  * including any private data used by the low-level driver.
563  * ib_dealloc_device() must be used to free structures allocated with
564  * ib_alloc_device().
565  */
566 struct ib_device *_ib_alloc_device(size_t size)
567 {
568 	struct ib_device *device;
569 
570 	if (WARN_ON(size < sizeof(struct ib_device)))
571 		return NULL;
572 
573 	device = kzalloc(size, GFP_KERNEL);
574 	if (!device)
575 		return NULL;
576 
577 	if (rdma_restrack_init(device)) {
578 		kfree(device);
579 		return NULL;
580 	}
581 
582 	device->groups[0] = &ib_dev_attr_group;
583 	rdma_init_coredev(&device->coredev, device, &init_net);
584 
585 	INIT_LIST_HEAD(&device->event_handler_list);
586 	spin_lock_init(&device->event_handler_lock);
587 	mutex_init(&device->unregistration_lock);
588 	/*
589 	 * client_data needs to be alloc because we don't want our mark to be
590 	 * destroyed if the user stores NULL in the client data.
591 	 */
592 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
593 	init_rwsem(&device->client_data_rwsem);
594 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
595 	mutex_init(&device->compat_devs_mutex);
596 	init_completion(&device->unreg_completion);
597 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
598 
599 	return device;
600 }
601 EXPORT_SYMBOL(_ib_alloc_device);
602 
603 /**
604  * ib_dealloc_device - free an IB device struct
605  * @device:structure to free
606  *
607  * Free a structure allocated with ib_alloc_device().
608  */
609 void ib_dealloc_device(struct ib_device *device)
610 {
611 	if (device->ops.dealloc_driver)
612 		device->ops.dealloc_driver(device);
613 
614 	/*
615 	 * ib_unregister_driver() requires all devices to remain in the xarray
616 	 * while their ops are callable. The last op we call is dealloc_driver
617 	 * above.  This is needed to create a fence on op callbacks prior to
618 	 * allowing the driver module to unload.
619 	 */
620 	down_write(&devices_rwsem);
621 	if (xa_load(&devices, device->index) == device)
622 		xa_erase(&devices, device->index);
623 	up_write(&devices_rwsem);
624 
625 	/* Expedite releasing netdev references */
626 	free_netdevs(device);
627 
628 	WARN_ON(!xa_empty(&device->compat_devs));
629 	WARN_ON(!xa_empty(&device->client_data));
630 	WARN_ON(refcount_read(&device->refcount));
631 	rdma_restrack_clean(device);
632 	/* Balances with device_initialize */
633 	put_device(&device->dev);
634 }
635 EXPORT_SYMBOL(ib_dealloc_device);
636 
637 /*
638  * add_client_context() and remove_client_context() must be safe against
639  * parallel calls on the same device - registration/unregistration of both the
640  * device and client can be occurring in parallel.
641  *
642  * The routines need to be a fence, any caller must not return until the add
643  * or remove is fully completed.
644  */
645 static int add_client_context(struct ib_device *device,
646 			      struct ib_client *client)
647 {
648 	int ret = 0;
649 
650 	if (!device->kverbs_provider && !client->no_kverbs_req)
651 		return 0;
652 
653 	down_write(&device->client_data_rwsem);
654 	/*
655 	 * Another caller to add_client_context got here first and has already
656 	 * completely initialized context.
657 	 */
658 	if (xa_get_mark(&device->client_data, client->client_id,
659 		    CLIENT_DATA_REGISTERED))
660 		goto out;
661 
662 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
663 			      GFP_KERNEL));
664 	if (ret)
665 		goto out;
666 	downgrade_write(&device->client_data_rwsem);
667 	if (client->add)
668 		client->add(device);
669 
670 	/* Readers shall not see a client until add has been completed */
671 	xa_set_mark(&device->client_data, client->client_id,
672 		    CLIENT_DATA_REGISTERED);
673 	up_read(&device->client_data_rwsem);
674 	return 0;
675 
676 out:
677 	up_write(&device->client_data_rwsem);
678 	return ret;
679 }
680 
681 static void remove_client_context(struct ib_device *device,
682 				  unsigned int client_id)
683 {
684 	struct ib_client *client;
685 	void *client_data;
686 
687 	down_write(&device->client_data_rwsem);
688 	if (!xa_get_mark(&device->client_data, client_id,
689 			 CLIENT_DATA_REGISTERED)) {
690 		up_write(&device->client_data_rwsem);
691 		return;
692 	}
693 	client_data = xa_load(&device->client_data, client_id);
694 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
695 	client = xa_load(&clients, client_id);
696 	downgrade_write(&device->client_data_rwsem);
697 
698 	/*
699 	 * Notice we cannot be holding any exclusive locks when calling the
700 	 * remove callback as the remove callback can recurse back into any
701 	 * public functions in this module and thus try for any locks those
702 	 * functions take.
703 	 *
704 	 * For this reason clients and drivers should not call the
705 	 * unregistration functions will holdling any locks.
706 	 *
707 	 * It tempting to drop the client_data_rwsem too, but this is required
708 	 * to ensure that unregister_client does not return until all clients
709 	 * are completely unregistered, which is required to avoid module
710 	 * unloading races.
711 	 */
712 	if (client->remove)
713 		client->remove(device, client_data);
714 
715 	xa_erase(&device->client_data, client_id);
716 	up_read(&device->client_data_rwsem);
717 }
718 
719 static int alloc_port_data(struct ib_device *device)
720 {
721 	struct ib_port_data_rcu *pdata_rcu;
722 	unsigned int port;
723 
724 	if (device->port_data)
725 		return 0;
726 
727 	/* This can only be called once the physical port range is defined */
728 	if (WARN_ON(!device->phys_port_cnt))
729 		return -EINVAL;
730 
731 	/*
732 	 * device->port_data is indexed directly by the port number to make
733 	 * access to this data as efficient as possible.
734 	 *
735 	 * Therefore port_data is declared as a 1 based array with potential
736 	 * empty slots at the beginning.
737 	 */
738 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
739 					rdma_end_port(device) + 1),
740 			    GFP_KERNEL);
741 	if (!pdata_rcu)
742 		return -ENOMEM;
743 	/*
744 	 * The rcu_head is put in front of the port data array and the stored
745 	 * pointer is adjusted since we never need to see that member until
746 	 * kfree_rcu.
747 	 */
748 	device->port_data = pdata_rcu->pdata;
749 
750 	rdma_for_each_port (device, port) {
751 		struct ib_port_data *pdata = &device->port_data[port];
752 
753 		pdata->ib_dev = device;
754 		spin_lock_init(&pdata->pkey_list_lock);
755 		INIT_LIST_HEAD(&pdata->pkey_list);
756 		spin_lock_init(&pdata->netdev_lock);
757 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
758 	}
759 	return 0;
760 }
761 
762 static int verify_immutable(const struct ib_device *dev, u8 port)
763 {
764 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
765 			    rdma_max_mad_size(dev, port) != 0);
766 }
767 
768 static int setup_port_data(struct ib_device *device)
769 {
770 	unsigned int port;
771 	int ret;
772 
773 	ret = alloc_port_data(device);
774 	if (ret)
775 		return ret;
776 
777 	rdma_for_each_port (device, port) {
778 		struct ib_port_data *pdata = &device->port_data[port];
779 
780 		ret = device->ops.get_port_immutable(device, port,
781 						     &pdata->immutable);
782 		if (ret)
783 			return ret;
784 
785 		if (verify_immutable(device, port))
786 			return -EINVAL;
787 	}
788 	return 0;
789 }
790 
791 void ib_get_device_fw_str(struct ib_device *dev, char *str)
792 {
793 	if (dev->ops.get_dev_fw_str)
794 		dev->ops.get_dev_fw_str(dev, str);
795 	else
796 		str[0] = '\0';
797 }
798 EXPORT_SYMBOL(ib_get_device_fw_str);
799 
800 static void ib_policy_change_task(struct work_struct *work)
801 {
802 	struct ib_device *dev;
803 	unsigned long index;
804 
805 	down_read(&devices_rwsem);
806 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
807 		unsigned int i;
808 
809 		rdma_for_each_port (dev, i) {
810 			u64 sp;
811 			int ret = ib_get_cached_subnet_prefix(dev,
812 							      i,
813 							      &sp);
814 
815 			WARN_ONCE(ret,
816 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
817 				  ret);
818 			if (!ret)
819 				ib_security_cache_change(dev, i, sp);
820 		}
821 	}
822 	up_read(&devices_rwsem);
823 }
824 
825 static int ib_security_change(struct notifier_block *nb, unsigned long event,
826 			      void *lsm_data)
827 {
828 	if (event != LSM_POLICY_CHANGE)
829 		return NOTIFY_DONE;
830 
831 	schedule_work(&ib_policy_change_work);
832 	ib_mad_agent_security_change();
833 
834 	return NOTIFY_OK;
835 }
836 
837 static void compatdev_release(struct device *dev)
838 {
839 	struct ib_core_device *cdev =
840 		container_of(dev, struct ib_core_device, dev);
841 
842 	kfree(cdev);
843 }
844 
845 static int add_one_compat_dev(struct ib_device *device,
846 			      struct rdma_dev_net *rnet)
847 {
848 	struct ib_core_device *cdev;
849 	int ret;
850 
851 	lockdep_assert_held(&rdma_nets_rwsem);
852 	if (!ib_devices_shared_netns)
853 		return 0;
854 
855 	/*
856 	 * Create and add compat device in all namespaces other than where it
857 	 * is currently bound to.
858 	 */
859 	if (net_eq(read_pnet(&rnet->net),
860 		   read_pnet(&device->coredev.rdma_net)))
861 		return 0;
862 
863 	/*
864 	 * The first of init_net() or ib_register_device() to take the
865 	 * compat_devs_mutex wins and gets to add the device. Others will wait
866 	 * for completion here.
867 	 */
868 	mutex_lock(&device->compat_devs_mutex);
869 	cdev = xa_load(&device->compat_devs, rnet->id);
870 	if (cdev) {
871 		ret = 0;
872 		goto done;
873 	}
874 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
875 	if (ret)
876 		goto done;
877 
878 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
879 	if (!cdev) {
880 		ret = -ENOMEM;
881 		goto cdev_err;
882 	}
883 
884 	cdev->dev.parent = device->dev.parent;
885 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
886 	cdev->dev.release = compatdev_release;
887 	dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
888 
889 	ret = device_add(&cdev->dev);
890 	if (ret)
891 		goto add_err;
892 	ret = ib_setup_port_attrs(cdev);
893 	if (ret)
894 		goto port_err;
895 
896 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
897 			      cdev, GFP_KERNEL));
898 	if (ret)
899 		goto insert_err;
900 
901 	mutex_unlock(&device->compat_devs_mutex);
902 	return 0;
903 
904 insert_err:
905 	ib_free_port_attrs(cdev);
906 port_err:
907 	device_del(&cdev->dev);
908 add_err:
909 	put_device(&cdev->dev);
910 cdev_err:
911 	xa_release(&device->compat_devs, rnet->id);
912 done:
913 	mutex_unlock(&device->compat_devs_mutex);
914 	return ret;
915 }
916 
917 static void remove_one_compat_dev(struct ib_device *device, u32 id)
918 {
919 	struct ib_core_device *cdev;
920 
921 	mutex_lock(&device->compat_devs_mutex);
922 	cdev = xa_erase(&device->compat_devs, id);
923 	mutex_unlock(&device->compat_devs_mutex);
924 	if (cdev) {
925 		ib_free_port_attrs(cdev);
926 		device_del(&cdev->dev);
927 		put_device(&cdev->dev);
928 	}
929 }
930 
931 static void remove_compat_devs(struct ib_device *device)
932 {
933 	struct ib_core_device *cdev;
934 	unsigned long index;
935 
936 	xa_for_each (&device->compat_devs, index, cdev)
937 		remove_one_compat_dev(device, index);
938 }
939 
940 static int add_compat_devs(struct ib_device *device)
941 {
942 	struct rdma_dev_net *rnet;
943 	unsigned long index;
944 	int ret = 0;
945 
946 	lockdep_assert_held(&devices_rwsem);
947 
948 	down_read(&rdma_nets_rwsem);
949 	xa_for_each (&rdma_nets, index, rnet) {
950 		ret = add_one_compat_dev(device, rnet);
951 		if (ret)
952 			break;
953 	}
954 	up_read(&rdma_nets_rwsem);
955 	return ret;
956 }
957 
958 static void remove_all_compat_devs(void)
959 {
960 	struct ib_compat_device *cdev;
961 	struct ib_device *dev;
962 	unsigned long index;
963 
964 	down_read(&devices_rwsem);
965 	xa_for_each (&devices, index, dev) {
966 		unsigned long c_index = 0;
967 
968 		/* Hold nets_rwsem so that any other thread modifying this
969 		 * system param can sync with this thread.
970 		 */
971 		down_read(&rdma_nets_rwsem);
972 		xa_for_each (&dev->compat_devs, c_index, cdev)
973 			remove_one_compat_dev(dev, c_index);
974 		up_read(&rdma_nets_rwsem);
975 	}
976 	up_read(&devices_rwsem);
977 }
978 
979 static int add_all_compat_devs(void)
980 {
981 	struct rdma_dev_net *rnet;
982 	struct ib_device *dev;
983 	unsigned long index;
984 	int ret = 0;
985 
986 	down_read(&devices_rwsem);
987 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
988 		unsigned long net_index = 0;
989 
990 		/* Hold nets_rwsem so that any other thread modifying this
991 		 * system param can sync with this thread.
992 		 */
993 		down_read(&rdma_nets_rwsem);
994 		xa_for_each (&rdma_nets, net_index, rnet) {
995 			ret = add_one_compat_dev(dev, rnet);
996 			if (ret)
997 				break;
998 		}
999 		up_read(&rdma_nets_rwsem);
1000 	}
1001 	up_read(&devices_rwsem);
1002 	if (ret)
1003 		remove_all_compat_devs();
1004 	return ret;
1005 }
1006 
1007 int rdma_compatdev_set(u8 enable)
1008 {
1009 	struct rdma_dev_net *rnet;
1010 	unsigned long index;
1011 	int ret = 0;
1012 
1013 	down_write(&rdma_nets_rwsem);
1014 	if (ib_devices_shared_netns == enable) {
1015 		up_write(&rdma_nets_rwsem);
1016 		return 0;
1017 	}
1018 
1019 	/* enable/disable of compat devices is not supported
1020 	 * when more than default init_net exists.
1021 	 */
1022 	xa_for_each (&rdma_nets, index, rnet) {
1023 		ret++;
1024 		break;
1025 	}
1026 	if (!ret)
1027 		ib_devices_shared_netns = enable;
1028 	up_write(&rdma_nets_rwsem);
1029 	if (ret)
1030 		return -EBUSY;
1031 
1032 	if (enable)
1033 		ret = add_all_compat_devs();
1034 	else
1035 		remove_all_compat_devs();
1036 	return ret;
1037 }
1038 
1039 static void rdma_dev_exit_net(struct net *net)
1040 {
1041 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1042 	struct ib_device *dev;
1043 	unsigned long index;
1044 	int ret;
1045 
1046 	down_write(&rdma_nets_rwsem);
1047 	/*
1048 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1049 	 */
1050 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1051 	WARN_ON(ret);
1052 	up_write(&rdma_nets_rwsem);
1053 
1054 	down_read(&devices_rwsem);
1055 	xa_for_each (&devices, index, dev) {
1056 		get_device(&dev->dev);
1057 		/*
1058 		 * Release the devices_rwsem so that pontentially blocking
1059 		 * device_del, doesn't hold the devices_rwsem for too long.
1060 		 */
1061 		up_read(&devices_rwsem);
1062 
1063 		remove_one_compat_dev(dev, rnet->id);
1064 
1065 		/*
1066 		 * If the real device is in the NS then move it back to init.
1067 		 */
1068 		rdma_dev_change_netns(dev, net, &init_net);
1069 
1070 		put_device(&dev->dev);
1071 		down_read(&devices_rwsem);
1072 	}
1073 	up_read(&devices_rwsem);
1074 
1075 	xa_erase(&rdma_nets, rnet->id);
1076 }
1077 
1078 static __net_init int rdma_dev_init_net(struct net *net)
1079 {
1080 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1081 	unsigned long index;
1082 	struct ib_device *dev;
1083 	int ret;
1084 
1085 	/* No need to create any compat devices in default init_net. */
1086 	if (net_eq(net, &init_net))
1087 		return 0;
1088 
1089 	write_pnet(&rnet->net, net);
1090 
1091 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1092 	if (ret)
1093 		return ret;
1094 
1095 	down_read(&devices_rwsem);
1096 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1097 		/* Hold nets_rwsem so that netlink command cannot change
1098 		 * system configuration for device sharing mode.
1099 		 */
1100 		down_read(&rdma_nets_rwsem);
1101 		ret = add_one_compat_dev(dev, rnet);
1102 		up_read(&rdma_nets_rwsem);
1103 		if (ret)
1104 			break;
1105 	}
1106 	up_read(&devices_rwsem);
1107 
1108 	if (ret)
1109 		rdma_dev_exit_net(net);
1110 
1111 	return ret;
1112 }
1113 
1114 /*
1115  * Assign the unique string device name and the unique device index. This is
1116  * undone by ib_dealloc_device.
1117  */
1118 static int assign_name(struct ib_device *device, const char *name)
1119 {
1120 	static u32 last_id;
1121 	int ret;
1122 
1123 	down_write(&devices_rwsem);
1124 	/* Assign a unique name to the device */
1125 	if (strchr(name, '%'))
1126 		ret = alloc_name(device, name);
1127 	else
1128 		ret = dev_set_name(&device->dev, name);
1129 	if (ret)
1130 		goto out;
1131 
1132 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1133 		ret = -ENFILE;
1134 		goto out;
1135 	}
1136 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1137 
1138 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1139 			&last_id, GFP_KERNEL);
1140 	if (ret > 0)
1141 		ret = 0;
1142 
1143 out:
1144 	up_write(&devices_rwsem);
1145 	return ret;
1146 }
1147 
1148 static void setup_dma_device(struct ib_device *device)
1149 {
1150 	struct device *parent = device->dev.parent;
1151 
1152 	WARN_ON_ONCE(device->dma_device);
1153 	if (device->dev.dma_ops) {
1154 		/*
1155 		 * The caller provided custom DMA operations. Copy the
1156 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1157 		 * into device->dev.
1158 		 */
1159 		device->dma_device = &device->dev;
1160 		if (!device->dev.dma_mask) {
1161 			if (parent)
1162 				device->dev.dma_mask = parent->dma_mask;
1163 			else
1164 				WARN_ON_ONCE(true);
1165 		}
1166 		if (!device->dev.coherent_dma_mask) {
1167 			if (parent)
1168 				device->dev.coherent_dma_mask =
1169 					parent->coherent_dma_mask;
1170 			else
1171 				WARN_ON_ONCE(true);
1172 		}
1173 	} else {
1174 		/*
1175 		 * The caller did not provide custom DMA operations. Use the
1176 		 * DMA mapping operations of the parent device.
1177 		 */
1178 		WARN_ON_ONCE(!parent);
1179 		device->dma_device = parent;
1180 	}
1181 	/* Setup default max segment size for all IB devices */
1182 	dma_set_max_seg_size(device->dma_device, SZ_2G);
1183 
1184 }
1185 
1186 /*
1187  * setup_device() allocates memory and sets up data that requires calling the
1188  * device ops, this is the only reason these actions are not done during
1189  * ib_alloc_device. It is undone by ib_dealloc_device().
1190  */
1191 static int setup_device(struct ib_device *device)
1192 {
1193 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1194 	int ret;
1195 
1196 	setup_dma_device(device);
1197 	ib_device_check_mandatory(device);
1198 
1199 	ret = setup_port_data(device);
1200 	if (ret) {
1201 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1202 		return ret;
1203 	}
1204 
1205 	memset(&device->attrs, 0, sizeof(device->attrs));
1206 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1207 	if (ret) {
1208 		dev_warn(&device->dev,
1209 			 "Couldn't query the device attributes\n");
1210 		return ret;
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 static void disable_device(struct ib_device *device)
1217 {
1218 	struct ib_client *client;
1219 
1220 	WARN_ON(!refcount_read(&device->refcount));
1221 
1222 	down_write(&devices_rwsem);
1223 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1224 	up_write(&devices_rwsem);
1225 
1226 	down_read(&clients_rwsem);
1227 	list_for_each_entry_reverse(client, &client_list, list)
1228 		remove_client_context(device, client->client_id);
1229 	up_read(&clients_rwsem);
1230 
1231 	/* Pairs with refcount_set in enable_device */
1232 	ib_device_put(device);
1233 	wait_for_completion(&device->unreg_completion);
1234 
1235 	/*
1236 	 * compat devices must be removed after device refcount drops to zero.
1237 	 * Otherwise init_net() may add more compatdevs after removing compat
1238 	 * devices and before device is disabled.
1239 	 */
1240 	remove_compat_devs(device);
1241 }
1242 
1243 /*
1244  * An enabled device is visible to all clients and to all the public facing
1245  * APIs that return a device pointer. This always returns with a new get, even
1246  * if it fails.
1247  */
1248 static int enable_device_and_get(struct ib_device *device)
1249 {
1250 	struct ib_client *client;
1251 	unsigned long index;
1252 	int ret = 0;
1253 
1254 	/*
1255 	 * One ref belongs to the xa and the other belongs to this
1256 	 * thread. This is needed to guard against parallel unregistration.
1257 	 */
1258 	refcount_set(&device->refcount, 2);
1259 	down_write(&devices_rwsem);
1260 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1261 
1262 	/*
1263 	 * By using downgrade_write() we ensure that no other thread can clear
1264 	 * DEVICE_REGISTERED while we are completing the client setup.
1265 	 */
1266 	downgrade_write(&devices_rwsem);
1267 
1268 	if (device->ops.enable_driver) {
1269 		ret = device->ops.enable_driver(device);
1270 		if (ret)
1271 			goto out;
1272 	}
1273 
1274 	down_read(&clients_rwsem);
1275 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1276 		ret = add_client_context(device, client);
1277 		if (ret)
1278 			break;
1279 	}
1280 	up_read(&clients_rwsem);
1281 	if (!ret)
1282 		ret = add_compat_devs(device);
1283 out:
1284 	up_read(&devices_rwsem);
1285 	return ret;
1286 }
1287 
1288 /**
1289  * ib_register_device - Register an IB device with IB core
1290  * @device:Device to register
1291  *
1292  * Low-level drivers use ib_register_device() to register their
1293  * devices with the IB core.  All registered clients will receive a
1294  * callback for each device that is added. @device must be allocated
1295  * with ib_alloc_device().
1296  *
1297  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1298  * asynchronously then the device pointer may become freed as soon as this
1299  * function returns.
1300  */
1301 int ib_register_device(struct ib_device *device, const char *name)
1302 {
1303 	int ret;
1304 
1305 	ret = assign_name(device, name);
1306 	if (ret)
1307 		return ret;
1308 
1309 	ret = setup_device(device);
1310 	if (ret)
1311 		return ret;
1312 
1313 	ret = ib_cache_setup_one(device);
1314 	if (ret) {
1315 		dev_warn(&device->dev,
1316 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1317 		return ret;
1318 	}
1319 
1320 	ib_device_register_rdmacg(device);
1321 
1322 	rdma_counter_init(device);
1323 
1324 	/*
1325 	 * Ensure that ADD uevent is not fired because it
1326 	 * is too early amd device is not initialized yet.
1327 	 */
1328 	dev_set_uevent_suppress(&device->dev, true);
1329 	ret = device_add(&device->dev);
1330 	if (ret)
1331 		goto cg_cleanup;
1332 
1333 	ret = ib_device_register_sysfs(device);
1334 	if (ret) {
1335 		dev_warn(&device->dev,
1336 			 "Couldn't register device with driver model\n");
1337 		goto dev_cleanup;
1338 	}
1339 
1340 	ret = enable_device_and_get(device);
1341 	dev_set_uevent_suppress(&device->dev, false);
1342 	/* Mark for userspace that device is ready */
1343 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1344 	if (ret) {
1345 		void (*dealloc_fn)(struct ib_device *);
1346 
1347 		/*
1348 		 * If we hit this error flow then we don't want to
1349 		 * automatically dealloc the device since the caller is
1350 		 * expected to call ib_dealloc_device() after
1351 		 * ib_register_device() fails. This is tricky due to the
1352 		 * possibility for a parallel unregistration along with this
1353 		 * error flow. Since we have a refcount here we know any
1354 		 * parallel flow is stopped in disable_device and will see the
1355 		 * NULL pointers, causing the responsibility to
1356 		 * ib_dealloc_device() to revert back to this thread.
1357 		 */
1358 		dealloc_fn = device->ops.dealloc_driver;
1359 		device->ops.dealloc_driver = NULL;
1360 		ib_device_put(device);
1361 		__ib_unregister_device(device);
1362 		device->ops.dealloc_driver = dealloc_fn;
1363 		return ret;
1364 	}
1365 	ib_device_put(device);
1366 
1367 	return 0;
1368 
1369 dev_cleanup:
1370 	device_del(&device->dev);
1371 cg_cleanup:
1372 	dev_set_uevent_suppress(&device->dev, false);
1373 	ib_device_unregister_rdmacg(device);
1374 	ib_cache_cleanup_one(device);
1375 	return ret;
1376 }
1377 EXPORT_SYMBOL(ib_register_device);
1378 
1379 /* Callers must hold a get on the device. */
1380 static void __ib_unregister_device(struct ib_device *ib_dev)
1381 {
1382 	/*
1383 	 * We have a registration lock so that all the calls to unregister are
1384 	 * fully fenced, once any unregister returns the device is truely
1385 	 * unregistered even if multiple callers are unregistering it at the
1386 	 * same time. This also interacts with the registration flow and
1387 	 * provides sane semantics if register and unregister are racing.
1388 	 */
1389 	mutex_lock(&ib_dev->unregistration_lock);
1390 	if (!refcount_read(&ib_dev->refcount))
1391 		goto out;
1392 
1393 	disable_device(ib_dev);
1394 
1395 	/* Expedite removing unregistered pointers from the hash table */
1396 	free_netdevs(ib_dev);
1397 
1398 	ib_device_unregister_sysfs(ib_dev);
1399 	device_del(&ib_dev->dev);
1400 	ib_device_unregister_rdmacg(ib_dev);
1401 	ib_cache_cleanup_one(ib_dev);
1402 
1403 	/*
1404 	 * Drivers using the new flow may not call ib_dealloc_device except
1405 	 * in error unwind prior to registration success.
1406 	 */
1407 	if (ib_dev->ops.dealloc_driver) {
1408 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1409 		ib_dealloc_device(ib_dev);
1410 	}
1411 out:
1412 	mutex_unlock(&ib_dev->unregistration_lock);
1413 }
1414 
1415 /**
1416  * ib_unregister_device - Unregister an IB device
1417  * @device: The device to unregister
1418  *
1419  * Unregister an IB device.  All clients will receive a remove callback.
1420  *
1421  * Callers should call this routine only once, and protect against races with
1422  * registration. Typically it should only be called as part of a remove
1423  * callback in an implementation of driver core's struct device_driver and
1424  * related.
1425  *
1426  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1427  * this function.
1428  */
1429 void ib_unregister_device(struct ib_device *ib_dev)
1430 {
1431 	get_device(&ib_dev->dev);
1432 	__ib_unregister_device(ib_dev);
1433 	put_device(&ib_dev->dev);
1434 }
1435 EXPORT_SYMBOL(ib_unregister_device);
1436 
1437 /**
1438  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1439  * device: The device to unregister
1440  *
1441  * This is the same as ib_unregister_device(), except it includes an internal
1442  * ib_device_put() that should match a 'get' obtained by the caller.
1443  *
1444  * It is safe to call this routine concurrently from multiple threads while
1445  * holding the 'get'. When the function returns the device is fully
1446  * unregistered.
1447  *
1448  * Drivers using this flow MUST use the driver_unregister callback to clean up
1449  * their resources associated with the device and dealloc it.
1450  */
1451 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1452 {
1453 	WARN_ON(!ib_dev->ops.dealloc_driver);
1454 	get_device(&ib_dev->dev);
1455 	ib_device_put(ib_dev);
1456 	__ib_unregister_device(ib_dev);
1457 	put_device(&ib_dev->dev);
1458 }
1459 EXPORT_SYMBOL(ib_unregister_device_and_put);
1460 
1461 /**
1462  * ib_unregister_driver - Unregister all IB devices for a driver
1463  * @driver_id: The driver to unregister
1464  *
1465  * This implements a fence for device unregistration. It only returns once all
1466  * devices associated with the driver_id have fully completed their
1467  * unregistration and returned from ib_unregister_device*().
1468  *
1469  * If device's are not yet unregistered it goes ahead and starts unregistering
1470  * them.
1471  *
1472  * This does not block creation of new devices with the given driver_id, that
1473  * is the responsibility of the caller.
1474  */
1475 void ib_unregister_driver(enum rdma_driver_id driver_id)
1476 {
1477 	struct ib_device *ib_dev;
1478 	unsigned long index;
1479 
1480 	down_read(&devices_rwsem);
1481 	xa_for_each (&devices, index, ib_dev) {
1482 		if (ib_dev->ops.driver_id != driver_id)
1483 			continue;
1484 
1485 		get_device(&ib_dev->dev);
1486 		up_read(&devices_rwsem);
1487 
1488 		WARN_ON(!ib_dev->ops.dealloc_driver);
1489 		__ib_unregister_device(ib_dev);
1490 
1491 		put_device(&ib_dev->dev);
1492 		down_read(&devices_rwsem);
1493 	}
1494 	up_read(&devices_rwsem);
1495 }
1496 EXPORT_SYMBOL(ib_unregister_driver);
1497 
1498 static void ib_unregister_work(struct work_struct *work)
1499 {
1500 	struct ib_device *ib_dev =
1501 		container_of(work, struct ib_device, unregistration_work);
1502 
1503 	__ib_unregister_device(ib_dev);
1504 	put_device(&ib_dev->dev);
1505 }
1506 
1507 /**
1508  * ib_unregister_device_queued - Unregister a device using a work queue
1509  * device: The device to unregister
1510  *
1511  * This schedules an asynchronous unregistration using a WQ for the device. A
1512  * driver should use this to avoid holding locks while doing unregistration,
1513  * such as holding the RTNL lock.
1514  *
1515  * Drivers using this API must use ib_unregister_driver before module unload
1516  * to ensure that all scheduled unregistrations have completed.
1517  */
1518 void ib_unregister_device_queued(struct ib_device *ib_dev)
1519 {
1520 	WARN_ON(!refcount_read(&ib_dev->refcount));
1521 	WARN_ON(!ib_dev->ops.dealloc_driver);
1522 	get_device(&ib_dev->dev);
1523 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1524 		put_device(&ib_dev->dev);
1525 }
1526 EXPORT_SYMBOL(ib_unregister_device_queued);
1527 
1528 /*
1529  * The caller must pass in a device that has the kref held and the refcount
1530  * released. If the device is in cur_net and still registered then it is moved
1531  * into net.
1532  */
1533 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1534 				 struct net *net)
1535 {
1536 	int ret2 = -EINVAL;
1537 	int ret;
1538 
1539 	mutex_lock(&device->unregistration_lock);
1540 
1541 	/*
1542 	 * If a device not under ib_device_get() or if the unregistration_lock
1543 	 * is not held, the namespace can be changed, or it can be unregistered.
1544 	 * Check again under the lock.
1545 	 */
1546 	if (refcount_read(&device->refcount) == 0 ||
1547 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1548 		ret = -ENODEV;
1549 		goto out;
1550 	}
1551 
1552 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1553 	disable_device(device);
1554 
1555 	/*
1556 	 * At this point no one can be using the device, so it is safe to
1557 	 * change the namespace.
1558 	 */
1559 	write_pnet(&device->coredev.rdma_net, net);
1560 
1561 	down_read(&devices_rwsem);
1562 	/*
1563 	 * Currently rdma devices are system wide unique. So the device name
1564 	 * is guaranteed free in the new namespace. Publish the new namespace
1565 	 * at the sysfs level.
1566 	 */
1567 	ret = device_rename(&device->dev, dev_name(&device->dev));
1568 	up_read(&devices_rwsem);
1569 	if (ret) {
1570 		dev_warn(&device->dev,
1571 			 "%s: Couldn't rename device after namespace change\n",
1572 			 __func__);
1573 		/* Try and put things back and re-enable the device */
1574 		write_pnet(&device->coredev.rdma_net, cur_net);
1575 	}
1576 
1577 	ret2 = enable_device_and_get(device);
1578 	if (ret2) {
1579 		/*
1580 		 * This shouldn't really happen, but if it does, let the user
1581 		 * retry at later point. So don't disable the device.
1582 		 */
1583 		dev_warn(&device->dev,
1584 			 "%s: Couldn't re-enable device after namespace change\n",
1585 			 __func__);
1586 	}
1587 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1588 
1589 	ib_device_put(device);
1590 out:
1591 	mutex_unlock(&device->unregistration_lock);
1592 	if (ret)
1593 		return ret;
1594 	return ret2;
1595 }
1596 
1597 int ib_device_set_netns_put(struct sk_buff *skb,
1598 			    struct ib_device *dev, u32 ns_fd)
1599 {
1600 	struct net *net;
1601 	int ret;
1602 
1603 	net = get_net_ns_by_fd(ns_fd);
1604 	if (IS_ERR(net)) {
1605 		ret = PTR_ERR(net);
1606 		goto net_err;
1607 	}
1608 
1609 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1610 		ret = -EPERM;
1611 		goto ns_err;
1612 	}
1613 
1614 	/*
1615 	 * Currently supported only for those providers which support
1616 	 * disassociation and don't do port specific sysfs init. Once a
1617 	 * port_cleanup infrastructure is implemented, this limitation will be
1618 	 * removed.
1619 	 */
1620 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1621 	    ib_devices_shared_netns) {
1622 		ret = -EOPNOTSUPP;
1623 		goto ns_err;
1624 	}
1625 
1626 	get_device(&dev->dev);
1627 	ib_device_put(dev);
1628 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1629 	put_device(&dev->dev);
1630 
1631 	put_net(net);
1632 	return ret;
1633 
1634 ns_err:
1635 	put_net(net);
1636 net_err:
1637 	ib_device_put(dev);
1638 	return ret;
1639 }
1640 
1641 static struct pernet_operations rdma_dev_net_ops = {
1642 	.init = rdma_dev_init_net,
1643 	.exit = rdma_dev_exit_net,
1644 	.id = &rdma_dev_net_id,
1645 	.size = sizeof(struct rdma_dev_net),
1646 };
1647 
1648 static int assign_client_id(struct ib_client *client)
1649 {
1650 	int ret;
1651 
1652 	down_write(&clients_rwsem);
1653 	/*
1654 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1655 	 * achieve this we assign client_ids so they are sorted in
1656 	 * registration order, and retain a linked list we can reverse iterate
1657 	 * to get the LIFO order. The extra linked list can go away if xarray
1658 	 * learns to reverse iterate.
1659 	 */
1660 	if (list_empty(&client_list)) {
1661 		client->client_id = 0;
1662 	} else {
1663 		struct ib_client *last;
1664 
1665 		last = list_last_entry(&client_list, struct ib_client, list);
1666 		client->client_id = last->client_id + 1;
1667 	}
1668 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1669 	if (ret)
1670 		goto out;
1671 
1672 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1673 	list_add_tail(&client->list, &client_list);
1674 
1675 out:
1676 	up_write(&clients_rwsem);
1677 	return ret;
1678 }
1679 
1680 /**
1681  * ib_register_client - Register an IB client
1682  * @client:Client to register
1683  *
1684  * Upper level users of the IB drivers can use ib_register_client() to
1685  * register callbacks for IB device addition and removal.  When an IB
1686  * device is added, each registered client's add method will be called
1687  * (in the order the clients were registered), and when a device is
1688  * removed, each client's remove method will be called (in the reverse
1689  * order that clients were registered).  In addition, when
1690  * ib_register_client() is called, the client will receive an add
1691  * callback for all devices already registered.
1692  */
1693 int ib_register_client(struct ib_client *client)
1694 {
1695 	struct ib_device *device;
1696 	unsigned long index;
1697 	int ret;
1698 
1699 	ret = assign_client_id(client);
1700 	if (ret)
1701 		return ret;
1702 
1703 	down_read(&devices_rwsem);
1704 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1705 		ret = add_client_context(device, client);
1706 		if (ret) {
1707 			up_read(&devices_rwsem);
1708 			ib_unregister_client(client);
1709 			return ret;
1710 		}
1711 	}
1712 	up_read(&devices_rwsem);
1713 	return 0;
1714 }
1715 EXPORT_SYMBOL(ib_register_client);
1716 
1717 /**
1718  * ib_unregister_client - Unregister an IB client
1719  * @client:Client to unregister
1720  *
1721  * Upper level users use ib_unregister_client() to remove their client
1722  * registration.  When ib_unregister_client() is called, the client
1723  * will receive a remove callback for each IB device still registered.
1724  *
1725  * This is a full fence, once it returns no client callbacks will be called,
1726  * or are running in another thread.
1727  */
1728 void ib_unregister_client(struct ib_client *client)
1729 {
1730 	struct ib_device *device;
1731 	unsigned long index;
1732 
1733 	down_write(&clients_rwsem);
1734 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1735 	up_write(&clients_rwsem);
1736 	/*
1737 	 * Every device still known must be serialized to make sure we are
1738 	 * done with the client callbacks before we return.
1739 	 */
1740 	down_read(&devices_rwsem);
1741 	xa_for_each (&devices, index, device)
1742 		remove_client_context(device, client->client_id);
1743 	up_read(&devices_rwsem);
1744 
1745 	down_write(&clients_rwsem);
1746 	list_del(&client->list);
1747 	xa_erase(&clients, client->client_id);
1748 	up_write(&clients_rwsem);
1749 }
1750 EXPORT_SYMBOL(ib_unregister_client);
1751 
1752 static int __ib_get_global_client_nl_info(const char *client_name,
1753 					  struct ib_client_nl_info *res)
1754 {
1755 	struct ib_client *client;
1756 	unsigned long index;
1757 	int ret = -ENOENT;
1758 
1759 	down_read(&clients_rwsem);
1760 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1761 		if (strcmp(client->name, client_name) != 0)
1762 			continue;
1763 		if (!client->get_global_nl_info) {
1764 			ret = -EOPNOTSUPP;
1765 			break;
1766 		}
1767 		ret = client->get_global_nl_info(res);
1768 		if (WARN_ON(ret == -ENOENT))
1769 			ret = -EINVAL;
1770 		if (!ret && res->cdev)
1771 			get_device(res->cdev);
1772 		break;
1773 	}
1774 	up_read(&clients_rwsem);
1775 	return ret;
1776 }
1777 
1778 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1779 				   const char *client_name,
1780 				   struct ib_client_nl_info *res)
1781 {
1782 	unsigned long index;
1783 	void *client_data;
1784 	int ret = -ENOENT;
1785 
1786 	down_read(&ibdev->client_data_rwsem);
1787 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1788 			     CLIENT_DATA_REGISTERED) {
1789 		struct ib_client *client = xa_load(&clients, index);
1790 
1791 		if (!client || strcmp(client->name, client_name) != 0)
1792 			continue;
1793 		if (!client->get_nl_info) {
1794 			ret = -EOPNOTSUPP;
1795 			break;
1796 		}
1797 		ret = client->get_nl_info(ibdev, client_data, res);
1798 		if (WARN_ON(ret == -ENOENT))
1799 			ret = -EINVAL;
1800 
1801 		/*
1802 		 * The cdev is guaranteed valid as long as we are inside the
1803 		 * client_data_rwsem as remove_one can't be called. Keep it
1804 		 * valid for the caller.
1805 		 */
1806 		if (!ret && res->cdev)
1807 			get_device(res->cdev);
1808 		break;
1809 	}
1810 	up_read(&ibdev->client_data_rwsem);
1811 
1812 	return ret;
1813 }
1814 
1815 /**
1816  * ib_get_client_nl_info - Fetch the nl_info from a client
1817  * @device - IB device
1818  * @client_name - Name of the client
1819  * @res - Result of the query
1820  */
1821 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1822 			  struct ib_client_nl_info *res)
1823 {
1824 	int ret;
1825 
1826 	if (ibdev)
1827 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1828 	else
1829 		ret = __ib_get_global_client_nl_info(client_name, res);
1830 #ifdef CONFIG_MODULES
1831 	if (ret == -ENOENT) {
1832 		request_module("rdma-client-%s", client_name);
1833 		if (ibdev)
1834 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1835 		else
1836 			ret = __ib_get_global_client_nl_info(client_name, res);
1837 	}
1838 #endif
1839 	if (ret) {
1840 		if (ret == -ENOENT)
1841 			return -EOPNOTSUPP;
1842 		return ret;
1843 	}
1844 
1845 	if (WARN_ON(!res->cdev))
1846 		return -EINVAL;
1847 	return 0;
1848 }
1849 
1850 /**
1851  * ib_set_client_data - Set IB client context
1852  * @device:Device to set context for
1853  * @client:Client to set context for
1854  * @data:Context to set
1855  *
1856  * ib_set_client_data() sets client context data that can be retrieved with
1857  * ib_get_client_data(). This can only be called while the client is
1858  * registered to the device, once the ib_client remove() callback returns this
1859  * cannot be called.
1860  */
1861 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1862 			void *data)
1863 {
1864 	void *rc;
1865 
1866 	if (WARN_ON(IS_ERR(data)))
1867 		data = NULL;
1868 
1869 	rc = xa_store(&device->client_data, client->client_id, data,
1870 		      GFP_KERNEL);
1871 	WARN_ON(xa_is_err(rc));
1872 }
1873 EXPORT_SYMBOL(ib_set_client_data);
1874 
1875 /**
1876  * ib_register_event_handler - Register an IB event handler
1877  * @event_handler:Handler to register
1878  *
1879  * ib_register_event_handler() registers an event handler that will be
1880  * called back when asynchronous IB events occur (as defined in
1881  * chapter 11 of the InfiniBand Architecture Specification).  This
1882  * callback may occur in interrupt context.
1883  */
1884 void ib_register_event_handler(struct ib_event_handler *event_handler)
1885 {
1886 	unsigned long flags;
1887 
1888 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1889 	list_add_tail(&event_handler->list,
1890 		      &event_handler->device->event_handler_list);
1891 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1892 }
1893 EXPORT_SYMBOL(ib_register_event_handler);
1894 
1895 /**
1896  * ib_unregister_event_handler - Unregister an event handler
1897  * @event_handler:Handler to unregister
1898  *
1899  * Unregister an event handler registered with
1900  * ib_register_event_handler().
1901  */
1902 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1903 {
1904 	unsigned long flags;
1905 
1906 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1907 	list_del(&event_handler->list);
1908 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1909 }
1910 EXPORT_SYMBOL(ib_unregister_event_handler);
1911 
1912 /**
1913  * ib_dispatch_event - Dispatch an asynchronous event
1914  * @event:Event to dispatch
1915  *
1916  * Low-level drivers must call ib_dispatch_event() to dispatch the
1917  * event to all registered event handlers when an asynchronous event
1918  * occurs.
1919  */
1920 void ib_dispatch_event(struct ib_event *event)
1921 {
1922 	unsigned long flags;
1923 	struct ib_event_handler *handler;
1924 
1925 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
1926 
1927 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1928 		handler->handler(handler, event);
1929 
1930 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1931 }
1932 EXPORT_SYMBOL(ib_dispatch_event);
1933 
1934 /**
1935  * ib_query_port - Query IB port attributes
1936  * @device:Device to query
1937  * @port_num:Port number to query
1938  * @port_attr:Port attributes
1939  *
1940  * ib_query_port() returns the attributes of a port through the
1941  * @port_attr pointer.
1942  */
1943 int ib_query_port(struct ib_device *device,
1944 		  u8 port_num,
1945 		  struct ib_port_attr *port_attr)
1946 {
1947 	union ib_gid gid;
1948 	int err;
1949 
1950 	if (!rdma_is_port_valid(device, port_num))
1951 		return -EINVAL;
1952 
1953 	memset(port_attr, 0, sizeof(*port_attr));
1954 	err = device->ops.query_port(device, port_num, port_attr);
1955 	if (err || port_attr->subnet_prefix)
1956 		return err;
1957 
1958 	if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND)
1959 		return 0;
1960 
1961 	err = device->ops.query_gid(device, port_num, 0, &gid);
1962 	if (err)
1963 		return err;
1964 
1965 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL(ib_query_port);
1969 
1970 static void add_ndev_hash(struct ib_port_data *pdata)
1971 {
1972 	unsigned long flags;
1973 
1974 	might_sleep();
1975 
1976 	spin_lock_irqsave(&ndev_hash_lock, flags);
1977 	if (hash_hashed(&pdata->ndev_hash_link)) {
1978 		hash_del_rcu(&pdata->ndev_hash_link);
1979 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
1980 		/*
1981 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
1982 		 * grace period
1983 		 */
1984 		synchronize_rcu();
1985 		spin_lock_irqsave(&ndev_hash_lock, flags);
1986 	}
1987 	if (pdata->netdev)
1988 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
1989 			     (uintptr_t)pdata->netdev);
1990 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
1991 }
1992 
1993 /**
1994  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
1995  * @ib_dev: Device to modify
1996  * @ndev: net_device to affiliate, may be NULL
1997  * @port: IB port the net_device is connected to
1998  *
1999  * Drivers should use this to link the ib_device to a netdev so the netdev
2000  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2001  * affiliated with any port.
2002  *
2003  * The caller must ensure that the given ndev is not unregistered or
2004  * unregistering, and that either the ib_device is unregistered or
2005  * ib_device_set_netdev() is called with NULL when the ndev sends a
2006  * NETDEV_UNREGISTER event.
2007  */
2008 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2009 			 unsigned int port)
2010 {
2011 	struct net_device *old_ndev;
2012 	struct ib_port_data *pdata;
2013 	unsigned long flags;
2014 	int ret;
2015 
2016 	/*
2017 	 * Drivers wish to call this before ib_register_driver, so we have to
2018 	 * setup the port data early.
2019 	 */
2020 	ret = alloc_port_data(ib_dev);
2021 	if (ret)
2022 		return ret;
2023 
2024 	if (!rdma_is_port_valid(ib_dev, port))
2025 		return -EINVAL;
2026 
2027 	pdata = &ib_dev->port_data[port];
2028 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2029 	old_ndev = rcu_dereference_protected(
2030 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2031 	if (old_ndev == ndev) {
2032 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2033 		return 0;
2034 	}
2035 
2036 	if (ndev)
2037 		dev_hold(ndev);
2038 	rcu_assign_pointer(pdata->netdev, ndev);
2039 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2040 
2041 	add_ndev_hash(pdata);
2042 	if (old_ndev)
2043 		dev_put(old_ndev);
2044 
2045 	return 0;
2046 }
2047 EXPORT_SYMBOL(ib_device_set_netdev);
2048 
2049 static void free_netdevs(struct ib_device *ib_dev)
2050 {
2051 	unsigned long flags;
2052 	unsigned int port;
2053 
2054 	if (!ib_dev->port_data)
2055 		return;
2056 
2057 	rdma_for_each_port (ib_dev, port) {
2058 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2059 		struct net_device *ndev;
2060 
2061 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2062 		ndev = rcu_dereference_protected(
2063 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2064 		if (ndev) {
2065 			spin_lock(&ndev_hash_lock);
2066 			hash_del_rcu(&pdata->ndev_hash_link);
2067 			spin_unlock(&ndev_hash_lock);
2068 
2069 			/*
2070 			 * If this is the last dev_put there is still a
2071 			 * synchronize_rcu before the netdev is kfreed, so we
2072 			 * can continue to rely on unlocked pointer
2073 			 * comparisons after the put
2074 			 */
2075 			rcu_assign_pointer(pdata->netdev, NULL);
2076 			dev_put(ndev);
2077 		}
2078 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2079 	}
2080 }
2081 
2082 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2083 					unsigned int port)
2084 {
2085 	struct ib_port_data *pdata;
2086 	struct net_device *res;
2087 
2088 	if (!rdma_is_port_valid(ib_dev, port))
2089 		return NULL;
2090 
2091 	pdata = &ib_dev->port_data[port];
2092 
2093 	/*
2094 	 * New drivers should use ib_device_set_netdev() not the legacy
2095 	 * get_netdev().
2096 	 */
2097 	if (ib_dev->ops.get_netdev)
2098 		res = ib_dev->ops.get_netdev(ib_dev, port);
2099 	else {
2100 		spin_lock(&pdata->netdev_lock);
2101 		res = rcu_dereference_protected(
2102 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2103 		if (res)
2104 			dev_hold(res);
2105 		spin_unlock(&pdata->netdev_lock);
2106 	}
2107 
2108 	/*
2109 	 * If we are starting to unregister expedite things by preventing
2110 	 * propagation of an unregistering netdev.
2111 	 */
2112 	if (res && res->reg_state != NETREG_REGISTERED) {
2113 		dev_put(res);
2114 		return NULL;
2115 	}
2116 
2117 	return res;
2118 }
2119 
2120 /**
2121  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2122  * @ndev: netdev to locate
2123  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2124  *
2125  * Find and hold an ib_device that is associated with a netdev via
2126  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2127  * returned pointer.
2128  */
2129 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2130 					  enum rdma_driver_id driver_id)
2131 {
2132 	struct ib_device *res = NULL;
2133 	struct ib_port_data *cur;
2134 
2135 	rcu_read_lock();
2136 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2137 				    (uintptr_t)ndev) {
2138 		if (rcu_access_pointer(cur->netdev) == ndev &&
2139 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2140 		     cur->ib_dev->ops.driver_id == driver_id) &&
2141 		    ib_device_try_get(cur->ib_dev)) {
2142 			res = cur->ib_dev;
2143 			break;
2144 		}
2145 	}
2146 	rcu_read_unlock();
2147 
2148 	return res;
2149 }
2150 EXPORT_SYMBOL(ib_device_get_by_netdev);
2151 
2152 /**
2153  * ib_enum_roce_netdev - enumerate all RoCE ports
2154  * @ib_dev : IB device we want to query
2155  * @filter: Should we call the callback?
2156  * @filter_cookie: Cookie passed to filter
2157  * @cb: Callback to call for each found RoCE ports
2158  * @cookie: Cookie passed back to the callback
2159  *
2160  * Enumerates all of the physical RoCE ports of ib_dev
2161  * which are related to netdevice and calls callback() on each
2162  * device for which filter() function returns non zero.
2163  */
2164 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2165 			 roce_netdev_filter filter,
2166 			 void *filter_cookie,
2167 			 roce_netdev_callback cb,
2168 			 void *cookie)
2169 {
2170 	unsigned int port;
2171 
2172 	rdma_for_each_port (ib_dev, port)
2173 		if (rdma_protocol_roce(ib_dev, port)) {
2174 			struct net_device *idev =
2175 				ib_device_get_netdev(ib_dev, port);
2176 
2177 			if (filter(ib_dev, port, idev, filter_cookie))
2178 				cb(ib_dev, port, idev, cookie);
2179 
2180 			if (idev)
2181 				dev_put(idev);
2182 		}
2183 }
2184 
2185 /**
2186  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2187  * @filter: Should we call the callback?
2188  * @filter_cookie: Cookie passed to filter
2189  * @cb: Callback to call for each found RoCE ports
2190  * @cookie: Cookie passed back to the callback
2191  *
2192  * Enumerates all RoCE devices' physical ports which are related
2193  * to netdevices and calls callback() on each device for which
2194  * filter() function returns non zero.
2195  */
2196 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2197 			      void *filter_cookie,
2198 			      roce_netdev_callback cb,
2199 			      void *cookie)
2200 {
2201 	struct ib_device *dev;
2202 	unsigned long index;
2203 
2204 	down_read(&devices_rwsem);
2205 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2206 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2207 	up_read(&devices_rwsem);
2208 }
2209 
2210 /**
2211  * ib_enum_all_devs - enumerate all ib_devices
2212  * @cb: Callback to call for each found ib_device
2213  *
2214  * Enumerates all ib_devices and calls callback() on each device.
2215  */
2216 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2217 		     struct netlink_callback *cb)
2218 {
2219 	unsigned long index;
2220 	struct ib_device *dev;
2221 	unsigned int idx = 0;
2222 	int ret = 0;
2223 
2224 	down_read(&devices_rwsem);
2225 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2226 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2227 			continue;
2228 
2229 		ret = nldev_cb(dev, skb, cb, idx);
2230 		if (ret)
2231 			break;
2232 		idx++;
2233 	}
2234 	up_read(&devices_rwsem);
2235 	return ret;
2236 }
2237 
2238 /**
2239  * ib_query_pkey - Get P_Key table entry
2240  * @device:Device to query
2241  * @port_num:Port number to query
2242  * @index:P_Key table index to query
2243  * @pkey:Returned P_Key
2244  *
2245  * ib_query_pkey() fetches the specified P_Key table entry.
2246  */
2247 int ib_query_pkey(struct ib_device *device,
2248 		  u8 port_num, u16 index, u16 *pkey)
2249 {
2250 	if (!rdma_is_port_valid(device, port_num))
2251 		return -EINVAL;
2252 
2253 	return device->ops.query_pkey(device, port_num, index, pkey);
2254 }
2255 EXPORT_SYMBOL(ib_query_pkey);
2256 
2257 /**
2258  * ib_modify_device - Change IB device attributes
2259  * @device:Device to modify
2260  * @device_modify_mask:Mask of attributes to change
2261  * @device_modify:New attribute values
2262  *
2263  * ib_modify_device() changes a device's attributes as specified by
2264  * the @device_modify_mask and @device_modify structure.
2265  */
2266 int ib_modify_device(struct ib_device *device,
2267 		     int device_modify_mask,
2268 		     struct ib_device_modify *device_modify)
2269 {
2270 	if (!device->ops.modify_device)
2271 		return -ENOSYS;
2272 
2273 	return device->ops.modify_device(device, device_modify_mask,
2274 					 device_modify);
2275 }
2276 EXPORT_SYMBOL(ib_modify_device);
2277 
2278 /**
2279  * ib_modify_port - Modifies the attributes for the specified port.
2280  * @device: The device to modify.
2281  * @port_num: The number of the port to modify.
2282  * @port_modify_mask: Mask used to specify which attributes of the port
2283  *   to change.
2284  * @port_modify: New attribute values for the port.
2285  *
2286  * ib_modify_port() changes a port's attributes as specified by the
2287  * @port_modify_mask and @port_modify structure.
2288  */
2289 int ib_modify_port(struct ib_device *device,
2290 		   u8 port_num, int port_modify_mask,
2291 		   struct ib_port_modify *port_modify)
2292 {
2293 	int rc;
2294 
2295 	if (!rdma_is_port_valid(device, port_num))
2296 		return -EINVAL;
2297 
2298 	if (device->ops.modify_port)
2299 		rc = device->ops.modify_port(device, port_num,
2300 					     port_modify_mask,
2301 					     port_modify);
2302 	else
2303 		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
2304 	return rc;
2305 }
2306 EXPORT_SYMBOL(ib_modify_port);
2307 
2308 /**
2309  * ib_find_gid - Returns the port number and GID table index where
2310  *   a specified GID value occurs. Its searches only for IB link layer.
2311  * @device: The device to query.
2312  * @gid: The GID value to search for.
2313  * @port_num: The port number of the device where the GID value was found.
2314  * @index: The index into the GID table where the GID was found.  This
2315  *   parameter may be NULL.
2316  */
2317 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2318 		u8 *port_num, u16 *index)
2319 {
2320 	union ib_gid tmp_gid;
2321 	unsigned int port;
2322 	int ret, i;
2323 
2324 	rdma_for_each_port (device, port) {
2325 		if (!rdma_protocol_ib(device, port))
2326 			continue;
2327 
2328 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2329 		     ++i) {
2330 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2331 			if (ret)
2332 				return ret;
2333 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2334 				*port_num = port;
2335 				if (index)
2336 					*index = i;
2337 				return 0;
2338 			}
2339 		}
2340 	}
2341 
2342 	return -ENOENT;
2343 }
2344 EXPORT_SYMBOL(ib_find_gid);
2345 
2346 /**
2347  * ib_find_pkey - Returns the PKey table index where a specified
2348  *   PKey value occurs.
2349  * @device: The device to query.
2350  * @port_num: The port number of the device to search for the PKey.
2351  * @pkey: The PKey value to search for.
2352  * @index: The index into the PKey table where the PKey was found.
2353  */
2354 int ib_find_pkey(struct ib_device *device,
2355 		 u8 port_num, u16 pkey, u16 *index)
2356 {
2357 	int ret, i;
2358 	u16 tmp_pkey;
2359 	int partial_ix = -1;
2360 
2361 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2362 	     ++i) {
2363 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2364 		if (ret)
2365 			return ret;
2366 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2367 			/* if there is full-member pkey take it.*/
2368 			if (tmp_pkey & 0x8000) {
2369 				*index = i;
2370 				return 0;
2371 			}
2372 			if (partial_ix < 0)
2373 				partial_ix = i;
2374 		}
2375 	}
2376 
2377 	/*no full-member, if exists take the limited*/
2378 	if (partial_ix >= 0) {
2379 		*index = partial_ix;
2380 		return 0;
2381 	}
2382 	return -ENOENT;
2383 }
2384 EXPORT_SYMBOL(ib_find_pkey);
2385 
2386 /**
2387  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2388  * for a received CM request
2389  * @dev:	An RDMA device on which the request has been received.
2390  * @port:	Port number on the RDMA device.
2391  * @pkey:	The Pkey the request came on.
2392  * @gid:	A GID that the net_dev uses to communicate.
2393  * @addr:	Contains the IP address that the request specified as its
2394  *		destination.
2395  *
2396  */
2397 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2398 					    u8 port,
2399 					    u16 pkey,
2400 					    const union ib_gid *gid,
2401 					    const struct sockaddr *addr)
2402 {
2403 	struct net_device *net_dev = NULL;
2404 	unsigned long index;
2405 	void *client_data;
2406 
2407 	if (!rdma_protocol_ib(dev, port))
2408 		return NULL;
2409 
2410 	/*
2411 	 * Holding the read side guarantees that the client will not become
2412 	 * unregistered while we are calling get_net_dev_by_params()
2413 	 */
2414 	down_read(&dev->client_data_rwsem);
2415 	xan_for_each_marked (&dev->client_data, index, client_data,
2416 			     CLIENT_DATA_REGISTERED) {
2417 		struct ib_client *client = xa_load(&clients, index);
2418 
2419 		if (!client || !client->get_net_dev_by_params)
2420 			continue;
2421 
2422 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2423 							addr, client_data);
2424 		if (net_dev)
2425 			break;
2426 	}
2427 	up_read(&dev->client_data_rwsem);
2428 
2429 	return net_dev;
2430 }
2431 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2432 
2433 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2434 {
2435 	struct ib_device_ops *dev_ops = &dev->ops;
2436 #define SET_DEVICE_OP(ptr, name)                                               \
2437 	do {                                                                   \
2438 		if (ops->name)                                                 \
2439 			if (!((ptr)->name))				       \
2440 				(ptr)->name = ops->name;                       \
2441 	} while (0)
2442 
2443 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2444 
2445 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2446 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2447 			dev_ops->driver_id != ops->driver_id);
2448 		dev_ops->driver_id = ops->driver_id;
2449 	}
2450 	if (ops->owner) {
2451 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2452 		dev_ops->owner = ops->owner;
2453 	}
2454 	if (ops->uverbs_abi_ver)
2455 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2456 
2457 	dev_ops->uverbs_no_driver_id_binding |=
2458 		ops->uverbs_no_driver_id_binding;
2459 
2460 	SET_DEVICE_OP(dev_ops, add_gid);
2461 	SET_DEVICE_OP(dev_ops, advise_mr);
2462 	SET_DEVICE_OP(dev_ops, alloc_dm);
2463 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2464 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2465 	SET_DEVICE_OP(dev_ops, alloc_mr);
2466 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2467 	SET_DEVICE_OP(dev_ops, alloc_mw);
2468 	SET_DEVICE_OP(dev_ops, alloc_pd);
2469 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2470 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2471 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2472 	SET_DEVICE_OP(dev_ops, attach_mcast);
2473 	SET_DEVICE_OP(dev_ops, check_mr_status);
2474 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2475 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2476 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2477 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2478 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2479 	SET_DEVICE_OP(dev_ops, create_ah);
2480 	SET_DEVICE_OP(dev_ops, create_counters);
2481 	SET_DEVICE_OP(dev_ops, create_cq);
2482 	SET_DEVICE_OP(dev_ops, create_flow);
2483 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2484 	SET_DEVICE_OP(dev_ops, create_qp);
2485 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2486 	SET_DEVICE_OP(dev_ops, create_srq);
2487 	SET_DEVICE_OP(dev_ops, create_wq);
2488 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2489 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2490 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2491 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2492 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2493 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2494 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2495 	SET_DEVICE_OP(dev_ops, del_gid);
2496 	SET_DEVICE_OP(dev_ops, dereg_mr);
2497 	SET_DEVICE_OP(dev_ops, destroy_ah);
2498 	SET_DEVICE_OP(dev_ops, destroy_counters);
2499 	SET_DEVICE_OP(dev_ops, destroy_cq);
2500 	SET_DEVICE_OP(dev_ops, destroy_flow);
2501 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2502 	SET_DEVICE_OP(dev_ops, destroy_qp);
2503 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2504 	SET_DEVICE_OP(dev_ops, destroy_srq);
2505 	SET_DEVICE_OP(dev_ops, destroy_wq);
2506 	SET_DEVICE_OP(dev_ops, detach_mcast);
2507 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2508 	SET_DEVICE_OP(dev_ops, drain_rq);
2509 	SET_DEVICE_OP(dev_ops, drain_sq);
2510 	SET_DEVICE_OP(dev_ops, enable_driver);
2511 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2512 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2513 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2514 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2515 	SET_DEVICE_OP(dev_ops, get_link_layer);
2516 	SET_DEVICE_OP(dev_ops, get_netdev);
2517 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2518 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2519 	SET_DEVICE_OP(dev_ops, get_vf_config);
2520 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2521 	SET_DEVICE_OP(dev_ops, init_port);
2522 	SET_DEVICE_OP(dev_ops, iw_accept);
2523 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2524 	SET_DEVICE_OP(dev_ops, iw_connect);
2525 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2526 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2527 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2528 	SET_DEVICE_OP(dev_ops, iw_reject);
2529 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2530 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2531 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2532 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2533 	SET_DEVICE_OP(dev_ops, mmap);
2534 	SET_DEVICE_OP(dev_ops, modify_ah);
2535 	SET_DEVICE_OP(dev_ops, modify_cq);
2536 	SET_DEVICE_OP(dev_ops, modify_device);
2537 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2538 	SET_DEVICE_OP(dev_ops, modify_port);
2539 	SET_DEVICE_OP(dev_ops, modify_qp);
2540 	SET_DEVICE_OP(dev_ops, modify_srq);
2541 	SET_DEVICE_OP(dev_ops, modify_wq);
2542 	SET_DEVICE_OP(dev_ops, peek_cq);
2543 	SET_DEVICE_OP(dev_ops, poll_cq);
2544 	SET_DEVICE_OP(dev_ops, post_recv);
2545 	SET_DEVICE_OP(dev_ops, post_send);
2546 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2547 	SET_DEVICE_OP(dev_ops, process_mad);
2548 	SET_DEVICE_OP(dev_ops, query_ah);
2549 	SET_DEVICE_OP(dev_ops, query_device);
2550 	SET_DEVICE_OP(dev_ops, query_gid);
2551 	SET_DEVICE_OP(dev_ops, query_pkey);
2552 	SET_DEVICE_OP(dev_ops, query_port);
2553 	SET_DEVICE_OP(dev_ops, query_qp);
2554 	SET_DEVICE_OP(dev_ops, query_srq);
2555 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2556 	SET_DEVICE_OP(dev_ops, read_counters);
2557 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2558 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2559 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2560 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2561 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2562 	SET_DEVICE_OP(dev_ops, resize_cq);
2563 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2564 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2565 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2566 
2567 	SET_OBJ_SIZE(dev_ops, ib_ah);
2568 	SET_OBJ_SIZE(dev_ops, ib_cq);
2569 	SET_OBJ_SIZE(dev_ops, ib_pd);
2570 	SET_OBJ_SIZE(dev_ops, ib_srq);
2571 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2572 }
2573 EXPORT_SYMBOL(ib_set_device_ops);
2574 
2575 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2576 	[RDMA_NL_LS_OP_RESOLVE] = {
2577 		.doit = ib_nl_handle_resolve_resp,
2578 		.flags = RDMA_NL_ADMIN_PERM,
2579 	},
2580 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2581 		.doit = ib_nl_handle_set_timeout,
2582 		.flags = RDMA_NL_ADMIN_PERM,
2583 	},
2584 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2585 		.doit = ib_nl_handle_ip_res_resp,
2586 		.flags = RDMA_NL_ADMIN_PERM,
2587 	},
2588 };
2589 
2590 static int __init ib_core_init(void)
2591 {
2592 	int ret;
2593 
2594 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2595 	if (!ib_wq)
2596 		return -ENOMEM;
2597 
2598 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2599 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2600 	if (!ib_comp_wq) {
2601 		ret = -ENOMEM;
2602 		goto err;
2603 	}
2604 
2605 	ib_comp_unbound_wq =
2606 		alloc_workqueue("ib-comp-unb-wq",
2607 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2608 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2609 	if (!ib_comp_unbound_wq) {
2610 		ret = -ENOMEM;
2611 		goto err_comp;
2612 	}
2613 
2614 	ret = class_register(&ib_class);
2615 	if (ret) {
2616 		pr_warn("Couldn't create InfiniBand device class\n");
2617 		goto err_comp_unbound;
2618 	}
2619 
2620 	ret = rdma_nl_init();
2621 	if (ret) {
2622 		pr_warn("Couldn't init IB netlink interface: err %d\n", ret);
2623 		goto err_sysfs;
2624 	}
2625 
2626 	ret = addr_init();
2627 	if (ret) {
2628 		pr_warn("Could't init IB address resolution\n");
2629 		goto err_ibnl;
2630 	}
2631 
2632 	ret = ib_mad_init();
2633 	if (ret) {
2634 		pr_warn("Couldn't init IB MAD\n");
2635 		goto err_addr;
2636 	}
2637 
2638 	ret = ib_sa_init();
2639 	if (ret) {
2640 		pr_warn("Couldn't init SA\n");
2641 		goto err_mad;
2642 	}
2643 
2644 	ret = register_lsm_notifier(&ibdev_lsm_nb);
2645 	if (ret) {
2646 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2647 		goto err_sa;
2648 	}
2649 
2650 	ret = register_pernet_device(&rdma_dev_net_ops);
2651 	if (ret) {
2652 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2653 		goto err_compat;
2654 	}
2655 
2656 	nldev_init();
2657 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2658 	roce_gid_mgmt_init();
2659 
2660 	return 0;
2661 
2662 err_compat:
2663 	unregister_lsm_notifier(&ibdev_lsm_nb);
2664 err_sa:
2665 	ib_sa_cleanup();
2666 err_mad:
2667 	ib_mad_cleanup();
2668 err_addr:
2669 	addr_cleanup();
2670 err_ibnl:
2671 	rdma_nl_exit();
2672 err_sysfs:
2673 	class_unregister(&ib_class);
2674 err_comp_unbound:
2675 	destroy_workqueue(ib_comp_unbound_wq);
2676 err_comp:
2677 	destroy_workqueue(ib_comp_wq);
2678 err:
2679 	destroy_workqueue(ib_wq);
2680 	return ret;
2681 }
2682 
2683 static void __exit ib_core_cleanup(void)
2684 {
2685 	roce_gid_mgmt_cleanup();
2686 	nldev_exit();
2687 	rdma_nl_unregister(RDMA_NL_LS);
2688 	unregister_pernet_device(&rdma_dev_net_ops);
2689 	unregister_lsm_notifier(&ibdev_lsm_nb);
2690 	ib_sa_cleanup();
2691 	ib_mad_cleanup();
2692 	addr_cleanup();
2693 	rdma_nl_exit();
2694 	class_unregister(&ib_class);
2695 	destroy_workqueue(ib_comp_unbound_wq);
2696 	destroy_workqueue(ib_comp_wq);
2697 	/* Make sure that any pending umem accounting work is done. */
2698 	destroy_workqueue(ib_wq);
2699 	flush_workqueue(system_unbound_wq);
2700 	WARN_ON(!xa_empty(&clients));
2701 	WARN_ON(!xa_empty(&devices));
2702 }
2703 
2704 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2705 
2706 /* ib core relies on netdev stack to first register net_ns_type_operations
2707  * ns kobject type before ib_core initialization.
2708  */
2709 fs_initcall(ib_core_init);
2710 module_exit(ib_core_cleanup);
2711