xref: /linux/drivers/infiniband/core/device.c (revision e0ad4d68548005adb54cc7c35fd9abf760a2a050)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(query_pkey),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 
574 	if (WARN_ON(size < sizeof(struct ib_device)))
575 		return NULL;
576 
577 	device = kzalloc(size, GFP_KERNEL);
578 	if (!device)
579 		return NULL;
580 
581 	if (rdma_restrack_init(device)) {
582 		kfree(device);
583 		return NULL;
584 	}
585 
586 	device->groups[0] = &ib_dev_attr_group;
587 	rdma_init_coredev(&device->coredev, device, &init_net);
588 
589 	INIT_LIST_HEAD(&device->event_handler_list);
590 	spin_lock_init(&device->qp_open_list_lock);
591 	init_rwsem(&device->event_handler_rwsem);
592 	mutex_init(&device->unregistration_lock);
593 	/*
594 	 * client_data needs to be alloc because we don't want our mark to be
595 	 * destroyed if the user stores NULL in the client data.
596 	 */
597 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
598 	init_rwsem(&device->client_data_rwsem);
599 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
600 	mutex_init(&device->compat_devs_mutex);
601 	init_completion(&device->unreg_completion);
602 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
603 
604 	return device;
605 }
606 EXPORT_SYMBOL(_ib_alloc_device);
607 
608 /**
609  * ib_dealloc_device - free an IB device struct
610  * @device:structure to free
611  *
612  * Free a structure allocated with ib_alloc_device().
613  */
614 void ib_dealloc_device(struct ib_device *device)
615 {
616 	if (device->ops.dealloc_driver)
617 		device->ops.dealloc_driver(device);
618 
619 	/*
620 	 * ib_unregister_driver() requires all devices to remain in the xarray
621 	 * while their ops are callable. The last op we call is dealloc_driver
622 	 * above.  This is needed to create a fence on op callbacks prior to
623 	 * allowing the driver module to unload.
624 	 */
625 	down_write(&devices_rwsem);
626 	if (xa_load(&devices, device->index) == device)
627 		xa_erase(&devices, device->index);
628 	up_write(&devices_rwsem);
629 
630 	/* Expedite releasing netdev references */
631 	free_netdevs(device);
632 
633 	WARN_ON(!xa_empty(&device->compat_devs));
634 	WARN_ON(!xa_empty(&device->client_data));
635 	WARN_ON(refcount_read(&device->refcount));
636 	rdma_restrack_clean(device);
637 	/* Balances with device_initialize */
638 	put_device(&device->dev);
639 }
640 EXPORT_SYMBOL(ib_dealloc_device);
641 
642 /*
643  * add_client_context() and remove_client_context() must be safe against
644  * parallel calls on the same device - registration/unregistration of both the
645  * device and client can be occurring in parallel.
646  *
647  * The routines need to be a fence, any caller must not return until the add
648  * or remove is fully completed.
649  */
650 static int add_client_context(struct ib_device *device,
651 			      struct ib_client *client)
652 {
653 	int ret = 0;
654 
655 	if (!device->kverbs_provider && !client->no_kverbs_req)
656 		return 0;
657 
658 	down_write(&device->client_data_rwsem);
659 	/*
660 	 * So long as the client is registered hold both the client and device
661 	 * unregistration locks.
662 	 */
663 	if (!refcount_inc_not_zero(&client->uses))
664 		goto out_unlock;
665 	refcount_inc(&device->refcount);
666 
667 	/*
668 	 * Another caller to add_client_context got here first and has already
669 	 * completely initialized context.
670 	 */
671 	if (xa_get_mark(&device->client_data, client->client_id,
672 		    CLIENT_DATA_REGISTERED))
673 		goto out;
674 
675 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
676 			      GFP_KERNEL));
677 	if (ret)
678 		goto out;
679 	downgrade_write(&device->client_data_rwsem);
680 	if (client->add)
681 		client->add(device);
682 
683 	/* Readers shall not see a client until add has been completed */
684 	xa_set_mark(&device->client_data, client->client_id,
685 		    CLIENT_DATA_REGISTERED);
686 	up_read(&device->client_data_rwsem);
687 	return 0;
688 
689 out:
690 	ib_device_put(device);
691 	ib_client_put(client);
692 out_unlock:
693 	up_write(&device->client_data_rwsem);
694 	return ret;
695 }
696 
697 static void remove_client_context(struct ib_device *device,
698 				  unsigned int client_id)
699 {
700 	struct ib_client *client;
701 	void *client_data;
702 
703 	down_write(&device->client_data_rwsem);
704 	if (!xa_get_mark(&device->client_data, client_id,
705 			 CLIENT_DATA_REGISTERED)) {
706 		up_write(&device->client_data_rwsem);
707 		return;
708 	}
709 	client_data = xa_load(&device->client_data, client_id);
710 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
711 	client = xa_load(&clients, client_id);
712 	up_write(&device->client_data_rwsem);
713 
714 	/*
715 	 * Notice we cannot be holding any exclusive locks when calling the
716 	 * remove callback as the remove callback can recurse back into any
717 	 * public functions in this module and thus try for any locks those
718 	 * functions take.
719 	 *
720 	 * For this reason clients and drivers should not call the
721 	 * unregistration functions will holdling any locks.
722 	 */
723 	if (client->remove)
724 		client->remove(device, client_data);
725 
726 	xa_erase(&device->client_data, client_id);
727 	ib_device_put(device);
728 	ib_client_put(client);
729 }
730 
731 static int alloc_port_data(struct ib_device *device)
732 {
733 	struct ib_port_data_rcu *pdata_rcu;
734 	unsigned int port;
735 
736 	if (device->port_data)
737 		return 0;
738 
739 	/* This can only be called once the physical port range is defined */
740 	if (WARN_ON(!device->phys_port_cnt))
741 		return -EINVAL;
742 
743 	/*
744 	 * device->port_data is indexed directly by the port number to make
745 	 * access to this data as efficient as possible.
746 	 *
747 	 * Therefore port_data is declared as a 1 based array with potential
748 	 * empty slots at the beginning.
749 	 */
750 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
751 					rdma_end_port(device) + 1),
752 			    GFP_KERNEL);
753 	if (!pdata_rcu)
754 		return -ENOMEM;
755 	/*
756 	 * The rcu_head is put in front of the port data array and the stored
757 	 * pointer is adjusted since we never need to see that member until
758 	 * kfree_rcu.
759 	 */
760 	device->port_data = pdata_rcu->pdata;
761 
762 	rdma_for_each_port (device, port) {
763 		struct ib_port_data *pdata = &device->port_data[port];
764 
765 		pdata->ib_dev = device;
766 		spin_lock_init(&pdata->pkey_list_lock);
767 		INIT_LIST_HEAD(&pdata->pkey_list);
768 		spin_lock_init(&pdata->netdev_lock);
769 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
770 	}
771 	return 0;
772 }
773 
774 static int verify_immutable(const struct ib_device *dev, u8 port)
775 {
776 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
777 			    rdma_max_mad_size(dev, port) != 0);
778 }
779 
780 static int setup_port_data(struct ib_device *device)
781 {
782 	unsigned int port;
783 	int ret;
784 
785 	ret = alloc_port_data(device);
786 	if (ret)
787 		return ret;
788 
789 	rdma_for_each_port (device, port) {
790 		struct ib_port_data *pdata = &device->port_data[port];
791 
792 		ret = device->ops.get_port_immutable(device, port,
793 						     &pdata->immutable);
794 		if (ret)
795 			return ret;
796 
797 		if (verify_immutable(device, port))
798 			return -EINVAL;
799 	}
800 	return 0;
801 }
802 
803 void ib_get_device_fw_str(struct ib_device *dev, char *str)
804 {
805 	if (dev->ops.get_dev_fw_str)
806 		dev->ops.get_dev_fw_str(dev, str);
807 	else
808 		str[0] = '\0';
809 }
810 EXPORT_SYMBOL(ib_get_device_fw_str);
811 
812 static void ib_policy_change_task(struct work_struct *work)
813 {
814 	struct ib_device *dev;
815 	unsigned long index;
816 
817 	down_read(&devices_rwsem);
818 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
819 		unsigned int i;
820 
821 		rdma_for_each_port (dev, i) {
822 			u64 sp;
823 			int ret = ib_get_cached_subnet_prefix(dev,
824 							      i,
825 							      &sp);
826 
827 			WARN_ONCE(ret,
828 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
829 				  ret);
830 			if (!ret)
831 				ib_security_cache_change(dev, i, sp);
832 		}
833 	}
834 	up_read(&devices_rwsem);
835 }
836 
837 static int ib_security_change(struct notifier_block *nb, unsigned long event,
838 			      void *lsm_data)
839 {
840 	if (event != LSM_POLICY_CHANGE)
841 		return NOTIFY_DONE;
842 
843 	schedule_work(&ib_policy_change_work);
844 	ib_mad_agent_security_change();
845 
846 	return NOTIFY_OK;
847 }
848 
849 static void compatdev_release(struct device *dev)
850 {
851 	struct ib_core_device *cdev =
852 		container_of(dev, struct ib_core_device, dev);
853 
854 	kfree(cdev);
855 }
856 
857 static int add_one_compat_dev(struct ib_device *device,
858 			      struct rdma_dev_net *rnet)
859 {
860 	struct ib_core_device *cdev;
861 	int ret;
862 
863 	lockdep_assert_held(&rdma_nets_rwsem);
864 	if (!ib_devices_shared_netns)
865 		return 0;
866 
867 	/*
868 	 * Create and add compat device in all namespaces other than where it
869 	 * is currently bound to.
870 	 */
871 	if (net_eq(read_pnet(&rnet->net),
872 		   read_pnet(&device->coredev.rdma_net)))
873 		return 0;
874 
875 	/*
876 	 * The first of init_net() or ib_register_device() to take the
877 	 * compat_devs_mutex wins and gets to add the device. Others will wait
878 	 * for completion here.
879 	 */
880 	mutex_lock(&device->compat_devs_mutex);
881 	cdev = xa_load(&device->compat_devs, rnet->id);
882 	if (cdev) {
883 		ret = 0;
884 		goto done;
885 	}
886 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
887 	if (ret)
888 		goto done;
889 
890 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
891 	if (!cdev) {
892 		ret = -ENOMEM;
893 		goto cdev_err;
894 	}
895 
896 	cdev->dev.parent = device->dev.parent;
897 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
898 	cdev->dev.release = compatdev_release;
899 	dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
900 
901 	ret = device_add(&cdev->dev);
902 	if (ret)
903 		goto add_err;
904 	ret = ib_setup_port_attrs(cdev);
905 	if (ret)
906 		goto port_err;
907 
908 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
909 			      cdev, GFP_KERNEL));
910 	if (ret)
911 		goto insert_err;
912 
913 	mutex_unlock(&device->compat_devs_mutex);
914 	return 0;
915 
916 insert_err:
917 	ib_free_port_attrs(cdev);
918 port_err:
919 	device_del(&cdev->dev);
920 add_err:
921 	put_device(&cdev->dev);
922 cdev_err:
923 	xa_release(&device->compat_devs, rnet->id);
924 done:
925 	mutex_unlock(&device->compat_devs_mutex);
926 	return ret;
927 }
928 
929 static void remove_one_compat_dev(struct ib_device *device, u32 id)
930 {
931 	struct ib_core_device *cdev;
932 
933 	mutex_lock(&device->compat_devs_mutex);
934 	cdev = xa_erase(&device->compat_devs, id);
935 	mutex_unlock(&device->compat_devs_mutex);
936 	if (cdev) {
937 		ib_free_port_attrs(cdev);
938 		device_del(&cdev->dev);
939 		put_device(&cdev->dev);
940 	}
941 }
942 
943 static void remove_compat_devs(struct ib_device *device)
944 {
945 	struct ib_core_device *cdev;
946 	unsigned long index;
947 
948 	xa_for_each (&device->compat_devs, index, cdev)
949 		remove_one_compat_dev(device, index);
950 }
951 
952 static int add_compat_devs(struct ib_device *device)
953 {
954 	struct rdma_dev_net *rnet;
955 	unsigned long index;
956 	int ret = 0;
957 
958 	lockdep_assert_held(&devices_rwsem);
959 
960 	down_read(&rdma_nets_rwsem);
961 	xa_for_each (&rdma_nets, index, rnet) {
962 		ret = add_one_compat_dev(device, rnet);
963 		if (ret)
964 			break;
965 	}
966 	up_read(&rdma_nets_rwsem);
967 	return ret;
968 }
969 
970 static void remove_all_compat_devs(void)
971 {
972 	struct ib_compat_device *cdev;
973 	struct ib_device *dev;
974 	unsigned long index;
975 
976 	down_read(&devices_rwsem);
977 	xa_for_each (&devices, index, dev) {
978 		unsigned long c_index = 0;
979 
980 		/* Hold nets_rwsem so that any other thread modifying this
981 		 * system param can sync with this thread.
982 		 */
983 		down_read(&rdma_nets_rwsem);
984 		xa_for_each (&dev->compat_devs, c_index, cdev)
985 			remove_one_compat_dev(dev, c_index);
986 		up_read(&rdma_nets_rwsem);
987 	}
988 	up_read(&devices_rwsem);
989 }
990 
991 static int add_all_compat_devs(void)
992 {
993 	struct rdma_dev_net *rnet;
994 	struct ib_device *dev;
995 	unsigned long index;
996 	int ret = 0;
997 
998 	down_read(&devices_rwsem);
999 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1000 		unsigned long net_index = 0;
1001 
1002 		/* Hold nets_rwsem so that any other thread modifying this
1003 		 * system param can sync with this thread.
1004 		 */
1005 		down_read(&rdma_nets_rwsem);
1006 		xa_for_each (&rdma_nets, net_index, rnet) {
1007 			ret = add_one_compat_dev(dev, rnet);
1008 			if (ret)
1009 				break;
1010 		}
1011 		up_read(&rdma_nets_rwsem);
1012 	}
1013 	up_read(&devices_rwsem);
1014 	if (ret)
1015 		remove_all_compat_devs();
1016 	return ret;
1017 }
1018 
1019 int rdma_compatdev_set(u8 enable)
1020 {
1021 	struct rdma_dev_net *rnet;
1022 	unsigned long index;
1023 	int ret = 0;
1024 
1025 	down_write(&rdma_nets_rwsem);
1026 	if (ib_devices_shared_netns == enable) {
1027 		up_write(&rdma_nets_rwsem);
1028 		return 0;
1029 	}
1030 
1031 	/* enable/disable of compat devices is not supported
1032 	 * when more than default init_net exists.
1033 	 */
1034 	xa_for_each (&rdma_nets, index, rnet) {
1035 		ret++;
1036 		break;
1037 	}
1038 	if (!ret)
1039 		ib_devices_shared_netns = enable;
1040 	up_write(&rdma_nets_rwsem);
1041 	if (ret)
1042 		return -EBUSY;
1043 
1044 	if (enable)
1045 		ret = add_all_compat_devs();
1046 	else
1047 		remove_all_compat_devs();
1048 	return ret;
1049 }
1050 
1051 static void rdma_dev_exit_net(struct net *net)
1052 {
1053 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1054 	struct ib_device *dev;
1055 	unsigned long index;
1056 	int ret;
1057 
1058 	down_write(&rdma_nets_rwsem);
1059 	/*
1060 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1061 	 */
1062 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1063 	WARN_ON(ret);
1064 	up_write(&rdma_nets_rwsem);
1065 
1066 	down_read(&devices_rwsem);
1067 	xa_for_each (&devices, index, dev) {
1068 		get_device(&dev->dev);
1069 		/*
1070 		 * Release the devices_rwsem so that pontentially blocking
1071 		 * device_del, doesn't hold the devices_rwsem for too long.
1072 		 */
1073 		up_read(&devices_rwsem);
1074 
1075 		remove_one_compat_dev(dev, rnet->id);
1076 
1077 		/*
1078 		 * If the real device is in the NS then move it back to init.
1079 		 */
1080 		rdma_dev_change_netns(dev, net, &init_net);
1081 
1082 		put_device(&dev->dev);
1083 		down_read(&devices_rwsem);
1084 	}
1085 	up_read(&devices_rwsem);
1086 
1087 	rdma_nl_net_exit(rnet);
1088 	xa_erase(&rdma_nets, rnet->id);
1089 }
1090 
1091 static __net_init int rdma_dev_init_net(struct net *net)
1092 {
1093 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1094 	unsigned long index;
1095 	struct ib_device *dev;
1096 	int ret;
1097 
1098 	write_pnet(&rnet->net, net);
1099 
1100 	ret = rdma_nl_net_init(rnet);
1101 	if (ret)
1102 		return ret;
1103 
1104 	/* No need to create any compat devices in default init_net. */
1105 	if (net_eq(net, &init_net))
1106 		return 0;
1107 
1108 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1109 	if (ret) {
1110 		rdma_nl_net_exit(rnet);
1111 		return ret;
1112 	}
1113 
1114 	down_read(&devices_rwsem);
1115 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1116 		/* Hold nets_rwsem so that netlink command cannot change
1117 		 * system configuration for device sharing mode.
1118 		 */
1119 		down_read(&rdma_nets_rwsem);
1120 		ret = add_one_compat_dev(dev, rnet);
1121 		up_read(&rdma_nets_rwsem);
1122 		if (ret)
1123 			break;
1124 	}
1125 	up_read(&devices_rwsem);
1126 
1127 	if (ret)
1128 		rdma_dev_exit_net(net);
1129 
1130 	return ret;
1131 }
1132 
1133 /*
1134  * Assign the unique string device name and the unique device index. This is
1135  * undone by ib_dealloc_device.
1136  */
1137 static int assign_name(struct ib_device *device, const char *name)
1138 {
1139 	static u32 last_id;
1140 	int ret;
1141 
1142 	down_write(&devices_rwsem);
1143 	/* Assign a unique name to the device */
1144 	if (strchr(name, '%'))
1145 		ret = alloc_name(device, name);
1146 	else
1147 		ret = dev_set_name(&device->dev, name);
1148 	if (ret)
1149 		goto out;
1150 
1151 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1152 		ret = -ENFILE;
1153 		goto out;
1154 	}
1155 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1156 
1157 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1158 			&last_id, GFP_KERNEL);
1159 	if (ret > 0)
1160 		ret = 0;
1161 
1162 out:
1163 	up_write(&devices_rwsem);
1164 	return ret;
1165 }
1166 
1167 static void setup_dma_device(struct ib_device *device)
1168 {
1169 	struct device *parent = device->dev.parent;
1170 
1171 	WARN_ON_ONCE(device->dma_device);
1172 	if (device->dev.dma_ops) {
1173 		/*
1174 		 * The caller provided custom DMA operations. Copy the
1175 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1176 		 * into device->dev.
1177 		 */
1178 		device->dma_device = &device->dev;
1179 		if (!device->dev.dma_mask) {
1180 			if (parent)
1181 				device->dev.dma_mask = parent->dma_mask;
1182 			else
1183 				WARN_ON_ONCE(true);
1184 		}
1185 		if (!device->dev.coherent_dma_mask) {
1186 			if (parent)
1187 				device->dev.coherent_dma_mask =
1188 					parent->coherent_dma_mask;
1189 			else
1190 				WARN_ON_ONCE(true);
1191 		}
1192 	} else {
1193 		/*
1194 		 * The caller did not provide custom DMA operations. Use the
1195 		 * DMA mapping operations of the parent device.
1196 		 */
1197 		WARN_ON_ONCE(!parent);
1198 		device->dma_device = parent;
1199 	}
1200 
1201 	if (!device->dev.dma_parms) {
1202 		if (parent) {
1203 			/*
1204 			 * The caller did not provide DMA parameters, so
1205 			 * 'parent' probably represents a PCI device. The PCI
1206 			 * core sets the maximum segment size to 64
1207 			 * KB. Increase this parameter to 2 GB.
1208 			 */
1209 			device->dev.dma_parms = parent->dma_parms;
1210 			dma_set_max_seg_size(device->dma_device, SZ_2G);
1211 		} else {
1212 			WARN_ON_ONCE(true);
1213 		}
1214 	}
1215 }
1216 
1217 /*
1218  * setup_device() allocates memory and sets up data that requires calling the
1219  * device ops, this is the only reason these actions are not done during
1220  * ib_alloc_device. It is undone by ib_dealloc_device().
1221  */
1222 static int setup_device(struct ib_device *device)
1223 {
1224 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1225 	int ret;
1226 
1227 	setup_dma_device(device);
1228 	ib_device_check_mandatory(device);
1229 
1230 	ret = setup_port_data(device);
1231 	if (ret) {
1232 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1233 		return ret;
1234 	}
1235 
1236 	memset(&device->attrs, 0, sizeof(device->attrs));
1237 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1238 	if (ret) {
1239 		dev_warn(&device->dev,
1240 			 "Couldn't query the device attributes\n");
1241 		return ret;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static void disable_device(struct ib_device *device)
1248 {
1249 	u32 cid;
1250 
1251 	WARN_ON(!refcount_read(&device->refcount));
1252 
1253 	down_write(&devices_rwsem);
1254 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1255 	up_write(&devices_rwsem);
1256 
1257 	/*
1258 	 * Remove clients in LIFO order, see assign_client_id. This could be
1259 	 * more efficient if xarray learns to reverse iterate. Since no new
1260 	 * clients can be added to this ib_device past this point we only need
1261 	 * the maximum possible client_id value here.
1262 	 */
1263 	down_read(&clients_rwsem);
1264 	cid = highest_client_id;
1265 	up_read(&clients_rwsem);
1266 	while (cid) {
1267 		cid--;
1268 		remove_client_context(device, cid);
1269 	}
1270 
1271 	/* Pairs with refcount_set in enable_device */
1272 	ib_device_put(device);
1273 	wait_for_completion(&device->unreg_completion);
1274 
1275 	/*
1276 	 * compat devices must be removed after device refcount drops to zero.
1277 	 * Otherwise init_net() may add more compatdevs after removing compat
1278 	 * devices and before device is disabled.
1279 	 */
1280 	remove_compat_devs(device);
1281 }
1282 
1283 /*
1284  * An enabled device is visible to all clients and to all the public facing
1285  * APIs that return a device pointer. This always returns with a new get, even
1286  * if it fails.
1287  */
1288 static int enable_device_and_get(struct ib_device *device)
1289 {
1290 	struct ib_client *client;
1291 	unsigned long index;
1292 	int ret = 0;
1293 
1294 	/*
1295 	 * One ref belongs to the xa and the other belongs to this
1296 	 * thread. This is needed to guard against parallel unregistration.
1297 	 */
1298 	refcount_set(&device->refcount, 2);
1299 	down_write(&devices_rwsem);
1300 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1301 
1302 	/*
1303 	 * By using downgrade_write() we ensure that no other thread can clear
1304 	 * DEVICE_REGISTERED while we are completing the client setup.
1305 	 */
1306 	downgrade_write(&devices_rwsem);
1307 
1308 	if (device->ops.enable_driver) {
1309 		ret = device->ops.enable_driver(device);
1310 		if (ret)
1311 			goto out;
1312 	}
1313 
1314 	down_read(&clients_rwsem);
1315 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1316 		ret = add_client_context(device, client);
1317 		if (ret)
1318 			break;
1319 	}
1320 	up_read(&clients_rwsem);
1321 	if (!ret)
1322 		ret = add_compat_devs(device);
1323 out:
1324 	up_read(&devices_rwsem);
1325 	return ret;
1326 }
1327 
1328 /**
1329  * ib_register_device - Register an IB device with IB core
1330  * @device: Device to register
1331  * @name: unique string device name. This may include a '%' which will
1332  * cause a unique index to be added to the passed device name.
1333  *
1334  * Low-level drivers use ib_register_device() to register their
1335  * devices with the IB core.  All registered clients will receive a
1336  * callback for each device that is added. @device must be allocated
1337  * with ib_alloc_device().
1338  *
1339  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1340  * asynchronously then the device pointer may become freed as soon as this
1341  * function returns.
1342  */
1343 int ib_register_device(struct ib_device *device, const char *name)
1344 {
1345 	int ret;
1346 
1347 	ret = assign_name(device, name);
1348 	if (ret)
1349 		return ret;
1350 
1351 	ret = setup_device(device);
1352 	if (ret)
1353 		return ret;
1354 
1355 	ret = ib_cache_setup_one(device);
1356 	if (ret) {
1357 		dev_warn(&device->dev,
1358 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1359 		return ret;
1360 	}
1361 
1362 	ib_device_register_rdmacg(device);
1363 
1364 	rdma_counter_init(device);
1365 
1366 	/*
1367 	 * Ensure that ADD uevent is not fired because it
1368 	 * is too early amd device is not initialized yet.
1369 	 */
1370 	dev_set_uevent_suppress(&device->dev, true);
1371 	ret = device_add(&device->dev);
1372 	if (ret)
1373 		goto cg_cleanup;
1374 
1375 	ret = ib_device_register_sysfs(device);
1376 	if (ret) {
1377 		dev_warn(&device->dev,
1378 			 "Couldn't register device with driver model\n");
1379 		goto dev_cleanup;
1380 	}
1381 
1382 	ret = enable_device_and_get(device);
1383 	dev_set_uevent_suppress(&device->dev, false);
1384 	/* Mark for userspace that device is ready */
1385 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1386 	if (ret) {
1387 		void (*dealloc_fn)(struct ib_device *);
1388 
1389 		/*
1390 		 * If we hit this error flow then we don't want to
1391 		 * automatically dealloc the device since the caller is
1392 		 * expected to call ib_dealloc_device() after
1393 		 * ib_register_device() fails. This is tricky due to the
1394 		 * possibility for a parallel unregistration along with this
1395 		 * error flow. Since we have a refcount here we know any
1396 		 * parallel flow is stopped in disable_device and will see the
1397 		 * NULL pointers, causing the responsibility to
1398 		 * ib_dealloc_device() to revert back to this thread.
1399 		 */
1400 		dealloc_fn = device->ops.dealloc_driver;
1401 		device->ops.dealloc_driver = NULL;
1402 		ib_device_put(device);
1403 		__ib_unregister_device(device);
1404 		device->ops.dealloc_driver = dealloc_fn;
1405 		return ret;
1406 	}
1407 	ib_device_put(device);
1408 
1409 	return 0;
1410 
1411 dev_cleanup:
1412 	device_del(&device->dev);
1413 cg_cleanup:
1414 	dev_set_uevent_suppress(&device->dev, false);
1415 	ib_device_unregister_rdmacg(device);
1416 	ib_cache_cleanup_one(device);
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL(ib_register_device);
1420 
1421 /* Callers must hold a get on the device. */
1422 static void __ib_unregister_device(struct ib_device *ib_dev)
1423 {
1424 	/*
1425 	 * We have a registration lock so that all the calls to unregister are
1426 	 * fully fenced, once any unregister returns the device is truely
1427 	 * unregistered even if multiple callers are unregistering it at the
1428 	 * same time. This also interacts with the registration flow and
1429 	 * provides sane semantics if register and unregister are racing.
1430 	 */
1431 	mutex_lock(&ib_dev->unregistration_lock);
1432 	if (!refcount_read(&ib_dev->refcount))
1433 		goto out;
1434 
1435 	disable_device(ib_dev);
1436 
1437 	/* Expedite removing unregistered pointers from the hash table */
1438 	free_netdevs(ib_dev);
1439 
1440 	ib_device_unregister_sysfs(ib_dev);
1441 	device_del(&ib_dev->dev);
1442 	ib_device_unregister_rdmacg(ib_dev);
1443 	ib_cache_cleanup_one(ib_dev);
1444 
1445 	/*
1446 	 * Drivers using the new flow may not call ib_dealloc_device except
1447 	 * in error unwind prior to registration success.
1448 	 */
1449 	if (ib_dev->ops.dealloc_driver) {
1450 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1451 		ib_dealloc_device(ib_dev);
1452 	}
1453 out:
1454 	mutex_unlock(&ib_dev->unregistration_lock);
1455 }
1456 
1457 /**
1458  * ib_unregister_device - Unregister an IB device
1459  * @ib_dev: The device to unregister
1460  *
1461  * Unregister an IB device.  All clients will receive a remove callback.
1462  *
1463  * Callers should call this routine only once, and protect against races with
1464  * registration. Typically it should only be called as part of a remove
1465  * callback in an implementation of driver core's struct device_driver and
1466  * related.
1467  *
1468  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1469  * this function.
1470  */
1471 void ib_unregister_device(struct ib_device *ib_dev)
1472 {
1473 	get_device(&ib_dev->dev);
1474 	__ib_unregister_device(ib_dev);
1475 	put_device(&ib_dev->dev);
1476 }
1477 EXPORT_SYMBOL(ib_unregister_device);
1478 
1479 /**
1480  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1481  * @ib_dev: The device to unregister
1482  *
1483  * This is the same as ib_unregister_device(), except it includes an internal
1484  * ib_device_put() that should match a 'get' obtained by the caller.
1485  *
1486  * It is safe to call this routine concurrently from multiple threads while
1487  * holding the 'get'. When the function returns the device is fully
1488  * unregistered.
1489  *
1490  * Drivers using this flow MUST use the driver_unregister callback to clean up
1491  * their resources associated with the device and dealloc it.
1492  */
1493 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1494 {
1495 	WARN_ON(!ib_dev->ops.dealloc_driver);
1496 	get_device(&ib_dev->dev);
1497 	ib_device_put(ib_dev);
1498 	__ib_unregister_device(ib_dev);
1499 	put_device(&ib_dev->dev);
1500 }
1501 EXPORT_SYMBOL(ib_unregister_device_and_put);
1502 
1503 /**
1504  * ib_unregister_driver - Unregister all IB devices for a driver
1505  * @driver_id: The driver to unregister
1506  *
1507  * This implements a fence for device unregistration. It only returns once all
1508  * devices associated with the driver_id have fully completed their
1509  * unregistration and returned from ib_unregister_device*().
1510  *
1511  * If device's are not yet unregistered it goes ahead and starts unregistering
1512  * them.
1513  *
1514  * This does not block creation of new devices with the given driver_id, that
1515  * is the responsibility of the caller.
1516  */
1517 void ib_unregister_driver(enum rdma_driver_id driver_id)
1518 {
1519 	struct ib_device *ib_dev;
1520 	unsigned long index;
1521 
1522 	down_read(&devices_rwsem);
1523 	xa_for_each (&devices, index, ib_dev) {
1524 		if (ib_dev->ops.driver_id != driver_id)
1525 			continue;
1526 
1527 		get_device(&ib_dev->dev);
1528 		up_read(&devices_rwsem);
1529 
1530 		WARN_ON(!ib_dev->ops.dealloc_driver);
1531 		__ib_unregister_device(ib_dev);
1532 
1533 		put_device(&ib_dev->dev);
1534 		down_read(&devices_rwsem);
1535 	}
1536 	up_read(&devices_rwsem);
1537 }
1538 EXPORT_SYMBOL(ib_unregister_driver);
1539 
1540 static void ib_unregister_work(struct work_struct *work)
1541 {
1542 	struct ib_device *ib_dev =
1543 		container_of(work, struct ib_device, unregistration_work);
1544 
1545 	__ib_unregister_device(ib_dev);
1546 	put_device(&ib_dev->dev);
1547 }
1548 
1549 /**
1550  * ib_unregister_device_queued - Unregister a device using a work queue
1551  * @ib_dev: The device to unregister
1552  *
1553  * This schedules an asynchronous unregistration using a WQ for the device. A
1554  * driver should use this to avoid holding locks while doing unregistration,
1555  * such as holding the RTNL lock.
1556  *
1557  * Drivers using this API must use ib_unregister_driver before module unload
1558  * to ensure that all scheduled unregistrations have completed.
1559  */
1560 void ib_unregister_device_queued(struct ib_device *ib_dev)
1561 {
1562 	WARN_ON(!refcount_read(&ib_dev->refcount));
1563 	WARN_ON(!ib_dev->ops.dealloc_driver);
1564 	get_device(&ib_dev->dev);
1565 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1566 		put_device(&ib_dev->dev);
1567 }
1568 EXPORT_SYMBOL(ib_unregister_device_queued);
1569 
1570 /*
1571  * The caller must pass in a device that has the kref held and the refcount
1572  * released. If the device is in cur_net and still registered then it is moved
1573  * into net.
1574  */
1575 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1576 				 struct net *net)
1577 {
1578 	int ret2 = -EINVAL;
1579 	int ret;
1580 
1581 	mutex_lock(&device->unregistration_lock);
1582 
1583 	/*
1584 	 * If a device not under ib_device_get() or if the unregistration_lock
1585 	 * is not held, the namespace can be changed, or it can be unregistered.
1586 	 * Check again under the lock.
1587 	 */
1588 	if (refcount_read(&device->refcount) == 0 ||
1589 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1590 		ret = -ENODEV;
1591 		goto out;
1592 	}
1593 
1594 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1595 	disable_device(device);
1596 
1597 	/*
1598 	 * At this point no one can be using the device, so it is safe to
1599 	 * change the namespace.
1600 	 */
1601 	write_pnet(&device->coredev.rdma_net, net);
1602 
1603 	down_read(&devices_rwsem);
1604 	/*
1605 	 * Currently rdma devices are system wide unique. So the device name
1606 	 * is guaranteed free in the new namespace. Publish the new namespace
1607 	 * at the sysfs level.
1608 	 */
1609 	ret = device_rename(&device->dev, dev_name(&device->dev));
1610 	up_read(&devices_rwsem);
1611 	if (ret) {
1612 		dev_warn(&device->dev,
1613 			 "%s: Couldn't rename device after namespace change\n",
1614 			 __func__);
1615 		/* Try and put things back and re-enable the device */
1616 		write_pnet(&device->coredev.rdma_net, cur_net);
1617 	}
1618 
1619 	ret2 = enable_device_and_get(device);
1620 	if (ret2) {
1621 		/*
1622 		 * This shouldn't really happen, but if it does, let the user
1623 		 * retry at later point. So don't disable the device.
1624 		 */
1625 		dev_warn(&device->dev,
1626 			 "%s: Couldn't re-enable device after namespace change\n",
1627 			 __func__);
1628 	}
1629 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1630 
1631 	ib_device_put(device);
1632 out:
1633 	mutex_unlock(&device->unregistration_lock);
1634 	if (ret)
1635 		return ret;
1636 	return ret2;
1637 }
1638 
1639 int ib_device_set_netns_put(struct sk_buff *skb,
1640 			    struct ib_device *dev, u32 ns_fd)
1641 {
1642 	struct net *net;
1643 	int ret;
1644 
1645 	net = get_net_ns_by_fd(ns_fd);
1646 	if (IS_ERR(net)) {
1647 		ret = PTR_ERR(net);
1648 		goto net_err;
1649 	}
1650 
1651 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1652 		ret = -EPERM;
1653 		goto ns_err;
1654 	}
1655 
1656 	/*
1657 	 * Currently supported only for those providers which support
1658 	 * disassociation and don't do port specific sysfs init. Once a
1659 	 * port_cleanup infrastructure is implemented, this limitation will be
1660 	 * removed.
1661 	 */
1662 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1663 	    ib_devices_shared_netns) {
1664 		ret = -EOPNOTSUPP;
1665 		goto ns_err;
1666 	}
1667 
1668 	get_device(&dev->dev);
1669 	ib_device_put(dev);
1670 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1671 	put_device(&dev->dev);
1672 
1673 	put_net(net);
1674 	return ret;
1675 
1676 ns_err:
1677 	put_net(net);
1678 net_err:
1679 	ib_device_put(dev);
1680 	return ret;
1681 }
1682 
1683 static struct pernet_operations rdma_dev_net_ops = {
1684 	.init = rdma_dev_init_net,
1685 	.exit = rdma_dev_exit_net,
1686 	.id = &rdma_dev_net_id,
1687 	.size = sizeof(struct rdma_dev_net),
1688 };
1689 
1690 static int assign_client_id(struct ib_client *client)
1691 {
1692 	int ret;
1693 
1694 	down_write(&clients_rwsem);
1695 	/*
1696 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1697 	 * achieve this we assign client_ids so they are sorted in
1698 	 * registration order.
1699 	 */
1700 	client->client_id = highest_client_id;
1701 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1702 	if (ret)
1703 		goto out;
1704 
1705 	highest_client_id++;
1706 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1707 
1708 out:
1709 	up_write(&clients_rwsem);
1710 	return ret;
1711 }
1712 
1713 static void remove_client_id(struct ib_client *client)
1714 {
1715 	down_write(&clients_rwsem);
1716 	xa_erase(&clients, client->client_id);
1717 	for (; highest_client_id; highest_client_id--)
1718 		if (xa_load(&clients, highest_client_id - 1))
1719 			break;
1720 	up_write(&clients_rwsem);
1721 }
1722 
1723 /**
1724  * ib_register_client - Register an IB client
1725  * @client:Client to register
1726  *
1727  * Upper level users of the IB drivers can use ib_register_client() to
1728  * register callbacks for IB device addition and removal.  When an IB
1729  * device is added, each registered client's add method will be called
1730  * (in the order the clients were registered), and when a device is
1731  * removed, each client's remove method will be called (in the reverse
1732  * order that clients were registered).  In addition, when
1733  * ib_register_client() is called, the client will receive an add
1734  * callback for all devices already registered.
1735  */
1736 int ib_register_client(struct ib_client *client)
1737 {
1738 	struct ib_device *device;
1739 	unsigned long index;
1740 	int ret;
1741 
1742 	refcount_set(&client->uses, 1);
1743 	init_completion(&client->uses_zero);
1744 	ret = assign_client_id(client);
1745 	if (ret)
1746 		return ret;
1747 
1748 	down_read(&devices_rwsem);
1749 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1750 		ret = add_client_context(device, client);
1751 		if (ret) {
1752 			up_read(&devices_rwsem);
1753 			ib_unregister_client(client);
1754 			return ret;
1755 		}
1756 	}
1757 	up_read(&devices_rwsem);
1758 	return 0;
1759 }
1760 EXPORT_SYMBOL(ib_register_client);
1761 
1762 /**
1763  * ib_unregister_client - Unregister an IB client
1764  * @client:Client to unregister
1765  *
1766  * Upper level users use ib_unregister_client() to remove their client
1767  * registration.  When ib_unregister_client() is called, the client
1768  * will receive a remove callback for each IB device still registered.
1769  *
1770  * This is a full fence, once it returns no client callbacks will be called,
1771  * or are running in another thread.
1772  */
1773 void ib_unregister_client(struct ib_client *client)
1774 {
1775 	struct ib_device *device;
1776 	unsigned long index;
1777 
1778 	down_write(&clients_rwsem);
1779 	ib_client_put(client);
1780 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1781 	up_write(&clients_rwsem);
1782 
1783 	/* We do not want to have locks while calling client->remove() */
1784 	rcu_read_lock();
1785 	xa_for_each (&devices, index, device) {
1786 		if (!ib_device_try_get(device))
1787 			continue;
1788 		rcu_read_unlock();
1789 
1790 		remove_client_context(device, client->client_id);
1791 
1792 		ib_device_put(device);
1793 		rcu_read_lock();
1794 	}
1795 	rcu_read_unlock();
1796 
1797 	/*
1798 	 * remove_client_context() is not a fence, it can return even though a
1799 	 * removal is ongoing. Wait until all removals are completed.
1800 	 */
1801 	wait_for_completion(&client->uses_zero);
1802 	remove_client_id(client);
1803 }
1804 EXPORT_SYMBOL(ib_unregister_client);
1805 
1806 static int __ib_get_global_client_nl_info(const char *client_name,
1807 					  struct ib_client_nl_info *res)
1808 {
1809 	struct ib_client *client;
1810 	unsigned long index;
1811 	int ret = -ENOENT;
1812 
1813 	down_read(&clients_rwsem);
1814 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1815 		if (strcmp(client->name, client_name) != 0)
1816 			continue;
1817 		if (!client->get_global_nl_info) {
1818 			ret = -EOPNOTSUPP;
1819 			break;
1820 		}
1821 		ret = client->get_global_nl_info(res);
1822 		if (WARN_ON(ret == -ENOENT))
1823 			ret = -EINVAL;
1824 		if (!ret && res->cdev)
1825 			get_device(res->cdev);
1826 		break;
1827 	}
1828 	up_read(&clients_rwsem);
1829 	return ret;
1830 }
1831 
1832 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1833 				   const char *client_name,
1834 				   struct ib_client_nl_info *res)
1835 {
1836 	unsigned long index;
1837 	void *client_data;
1838 	int ret = -ENOENT;
1839 
1840 	down_read(&ibdev->client_data_rwsem);
1841 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1842 			     CLIENT_DATA_REGISTERED) {
1843 		struct ib_client *client = xa_load(&clients, index);
1844 
1845 		if (!client || strcmp(client->name, client_name) != 0)
1846 			continue;
1847 		if (!client->get_nl_info) {
1848 			ret = -EOPNOTSUPP;
1849 			break;
1850 		}
1851 		ret = client->get_nl_info(ibdev, client_data, res);
1852 		if (WARN_ON(ret == -ENOENT))
1853 			ret = -EINVAL;
1854 
1855 		/*
1856 		 * The cdev is guaranteed valid as long as we are inside the
1857 		 * client_data_rwsem as remove_one can't be called. Keep it
1858 		 * valid for the caller.
1859 		 */
1860 		if (!ret && res->cdev)
1861 			get_device(res->cdev);
1862 		break;
1863 	}
1864 	up_read(&ibdev->client_data_rwsem);
1865 
1866 	return ret;
1867 }
1868 
1869 /**
1870  * ib_get_client_nl_info - Fetch the nl_info from a client
1871  * @device - IB device
1872  * @client_name - Name of the client
1873  * @res - Result of the query
1874  */
1875 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1876 			  struct ib_client_nl_info *res)
1877 {
1878 	int ret;
1879 
1880 	if (ibdev)
1881 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1882 	else
1883 		ret = __ib_get_global_client_nl_info(client_name, res);
1884 #ifdef CONFIG_MODULES
1885 	if (ret == -ENOENT) {
1886 		request_module("rdma-client-%s", client_name);
1887 		if (ibdev)
1888 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1889 		else
1890 			ret = __ib_get_global_client_nl_info(client_name, res);
1891 	}
1892 #endif
1893 	if (ret) {
1894 		if (ret == -ENOENT)
1895 			return -EOPNOTSUPP;
1896 		return ret;
1897 	}
1898 
1899 	if (WARN_ON(!res->cdev))
1900 		return -EINVAL;
1901 	return 0;
1902 }
1903 
1904 /**
1905  * ib_set_client_data - Set IB client context
1906  * @device:Device to set context for
1907  * @client:Client to set context for
1908  * @data:Context to set
1909  *
1910  * ib_set_client_data() sets client context data that can be retrieved with
1911  * ib_get_client_data(). This can only be called while the client is
1912  * registered to the device, once the ib_client remove() callback returns this
1913  * cannot be called.
1914  */
1915 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1916 			void *data)
1917 {
1918 	void *rc;
1919 
1920 	if (WARN_ON(IS_ERR(data)))
1921 		data = NULL;
1922 
1923 	rc = xa_store(&device->client_data, client->client_id, data,
1924 		      GFP_KERNEL);
1925 	WARN_ON(xa_is_err(rc));
1926 }
1927 EXPORT_SYMBOL(ib_set_client_data);
1928 
1929 /**
1930  * ib_register_event_handler - Register an IB event handler
1931  * @event_handler:Handler to register
1932  *
1933  * ib_register_event_handler() registers an event handler that will be
1934  * called back when asynchronous IB events occur (as defined in
1935  * chapter 11 of the InfiniBand Architecture Specification). This
1936  * callback occurs in workqueue context.
1937  */
1938 void ib_register_event_handler(struct ib_event_handler *event_handler)
1939 {
1940 	down_write(&event_handler->device->event_handler_rwsem);
1941 	list_add_tail(&event_handler->list,
1942 		      &event_handler->device->event_handler_list);
1943 	up_write(&event_handler->device->event_handler_rwsem);
1944 }
1945 EXPORT_SYMBOL(ib_register_event_handler);
1946 
1947 /**
1948  * ib_unregister_event_handler - Unregister an event handler
1949  * @event_handler:Handler to unregister
1950  *
1951  * Unregister an event handler registered with
1952  * ib_register_event_handler().
1953  */
1954 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1955 {
1956 	down_write(&event_handler->device->event_handler_rwsem);
1957 	list_del(&event_handler->list);
1958 	up_write(&event_handler->device->event_handler_rwsem);
1959 }
1960 EXPORT_SYMBOL(ib_unregister_event_handler);
1961 
1962 void ib_dispatch_event_clients(struct ib_event *event)
1963 {
1964 	struct ib_event_handler *handler;
1965 
1966 	down_read(&event->device->event_handler_rwsem);
1967 
1968 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1969 		handler->handler(handler, event);
1970 
1971 	up_read(&event->device->event_handler_rwsem);
1972 }
1973 
1974 static int iw_query_port(struct ib_device *device,
1975 			   u8 port_num,
1976 			   struct ib_port_attr *port_attr)
1977 {
1978 	struct in_device *inetdev;
1979 	struct net_device *netdev;
1980 
1981 	memset(port_attr, 0, sizeof(*port_attr));
1982 
1983 	netdev = ib_device_get_netdev(device, port_num);
1984 	if (!netdev)
1985 		return -ENODEV;
1986 
1987 	port_attr->max_mtu = IB_MTU_4096;
1988 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
1989 
1990 	if (!netif_carrier_ok(netdev)) {
1991 		port_attr->state = IB_PORT_DOWN;
1992 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
1993 	} else {
1994 		rcu_read_lock();
1995 		inetdev = __in_dev_get_rcu(netdev);
1996 
1997 		if (inetdev && inetdev->ifa_list) {
1998 			port_attr->state = IB_PORT_ACTIVE;
1999 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2000 		} else {
2001 			port_attr->state = IB_PORT_INIT;
2002 			port_attr->phys_state =
2003 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2004 		}
2005 
2006 		rcu_read_unlock();
2007 	}
2008 
2009 	dev_put(netdev);
2010 	return device->ops.query_port(device, port_num, port_attr);
2011 }
2012 
2013 static int __ib_query_port(struct ib_device *device,
2014 			   u8 port_num,
2015 			   struct ib_port_attr *port_attr)
2016 {
2017 	union ib_gid gid = {};
2018 	int err;
2019 
2020 	memset(port_attr, 0, sizeof(*port_attr));
2021 
2022 	err = device->ops.query_port(device, port_num, port_attr);
2023 	if (err || port_attr->subnet_prefix)
2024 		return err;
2025 
2026 	if (rdma_port_get_link_layer(device, port_num) !=
2027 	    IB_LINK_LAYER_INFINIBAND)
2028 		return 0;
2029 
2030 	err = device->ops.query_gid(device, port_num, 0, &gid);
2031 	if (err)
2032 		return err;
2033 
2034 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2035 	return 0;
2036 }
2037 
2038 /**
2039  * ib_query_port - Query IB port attributes
2040  * @device:Device to query
2041  * @port_num:Port number to query
2042  * @port_attr:Port attributes
2043  *
2044  * ib_query_port() returns the attributes of a port through the
2045  * @port_attr pointer.
2046  */
2047 int ib_query_port(struct ib_device *device,
2048 		  u8 port_num,
2049 		  struct ib_port_attr *port_attr)
2050 {
2051 	if (!rdma_is_port_valid(device, port_num))
2052 		return -EINVAL;
2053 
2054 	if (rdma_protocol_iwarp(device, port_num))
2055 		return iw_query_port(device, port_num, port_attr);
2056 	else
2057 		return __ib_query_port(device, port_num, port_attr);
2058 }
2059 EXPORT_SYMBOL(ib_query_port);
2060 
2061 static void add_ndev_hash(struct ib_port_data *pdata)
2062 {
2063 	unsigned long flags;
2064 
2065 	might_sleep();
2066 
2067 	spin_lock_irqsave(&ndev_hash_lock, flags);
2068 	if (hash_hashed(&pdata->ndev_hash_link)) {
2069 		hash_del_rcu(&pdata->ndev_hash_link);
2070 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2071 		/*
2072 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2073 		 * grace period
2074 		 */
2075 		synchronize_rcu();
2076 		spin_lock_irqsave(&ndev_hash_lock, flags);
2077 	}
2078 	if (pdata->netdev)
2079 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2080 			     (uintptr_t)pdata->netdev);
2081 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2082 }
2083 
2084 /**
2085  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2086  * @ib_dev: Device to modify
2087  * @ndev: net_device to affiliate, may be NULL
2088  * @port: IB port the net_device is connected to
2089  *
2090  * Drivers should use this to link the ib_device to a netdev so the netdev
2091  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2092  * affiliated with any port.
2093  *
2094  * The caller must ensure that the given ndev is not unregistered or
2095  * unregistering, and that either the ib_device is unregistered or
2096  * ib_device_set_netdev() is called with NULL when the ndev sends a
2097  * NETDEV_UNREGISTER event.
2098  */
2099 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2100 			 unsigned int port)
2101 {
2102 	struct net_device *old_ndev;
2103 	struct ib_port_data *pdata;
2104 	unsigned long flags;
2105 	int ret;
2106 
2107 	/*
2108 	 * Drivers wish to call this before ib_register_driver, so we have to
2109 	 * setup the port data early.
2110 	 */
2111 	ret = alloc_port_data(ib_dev);
2112 	if (ret)
2113 		return ret;
2114 
2115 	if (!rdma_is_port_valid(ib_dev, port))
2116 		return -EINVAL;
2117 
2118 	pdata = &ib_dev->port_data[port];
2119 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2120 	old_ndev = rcu_dereference_protected(
2121 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2122 	if (old_ndev == ndev) {
2123 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2124 		return 0;
2125 	}
2126 
2127 	if (ndev)
2128 		dev_hold(ndev);
2129 	rcu_assign_pointer(pdata->netdev, ndev);
2130 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2131 
2132 	add_ndev_hash(pdata);
2133 	if (old_ndev)
2134 		dev_put(old_ndev);
2135 
2136 	return 0;
2137 }
2138 EXPORT_SYMBOL(ib_device_set_netdev);
2139 
2140 static void free_netdevs(struct ib_device *ib_dev)
2141 {
2142 	unsigned long flags;
2143 	unsigned int port;
2144 
2145 	if (!ib_dev->port_data)
2146 		return;
2147 
2148 	rdma_for_each_port (ib_dev, port) {
2149 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2150 		struct net_device *ndev;
2151 
2152 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2153 		ndev = rcu_dereference_protected(
2154 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2155 		if (ndev) {
2156 			spin_lock(&ndev_hash_lock);
2157 			hash_del_rcu(&pdata->ndev_hash_link);
2158 			spin_unlock(&ndev_hash_lock);
2159 
2160 			/*
2161 			 * If this is the last dev_put there is still a
2162 			 * synchronize_rcu before the netdev is kfreed, so we
2163 			 * can continue to rely on unlocked pointer
2164 			 * comparisons after the put
2165 			 */
2166 			rcu_assign_pointer(pdata->netdev, NULL);
2167 			dev_put(ndev);
2168 		}
2169 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2170 	}
2171 }
2172 
2173 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2174 					unsigned int port)
2175 {
2176 	struct ib_port_data *pdata;
2177 	struct net_device *res;
2178 
2179 	if (!rdma_is_port_valid(ib_dev, port))
2180 		return NULL;
2181 
2182 	pdata = &ib_dev->port_data[port];
2183 
2184 	/*
2185 	 * New drivers should use ib_device_set_netdev() not the legacy
2186 	 * get_netdev().
2187 	 */
2188 	if (ib_dev->ops.get_netdev)
2189 		res = ib_dev->ops.get_netdev(ib_dev, port);
2190 	else {
2191 		spin_lock(&pdata->netdev_lock);
2192 		res = rcu_dereference_protected(
2193 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2194 		if (res)
2195 			dev_hold(res);
2196 		spin_unlock(&pdata->netdev_lock);
2197 	}
2198 
2199 	/*
2200 	 * If we are starting to unregister expedite things by preventing
2201 	 * propagation of an unregistering netdev.
2202 	 */
2203 	if (res && res->reg_state != NETREG_REGISTERED) {
2204 		dev_put(res);
2205 		return NULL;
2206 	}
2207 
2208 	return res;
2209 }
2210 
2211 /**
2212  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2213  * @ndev: netdev to locate
2214  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2215  *
2216  * Find and hold an ib_device that is associated with a netdev via
2217  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2218  * returned pointer.
2219  */
2220 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2221 					  enum rdma_driver_id driver_id)
2222 {
2223 	struct ib_device *res = NULL;
2224 	struct ib_port_data *cur;
2225 
2226 	rcu_read_lock();
2227 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2228 				    (uintptr_t)ndev) {
2229 		if (rcu_access_pointer(cur->netdev) == ndev &&
2230 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2231 		     cur->ib_dev->ops.driver_id == driver_id) &&
2232 		    ib_device_try_get(cur->ib_dev)) {
2233 			res = cur->ib_dev;
2234 			break;
2235 		}
2236 	}
2237 	rcu_read_unlock();
2238 
2239 	return res;
2240 }
2241 EXPORT_SYMBOL(ib_device_get_by_netdev);
2242 
2243 /**
2244  * ib_enum_roce_netdev - enumerate all RoCE ports
2245  * @ib_dev : IB device we want to query
2246  * @filter: Should we call the callback?
2247  * @filter_cookie: Cookie passed to filter
2248  * @cb: Callback to call for each found RoCE ports
2249  * @cookie: Cookie passed back to the callback
2250  *
2251  * Enumerates all of the physical RoCE ports of ib_dev
2252  * which are related to netdevice and calls callback() on each
2253  * device for which filter() function returns non zero.
2254  */
2255 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2256 			 roce_netdev_filter filter,
2257 			 void *filter_cookie,
2258 			 roce_netdev_callback cb,
2259 			 void *cookie)
2260 {
2261 	unsigned int port;
2262 
2263 	rdma_for_each_port (ib_dev, port)
2264 		if (rdma_protocol_roce(ib_dev, port)) {
2265 			struct net_device *idev =
2266 				ib_device_get_netdev(ib_dev, port);
2267 
2268 			if (filter(ib_dev, port, idev, filter_cookie))
2269 				cb(ib_dev, port, idev, cookie);
2270 
2271 			if (idev)
2272 				dev_put(idev);
2273 		}
2274 }
2275 
2276 /**
2277  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2278  * @filter: Should we call the callback?
2279  * @filter_cookie: Cookie passed to filter
2280  * @cb: Callback to call for each found RoCE ports
2281  * @cookie: Cookie passed back to the callback
2282  *
2283  * Enumerates all RoCE devices' physical ports which are related
2284  * to netdevices and calls callback() on each device for which
2285  * filter() function returns non zero.
2286  */
2287 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2288 			      void *filter_cookie,
2289 			      roce_netdev_callback cb,
2290 			      void *cookie)
2291 {
2292 	struct ib_device *dev;
2293 	unsigned long index;
2294 
2295 	down_read(&devices_rwsem);
2296 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2297 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2298 	up_read(&devices_rwsem);
2299 }
2300 
2301 /**
2302  * ib_enum_all_devs - enumerate all ib_devices
2303  * @cb: Callback to call for each found ib_device
2304  *
2305  * Enumerates all ib_devices and calls callback() on each device.
2306  */
2307 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2308 		     struct netlink_callback *cb)
2309 {
2310 	unsigned long index;
2311 	struct ib_device *dev;
2312 	unsigned int idx = 0;
2313 	int ret = 0;
2314 
2315 	down_read(&devices_rwsem);
2316 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2317 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2318 			continue;
2319 
2320 		ret = nldev_cb(dev, skb, cb, idx);
2321 		if (ret)
2322 			break;
2323 		idx++;
2324 	}
2325 	up_read(&devices_rwsem);
2326 	return ret;
2327 }
2328 
2329 /**
2330  * ib_query_pkey - Get P_Key table entry
2331  * @device:Device to query
2332  * @port_num:Port number to query
2333  * @index:P_Key table index to query
2334  * @pkey:Returned P_Key
2335  *
2336  * ib_query_pkey() fetches the specified P_Key table entry.
2337  */
2338 int ib_query_pkey(struct ib_device *device,
2339 		  u8 port_num, u16 index, u16 *pkey)
2340 {
2341 	if (!rdma_is_port_valid(device, port_num))
2342 		return -EINVAL;
2343 
2344 	return device->ops.query_pkey(device, port_num, index, pkey);
2345 }
2346 EXPORT_SYMBOL(ib_query_pkey);
2347 
2348 /**
2349  * ib_modify_device - Change IB device attributes
2350  * @device:Device to modify
2351  * @device_modify_mask:Mask of attributes to change
2352  * @device_modify:New attribute values
2353  *
2354  * ib_modify_device() changes a device's attributes as specified by
2355  * the @device_modify_mask and @device_modify structure.
2356  */
2357 int ib_modify_device(struct ib_device *device,
2358 		     int device_modify_mask,
2359 		     struct ib_device_modify *device_modify)
2360 {
2361 	if (!device->ops.modify_device)
2362 		return -EOPNOTSUPP;
2363 
2364 	return device->ops.modify_device(device, device_modify_mask,
2365 					 device_modify);
2366 }
2367 EXPORT_SYMBOL(ib_modify_device);
2368 
2369 /**
2370  * ib_modify_port - Modifies the attributes for the specified port.
2371  * @device: The device to modify.
2372  * @port_num: The number of the port to modify.
2373  * @port_modify_mask: Mask used to specify which attributes of the port
2374  *   to change.
2375  * @port_modify: New attribute values for the port.
2376  *
2377  * ib_modify_port() changes a port's attributes as specified by the
2378  * @port_modify_mask and @port_modify structure.
2379  */
2380 int ib_modify_port(struct ib_device *device,
2381 		   u8 port_num, int port_modify_mask,
2382 		   struct ib_port_modify *port_modify)
2383 {
2384 	int rc;
2385 
2386 	if (!rdma_is_port_valid(device, port_num))
2387 		return -EINVAL;
2388 
2389 	if (device->ops.modify_port)
2390 		rc = device->ops.modify_port(device, port_num,
2391 					     port_modify_mask,
2392 					     port_modify);
2393 	else if (rdma_protocol_roce(device, port_num) &&
2394 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2395 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2396 		rc = 0;
2397 	else
2398 		rc = -EOPNOTSUPP;
2399 	return rc;
2400 }
2401 EXPORT_SYMBOL(ib_modify_port);
2402 
2403 /**
2404  * ib_find_gid - Returns the port number and GID table index where
2405  *   a specified GID value occurs. Its searches only for IB link layer.
2406  * @device: The device to query.
2407  * @gid: The GID value to search for.
2408  * @port_num: The port number of the device where the GID value was found.
2409  * @index: The index into the GID table where the GID was found.  This
2410  *   parameter may be NULL.
2411  */
2412 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2413 		u8 *port_num, u16 *index)
2414 {
2415 	union ib_gid tmp_gid;
2416 	unsigned int port;
2417 	int ret, i;
2418 
2419 	rdma_for_each_port (device, port) {
2420 		if (!rdma_protocol_ib(device, port))
2421 			continue;
2422 
2423 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2424 		     ++i) {
2425 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2426 			if (ret)
2427 				return ret;
2428 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2429 				*port_num = port;
2430 				if (index)
2431 					*index = i;
2432 				return 0;
2433 			}
2434 		}
2435 	}
2436 
2437 	return -ENOENT;
2438 }
2439 EXPORT_SYMBOL(ib_find_gid);
2440 
2441 /**
2442  * ib_find_pkey - Returns the PKey table index where a specified
2443  *   PKey value occurs.
2444  * @device: The device to query.
2445  * @port_num: The port number of the device to search for the PKey.
2446  * @pkey: The PKey value to search for.
2447  * @index: The index into the PKey table where the PKey was found.
2448  */
2449 int ib_find_pkey(struct ib_device *device,
2450 		 u8 port_num, u16 pkey, u16 *index)
2451 {
2452 	int ret, i;
2453 	u16 tmp_pkey;
2454 	int partial_ix = -1;
2455 
2456 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2457 	     ++i) {
2458 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2459 		if (ret)
2460 			return ret;
2461 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2462 			/* if there is full-member pkey take it.*/
2463 			if (tmp_pkey & 0x8000) {
2464 				*index = i;
2465 				return 0;
2466 			}
2467 			if (partial_ix < 0)
2468 				partial_ix = i;
2469 		}
2470 	}
2471 
2472 	/*no full-member, if exists take the limited*/
2473 	if (partial_ix >= 0) {
2474 		*index = partial_ix;
2475 		return 0;
2476 	}
2477 	return -ENOENT;
2478 }
2479 EXPORT_SYMBOL(ib_find_pkey);
2480 
2481 /**
2482  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2483  * for a received CM request
2484  * @dev:	An RDMA device on which the request has been received.
2485  * @port:	Port number on the RDMA device.
2486  * @pkey:	The Pkey the request came on.
2487  * @gid:	A GID that the net_dev uses to communicate.
2488  * @addr:	Contains the IP address that the request specified as its
2489  *		destination.
2490  *
2491  */
2492 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2493 					    u8 port,
2494 					    u16 pkey,
2495 					    const union ib_gid *gid,
2496 					    const struct sockaddr *addr)
2497 {
2498 	struct net_device *net_dev = NULL;
2499 	unsigned long index;
2500 	void *client_data;
2501 
2502 	if (!rdma_protocol_ib(dev, port))
2503 		return NULL;
2504 
2505 	/*
2506 	 * Holding the read side guarantees that the client will not become
2507 	 * unregistered while we are calling get_net_dev_by_params()
2508 	 */
2509 	down_read(&dev->client_data_rwsem);
2510 	xan_for_each_marked (&dev->client_data, index, client_data,
2511 			     CLIENT_DATA_REGISTERED) {
2512 		struct ib_client *client = xa_load(&clients, index);
2513 
2514 		if (!client || !client->get_net_dev_by_params)
2515 			continue;
2516 
2517 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2518 							addr, client_data);
2519 		if (net_dev)
2520 			break;
2521 	}
2522 	up_read(&dev->client_data_rwsem);
2523 
2524 	return net_dev;
2525 }
2526 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2527 
2528 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2529 {
2530 	struct ib_device_ops *dev_ops = &dev->ops;
2531 #define SET_DEVICE_OP(ptr, name)                                               \
2532 	do {                                                                   \
2533 		if (ops->name)                                                 \
2534 			if (!((ptr)->name))				       \
2535 				(ptr)->name = ops->name;                       \
2536 	} while (0)
2537 
2538 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2539 
2540 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2541 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2542 			dev_ops->driver_id != ops->driver_id);
2543 		dev_ops->driver_id = ops->driver_id;
2544 	}
2545 	if (ops->owner) {
2546 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2547 		dev_ops->owner = ops->owner;
2548 	}
2549 	if (ops->uverbs_abi_ver)
2550 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2551 
2552 	dev_ops->uverbs_no_driver_id_binding |=
2553 		ops->uverbs_no_driver_id_binding;
2554 
2555 	SET_DEVICE_OP(dev_ops, add_gid);
2556 	SET_DEVICE_OP(dev_ops, advise_mr);
2557 	SET_DEVICE_OP(dev_ops, alloc_dm);
2558 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2559 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2560 	SET_DEVICE_OP(dev_ops, alloc_mr);
2561 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2562 	SET_DEVICE_OP(dev_ops, alloc_mw);
2563 	SET_DEVICE_OP(dev_ops, alloc_pd);
2564 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2565 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2566 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2567 	SET_DEVICE_OP(dev_ops, attach_mcast);
2568 	SET_DEVICE_OP(dev_ops, check_mr_status);
2569 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2570 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2571 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2572 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2573 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2574 	SET_DEVICE_OP(dev_ops, create_ah);
2575 	SET_DEVICE_OP(dev_ops, create_counters);
2576 	SET_DEVICE_OP(dev_ops, create_cq);
2577 	SET_DEVICE_OP(dev_ops, create_flow);
2578 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2579 	SET_DEVICE_OP(dev_ops, create_qp);
2580 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2581 	SET_DEVICE_OP(dev_ops, create_srq);
2582 	SET_DEVICE_OP(dev_ops, create_wq);
2583 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2584 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2585 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2586 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2587 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2588 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2589 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2590 	SET_DEVICE_OP(dev_ops, del_gid);
2591 	SET_DEVICE_OP(dev_ops, dereg_mr);
2592 	SET_DEVICE_OP(dev_ops, destroy_ah);
2593 	SET_DEVICE_OP(dev_ops, destroy_counters);
2594 	SET_DEVICE_OP(dev_ops, destroy_cq);
2595 	SET_DEVICE_OP(dev_ops, destroy_flow);
2596 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2597 	SET_DEVICE_OP(dev_ops, destroy_qp);
2598 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2599 	SET_DEVICE_OP(dev_ops, destroy_srq);
2600 	SET_DEVICE_OP(dev_ops, destroy_wq);
2601 	SET_DEVICE_OP(dev_ops, detach_mcast);
2602 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2603 	SET_DEVICE_OP(dev_ops, drain_rq);
2604 	SET_DEVICE_OP(dev_ops, drain_sq);
2605 	SET_DEVICE_OP(dev_ops, enable_driver);
2606 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2607 	SET_DEVICE_OP(dev_ops, fill_stat_entry);
2608 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2609 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2610 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2611 	SET_DEVICE_OP(dev_ops, get_link_layer);
2612 	SET_DEVICE_OP(dev_ops, get_netdev);
2613 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2614 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2615 	SET_DEVICE_OP(dev_ops, get_vf_config);
2616 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2617 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2618 	SET_DEVICE_OP(dev_ops, init_port);
2619 	SET_DEVICE_OP(dev_ops, iw_accept);
2620 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2621 	SET_DEVICE_OP(dev_ops, iw_connect);
2622 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2623 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2624 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2625 	SET_DEVICE_OP(dev_ops, iw_reject);
2626 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2627 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2628 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2629 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2630 	SET_DEVICE_OP(dev_ops, mmap);
2631 	SET_DEVICE_OP(dev_ops, mmap_free);
2632 	SET_DEVICE_OP(dev_ops, modify_ah);
2633 	SET_DEVICE_OP(dev_ops, modify_cq);
2634 	SET_DEVICE_OP(dev_ops, modify_device);
2635 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2636 	SET_DEVICE_OP(dev_ops, modify_port);
2637 	SET_DEVICE_OP(dev_ops, modify_qp);
2638 	SET_DEVICE_OP(dev_ops, modify_srq);
2639 	SET_DEVICE_OP(dev_ops, modify_wq);
2640 	SET_DEVICE_OP(dev_ops, peek_cq);
2641 	SET_DEVICE_OP(dev_ops, poll_cq);
2642 	SET_DEVICE_OP(dev_ops, post_recv);
2643 	SET_DEVICE_OP(dev_ops, post_send);
2644 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2645 	SET_DEVICE_OP(dev_ops, process_mad);
2646 	SET_DEVICE_OP(dev_ops, query_ah);
2647 	SET_DEVICE_OP(dev_ops, query_device);
2648 	SET_DEVICE_OP(dev_ops, query_gid);
2649 	SET_DEVICE_OP(dev_ops, query_pkey);
2650 	SET_DEVICE_OP(dev_ops, query_port);
2651 	SET_DEVICE_OP(dev_ops, query_qp);
2652 	SET_DEVICE_OP(dev_ops, query_srq);
2653 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2654 	SET_DEVICE_OP(dev_ops, read_counters);
2655 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2656 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2657 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2658 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2659 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2660 	SET_DEVICE_OP(dev_ops, resize_cq);
2661 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2662 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2663 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2664 
2665 	SET_OBJ_SIZE(dev_ops, ib_ah);
2666 	SET_OBJ_SIZE(dev_ops, ib_cq);
2667 	SET_OBJ_SIZE(dev_ops, ib_pd);
2668 	SET_OBJ_SIZE(dev_ops, ib_srq);
2669 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2670 }
2671 EXPORT_SYMBOL(ib_set_device_ops);
2672 
2673 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2674 	[RDMA_NL_LS_OP_RESOLVE] = {
2675 		.doit = ib_nl_handle_resolve_resp,
2676 		.flags = RDMA_NL_ADMIN_PERM,
2677 	},
2678 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2679 		.doit = ib_nl_handle_set_timeout,
2680 		.flags = RDMA_NL_ADMIN_PERM,
2681 	},
2682 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2683 		.doit = ib_nl_handle_ip_res_resp,
2684 		.flags = RDMA_NL_ADMIN_PERM,
2685 	},
2686 };
2687 
2688 static int __init ib_core_init(void)
2689 {
2690 	int ret;
2691 
2692 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2693 	if (!ib_wq)
2694 		return -ENOMEM;
2695 
2696 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2697 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2698 	if (!ib_comp_wq) {
2699 		ret = -ENOMEM;
2700 		goto err;
2701 	}
2702 
2703 	ib_comp_unbound_wq =
2704 		alloc_workqueue("ib-comp-unb-wq",
2705 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2706 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2707 	if (!ib_comp_unbound_wq) {
2708 		ret = -ENOMEM;
2709 		goto err_comp;
2710 	}
2711 
2712 	ret = class_register(&ib_class);
2713 	if (ret) {
2714 		pr_warn("Couldn't create InfiniBand device class\n");
2715 		goto err_comp_unbound;
2716 	}
2717 
2718 	rdma_nl_init();
2719 
2720 	ret = addr_init();
2721 	if (ret) {
2722 		pr_warn("Could't init IB address resolution\n");
2723 		goto err_ibnl;
2724 	}
2725 
2726 	ret = ib_mad_init();
2727 	if (ret) {
2728 		pr_warn("Couldn't init IB MAD\n");
2729 		goto err_addr;
2730 	}
2731 
2732 	ret = ib_sa_init();
2733 	if (ret) {
2734 		pr_warn("Couldn't init SA\n");
2735 		goto err_mad;
2736 	}
2737 
2738 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2739 	if (ret) {
2740 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2741 		goto err_sa;
2742 	}
2743 
2744 	ret = register_pernet_device(&rdma_dev_net_ops);
2745 	if (ret) {
2746 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2747 		goto err_compat;
2748 	}
2749 
2750 	nldev_init();
2751 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2752 	roce_gid_mgmt_init();
2753 
2754 	return 0;
2755 
2756 err_compat:
2757 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2758 err_sa:
2759 	ib_sa_cleanup();
2760 err_mad:
2761 	ib_mad_cleanup();
2762 err_addr:
2763 	addr_cleanup();
2764 err_ibnl:
2765 	class_unregister(&ib_class);
2766 err_comp_unbound:
2767 	destroy_workqueue(ib_comp_unbound_wq);
2768 err_comp:
2769 	destroy_workqueue(ib_comp_wq);
2770 err:
2771 	destroy_workqueue(ib_wq);
2772 	return ret;
2773 }
2774 
2775 static void __exit ib_core_cleanup(void)
2776 {
2777 	roce_gid_mgmt_cleanup();
2778 	nldev_exit();
2779 	rdma_nl_unregister(RDMA_NL_LS);
2780 	unregister_pernet_device(&rdma_dev_net_ops);
2781 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2782 	ib_sa_cleanup();
2783 	ib_mad_cleanup();
2784 	addr_cleanup();
2785 	rdma_nl_exit();
2786 	class_unregister(&ib_class);
2787 	destroy_workqueue(ib_comp_unbound_wq);
2788 	destroy_workqueue(ib_comp_wq);
2789 	/* Make sure that any pending umem accounting work is done. */
2790 	destroy_workqueue(ib_wq);
2791 	flush_workqueue(system_unbound_wq);
2792 	WARN_ON(!xa_empty(&clients));
2793 	WARN_ON(!xa_empty(&devices));
2794 }
2795 
2796 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2797 
2798 /* ib core relies on netdev stack to first register net_ns_type_operations
2799  * ns kobject type before ib_core initialization.
2800  */
2801 fs_initcall(ib_core_init);
2802 module_exit(ib_core_cleanup);
2803