1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 62 /* 63 * Each of the three rwsem locks (devices, clients, client_data) protects the 64 * xarray of the same name. Specifically it allows the caller to assert that 65 * the MARK will/will not be changing under the lock, and for devices and 66 * clients, that the value in the xarray is still a valid pointer. Change of 67 * the MARK is linked to the object state, so holding the lock and testing the 68 * MARK also asserts that the contained object is in a certain state. 69 * 70 * This is used to build a two stage register/unregister flow where objects 71 * can continue to be in the xarray even though they are still in progress to 72 * register/unregister. 73 * 74 * The xarray itself provides additional locking, and restartable iteration, 75 * which is also relied on. 76 * 77 * Locks should not be nested, with the exception of client_data, which is 78 * allowed to nest under the read side of the other two locks. 79 * 80 * The devices_rwsem also protects the device name list, any change or 81 * assignment of device name must also hold the write side to guarantee unique 82 * names. 83 */ 84 85 /* 86 * devices contains devices that have had their names assigned. The 87 * devices may not be registered. Users that care about the registration 88 * status need to call ib_device_try_get() on the device to ensure it is 89 * registered, and keep it registered, for the required duration. 90 * 91 */ 92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 93 static DECLARE_RWSEM(devices_rwsem); 94 #define DEVICE_REGISTERED XA_MARK_1 95 96 static u32 highest_client_id; 97 #define CLIENT_REGISTERED XA_MARK_1 98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 99 static DECLARE_RWSEM(clients_rwsem); 100 101 static void ib_client_put(struct ib_client *client) 102 { 103 if (refcount_dec_and_test(&client->uses)) 104 complete(&client->uses_zero); 105 } 106 107 /* 108 * If client_data is registered then the corresponding client must also still 109 * be registered. 110 */ 111 #define CLIENT_DATA_REGISTERED XA_MARK_1 112 113 unsigned int rdma_dev_net_id; 114 115 /* 116 * A list of net namespaces is maintained in an xarray. This is necessary 117 * because we can't get the locking right using the existing net ns list. We 118 * would require a init_net callback after the list is updated. 119 */ 120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 121 /* 122 * rwsem to protect accessing the rdma_nets xarray entries. 123 */ 124 static DECLARE_RWSEM(rdma_nets_rwsem); 125 126 bool ib_devices_shared_netns = true; 127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 128 MODULE_PARM_DESC(netns_mode, 129 "Share device among net namespaces; default=1 (shared)"); 130 /** 131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 132 * from a specified net namespace or not. 133 * @dev: Pointer to rdma device which needs to be checked 134 * @net: Pointer to net namesapce for which access to be checked 135 * 136 * When the rdma device is in shared mode, it ignores the net namespace. 137 * When the rdma device is exclusive to a net namespace, rdma device net 138 * namespace is checked against the specified one. 139 */ 140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 141 { 142 return (ib_devices_shared_netns || 143 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 144 } 145 EXPORT_SYMBOL(rdma_dev_access_netns); 146 147 /* 148 * xarray has this behavior where it won't iterate over NULL values stored in 149 * allocated arrays. So we need our own iterator to see all values stored in 150 * the array. This does the same thing as xa_for_each except that it also 151 * returns NULL valued entries if the array is allocating. Simplified to only 152 * work on simple xarrays. 153 */ 154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 155 xa_mark_t filter) 156 { 157 XA_STATE(xas, xa, *indexp); 158 void *entry; 159 160 rcu_read_lock(); 161 do { 162 entry = xas_find_marked(&xas, ULONG_MAX, filter); 163 if (xa_is_zero(entry)) 164 break; 165 } while (xas_retry(&xas, entry)); 166 rcu_read_unlock(); 167 168 if (entry) { 169 *indexp = xas.xa_index; 170 if (xa_is_zero(entry)) 171 return NULL; 172 return entry; 173 } 174 return XA_ERROR(-ENOENT); 175 } 176 #define xan_for_each_marked(xa, index, entry, filter) \ 177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 178 !xa_is_err(entry); \ 179 (index)++, entry = xan_find_marked(xa, &(index), filter)) 180 181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 182 static DEFINE_SPINLOCK(ndev_hash_lock); 183 static DECLARE_HASHTABLE(ndev_hash, 5); 184 185 static void free_netdevs(struct ib_device *ib_dev); 186 static void ib_unregister_work(struct work_struct *work); 187 static void __ib_unregister_device(struct ib_device *device); 188 static int ib_security_change(struct notifier_block *nb, unsigned long event, 189 void *lsm_data); 190 static void ib_policy_change_task(struct work_struct *work); 191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 192 193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 194 struct va_format *vaf) 195 { 196 if (ibdev && ibdev->dev.parent) 197 dev_printk_emit(level[1] - '0', 198 ibdev->dev.parent, 199 "%s %s %s: %pV", 200 dev_driver_string(ibdev->dev.parent), 201 dev_name(ibdev->dev.parent), 202 dev_name(&ibdev->dev), 203 vaf); 204 else if (ibdev) 205 printk("%s%s: %pV", 206 level, dev_name(&ibdev->dev), vaf); 207 else 208 printk("%s(NULL ib_device): %pV", level, vaf); 209 } 210 211 void ibdev_printk(const char *level, const struct ib_device *ibdev, 212 const char *format, ...) 213 { 214 struct va_format vaf; 215 va_list args; 216 217 va_start(args, format); 218 219 vaf.fmt = format; 220 vaf.va = &args; 221 222 __ibdev_printk(level, ibdev, &vaf); 223 224 va_end(args); 225 } 226 EXPORT_SYMBOL(ibdev_printk); 227 228 #define define_ibdev_printk_level(func, level) \ 229 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 230 { \ 231 struct va_format vaf; \ 232 va_list args; \ 233 \ 234 va_start(args, fmt); \ 235 \ 236 vaf.fmt = fmt; \ 237 vaf.va = &args; \ 238 \ 239 __ibdev_printk(level, ibdev, &vaf); \ 240 \ 241 va_end(args); \ 242 } \ 243 EXPORT_SYMBOL(func); 244 245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 248 define_ibdev_printk_level(ibdev_err, KERN_ERR); 249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 251 define_ibdev_printk_level(ibdev_info, KERN_INFO); 252 253 static struct notifier_block ibdev_lsm_nb = { 254 .notifier_call = ib_security_change, 255 }; 256 257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 258 struct net *net); 259 260 /* Pointer to the RCU head at the start of the ib_port_data array */ 261 struct ib_port_data_rcu { 262 struct rcu_head rcu_head; 263 struct ib_port_data pdata[]; 264 }; 265 266 static void ib_device_check_mandatory(struct ib_device *device) 267 { 268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 269 static const struct { 270 size_t offset; 271 char *name; 272 } mandatory_table[] = { 273 IB_MANDATORY_FUNC(query_device), 274 IB_MANDATORY_FUNC(query_port), 275 IB_MANDATORY_FUNC(alloc_pd), 276 IB_MANDATORY_FUNC(dealloc_pd), 277 IB_MANDATORY_FUNC(create_qp), 278 IB_MANDATORY_FUNC(modify_qp), 279 IB_MANDATORY_FUNC(destroy_qp), 280 IB_MANDATORY_FUNC(post_send), 281 IB_MANDATORY_FUNC(post_recv), 282 IB_MANDATORY_FUNC(create_cq), 283 IB_MANDATORY_FUNC(destroy_cq), 284 IB_MANDATORY_FUNC(poll_cq), 285 IB_MANDATORY_FUNC(req_notify_cq), 286 IB_MANDATORY_FUNC(get_dma_mr), 287 IB_MANDATORY_FUNC(reg_user_mr), 288 IB_MANDATORY_FUNC(dereg_mr), 289 IB_MANDATORY_FUNC(get_port_immutable) 290 }; 291 int i; 292 293 device->kverbs_provider = true; 294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 295 if (!*(void **) ((void *) &device->ops + 296 mandatory_table[i].offset)) { 297 device->kverbs_provider = false; 298 break; 299 } 300 } 301 } 302 303 /* 304 * Caller must perform ib_device_put() to return the device reference count 305 * when ib_device_get_by_index() returns valid device pointer. 306 */ 307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 308 { 309 struct ib_device *device; 310 311 down_read(&devices_rwsem); 312 device = xa_load(&devices, index); 313 if (device) { 314 if (!rdma_dev_access_netns(device, net)) { 315 device = NULL; 316 goto out; 317 } 318 319 if (!ib_device_try_get(device)) 320 device = NULL; 321 } 322 out: 323 up_read(&devices_rwsem); 324 return device; 325 } 326 327 /** 328 * ib_device_put - Release IB device reference 329 * @device: device whose reference to be released 330 * 331 * ib_device_put() releases reference to the IB device to allow it to be 332 * unregistered and eventually free. 333 */ 334 void ib_device_put(struct ib_device *device) 335 { 336 if (refcount_dec_and_test(&device->refcount)) 337 complete(&device->unreg_completion); 338 } 339 EXPORT_SYMBOL(ib_device_put); 340 341 static struct ib_device *__ib_device_get_by_name(const char *name) 342 { 343 struct ib_device *device; 344 unsigned long index; 345 346 xa_for_each (&devices, index, device) 347 if (!strcmp(name, dev_name(&device->dev))) 348 return device; 349 350 return NULL; 351 } 352 353 /** 354 * ib_device_get_by_name - Find an IB device by name 355 * @name: The name to look for 356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 357 * 358 * Find and hold an ib_device by its name. The caller must call 359 * ib_device_put() on the returned pointer. 360 */ 361 struct ib_device *ib_device_get_by_name(const char *name, 362 enum rdma_driver_id driver_id) 363 { 364 struct ib_device *device; 365 366 down_read(&devices_rwsem); 367 device = __ib_device_get_by_name(name); 368 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 369 device->ops.driver_id != driver_id) 370 device = NULL; 371 372 if (device) { 373 if (!ib_device_try_get(device)) 374 device = NULL; 375 } 376 up_read(&devices_rwsem); 377 return device; 378 } 379 EXPORT_SYMBOL(ib_device_get_by_name); 380 381 static int rename_compat_devs(struct ib_device *device) 382 { 383 struct ib_core_device *cdev; 384 unsigned long index; 385 int ret = 0; 386 387 mutex_lock(&device->compat_devs_mutex); 388 xa_for_each (&device->compat_devs, index, cdev) { 389 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 390 if (ret) { 391 dev_warn(&cdev->dev, 392 "Fail to rename compatdev to new name %s\n", 393 dev_name(&device->dev)); 394 break; 395 } 396 } 397 mutex_unlock(&device->compat_devs_mutex); 398 return ret; 399 } 400 401 int ib_device_rename(struct ib_device *ibdev, const char *name) 402 { 403 unsigned long index; 404 void *client_data; 405 int ret; 406 407 down_write(&devices_rwsem); 408 if (!strcmp(name, dev_name(&ibdev->dev))) { 409 up_write(&devices_rwsem); 410 return 0; 411 } 412 413 if (__ib_device_get_by_name(name)) { 414 up_write(&devices_rwsem); 415 return -EEXIST; 416 } 417 418 ret = device_rename(&ibdev->dev, name); 419 if (ret) { 420 up_write(&devices_rwsem); 421 return ret; 422 } 423 424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 425 ret = rename_compat_devs(ibdev); 426 427 downgrade_write(&devices_rwsem); 428 down_read(&ibdev->client_data_rwsem); 429 xan_for_each_marked(&ibdev->client_data, index, client_data, 430 CLIENT_DATA_REGISTERED) { 431 struct ib_client *client = xa_load(&clients, index); 432 433 if (!client || !client->rename) 434 continue; 435 436 client->rename(ibdev, client_data); 437 } 438 up_read(&ibdev->client_data_rwsem); 439 up_read(&devices_rwsem); 440 return 0; 441 } 442 443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 444 { 445 if (use_dim > 1) 446 return -EINVAL; 447 ibdev->use_cq_dim = use_dim; 448 449 return 0; 450 } 451 452 static int alloc_name(struct ib_device *ibdev, const char *name) 453 { 454 struct ib_device *device; 455 unsigned long index; 456 struct ida inuse; 457 int rc; 458 int i; 459 460 lockdep_assert_held_write(&devices_rwsem); 461 ida_init(&inuse); 462 xa_for_each (&devices, index, device) { 463 char buf[IB_DEVICE_NAME_MAX]; 464 465 if (sscanf(dev_name(&device->dev), name, &i) != 1) 466 continue; 467 if (i < 0 || i >= INT_MAX) 468 continue; 469 snprintf(buf, sizeof buf, name, i); 470 if (strcmp(buf, dev_name(&device->dev)) != 0) 471 continue; 472 473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 474 if (rc < 0) 475 goto out; 476 } 477 478 rc = ida_alloc(&inuse, GFP_KERNEL); 479 if (rc < 0) 480 goto out; 481 482 rc = dev_set_name(&ibdev->dev, name, rc); 483 out: 484 ida_destroy(&inuse); 485 return rc; 486 } 487 488 static void ib_device_release(struct device *device) 489 { 490 struct ib_device *dev = container_of(device, struct ib_device, dev); 491 492 free_netdevs(dev); 493 WARN_ON(refcount_read(&dev->refcount)); 494 if (dev->port_data) { 495 ib_cache_release_one(dev); 496 ib_security_release_port_pkey_list(dev); 497 rdma_counter_release(dev); 498 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 499 pdata[0]), 500 rcu_head); 501 } 502 503 mutex_destroy(&dev->unregistration_lock); 504 mutex_destroy(&dev->compat_devs_mutex); 505 506 xa_destroy(&dev->compat_devs); 507 xa_destroy(&dev->client_data); 508 kfree_rcu(dev, rcu_head); 509 } 510 511 static int ib_device_uevent(struct device *device, 512 struct kobj_uevent_env *env) 513 { 514 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 515 return -ENOMEM; 516 517 /* 518 * It would be nice to pass the node GUID with the event... 519 */ 520 521 return 0; 522 } 523 524 static const void *net_namespace(struct device *d) 525 { 526 struct ib_core_device *coredev = 527 container_of(d, struct ib_core_device, dev); 528 529 return read_pnet(&coredev->rdma_net); 530 } 531 532 static struct class ib_class = { 533 .name = "infiniband", 534 .dev_release = ib_device_release, 535 .dev_uevent = ib_device_uevent, 536 .ns_type = &net_ns_type_operations, 537 .namespace = net_namespace, 538 }; 539 540 static void rdma_init_coredev(struct ib_core_device *coredev, 541 struct ib_device *dev, struct net *net) 542 { 543 /* This BUILD_BUG_ON is intended to catch layout change 544 * of union of ib_core_device and device. 545 * dev must be the first element as ib_core and providers 546 * driver uses it. Adding anything in ib_core_device before 547 * device will break this assumption. 548 */ 549 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 550 offsetof(struct ib_device, dev)); 551 552 coredev->dev.class = &ib_class; 553 coredev->dev.groups = dev->groups; 554 device_initialize(&coredev->dev); 555 coredev->owner = dev; 556 INIT_LIST_HEAD(&coredev->port_list); 557 write_pnet(&coredev->rdma_net, net); 558 } 559 560 /** 561 * _ib_alloc_device - allocate an IB device struct 562 * @size:size of structure to allocate 563 * 564 * Low-level drivers should use ib_alloc_device() to allocate &struct 565 * ib_device. @size is the size of the structure to be allocated, 566 * including any private data used by the low-level driver. 567 * ib_dealloc_device() must be used to free structures allocated with 568 * ib_alloc_device(). 569 */ 570 struct ib_device *_ib_alloc_device(size_t size) 571 { 572 struct ib_device *device; 573 unsigned int i; 574 575 if (WARN_ON(size < sizeof(struct ib_device))) 576 return NULL; 577 578 device = kzalloc(size, GFP_KERNEL); 579 if (!device) 580 return NULL; 581 582 if (rdma_restrack_init(device)) { 583 kfree(device); 584 return NULL; 585 } 586 587 device->groups[0] = &ib_dev_attr_group; 588 rdma_init_coredev(&device->coredev, device, &init_net); 589 590 INIT_LIST_HEAD(&device->event_handler_list); 591 spin_lock_init(&device->qp_open_list_lock); 592 init_rwsem(&device->event_handler_rwsem); 593 mutex_init(&device->unregistration_lock); 594 /* 595 * client_data needs to be alloc because we don't want our mark to be 596 * destroyed if the user stores NULL in the client data. 597 */ 598 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 599 init_rwsem(&device->client_data_rwsem); 600 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 601 mutex_init(&device->compat_devs_mutex); 602 init_completion(&device->unreg_completion); 603 INIT_WORK(&device->unregistration_work, ib_unregister_work); 604 605 spin_lock_init(&device->cq_pools_lock); 606 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++) 607 INIT_LIST_HEAD(&device->cq_pools[i]); 608 609 device->uverbs_cmd_mask = 610 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) | 611 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) | 612 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) | 613 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) | 614 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) | 615 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | 616 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) | 617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) | 618 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) | 619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) | 620 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) | 621 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) | 622 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) | 623 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) | 624 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) | 625 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) | 626 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) | 627 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) | 628 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) | 629 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) | 630 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) | 631 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) | 632 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) | 633 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) | 634 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) | 635 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) | 636 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) | 637 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) | 638 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) | 639 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ); 640 return device; 641 } 642 EXPORT_SYMBOL(_ib_alloc_device); 643 644 /** 645 * ib_dealloc_device - free an IB device struct 646 * @device:structure to free 647 * 648 * Free a structure allocated with ib_alloc_device(). 649 */ 650 void ib_dealloc_device(struct ib_device *device) 651 { 652 if (device->ops.dealloc_driver) 653 device->ops.dealloc_driver(device); 654 655 /* 656 * ib_unregister_driver() requires all devices to remain in the xarray 657 * while their ops are callable. The last op we call is dealloc_driver 658 * above. This is needed to create a fence on op callbacks prior to 659 * allowing the driver module to unload. 660 */ 661 down_write(&devices_rwsem); 662 if (xa_load(&devices, device->index) == device) 663 xa_erase(&devices, device->index); 664 up_write(&devices_rwsem); 665 666 /* Expedite releasing netdev references */ 667 free_netdevs(device); 668 669 WARN_ON(!xa_empty(&device->compat_devs)); 670 WARN_ON(!xa_empty(&device->client_data)); 671 WARN_ON(refcount_read(&device->refcount)); 672 rdma_restrack_clean(device); 673 /* Balances with device_initialize */ 674 put_device(&device->dev); 675 } 676 EXPORT_SYMBOL(ib_dealloc_device); 677 678 /* 679 * add_client_context() and remove_client_context() must be safe against 680 * parallel calls on the same device - registration/unregistration of both the 681 * device and client can be occurring in parallel. 682 * 683 * The routines need to be a fence, any caller must not return until the add 684 * or remove is fully completed. 685 */ 686 static int add_client_context(struct ib_device *device, 687 struct ib_client *client) 688 { 689 int ret = 0; 690 691 if (!device->kverbs_provider && !client->no_kverbs_req) 692 return 0; 693 694 down_write(&device->client_data_rwsem); 695 /* 696 * So long as the client is registered hold both the client and device 697 * unregistration locks. 698 */ 699 if (!refcount_inc_not_zero(&client->uses)) 700 goto out_unlock; 701 refcount_inc(&device->refcount); 702 703 /* 704 * Another caller to add_client_context got here first and has already 705 * completely initialized context. 706 */ 707 if (xa_get_mark(&device->client_data, client->client_id, 708 CLIENT_DATA_REGISTERED)) 709 goto out; 710 711 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 712 GFP_KERNEL)); 713 if (ret) 714 goto out; 715 downgrade_write(&device->client_data_rwsem); 716 if (client->add) { 717 if (client->add(device)) { 718 /* 719 * If a client fails to add then the error code is 720 * ignored, but we won't call any more ops on this 721 * client. 722 */ 723 xa_erase(&device->client_data, client->client_id); 724 up_read(&device->client_data_rwsem); 725 ib_device_put(device); 726 ib_client_put(client); 727 return 0; 728 } 729 } 730 731 /* Readers shall not see a client until add has been completed */ 732 xa_set_mark(&device->client_data, client->client_id, 733 CLIENT_DATA_REGISTERED); 734 up_read(&device->client_data_rwsem); 735 return 0; 736 737 out: 738 ib_device_put(device); 739 ib_client_put(client); 740 out_unlock: 741 up_write(&device->client_data_rwsem); 742 return ret; 743 } 744 745 static void remove_client_context(struct ib_device *device, 746 unsigned int client_id) 747 { 748 struct ib_client *client; 749 void *client_data; 750 751 down_write(&device->client_data_rwsem); 752 if (!xa_get_mark(&device->client_data, client_id, 753 CLIENT_DATA_REGISTERED)) { 754 up_write(&device->client_data_rwsem); 755 return; 756 } 757 client_data = xa_load(&device->client_data, client_id); 758 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 759 client = xa_load(&clients, client_id); 760 up_write(&device->client_data_rwsem); 761 762 /* 763 * Notice we cannot be holding any exclusive locks when calling the 764 * remove callback as the remove callback can recurse back into any 765 * public functions in this module and thus try for any locks those 766 * functions take. 767 * 768 * For this reason clients and drivers should not call the 769 * unregistration functions will holdling any locks. 770 */ 771 if (client->remove) 772 client->remove(device, client_data); 773 774 xa_erase(&device->client_data, client_id); 775 ib_device_put(device); 776 ib_client_put(client); 777 } 778 779 static int alloc_port_data(struct ib_device *device) 780 { 781 struct ib_port_data_rcu *pdata_rcu; 782 unsigned int port; 783 784 if (device->port_data) 785 return 0; 786 787 /* This can only be called once the physical port range is defined */ 788 if (WARN_ON(!device->phys_port_cnt)) 789 return -EINVAL; 790 791 /* 792 * device->port_data is indexed directly by the port number to make 793 * access to this data as efficient as possible. 794 * 795 * Therefore port_data is declared as a 1 based array with potential 796 * empty slots at the beginning. 797 */ 798 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 799 rdma_end_port(device) + 1), 800 GFP_KERNEL); 801 if (!pdata_rcu) 802 return -ENOMEM; 803 /* 804 * The rcu_head is put in front of the port data array and the stored 805 * pointer is adjusted since we never need to see that member until 806 * kfree_rcu. 807 */ 808 device->port_data = pdata_rcu->pdata; 809 810 rdma_for_each_port (device, port) { 811 struct ib_port_data *pdata = &device->port_data[port]; 812 813 pdata->ib_dev = device; 814 spin_lock_init(&pdata->pkey_list_lock); 815 INIT_LIST_HEAD(&pdata->pkey_list); 816 spin_lock_init(&pdata->netdev_lock); 817 INIT_HLIST_NODE(&pdata->ndev_hash_link); 818 } 819 return 0; 820 } 821 822 static int verify_immutable(const struct ib_device *dev, u8 port) 823 { 824 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 825 rdma_max_mad_size(dev, port) != 0); 826 } 827 828 static int setup_port_data(struct ib_device *device) 829 { 830 unsigned int port; 831 int ret; 832 833 ret = alloc_port_data(device); 834 if (ret) 835 return ret; 836 837 rdma_for_each_port (device, port) { 838 struct ib_port_data *pdata = &device->port_data[port]; 839 840 ret = device->ops.get_port_immutable(device, port, 841 &pdata->immutable); 842 if (ret) 843 return ret; 844 845 if (verify_immutable(device, port)) 846 return -EINVAL; 847 } 848 return 0; 849 } 850 851 /** 852 * ib_port_immutable_read() - Read rdma port's immutable data 853 * @dev: IB device 854 * @port: port number whose immutable data to read. It starts with index 1 and 855 * valid upto including rdma_end_port(). 856 */ 857 const struct ib_port_immutable* 858 ib_port_immutable_read(struct ib_device *dev, unsigned int port) 859 { 860 WARN_ON(!rdma_is_port_valid(dev, port)); 861 return &dev->port_data[port].immutable; 862 } 863 EXPORT_SYMBOL(ib_port_immutable_read); 864 865 void ib_get_device_fw_str(struct ib_device *dev, char *str) 866 { 867 if (dev->ops.get_dev_fw_str) 868 dev->ops.get_dev_fw_str(dev, str); 869 else 870 str[0] = '\0'; 871 } 872 EXPORT_SYMBOL(ib_get_device_fw_str); 873 874 static void ib_policy_change_task(struct work_struct *work) 875 { 876 struct ib_device *dev; 877 unsigned long index; 878 879 down_read(&devices_rwsem); 880 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 881 unsigned int i; 882 883 rdma_for_each_port (dev, i) { 884 u64 sp; 885 int ret = ib_get_cached_subnet_prefix(dev, 886 i, 887 &sp); 888 889 WARN_ONCE(ret, 890 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 891 ret); 892 if (!ret) 893 ib_security_cache_change(dev, i, sp); 894 } 895 } 896 up_read(&devices_rwsem); 897 } 898 899 static int ib_security_change(struct notifier_block *nb, unsigned long event, 900 void *lsm_data) 901 { 902 if (event != LSM_POLICY_CHANGE) 903 return NOTIFY_DONE; 904 905 schedule_work(&ib_policy_change_work); 906 ib_mad_agent_security_change(); 907 908 return NOTIFY_OK; 909 } 910 911 static void compatdev_release(struct device *dev) 912 { 913 struct ib_core_device *cdev = 914 container_of(dev, struct ib_core_device, dev); 915 916 kfree(cdev); 917 } 918 919 static int add_one_compat_dev(struct ib_device *device, 920 struct rdma_dev_net *rnet) 921 { 922 struct ib_core_device *cdev; 923 int ret; 924 925 lockdep_assert_held(&rdma_nets_rwsem); 926 if (!ib_devices_shared_netns) 927 return 0; 928 929 /* 930 * Create and add compat device in all namespaces other than where it 931 * is currently bound to. 932 */ 933 if (net_eq(read_pnet(&rnet->net), 934 read_pnet(&device->coredev.rdma_net))) 935 return 0; 936 937 /* 938 * The first of init_net() or ib_register_device() to take the 939 * compat_devs_mutex wins and gets to add the device. Others will wait 940 * for completion here. 941 */ 942 mutex_lock(&device->compat_devs_mutex); 943 cdev = xa_load(&device->compat_devs, rnet->id); 944 if (cdev) { 945 ret = 0; 946 goto done; 947 } 948 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 949 if (ret) 950 goto done; 951 952 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 953 if (!cdev) { 954 ret = -ENOMEM; 955 goto cdev_err; 956 } 957 958 cdev->dev.parent = device->dev.parent; 959 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 960 cdev->dev.release = compatdev_release; 961 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 962 if (ret) 963 goto add_err; 964 965 ret = device_add(&cdev->dev); 966 if (ret) 967 goto add_err; 968 ret = ib_setup_port_attrs(cdev); 969 if (ret) 970 goto port_err; 971 972 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 973 cdev, GFP_KERNEL)); 974 if (ret) 975 goto insert_err; 976 977 mutex_unlock(&device->compat_devs_mutex); 978 return 0; 979 980 insert_err: 981 ib_free_port_attrs(cdev); 982 port_err: 983 device_del(&cdev->dev); 984 add_err: 985 put_device(&cdev->dev); 986 cdev_err: 987 xa_release(&device->compat_devs, rnet->id); 988 done: 989 mutex_unlock(&device->compat_devs_mutex); 990 return ret; 991 } 992 993 static void remove_one_compat_dev(struct ib_device *device, u32 id) 994 { 995 struct ib_core_device *cdev; 996 997 mutex_lock(&device->compat_devs_mutex); 998 cdev = xa_erase(&device->compat_devs, id); 999 mutex_unlock(&device->compat_devs_mutex); 1000 if (cdev) { 1001 ib_free_port_attrs(cdev); 1002 device_del(&cdev->dev); 1003 put_device(&cdev->dev); 1004 } 1005 } 1006 1007 static void remove_compat_devs(struct ib_device *device) 1008 { 1009 struct ib_core_device *cdev; 1010 unsigned long index; 1011 1012 xa_for_each (&device->compat_devs, index, cdev) 1013 remove_one_compat_dev(device, index); 1014 } 1015 1016 static int add_compat_devs(struct ib_device *device) 1017 { 1018 struct rdma_dev_net *rnet; 1019 unsigned long index; 1020 int ret = 0; 1021 1022 lockdep_assert_held(&devices_rwsem); 1023 1024 down_read(&rdma_nets_rwsem); 1025 xa_for_each (&rdma_nets, index, rnet) { 1026 ret = add_one_compat_dev(device, rnet); 1027 if (ret) 1028 break; 1029 } 1030 up_read(&rdma_nets_rwsem); 1031 return ret; 1032 } 1033 1034 static void remove_all_compat_devs(void) 1035 { 1036 struct ib_compat_device *cdev; 1037 struct ib_device *dev; 1038 unsigned long index; 1039 1040 down_read(&devices_rwsem); 1041 xa_for_each (&devices, index, dev) { 1042 unsigned long c_index = 0; 1043 1044 /* Hold nets_rwsem so that any other thread modifying this 1045 * system param can sync with this thread. 1046 */ 1047 down_read(&rdma_nets_rwsem); 1048 xa_for_each (&dev->compat_devs, c_index, cdev) 1049 remove_one_compat_dev(dev, c_index); 1050 up_read(&rdma_nets_rwsem); 1051 } 1052 up_read(&devices_rwsem); 1053 } 1054 1055 static int add_all_compat_devs(void) 1056 { 1057 struct rdma_dev_net *rnet; 1058 struct ib_device *dev; 1059 unsigned long index; 1060 int ret = 0; 1061 1062 down_read(&devices_rwsem); 1063 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1064 unsigned long net_index = 0; 1065 1066 /* Hold nets_rwsem so that any other thread modifying this 1067 * system param can sync with this thread. 1068 */ 1069 down_read(&rdma_nets_rwsem); 1070 xa_for_each (&rdma_nets, net_index, rnet) { 1071 ret = add_one_compat_dev(dev, rnet); 1072 if (ret) 1073 break; 1074 } 1075 up_read(&rdma_nets_rwsem); 1076 } 1077 up_read(&devices_rwsem); 1078 if (ret) 1079 remove_all_compat_devs(); 1080 return ret; 1081 } 1082 1083 int rdma_compatdev_set(u8 enable) 1084 { 1085 struct rdma_dev_net *rnet; 1086 unsigned long index; 1087 int ret = 0; 1088 1089 down_write(&rdma_nets_rwsem); 1090 if (ib_devices_shared_netns == enable) { 1091 up_write(&rdma_nets_rwsem); 1092 return 0; 1093 } 1094 1095 /* enable/disable of compat devices is not supported 1096 * when more than default init_net exists. 1097 */ 1098 xa_for_each (&rdma_nets, index, rnet) { 1099 ret++; 1100 break; 1101 } 1102 if (!ret) 1103 ib_devices_shared_netns = enable; 1104 up_write(&rdma_nets_rwsem); 1105 if (ret) 1106 return -EBUSY; 1107 1108 if (enable) 1109 ret = add_all_compat_devs(); 1110 else 1111 remove_all_compat_devs(); 1112 return ret; 1113 } 1114 1115 static void rdma_dev_exit_net(struct net *net) 1116 { 1117 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1118 struct ib_device *dev; 1119 unsigned long index; 1120 int ret; 1121 1122 down_write(&rdma_nets_rwsem); 1123 /* 1124 * Prevent the ID from being re-used and hide the id from xa_for_each. 1125 */ 1126 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1127 WARN_ON(ret); 1128 up_write(&rdma_nets_rwsem); 1129 1130 down_read(&devices_rwsem); 1131 xa_for_each (&devices, index, dev) { 1132 get_device(&dev->dev); 1133 /* 1134 * Release the devices_rwsem so that pontentially blocking 1135 * device_del, doesn't hold the devices_rwsem for too long. 1136 */ 1137 up_read(&devices_rwsem); 1138 1139 remove_one_compat_dev(dev, rnet->id); 1140 1141 /* 1142 * If the real device is in the NS then move it back to init. 1143 */ 1144 rdma_dev_change_netns(dev, net, &init_net); 1145 1146 put_device(&dev->dev); 1147 down_read(&devices_rwsem); 1148 } 1149 up_read(&devices_rwsem); 1150 1151 rdma_nl_net_exit(rnet); 1152 xa_erase(&rdma_nets, rnet->id); 1153 } 1154 1155 static __net_init int rdma_dev_init_net(struct net *net) 1156 { 1157 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1158 unsigned long index; 1159 struct ib_device *dev; 1160 int ret; 1161 1162 write_pnet(&rnet->net, net); 1163 1164 ret = rdma_nl_net_init(rnet); 1165 if (ret) 1166 return ret; 1167 1168 /* No need to create any compat devices in default init_net. */ 1169 if (net_eq(net, &init_net)) 1170 return 0; 1171 1172 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1173 if (ret) { 1174 rdma_nl_net_exit(rnet); 1175 return ret; 1176 } 1177 1178 down_read(&devices_rwsem); 1179 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1180 /* Hold nets_rwsem so that netlink command cannot change 1181 * system configuration for device sharing mode. 1182 */ 1183 down_read(&rdma_nets_rwsem); 1184 ret = add_one_compat_dev(dev, rnet); 1185 up_read(&rdma_nets_rwsem); 1186 if (ret) 1187 break; 1188 } 1189 up_read(&devices_rwsem); 1190 1191 if (ret) 1192 rdma_dev_exit_net(net); 1193 1194 return ret; 1195 } 1196 1197 /* 1198 * Assign the unique string device name and the unique device index. This is 1199 * undone by ib_dealloc_device. 1200 */ 1201 static int assign_name(struct ib_device *device, const char *name) 1202 { 1203 static u32 last_id; 1204 int ret; 1205 1206 down_write(&devices_rwsem); 1207 /* Assign a unique name to the device */ 1208 if (strchr(name, '%')) 1209 ret = alloc_name(device, name); 1210 else 1211 ret = dev_set_name(&device->dev, name); 1212 if (ret) 1213 goto out; 1214 1215 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1216 ret = -ENFILE; 1217 goto out; 1218 } 1219 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1220 1221 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1222 &last_id, GFP_KERNEL); 1223 if (ret > 0) 1224 ret = 0; 1225 1226 out: 1227 up_write(&devices_rwsem); 1228 return ret; 1229 } 1230 1231 /* 1232 * setup_device() allocates memory and sets up data that requires calling the 1233 * device ops, this is the only reason these actions are not done during 1234 * ib_alloc_device. It is undone by ib_dealloc_device(). 1235 */ 1236 static int setup_device(struct ib_device *device) 1237 { 1238 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1239 int ret; 1240 1241 ib_device_check_mandatory(device); 1242 1243 ret = setup_port_data(device); 1244 if (ret) { 1245 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1246 return ret; 1247 } 1248 1249 memset(&device->attrs, 0, sizeof(device->attrs)); 1250 ret = device->ops.query_device(device, &device->attrs, &uhw); 1251 if (ret) { 1252 dev_warn(&device->dev, 1253 "Couldn't query the device attributes\n"); 1254 return ret; 1255 } 1256 1257 return 0; 1258 } 1259 1260 static void disable_device(struct ib_device *device) 1261 { 1262 u32 cid; 1263 1264 WARN_ON(!refcount_read(&device->refcount)); 1265 1266 down_write(&devices_rwsem); 1267 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1268 up_write(&devices_rwsem); 1269 1270 /* 1271 * Remove clients in LIFO order, see assign_client_id. This could be 1272 * more efficient if xarray learns to reverse iterate. Since no new 1273 * clients can be added to this ib_device past this point we only need 1274 * the maximum possible client_id value here. 1275 */ 1276 down_read(&clients_rwsem); 1277 cid = highest_client_id; 1278 up_read(&clients_rwsem); 1279 while (cid) { 1280 cid--; 1281 remove_client_context(device, cid); 1282 } 1283 1284 ib_cq_pool_cleanup(device); 1285 1286 /* Pairs with refcount_set in enable_device */ 1287 ib_device_put(device); 1288 wait_for_completion(&device->unreg_completion); 1289 1290 /* 1291 * compat devices must be removed after device refcount drops to zero. 1292 * Otherwise init_net() may add more compatdevs after removing compat 1293 * devices and before device is disabled. 1294 */ 1295 remove_compat_devs(device); 1296 } 1297 1298 /* 1299 * An enabled device is visible to all clients and to all the public facing 1300 * APIs that return a device pointer. This always returns with a new get, even 1301 * if it fails. 1302 */ 1303 static int enable_device_and_get(struct ib_device *device) 1304 { 1305 struct ib_client *client; 1306 unsigned long index; 1307 int ret = 0; 1308 1309 /* 1310 * One ref belongs to the xa and the other belongs to this 1311 * thread. This is needed to guard against parallel unregistration. 1312 */ 1313 refcount_set(&device->refcount, 2); 1314 down_write(&devices_rwsem); 1315 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1316 1317 /* 1318 * By using downgrade_write() we ensure that no other thread can clear 1319 * DEVICE_REGISTERED while we are completing the client setup. 1320 */ 1321 downgrade_write(&devices_rwsem); 1322 1323 if (device->ops.enable_driver) { 1324 ret = device->ops.enable_driver(device); 1325 if (ret) 1326 goto out; 1327 } 1328 1329 down_read(&clients_rwsem); 1330 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1331 ret = add_client_context(device, client); 1332 if (ret) 1333 break; 1334 } 1335 up_read(&clients_rwsem); 1336 if (!ret) 1337 ret = add_compat_devs(device); 1338 out: 1339 up_read(&devices_rwsem); 1340 return ret; 1341 } 1342 1343 static void prevent_dealloc_device(struct ib_device *ib_dev) 1344 { 1345 } 1346 1347 /** 1348 * ib_register_device - Register an IB device with IB core 1349 * @device: Device to register 1350 * @name: unique string device name. This may include a '%' which will 1351 * cause a unique index to be added to the passed device name. 1352 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB 1353 * device will be used. In this case the caller should fully 1354 * setup the ibdev for DMA. This usually means using dma_virt_ops. 1355 * 1356 * Low-level drivers use ib_register_device() to register their 1357 * devices with the IB core. All registered clients will receive a 1358 * callback for each device that is added. @device must be allocated 1359 * with ib_alloc_device(). 1360 * 1361 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1362 * asynchronously then the device pointer may become freed as soon as this 1363 * function returns. 1364 */ 1365 int ib_register_device(struct ib_device *device, const char *name, 1366 struct device *dma_device) 1367 { 1368 int ret; 1369 1370 ret = assign_name(device, name); 1371 if (ret) 1372 return ret; 1373 1374 /* 1375 * If the caller does not provide a DMA capable device then the IB core 1376 * will set up ib_sge and scatterlist structures that stash the kernel 1377 * virtual address into the address field. 1378 */ 1379 WARN_ON(dma_device && !dma_device->dma_parms); 1380 device->dma_device = dma_device; 1381 1382 ret = setup_device(device); 1383 if (ret) 1384 return ret; 1385 1386 ret = ib_cache_setup_one(device); 1387 if (ret) { 1388 dev_warn(&device->dev, 1389 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1390 return ret; 1391 } 1392 1393 ib_device_register_rdmacg(device); 1394 1395 rdma_counter_init(device); 1396 1397 /* 1398 * Ensure that ADD uevent is not fired because it 1399 * is too early amd device is not initialized yet. 1400 */ 1401 dev_set_uevent_suppress(&device->dev, true); 1402 ret = device_add(&device->dev); 1403 if (ret) 1404 goto cg_cleanup; 1405 1406 ret = ib_device_register_sysfs(device); 1407 if (ret) { 1408 dev_warn(&device->dev, 1409 "Couldn't register device with driver model\n"); 1410 goto dev_cleanup; 1411 } 1412 1413 ret = enable_device_and_get(device); 1414 if (ret) { 1415 void (*dealloc_fn)(struct ib_device *); 1416 1417 /* 1418 * If we hit this error flow then we don't want to 1419 * automatically dealloc the device since the caller is 1420 * expected to call ib_dealloc_device() after 1421 * ib_register_device() fails. This is tricky due to the 1422 * possibility for a parallel unregistration along with this 1423 * error flow. Since we have a refcount here we know any 1424 * parallel flow is stopped in disable_device and will see the 1425 * special dealloc_driver pointer, causing the responsibility to 1426 * ib_dealloc_device() to revert back to this thread. 1427 */ 1428 dealloc_fn = device->ops.dealloc_driver; 1429 device->ops.dealloc_driver = prevent_dealloc_device; 1430 ib_device_put(device); 1431 __ib_unregister_device(device); 1432 device->ops.dealloc_driver = dealloc_fn; 1433 dev_set_uevent_suppress(&device->dev, false); 1434 return ret; 1435 } 1436 dev_set_uevent_suppress(&device->dev, false); 1437 /* Mark for userspace that device is ready */ 1438 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1439 ib_device_put(device); 1440 1441 return 0; 1442 1443 dev_cleanup: 1444 device_del(&device->dev); 1445 cg_cleanup: 1446 dev_set_uevent_suppress(&device->dev, false); 1447 ib_device_unregister_rdmacg(device); 1448 ib_cache_cleanup_one(device); 1449 return ret; 1450 } 1451 EXPORT_SYMBOL(ib_register_device); 1452 1453 /* Callers must hold a get on the device. */ 1454 static void __ib_unregister_device(struct ib_device *ib_dev) 1455 { 1456 /* 1457 * We have a registration lock so that all the calls to unregister are 1458 * fully fenced, once any unregister returns the device is truely 1459 * unregistered even if multiple callers are unregistering it at the 1460 * same time. This also interacts with the registration flow and 1461 * provides sane semantics if register and unregister are racing. 1462 */ 1463 mutex_lock(&ib_dev->unregistration_lock); 1464 if (!refcount_read(&ib_dev->refcount)) 1465 goto out; 1466 1467 disable_device(ib_dev); 1468 1469 /* Expedite removing unregistered pointers from the hash table */ 1470 free_netdevs(ib_dev); 1471 1472 ib_device_unregister_sysfs(ib_dev); 1473 device_del(&ib_dev->dev); 1474 ib_device_unregister_rdmacg(ib_dev); 1475 ib_cache_cleanup_one(ib_dev); 1476 1477 /* 1478 * Drivers using the new flow may not call ib_dealloc_device except 1479 * in error unwind prior to registration success. 1480 */ 1481 if (ib_dev->ops.dealloc_driver && 1482 ib_dev->ops.dealloc_driver != prevent_dealloc_device) { 1483 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1484 ib_dealloc_device(ib_dev); 1485 } 1486 out: 1487 mutex_unlock(&ib_dev->unregistration_lock); 1488 } 1489 1490 /** 1491 * ib_unregister_device - Unregister an IB device 1492 * @ib_dev: The device to unregister 1493 * 1494 * Unregister an IB device. All clients will receive a remove callback. 1495 * 1496 * Callers should call this routine only once, and protect against races with 1497 * registration. Typically it should only be called as part of a remove 1498 * callback in an implementation of driver core's struct device_driver and 1499 * related. 1500 * 1501 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1502 * this function. 1503 */ 1504 void ib_unregister_device(struct ib_device *ib_dev) 1505 { 1506 get_device(&ib_dev->dev); 1507 __ib_unregister_device(ib_dev); 1508 put_device(&ib_dev->dev); 1509 } 1510 EXPORT_SYMBOL(ib_unregister_device); 1511 1512 /** 1513 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1514 * @ib_dev: The device to unregister 1515 * 1516 * This is the same as ib_unregister_device(), except it includes an internal 1517 * ib_device_put() that should match a 'get' obtained by the caller. 1518 * 1519 * It is safe to call this routine concurrently from multiple threads while 1520 * holding the 'get'. When the function returns the device is fully 1521 * unregistered. 1522 * 1523 * Drivers using this flow MUST use the driver_unregister callback to clean up 1524 * their resources associated with the device and dealloc it. 1525 */ 1526 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1527 { 1528 WARN_ON(!ib_dev->ops.dealloc_driver); 1529 get_device(&ib_dev->dev); 1530 ib_device_put(ib_dev); 1531 __ib_unregister_device(ib_dev); 1532 put_device(&ib_dev->dev); 1533 } 1534 EXPORT_SYMBOL(ib_unregister_device_and_put); 1535 1536 /** 1537 * ib_unregister_driver - Unregister all IB devices for a driver 1538 * @driver_id: The driver to unregister 1539 * 1540 * This implements a fence for device unregistration. It only returns once all 1541 * devices associated with the driver_id have fully completed their 1542 * unregistration and returned from ib_unregister_device*(). 1543 * 1544 * If device's are not yet unregistered it goes ahead and starts unregistering 1545 * them. 1546 * 1547 * This does not block creation of new devices with the given driver_id, that 1548 * is the responsibility of the caller. 1549 */ 1550 void ib_unregister_driver(enum rdma_driver_id driver_id) 1551 { 1552 struct ib_device *ib_dev; 1553 unsigned long index; 1554 1555 down_read(&devices_rwsem); 1556 xa_for_each (&devices, index, ib_dev) { 1557 if (ib_dev->ops.driver_id != driver_id) 1558 continue; 1559 1560 get_device(&ib_dev->dev); 1561 up_read(&devices_rwsem); 1562 1563 WARN_ON(!ib_dev->ops.dealloc_driver); 1564 __ib_unregister_device(ib_dev); 1565 1566 put_device(&ib_dev->dev); 1567 down_read(&devices_rwsem); 1568 } 1569 up_read(&devices_rwsem); 1570 } 1571 EXPORT_SYMBOL(ib_unregister_driver); 1572 1573 static void ib_unregister_work(struct work_struct *work) 1574 { 1575 struct ib_device *ib_dev = 1576 container_of(work, struct ib_device, unregistration_work); 1577 1578 __ib_unregister_device(ib_dev); 1579 put_device(&ib_dev->dev); 1580 } 1581 1582 /** 1583 * ib_unregister_device_queued - Unregister a device using a work queue 1584 * @ib_dev: The device to unregister 1585 * 1586 * This schedules an asynchronous unregistration using a WQ for the device. A 1587 * driver should use this to avoid holding locks while doing unregistration, 1588 * such as holding the RTNL lock. 1589 * 1590 * Drivers using this API must use ib_unregister_driver before module unload 1591 * to ensure that all scheduled unregistrations have completed. 1592 */ 1593 void ib_unregister_device_queued(struct ib_device *ib_dev) 1594 { 1595 WARN_ON(!refcount_read(&ib_dev->refcount)); 1596 WARN_ON(!ib_dev->ops.dealloc_driver); 1597 get_device(&ib_dev->dev); 1598 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work)) 1599 put_device(&ib_dev->dev); 1600 } 1601 EXPORT_SYMBOL(ib_unregister_device_queued); 1602 1603 /* 1604 * The caller must pass in a device that has the kref held and the refcount 1605 * released. If the device is in cur_net and still registered then it is moved 1606 * into net. 1607 */ 1608 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1609 struct net *net) 1610 { 1611 int ret2 = -EINVAL; 1612 int ret; 1613 1614 mutex_lock(&device->unregistration_lock); 1615 1616 /* 1617 * If a device not under ib_device_get() or if the unregistration_lock 1618 * is not held, the namespace can be changed, or it can be unregistered. 1619 * Check again under the lock. 1620 */ 1621 if (refcount_read(&device->refcount) == 0 || 1622 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1623 ret = -ENODEV; 1624 goto out; 1625 } 1626 1627 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1628 disable_device(device); 1629 1630 /* 1631 * At this point no one can be using the device, so it is safe to 1632 * change the namespace. 1633 */ 1634 write_pnet(&device->coredev.rdma_net, net); 1635 1636 down_read(&devices_rwsem); 1637 /* 1638 * Currently rdma devices are system wide unique. So the device name 1639 * is guaranteed free in the new namespace. Publish the new namespace 1640 * at the sysfs level. 1641 */ 1642 ret = device_rename(&device->dev, dev_name(&device->dev)); 1643 up_read(&devices_rwsem); 1644 if (ret) { 1645 dev_warn(&device->dev, 1646 "%s: Couldn't rename device after namespace change\n", 1647 __func__); 1648 /* Try and put things back and re-enable the device */ 1649 write_pnet(&device->coredev.rdma_net, cur_net); 1650 } 1651 1652 ret2 = enable_device_and_get(device); 1653 if (ret2) { 1654 /* 1655 * This shouldn't really happen, but if it does, let the user 1656 * retry at later point. So don't disable the device. 1657 */ 1658 dev_warn(&device->dev, 1659 "%s: Couldn't re-enable device after namespace change\n", 1660 __func__); 1661 } 1662 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1663 1664 ib_device_put(device); 1665 out: 1666 mutex_unlock(&device->unregistration_lock); 1667 if (ret) 1668 return ret; 1669 return ret2; 1670 } 1671 1672 int ib_device_set_netns_put(struct sk_buff *skb, 1673 struct ib_device *dev, u32 ns_fd) 1674 { 1675 struct net *net; 1676 int ret; 1677 1678 net = get_net_ns_by_fd(ns_fd); 1679 if (IS_ERR(net)) { 1680 ret = PTR_ERR(net); 1681 goto net_err; 1682 } 1683 1684 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1685 ret = -EPERM; 1686 goto ns_err; 1687 } 1688 1689 /* 1690 * Currently supported only for those providers which support 1691 * disassociation and don't do port specific sysfs init. Once a 1692 * port_cleanup infrastructure is implemented, this limitation will be 1693 * removed. 1694 */ 1695 if (!dev->ops.disassociate_ucontext || dev->ops.init_port || 1696 ib_devices_shared_netns) { 1697 ret = -EOPNOTSUPP; 1698 goto ns_err; 1699 } 1700 1701 get_device(&dev->dev); 1702 ib_device_put(dev); 1703 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1704 put_device(&dev->dev); 1705 1706 put_net(net); 1707 return ret; 1708 1709 ns_err: 1710 put_net(net); 1711 net_err: 1712 ib_device_put(dev); 1713 return ret; 1714 } 1715 1716 static struct pernet_operations rdma_dev_net_ops = { 1717 .init = rdma_dev_init_net, 1718 .exit = rdma_dev_exit_net, 1719 .id = &rdma_dev_net_id, 1720 .size = sizeof(struct rdma_dev_net), 1721 }; 1722 1723 static int assign_client_id(struct ib_client *client) 1724 { 1725 int ret; 1726 1727 down_write(&clients_rwsem); 1728 /* 1729 * The add/remove callbacks must be called in FIFO/LIFO order. To 1730 * achieve this we assign client_ids so they are sorted in 1731 * registration order. 1732 */ 1733 client->client_id = highest_client_id; 1734 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1735 if (ret) 1736 goto out; 1737 1738 highest_client_id++; 1739 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1740 1741 out: 1742 up_write(&clients_rwsem); 1743 return ret; 1744 } 1745 1746 static void remove_client_id(struct ib_client *client) 1747 { 1748 down_write(&clients_rwsem); 1749 xa_erase(&clients, client->client_id); 1750 for (; highest_client_id; highest_client_id--) 1751 if (xa_load(&clients, highest_client_id - 1)) 1752 break; 1753 up_write(&clients_rwsem); 1754 } 1755 1756 /** 1757 * ib_register_client - Register an IB client 1758 * @client:Client to register 1759 * 1760 * Upper level users of the IB drivers can use ib_register_client() to 1761 * register callbacks for IB device addition and removal. When an IB 1762 * device is added, each registered client's add method will be called 1763 * (in the order the clients were registered), and when a device is 1764 * removed, each client's remove method will be called (in the reverse 1765 * order that clients were registered). In addition, when 1766 * ib_register_client() is called, the client will receive an add 1767 * callback for all devices already registered. 1768 */ 1769 int ib_register_client(struct ib_client *client) 1770 { 1771 struct ib_device *device; 1772 unsigned long index; 1773 int ret; 1774 1775 refcount_set(&client->uses, 1); 1776 init_completion(&client->uses_zero); 1777 ret = assign_client_id(client); 1778 if (ret) 1779 return ret; 1780 1781 down_read(&devices_rwsem); 1782 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1783 ret = add_client_context(device, client); 1784 if (ret) { 1785 up_read(&devices_rwsem); 1786 ib_unregister_client(client); 1787 return ret; 1788 } 1789 } 1790 up_read(&devices_rwsem); 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(ib_register_client); 1794 1795 /** 1796 * ib_unregister_client - Unregister an IB client 1797 * @client:Client to unregister 1798 * 1799 * Upper level users use ib_unregister_client() to remove their client 1800 * registration. When ib_unregister_client() is called, the client 1801 * will receive a remove callback for each IB device still registered. 1802 * 1803 * This is a full fence, once it returns no client callbacks will be called, 1804 * or are running in another thread. 1805 */ 1806 void ib_unregister_client(struct ib_client *client) 1807 { 1808 struct ib_device *device; 1809 unsigned long index; 1810 1811 down_write(&clients_rwsem); 1812 ib_client_put(client); 1813 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1814 up_write(&clients_rwsem); 1815 1816 /* We do not want to have locks while calling client->remove() */ 1817 rcu_read_lock(); 1818 xa_for_each (&devices, index, device) { 1819 if (!ib_device_try_get(device)) 1820 continue; 1821 rcu_read_unlock(); 1822 1823 remove_client_context(device, client->client_id); 1824 1825 ib_device_put(device); 1826 rcu_read_lock(); 1827 } 1828 rcu_read_unlock(); 1829 1830 /* 1831 * remove_client_context() is not a fence, it can return even though a 1832 * removal is ongoing. Wait until all removals are completed. 1833 */ 1834 wait_for_completion(&client->uses_zero); 1835 remove_client_id(client); 1836 } 1837 EXPORT_SYMBOL(ib_unregister_client); 1838 1839 static int __ib_get_global_client_nl_info(const char *client_name, 1840 struct ib_client_nl_info *res) 1841 { 1842 struct ib_client *client; 1843 unsigned long index; 1844 int ret = -ENOENT; 1845 1846 down_read(&clients_rwsem); 1847 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1848 if (strcmp(client->name, client_name) != 0) 1849 continue; 1850 if (!client->get_global_nl_info) { 1851 ret = -EOPNOTSUPP; 1852 break; 1853 } 1854 ret = client->get_global_nl_info(res); 1855 if (WARN_ON(ret == -ENOENT)) 1856 ret = -EINVAL; 1857 if (!ret && res->cdev) 1858 get_device(res->cdev); 1859 break; 1860 } 1861 up_read(&clients_rwsem); 1862 return ret; 1863 } 1864 1865 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1866 const char *client_name, 1867 struct ib_client_nl_info *res) 1868 { 1869 unsigned long index; 1870 void *client_data; 1871 int ret = -ENOENT; 1872 1873 down_read(&ibdev->client_data_rwsem); 1874 xan_for_each_marked (&ibdev->client_data, index, client_data, 1875 CLIENT_DATA_REGISTERED) { 1876 struct ib_client *client = xa_load(&clients, index); 1877 1878 if (!client || strcmp(client->name, client_name) != 0) 1879 continue; 1880 if (!client->get_nl_info) { 1881 ret = -EOPNOTSUPP; 1882 break; 1883 } 1884 ret = client->get_nl_info(ibdev, client_data, res); 1885 if (WARN_ON(ret == -ENOENT)) 1886 ret = -EINVAL; 1887 1888 /* 1889 * The cdev is guaranteed valid as long as we are inside the 1890 * client_data_rwsem as remove_one can't be called. Keep it 1891 * valid for the caller. 1892 */ 1893 if (!ret && res->cdev) 1894 get_device(res->cdev); 1895 break; 1896 } 1897 up_read(&ibdev->client_data_rwsem); 1898 1899 return ret; 1900 } 1901 1902 /** 1903 * ib_get_client_nl_info - Fetch the nl_info from a client 1904 * @ibdev: IB device 1905 * @client_name: Name of the client 1906 * @res: Result of the query 1907 */ 1908 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1909 struct ib_client_nl_info *res) 1910 { 1911 int ret; 1912 1913 if (ibdev) 1914 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1915 else 1916 ret = __ib_get_global_client_nl_info(client_name, res); 1917 #ifdef CONFIG_MODULES 1918 if (ret == -ENOENT) { 1919 request_module("rdma-client-%s", client_name); 1920 if (ibdev) 1921 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1922 else 1923 ret = __ib_get_global_client_nl_info(client_name, res); 1924 } 1925 #endif 1926 if (ret) { 1927 if (ret == -ENOENT) 1928 return -EOPNOTSUPP; 1929 return ret; 1930 } 1931 1932 if (WARN_ON(!res->cdev)) 1933 return -EINVAL; 1934 return 0; 1935 } 1936 1937 /** 1938 * ib_set_client_data - Set IB client context 1939 * @device:Device to set context for 1940 * @client:Client to set context for 1941 * @data:Context to set 1942 * 1943 * ib_set_client_data() sets client context data that can be retrieved with 1944 * ib_get_client_data(). This can only be called while the client is 1945 * registered to the device, once the ib_client remove() callback returns this 1946 * cannot be called. 1947 */ 1948 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1949 void *data) 1950 { 1951 void *rc; 1952 1953 if (WARN_ON(IS_ERR(data))) 1954 data = NULL; 1955 1956 rc = xa_store(&device->client_data, client->client_id, data, 1957 GFP_KERNEL); 1958 WARN_ON(xa_is_err(rc)); 1959 } 1960 EXPORT_SYMBOL(ib_set_client_data); 1961 1962 /** 1963 * ib_register_event_handler - Register an IB event handler 1964 * @event_handler:Handler to register 1965 * 1966 * ib_register_event_handler() registers an event handler that will be 1967 * called back when asynchronous IB events occur (as defined in 1968 * chapter 11 of the InfiniBand Architecture Specification). This 1969 * callback occurs in workqueue context. 1970 */ 1971 void ib_register_event_handler(struct ib_event_handler *event_handler) 1972 { 1973 down_write(&event_handler->device->event_handler_rwsem); 1974 list_add_tail(&event_handler->list, 1975 &event_handler->device->event_handler_list); 1976 up_write(&event_handler->device->event_handler_rwsem); 1977 } 1978 EXPORT_SYMBOL(ib_register_event_handler); 1979 1980 /** 1981 * ib_unregister_event_handler - Unregister an event handler 1982 * @event_handler:Handler to unregister 1983 * 1984 * Unregister an event handler registered with 1985 * ib_register_event_handler(). 1986 */ 1987 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 1988 { 1989 down_write(&event_handler->device->event_handler_rwsem); 1990 list_del(&event_handler->list); 1991 up_write(&event_handler->device->event_handler_rwsem); 1992 } 1993 EXPORT_SYMBOL(ib_unregister_event_handler); 1994 1995 void ib_dispatch_event_clients(struct ib_event *event) 1996 { 1997 struct ib_event_handler *handler; 1998 1999 down_read(&event->device->event_handler_rwsem); 2000 2001 list_for_each_entry(handler, &event->device->event_handler_list, list) 2002 handler->handler(handler, event); 2003 2004 up_read(&event->device->event_handler_rwsem); 2005 } 2006 2007 static int iw_query_port(struct ib_device *device, 2008 u8 port_num, 2009 struct ib_port_attr *port_attr) 2010 { 2011 struct in_device *inetdev; 2012 struct net_device *netdev; 2013 2014 memset(port_attr, 0, sizeof(*port_attr)); 2015 2016 netdev = ib_device_get_netdev(device, port_num); 2017 if (!netdev) 2018 return -ENODEV; 2019 2020 port_attr->max_mtu = IB_MTU_4096; 2021 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 2022 2023 if (!netif_carrier_ok(netdev)) { 2024 port_attr->state = IB_PORT_DOWN; 2025 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 2026 } else { 2027 rcu_read_lock(); 2028 inetdev = __in_dev_get_rcu(netdev); 2029 2030 if (inetdev && inetdev->ifa_list) { 2031 port_attr->state = IB_PORT_ACTIVE; 2032 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2033 } else { 2034 port_attr->state = IB_PORT_INIT; 2035 port_attr->phys_state = 2036 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2037 } 2038 2039 rcu_read_unlock(); 2040 } 2041 2042 dev_put(netdev); 2043 return device->ops.query_port(device, port_num, port_attr); 2044 } 2045 2046 static int __ib_query_port(struct ib_device *device, 2047 u8 port_num, 2048 struct ib_port_attr *port_attr) 2049 { 2050 union ib_gid gid = {}; 2051 int err; 2052 2053 memset(port_attr, 0, sizeof(*port_attr)); 2054 2055 err = device->ops.query_port(device, port_num, port_attr); 2056 if (err || port_attr->subnet_prefix) 2057 return err; 2058 2059 if (rdma_port_get_link_layer(device, port_num) != 2060 IB_LINK_LAYER_INFINIBAND) 2061 return 0; 2062 2063 err = device->ops.query_gid(device, port_num, 0, &gid); 2064 if (err) 2065 return err; 2066 2067 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 2068 return 0; 2069 } 2070 2071 /** 2072 * ib_query_port - Query IB port attributes 2073 * @device:Device to query 2074 * @port_num:Port number to query 2075 * @port_attr:Port attributes 2076 * 2077 * ib_query_port() returns the attributes of a port through the 2078 * @port_attr pointer. 2079 */ 2080 int ib_query_port(struct ib_device *device, 2081 u8 port_num, 2082 struct ib_port_attr *port_attr) 2083 { 2084 if (!rdma_is_port_valid(device, port_num)) 2085 return -EINVAL; 2086 2087 if (rdma_protocol_iwarp(device, port_num)) 2088 return iw_query_port(device, port_num, port_attr); 2089 else 2090 return __ib_query_port(device, port_num, port_attr); 2091 } 2092 EXPORT_SYMBOL(ib_query_port); 2093 2094 static void add_ndev_hash(struct ib_port_data *pdata) 2095 { 2096 unsigned long flags; 2097 2098 might_sleep(); 2099 2100 spin_lock_irqsave(&ndev_hash_lock, flags); 2101 if (hash_hashed(&pdata->ndev_hash_link)) { 2102 hash_del_rcu(&pdata->ndev_hash_link); 2103 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2104 /* 2105 * We cannot do hash_add_rcu after a hash_del_rcu until the 2106 * grace period 2107 */ 2108 synchronize_rcu(); 2109 spin_lock_irqsave(&ndev_hash_lock, flags); 2110 } 2111 if (pdata->netdev) 2112 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2113 (uintptr_t)pdata->netdev); 2114 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2115 } 2116 2117 /** 2118 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2119 * @ib_dev: Device to modify 2120 * @ndev: net_device to affiliate, may be NULL 2121 * @port: IB port the net_device is connected to 2122 * 2123 * Drivers should use this to link the ib_device to a netdev so the netdev 2124 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2125 * affiliated with any port. 2126 * 2127 * The caller must ensure that the given ndev is not unregistered or 2128 * unregistering, and that either the ib_device is unregistered or 2129 * ib_device_set_netdev() is called with NULL when the ndev sends a 2130 * NETDEV_UNREGISTER event. 2131 */ 2132 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2133 unsigned int port) 2134 { 2135 struct net_device *old_ndev; 2136 struct ib_port_data *pdata; 2137 unsigned long flags; 2138 int ret; 2139 2140 /* 2141 * Drivers wish to call this before ib_register_driver, so we have to 2142 * setup the port data early. 2143 */ 2144 ret = alloc_port_data(ib_dev); 2145 if (ret) 2146 return ret; 2147 2148 if (!rdma_is_port_valid(ib_dev, port)) 2149 return -EINVAL; 2150 2151 pdata = &ib_dev->port_data[port]; 2152 spin_lock_irqsave(&pdata->netdev_lock, flags); 2153 old_ndev = rcu_dereference_protected( 2154 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2155 if (old_ndev == ndev) { 2156 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2157 return 0; 2158 } 2159 2160 if (ndev) 2161 dev_hold(ndev); 2162 rcu_assign_pointer(pdata->netdev, ndev); 2163 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2164 2165 add_ndev_hash(pdata); 2166 if (old_ndev) 2167 dev_put(old_ndev); 2168 2169 return 0; 2170 } 2171 EXPORT_SYMBOL(ib_device_set_netdev); 2172 2173 static void free_netdevs(struct ib_device *ib_dev) 2174 { 2175 unsigned long flags; 2176 unsigned int port; 2177 2178 if (!ib_dev->port_data) 2179 return; 2180 2181 rdma_for_each_port (ib_dev, port) { 2182 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2183 struct net_device *ndev; 2184 2185 spin_lock_irqsave(&pdata->netdev_lock, flags); 2186 ndev = rcu_dereference_protected( 2187 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2188 if (ndev) { 2189 spin_lock(&ndev_hash_lock); 2190 hash_del_rcu(&pdata->ndev_hash_link); 2191 spin_unlock(&ndev_hash_lock); 2192 2193 /* 2194 * If this is the last dev_put there is still a 2195 * synchronize_rcu before the netdev is kfreed, so we 2196 * can continue to rely on unlocked pointer 2197 * comparisons after the put 2198 */ 2199 rcu_assign_pointer(pdata->netdev, NULL); 2200 dev_put(ndev); 2201 } 2202 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2203 } 2204 } 2205 2206 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2207 unsigned int port) 2208 { 2209 struct ib_port_data *pdata; 2210 struct net_device *res; 2211 2212 if (!rdma_is_port_valid(ib_dev, port)) 2213 return NULL; 2214 2215 pdata = &ib_dev->port_data[port]; 2216 2217 /* 2218 * New drivers should use ib_device_set_netdev() not the legacy 2219 * get_netdev(). 2220 */ 2221 if (ib_dev->ops.get_netdev) 2222 res = ib_dev->ops.get_netdev(ib_dev, port); 2223 else { 2224 spin_lock(&pdata->netdev_lock); 2225 res = rcu_dereference_protected( 2226 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2227 if (res) 2228 dev_hold(res); 2229 spin_unlock(&pdata->netdev_lock); 2230 } 2231 2232 /* 2233 * If we are starting to unregister expedite things by preventing 2234 * propagation of an unregistering netdev. 2235 */ 2236 if (res && res->reg_state != NETREG_REGISTERED) { 2237 dev_put(res); 2238 return NULL; 2239 } 2240 2241 return res; 2242 } 2243 2244 /** 2245 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2246 * @ndev: netdev to locate 2247 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2248 * 2249 * Find and hold an ib_device that is associated with a netdev via 2250 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2251 * returned pointer. 2252 */ 2253 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2254 enum rdma_driver_id driver_id) 2255 { 2256 struct ib_device *res = NULL; 2257 struct ib_port_data *cur; 2258 2259 rcu_read_lock(); 2260 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2261 (uintptr_t)ndev) { 2262 if (rcu_access_pointer(cur->netdev) == ndev && 2263 (driver_id == RDMA_DRIVER_UNKNOWN || 2264 cur->ib_dev->ops.driver_id == driver_id) && 2265 ib_device_try_get(cur->ib_dev)) { 2266 res = cur->ib_dev; 2267 break; 2268 } 2269 } 2270 rcu_read_unlock(); 2271 2272 return res; 2273 } 2274 EXPORT_SYMBOL(ib_device_get_by_netdev); 2275 2276 /** 2277 * ib_enum_roce_netdev - enumerate all RoCE ports 2278 * @ib_dev : IB device we want to query 2279 * @filter: Should we call the callback? 2280 * @filter_cookie: Cookie passed to filter 2281 * @cb: Callback to call for each found RoCE ports 2282 * @cookie: Cookie passed back to the callback 2283 * 2284 * Enumerates all of the physical RoCE ports of ib_dev 2285 * which are related to netdevice and calls callback() on each 2286 * device for which filter() function returns non zero. 2287 */ 2288 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2289 roce_netdev_filter filter, 2290 void *filter_cookie, 2291 roce_netdev_callback cb, 2292 void *cookie) 2293 { 2294 unsigned int port; 2295 2296 rdma_for_each_port (ib_dev, port) 2297 if (rdma_protocol_roce(ib_dev, port)) { 2298 struct net_device *idev = 2299 ib_device_get_netdev(ib_dev, port); 2300 2301 if (filter(ib_dev, port, idev, filter_cookie)) 2302 cb(ib_dev, port, idev, cookie); 2303 2304 if (idev) 2305 dev_put(idev); 2306 } 2307 } 2308 2309 /** 2310 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2311 * @filter: Should we call the callback? 2312 * @filter_cookie: Cookie passed to filter 2313 * @cb: Callback to call for each found RoCE ports 2314 * @cookie: Cookie passed back to the callback 2315 * 2316 * Enumerates all RoCE devices' physical ports which are related 2317 * to netdevices and calls callback() on each device for which 2318 * filter() function returns non zero. 2319 */ 2320 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2321 void *filter_cookie, 2322 roce_netdev_callback cb, 2323 void *cookie) 2324 { 2325 struct ib_device *dev; 2326 unsigned long index; 2327 2328 down_read(&devices_rwsem); 2329 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2330 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2331 up_read(&devices_rwsem); 2332 } 2333 2334 /* 2335 * ib_enum_all_devs - enumerate all ib_devices 2336 * @cb: Callback to call for each found ib_device 2337 * 2338 * Enumerates all ib_devices and calls callback() on each device. 2339 */ 2340 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2341 struct netlink_callback *cb) 2342 { 2343 unsigned long index; 2344 struct ib_device *dev; 2345 unsigned int idx = 0; 2346 int ret = 0; 2347 2348 down_read(&devices_rwsem); 2349 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2350 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2351 continue; 2352 2353 ret = nldev_cb(dev, skb, cb, idx); 2354 if (ret) 2355 break; 2356 idx++; 2357 } 2358 up_read(&devices_rwsem); 2359 return ret; 2360 } 2361 2362 /** 2363 * ib_query_pkey - Get P_Key table entry 2364 * @device:Device to query 2365 * @port_num:Port number to query 2366 * @index:P_Key table index to query 2367 * @pkey:Returned P_Key 2368 * 2369 * ib_query_pkey() fetches the specified P_Key table entry. 2370 */ 2371 int ib_query_pkey(struct ib_device *device, 2372 u8 port_num, u16 index, u16 *pkey) 2373 { 2374 if (!rdma_is_port_valid(device, port_num)) 2375 return -EINVAL; 2376 2377 if (!device->ops.query_pkey) 2378 return -EOPNOTSUPP; 2379 2380 return device->ops.query_pkey(device, port_num, index, pkey); 2381 } 2382 EXPORT_SYMBOL(ib_query_pkey); 2383 2384 /** 2385 * ib_modify_device - Change IB device attributes 2386 * @device:Device to modify 2387 * @device_modify_mask:Mask of attributes to change 2388 * @device_modify:New attribute values 2389 * 2390 * ib_modify_device() changes a device's attributes as specified by 2391 * the @device_modify_mask and @device_modify structure. 2392 */ 2393 int ib_modify_device(struct ib_device *device, 2394 int device_modify_mask, 2395 struct ib_device_modify *device_modify) 2396 { 2397 if (!device->ops.modify_device) 2398 return -EOPNOTSUPP; 2399 2400 return device->ops.modify_device(device, device_modify_mask, 2401 device_modify); 2402 } 2403 EXPORT_SYMBOL(ib_modify_device); 2404 2405 /** 2406 * ib_modify_port - Modifies the attributes for the specified port. 2407 * @device: The device to modify. 2408 * @port_num: The number of the port to modify. 2409 * @port_modify_mask: Mask used to specify which attributes of the port 2410 * to change. 2411 * @port_modify: New attribute values for the port. 2412 * 2413 * ib_modify_port() changes a port's attributes as specified by the 2414 * @port_modify_mask and @port_modify structure. 2415 */ 2416 int ib_modify_port(struct ib_device *device, 2417 u8 port_num, int port_modify_mask, 2418 struct ib_port_modify *port_modify) 2419 { 2420 int rc; 2421 2422 if (!rdma_is_port_valid(device, port_num)) 2423 return -EINVAL; 2424 2425 if (device->ops.modify_port) 2426 rc = device->ops.modify_port(device, port_num, 2427 port_modify_mask, 2428 port_modify); 2429 else if (rdma_protocol_roce(device, port_num) && 2430 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2431 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2432 rc = 0; 2433 else 2434 rc = -EOPNOTSUPP; 2435 return rc; 2436 } 2437 EXPORT_SYMBOL(ib_modify_port); 2438 2439 /** 2440 * ib_find_gid - Returns the port number and GID table index where 2441 * a specified GID value occurs. Its searches only for IB link layer. 2442 * @device: The device to query. 2443 * @gid: The GID value to search for. 2444 * @port_num: The port number of the device where the GID value was found. 2445 * @index: The index into the GID table where the GID was found. This 2446 * parameter may be NULL. 2447 */ 2448 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2449 u8 *port_num, u16 *index) 2450 { 2451 union ib_gid tmp_gid; 2452 unsigned int port; 2453 int ret, i; 2454 2455 rdma_for_each_port (device, port) { 2456 if (!rdma_protocol_ib(device, port)) 2457 continue; 2458 2459 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2460 ++i) { 2461 ret = rdma_query_gid(device, port, i, &tmp_gid); 2462 if (ret) 2463 return ret; 2464 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2465 *port_num = port; 2466 if (index) 2467 *index = i; 2468 return 0; 2469 } 2470 } 2471 } 2472 2473 return -ENOENT; 2474 } 2475 EXPORT_SYMBOL(ib_find_gid); 2476 2477 /** 2478 * ib_find_pkey - Returns the PKey table index where a specified 2479 * PKey value occurs. 2480 * @device: The device to query. 2481 * @port_num: The port number of the device to search for the PKey. 2482 * @pkey: The PKey value to search for. 2483 * @index: The index into the PKey table where the PKey was found. 2484 */ 2485 int ib_find_pkey(struct ib_device *device, 2486 u8 port_num, u16 pkey, u16 *index) 2487 { 2488 int ret, i; 2489 u16 tmp_pkey; 2490 int partial_ix = -1; 2491 2492 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2493 ++i) { 2494 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2495 if (ret) 2496 return ret; 2497 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2498 /* if there is full-member pkey take it.*/ 2499 if (tmp_pkey & 0x8000) { 2500 *index = i; 2501 return 0; 2502 } 2503 if (partial_ix < 0) 2504 partial_ix = i; 2505 } 2506 } 2507 2508 /*no full-member, if exists take the limited*/ 2509 if (partial_ix >= 0) { 2510 *index = partial_ix; 2511 return 0; 2512 } 2513 return -ENOENT; 2514 } 2515 EXPORT_SYMBOL(ib_find_pkey); 2516 2517 /** 2518 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2519 * for a received CM request 2520 * @dev: An RDMA device on which the request has been received. 2521 * @port: Port number on the RDMA device. 2522 * @pkey: The Pkey the request came on. 2523 * @gid: A GID that the net_dev uses to communicate. 2524 * @addr: Contains the IP address that the request specified as its 2525 * destination. 2526 * 2527 */ 2528 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2529 u8 port, 2530 u16 pkey, 2531 const union ib_gid *gid, 2532 const struct sockaddr *addr) 2533 { 2534 struct net_device *net_dev = NULL; 2535 unsigned long index; 2536 void *client_data; 2537 2538 if (!rdma_protocol_ib(dev, port)) 2539 return NULL; 2540 2541 /* 2542 * Holding the read side guarantees that the client will not become 2543 * unregistered while we are calling get_net_dev_by_params() 2544 */ 2545 down_read(&dev->client_data_rwsem); 2546 xan_for_each_marked (&dev->client_data, index, client_data, 2547 CLIENT_DATA_REGISTERED) { 2548 struct ib_client *client = xa_load(&clients, index); 2549 2550 if (!client || !client->get_net_dev_by_params) 2551 continue; 2552 2553 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2554 addr, client_data); 2555 if (net_dev) 2556 break; 2557 } 2558 up_read(&dev->client_data_rwsem); 2559 2560 return net_dev; 2561 } 2562 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2563 2564 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2565 { 2566 struct ib_device_ops *dev_ops = &dev->ops; 2567 #define SET_DEVICE_OP(ptr, name) \ 2568 do { \ 2569 if (ops->name) \ 2570 if (!((ptr)->name)) \ 2571 (ptr)->name = ops->name; \ 2572 } while (0) 2573 2574 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2575 2576 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2577 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2578 dev_ops->driver_id != ops->driver_id); 2579 dev_ops->driver_id = ops->driver_id; 2580 } 2581 if (ops->owner) { 2582 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2583 dev_ops->owner = ops->owner; 2584 } 2585 if (ops->uverbs_abi_ver) 2586 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2587 2588 dev_ops->uverbs_no_driver_id_binding |= 2589 ops->uverbs_no_driver_id_binding; 2590 2591 SET_DEVICE_OP(dev_ops, add_gid); 2592 SET_DEVICE_OP(dev_ops, advise_mr); 2593 SET_DEVICE_OP(dev_ops, alloc_dm); 2594 SET_DEVICE_OP(dev_ops, alloc_hw_stats); 2595 SET_DEVICE_OP(dev_ops, alloc_mr); 2596 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2597 SET_DEVICE_OP(dev_ops, alloc_mw); 2598 SET_DEVICE_OP(dev_ops, alloc_pd); 2599 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2600 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2601 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2602 SET_DEVICE_OP(dev_ops, attach_mcast); 2603 SET_DEVICE_OP(dev_ops, check_mr_status); 2604 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2605 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2606 SET_DEVICE_OP(dev_ops, counter_dealloc); 2607 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2608 SET_DEVICE_OP(dev_ops, counter_update_stats); 2609 SET_DEVICE_OP(dev_ops, create_ah); 2610 SET_DEVICE_OP(dev_ops, create_counters); 2611 SET_DEVICE_OP(dev_ops, create_cq); 2612 SET_DEVICE_OP(dev_ops, create_flow); 2613 SET_DEVICE_OP(dev_ops, create_flow_action_esp); 2614 SET_DEVICE_OP(dev_ops, create_qp); 2615 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2616 SET_DEVICE_OP(dev_ops, create_srq); 2617 SET_DEVICE_OP(dev_ops, create_user_ah); 2618 SET_DEVICE_OP(dev_ops, create_wq); 2619 SET_DEVICE_OP(dev_ops, dealloc_dm); 2620 SET_DEVICE_OP(dev_ops, dealloc_driver); 2621 SET_DEVICE_OP(dev_ops, dealloc_mw); 2622 SET_DEVICE_OP(dev_ops, dealloc_pd); 2623 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2624 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2625 SET_DEVICE_OP(dev_ops, del_gid); 2626 SET_DEVICE_OP(dev_ops, dereg_mr); 2627 SET_DEVICE_OP(dev_ops, destroy_ah); 2628 SET_DEVICE_OP(dev_ops, destroy_counters); 2629 SET_DEVICE_OP(dev_ops, destroy_cq); 2630 SET_DEVICE_OP(dev_ops, destroy_flow); 2631 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2632 SET_DEVICE_OP(dev_ops, destroy_qp); 2633 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2634 SET_DEVICE_OP(dev_ops, destroy_srq); 2635 SET_DEVICE_OP(dev_ops, destroy_wq); 2636 SET_DEVICE_OP(dev_ops, detach_mcast); 2637 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2638 SET_DEVICE_OP(dev_ops, drain_rq); 2639 SET_DEVICE_OP(dev_ops, drain_sq); 2640 SET_DEVICE_OP(dev_ops, enable_driver); 2641 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry); 2642 SET_DEVICE_OP(dev_ops, fill_res_cq_entry); 2643 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw); 2644 SET_DEVICE_OP(dev_ops, fill_res_mr_entry); 2645 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw); 2646 SET_DEVICE_OP(dev_ops, fill_res_qp_entry); 2647 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw); 2648 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry); 2649 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2650 SET_DEVICE_OP(dev_ops, get_dma_mr); 2651 SET_DEVICE_OP(dev_ops, get_hw_stats); 2652 SET_DEVICE_OP(dev_ops, get_link_layer); 2653 SET_DEVICE_OP(dev_ops, get_netdev); 2654 SET_DEVICE_OP(dev_ops, get_port_immutable); 2655 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2656 SET_DEVICE_OP(dev_ops, get_vf_config); 2657 SET_DEVICE_OP(dev_ops, get_vf_guid); 2658 SET_DEVICE_OP(dev_ops, get_vf_stats); 2659 SET_DEVICE_OP(dev_ops, init_port); 2660 SET_DEVICE_OP(dev_ops, iw_accept); 2661 SET_DEVICE_OP(dev_ops, iw_add_ref); 2662 SET_DEVICE_OP(dev_ops, iw_connect); 2663 SET_DEVICE_OP(dev_ops, iw_create_listen); 2664 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2665 SET_DEVICE_OP(dev_ops, iw_get_qp); 2666 SET_DEVICE_OP(dev_ops, iw_reject); 2667 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2668 SET_DEVICE_OP(dev_ops, map_mr_sg); 2669 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2670 SET_DEVICE_OP(dev_ops, mmap); 2671 SET_DEVICE_OP(dev_ops, mmap_free); 2672 SET_DEVICE_OP(dev_ops, modify_ah); 2673 SET_DEVICE_OP(dev_ops, modify_cq); 2674 SET_DEVICE_OP(dev_ops, modify_device); 2675 SET_DEVICE_OP(dev_ops, modify_flow_action_esp); 2676 SET_DEVICE_OP(dev_ops, modify_port); 2677 SET_DEVICE_OP(dev_ops, modify_qp); 2678 SET_DEVICE_OP(dev_ops, modify_srq); 2679 SET_DEVICE_OP(dev_ops, modify_wq); 2680 SET_DEVICE_OP(dev_ops, peek_cq); 2681 SET_DEVICE_OP(dev_ops, poll_cq); 2682 SET_DEVICE_OP(dev_ops, post_recv); 2683 SET_DEVICE_OP(dev_ops, post_send); 2684 SET_DEVICE_OP(dev_ops, post_srq_recv); 2685 SET_DEVICE_OP(dev_ops, process_mad); 2686 SET_DEVICE_OP(dev_ops, query_ah); 2687 SET_DEVICE_OP(dev_ops, query_device); 2688 SET_DEVICE_OP(dev_ops, query_gid); 2689 SET_DEVICE_OP(dev_ops, query_pkey); 2690 SET_DEVICE_OP(dev_ops, query_port); 2691 SET_DEVICE_OP(dev_ops, query_qp); 2692 SET_DEVICE_OP(dev_ops, query_srq); 2693 SET_DEVICE_OP(dev_ops, query_ucontext); 2694 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2695 SET_DEVICE_OP(dev_ops, read_counters); 2696 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2697 SET_DEVICE_OP(dev_ops, reg_user_mr); 2698 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf); 2699 SET_DEVICE_OP(dev_ops, req_ncomp_notif); 2700 SET_DEVICE_OP(dev_ops, req_notify_cq); 2701 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2702 SET_DEVICE_OP(dev_ops, resize_cq); 2703 SET_DEVICE_OP(dev_ops, set_vf_guid); 2704 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2705 2706 SET_OBJ_SIZE(dev_ops, ib_ah); 2707 SET_OBJ_SIZE(dev_ops, ib_counters); 2708 SET_OBJ_SIZE(dev_ops, ib_cq); 2709 SET_OBJ_SIZE(dev_ops, ib_mw); 2710 SET_OBJ_SIZE(dev_ops, ib_pd); 2711 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table); 2712 SET_OBJ_SIZE(dev_ops, ib_srq); 2713 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2714 SET_OBJ_SIZE(dev_ops, ib_xrcd); 2715 } 2716 EXPORT_SYMBOL(ib_set_device_ops); 2717 2718 #ifdef CONFIG_INFINIBAND_VIRT_DMA 2719 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents) 2720 { 2721 struct scatterlist *s; 2722 int i; 2723 2724 for_each_sg(sg, s, nents, i) { 2725 sg_dma_address(s) = (uintptr_t)sg_virt(s); 2726 sg_dma_len(s) = s->length; 2727 } 2728 return nents; 2729 } 2730 EXPORT_SYMBOL(ib_dma_virt_map_sg); 2731 #endif /* CONFIG_INFINIBAND_VIRT_DMA */ 2732 2733 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2734 [RDMA_NL_LS_OP_RESOLVE] = { 2735 .doit = ib_nl_handle_resolve_resp, 2736 .flags = RDMA_NL_ADMIN_PERM, 2737 }, 2738 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2739 .doit = ib_nl_handle_set_timeout, 2740 .flags = RDMA_NL_ADMIN_PERM, 2741 }, 2742 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2743 .doit = ib_nl_handle_ip_res_resp, 2744 .flags = RDMA_NL_ADMIN_PERM, 2745 }, 2746 }; 2747 2748 static int __init ib_core_init(void) 2749 { 2750 int ret; 2751 2752 ib_wq = alloc_workqueue("infiniband", 0, 0); 2753 if (!ib_wq) 2754 return -ENOMEM; 2755 2756 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2757 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2758 if (!ib_comp_wq) { 2759 ret = -ENOMEM; 2760 goto err; 2761 } 2762 2763 ib_comp_unbound_wq = 2764 alloc_workqueue("ib-comp-unb-wq", 2765 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2766 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2767 if (!ib_comp_unbound_wq) { 2768 ret = -ENOMEM; 2769 goto err_comp; 2770 } 2771 2772 ret = class_register(&ib_class); 2773 if (ret) { 2774 pr_warn("Couldn't create InfiniBand device class\n"); 2775 goto err_comp_unbound; 2776 } 2777 2778 rdma_nl_init(); 2779 2780 ret = addr_init(); 2781 if (ret) { 2782 pr_warn("Couldn't init IB address resolution\n"); 2783 goto err_ibnl; 2784 } 2785 2786 ret = ib_mad_init(); 2787 if (ret) { 2788 pr_warn("Couldn't init IB MAD\n"); 2789 goto err_addr; 2790 } 2791 2792 ret = ib_sa_init(); 2793 if (ret) { 2794 pr_warn("Couldn't init SA\n"); 2795 goto err_mad; 2796 } 2797 2798 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 2799 if (ret) { 2800 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 2801 goto err_sa; 2802 } 2803 2804 ret = register_pernet_device(&rdma_dev_net_ops); 2805 if (ret) { 2806 pr_warn("Couldn't init compat dev. ret %d\n", ret); 2807 goto err_compat; 2808 } 2809 2810 nldev_init(); 2811 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 2812 roce_gid_mgmt_init(); 2813 2814 return 0; 2815 2816 err_compat: 2817 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2818 err_sa: 2819 ib_sa_cleanup(); 2820 err_mad: 2821 ib_mad_cleanup(); 2822 err_addr: 2823 addr_cleanup(); 2824 err_ibnl: 2825 class_unregister(&ib_class); 2826 err_comp_unbound: 2827 destroy_workqueue(ib_comp_unbound_wq); 2828 err_comp: 2829 destroy_workqueue(ib_comp_wq); 2830 err: 2831 destroy_workqueue(ib_wq); 2832 return ret; 2833 } 2834 2835 static void __exit ib_core_cleanup(void) 2836 { 2837 roce_gid_mgmt_cleanup(); 2838 nldev_exit(); 2839 rdma_nl_unregister(RDMA_NL_LS); 2840 unregister_pernet_device(&rdma_dev_net_ops); 2841 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2842 ib_sa_cleanup(); 2843 ib_mad_cleanup(); 2844 addr_cleanup(); 2845 rdma_nl_exit(); 2846 class_unregister(&ib_class); 2847 destroy_workqueue(ib_comp_unbound_wq); 2848 destroy_workqueue(ib_comp_wq); 2849 /* Make sure that any pending umem accounting work is done. */ 2850 destroy_workqueue(ib_wq); 2851 flush_workqueue(system_unbound_wq); 2852 WARN_ON(!xa_empty(&clients)); 2853 WARN_ON(!xa_empty(&devices)); 2854 } 2855 2856 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 2857 2858 /* ib core relies on netdev stack to first register net_ns_type_operations 2859 * ns kobject type before ib_core initialization. 2860 */ 2861 fs_initcall(ib_core_init); 2862 module_exit(ib_core_cleanup); 2863