1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/mutex.h> 41 #include <linux/netdevice.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <rdma/rdma_netlink.h> 45 #include <rdma/ib_addr.h> 46 #include <rdma/ib_cache.h> 47 48 #include "core_priv.h" 49 50 MODULE_AUTHOR("Roland Dreier"); 51 MODULE_DESCRIPTION("core kernel InfiniBand API"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 54 struct ib_client_data { 55 struct list_head list; 56 struct ib_client *client; 57 void * data; 58 /* The device or client is going down. Do not call client or device 59 * callbacks other than remove(). */ 60 bool going_down; 61 }; 62 63 struct workqueue_struct *ib_comp_wq; 64 struct workqueue_struct *ib_wq; 65 EXPORT_SYMBOL_GPL(ib_wq); 66 67 /* The device_list and client_list contain devices and clients after their 68 * registration has completed, and the devices and clients are removed 69 * during unregistration. */ 70 static LIST_HEAD(device_list); 71 static LIST_HEAD(client_list); 72 73 /* 74 * device_mutex and lists_rwsem protect access to both device_list and 75 * client_list. device_mutex protects writer access by device and client 76 * registration / de-registration. lists_rwsem protects reader access to 77 * these lists. Iterators of these lists must lock it for read, while updates 78 * to the lists must be done with a write lock. A special case is when the 79 * device_mutex is locked. In this case locking the lists for read access is 80 * not necessary as the device_mutex implies it. 81 * 82 * lists_rwsem also protects access to the client data list. 83 */ 84 static DEFINE_MUTEX(device_mutex); 85 static DECLARE_RWSEM(lists_rwsem); 86 87 static int ib_security_change(struct notifier_block *nb, unsigned long event, 88 void *lsm_data); 89 static void ib_policy_change_task(struct work_struct *work); 90 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 91 92 static struct notifier_block ibdev_lsm_nb = { 93 .notifier_call = ib_security_change, 94 }; 95 96 static int ib_device_check_mandatory(struct ib_device *device) 97 { 98 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device, x), #x } 99 static const struct { 100 size_t offset; 101 char *name; 102 } mandatory_table[] = { 103 IB_MANDATORY_FUNC(query_device), 104 IB_MANDATORY_FUNC(query_port), 105 IB_MANDATORY_FUNC(query_pkey), 106 IB_MANDATORY_FUNC(query_gid), 107 IB_MANDATORY_FUNC(alloc_pd), 108 IB_MANDATORY_FUNC(dealloc_pd), 109 IB_MANDATORY_FUNC(create_ah), 110 IB_MANDATORY_FUNC(destroy_ah), 111 IB_MANDATORY_FUNC(create_qp), 112 IB_MANDATORY_FUNC(modify_qp), 113 IB_MANDATORY_FUNC(destroy_qp), 114 IB_MANDATORY_FUNC(post_send), 115 IB_MANDATORY_FUNC(post_recv), 116 IB_MANDATORY_FUNC(create_cq), 117 IB_MANDATORY_FUNC(destroy_cq), 118 IB_MANDATORY_FUNC(poll_cq), 119 IB_MANDATORY_FUNC(req_notify_cq), 120 IB_MANDATORY_FUNC(get_dma_mr), 121 IB_MANDATORY_FUNC(dereg_mr), 122 IB_MANDATORY_FUNC(get_port_immutable) 123 }; 124 int i; 125 126 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 127 if (!*(void **) ((void *) device + mandatory_table[i].offset)) { 128 pr_warn("Device %s is missing mandatory function %s\n", 129 device->name, mandatory_table[i].name); 130 return -EINVAL; 131 } 132 } 133 134 return 0; 135 } 136 137 static struct ib_device *__ib_device_get_by_index(u32 index) 138 { 139 struct ib_device *device; 140 141 list_for_each_entry(device, &device_list, core_list) 142 if (device->index == index) 143 return device; 144 145 return NULL; 146 } 147 148 /* 149 * Caller is responsible to return refrerence count by calling put_device() 150 */ 151 struct ib_device *ib_device_get_by_index(u32 index) 152 { 153 struct ib_device *device; 154 155 down_read(&lists_rwsem); 156 device = __ib_device_get_by_index(index); 157 if (device) 158 get_device(&device->dev); 159 160 up_read(&lists_rwsem); 161 return device; 162 } 163 164 static struct ib_device *__ib_device_get_by_name(const char *name) 165 { 166 struct ib_device *device; 167 168 list_for_each_entry(device, &device_list, core_list) 169 if (!strncmp(name, device->name, IB_DEVICE_NAME_MAX)) 170 return device; 171 172 return NULL; 173 } 174 175 static int alloc_name(char *name) 176 { 177 unsigned long *inuse; 178 char buf[IB_DEVICE_NAME_MAX]; 179 struct ib_device *device; 180 int i; 181 182 inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL); 183 if (!inuse) 184 return -ENOMEM; 185 186 list_for_each_entry(device, &device_list, core_list) { 187 if (!sscanf(device->name, name, &i)) 188 continue; 189 if (i < 0 || i >= PAGE_SIZE * 8) 190 continue; 191 snprintf(buf, sizeof buf, name, i); 192 if (!strncmp(buf, device->name, IB_DEVICE_NAME_MAX)) 193 set_bit(i, inuse); 194 } 195 196 i = find_first_zero_bit(inuse, PAGE_SIZE * 8); 197 free_page((unsigned long) inuse); 198 snprintf(buf, sizeof buf, name, i); 199 200 if (__ib_device_get_by_name(buf)) 201 return -ENFILE; 202 203 strlcpy(name, buf, IB_DEVICE_NAME_MAX); 204 return 0; 205 } 206 207 static void ib_device_release(struct device *device) 208 { 209 struct ib_device *dev = container_of(device, struct ib_device, dev); 210 211 WARN_ON(dev->reg_state == IB_DEV_REGISTERED); 212 if (dev->reg_state == IB_DEV_UNREGISTERED) { 213 /* 214 * In IB_DEV_UNINITIALIZED state, cache or port table 215 * is not even created. Free cache and port table only when 216 * device reaches UNREGISTERED state. 217 */ 218 ib_cache_release_one(dev); 219 kfree(dev->port_immutable); 220 } 221 kfree(dev); 222 } 223 224 static int ib_device_uevent(struct device *device, 225 struct kobj_uevent_env *env) 226 { 227 struct ib_device *dev = container_of(device, struct ib_device, dev); 228 229 if (add_uevent_var(env, "NAME=%s", dev->name)) 230 return -ENOMEM; 231 232 /* 233 * It would be nice to pass the node GUID with the event... 234 */ 235 236 return 0; 237 } 238 239 static struct class ib_class = { 240 .name = "infiniband", 241 .dev_release = ib_device_release, 242 .dev_uevent = ib_device_uevent, 243 }; 244 245 /** 246 * ib_alloc_device - allocate an IB device struct 247 * @size:size of structure to allocate 248 * 249 * Low-level drivers should use ib_alloc_device() to allocate &struct 250 * ib_device. @size is the size of the structure to be allocated, 251 * including any private data used by the low-level driver. 252 * ib_dealloc_device() must be used to free structures allocated with 253 * ib_alloc_device(). 254 */ 255 struct ib_device *ib_alloc_device(size_t size) 256 { 257 struct ib_device *device; 258 259 if (WARN_ON(size < sizeof(struct ib_device))) 260 return NULL; 261 262 device = kzalloc(size, GFP_KERNEL); 263 if (!device) 264 return NULL; 265 266 rdma_restrack_init(&device->res); 267 268 device->dev.class = &ib_class; 269 device_initialize(&device->dev); 270 271 dev_set_drvdata(&device->dev, device); 272 273 INIT_LIST_HEAD(&device->event_handler_list); 274 spin_lock_init(&device->event_handler_lock); 275 spin_lock_init(&device->client_data_lock); 276 INIT_LIST_HEAD(&device->client_data_list); 277 INIT_LIST_HEAD(&device->port_list); 278 279 return device; 280 } 281 EXPORT_SYMBOL(ib_alloc_device); 282 283 /** 284 * ib_dealloc_device - free an IB device struct 285 * @device:structure to free 286 * 287 * Free a structure allocated with ib_alloc_device(). 288 */ 289 void ib_dealloc_device(struct ib_device *device) 290 { 291 WARN_ON(device->reg_state != IB_DEV_UNREGISTERED && 292 device->reg_state != IB_DEV_UNINITIALIZED); 293 put_device(&device->dev); 294 } 295 EXPORT_SYMBOL(ib_dealloc_device); 296 297 static int add_client_context(struct ib_device *device, struct ib_client *client) 298 { 299 struct ib_client_data *context; 300 unsigned long flags; 301 302 context = kmalloc(sizeof *context, GFP_KERNEL); 303 if (!context) 304 return -ENOMEM; 305 306 context->client = client; 307 context->data = NULL; 308 context->going_down = false; 309 310 down_write(&lists_rwsem); 311 spin_lock_irqsave(&device->client_data_lock, flags); 312 list_add(&context->list, &device->client_data_list); 313 spin_unlock_irqrestore(&device->client_data_lock, flags); 314 up_write(&lists_rwsem); 315 316 return 0; 317 } 318 319 static int verify_immutable(const struct ib_device *dev, u8 port) 320 { 321 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 322 rdma_max_mad_size(dev, port) != 0); 323 } 324 325 static int read_port_immutable(struct ib_device *device) 326 { 327 int ret; 328 u8 start_port = rdma_start_port(device); 329 u8 end_port = rdma_end_port(device); 330 u8 port; 331 332 /** 333 * device->port_immutable is indexed directly by the port number to make 334 * access to this data as efficient as possible. 335 * 336 * Therefore port_immutable is declared as a 1 based array with 337 * potential empty slots at the beginning. 338 */ 339 device->port_immutable = kzalloc(sizeof(*device->port_immutable) 340 * (end_port + 1), 341 GFP_KERNEL); 342 if (!device->port_immutable) 343 return -ENOMEM; 344 345 for (port = start_port; port <= end_port; ++port) { 346 ret = device->get_port_immutable(device, port, 347 &device->port_immutable[port]); 348 if (ret) 349 return ret; 350 351 if (verify_immutable(device, port)) 352 return -EINVAL; 353 } 354 return 0; 355 } 356 357 void ib_get_device_fw_str(struct ib_device *dev, char *str) 358 { 359 if (dev->get_dev_fw_str) 360 dev->get_dev_fw_str(dev, str); 361 else 362 str[0] = '\0'; 363 } 364 EXPORT_SYMBOL(ib_get_device_fw_str); 365 366 static int setup_port_pkey_list(struct ib_device *device) 367 { 368 int i; 369 370 /** 371 * device->port_pkey_list is indexed directly by the port number, 372 * Therefore it is declared as a 1 based array with potential empty 373 * slots at the beginning. 374 */ 375 device->port_pkey_list = kcalloc(rdma_end_port(device) + 1, 376 sizeof(*device->port_pkey_list), 377 GFP_KERNEL); 378 379 if (!device->port_pkey_list) 380 return -ENOMEM; 381 382 for (i = 0; i < (rdma_end_port(device) + 1); i++) { 383 spin_lock_init(&device->port_pkey_list[i].list_lock); 384 INIT_LIST_HEAD(&device->port_pkey_list[i].pkey_list); 385 } 386 387 return 0; 388 } 389 390 static void ib_policy_change_task(struct work_struct *work) 391 { 392 struct ib_device *dev; 393 394 down_read(&lists_rwsem); 395 list_for_each_entry(dev, &device_list, core_list) { 396 int i; 397 398 for (i = rdma_start_port(dev); i <= rdma_end_port(dev); i++) { 399 u64 sp; 400 int ret = ib_get_cached_subnet_prefix(dev, 401 i, 402 &sp); 403 404 WARN_ONCE(ret, 405 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 406 ret); 407 if (!ret) 408 ib_security_cache_change(dev, i, sp); 409 } 410 } 411 up_read(&lists_rwsem); 412 } 413 414 static int ib_security_change(struct notifier_block *nb, unsigned long event, 415 void *lsm_data) 416 { 417 if (event != LSM_POLICY_CHANGE) 418 return NOTIFY_DONE; 419 420 schedule_work(&ib_policy_change_work); 421 422 return NOTIFY_OK; 423 } 424 425 /** 426 * __dev_new_index - allocate an device index 427 * 428 * Returns a suitable unique value for a new device interface 429 * number. It assumes that there are less than 2^32-1 ib devices 430 * will be present in the system. 431 */ 432 static u32 __dev_new_index(void) 433 { 434 /* 435 * The device index to allow stable naming. 436 * Similar to struct net -> ifindex. 437 */ 438 static u32 index; 439 440 for (;;) { 441 if (!(++index)) 442 index = 1; 443 444 if (!__ib_device_get_by_index(index)) 445 return index; 446 } 447 } 448 449 /** 450 * ib_register_device - Register an IB device with IB core 451 * @device:Device to register 452 * 453 * Low-level drivers use ib_register_device() to register their 454 * devices with the IB core. All registered clients will receive a 455 * callback for each device that is added. @device must be allocated 456 * with ib_alloc_device(). 457 */ 458 int ib_register_device(struct ib_device *device, 459 int (*port_callback)(struct ib_device *, 460 u8, struct kobject *)) 461 { 462 int ret; 463 struct ib_client *client; 464 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 465 struct device *parent = device->dev.parent; 466 467 WARN_ON_ONCE(device->dma_device); 468 if (device->dev.dma_ops) { 469 /* 470 * The caller provided custom DMA operations. Copy the 471 * DMA-related fields that are used by e.g. dma_alloc_coherent() 472 * into device->dev. 473 */ 474 device->dma_device = &device->dev; 475 if (!device->dev.dma_mask) { 476 if (parent) 477 device->dev.dma_mask = parent->dma_mask; 478 else 479 WARN_ON_ONCE(true); 480 } 481 if (!device->dev.coherent_dma_mask) { 482 if (parent) 483 device->dev.coherent_dma_mask = 484 parent->coherent_dma_mask; 485 else 486 WARN_ON_ONCE(true); 487 } 488 } else { 489 /* 490 * The caller did not provide custom DMA operations. Use the 491 * DMA mapping operations of the parent device. 492 */ 493 WARN_ON_ONCE(!parent); 494 device->dma_device = parent; 495 } 496 497 mutex_lock(&device_mutex); 498 499 if (strchr(device->name, '%')) { 500 ret = alloc_name(device->name); 501 if (ret) 502 goto out; 503 } 504 505 if (ib_device_check_mandatory(device)) { 506 ret = -EINVAL; 507 goto out; 508 } 509 510 ret = read_port_immutable(device); 511 if (ret) { 512 pr_warn("Couldn't create per port immutable data %s\n", 513 device->name); 514 goto out; 515 } 516 517 ret = setup_port_pkey_list(device); 518 if (ret) { 519 pr_warn("Couldn't create per port_pkey_list\n"); 520 goto out; 521 } 522 523 ret = ib_cache_setup_one(device); 524 if (ret) { 525 pr_warn("Couldn't set up InfiniBand P_Key/GID cache\n"); 526 goto port_cleanup; 527 } 528 529 ret = ib_device_register_rdmacg(device); 530 if (ret) { 531 pr_warn("Couldn't register device with rdma cgroup\n"); 532 goto cache_cleanup; 533 } 534 535 memset(&device->attrs, 0, sizeof(device->attrs)); 536 ret = device->query_device(device, &device->attrs, &uhw); 537 if (ret) { 538 pr_warn("Couldn't query the device attributes\n"); 539 goto cg_cleanup; 540 } 541 542 ret = ib_device_register_sysfs(device, port_callback); 543 if (ret) { 544 pr_warn("Couldn't register device %s with driver model\n", 545 device->name); 546 goto cg_cleanup; 547 } 548 549 device->reg_state = IB_DEV_REGISTERED; 550 551 list_for_each_entry(client, &client_list, list) 552 if (!add_client_context(device, client) && client->add) 553 client->add(device); 554 555 device->index = __dev_new_index(); 556 down_write(&lists_rwsem); 557 list_add_tail(&device->core_list, &device_list); 558 up_write(&lists_rwsem); 559 mutex_unlock(&device_mutex); 560 return 0; 561 562 cg_cleanup: 563 ib_device_unregister_rdmacg(device); 564 cache_cleanup: 565 ib_cache_cleanup_one(device); 566 ib_cache_release_one(device); 567 port_cleanup: 568 kfree(device->port_immutable); 569 out: 570 mutex_unlock(&device_mutex); 571 return ret; 572 } 573 EXPORT_SYMBOL(ib_register_device); 574 575 /** 576 * ib_unregister_device - Unregister an IB device 577 * @device:Device to unregister 578 * 579 * Unregister an IB device. All clients will receive a remove callback. 580 */ 581 void ib_unregister_device(struct ib_device *device) 582 { 583 struct ib_client_data *context, *tmp; 584 unsigned long flags; 585 586 mutex_lock(&device_mutex); 587 588 down_write(&lists_rwsem); 589 list_del(&device->core_list); 590 spin_lock_irqsave(&device->client_data_lock, flags); 591 list_for_each_entry_safe(context, tmp, &device->client_data_list, list) 592 context->going_down = true; 593 spin_unlock_irqrestore(&device->client_data_lock, flags); 594 downgrade_write(&lists_rwsem); 595 596 list_for_each_entry_safe(context, tmp, &device->client_data_list, 597 list) { 598 if (context->client->remove) 599 context->client->remove(device, context->data); 600 } 601 up_read(&lists_rwsem); 602 603 rdma_restrack_clean(&device->res); 604 605 ib_device_unregister_rdmacg(device); 606 ib_device_unregister_sysfs(device); 607 608 mutex_unlock(&device_mutex); 609 610 ib_cache_cleanup_one(device); 611 612 ib_security_destroy_port_pkey_list(device); 613 kfree(device->port_pkey_list); 614 615 down_write(&lists_rwsem); 616 spin_lock_irqsave(&device->client_data_lock, flags); 617 list_for_each_entry_safe(context, tmp, &device->client_data_list, list) 618 kfree(context); 619 spin_unlock_irqrestore(&device->client_data_lock, flags); 620 up_write(&lists_rwsem); 621 622 device->reg_state = IB_DEV_UNREGISTERED; 623 } 624 EXPORT_SYMBOL(ib_unregister_device); 625 626 /** 627 * ib_register_client - Register an IB client 628 * @client:Client to register 629 * 630 * Upper level users of the IB drivers can use ib_register_client() to 631 * register callbacks for IB device addition and removal. When an IB 632 * device is added, each registered client's add method will be called 633 * (in the order the clients were registered), and when a device is 634 * removed, each client's remove method will be called (in the reverse 635 * order that clients were registered). In addition, when 636 * ib_register_client() is called, the client will receive an add 637 * callback for all devices already registered. 638 */ 639 int ib_register_client(struct ib_client *client) 640 { 641 struct ib_device *device; 642 643 mutex_lock(&device_mutex); 644 645 list_for_each_entry(device, &device_list, core_list) 646 if (!add_client_context(device, client) && client->add) 647 client->add(device); 648 649 down_write(&lists_rwsem); 650 list_add_tail(&client->list, &client_list); 651 up_write(&lists_rwsem); 652 653 mutex_unlock(&device_mutex); 654 655 return 0; 656 } 657 EXPORT_SYMBOL(ib_register_client); 658 659 /** 660 * ib_unregister_client - Unregister an IB client 661 * @client:Client to unregister 662 * 663 * Upper level users use ib_unregister_client() to remove their client 664 * registration. When ib_unregister_client() is called, the client 665 * will receive a remove callback for each IB device still registered. 666 */ 667 void ib_unregister_client(struct ib_client *client) 668 { 669 struct ib_client_data *context, *tmp; 670 struct ib_device *device; 671 unsigned long flags; 672 673 mutex_lock(&device_mutex); 674 675 down_write(&lists_rwsem); 676 list_del(&client->list); 677 up_write(&lists_rwsem); 678 679 list_for_each_entry(device, &device_list, core_list) { 680 struct ib_client_data *found_context = NULL; 681 682 down_write(&lists_rwsem); 683 spin_lock_irqsave(&device->client_data_lock, flags); 684 list_for_each_entry_safe(context, tmp, &device->client_data_list, list) 685 if (context->client == client) { 686 context->going_down = true; 687 found_context = context; 688 break; 689 } 690 spin_unlock_irqrestore(&device->client_data_lock, flags); 691 up_write(&lists_rwsem); 692 693 if (client->remove) 694 client->remove(device, found_context ? 695 found_context->data : NULL); 696 697 if (!found_context) { 698 pr_warn("No client context found for %s/%s\n", 699 device->name, client->name); 700 continue; 701 } 702 703 down_write(&lists_rwsem); 704 spin_lock_irqsave(&device->client_data_lock, flags); 705 list_del(&found_context->list); 706 kfree(found_context); 707 spin_unlock_irqrestore(&device->client_data_lock, flags); 708 up_write(&lists_rwsem); 709 } 710 711 mutex_unlock(&device_mutex); 712 } 713 EXPORT_SYMBOL(ib_unregister_client); 714 715 /** 716 * ib_get_client_data - Get IB client context 717 * @device:Device to get context for 718 * @client:Client to get context for 719 * 720 * ib_get_client_data() returns client context set with 721 * ib_set_client_data(). 722 */ 723 void *ib_get_client_data(struct ib_device *device, struct ib_client *client) 724 { 725 struct ib_client_data *context; 726 void *ret = NULL; 727 unsigned long flags; 728 729 spin_lock_irqsave(&device->client_data_lock, flags); 730 list_for_each_entry(context, &device->client_data_list, list) 731 if (context->client == client) { 732 ret = context->data; 733 break; 734 } 735 spin_unlock_irqrestore(&device->client_data_lock, flags); 736 737 return ret; 738 } 739 EXPORT_SYMBOL(ib_get_client_data); 740 741 /** 742 * ib_set_client_data - Set IB client context 743 * @device:Device to set context for 744 * @client:Client to set context for 745 * @data:Context to set 746 * 747 * ib_set_client_data() sets client context that can be retrieved with 748 * ib_get_client_data(). 749 */ 750 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 751 void *data) 752 { 753 struct ib_client_data *context; 754 unsigned long flags; 755 756 spin_lock_irqsave(&device->client_data_lock, flags); 757 list_for_each_entry(context, &device->client_data_list, list) 758 if (context->client == client) { 759 context->data = data; 760 goto out; 761 } 762 763 pr_warn("No client context found for %s/%s\n", 764 device->name, client->name); 765 766 out: 767 spin_unlock_irqrestore(&device->client_data_lock, flags); 768 } 769 EXPORT_SYMBOL(ib_set_client_data); 770 771 /** 772 * ib_register_event_handler - Register an IB event handler 773 * @event_handler:Handler to register 774 * 775 * ib_register_event_handler() registers an event handler that will be 776 * called back when asynchronous IB events occur (as defined in 777 * chapter 11 of the InfiniBand Architecture Specification). This 778 * callback may occur in interrupt context. 779 */ 780 void ib_register_event_handler(struct ib_event_handler *event_handler) 781 { 782 unsigned long flags; 783 784 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); 785 list_add_tail(&event_handler->list, 786 &event_handler->device->event_handler_list); 787 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); 788 } 789 EXPORT_SYMBOL(ib_register_event_handler); 790 791 /** 792 * ib_unregister_event_handler - Unregister an event handler 793 * @event_handler:Handler to unregister 794 * 795 * Unregister an event handler registered with 796 * ib_register_event_handler(). 797 */ 798 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 799 { 800 unsigned long flags; 801 802 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); 803 list_del(&event_handler->list); 804 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); 805 } 806 EXPORT_SYMBOL(ib_unregister_event_handler); 807 808 /** 809 * ib_dispatch_event - Dispatch an asynchronous event 810 * @event:Event to dispatch 811 * 812 * Low-level drivers must call ib_dispatch_event() to dispatch the 813 * event to all registered event handlers when an asynchronous event 814 * occurs. 815 */ 816 void ib_dispatch_event(struct ib_event *event) 817 { 818 unsigned long flags; 819 struct ib_event_handler *handler; 820 821 spin_lock_irqsave(&event->device->event_handler_lock, flags); 822 823 list_for_each_entry(handler, &event->device->event_handler_list, list) 824 handler->handler(handler, event); 825 826 spin_unlock_irqrestore(&event->device->event_handler_lock, flags); 827 } 828 EXPORT_SYMBOL(ib_dispatch_event); 829 830 /** 831 * ib_query_port - Query IB port attributes 832 * @device:Device to query 833 * @port_num:Port number to query 834 * @port_attr:Port attributes 835 * 836 * ib_query_port() returns the attributes of a port through the 837 * @port_attr pointer. 838 */ 839 int ib_query_port(struct ib_device *device, 840 u8 port_num, 841 struct ib_port_attr *port_attr) 842 { 843 union ib_gid gid; 844 int err; 845 846 if (!rdma_is_port_valid(device, port_num)) 847 return -EINVAL; 848 849 memset(port_attr, 0, sizeof(*port_attr)); 850 err = device->query_port(device, port_num, port_attr); 851 if (err || port_attr->subnet_prefix) 852 return err; 853 854 if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND) 855 return 0; 856 857 err = ib_query_gid(device, port_num, 0, &gid, NULL); 858 if (err) 859 return err; 860 861 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 862 return 0; 863 } 864 EXPORT_SYMBOL(ib_query_port); 865 866 /** 867 * ib_query_gid - Get GID table entry 868 * @device:Device to query 869 * @port_num:Port number to query 870 * @index:GID table index to query 871 * @gid:Returned GID 872 * @attr: Returned GID attributes related to this GID index (only in RoCE). 873 * NULL means ignore. 874 * 875 * ib_query_gid() fetches the specified GID table entry. 876 */ 877 int ib_query_gid(struct ib_device *device, 878 u8 port_num, int index, union ib_gid *gid, 879 struct ib_gid_attr *attr) 880 { 881 if (rdma_cap_roce_gid_table(device, port_num)) 882 return ib_get_cached_gid(device, port_num, index, gid, attr); 883 884 if (attr) 885 return -EINVAL; 886 887 return device->query_gid(device, port_num, index, gid); 888 } 889 EXPORT_SYMBOL(ib_query_gid); 890 891 /** 892 * ib_enum_roce_netdev - enumerate all RoCE ports 893 * @ib_dev : IB device we want to query 894 * @filter: Should we call the callback? 895 * @filter_cookie: Cookie passed to filter 896 * @cb: Callback to call for each found RoCE ports 897 * @cookie: Cookie passed back to the callback 898 * 899 * Enumerates all of the physical RoCE ports of ib_dev 900 * which are related to netdevice and calls callback() on each 901 * device for which filter() function returns non zero. 902 */ 903 void ib_enum_roce_netdev(struct ib_device *ib_dev, 904 roce_netdev_filter filter, 905 void *filter_cookie, 906 roce_netdev_callback cb, 907 void *cookie) 908 { 909 u8 port; 910 911 for (port = rdma_start_port(ib_dev); port <= rdma_end_port(ib_dev); 912 port++) 913 if (rdma_protocol_roce(ib_dev, port)) { 914 struct net_device *idev = NULL; 915 916 if (ib_dev->get_netdev) 917 idev = ib_dev->get_netdev(ib_dev, port); 918 919 if (idev && 920 idev->reg_state >= NETREG_UNREGISTERED) { 921 dev_put(idev); 922 idev = NULL; 923 } 924 925 if (filter(ib_dev, port, idev, filter_cookie)) 926 cb(ib_dev, port, idev, cookie); 927 928 if (idev) 929 dev_put(idev); 930 } 931 } 932 933 /** 934 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 935 * @filter: Should we call the callback? 936 * @filter_cookie: Cookie passed to filter 937 * @cb: Callback to call for each found RoCE ports 938 * @cookie: Cookie passed back to the callback 939 * 940 * Enumerates all RoCE devices' physical ports which are related 941 * to netdevices and calls callback() on each device for which 942 * filter() function returns non zero. 943 */ 944 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 945 void *filter_cookie, 946 roce_netdev_callback cb, 947 void *cookie) 948 { 949 struct ib_device *dev; 950 951 down_read(&lists_rwsem); 952 list_for_each_entry(dev, &device_list, core_list) 953 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 954 up_read(&lists_rwsem); 955 } 956 957 /** 958 * ib_enum_all_devs - enumerate all ib_devices 959 * @cb: Callback to call for each found ib_device 960 * 961 * Enumerates all ib_devices and calls callback() on each device. 962 */ 963 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 964 struct netlink_callback *cb) 965 { 966 struct ib_device *dev; 967 unsigned int idx = 0; 968 int ret = 0; 969 970 down_read(&lists_rwsem); 971 list_for_each_entry(dev, &device_list, core_list) { 972 ret = nldev_cb(dev, skb, cb, idx); 973 if (ret) 974 break; 975 idx++; 976 } 977 978 up_read(&lists_rwsem); 979 return ret; 980 } 981 982 /** 983 * ib_query_pkey - Get P_Key table entry 984 * @device:Device to query 985 * @port_num:Port number to query 986 * @index:P_Key table index to query 987 * @pkey:Returned P_Key 988 * 989 * ib_query_pkey() fetches the specified P_Key table entry. 990 */ 991 int ib_query_pkey(struct ib_device *device, 992 u8 port_num, u16 index, u16 *pkey) 993 { 994 return device->query_pkey(device, port_num, index, pkey); 995 } 996 EXPORT_SYMBOL(ib_query_pkey); 997 998 /** 999 * ib_modify_device - Change IB device attributes 1000 * @device:Device to modify 1001 * @device_modify_mask:Mask of attributes to change 1002 * @device_modify:New attribute values 1003 * 1004 * ib_modify_device() changes a device's attributes as specified by 1005 * the @device_modify_mask and @device_modify structure. 1006 */ 1007 int ib_modify_device(struct ib_device *device, 1008 int device_modify_mask, 1009 struct ib_device_modify *device_modify) 1010 { 1011 if (!device->modify_device) 1012 return -ENOSYS; 1013 1014 return device->modify_device(device, device_modify_mask, 1015 device_modify); 1016 } 1017 EXPORT_SYMBOL(ib_modify_device); 1018 1019 /** 1020 * ib_modify_port - Modifies the attributes for the specified port. 1021 * @device: The device to modify. 1022 * @port_num: The number of the port to modify. 1023 * @port_modify_mask: Mask used to specify which attributes of the port 1024 * to change. 1025 * @port_modify: New attribute values for the port. 1026 * 1027 * ib_modify_port() changes a port's attributes as specified by the 1028 * @port_modify_mask and @port_modify structure. 1029 */ 1030 int ib_modify_port(struct ib_device *device, 1031 u8 port_num, int port_modify_mask, 1032 struct ib_port_modify *port_modify) 1033 { 1034 int rc; 1035 1036 if (!rdma_is_port_valid(device, port_num)) 1037 return -EINVAL; 1038 1039 if (device->modify_port) 1040 rc = device->modify_port(device, port_num, port_modify_mask, 1041 port_modify); 1042 else 1043 rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS; 1044 return rc; 1045 } 1046 EXPORT_SYMBOL(ib_modify_port); 1047 1048 /** 1049 * ib_find_gid - Returns the port number and GID table index where 1050 * a specified GID value occurs. Its searches only for IB link layer. 1051 * @device: The device to query. 1052 * @gid: The GID value to search for. 1053 * @ndev: The ndev related to the GID to search for. 1054 * @port_num: The port number of the device where the GID value was found. 1055 * @index: The index into the GID table where the GID was found. This 1056 * parameter may be NULL. 1057 */ 1058 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1059 struct net_device *ndev, u8 *port_num, u16 *index) 1060 { 1061 union ib_gid tmp_gid; 1062 int ret, port, i; 1063 1064 for (port = rdma_start_port(device); port <= rdma_end_port(device); ++port) { 1065 if (rdma_cap_roce_gid_table(device, port)) 1066 continue; 1067 1068 for (i = 0; i < device->port_immutable[port].gid_tbl_len; ++i) { 1069 ret = ib_query_gid(device, port, i, &tmp_gid, NULL); 1070 if (ret) 1071 return ret; 1072 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 1073 *port_num = port; 1074 if (index) 1075 *index = i; 1076 return 0; 1077 } 1078 } 1079 } 1080 1081 return -ENOENT; 1082 } 1083 EXPORT_SYMBOL(ib_find_gid); 1084 1085 /** 1086 * ib_find_pkey - Returns the PKey table index where a specified 1087 * PKey value occurs. 1088 * @device: The device to query. 1089 * @port_num: The port number of the device to search for the PKey. 1090 * @pkey: The PKey value to search for. 1091 * @index: The index into the PKey table where the PKey was found. 1092 */ 1093 int ib_find_pkey(struct ib_device *device, 1094 u8 port_num, u16 pkey, u16 *index) 1095 { 1096 int ret, i; 1097 u16 tmp_pkey; 1098 int partial_ix = -1; 1099 1100 for (i = 0; i < device->port_immutable[port_num].pkey_tbl_len; ++i) { 1101 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 1102 if (ret) 1103 return ret; 1104 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 1105 /* if there is full-member pkey take it.*/ 1106 if (tmp_pkey & 0x8000) { 1107 *index = i; 1108 return 0; 1109 } 1110 if (partial_ix < 0) 1111 partial_ix = i; 1112 } 1113 } 1114 1115 /*no full-member, if exists take the limited*/ 1116 if (partial_ix >= 0) { 1117 *index = partial_ix; 1118 return 0; 1119 } 1120 return -ENOENT; 1121 } 1122 EXPORT_SYMBOL(ib_find_pkey); 1123 1124 /** 1125 * ib_get_net_dev_by_params() - Return the appropriate net_dev 1126 * for a received CM request 1127 * @dev: An RDMA device on which the request has been received. 1128 * @port: Port number on the RDMA device. 1129 * @pkey: The Pkey the request came on. 1130 * @gid: A GID that the net_dev uses to communicate. 1131 * @addr: Contains the IP address that the request specified as its 1132 * destination. 1133 */ 1134 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 1135 u8 port, 1136 u16 pkey, 1137 const union ib_gid *gid, 1138 const struct sockaddr *addr) 1139 { 1140 struct net_device *net_dev = NULL; 1141 struct ib_client_data *context; 1142 1143 if (!rdma_protocol_ib(dev, port)) 1144 return NULL; 1145 1146 down_read(&lists_rwsem); 1147 1148 list_for_each_entry(context, &dev->client_data_list, list) { 1149 struct ib_client *client = context->client; 1150 1151 if (context->going_down) 1152 continue; 1153 1154 if (client->get_net_dev_by_params) { 1155 net_dev = client->get_net_dev_by_params(dev, port, pkey, 1156 gid, addr, 1157 context->data); 1158 if (net_dev) 1159 break; 1160 } 1161 } 1162 1163 up_read(&lists_rwsem); 1164 1165 return net_dev; 1166 } 1167 EXPORT_SYMBOL(ib_get_net_dev_by_params); 1168 1169 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 1170 [RDMA_NL_LS_OP_RESOLVE] = { 1171 .doit = ib_nl_handle_resolve_resp, 1172 .flags = RDMA_NL_ADMIN_PERM, 1173 }, 1174 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 1175 .doit = ib_nl_handle_set_timeout, 1176 .flags = RDMA_NL_ADMIN_PERM, 1177 }, 1178 [RDMA_NL_LS_OP_IP_RESOLVE] = { 1179 .doit = ib_nl_handle_ip_res_resp, 1180 .flags = RDMA_NL_ADMIN_PERM, 1181 }, 1182 }; 1183 1184 static int __init ib_core_init(void) 1185 { 1186 int ret; 1187 1188 ib_wq = alloc_workqueue("infiniband", 0, 0); 1189 if (!ib_wq) 1190 return -ENOMEM; 1191 1192 ib_comp_wq = alloc_workqueue("ib-comp-wq", 1193 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 1194 if (!ib_comp_wq) { 1195 ret = -ENOMEM; 1196 goto err; 1197 } 1198 1199 ret = class_register(&ib_class); 1200 if (ret) { 1201 pr_warn("Couldn't create InfiniBand device class\n"); 1202 goto err_comp; 1203 } 1204 1205 ret = rdma_nl_init(); 1206 if (ret) { 1207 pr_warn("Couldn't init IB netlink interface: err %d\n", ret); 1208 goto err_sysfs; 1209 } 1210 1211 ret = addr_init(); 1212 if (ret) { 1213 pr_warn("Could't init IB address resolution\n"); 1214 goto err_ibnl; 1215 } 1216 1217 ret = ib_mad_init(); 1218 if (ret) { 1219 pr_warn("Couldn't init IB MAD\n"); 1220 goto err_addr; 1221 } 1222 1223 ret = ib_sa_init(); 1224 if (ret) { 1225 pr_warn("Couldn't init SA\n"); 1226 goto err_mad; 1227 } 1228 1229 ret = register_lsm_notifier(&ibdev_lsm_nb); 1230 if (ret) { 1231 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 1232 goto err_sa; 1233 } 1234 1235 nldev_init(); 1236 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 1237 ib_cache_setup(); 1238 1239 return 0; 1240 1241 err_sa: 1242 ib_sa_cleanup(); 1243 err_mad: 1244 ib_mad_cleanup(); 1245 err_addr: 1246 addr_cleanup(); 1247 err_ibnl: 1248 rdma_nl_exit(); 1249 err_sysfs: 1250 class_unregister(&ib_class); 1251 err_comp: 1252 destroy_workqueue(ib_comp_wq); 1253 err: 1254 destroy_workqueue(ib_wq); 1255 return ret; 1256 } 1257 1258 static void __exit ib_core_cleanup(void) 1259 { 1260 ib_cache_cleanup(); 1261 nldev_exit(); 1262 rdma_nl_unregister(RDMA_NL_LS); 1263 unregister_lsm_notifier(&ibdev_lsm_nb); 1264 ib_sa_cleanup(); 1265 ib_mad_cleanup(); 1266 addr_cleanup(); 1267 rdma_nl_exit(); 1268 class_unregister(&ib_class); 1269 destroy_workqueue(ib_comp_wq); 1270 /* Make sure that any pending umem accounting work is done. */ 1271 destroy_workqueue(ib_wq); 1272 } 1273 1274 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 1275 1276 subsys_initcall(ib_core_init); 1277 module_exit(ib_core_cleanup); 1278