xref: /linux/drivers/infiniband/core/device.c (revision a3cbcadfdfc330c28a45f06e8f92fd1d59aafa19)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(alloc_pd),
276 		IB_MANDATORY_FUNC(dealloc_pd),
277 		IB_MANDATORY_FUNC(create_qp),
278 		IB_MANDATORY_FUNC(modify_qp),
279 		IB_MANDATORY_FUNC(destroy_qp),
280 		IB_MANDATORY_FUNC(post_send),
281 		IB_MANDATORY_FUNC(post_recv),
282 		IB_MANDATORY_FUNC(create_cq),
283 		IB_MANDATORY_FUNC(destroy_cq),
284 		IB_MANDATORY_FUNC(poll_cq),
285 		IB_MANDATORY_FUNC(req_notify_cq),
286 		IB_MANDATORY_FUNC(get_dma_mr),
287 		IB_MANDATORY_FUNC(reg_user_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->hw_stats_data)
495 		ib_device_release_hw_stats(dev->hw_stats_data);
496 	if (dev->port_data) {
497 		ib_cache_release_one(dev);
498 		ib_security_release_port_pkey_list(dev);
499 		rdma_counter_release(dev);
500 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
501 				       pdata[0]),
502 			  rcu_head);
503 	}
504 
505 	mutex_destroy(&dev->unregistration_lock);
506 	mutex_destroy(&dev->compat_devs_mutex);
507 
508 	xa_destroy(&dev->compat_devs);
509 	xa_destroy(&dev->client_data);
510 	kfree_rcu(dev, rcu_head);
511 }
512 
513 static int ib_device_uevent(struct device *device,
514 			    struct kobj_uevent_env *env)
515 {
516 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
517 		return -ENOMEM;
518 
519 	/*
520 	 * It would be nice to pass the node GUID with the event...
521 	 */
522 
523 	return 0;
524 }
525 
526 static const void *net_namespace(struct device *d)
527 {
528 	struct ib_core_device *coredev =
529 			container_of(d, struct ib_core_device, dev);
530 
531 	return read_pnet(&coredev->rdma_net);
532 }
533 
534 static struct class ib_class = {
535 	.name    = "infiniband",
536 	.dev_release = ib_device_release,
537 	.dev_uevent = ib_device_uevent,
538 	.ns_type = &net_ns_type_operations,
539 	.namespace = net_namespace,
540 };
541 
542 static void rdma_init_coredev(struct ib_core_device *coredev,
543 			      struct ib_device *dev, struct net *net)
544 {
545 	/* This BUILD_BUG_ON is intended to catch layout change
546 	 * of union of ib_core_device and device.
547 	 * dev must be the first element as ib_core and providers
548 	 * driver uses it. Adding anything in ib_core_device before
549 	 * device will break this assumption.
550 	 */
551 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
552 		     offsetof(struct ib_device, dev));
553 
554 	coredev->dev.class = &ib_class;
555 	coredev->dev.groups = dev->groups;
556 	device_initialize(&coredev->dev);
557 	coredev->owner = dev;
558 	INIT_LIST_HEAD(&coredev->port_list);
559 	write_pnet(&coredev->rdma_net, net);
560 }
561 
562 /**
563  * _ib_alloc_device - allocate an IB device struct
564  * @size:size of structure to allocate
565  *
566  * Low-level drivers should use ib_alloc_device() to allocate &struct
567  * ib_device.  @size is the size of the structure to be allocated,
568  * including any private data used by the low-level driver.
569  * ib_dealloc_device() must be used to free structures allocated with
570  * ib_alloc_device().
571  */
572 struct ib_device *_ib_alloc_device(size_t size)
573 {
574 	struct ib_device *device;
575 	unsigned int i;
576 
577 	if (WARN_ON(size < sizeof(struct ib_device)))
578 		return NULL;
579 
580 	device = kzalloc(size, GFP_KERNEL);
581 	if (!device)
582 		return NULL;
583 
584 	if (rdma_restrack_init(device)) {
585 		kfree(device);
586 		return NULL;
587 	}
588 
589 	rdma_init_coredev(&device->coredev, device, &init_net);
590 
591 	INIT_LIST_HEAD(&device->event_handler_list);
592 	spin_lock_init(&device->qp_open_list_lock);
593 	init_rwsem(&device->event_handler_rwsem);
594 	mutex_init(&device->unregistration_lock);
595 	/*
596 	 * client_data needs to be alloc because we don't want our mark to be
597 	 * destroyed if the user stores NULL in the client data.
598 	 */
599 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
600 	init_rwsem(&device->client_data_rwsem);
601 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
602 	mutex_init(&device->compat_devs_mutex);
603 	init_completion(&device->unreg_completion);
604 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
605 
606 	spin_lock_init(&device->cq_pools_lock);
607 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
608 		INIT_LIST_HEAD(&device->cq_pools[i]);
609 
610 	device->uverbs_cmd_mask =
611 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
612 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
613 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
614 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
615 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
616 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
617 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
618 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
620 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
621 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
622 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
623 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
624 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
625 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
628 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
629 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
630 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
631 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
632 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
633 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
634 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
635 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
636 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
637 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
638 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
639 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
640 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
641 	return device;
642 }
643 EXPORT_SYMBOL(_ib_alloc_device);
644 
645 /**
646  * ib_dealloc_device - free an IB device struct
647  * @device:structure to free
648  *
649  * Free a structure allocated with ib_alloc_device().
650  */
651 void ib_dealloc_device(struct ib_device *device)
652 {
653 	if (device->ops.dealloc_driver)
654 		device->ops.dealloc_driver(device);
655 
656 	/*
657 	 * ib_unregister_driver() requires all devices to remain in the xarray
658 	 * while their ops are callable. The last op we call is dealloc_driver
659 	 * above.  This is needed to create a fence on op callbacks prior to
660 	 * allowing the driver module to unload.
661 	 */
662 	down_write(&devices_rwsem);
663 	if (xa_load(&devices, device->index) == device)
664 		xa_erase(&devices, device->index);
665 	up_write(&devices_rwsem);
666 
667 	/* Expedite releasing netdev references */
668 	free_netdevs(device);
669 
670 	WARN_ON(!xa_empty(&device->compat_devs));
671 	WARN_ON(!xa_empty(&device->client_data));
672 	WARN_ON(refcount_read(&device->refcount));
673 	rdma_restrack_clean(device);
674 	/* Balances with device_initialize */
675 	put_device(&device->dev);
676 }
677 EXPORT_SYMBOL(ib_dealloc_device);
678 
679 /*
680  * add_client_context() and remove_client_context() must be safe against
681  * parallel calls on the same device - registration/unregistration of both the
682  * device and client can be occurring in parallel.
683  *
684  * The routines need to be a fence, any caller must not return until the add
685  * or remove is fully completed.
686  */
687 static int add_client_context(struct ib_device *device,
688 			      struct ib_client *client)
689 {
690 	int ret = 0;
691 
692 	if (!device->kverbs_provider && !client->no_kverbs_req)
693 		return 0;
694 
695 	down_write(&device->client_data_rwsem);
696 	/*
697 	 * So long as the client is registered hold both the client and device
698 	 * unregistration locks.
699 	 */
700 	if (!refcount_inc_not_zero(&client->uses))
701 		goto out_unlock;
702 	refcount_inc(&device->refcount);
703 
704 	/*
705 	 * Another caller to add_client_context got here first and has already
706 	 * completely initialized context.
707 	 */
708 	if (xa_get_mark(&device->client_data, client->client_id,
709 		    CLIENT_DATA_REGISTERED))
710 		goto out;
711 
712 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
713 			      GFP_KERNEL));
714 	if (ret)
715 		goto out;
716 	downgrade_write(&device->client_data_rwsem);
717 	if (client->add) {
718 		if (client->add(device)) {
719 			/*
720 			 * If a client fails to add then the error code is
721 			 * ignored, but we won't call any more ops on this
722 			 * client.
723 			 */
724 			xa_erase(&device->client_data, client->client_id);
725 			up_read(&device->client_data_rwsem);
726 			ib_device_put(device);
727 			ib_client_put(client);
728 			return 0;
729 		}
730 	}
731 
732 	/* Readers shall not see a client until add has been completed */
733 	xa_set_mark(&device->client_data, client->client_id,
734 		    CLIENT_DATA_REGISTERED);
735 	up_read(&device->client_data_rwsem);
736 	return 0;
737 
738 out:
739 	ib_device_put(device);
740 	ib_client_put(client);
741 out_unlock:
742 	up_write(&device->client_data_rwsem);
743 	return ret;
744 }
745 
746 static void remove_client_context(struct ib_device *device,
747 				  unsigned int client_id)
748 {
749 	struct ib_client *client;
750 	void *client_data;
751 
752 	down_write(&device->client_data_rwsem);
753 	if (!xa_get_mark(&device->client_data, client_id,
754 			 CLIENT_DATA_REGISTERED)) {
755 		up_write(&device->client_data_rwsem);
756 		return;
757 	}
758 	client_data = xa_load(&device->client_data, client_id);
759 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
760 	client = xa_load(&clients, client_id);
761 	up_write(&device->client_data_rwsem);
762 
763 	/*
764 	 * Notice we cannot be holding any exclusive locks when calling the
765 	 * remove callback as the remove callback can recurse back into any
766 	 * public functions in this module and thus try for any locks those
767 	 * functions take.
768 	 *
769 	 * For this reason clients and drivers should not call the
770 	 * unregistration functions will holdling any locks.
771 	 */
772 	if (client->remove)
773 		client->remove(device, client_data);
774 
775 	xa_erase(&device->client_data, client_id);
776 	ib_device_put(device);
777 	ib_client_put(client);
778 }
779 
780 static int alloc_port_data(struct ib_device *device)
781 {
782 	struct ib_port_data_rcu *pdata_rcu;
783 	u32 port;
784 
785 	if (device->port_data)
786 		return 0;
787 
788 	/* This can only be called once the physical port range is defined */
789 	if (WARN_ON(!device->phys_port_cnt))
790 		return -EINVAL;
791 
792 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
793 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
794 		return -EINVAL;
795 
796 	/*
797 	 * device->port_data is indexed directly by the port number to make
798 	 * access to this data as efficient as possible.
799 	 *
800 	 * Therefore port_data is declared as a 1 based array with potential
801 	 * empty slots at the beginning.
802 	 */
803 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
804 					rdma_end_port(device) + 1),
805 			    GFP_KERNEL);
806 	if (!pdata_rcu)
807 		return -ENOMEM;
808 	/*
809 	 * The rcu_head is put in front of the port data array and the stored
810 	 * pointer is adjusted since we never need to see that member until
811 	 * kfree_rcu.
812 	 */
813 	device->port_data = pdata_rcu->pdata;
814 
815 	rdma_for_each_port (device, port) {
816 		struct ib_port_data *pdata = &device->port_data[port];
817 
818 		pdata->ib_dev = device;
819 		spin_lock_init(&pdata->pkey_list_lock);
820 		INIT_LIST_HEAD(&pdata->pkey_list);
821 		spin_lock_init(&pdata->netdev_lock);
822 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
823 	}
824 	return 0;
825 }
826 
827 static int verify_immutable(const struct ib_device *dev, u32 port)
828 {
829 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
830 			    rdma_max_mad_size(dev, port) != 0);
831 }
832 
833 static int setup_port_data(struct ib_device *device)
834 {
835 	u32 port;
836 	int ret;
837 
838 	ret = alloc_port_data(device);
839 	if (ret)
840 		return ret;
841 
842 	rdma_for_each_port (device, port) {
843 		struct ib_port_data *pdata = &device->port_data[port];
844 
845 		ret = device->ops.get_port_immutable(device, port,
846 						     &pdata->immutable);
847 		if (ret)
848 			return ret;
849 
850 		if (verify_immutable(device, port))
851 			return -EINVAL;
852 	}
853 	return 0;
854 }
855 
856 /**
857  * ib_port_immutable_read() - Read rdma port's immutable data
858  * @dev: IB device
859  * @port: port number whose immutable data to read. It starts with index 1 and
860  *        valid upto including rdma_end_port().
861  */
862 const struct ib_port_immutable*
863 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
864 {
865 	WARN_ON(!rdma_is_port_valid(dev, port));
866 	return &dev->port_data[port].immutable;
867 }
868 EXPORT_SYMBOL(ib_port_immutable_read);
869 
870 void ib_get_device_fw_str(struct ib_device *dev, char *str)
871 {
872 	if (dev->ops.get_dev_fw_str)
873 		dev->ops.get_dev_fw_str(dev, str);
874 	else
875 		str[0] = '\0';
876 }
877 EXPORT_SYMBOL(ib_get_device_fw_str);
878 
879 static void ib_policy_change_task(struct work_struct *work)
880 {
881 	struct ib_device *dev;
882 	unsigned long index;
883 
884 	down_read(&devices_rwsem);
885 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
886 		unsigned int i;
887 
888 		rdma_for_each_port (dev, i) {
889 			u64 sp;
890 			ib_get_cached_subnet_prefix(dev, i, &sp);
891 			ib_security_cache_change(dev, i, sp);
892 		}
893 	}
894 	up_read(&devices_rwsem);
895 }
896 
897 static int ib_security_change(struct notifier_block *nb, unsigned long event,
898 			      void *lsm_data)
899 {
900 	if (event != LSM_POLICY_CHANGE)
901 		return NOTIFY_DONE;
902 
903 	schedule_work(&ib_policy_change_work);
904 	ib_mad_agent_security_change();
905 
906 	return NOTIFY_OK;
907 }
908 
909 static void compatdev_release(struct device *dev)
910 {
911 	struct ib_core_device *cdev =
912 		container_of(dev, struct ib_core_device, dev);
913 
914 	kfree(cdev);
915 }
916 
917 static int add_one_compat_dev(struct ib_device *device,
918 			      struct rdma_dev_net *rnet)
919 {
920 	struct ib_core_device *cdev;
921 	int ret;
922 
923 	lockdep_assert_held(&rdma_nets_rwsem);
924 	if (!ib_devices_shared_netns)
925 		return 0;
926 
927 	/*
928 	 * Create and add compat device in all namespaces other than where it
929 	 * is currently bound to.
930 	 */
931 	if (net_eq(read_pnet(&rnet->net),
932 		   read_pnet(&device->coredev.rdma_net)))
933 		return 0;
934 
935 	/*
936 	 * The first of init_net() or ib_register_device() to take the
937 	 * compat_devs_mutex wins and gets to add the device. Others will wait
938 	 * for completion here.
939 	 */
940 	mutex_lock(&device->compat_devs_mutex);
941 	cdev = xa_load(&device->compat_devs, rnet->id);
942 	if (cdev) {
943 		ret = 0;
944 		goto done;
945 	}
946 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
947 	if (ret)
948 		goto done;
949 
950 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
951 	if (!cdev) {
952 		ret = -ENOMEM;
953 		goto cdev_err;
954 	}
955 
956 	cdev->dev.parent = device->dev.parent;
957 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
958 	cdev->dev.release = compatdev_release;
959 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
960 	if (ret)
961 		goto add_err;
962 
963 	ret = device_add(&cdev->dev);
964 	if (ret)
965 		goto add_err;
966 	ret = ib_setup_port_attrs(cdev);
967 	if (ret)
968 		goto port_err;
969 
970 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
971 			      cdev, GFP_KERNEL));
972 	if (ret)
973 		goto insert_err;
974 
975 	mutex_unlock(&device->compat_devs_mutex);
976 	return 0;
977 
978 insert_err:
979 	ib_free_port_attrs(cdev);
980 port_err:
981 	device_del(&cdev->dev);
982 add_err:
983 	put_device(&cdev->dev);
984 cdev_err:
985 	xa_release(&device->compat_devs, rnet->id);
986 done:
987 	mutex_unlock(&device->compat_devs_mutex);
988 	return ret;
989 }
990 
991 static void remove_one_compat_dev(struct ib_device *device, u32 id)
992 {
993 	struct ib_core_device *cdev;
994 
995 	mutex_lock(&device->compat_devs_mutex);
996 	cdev = xa_erase(&device->compat_devs, id);
997 	mutex_unlock(&device->compat_devs_mutex);
998 	if (cdev) {
999 		ib_free_port_attrs(cdev);
1000 		device_del(&cdev->dev);
1001 		put_device(&cdev->dev);
1002 	}
1003 }
1004 
1005 static void remove_compat_devs(struct ib_device *device)
1006 {
1007 	struct ib_core_device *cdev;
1008 	unsigned long index;
1009 
1010 	xa_for_each (&device->compat_devs, index, cdev)
1011 		remove_one_compat_dev(device, index);
1012 }
1013 
1014 static int add_compat_devs(struct ib_device *device)
1015 {
1016 	struct rdma_dev_net *rnet;
1017 	unsigned long index;
1018 	int ret = 0;
1019 
1020 	lockdep_assert_held(&devices_rwsem);
1021 
1022 	down_read(&rdma_nets_rwsem);
1023 	xa_for_each (&rdma_nets, index, rnet) {
1024 		ret = add_one_compat_dev(device, rnet);
1025 		if (ret)
1026 			break;
1027 	}
1028 	up_read(&rdma_nets_rwsem);
1029 	return ret;
1030 }
1031 
1032 static void remove_all_compat_devs(void)
1033 {
1034 	struct ib_compat_device *cdev;
1035 	struct ib_device *dev;
1036 	unsigned long index;
1037 
1038 	down_read(&devices_rwsem);
1039 	xa_for_each (&devices, index, dev) {
1040 		unsigned long c_index = 0;
1041 
1042 		/* Hold nets_rwsem so that any other thread modifying this
1043 		 * system param can sync with this thread.
1044 		 */
1045 		down_read(&rdma_nets_rwsem);
1046 		xa_for_each (&dev->compat_devs, c_index, cdev)
1047 			remove_one_compat_dev(dev, c_index);
1048 		up_read(&rdma_nets_rwsem);
1049 	}
1050 	up_read(&devices_rwsem);
1051 }
1052 
1053 static int add_all_compat_devs(void)
1054 {
1055 	struct rdma_dev_net *rnet;
1056 	struct ib_device *dev;
1057 	unsigned long index;
1058 	int ret = 0;
1059 
1060 	down_read(&devices_rwsem);
1061 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1062 		unsigned long net_index = 0;
1063 
1064 		/* Hold nets_rwsem so that any other thread modifying this
1065 		 * system param can sync with this thread.
1066 		 */
1067 		down_read(&rdma_nets_rwsem);
1068 		xa_for_each (&rdma_nets, net_index, rnet) {
1069 			ret = add_one_compat_dev(dev, rnet);
1070 			if (ret)
1071 				break;
1072 		}
1073 		up_read(&rdma_nets_rwsem);
1074 	}
1075 	up_read(&devices_rwsem);
1076 	if (ret)
1077 		remove_all_compat_devs();
1078 	return ret;
1079 }
1080 
1081 int rdma_compatdev_set(u8 enable)
1082 {
1083 	struct rdma_dev_net *rnet;
1084 	unsigned long index;
1085 	int ret = 0;
1086 
1087 	down_write(&rdma_nets_rwsem);
1088 	if (ib_devices_shared_netns == enable) {
1089 		up_write(&rdma_nets_rwsem);
1090 		return 0;
1091 	}
1092 
1093 	/* enable/disable of compat devices is not supported
1094 	 * when more than default init_net exists.
1095 	 */
1096 	xa_for_each (&rdma_nets, index, rnet) {
1097 		ret++;
1098 		break;
1099 	}
1100 	if (!ret)
1101 		ib_devices_shared_netns = enable;
1102 	up_write(&rdma_nets_rwsem);
1103 	if (ret)
1104 		return -EBUSY;
1105 
1106 	if (enable)
1107 		ret = add_all_compat_devs();
1108 	else
1109 		remove_all_compat_devs();
1110 	return ret;
1111 }
1112 
1113 static void rdma_dev_exit_net(struct net *net)
1114 {
1115 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1116 	struct ib_device *dev;
1117 	unsigned long index;
1118 	int ret;
1119 
1120 	down_write(&rdma_nets_rwsem);
1121 	/*
1122 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1123 	 */
1124 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1125 	WARN_ON(ret);
1126 	up_write(&rdma_nets_rwsem);
1127 
1128 	down_read(&devices_rwsem);
1129 	xa_for_each (&devices, index, dev) {
1130 		get_device(&dev->dev);
1131 		/*
1132 		 * Release the devices_rwsem so that pontentially blocking
1133 		 * device_del, doesn't hold the devices_rwsem for too long.
1134 		 */
1135 		up_read(&devices_rwsem);
1136 
1137 		remove_one_compat_dev(dev, rnet->id);
1138 
1139 		/*
1140 		 * If the real device is in the NS then move it back to init.
1141 		 */
1142 		rdma_dev_change_netns(dev, net, &init_net);
1143 
1144 		put_device(&dev->dev);
1145 		down_read(&devices_rwsem);
1146 	}
1147 	up_read(&devices_rwsem);
1148 
1149 	rdma_nl_net_exit(rnet);
1150 	xa_erase(&rdma_nets, rnet->id);
1151 }
1152 
1153 static __net_init int rdma_dev_init_net(struct net *net)
1154 {
1155 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1156 	unsigned long index;
1157 	struct ib_device *dev;
1158 	int ret;
1159 
1160 	write_pnet(&rnet->net, net);
1161 
1162 	ret = rdma_nl_net_init(rnet);
1163 	if (ret)
1164 		return ret;
1165 
1166 	/* No need to create any compat devices in default init_net. */
1167 	if (net_eq(net, &init_net))
1168 		return 0;
1169 
1170 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1171 	if (ret) {
1172 		rdma_nl_net_exit(rnet);
1173 		return ret;
1174 	}
1175 
1176 	down_read(&devices_rwsem);
1177 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1178 		/* Hold nets_rwsem so that netlink command cannot change
1179 		 * system configuration for device sharing mode.
1180 		 */
1181 		down_read(&rdma_nets_rwsem);
1182 		ret = add_one_compat_dev(dev, rnet);
1183 		up_read(&rdma_nets_rwsem);
1184 		if (ret)
1185 			break;
1186 	}
1187 	up_read(&devices_rwsem);
1188 
1189 	if (ret)
1190 		rdma_dev_exit_net(net);
1191 
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Assign the unique string device name and the unique device index. This is
1197  * undone by ib_dealloc_device.
1198  */
1199 static int assign_name(struct ib_device *device, const char *name)
1200 {
1201 	static u32 last_id;
1202 	int ret;
1203 
1204 	down_write(&devices_rwsem);
1205 	/* Assign a unique name to the device */
1206 	if (strchr(name, '%'))
1207 		ret = alloc_name(device, name);
1208 	else
1209 		ret = dev_set_name(&device->dev, name);
1210 	if (ret)
1211 		goto out;
1212 
1213 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1214 		ret = -ENFILE;
1215 		goto out;
1216 	}
1217 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1218 
1219 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1220 			&last_id, GFP_KERNEL);
1221 	if (ret > 0)
1222 		ret = 0;
1223 
1224 out:
1225 	up_write(&devices_rwsem);
1226 	return ret;
1227 }
1228 
1229 /*
1230  * setup_device() allocates memory and sets up data that requires calling the
1231  * device ops, this is the only reason these actions are not done during
1232  * ib_alloc_device. It is undone by ib_dealloc_device().
1233  */
1234 static int setup_device(struct ib_device *device)
1235 {
1236 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1237 	int ret;
1238 
1239 	ib_device_check_mandatory(device);
1240 
1241 	ret = setup_port_data(device);
1242 	if (ret) {
1243 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1244 		return ret;
1245 	}
1246 
1247 	memset(&device->attrs, 0, sizeof(device->attrs));
1248 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1249 	if (ret) {
1250 		dev_warn(&device->dev,
1251 			 "Couldn't query the device attributes\n");
1252 		return ret;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static void disable_device(struct ib_device *device)
1259 {
1260 	u32 cid;
1261 
1262 	WARN_ON(!refcount_read(&device->refcount));
1263 
1264 	down_write(&devices_rwsem);
1265 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1266 	up_write(&devices_rwsem);
1267 
1268 	/*
1269 	 * Remove clients in LIFO order, see assign_client_id. This could be
1270 	 * more efficient if xarray learns to reverse iterate. Since no new
1271 	 * clients can be added to this ib_device past this point we only need
1272 	 * the maximum possible client_id value here.
1273 	 */
1274 	down_read(&clients_rwsem);
1275 	cid = highest_client_id;
1276 	up_read(&clients_rwsem);
1277 	while (cid) {
1278 		cid--;
1279 		remove_client_context(device, cid);
1280 	}
1281 
1282 	ib_cq_pool_cleanup(device);
1283 
1284 	/* Pairs with refcount_set in enable_device */
1285 	ib_device_put(device);
1286 	wait_for_completion(&device->unreg_completion);
1287 
1288 	/*
1289 	 * compat devices must be removed after device refcount drops to zero.
1290 	 * Otherwise init_net() may add more compatdevs after removing compat
1291 	 * devices and before device is disabled.
1292 	 */
1293 	remove_compat_devs(device);
1294 }
1295 
1296 /*
1297  * An enabled device is visible to all clients and to all the public facing
1298  * APIs that return a device pointer. This always returns with a new get, even
1299  * if it fails.
1300  */
1301 static int enable_device_and_get(struct ib_device *device)
1302 {
1303 	struct ib_client *client;
1304 	unsigned long index;
1305 	int ret = 0;
1306 
1307 	/*
1308 	 * One ref belongs to the xa and the other belongs to this
1309 	 * thread. This is needed to guard against parallel unregistration.
1310 	 */
1311 	refcount_set(&device->refcount, 2);
1312 	down_write(&devices_rwsem);
1313 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1314 
1315 	/*
1316 	 * By using downgrade_write() we ensure that no other thread can clear
1317 	 * DEVICE_REGISTERED while we are completing the client setup.
1318 	 */
1319 	downgrade_write(&devices_rwsem);
1320 
1321 	if (device->ops.enable_driver) {
1322 		ret = device->ops.enable_driver(device);
1323 		if (ret)
1324 			goto out;
1325 	}
1326 
1327 	down_read(&clients_rwsem);
1328 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1329 		ret = add_client_context(device, client);
1330 		if (ret)
1331 			break;
1332 	}
1333 	up_read(&clients_rwsem);
1334 	if (!ret)
1335 		ret = add_compat_devs(device);
1336 out:
1337 	up_read(&devices_rwsem);
1338 	return ret;
1339 }
1340 
1341 static void prevent_dealloc_device(struct ib_device *ib_dev)
1342 {
1343 }
1344 
1345 /**
1346  * ib_register_device - Register an IB device with IB core
1347  * @device: Device to register
1348  * @name: unique string device name. This may include a '%' which will
1349  * 	  cause a unique index to be added to the passed device name.
1350  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1351  *	        device will be used. In this case the caller should fully
1352  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1353  *
1354  * Low-level drivers use ib_register_device() to register their
1355  * devices with the IB core.  All registered clients will receive a
1356  * callback for each device that is added. @device must be allocated
1357  * with ib_alloc_device().
1358  *
1359  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1360  * asynchronously then the device pointer may become freed as soon as this
1361  * function returns.
1362  */
1363 int ib_register_device(struct ib_device *device, const char *name,
1364 		       struct device *dma_device)
1365 {
1366 	int ret;
1367 
1368 	ret = assign_name(device, name);
1369 	if (ret)
1370 		return ret;
1371 
1372 	/*
1373 	 * If the caller does not provide a DMA capable device then the IB core
1374 	 * will set up ib_sge and scatterlist structures that stash the kernel
1375 	 * virtual address into the address field.
1376 	 */
1377 	WARN_ON(dma_device && !dma_device->dma_parms);
1378 	device->dma_device = dma_device;
1379 
1380 	ret = setup_device(device);
1381 	if (ret)
1382 		return ret;
1383 
1384 	ret = ib_cache_setup_one(device);
1385 	if (ret) {
1386 		dev_warn(&device->dev,
1387 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1388 		return ret;
1389 	}
1390 
1391 	device->groups[0] = &ib_dev_attr_group;
1392 	device->groups[1] = device->ops.device_group;
1393 	ret = ib_setup_device_attrs(device);
1394 	if (ret)
1395 		goto cache_cleanup;
1396 
1397 	ib_device_register_rdmacg(device);
1398 
1399 	rdma_counter_init(device);
1400 
1401 	/*
1402 	 * Ensure that ADD uevent is not fired because it
1403 	 * is too early amd device is not initialized yet.
1404 	 */
1405 	dev_set_uevent_suppress(&device->dev, true);
1406 	ret = device_add(&device->dev);
1407 	if (ret)
1408 		goto cg_cleanup;
1409 
1410 	ret = ib_setup_port_attrs(&device->coredev);
1411 	if (ret) {
1412 		dev_warn(&device->dev,
1413 			 "Couldn't register device with driver model\n");
1414 		goto dev_cleanup;
1415 	}
1416 
1417 	ret = enable_device_and_get(device);
1418 	if (ret) {
1419 		void (*dealloc_fn)(struct ib_device *);
1420 
1421 		/*
1422 		 * If we hit this error flow then we don't want to
1423 		 * automatically dealloc the device since the caller is
1424 		 * expected to call ib_dealloc_device() after
1425 		 * ib_register_device() fails. This is tricky due to the
1426 		 * possibility for a parallel unregistration along with this
1427 		 * error flow. Since we have a refcount here we know any
1428 		 * parallel flow is stopped in disable_device and will see the
1429 		 * special dealloc_driver pointer, causing the responsibility to
1430 		 * ib_dealloc_device() to revert back to this thread.
1431 		 */
1432 		dealloc_fn = device->ops.dealloc_driver;
1433 		device->ops.dealloc_driver = prevent_dealloc_device;
1434 		ib_device_put(device);
1435 		__ib_unregister_device(device);
1436 		device->ops.dealloc_driver = dealloc_fn;
1437 		dev_set_uevent_suppress(&device->dev, false);
1438 		return ret;
1439 	}
1440 	dev_set_uevent_suppress(&device->dev, false);
1441 	/* Mark for userspace that device is ready */
1442 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1443 	ib_device_put(device);
1444 
1445 	return 0;
1446 
1447 dev_cleanup:
1448 	device_del(&device->dev);
1449 cg_cleanup:
1450 	dev_set_uevent_suppress(&device->dev, false);
1451 	ib_device_unregister_rdmacg(device);
1452 cache_cleanup:
1453 	ib_cache_cleanup_one(device);
1454 	return ret;
1455 }
1456 EXPORT_SYMBOL(ib_register_device);
1457 
1458 /* Callers must hold a get on the device. */
1459 static void __ib_unregister_device(struct ib_device *ib_dev)
1460 {
1461 	/*
1462 	 * We have a registration lock so that all the calls to unregister are
1463 	 * fully fenced, once any unregister returns the device is truely
1464 	 * unregistered even if multiple callers are unregistering it at the
1465 	 * same time. This also interacts with the registration flow and
1466 	 * provides sane semantics if register and unregister are racing.
1467 	 */
1468 	mutex_lock(&ib_dev->unregistration_lock);
1469 	if (!refcount_read(&ib_dev->refcount))
1470 		goto out;
1471 
1472 	disable_device(ib_dev);
1473 
1474 	/* Expedite removing unregistered pointers from the hash table */
1475 	free_netdevs(ib_dev);
1476 
1477 	ib_free_port_attrs(&ib_dev->coredev);
1478 	device_del(&ib_dev->dev);
1479 	ib_device_unregister_rdmacg(ib_dev);
1480 	ib_cache_cleanup_one(ib_dev);
1481 
1482 	/*
1483 	 * Drivers using the new flow may not call ib_dealloc_device except
1484 	 * in error unwind prior to registration success.
1485 	 */
1486 	if (ib_dev->ops.dealloc_driver &&
1487 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1488 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1489 		ib_dealloc_device(ib_dev);
1490 	}
1491 out:
1492 	mutex_unlock(&ib_dev->unregistration_lock);
1493 }
1494 
1495 /**
1496  * ib_unregister_device - Unregister an IB device
1497  * @ib_dev: The device to unregister
1498  *
1499  * Unregister an IB device.  All clients will receive a remove callback.
1500  *
1501  * Callers should call this routine only once, and protect against races with
1502  * registration. Typically it should only be called as part of a remove
1503  * callback in an implementation of driver core's struct device_driver and
1504  * related.
1505  *
1506  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1507  * this function.
1508  */
1509 void ib_unregister_device(struct ib_device *ib_dev)
1510 {
1511 	get_device(&ib_dev->dev);
1512 	__ib_unregister_device(ib_dev);
1513 	put_device(&ib_dev->dev);
1514 }
1515 EXPORT_SYMBOL(ib_unregister_device);
1516 
1517 /**
1518  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1519  * @ib_dev: The device to unregister
1520  *
1521  * This is the same as ib_unregister_device(), except it includes an internal
1522  * ib_device_put() that should match a 'get' obtained by the caller.
1523  *
1524  * It is safe to call this routine concurrently from multiple threads while
1525  * holding the 'get'. When the function returns the device is fully
1526  * unregistered.
1527  *
1528  * Drivers using this flow MUST use the driver_unregister callback to clean up
1529  * their resources associated with the device and dealloc it.
1530  */
1531 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1532 {
1533 	WARN_ON(!ib_dev->ops.dealloc_driver);
1534 	get_device(&ib_dev->dev);
1535 	ib_device_put(ib_dev);
1536 	__ib_unregister_device(ib_dev);
1537 	put_device(&ib_dev->dev);
1538 }
1539 EXPORT_SYMBOL(ib_unregister_device_and_put);
1540 
1541 /**
1542  * ib_unregister_driver - Unregister all IB devices for a driver
1543  * @driver_id: The driver to unregister
1544  *
1545  * This implements a fence for device unregistration. It only returns once all
1546  * devices associated with the driver_id have fully completed their
1547  * unregistration and returned from ib_unregister_device*().
1548  *
1549  * If device's are not yet unregistered it goes ahead and starts unregistering
1550  * them.
1551  *
1552  * This does not block creation of new devices with the given driver_id, that
1553  * is the responsibility of the caller.
1554  */
1555 void ib_unregister_driver(enum rdma_driver_id driver_id)
1556 {
1557 	struct ib_device *ib_dev;
1558 	unsigned long index;
1559 
1560 	down_read(&devices_rwsem);
1561 	xa_for_each (&devices, index, ib_dev) {
1562 		if (ib_dev->ops.driver_id != driver_id)
1563 			continue;
1564 
1565 		get_device(&ib_dev->dev);
1566 		up_read(&devices_rwsem);
1567 
1568 		WARN_ON(!ib_dev->ops.dealloc_driver);
1569 		__ib_unregister_device(ib_dev);
1570 
1571 		put_device(&ib_dev->dev);
1572 		down_read(&devices_rwsem);
1573 	}
1574 	up_read(&devices_rwsem);
1575 }
1576 EXPORT_SYMBOL(ib_unregister_driver);
1577 
1578 static void ib_unregister_work(struct work_struct *work)
1579 {
1580 	struct ib_device *ib_dev =
1581 		container_of(work, struct ib_device, unregistration_work);
1582 
1583 	__ib_unregister_device(ib_dev);
1584 	put_device(&ib_dev->dev);
1585 }
1586 
1587 /**
1588  * ib_unregister_device_queued - Unregister a device using a work queue
1589  * @ib_dev: The device to unregister
1590  *
1591  * This schedules an asynchronous unregistration using a WQ for the device. A
1592  * driver should use this to avoid holding locks while doing unregistration,
1593  * such as holding the RTNL lock.
1594  *
1595  * Drivers using this API must use ib_unregister_driver before module unload
1596  * to ensure that all scheduled unregistrations have completed.
1597  */
1598 void ib_unregister_device_queued(struct ib_device *ib_dev)
1599 {
1600 	WARN_ON(!refcount_read(&ib_dev->refcount));
1601 	WARN_ON(!ib_dev->ops.dealloc_driver);
1602 	get_device(&ib_dev->dev);
1603 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1604 		put_device(&ib_dev->dev);
1605 }
1606 EXPORT_SYMBOL(ib_unregister_device_queued);
1607 
1608 /*
1609  * The caller must pass in a device that has the kref held and the refcount
1610  * released. If the device is in cur_net and still registered then it is moved
1611  * into net.
1612  */
1613 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1614 				 struct net *net)
1615 {
1616 	int ret2 = -EINVAL;
1617 	int ret;
1618 
1619 	mutex_lock(&device->unregistration_lock);
1620 
1621 	/*
1622 	 * If a device not under ib_device_get() or if the unregistration_lock
1623 	 * is not held, the namespace can be changed, or it can be unregistered.
1624 	 * Check again under the lock.
1625 	 */
1626 	if (refcount_read(&device->refcount) == 0 ||
1627 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1628 		ret = -ENODEV;
1629 		goto out;
1630 	}
1631 
1632 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1633 	disable_device(device);
1634 
1635 	/*
1636 	 * At this point no one can be using the device, so it is safe to
1637 	 * change the namespace.
1638 	 */
1639 	write_pnet(&device->coredev.rdma_net, net);
1640 
1641 	down_read(&devices_rwsem);
1642 	/*
1643 	 * Currently rdma devices are system wide unique. So the device name
1644 	 * is guaranteed free in the new namespace. Publish the new namespace
1645 	 * at the sysfs level.
1646 	 */
1647 	ret = device_rename(&device->dev, dev_name(&device->dev));
1648 	up_read(&devices_rwsem);
1649 	if (ret) {
1650 		dev_warn(&device->dev,
1651 			 "%s: Couldn't rename device after namespace change\n",
1652 			 __func__);
1653 		/* Try and put things back and re-enable the device */
1654 		write_pnet(&device->coredev.rdma_net, cur_net);
1655 	}
1656 
1657 	ret2 = enable_device_and_get(device);
1658 	if (ret2) {
1659 		/*
1660 		 * This shouldn't really happen, but if it does, let the user
1661 		 * retry at later point. So don't disable the device.
1662 		 */
1663 		dev_warn(&device->dev,
1664 			 "%s: Couldn't re-enable device after namespace change\n",
1665 			 __func__);
1666 	}
1667 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1668 
1669 	ib_device_put(device);
1670 out:
1671 	mutex_unlock(&device->unregistration_lock);
1672 	if (ret)
1673 		return ret;
1674 	return ret2;
1675 }
1676 
1677 int ib_device_set_netns_put(struct sk_buff *skb,
1678 			    struct ib_device *dev, u32 ns_fd)
1679 {
1680 	struct net *net;
1681 	int ret;
1682 
1683 	net = get_net_ns_by_fd(ns_fd);
1684 	if (IS_ERR(net)) {
1685 		ret = PTR_ERR(net);
1686 		goto net_err;
1687 	}
1688 
1689 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1690 		ret = -EPERM;
1691 		goto ns_err;
1692 	}
1693 
1694 	/*
1695 	 * All the ib_clients, including uverbs, are reset when the namespace is
1696 	 * changed and this cannot be blocked waiting for userspace to do
1697 	 * something, so disassociation is mandatory.
1698 	 */
1699 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1700 		ret = -EOPNOTSUPP;
1701 		goto ns_err;
1702 	}
1703 
1704 	get_device(&dev->dev);
1705 	ib_device_put(dev);
1706 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1707 	put_device(&dev->dev);
1708 
1709 	put_net(net);
1710 	return ret;
1711 
1712 ns_err:
1713 	put_net(net);
1714 net_err:
1715 	ib_device_put(dev);
1716 	return ret;
1717 }
1718 
1719 static struct pernet_operations rdma_dev_net_ops = {
1720 	.init = rdma_dev_init_net,
1721 	.exit = rdma_dev_exit_net,
1722 	.id = &rdma_dev_net_id,
1723 	.size = sizeof(struct rdma_dev_net),
1724 };
1725 
1726 static int assign_client_id(struct ib_client *client)
1727 {
1728 	int ret;
1729 
1730 	down_write(&clients_rwsem);
1731 	/*
1732 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1733 	 * achieve this we assign client_ids so they are sorted in
1734 	 * registration order.
1735 	 */
1736 	client->client_id = highest_client_id;
1737 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1738 	if (ret)
1739 		goto out;
1740 
1741 	highest_client_id++;
1742 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1743 
1744 out:
1745 	up_write(&clients_rwsem);
1746 	return ret;
1747 }
1748 
1749 static void remove_client_id(struct ib_client *client)
1750 {
1751 	down_write(&clients_rwsem);
1752 	xa_erase(&clients, client->client_id);
1753 	for (; highest_client_id; highest_client_id--)
1754 		if (xa_load(&clients, highest_client_id - 1))
1755 			break;
1756 	up_write(&clients_rwsem);
1757 }
1758 
1759 /**
1760  * ib_register_client - Register an IB client
1761  * @client:Client to register
1762  *
1763  * Upper level users of the IB drivers can use ib_register_client() to
1764  * register callbacks for IB device addition and removal.  When an IB
1765  * device is added, each registered client's add method will be called
1766  * (in the order the clients were registered), and when a device is
1767  * removed, each client's remove method will be called (in the reverse
1768  * order that clients were registered).  In addition, when
1769  * ib_register_client() is called, the client will receive an add
1770  * callback for all devices already registered.
1771  */
1772 int ib_register_client(struct ib_client *client)
1773 {
1774 	struct ib_device *device;
1775 	unsigned long index;
1776 	int ret;
1777 
1778 	refcount_set(&client->uses, 1);
1779 	init_completion(&client->uses_zero);
1780 	ret = assign_client_id(client);
1781 	if (ret)
1782 		return ret;
1783 
1784 	down_read(&devices_rwsem);
1785 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1786 		ret = add_client_context(device, client);
1787 		if (ret) {
1788 			up_read(&devices_rwsem);
1789 			ib_unregister_client(client);
1790 			return ret;
1791 		}
1792 	}
1793 	up_read(&devices_rwsem);
1794 	return 0;
1795 }
1796 EXPORT_SYMBOL(ib_register_client);
1797 
1798 /**
1799  * ib_unregister_client - Unregister an IB client
1800  * @client:Client to unregister
1801  *
1802  * Upper level users use ib_unregister_client() to remove their client
1803  * registration.  When ib_unregister_client() is called, the client
1804  * will receive a remove callback for each IB device still registered.
1805  *
1806  * This is a full fence, once it returns no client callbacks will be called,
1807  * or are running in another thread.
1808  */
1809 void ib_unregister_client(struct ib_client *client)
1810 {
1811 	struct ib_device *device;
1812 	unsigned long index;
1813 
1814 	down_write(&clients_rwsem);
1815 	ib_client_put(client);
1816 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1817 	up_write(&clients_rwsem);
1818 
1819 	/* We do not want to have locks while calling client->remove() */
1820 	rcu_read_lock();
1821 	xa_for_each (&devices, index, device) {
1822 		if (!ib_device_try_get(device))
1823 			continue;
1824 		rcu_read_unlock();
1825 
1826 		remove_client_context(device, client->client_id);
1827 
1828 		ib_device_put(device);
1829 		rcu_read_lock();
1830 	}
1831 	rcu_read_unlock();
1832 
1833 	/*
1834 	 * remove_client_context() is not a fence, it can return even though a
1835 	 * removal is ongoing. Wait until all removals are completed.
1836 	 */
1837 	wait_for_completion(&client->uses_zero);
1838 	remove_client_id(client);
1839 }
1840 EXPORT_SYMBOL(ib_unregister_client);
1841 
1842 static int __ib_get_global_client_nl_info(const char *client_name,
1843 					  struct ib_client_nl_info *res)
1844 {
1845 	struct ib_client *client;
1846 	unsigned long index;
1847 	int ret = -ENOENT;
1848 
1849 	down_read(&clients_rwsem);
1850 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1851 		if (strcmp(client->name, client_name) != 0)
1852 			continue;
1853 		if (!client->get_global_nl_info) {
1854 			ret = -EOPNOTSUPP;
1855 			break;
1856 		}
1857 		ret = client->get_global_nl_info(res);
1858 		if (WARN_ON(ret == -ENOENT))
1859 			ret = -EINVAL;
1860 		if (!ret && res->cdev)
1861 			get_device(res->cdev);
1862 		break;
1863 	}
1864 	up_read(&clients_rwsem);
1865 	return ret;
1866 }
1867 
1868 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1869 				   const char *client_name,
1870 				   struct ib_client_nl_info *res)
1871 {
1872 	unsigned long index;
1873 	void *client_data;
1874 	int ret = -ENOENT;
1875 
1876 	down_read(&ibdev->client_data_rwsem);
1877 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1878 			     CLIENT_DATA_REGISTERED) {
1879 		struct ib_client *client = xa_load(&clients, index);
1880 
1881 		if (!client || strcmp(client->name, client_name) != 0)
1882 			continue;
1883 		if (!client->get_nl_info) {
1884 			ret = -EOPNOTSUPP;
1885 			break;
1886 		}
1887 		ret = client->get_nl_info(ibdev, client_data, res);
1888 		if (WARN_ON(ret == -ENOENT))
1889 			ret = -EINVAL;
1890 
1891 		/*
1892 		 * The cdev is guaranteed valid as long as we are inside the
1893 		 * client_data_rwsem as remove_one can't be called. Keep it
1894 		 * valid for the caller.
1895 		 */
1896 		if (!ret && res->cdev)
1897 			get_device(res->cdev);
1898 		break;
1899 	}
1900 	up_read(&ibdev->client_data_rwsem);
1901 
1902 	return ret;
1903 }
1904 
1905 /**
1906  * ib_get_client_nl_info - Fetch the nl_info from a client
1907  * @ibdev: IB device
1908  * @client_name: Name of the client
1909  * @res: Result of the query
1910  */
1911 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1912 			  struct ib_client_nl_info *res)
1913 {
1914 	int ret;
1915 
1916 	if (ibdev)
1917 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1918 	else
1919 		ret = __ib_get_global_client_nl_info(client_name, res);
1920 #ifdef CONFIG_MODULES
1921 	if (ret == -ENOENT) {
1922 		request_module("rdma-client-%s", client_name);
1923 		if (ibdev)
1924 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1925 		else
1926 			ret = __ib_get_global_client_nl_info(client_name, res);
1927 	}
1928 #endif
1929 	if (ret) {
1930 		if (ret == -ENOENT)
1931 			return -EOPNOTSUPP;
1932 		return ret;
1933 	}
1934 
1935 	if (WARN_ON(!res->cdev))
1936 		return -EINVAL;
1937 	return 0;
1938 }
1939 
1940 /**
1941  * ib_set_client_data - Set IB client context
1942  * @device:Device to set context for
1943  * @client:Client to set context for
1944  * @data:Context to set
1945  *
1946  * ib_set_client_data() sets client context data that can be retrieved with
1947  * ib_get_client_data(). This can only be called while the client is
1948  * registered to the device, once the ib_client remove() callback returns this
1949  * cannot be called.
1950  */
1951 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1952 			void *data)
1953 {
1954 	void *rc;
1955 
1956 	if (WARN_ON(IS_ERR(data)))
1957 		data = NULL;
1958 
1959 	rc = xa_store(&device->client_data, client->client_id, data,
1960 		      GFP_KERNEL);
1961 	WARN_ON(xa_is_err(rc));
1962 }
1963 EXPORT_SYMBOL(ib_set_client_data);
1964 
1965 /**
1966  * ib_register_event_handler - Register an IB event handler
1967  * @event_handler:Handler to register
1968  *
1969  * ib_register_event_handler() registers an event handler that will be
1970  * called back when asynchronous IB events occur (as defined in
1971  * chapter 11 of the InfiniBand Architecture Specification). This
1972  * callback occurs in workqueue context.
1973  */
1974 void ib_register_event_handler(struct ib_event_handler *event_handler)
1975 {
1976 	down_write(&event_handler->device->event_handler_rwsem);
1977 	list_add_tail(&event_handler->list,
1978 		      &event_handler->device->event_handler_list);
1979 	up_write(&event_handler->device->event_handler_rwsem);
1980 }
1981 EXPORT_SYMBOL(ib_register_event_handler);
1982 
1983 /**
1984  * ib_unregister_event_handler - Unregister an event handler
1985  * @event_handler:Handler to unregister
1986  *
1987  * Unregister an event handler registered with
1988  * ib_register_event_handler().
1989  */
1990 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1991 {
1992 	down_write(&event_handler->device->event_handler_rwsem);
1993 	list_del(&event_handler->list);
1994 	up_write(&event_handler->device->event_handler_rwsem);
1995 }
1996 EXPORT_SYMBOL(ib_unregister_event_handler);
1997 
1998 void ib_dispatch_event_clients(struct ib_event *event)
1999 {
2000 	struct ib_event_handler *handler;
2001 
2002 	down_read(&event->device->event_handler_rwsem);
2003 
2004 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2005 		handler->handler(handler, event);
2006 
2007 	up_read(&event->device->event_handler_rwsem);
2008 }
2009 
2010 static int iw_query_port(struct ib_device *device,
2011 			   u32 port_num,
2012 			   struct ib_port_attr *port_attr)
2013 {
2014 	struct in_device *inetdev;
2015 	struct net_device *netdev;
2016 
2017 	memset(port_attr, 0, sizeof(*port_attr));
2018 
2019 	netdev = ib_device_get_netdev(device, port_num);
2020 	if (!netdev)
2021 		return -ENODEV;
2022 
2023 	port_attr->max_mtu = IB_MTU_4096;
2024 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2025 
2026 	if (!netif_carrier_ok(netdev)) {
2027 		port_attr->state = IB_PORT_DOWN;
2028 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2029 	} else {
2030 		rcu_read_lock();
2031 		inetdev = __in_dev_get_rcu(netdev);
2032 
2033 		if (inetdev && inetdev->ifa_list) {
2034 			port_attr->state = IB_PORT_ACTIVE;
2035 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2036 		} else {
2037 			port_attr->state = IB_PORT_INIT;
2038 			port_attr->phys_state =
2039 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2040 		}
2041 
2042 		rcu_read_unlock();
2043 	}
2044 
2045 	dev_put(netdev);
2046 	return device->ops.query_port(device, port_num, port_attr);
2047 }
2048 
2049 static int __ib_query_port(struct ib_device *device,
2050 			   u32 port_num,
2051 			   struct ib_port_attr *port_attr)
2052 {
2053 	union ib_gid gid = {};
2054 	int err;
2055 
2056 	memset(port_attr, 0, sizeof(*port_attr));
2057 
2058 	err = device->ops.query_port(device, port_num, port_attr);
2059 	if (err || port_attr->subnet_prefix)
2060 		return err;
2061 
2062 	if (rdma_port_get_link_layer(device, port_num) !=
2063 	    IB_LINK_LAYER_INFINIBAND)
2064 		return 0;
2065 
2066 	err = device->ops.query_gid(device, port_num, 0, &gid);
2067 	if (err)
2068 		return err;
2069 
2070 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2071 	return 0;
2072 }
2073 
2074 /**
2075  * ib_query_port - Query IB port attributes
2076  * @device:Device to query
2077  * @port_num:Port number to query
2078  * @port_attr:Port attributes
2079  *
2080  * ib_query_port() returns the attributes of a port through the
2081  * @port_attr pointer.
2082  */
2083 int ib_query_port(struct ib_device *device,
2084 		  u32 port_num,
2085 		  struct ib_port_attr *port_attr)
2086 {
2087 	if (!rdma_is_port_valid(device, port_num))
2088 		return -EINVAL;
2089 
2090 	if (rdma_protocol_iwarp(device, port_num))
2091 		return iw_query_port(device, port_num, port_attr);
2092 	else
2093 		return __ib_query_port(device, port_num, port_attr);
2094 }
2095 EXPORT_SYMBOL(ib_query_port);
2096 
2097 static void add_ndev_hash(struct ib_port_data *pdata)
2098 {
2099 	unsigned long flags;
2100 
2101 	might_sleep();
2102 
2103 	spin_lock_irqsave(&ndev_hash_lock, flags);
2104 	if (hash_hashed(&pdata->ndev_hash_link)) {
2105 		hash_del_rcu(&pdata->ndev_hash_link);
2106 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2107 		/*
2108 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2109 		 * grace period
2110 		 */
2111 		synchronize_rcu();
2112 		spin_lock_irqsave(&ndev_hash_lock, flags);
2113 	}
2114 	if (pdata->netdev)
2115 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2116 			     (uintptr_t)pdata->netdev);
2117 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2118 }
2119 
2120 /**
2121  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2122  * @ib_dev: Device to modify
2123  * @ndev: net_device to affiliate, may be NULL
2124  * @port: IB port the net_device is connected to
2125  *
2126  * Drivers should use this to link the ib_device to a netdev so the netdev
2127  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2128  * affiliated with any port.
2129  *
2130  * The caller must ensure that the given ndev is not unregistered or
2131  * unregistering, and that either the ib_device is unregistered or
2132  * ib_device_set_netdev() is called with NULL when the ndev sends a
2133  * NETDEV_UNREGISTER event.
2134  */
2135 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2136 			 u32 port)
2137 {
2138 	struct net_device *old_ndev;
2139 	struct ib_port_data *pdata;
2140 	unsigned long flags;
2141 	int ret;
2142 
2143 	/*
2144 	 * Drivers wish to call this before ib_register_driver, so we have to
2145 	 * setup the port data early.
2146 	 */
2147 	ret = alloc_port_data(ib_dev);
2148 	if (ret)
2149 		return ret;
2150 
2151 	if (!rdma_is_port_valid(ib_dev, port))
2152 		return -EINVAL;
2153 
2154 	pdata = &ib_dev->port_data[port];
2155 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2156 	old_ndev = rcu_dereference_protected(
2157 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2158 	if (old_ndev == ndev) {
2159 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2160 		return 0;
2161 	}
2162 
2163 	if (ndev)
2164 		dev_hold(ndev);
2165 	rcu_assign_pointer(pdata->netdev, ndev);
2166 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2167 
2168 	add_ndev_hash(pdata);
2169 	if (old_ndev)
2170 		dev_put(old_ndev);
2171 
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL(ib_device_set_netdev);
2175 
2176 static void free_netdevs(struct ib_device *ib_dev)
2177 {
2178 	unsigned long flags;
2179 	u32 port;
2180 
2181 	if (!ib_dev->port_data)
2182 		return;
2183 
2184 	rdma_for_each_port (ib_dev, port) {
2185 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2186 		struct net_device *ndev;
2187 
2188 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2189 		ndev = rcu_dereference_protected(
2190 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2191 		if (ndev) {
2192 			spin_lock(&ndev_hash_lock);
2193 			hash_del_rcu(&pdata->ndev_hash_link);
2194 			spin_unlock(&ndev_hash_lock);
2195 
2196 			/*
2197 			 * If this is the last dev_put there is still a
2198 			 * synchronize_rcu before the netdev is kfreed, so we
2199 			 * can continue to rely on unlocked pointer
2200 			 * comparisons after the put
2201 			 */
2202 			rcu_assign_pointer(pdata->netdev, NULL);
2203 			dev_put(ndev);
2204 		}
2205 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2206 	}
2207 }
2208 
2209 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2210 					u32 port)
2211 {
2212 	struct ib_port_data *pdata;
2213 	struct net_device *res;
2214 
2215 	if (!rdma_is_port_valid(ib_dev, port))
2216 		return NULL;
2217 
2218 	pdata = &ib_dev->port_data[port];
2219 
2220 	/*
2221 	 * New drivers should use ib_device_set_netdev() not the legacy
2222 	 * get_netdev().
2223 	 */
2224 	if (ib_dev->ops.get_netdev)
2225 		res = ib_dev->ops.get_netdev(ib_dev, port);
2226 	else {
2227 		spin_lock(&pdata->netdev_lock);
2228 		res = rcu_dereference_protected(
2229 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2230 		if (res)
2231 			dev_hold(res);
2232 		spin_unlock(&pdata->netdev_lock);
2233 	}
2234 
2235 	/*
2236 	 * If we are starting to unregister expedite things by preventing
2237 	 * propagation of an unregistering netdev.
2238 	 */
2239 	if (res && res->reg_state != NETREG_REGISTERED) {
2240 		dev_put(res);
2241 		return NULL;
2242 	}
2243 
2244 	return res;
2245 }
2246 
2247 /**
2248  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2249  * @ndev: netdev to locate
2250  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2251  *
2252  * Find and hold an ib_device that is associated with a netdev via
2253  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2254  * returned pointer.
2255  */
2256 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2257 					  enum rdma_driver_id driver_id)
2258 {
2259 	struct ib_device *res = NULL;
2260 	struct ib_port_data *cur;
2261 
2262 	rcu_read_lock();
2263 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2264 				    (uintptr_t)ndev) {
2265 		if (rcu_access_pointer(cur->netdev) == ndev &&
2266 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2267 		     cur->ib_dev->ops.driver_id == driver_id) &&
2268 		    ib_device_try_get(cur->ib_dev)) {
2269 			res = cur->ib_dev;
2270 			break;
2271 		}
2272 	}
2273 	rcu_read_unlock();
2274 
2275 	return res;
2276 }
2277 EXPORT_SYMBOL(ib_device_get_by_netdev);
2278 
2279 /**
2280  * ib_enum_roce_netdev - enumerate all RoCE ports
2281  * @ib_dev : IB device we want to query
2282  * @filter: Should we call the callback?
2283  * @filter_cookie: Cookie passed to filter
2284  * @cb: Callback to call for each found RoCE ports
2285  * @cookie: Cookie passed back to the callback
2286  *
2287  * Enumerates all of the physical RoCE ports of ib_dev
2288  * which are related to netdevice and calls callback() on each
2289  * device for which filter() function returns non zero.
2290  */
2291 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2292 			 roce_netdev_filter filter,
2293 			 void *filter_cookie,
2294 			 roce_netdev_callback cb,
2295 			 void *cookie)
2296 {
2297 	u32 port;
2298 
2299 	rdma_for_each_port (ib_dev, port)
2300 		if (rdma_protocol_roce(ib_dev, port)) {
2301 			struct net_device *idev =
2302 				ib_device_get_netdev(ib_dev, port);
2303 
2304 			if (filter(ib_dev, port, idev, filter_cookie))
2305 				cb(ib_dev, port, idev, cookie);
2306 
2307 			if (idev)
2308 				dev_put(idev);
2309 		}
2310 }
2311 
2312 /**
2313  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2314  * @filter: Should we call the callback?
2315  * @filter_cookie: Cookie passed to filter
2316  * @cb: Callback to call for each found RoCE ports
2317  * @cookie: Cookie passed back to the callback
2318  *
2319  * Enumerates all RoCE devices' physical ports which are related
2320  * to netdevices and calls callback() on each device for which
2321  * filter() function returns non zero.
2322  */
2323 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2324 			      void *filter_cookie,
2325 			      roce_netdev_callback cb,
2326 			      void *cookie)
2327 {
2328 	struct ib_device *dev;
2329 	unsigned long index;
2330 
2331 	down_read(&devices_rwsem);
2332 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2333 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2334 	up_read(&devices_rwsem);
2335 }
2336 
2337 /*
2338  * ib_enum_all_devs - enumerate all ib_devices
2339  * @cb: Callback to call for each found ib_device
2340  *
2341  * Enumerates all ib_devices and calls callback() on each device.
2342  */
2343 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2344 		     struct netlink_callback *cb)
2345 {
2346 	unsigned long index;
2347 	struct ib_device *dev;
2348 	unsigned int idx = 0;
2349 	int ret = 0;
2350 
2351 	down_read(&devices_rwsem);
2352 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2353 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2354 			continue;
2355 
2356 		ret = nldev_cb(dev, skb, cb, idx);
2357 		if (ret)
2358 			break;
2359 		idx++;
2360 	}
2361 	up_read(&devices_rwsem);
2362 	return ret;
2363 }
2364 
2365 /**
2366  * ib_query_pkey - Get P_Key table entry
2367  * @device:Device to query
2368  * @port_num:Port number to query
2369  * @index:P_Key table index to query
2370  * @pkey:Returned P_Key
2371  *
2372  * ib_query_pkey() fetches the specified P_Key table entry.
2373  */
2374 int ib_query_pkey(struct ib_device *device,
2375 		  u32 port_num, u16 index, u16 *pkey)
2376 {
2377 	if (!rdma_is_port_valid(device, port_num))
2378 		return -EINVAL;
2379 
2380 	if (!device->ops.query_pkey)
2381 		return -EOPNOTSUPP;
2382 
2383 	return device->ops.query_pkey(device, port_num, index, pkey);
2384 }
2385 EXPORT_SYMBOL(ib_query_pkey);
2386 
2387 /**
2388  * ib_modify_device - Change IB device attributes
2389  * @device:Device to modify
2390  * @device_modify_mask:Mask of attributes to change
2391  * @device_modify:New attribute values
2392  *
2393  * ib_modify_device() changes a device's attributes as specified by
2394  * the @device_modify_mask and @device_modify structure.
2395  */
2396 int ib_modify_device(struct ib_device *device,
2397 		     int device_modify_mask,
2398 		     struct ib_device_modify *device_modify)
2399 {
2400 	if (!device->ops.modify_device)
2401 		return -EOPNOTSUPP;
2402 
2403 	return device->ops.modify_device(device, device_modify_mask,
2404 					 device_modify);
2405 }
2406 EXPORT_SYMBOL(ib_modify_device);
2407 
2408 /**
2409  * ib_modify_port - Modifies the attributes for the specified port.
2410  * @device: The device to modify.
2411  * @port_num: The number of the port to modify.
2412  * @port_modify_mask: Mask used to specify which attributes of the port
2413  *   to change.
2414  * @port_modify: New attribute values for the port.
2415  *
2416  * ib_modify_port() changes a port's attributes as specified by the
2417  * @port_modify_mask and @port_modify structure.
2418  */
2419 int ib_modify_port(struct ib_device *device,
2420 		   u32 port_num, int port_modify_mask,
2421 		   struct ib_port_modify *port_modify)
2422 {
2423 	int rc;
2424 
2425 	if (!rdma_is_port_valid(device, port_num))
2426 		return -EINVAL;
2427 
2428 	if (device->ops.modify_port)
2429 		rc = device->ops.modify_port(device, port_num,
2430 					     port_modify_mask,
2431 					     port_modify);
2432 	else if (rdma_protocol_roce(device, port_num) &&
2433 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2434 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2435 		rc = 0;
2436 	else
2437 		rc = -EOPNOTSUPP;
2438 	return rc;
2439 }
2440 EXPORT_SYMBOL(ib_modify_port);
2441 
2442 /**
2443  * ib_find_gid - Returns the port number and GID table index where
2444  *   a specified GID value occurs. Its searches only for IB link layer.
2445  * @device: The device to query.
2446  * @gid: The GID value to search for.
2447  * @port_num: The port number of the device where the GID value was found.
2448  * @index: The index into the GID table where the GID was found.  This
2449  *   parameter may be NULL.
2450  */
2451 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2452 		u32 *port_num, u16 *index)
2453 {
2454 	union ib_gid tmp_gid;
2455 	u32 port;
2456 	int ret, i;
2457 
2458 	rdma_for_each_port (device, port) {
2459 		if (!rdma_protocol_ib(device, port))
2460 			continue;
2461 
2462 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2463 		     ++i) {
2464 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2465 			if (ret)
2466 				return ret;
2467 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2468 				*port_num = port;
2469 				if (index)
2470 					*index = i;
2471 				return 0;
2472 			}
2473 		}
2474 	}
2475 
2476 	return -ENOENT;
2477 }
2478 EXPORT_SYMBOL(ib_find_gid);
2479 
2480 /**
2481  * ib_find_pkey - Returns the PKey table index where a specified
2482  *   PKey value occurs.
2483  * @device: The device to query.
2484  * @port_num: The port number of the device to search for the PKey.
2485  * @pkey: The PKey value to search for.
2486  * @index: The index into the PKey table where the PKey was found.
2487  */
2488 int ib_find_pkey(struct ib_device *device,
2489 		 u32 port_num, u16 pkey, u16 *index)
2490 {
2491 	int ret, i;
2492 	u16 tmp_pkey;
2493 	int partial_ix = -1;
2494 
2495 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2496 	     ++i) {
2497 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2498 		if (ret)
2499 			return ret;
2500 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2501 			/* if there is full-member pkey take it.*/
2502 			if (tmp_pkey & 0x8000) {
2503 				*index = i;
2504 				return 0;
2505 			}
2506 			if (partial_ix < 0)
2507 				partial_ix = i;
2508 		}
2509 	}
2510 
2511 	/*no full-member, if exists take the limited*/
2512 	if (partial_ix >= 0) {
2513 		*index = partial_ix;
2514 		return 0;
2515 	}
2516 	return -ENOENT;
2517 }
2518 EXPORT_SYMBOL(ib_find_pkey);
2519 
2520 /**
2521  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2522  * for a received CM request
2523  * @dev:	An RDMA device on which the request has been received.
2524  * @port:	Port number on the RDMA device.
2525  * @pkey:	The Pkey the request came on.
2526  * @gid:	A GID that the net_dev uses to communicate.
2527  * @addr:	Contains the IP address that the request specified as its
2528  *		destination.
2529  *
2530  */
2531 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2532 					    u32 port,
2533 					    u16 pkey,
2534 					    const union ib_gid *gid,
2535 					    const struct sockaddr *addr)
2536 {
2537 	struct net_device *net_dev = NULL;
2538 	unsigned long index;
2539 	void *client_data;
2540 
2541 	if (!rdma_protocol_ib(dev, port))
2542 		return NULL;
2543 
2544 	/*
2545 	 * Holding the read side guarantees that the client will not become
2546 	 * unregistered while we are calling get_net_dev_by_params()
2547 	 */
2548 	down_read(&dev->client_data_rwsem);
2549 	xan_for_each_marked (&dev->client_data, index, client_data,
2550 			     CLIENT_DATA_REGISTERED) {
2551 		struct ib_client *client = xa_load(&clients, index);
2552 
2553 		if (!client || !client->get_net_dev_by_params)
2554 			continue;
2555 
2556 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2557 							addr, client_data);
2558 		if (net_dev)
2559 			break;
2560 	}
2561 	up_read(&dev->client_data_rwsem);
2562 
2563 	return net_dev;
2564 }
2565 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2566 
2567 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2568 {
2569 	struct ib_device_ops *dev_ops = &dev->ops;
2570 #define SET_DEVICE_OP(ptr, name)                                               \
2571 	do {                                                                   \
2572 		if (ops->name)                                                 \
2573 			if (!((ptr)->name))				       \
2574 				(ptr)->name = ops->name;                       \
2575 	} while (0)
2576 
2577 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2578 
2579 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2580 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2581 			dev_ops->driver_id != ops->driver_id);
2582 		dev_ops->driver_id = ops->driver_id;
2583 	}
2584 	if (ops->owner) {
2585 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2586 		dev_ops->owner = ops->owner;
2587 	}
2588 	if (ops->uverbs_abi_ver)
2589 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2590 
2591 	dev_ops->uverbs_no_driver_id_binding |=
2592 		ops->uverbs_no_driver_id_binding;
2593 
2594 	SET_DEVICE_OP(dev_ops, add_gid);
2595 	SET_DEVICE_OP(dev_ops, advise_mr);
2596 	SET_DEVICE_OP(dev_ops, alloc_dm);
2597 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2598 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2599 	SET_DEVICE_OP(dev_ops, alloc_mr);
2600 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2601 	SET_DEVICE_OP(dev_ops, alloc_mw);
2602 	SET_DEVICE_OP(dev_ops, alloc_pd);
2603 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2604 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2605 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2606 	SET_DEVICE_OP(dev_ops, attach_mcast);
2607 	SET_DEVICE_OP(dev_ops, check_mr_status);
2608 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2609 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2610 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2611 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2612 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2613 	SET_DEVICE_OP(dev_ops, create_ah);
2614 	SET_DEVICE_OP(dev_ops, create_counters);
2615 	SET_DEVICE_OP(dev_ops, create_cq);
2616 	SET_DEVICE_OP(dev_ops, create_flow);
2617 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2618 	SET_DEVICE_OP(dev_ops, create_qp);
2619 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2620 	SET_DEVICE_OP(dev_ops, create_srq);
2621 	SET_DEVICE_OP(dev_ops, create_user_ah);
2622 	SET_DEVICE_OP(dev_ops, create_wq);
2623 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2624 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2625 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2626 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2627 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2628 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2629 	SET_DEVICE_OP(dev_ops, del_gid);
2630 	SET_DEVICE_OP(dev_ops, dereg_mr);
2631 	SET_DEVICE_OP(dev_ops, destroy_ah);
2632 	SET_DEVICE_OP(dev_ops, destroy_counters);
2633 	SET_DEVICE_OP(dev_ops, destroy_cq);
2634 	SET_DEVICE_OP(dev_ops, destroy_flow);
2635 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2636 	SET_DEVICE_OP(dev_ops, destroy_qp);
2637 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2638 	SET_DEVICE_OP(dev_ops, destroy_srq);
2639 	SET_DEVICE_OP(dev_ops, destroy_wq);
2640 	SET_DEVICE_OP(dev_ops, device_group);
2641 	SET_DEVICE_OP(dev_ops, detach_mcast);
2642 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2643 	SET_DEVICE_OP(dev_ops, drain_rq);
2644 	SET_DEVICE_OP(dev_ops, drain_sq);
2645 	SET_DEVICE_OP(dev_ops, enable_driver);
2646 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2647 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2648 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2649 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2650 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2651 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2652 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2653 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2654 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2655 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2656 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2657 	SET_DEVICE_OP(dev_ops, get_link_layer);
2658 	SET_DEVICE_OP(dev_ops, get_netdev);
2659 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2660 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2661 	SET_DEVICE_OP(dev_ops, get_vf_config);
2662 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2663 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2664 	SET_DEVICE_OP(dev_ops, iw_accept);
2665 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2666 	SET_DEVICE_OP(dev_ops, iw_connect);
2667 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2668 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2669 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2670 	SET_DEVICE_OP(dev_ops, iw_reject);
2671 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2672 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2673 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2674 	SET_DEVICE_OP(dev_ops, mmap);
2675 	SET_DEVICE_OP(dev_ops, mmap_free);
2676 	SET_DEVICE_OP(dev_ops, modify_ah);
2677 	SET_DEVICE_OP(dev_ops, modify_cq);
2678 	SET_DEVICE_OP(dev_ops, modify_device);
2679 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2680 	SET_DEVICE_OP(dev_ops, modify_port);
2681 	SET_DEVICE_OP(dev_ops, modify_qp);
2682 	SET_DEVICE_OP(dev_ops, modify_srq);
2683 	SET_DEVICE_OP(dev_ops, modify_wq);
2684 	SET_DEVICE_OP(dev_ops, peek_cq);
2685 	SET_DEVICE_OP(dev_ops, poll_cq);
2686 	SET_DEVICE_OP(dev_ops, port_groups);
2687 	SET_DEVICE_OP(dev_ops, post_recv);
2688 	SET_DEVICE_OP(dev_ops, post_send);
2689 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2690 	SET_DEVICE_OP(dev_ops, process_mad);
2691 	SET_DEVICE_OP(dev_ops, query_ah);
2692 	SET_DEVICE_OP(dev_ops, query_device);
2693 	SET_DEVICE_OP(dev_ops, query_gid);
2694 	SET_DEVICE_OP(dev_ops, query_pkey);
2695 	SET_DEVICE_OP(dev_ops, query_port);
2696 	SET_DEVICE_OP(dev_ops, query_qp);
2697 	SET_DEVICE_OP(dev_ops, query_srq);
2698 	SET_DEVICE_OP(dev_ops, query_ucontext);
2699 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2700 	SET_DEVICE_OP(dev_ops, read_counters);
2701 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2702 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2703 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2704 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2705 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2706 	SET_DEVICE_OP(dev_ops, resize_cq);
2707 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2708 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2709 
2710 	SET_OBJ_SIZE(dev_ops, ib_ah);
2711 	SET_OBJ_SIZE(dev_ops, ib_counters);
2712 	SET_OBJ_SIZE(dev_ops, ib_cq);
2713 	SET_OBJ_SIZE(dev_ops, ib_mw);
2714 	SET_OBJ_SIZE(dev_ops, ib_pd);
2715 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2716 	SET_OBJ_SIZE(dev_ops, ib_srq);
2717 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2718 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2719 }
2720 EXPORT_SYMBOL(ib_set_device_ops);
2721 
2722 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2723 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2724 {
2725 	struct scatterlist *s;
2726 	int i;
2727 
2728 	for_each_sg(sg, s, nents, i) {
2729 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2730 		sg_dma_len(s) = s->length;
2731 	}
2732 	return nents;
2733 }
2734 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2735 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2736 
2737 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2738 	[RDMA_NL_LS_OP_RESOLVE] = {
2739 		.doit = ib_nl_handle_resolve_resp,
2740 		.flags = RDMA_NL_ADMIN_PERM,
2741 	},
2742 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2743 		.doit = ib_nl_handle_set_timeout,
2744 		.flags = RDMA_NL_ADMIN_PERM,
2745 	},
2746 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2747 		.doit = ib_nl_handle_ip_res_resp,
2748 		.flags = RDMA_NL_ADMIN_PERM,
2749 	},
2750 };
2751 
2752 static int __init ib_core_init(void)
2753 {
2754 	int ret;
2755 
2756 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2757 	if (!ib_wq)
2758 		return -ENOMEM;
2759 
2760 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2761 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2762 	if (!ib_comp_wq) {
2763 		ret = -ENOMEM;
2764 		goto err;
2765 	}
2766 
2767 	ib_comp_unbound_wq =
2768 		alloc_workqueue("ib-comp-unb-wq",
2769 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2770 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2771 	if (!ib_comp_unbound_wq) {
2772 		ret = -ENOMEM;
2773 		goto err_comp;
2774 	}
2775 
2776 	ret = class_register(&ib_class);
2777 	if (ret) {
2778 		pr_warn("Couldn't create InfiniBand device class\n");
2779 		goto err_comp_unbound;
2780 	}
2781 
2782 	rdma_nl_init();
2783 
2784 	ret = addr_init();
2785 	if (ret) {
2786 		pr_warn("Couldn't init IB address resolution\n");
2787 		goto err_ibnl;
2788 	}
2789 
2790 	ret = ib_mad_init();
2791 	if (ret) {
2792 		pr_warn("Couldn't init IB MAD\n");
2793 		goto err_addr;
2794 	}
2795 
2796 	ret = ib_sa_init();
2797 	if (ret) {
2798 		pr_warn("Couldn't init SA\n");
2799 		goto err_mad;
2800 	}
2801 
2802 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2803 	if (ret) {
2804 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2805 		goto err_sa;
2806 	}
2807 
2808 	ret = register_pernet_device(&rdma_dev_net_ops);
2809 	if (ret) {
2810 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2811 		goto err_compat;
2812 	}
2813 
2814 	nldev_init();
2815 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2816 	roce_gid_mgmt_init();
2817 
2818 	return 0;
2819 
2820 err_compat:
2821 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2822 err_sa:
2823 	ib_sa_cleanup();
2824 err_mad:
2825 	ib_mad_cleanup();
2826 err_addr:
2827 	addr_cleanup();
2828 err_ibnl:
2829 	class_unregister(&ib_class);
2830 err_comp_unbound:
2831 	destroy_workqueue(ib_comp_unbound_wq);
2832 err_comp:
2833 	destroy_workqueue(ib_comp_wq);
2834 err:
2835 	destroy_workqueue(ib_wq);
2836 	return ret;
2837 }
2838 
2839 static void __exit ib_core_cleanup(void)
2840 {
2841 	roce_gid_mgmt_cleanup();
2842 	nldev_exit();
2843 	rdma_nl_unregister(RDMA_NL_LS);
2844 	unregister_pernet_device(&rdma_dev_net_ops);
2845 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2846 	ib_sa_cleanup();
2847 	ib_mad_cleanup();
2848 	addr_cleanup();
2849 	rdma_nl_exit();
2850 	class_unregister(&ib_class);
2851 	destroy_workqueue(ib_comp_unbound_wq);
2852 	destroy_workqueue(ib_comp_wq);
2853 	/* Make sure that any pending umem accounting work is done. */
2854 	destroy_workqueue(ib_wq);
2855 	flush_workqueue(system_unbound_wq);
2856 	WARN_ON(!xa_empty(&clients));
2857 	WARN_ON(!xa_empty(&devices));
2858 }
2859 
2860 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2861 
2862 /* ib core relies on netdev stack to first register net_ns_type_operations
2863  * ns kobject type before ib_core initialization.
2864  */
2865 fs_initcall(ib_core_init);
2866 module_exit(ib_core_cleanup);
2867