xref: /linux/drivers/infiniband/core/device.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 unsigned int rdma_dev_net_id;
115 
116 /*
117  * A list of net namespaces is maintained in an xarray. This is necessary
118  * because we can't get the locking right using the existing net ns list. We
119  * would require a init_net callback after the list is updated.
120  */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123  * rwsem to protect accessing the rdma_nets xarray entries.
124  */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126 
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 		 "Share device among net namespaces; default=1 (shared)");
131 /**
132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133  *			     from a specified net namespace or not.
134  * @dev:	Pointer to rdma device which needs to be checked
135  * @net:	Pointer to net namesapce for which access to be checked
136  *
137  * When the rdma device is in shared mode, it ignores the net namespace.
138  * When the rdma device is exclusive to a net namespace, rdma device net
139  * namespace is checked against the specified one.
140  */
141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 	return (ib_devices_shared_netns ||
144 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147 
148 /*
149  * xarray has this behavior where it won't iterate over NULL values stored in
150  * allocated arrays.  So we need our own iterator to see all values stored in
151  * the array. This does the same thing as xa_for_each except that it also
152  * returns NULL valued entries if the array is allocating. Simplified to only
153  * work on simple xarrays.
154  */
155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 			     xa_mark_t filter)
157 {
158 	XA_STATE(xas, xa, *indexp);
159 	void *entry;
160 
161 	rcu_read_lock();
162 	do {
163 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 		if (xa_is_zero(entry))
165 			break;
166 	} while (xas_retry(&xas, entry));
167 	rcu_read_unlock();
168 
169 	if (entry) {
170 		*indexp = xas.xa_index;
171 		if (xa_is_zero(entry))
172 			return NULL;
173 		return entry;
174 	}
175 	return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter)                          \
178 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179 	     !xa_is_err(entry);                                                \
180 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181 
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185 
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 			      void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193 
194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 			   struct va_format *vaf)
196 {
197 	if (ibdev && ibdev->dev.parent)
198 		dev_printk_emit(level[1] - '0',
199 				ibdev->dev.parent,
200 				"%s %s %s: %pV",
201 				dev_driver_string(ibdev->dev.parent),
202 				dev_name(ibdev->dev.parent),
203 				dev_name(&ibdev->dev),
204 				vaf);
205 	else if (ibdev)
206 		printk("%s%s: %pV",
207 		       level, dev_name(&ibdev->dev), vaf);
208 	else
209 		printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211 
212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 		  const char *format, ...)
214 {
215 	struct va_format vaf;
216 	va_list args;
217 
218 	va_start(args, format);
219 
220 	vaf.fmt = format;
221 	vaf.va = &args;
222 
223 	__ibdev_printk(level, ibdev, &vaf);
224 
225 	va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228 
229 #define define_ibdev_printk_level(func, level)                  \
230 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
231 {                                                               \
232 	struct va_format vaf;                                   \
233 	va_list args;                                           \
234 								\
235 	va_start(args, fmt);                                    \
236 								\
237 	vaf.fmt = fmt;                                          \
238 	vaf.va = &args;                                         \
239 								\
240 	__ibdev_printk(level, ibdev, &vaf);                     \
241 								\
242 	va_end(args);                                           \
243 }                                                               \
244 EXPORT_SYMBOL(func);
245 
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253 
254 static struct notifier_block ibdev_lsm_nb = {
255 	.notifier_call = ib_security_change,
256 };
257 
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 				 struct net *net);
260 
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 	struct rcu_head rcu_head;
264 	struct ib_port_data pdata[];
265 };
266 
267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 	static const struct {
271 		size_t offset;
272 		char  *name;
273 	} mandatory_table[] = {
274 		IB_MANDATORY_FUNC(query_device),
275 		IB_MANDATORY_FUNC(query_port),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(reg_user_mr),
289 		IB_MANDATORY_FUNC(dereg_mr),
290 		IB_MANDATORY_FUNC(get_port_immutable)
291 	};
292 	int i;
293 
294 	device->kverbs_provider = true;
295 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 		if (!*(void **) ((void *) &device->ops +
297 				 mandatory_table[i].offset)) {
298 			device->kverbs_provider = false;
299 			break;
300 		}
301 	}
302 }
303 
304 /*
305  * Caller must perform ib_device_put() to return the device reference count
306  * when ib_device_get_by_index() returns valid device pointer.
307  */
308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 	struct ib_device *device;
311 
312 	down_read(&devices_rwsem);
313 	device = xa_load(&devices, index);
314 	if (device) {
315 		if (!rdma_dev_access_netns(device, net)) {
316 			device = NULL;
317 			goto out;
318 		}
319 
320 		if (!ib_device_try_get(device))
321 			device = NULL;
322 	}
323 out:
324 	up_read(&devices_rwsem);
325 	return device;
326 }
327 
328 /**
329  * ib_device_put - Release IB device reference
330  * @device: device whose reference to be released
331  *
332  * ib_device_put() releases reference to the IB device to allow it to be
333  * unregistered and eventually free.
334  */
335 void ib_device_put(struct ib_device *device)
336 {
337 	if (refcount_dec_and_test(&device->refcount))
338 		complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341 
342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 	struct ib_device *device;
345 	unsigned long index;
346 
347 	xa_for_each (&devices, index, device)
348 		if (!strcmp(name, dev_name(&device->dev)))
349 			return device;
350 
351 	return NULL;
352 }
353 
354 /**
355  * ib_device_get_by_name - Find an IB device by name
356  * @name: The name to look for
357  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358  *
359  * Find and hold an ib_device by its name. The caller must call
360  * ib_device_put() on the returned pointer.
361  */
362 struct ib_device *ib_device_get_by_name(const char *name,
363 					enum rdma_driver_id driver_id)
364 {
365 	struct ib_device *device;
366 
367 	down_read(&devices_rwsem);
368 	device = __ib_device_get_by_name(name);
369 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 	    device->ops.driver_id != driver_id)
371 		device = NULL;
372 
373 	if (device) {
374 		if (!ib_device_try_get(device))
375 			device = NULL;
376 	}
377 	up_read(&devices_rwsem);
378 	return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381 
382 static int rename_compat_devs(struct ib_device *device)
383 {
384 	struct ib_core_device *cdev;
385 	unsigned long index;
386 	int ret = 0;
387 
388 	mutex_lock(&device->compat_devs_mutex);
389 	xa_for_each (&device->compat_devs, index, cdev) {
390 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 		if (ret) {
392 			dev_warn(&cdev->dev,
393 				 "Fail to rename compatdev to new name %s\n",
394 				 dev_name(&device->dev));
395 			break;
396 		}
397 	}
398 	mutex_unlock(&device->compat_devs_mutex);
399 	return ret;
400 }
401 
402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 	unsigned long index;
405 	void *client_data;
406 	int ret;
407 
408 	down_write(&devices_rwsem);
409 	if (!strcmp(name, dev_name(&ibdev->dev))) {
410 		up_write(&devices_rwsem);
411 		return 0;
412 	}
413 
414 	if (__ib_device_get_by_name(name)) {
415 		up_write(&devices_rwsem);
416 		return -EEXIST;
417 	}
418 
419 	ret = device_rename(&ibdev->dev, name);
420 	if (ret) {
421 		up_write(&devices_rwsem);
422 		return ret;
423 	}
424 
425 	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 	ret = rename_compat_devs(ibdev);
427 
428 	downgrade_write(&devices_rwsem);
429 	down_read(&ibdev->client_data_rwsem);
430 	xan_for_each_marked(&ibdev->client_data, index, client_data,
431 			    CLIENT_DATA_REGISTERED) {
432 		struct ib_client *client = xa_load(&clients, index);
433 
434 		if (!client || !client->rename)
435 			continue;
436 
437 		client->rename(ibdev, client_data);
438 	}
439 	up_read(&ibdev->client_data_rwsem);
440 	up_read(&devices_rwsem);
441 	return 0;
442 }
443 
444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445 {
446 	if (use_dim > 1)
447 		return -EINVAL;
448 	ibdev->use_cq_dim = use_dim;
449 
450 	return 0;
451 }
452 
453 static int alloc_name(struct ib_device *ibdev, const char *name)
454 {
455 	struct ib_device *device;
456 	unsigned long index;
457 	struct ida inuse;
458 	int rc;
459 	int i;
460 
461 	lockdep_assert_held_write(&devices_rwsem);
462 	ida_init(&inuse);
463 	xa_for_each (&devices, index, device) {
464 		char buf[IB_DEVICE_NAME_MAX];
465 
466 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
467 			continue;
468 		if (i < 0 || i >= INT_MAX)
469 			continue;
470 		snprintf(buf, sizeof buf, name, i);
471 		if (strcmp(buf, dev_name(&device->dev)) != 0)
472 			continue;
473 
474 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475 		if (rc < 0)
476 			goto out;
477 	}
478 
479 	rc = ida_alloc(&inuse, GFP_KERNEL);
480 	if (rc < 0)
481 		goto out;
482 
483 	rc = dev_set_name(&ibdev->dev, name, rc);
484 out:
485 	ida_destroy(&inuse);
486 	return rc;
487 }
488 
489 static void ib_device_release(struct device *device)
490 {
491 	struct ib_device *dev = container_of(device, struct ib_device, dev);
492 
493 	free_netdevs(dev);
494 	WARN_ON(refcount_read(&dev->refcount));
495 	if (dev->hw_stats_data)
496 		ib_device_release_hw_stats(dev->hw_stats_data);
497 	if (dev->port_data) {
498 		ib_cache_release_one(dev);
499 		ib_security_release_port_pkey_list(dev);
500 		rdma_counter_release(dev);
501 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 				       pdata[0]),
503 			  rcu_head);
504 	}
505 
506 	mutex_destroy(&dev->subdev_lock);
507 	mutex_destroy(&dev->unregistration_lock);
508 	mutex_destroy(&dev->compat_devs_mutex);
509 
510 	xa_destroy(&dev->compat_devs);
511 	xa_destroy(&dev->client_data);
512 	kfree_rcu(dev, rcu_head);
513 }
514 
515 static int ib_device_uevent(const struct device *device,
516 			    struct kobj_uevent_env *env)
517 {
518 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
519 		return -ENOMEM;
520 
521 	/*
522 	 * It would be nice to pass the node GUID with the event...
523 	 */
524 
525 	return 0;
526 }
527 
528 static const void *net_namespace(const struct device *d)
529 {
530 	const struct ib_core_device *coredev =
531 			container_of(d, struct ib_core_device, dev);
532 
533 	return read_pnet(&coredev->rdma_net);
534 }
535 
536 static struct class ib_class = {
537 	.name    = "infiniband",
538 	.dev_release = ib_device_release,
539 	.dev_uevent = ib_device_uevent,
540 	.ns_type = &net_ns_type_operations,
541 	.namespace = net_namespace,
542 };
543 
544 static void rdma_init_coredev(struct ib_core_device *coredev,
545 			      struct ib_device *dev, struct net *net)
546 {
547 	/* This BUILD_BUG_ON is intended to catch layout change
548 	 * of union of ib_core_device and device.
549 	 * dev must be the first element as ib_core and providers
550 	 * driver uses it. Adding anything in ib_core_device before
551 	 * device will break this assumption.
552 	 */
553 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
554 		     offsetof(struct ib_device, dev));
555 
556 	coredev->dev.class = &ib_class;
557 	coredev->dev.groups = dev->groups;
558 	device_initialize(&coredev->dev);
559 	coredev->owner = dev;
560 	INIT_LIST_HEAD(&coredev->port_list);
561 	write_pnet(&coredev->rdma_net, net);
562 }
563 
564 /**
565  * _ib_alloc_device - allocate an IB device struct
566  * @size:size of structure to allocate
567  *
568  * Low-level drivers should use ib_alloc_device() to allocate &struct
569  * ib_device.  @size is the size of the structure to be allocated,
570  * including any private data used by the low-level driver.
571  * ib_dealloc_device() must be used to free structures allocated with
572  * ib_alloc_device().
573  */
574 struct ib_device *_ib_alloc_device(size_t size)
575 {
576 	struct ib_device *device;
577 	unsigned int i;
578 
579 	if (WARN_ON(size < sizeof(struct ib_device)))
580 		return NULL;
581 
582 	device = kzalloc(size, GFP_KERNEL);
583 	if (!device)
584 		return NULL;
585 
586 	if (rdma_restrack_init(device)) {
587 		kfree(device);
588 		return NULL;
589 	}
590 
591 	rdma_init_coredev(&device->coredev, device, &init_net);
592 
593 	INIT_LIST_HEAD(&device->event_handler_list);
594 	spin_lock_init(&device->qp_open_list_lock);
595 	init_rwsem(&device->event_handler_rwsem);
596 	mutex_init(&device->unregistration_lock);
597 	/*
598 	 * client_data needs to be alloc because we don't want our mark to be
599 	 * destroyed if the user stores NULL in the client data.
600 	 */
601 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
602 	init_rwsem(&device->client_data_rwsem);
603 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
604 	mutex_init(&device->compat_devs_mutex);
605 	init_completion(&device->unreg_completion);
606 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
607 
608 	spin_lock_init(&device->cq_pools_lock);
609 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
610 		INIT_LIST_HEAD(&device->cq_pools[i]);
611 
612 	rwlock_init(&device->cache_lock);
613 
614 	device->uverbs_cmd_mask =
615 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
616 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
617 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
618 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
620 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
621 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
622 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
623 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
624 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
625 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
628 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
629 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
630 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
631 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
632 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
633 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
634 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
635 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
636 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
637 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
638 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
639 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
640 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
641 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
642 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
643 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
644 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
645 
646 	mutex_init(&device->subdev_lock);
647 	INIT_LIST_HEAD(&device->subdev_list_head);
648 	INIT_LIST_HEAD(&device->subdev_list);
649 
650 	return device;
651 }
652 EXPORT_SYMBOL(_ib_alloc_device);
653 
654 /**
655  * ib_dealloc_device - free an IB device struct
656  * @device:structure to free
657  *
658  * Free a structure allocated with ib_alloc_device().
659  */
660 void ib_dealloc_device(struct ib_device *device)
661 {
662 	if (device->ops.dealloc_driver)
663 		device->ops.dealloc_driver(device);
664 
665 	/*
666 	 * ib_unregister_driver() requires all devices to remain in the xarray
667 	 * while their ops are callable. The last op we call is dealloc_driver
668 	 * above.  This is needed to create a fence on op callbacks prior to
669 	 * allowing the driver module to unload.
670 	 */
671 	down_write(&devices_rwsem);
672 	if (xa_load(&devices, device->index) == device)
673 		xa_erase(&devices, device->index);
674 	up_write(&devices_rwsem);
675 
676 	/* Expedite releasing netdev references */
677 	free_netdevs(device);
678 
679 	WARN_ON(!xa_empty(&device->compat_devs));
680 	WARN_ON(!xa_empty(&device->client_data));
681 	WARN_ON(refcount_read(&device->refcount));
682 	rdma_restrack_clean(device);
683 	/* Balances with device_initialize */
684 	put_device(&device->dev);
685 }
686 EXPORT_SYMBOL(ib_dealloc_device);
687 
688 /*
689  * add_client_context() and remove_client_context() must be safe against
690  * parallel calls on the same device - registration/unregistration of both the
691  * device and client can be occurring in parallel.
692  *
693  * The routines need to be a fence, any caller must not return until the add
694  * or remove is fully completed.
695  */
696 static int add_client_context(struct ib_device *device,
697 			      struct ib_client *client)
698 {
699 	int ret = 0;
700 
701 	if (!device->kverbs_provider && !client->no_kverbs_req)
702 		return 0;
703 
704 	down_write(&device->client_data_rwsem);
705 	/*
706 	 * So long as the client is registered hold both the client and device
707 	 * unregistration locks.
708 	 */
709 	if (!refcount_inc_not_zero(&client->uses))
710 		goto out_unlock;
711 	refcount_inc(&device->refcount);
712 
713 	/*
714 	 * Another caller to add_client_context got here first and has already
715 	 * completely initialized context.
716 	 */
717 	if (xa_get_mark(&device->client_data, client->client_id,
718 		    CLIENT_DATA_REGISTERED))
719 		goto out;
720 
721 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
722 			      GFP_KERNEL));
723 	if (ret)
724 		goto out;
725 	downgrade_write(&device->client_data_rwsem);
726 	if (client->add) {
727 		if (client->add(device)) {
728 			/*
729 			 * If a client fails to add then the error code is
730 			 * ignored, but we won't call any more ops on this
731 			 * client.
732 			 */
733 			xa_erase(&device->client_data, client->client_id);
734 			up_read(&device->client_data_rwsem);
735 			ib_device_put(device);
736 			ib_client_put(client);
737 			return 0;
738 		}
739 	}
740 
741 	/* Readers shall not see a client until add has been completed */
742 	xa_set_mark(&device->client_data, client->client_id,
743 		    CLIENT_DATA_REGISTERED);
744 	up_read(&device->client_data_rwsem);
745 	return 0;
746 
747 out:
748 	ib_device_put(device);
749 	ib_client_put(client);
750 out_unlock:
751 	up_write(&device->client_data_rwsem);
752 	return ret;
753 }
754 
755 static void remove_client_context(struct ib_device *device,
756 				  unsigned int client_id)
757 {
758 	struct ib_client *client;
759 	void *client_data;
760 
761 	down_write(&device->client_data_rwsem);
762 	if (!xa_get_mark(&device->client_data, client_id,
763 			 CLIENT_DATA_REGISTERED)) {
764 		up_write(&device->client_data_rwsem);
765 		return;
766 	}
767 	client_data = xa_load(&device->client_data, client_id);
768 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
769 	client = xa_load(&clients, client_id);
770 	up_write(&device->client_data_rwsem);
771 
772 	/*
773 	 * Notice we cannot be holding any exclusive locks when calling the
774 	 * remove callback as the remove callback can recurse back into any
775 	 * public functions in this module and thus try for any locks those
776 	 * functions take.
777 	 *
778 	 * For this reason clients and drivers should not call the
779 	 * unregistration functions will holdling any locks.
780 	 */
781 	if (client->remove)
782 		client->remove(device, client_data);
783 
784 	xa_erase(&device->client_data, client_id);
785 	ib_device_put(device);
786 	ib_client_put(client);
787 }
788 
789 static int alloc_port_data(struct ib_device *device)
790 {
791 	struct ib_port_data_rcu *pdata_rcu;
792 	u32 port;
793 
794 	if (device->port_data)
795 		return 0;
796 
797 	/* This can only be called once the physical port range is defined */
798 	if (WARN_ON(!device->phys_port_cnt))
799 		return -EINVAL;
800 
801 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
802 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
803 		return -EINVAL;
804 
805 	/*
806 	 * device->port_data is indexed directly by the port number to make
807 	 * access to this data as efficient as possible.
808 	 *
809 	 * Therefore port_data is declared as a 1 based array with potential
810 	 * empty slots at the beginning.
811 	 */
812 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
813 					size_add(rdma_end_port(device), 1)),
814 			    GFP_KERNEL);
815 	if (!pdata_rcu)
816 		return -ENOMEM;
817 	/*
818 	 * The rcu_head is put in front of the port data array and the stored
819 	 * pointer is adjusted since we never need to see that member until
820 	 * kfree_rcu.
821 	 */
822 	device->port_data = pdata_rcu->pdata;
823 
824 	rdma_for_each_port (device, port) {
825 		struct ib_port_data *pdata = &device->port_data[port];
826 
827 		pdata->ib_dev = device;
828 		spin_lock_init(&pdata->pkey_list_lock);
829 		INIT_LIST_HEAD(&pdata->pkey_list);
830 		spin_lock_init(&pdata->netdev_lock);
831 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
832 	}
833 	return 0;
834 }
835 
836 static int verify_immutable(const struct ib_device *dev, u32 port)
837 {
838 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
839 			    rdma_max_mad_size(dev, port) != 0);
840 }
841 
842 static int setup_port_data(struct ib_device *device)
843 {
844 	u32 port;
845 	int ret;
846 
847 	ret = alloc_port_data(device);
848 	if (ret)
849 		return ret;
850 
851 	rdma_for_each_port (device, port) {
852 		struct ib_port_data *pdata = &device->port_data[port];
853 
854 		ret = device->ops.get_port_immutable(device, port,
855 						     &pdata->immutable);
856 		if (ret)
857 			return ret;
858 
859 		if (verify_immutable(device, port))
860 			return -EINVAL;
861 	}
862 	return 0;
863 }
864 
865 /**
866  * ib_port_immutable_read() - Read rdma port's immutable data
867  * @dev: IB device
868  * @port: port number whose immutable data to read. It starts with index 1 and
869  *        valid upto including rdma_end_port().
870  */
871 const struct ib_port_immutable*
872 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
873 {
874 	WARN_ON(!rdma_is_port_valid(dev, port));
875 	return &dev->port_data[port].immutable;
876 }
877 EXPORT_SYMBOL(ib_port_immutable_read);
878 
879 void ib_get_device_fw_str(struct ib_device *dev, char *str)
880 {
881 	if (dev->ops.get_dev_fw_str)
882 		dev->ops.get_dev_fw_str(dev, str);
883 	else
884 		str[0] = '\0';
885 }
886 EXPORT_SYMBOL(ib_get_device_fw_str);
887 
888 static void ib_policy_change_task(struct work_struct *work)
889 {
890 	struct ib_device *dev;
891 	unsigned long index;
892 
893 	down_read(&devices_rwsem);
894 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
895 		unsigned int i;
896 
897 		rdma_for_each_port (dev, i) {
898 			u64 sp;
899 			ib_get_cached_subnet_prefix(dev, i, &sp);
900 			ib_security_cache_change(dev, i, sp);
901 		}
902 	}
903 	up_read(&devices_rwsem);
904 }
905 
906 static int ib_security_change(struct notifier_block *nb, unsigned long event,
907 			      void *lsm_data)
908 {
909 	if (event != LSM_POLICY_CHANGE)
910 		return NOTIFY_DONE;
911 
912 	schedule_work(&ib_policy_change_work);
913 	ib_mad_agent_security_change();
914 
915 	return NOTIFY_OK;
916 }
917 
918 static void compatdev_release(struct device *dev)
919 {
920 	struct ib_core_device *cdev =
921 		container_of(dev, struct ib_core_device, dev);
922 
923 	kfree(cdev);
924 }
925 
926 static int add_one_compat_dev(struct ib_device *device,
927 			      struct rdma_dev_net *rnet)
928 {
929 	struct ib_core_device *cdev;
930 	int ret;
931 
932 	lockdep_assert_held(&rdma_nets_rwsem);
933 	if (!ib_devices_shared_netns)
934 		return 0;
935 
936 	/*
937 	 * Create and add compat device in all namespaces other than where it
938 	 * is currently bound to.
939 	 */
940 	if (net_eq(read_pnet(&rnet->net),
941 		   read_pnet(&device->coredev.rdma_net)))
942 		return 0;
943 
944 	/*
945 	 * The first of init_net() or ib_register_device() to take the
946 	 * compat_devs_mutex wins and gets to add the device. Others will wait
947 	 * for completion here.
948 	 */
949 	mutex_lock(&device->compat_devs_mutex);
950 	cdev = xa_load(&device->compat_devs, rnet->id);
951 	if (cdev) {
952 		ret = 0;
953 		goto done;
954 	}
955 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
956 	if (ret)
957 		goto done;
958 
959 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
960 	if (!cdev) {
961 		ret = -ENOMEM;
962 		goto cdev_err;
963 	}
964 
965 	cdev->dev.parent = device->dev.parent;
966 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
967 	cdev->dev.release = compatdev_release;
968 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
969 	if (ret)
970 		goto add_err;
971 
972 	ret = device_add(&cdev->dev);
973 	if (ret)
974 		goto add_err;
975 	ret = ib_setup_port_attrs(cdev);
976 	if (ret)
977 		goto port_err;
978 
979 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
980 			      cdev, GFP_KERNEL));
981 	if (ret)
982 		goto insert_err;
983 
984 	mutex_unlock(&device->compat_devs_mutex);
985 	return 0;
986 
987 insert_err:
988 	ib_free_port_attrs(cdev);
989 port_err:
990 	device_del(&cdev->dev);
991 add_err:
992 	put_device(&cdev->dev);
993 cdev_err:
994 	xa_release(&device->compat_devs, rnet->id);
995 done:
996 	mutex_unlock(&device->compat_devs_mutex);
997 	return ret;
998 }
999 
1000 static void remove_one_compat_dev(struct ib_device *device, u32 id)
1001 {
1002 	struct ib_core_device *cdev;
1003 
1004 	mutex_lock(&device->compat_devs_mutex);
1005 	cdev = xa_erase(&device->compat_devs, id);
1006 	mutex_unlock(&device->compat_devs_mutex);
1007 	if (cdev) {
1008 		ib_free_port_attrs(cdev);
1009 		device_del(&cdev->dev);
1010 		put_device(&cdev->dev);
1011 	}
1012 }
1013 
1014 static void remove_compat_devs(struct ib_device *device)
1015 {
1016 	struct ib_core_device *cdev;
1017 	unsigned long index;
1018 
1019 	xa_for_each (&device->compat_devs, index, cdev)
1020 		remove_one_compat_dev(device, index);
1021 }
1022 
1023 static int add_compat_devs(struct ib_device *device)
1024 {
1025 	struct rdma_dev_net *rnet;
1026 	unsigned long index;
1027 	int ret = 0;
1028 
1029 	lockdep_assert_held(&devices_rwsem);
1030 
1031 	down_read(&rdma_nets_rwsem);
1032 	xa_for_each (&rdma_nets, index, rnet) {
1033 		ret = add_one_compat_dev(device, rnet);
1034 		if (ret)
1035 			break;
1036 	}
1037 	up_read(&rdma_nets_rwsem);
1038 	return ret;
1039 }
1040 
1041 static void remove_all_compat_devs(void)
1042 {
1043 	struct ib_compat_device *cdev;
1044 	struct ib_device *dev;
1045 	unsigned long index;
1046 
1047 	down_read(&devices_rwsem);
1048 	xa_for_each (&devices, index, dev) {
1049 		unsigned long c_index = 0;
1050 
1051 		/* Hold nets_rwsem so that any other thread modifying this
1052 		 * system param can sync with this thread.
1053 		 */
1054 		down_read(&rdma_nets_rwsem);
1055 		xa_for_each (&dev->compat_devs, c_index, cdev)
1056 			remove_one_compat_dev(dev, c_index);
1057 		up_read(&rdma_nets_rwsem);
1058 	}
1059 	up_read(&devices_rwsem);
1060 }
1061 
1062 static int add_all_compat_devs(void)
1063 {
1064 	struct rdma_dev_net *rnet;
1065 	struct ib_device *dev;
1066 	unsigned long index;
1067 	int ret = 0;
1068 
1069 	down_read(&devices_rwsem);
1070 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1071 		unsigned long net_index = 0;
1072 
1073 		/* Hold nets_rwsem so that any other thread modifying this
1074 		 * system param can sync with this thread.
1075 		 */
1076 		down_read(&rdma_nets_rwsem);
1077 		xa_for_each (&rdma_nets, net_index, rnet) {
1078 			ret = add_one_compat_dev(dev, rnet);
1079 			if (ret)
1080 				break;
1081 		}
1082 		up_read(&rdma_nets_rwsem);
1083 	}
1084 	up_read(&devices_rwsem);
1085 	if (ret)
1086 		remove_all_compat_devs();
1087 	return ret;
1088 }
1089 
1090 int rdma_compatdev_set(u8 enable)
1091 {
1092 	struct rdma_dev_net *rnet;
1093 	unsigned long index;
1094 	int ret = 0;
1095 
1096 	down_write(&rdma_nets_rwsem);
1097 	if (ib_devices_shared_netns == enable) {
1098 		up_write(&rdma_nets_rwsem);
1099 		return 0;
1100 	}
1101 
1102 	/* enable/disable of compat devices is not supported
1103 	 * when more than default init_net exists.
1104 	 */
1105 	xa_for_each (&rdma_nets, index, rnet) {
1106 		ret++;
1107 		break;
1108 	}
1109 	if (!ret)
1110 		ib_devices_shared_netns = enable;
1111 	up_write(&rdma_nets_rwsem);
1112 	if (ret)
1113 		return -EBUSY;
1114 
1115 	if (enable)
1116 		ret = add_all_compat_devs();
1117 	else
1118 		remove_all_compat_devs();
1119 	return ret;
1120 }
1121 
1122 static void rdma_dev_exit_net(struct net *net)
1123 {
1124 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1125 	struct ib_device *dev;
1126 	unsigned long index;
1127 	int ret;
1128 
1129 	down_write(&rdma_nets_rwsem);
1130 	/*
1131 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1132 	 */
1133 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1134 	WARN_ON(ret);
1135 	up_write(&rdma_nets_rwsem);
1136 
1137 	down_read(&devices_rwsem);
1138 	xa_for_each (&devices, index, dev) {
1139 		get_device(&dev->dev);
1140 		/*
1141 		 * Release the devices_rwsem so that pontentially blocking
1142 		 * device_del, doesn't hold the devices_rwsem for too long.
1143 		 */
1144 		up_read(&devices_rwsem);
1145 
1146 		remove_one_compat_dev(dev, rnet->id);
1147 
1148 		/*
1149 		 * If the real device is in the NS then move it back to init.
1150 		 */
1151 		rdma_dev_change_netns(dev, net, &init_net);
1152 
1153 		put_device(&dev->dev);
1154 		down_read(&devices_rwsem);
1155 	}
1156 	up_read(&devices_rwsem);
1157 
1158 	rdma_nl_net_exit(rnet);
1159 	xa_erase(&rdma_nets, rnet->id);
1160 }
1161 
1162 static __net_init int rdma_dev_init_net(struct net *net)
1163 {
1164 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1165 	unsigned long index;
1166 	struct ib_device *dev;
1167 	int ret;
1168 
1169 	write_pnet(&rnet->net, net);
1170 
1171 	ret = rdma_nl_net_init(rnet);
1172 	if (ret)
1173 		return ret;
1174 
1175 	/* No need to create any compat devices in default init_net. */
1176 	if (net_eq(net, &init_net))
1177 		return 0;
1178 
1179 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1180 	if (ret) {
1181 		rdma_nl_net_exit(rnet);
1182 		return ret;
1183 	}
1184 
1185 	down_read(&devices_rwsem);
1186 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1187 		/* Hold nets_rwsem so that netlink command cannot change
1188 		 * system configuration for device sharing mode.
1189 		 */
1190 		down_read(&rdma_nets_rwsem);
1191 		ret = add_one_compat_dev(dev, rnet);
1192 		up_read(&rdma_nets_rwsem);
1193 		if (ret)
1194 			break;
1195 	}
1196 	up_read(&devices_rwsem);
1197 
1198 	if (ret)
1199 		rdma_dev_exit_net(net);
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * Assign the unique string device name and the unique device index. This is
1206  * undone by ib_dealloc_device.
1207  */
1208 static int assign_name(struct ib_device *device, const char *name)
1209 {
1210 	static u32 last_id;
1211 	int ret;
1212 
1213 	down_write(&devices_rwsem);
1214 	/* Assign a unique name to the device */
1215 	if (strchr(name, '%'))
1216 		ret = alloc_name(device, name);
1217 	else
1218 		ret = dev_set_name(&device->dev, name);
1219 	if (ret)
1220 		goto out;
1221 
1222 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1223 		ret = -ENFILE;
1224 		goto out;
1225 	}
1226 	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1227 
1228 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1229 			&last_id, GFP_KERNEL);
1230 	if (ret > 0)
1231 		ret = 0;
1232 
1233 out:
1234 	up_write(&devices_rwsem);
1235 	return ret;
1236 }
1237 
1238 /*
1239  * setup_device() allocates memory and sets up data that requires calling the
1240  * device ops, this is the only reason these actions are not done during
1241  * ib_alloc_device. It is undone by ib_dealloc_device().
1242  */
1243 static int setup_device(struct ib_device *device)
1244 {
1245 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1246 	int ret;
1247 
1248 	ib_device_check_mandatory(device);
1249 
1250 	ret = setup_port_data(device);
1251 	if (ret) {
1252 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1253 		return ret;
1254 	}
1255 
1256 	memset(&device->attrs, 0, sizeof(device->attrs));
1257 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1258 	if (ret) {
1259 		dev_warn(&device->dev,
1260 			 "Couldn't query the device attributes\n");
1261 		return ret;
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 static void disable_device(struct ib_device *device)
1268 {
1269 	u32 cid;
1270 
1271 	WARN_ON(!refcount_read(&device->refcount));
1272 
1273 	down_write(&devices_rwsem);
1274 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1275 	up_write(&devices_rwsem);
1276 
1277 	/*
1278 	 * Remove clients in LIFO order, see assign_client_id. This could be
1279 	 * more efficient if xarray learns to reverse iterate. Since no new
1280 	 * clients can be added to this ib_device past this point we only need
1281 	 * the maximum possible client_id value here.
1282 	 */
1283 	down_read(&clients_rwsem);
1284 	cid = highest_client_id;
1285 	up_read(&clients_rwsem);
1286 	while (cid) {
1287 		cid--;
1288 		remove_client_context(device, cid);
1289 	}
1290 
1291 	ib_cq_pool_cleanup(device);
1292 
1293 	/* Pairs with refcount_set in enable_device */
1294 	ib_device_put(device);
1295 	wait_for_completion(&device->unreg_completion);
1296 
1297 	/*
1298 	 * compat devices must be removed after device refcount drops to zero.
1299 	 * Otherwise init_net() may add more compatdevs after removing compat
1300 	 * devices and before device is disabled.
1301 	 */
1302 	remove_compat_devs(device);
1303 }
1304 
1305 /*
1306  * An enabled device is visible to all clients and to all the public facing
1307  * APIs that return a device pointer. This always returns with a new get, even
1308  * if it fails.
1309  */
1310 static int enable_device_and_get(struct ib_device *device)
1311 {
1312 	struct ib_client *client;
1313 	unsigned long index;
1314 	int ret = 0;
1315 
1316 	/*
1317 	 * One ref belongs to the xa and the other belongs to this
1318 	 * thread. This is needed to guard against parallel unregistration.
1319 	 */
1320 	refcount_set(&device->refcount, 2);
1321 	down_write(&devices_rwsem);
1322 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1323 
1324 	/*
1325 	 * By using downgrade_write() we ensure that no other thread can clear
1326 	 * DEVICE_REGISTERED while we are completing the client setup.
1327 	 */
1328 	downgrade_write(&devices_rwsem);
1329 
1330 	if (device->ops.enable_driver) {
1331 		ret = device->ops.enable_driver(device);
1332 		if (ret)
1333 			goto out;
1334 	}
1335 
1336 	down_read(&clients_rwsem);
1337 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1338 		ret = add_client_context(device, client);
1339 		if (ret)
1340 			break;
1341 	}
1342 	up_read(&clients_rwsem);
1343 	if (!ret)
1344 		ret = add_compat_devs(device);
1345 out:
1346 	up_read(&devices_rwsem);
1347 	return ret;
1348 }
1349 
1350 static void prevent_dealloc_device(struct ib_device *ib_dev)
1351 {
1352 }
1353 
1354 /**
1355  * ib_register_device - Register an IB device with IB core
1356  * @device: Device to register
1357  * @name: unique string device name. This may include a '%' which will
1358  * 	  cause a unique index to be added to the passed device name.
1359  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1360  *	        device will be used. In this case the caller should fully
1361  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1362  *
1363  * Low-level drivers use ib_register_device() to register their
1364  * devices with the IB core.  All registered clients will receive a
1365  * callback for each device that is added. @device must be allocated
1366  * with ib_alloc_device().
1367  *
1368  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1369  * asynchronously then the device pointer may become freed as soon as this
1370  * function returns.
1371  */
1372 int ib_register_device(struct ib_device *device, const char *name,
1373 		       struct device *dma_device)
1374 {
1375 	int ret;
1376 
1377 	ret = assign_name(device, name);
1378 	if (ret)
1379 		return ret;
1380 
1381 	/*
1382 	 * If the caller does not provide a DMA capable device then the IB core
1383 	 * will set up ib_sge and scatterlist structures that stash the kernel
1384 	 * virtual address into the address field.
1385 	 */
1386 	WARN_ON(dma_device && !dma_device->dma_parms);
1387 	device->dma_device = dma_device;
1388 
1389 	ret = setup_device(device);
1390 	if (ret)
1391 		return ret;
1392 
1393 	ret = ib_cache_setup_one(device);
1394 	if (ret) {
1395 		dev_warn(&device->dev,
1396 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1397 		return ret;
1398 	}
1399 
1400 	device->groups[0] = &ib_dev_attr_group;
1401 	device->groups[1] = device->ops.device_group;
1402 	ret = ib_setup_device_attrs(device);
1403 	if (ret)
1404 		goto cache_cleanup;
1405 
1406 	ib_device_register_rdmacg(device);
1407 
1408 	rdma_counter_init(device);
1409 
1410 	/*
1411 	 * Ensure that ADD uevent is not fired because it
1412 	 * is too early amd device is not initialized yet.
1413 	 */
1414 	dev_set_uevent_suppress(&device->dev, true);
1415 	ret = device_add(&device->dev);
1416 	if (ret)
1417 		goto cg_cleanup;
1418 
1419 	ret = ib_setup_port_attrs(&device->coredev);
1420 	if (ret) {
1421 		dev_warn(&device->dev,
1422 			 "Couldn't register device with driver model\n");
1423 		goto dev_cleanup;
1424 	}
1425 
1426 	ret = enable_device_and_get(device);
1427 	if (ret) {
1428 		void (*dealloc_fn)(struct ib_device *);
1429 
1430 		/*
1431 		 * If we hit this error flow then we don't want to
1432 		 * automatically dealloc the device since the caller is
1433 		 * expected to call ib_dealloc_device() after
1434 		 * ib_register_device() fails. This is tricky due to the
1435 		 * possibility for a parallel unregistration along with this
1436 		 * error flow. Since we have a refcount here we know any
1437 		 * parallel flow is stopped in disable_device and will see the
1438 		 * special dealloc_driver pointer, causing the responsibility to
1439 		 * ib_dealloc_device() to revert back to this thread.
1440 		 */
1441 		dealloc_fn = device->ops.dealloc_driver;
1442 		device->ops.dealloc_driver = prevent_dealloc_device;
1443 		ib_device_put(device);
1444 		__ib_unregister_device(device);
1445 		device->ops.dealloc_driver = dealloc_fn;
1446 		dev_set_uevent_suppress(&device->dev, false);
1447 		return ret;
1448 	}
1449 	dev_set_uevent_suppress(&device->dev, false);
1450 	/* Mark for userspace that device is ready */
1451 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1452 	ib_device_put(device);
1453 
1454 	return 0;
1455 
1456 dev_cleanup:
1457 	device_del(&device->dev);
1458 cg_cleanup:
1459 	dev_set_uevent_suppress(&device->dev, false);
1460 	ib_device_unregister_rdmacg(device);
1461 cache_cleanup:
1462 	ib_cache_cleanup_one(device);
1463 	return ret;
1464 }
1465 EXPORT_SYMBOL(ib_register_device);
1466 
1467 /* Callers must hold a get on the device. */
1468 static void __ib_unregister_device(struct ib_device *ib_dev)
1469 {
1470 	struct ib_device *sub, *tmp;
1471 
1472 	mutex_lock(&ib_dev->subdev_lock);
1473 	list_for_each_entry_safe_reverse(sub, tmp,
1474 					 &ib_dev->subdev_list_head,
1475 					 subdev_list) {
1476 		list_del(&sub->subdev_list);
1477 		ib_dev->ops.del_sub_dev(sub);
1478 		ib_device_put(ib_dev);
1479 	}
1480 	mutex_unlock(&ib_dev->subdev_lock);
1481 
1482 	/*
1483 	 * We have a registration lock so that all the calls to unregister are
1484 	 * fully fenced, once any unregister returns the device is truely
1485 	 * unregistered even if multiple callers are unregistering it at the
1486 	 * same time. This also interacts with the registration flow and
1487 	 * provides sane semantics if register and unregister are racing.
1488 	 */
1489 	mutex_lock(&ib_dev->unregistration_lock);
1490 	if (!refcount_read(&ib_dev->refcount))
1491 		goto out;
1492 
1493 	disable_device(ib_dev);
1494 
1495 	/* Expedite removing unregistered pointers from the hash table */
1496 	free_netdevs(ib_dev);
1497 
1498 	ib_free_port_attrs(&ib_dev->coredev);
1499 	device_del(&ib_dev->dev);
1500 	ib_device_unregister_rdmacg(ib_dev);
1501 	ib_cache_cleanup_one(ib_dev);
1502 
1503 	/*
1504 	 * Drivers using the new flow may not call ib_dealloc_device except
1505 	 * in error unwind prior to registration success.
1506 	 */
1507 	if (ib_dev->ops.dealloc_driver &&
1508 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1509 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1510 		ib_dealloc_device(ib_dev);
1511 	}
1512 out:
1513 	mutex_unlock(&ib_dev->unregistration_lock);
1514 }
1515 
1516 /**
1517  * ib_unregister_device - Unregister an IB device
1518  * @ib_dev: The device to unregister
1519  *
1520  * Unregister an IB device.  All clients will receive a remove callback.
1521  *
1522  * Callers should call this routine only once, and protect against races with
1523  * registration. Typically it should only be called as part of a remove
1524  * callback in an implementation of driver core's struct device_driver and
1525  * related.
1526  *
1527  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1528  * this function.
1529  */
1530 void ib_unregister_device(struct ib_device *ib_dev)
1531 {
1532 	get_device(&ib_dev->dev);
1533 	__ib_unregister_device(ib_dev);
1534 	put_device(&ib_dev->dev);
1535 }
1536 EXPORT_SYMBOL(ib_unregister_device);
1537 
1538 /**
1539  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1540  * @ib_dev: The device to unregister
1541  *
1542  * This is the same as ib_unregister_device(), except it includes an internal
1543  * ib_device_put() that should match a 'get' obtained by the caller.
1544  *
1545  * It is safe to call this routine concurrently from multiple threads while
1546  * holding the 'get'. When the function returns the device is fully
1547  * unregistered.
1548  *
1549  * Drivers using this flow MUST use the driver_unregister callback to clean up
1550  * their resources associated with the device and dealloc it.
1551  */
1552 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1553 {
1554 	WARN_ON(!ib_dev->ops.dealloc_driver);
1555 	get_device(&ib_dev->dev);
1556 	ib_device_put(ib_dev);
1557 	__ib_unregister_device(ib_dev);
1558 	put_device(&ib_dev->dev);
1559 }
1560 EXPORT_SYMBOL(ib_unregister_device_and_put);
1561 
1562 /**
1563  * ib_unregister_driver - Unregister all IB devices for a driver
1564  * @driver_id: The driver to unregister
1565  *
1566  * This implements a fence for device unregistration. It only returns once all
1567  * devices associated with the driver_id have fully completed their
1568  * unregistration and returned from ib_unregister_device*().
1569  *
1570  * If device's are not yet unregistered it goes ahead and starts unregistering
1571  * them.
1572  *
1573  * This does not block creation of new devices with the given driver_id, that
1574  * is the responsibility of the caller.
1575  */
1576 void ib_unregister_driver(enum rdma_driver_id driver_id)
1577 {
1578 	struct ib_device *ib_dev;
1579 	unsigned long index;
1580 
1581 	down_read(&devices_rwsem);
1582 	xa_for_each (&devices, index, ib_dev) {
1583 		if (ib_dev->ops.driver_id != driver_id)
1584 			continue;
1585 
1586 		get_device(&ib_dev->dev);
1587 		up_read(&devices_rwsem);
1588 
1589 		WARN_ON(!ib_dev->ops.dealloc_driver);
1590 		__ib_unregister_device(ib_dev);
1591 
1592 		put_device(&ib_dev->dev);
1593 		down_read(&devices_rwsem);
1594 	}
1595 	up_read(&devices_rwsem);
1596 }
1597 EXPORT_SYMBOL(ib_unregister_driver);
1598 
1599 static void ib_unregister_work(struct work_struct *work)
1600 {
1601 	struct ib_device *ib_dev =
1602 		container_of(work, struct ib_device, unregistration_work);
1603 
1604 	__ib_unregister_device(ib_dev);
1605 	put_device(&ib_dev->dev);
1606 }
1607 
1608 /**
1609  * ib_unregister_device_queued - Unregister a device using a work queue
1610  * @ib_dev: The device to unregister
1611  *
1612  * This schedules an asynchronous unregistration using a WQ for the device. A
1613  * driver should use this to avoid holding locks while doing unregistration,
1614  * such as holding the RTNL lock.
1615  *
1616  * Drivers using this API must use ib_unregister_driver before module unload
1617  * to ensure that all scheduled unregistrations have completed.
1618  */
1619 void ib_unregister_device_queued(struct ib_device *ib_dev)
1620 {
1621 	WARN_ON(!refcount_read(&ib_dev->refcount));
1622 	WARN_ON(!ib_dev->ops.dealloc_driver);
1623 	get_device(&ib_dev->dev);
1624 	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1625 		put_device(&ib_dev->dev);
1626 }
1627 EXPORT_SYMBOL(ib_unregister_device_queued);
1628 
1629 /*
1630  * The caller must pass in a device that has the kref held and the refcount
1631  * released. If the device is in cur_net and still registered then it is moved
1632  * into net.
1633  */
1634 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1635 				 struct net *net)
1636 {
1637 	int ret2 = -EINVAL;
1638 	int ret;
1639 
1640 	mutex_lock(&device->unregistration_lock);
1641 
1642 	/*
1643 	 * If a device not under ib_device_get() or if the unregistration_lock
1644 	 * is not held, the namespace can be changed, or it can be unregistered.
1645 	 * Check again under the lock.
1646 	 */
1647 	if (refcount_read(&device->refcount) == 0 ||
1648 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1649 		ret = -ENODEV;
1650 		goto out;
1651 	}
1652 
1653 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1654 	disable_device(device);
1655 
1656 	/*
1657 	 * At this point no one can be using the device, so it is safe to
1658 	 * change the namespace.
1659 	 */
1660 	write_pnet(&device->coredev.rdma_net, net);
1661 
1662 	down_read(&devices_rwsem);
1663 	/*
1664 	 * Currently rdma devices are system wide unique. So the device name
1665 	 * is guaranteed free in the new namespace. Publish the new namespace
1666 	 * at the sysfs level.
1667 	 */
1668 	ret = device_rename(&device->dev, dev_name(&device->dev));
1669 	up_read(&devices_rwsem);
1670 	if (ret) {
1671 		dev_warn(&device->dev,
1672 			 "%s: Couldn't rename device after namespace change\n",
1673 			 __func__);
1674 		/* Try and put things back and re-enable the device */
1675 		write_pnet(&device->coredev.rdma_net, cur_net);
1676 	}
1677 
1678 	ret2 = enable_device_and_get(device);
1679 	if (ret2) {
1680 		/*
1681 		 * This shouldn't really happen, but if it does, let the user
1682 		 * retry at later point. So don't disable the device.
1683 		 */
1684 		dev_warn(&device->dev,
1685 			 "%s: Couldn't re-enable device after namespace change\n",
1686 			 __func__);
1687 	}
1688 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1689 
1690 	ib_device_put(device);
1691 out:
1692 	mutex_unlock(&device->unregistration_lock);
1693 	if (ret)
1694 		return ret;
1695 	return ret2;
1696 }
1697 
1698 int ib_device_set_netns_put(struct sk_buff *skb,
1699 			    struct ib_device *dev, u32 ns_fd)
1700 {
1701 	struct net *net;
1702 	int ret;
1703 
1704 	net = get_net_ns_by_fd(ns_fd);
1705 	if (IS_ERR(net)) {
1706 		ret = PTR_ERR(net);
1707 		goto net_err;
1708 	}
1709 
1710 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1711 		ret = -EPERM;
1712 		goto ns_err;
1713 	}
1714 
1715 	/*
1716 	 * All the ib_clients, including uverbs, are reset when the namespace is
1717 	 * changed and this cannot be blocked waiting for userspace to do
1718 	 * something, so disassociation is mandatory.
1719 	 */
1720 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1721 		ret = -EOPNOTSUPP;
1722 		goto ns_err;
1723 	}
1724 
1725 	get_device(&dev->dev);
1726 	ib_device_put(dev);
1727 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1728 	put_device(&dev->dev);
1729 
1730 	put_net(net);
1731 	return ret;
1732 
1733 ns_err:
1734 	put_net(net);
1735 net_err:
1736 	ib_device_put(dev);
1737 	return ret;
1738 }
1739 
1740 static struct pernet_operations rdma_dev_net_ops = {
1741 	.init = rdma_dev_init_net,
1742 	.exit = rdma_dev_exit_net,
1743 	.id = &rdma_dev_net_id,
1744 	.size = sizeof(struct rdma_dev_net),
1745 };
1746 
1747 static int assign_client_id(struct ib_client *client)
1748 {
1749 	int ret;
1750 
1751 	lockdep_assert_held(&clients_rwsem);
1752 	/*
1753 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1754 	 * achieve this we assign client_ids so they are sorted in
1755 	 * registration order.
1756 	 */
1757 	client->client_id = highest_client_id;
1758 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1759 	if (ret)
1760 		return ret;
1761 
1762 	highest_client_id++;
1763 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1764 	return 0;
1765 }
1766 
1767 static void remove_client_id(struct ib_client *client)
1768 {
1769 	down_write(&clients_rwsem);
1770 	xa_erase(&clients, client->client_id);
1771 	for (; highest_client_id; highest_client_id--)
1772 		if (xa_load(&clients, highest_client_id - 1))
1773 			break;
1774 	up_write(&clients_rwsem);
1775 }
1776 
1777 /**
1778  * ib_register_client - Register an IB client
1779  * @client:Client to register
1780  *
1781  * Upper level users of the IB drivers can use ib_register_client() to
1782  * register callbacks for IB device addition and removal.  When an IB
1783  * device is added, each registered client's add method will be called
1784  * (in the order the clients were registered), and when a device is
1785  * removed, each client's remove method will be called (in the reverse
1786  * order that clients were registered).  In addition, when
1787  * ib_register_client() is called, the client will receive an add
1788  * callback for all devices already registered.
1789  */
1790 int ib_register_client(struct ib_client *client)
1791 {
1792 	struct ib_device *device;
1793 	unsigned long index;
1794 	bool need_unreg = false;
1795 	int ret;
1796 
1797 	refcount_set(&client->uses, 1);
1798 	init_completion(&client->uses_zero);
1799 
1800 	/*
1801 	 * The devices_rwsem is held in write mode to ensure that a racing
1802 	 * ib_register_device() sees a consisent view of clients and devices.
1803 	 */
1804 	down_write(&devices_rwsem);
1805 	down_write(&clients_rwsem);
1806 	ret = assign_client_id(client);
1807 	if (ret)
1808 		goto out;
1809 
1810 	need_unreg = true;
1811 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1812 		ret = add_client_context(device, client);
1813 		if (ret)
1814 			goto out;
1815 	}
1816 	ret = 0;
1817 out:
1818 	up_write(&clients_rwsem);
1819 	up_write(&devices_rwsem);
1820 	if (need_unreg && ret)
1821 		ib_unregister_client(client);
1822 	return ret;
1823 }
1824 EXPORT_SYMBOL(ib_register_client);
1825 
1826 /**
1827  * ib_unregister_client - Unregister an IB client
1828  * @client:Client to unregister
1829  *
1830  * Upper level users use ib_unregister_client() to remove their client
1831  * registration.  When ib_unregister_client() is called, the client
1832  * will receive a remove callback for each IB device still registered.
1833  *
1834  * This is a full fence, once it returns no client callbacks will be called,
1835  * or are running in another thread.
1836  */
1837 void ib_unregister_client(struct ib_client *client)
1838 {
1839 	struct ib_device *device;
1840 	unsigned long index;
1841 
1842 	down_write(&clients_rwsem);
1843 	ib_client_put(client);
1844 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1845 	up_write(&clients_rwsem);
1846 
1847 	/* We do not want to have locks while calling client->remove() */
1848 	rcu_read_lock();
1849 	xa_for_each (&devices, index, device) {
1850 		if (!ib_device_try_get(device))
1851 			continue;
1852 		rcu_read_unlock();
1853 
1854 		remove_client_context(device, client->client_id);
1855 
1856 		ib_device_put(device);
1857 		rcu_read_lock();
1858 	}
1859 	rcu_read_unlock();
1860 
1861 	/*
1862 	 * remove_client_context() is not a fence, it can return even though a
1863 	 * removal is ongoing. Wait until all removals are completed.
1864 	 */
1865 	wait_for_completion(&client->uses_zero);
1866 	remove_client_id(client);
1867 }
1868 EXPORT_SYMBOL(ib_unregister_client);
1869 
1870 static int __ib_get_global_client_nl_info(const char *client_name,
1871 					  struct ib_client_nl_info *res)
1872 {
1873 	struct ib_client *client;
1874 	unsigned long index;
1875 	int ret = -ENOENT;
1876 
1877 	down_read(&clients_rwsem);
1878 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1879 		if (strcmp(client->name, client_name) != 0)
1880 			continue;
1881 		if (!client->get_global_nl_info) {
1882 			ret = -EOPNOTSUPP;
1883 			break;
1884 		}
1885 		ret = client->get_global_nl_info(res);
1886 		if (WARN_ON(ret == -ENOENT))
1887 			ret = -EINVAL;
1888 		if (!ret && res->cdev)
1889 			get_device(res->cdev);
1890 		break;
1891 	}
1892 	up_read(&clients_rwsem);
1893 	return ret;
1894 }
1895 
1896 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1897 				   const char *client_name,
1898 				   struct ib_client_nl_info *res)
1899 {
1900 	unsigned long index;
1901 	void *client_data;
1902 	int ret = -ENOENT;
1903 
1904 	down_read(&ibdev->client_data_rwsem);
1905 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1906 			     CLIENT_DATA_REGISTERED) {
1907 		struct ib_client *client = xa_load(&clients, index);
1908 
1909 		if (!client || strcmp(client->name, client_name) != 0)
1910 			continue;
1911 		if (!client->get_nl_info) {
1912 			ret = -EOPNOTSUPP;
1913 			break;
1914 		}
1915 		ret = client->get_nl_info(ibdev, client_data, res);
1916 		if (WARN_ON(ret == -ENOENT))
1917 			ret = -EINVAL;
1918 
1919 		/*
1920 		 * The cdev is guaranteed valid as long as we are inside the
1921 		 * client_data_rwsem as remove_one can't be called. Keep it
1922 		 * valid for the caller.
1923 		 */
1924 		if (!ret && res->cdev)
1925 			get_device(res->cdev);
1926 		break;
1927 	}
1928 	up_read(&ibdev->client_data_rwsem);
1929 
1930 	return ret;
1931 }
1932 
1933 /**
1934  * ib_get_client_nl_info - Fetch the nl_info from a client
1935  * @ibdev: IB device
1936  * @client_name: Name of the client
1937  * @res: Result of the query
1938  */
1939 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1940 			  struct ib_client_nl_info *res)
1941 {
1942 	int ret;
1943 
1944 	if (ibdev)
1945 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1946 	else
1947 		ret = __ib_get_global_client_nl_info(client_name, res);
1948 #ifdef CONFIG_MODULES
1949 	if (ret == -ENOENT) {
1950 		request_module("rdma-client-%s", client_name);
1951 		if (ibdev)
1952 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1953 		else
1954 			ret = __ib_get_global_client_nl_info(client_name, res);
1955 	}
1956 #endif
1957 	if (ret) {
1958 		if (ret == -ENOENT)
1959 			return -EOPNOTSUPP;
1960 		return ret;
1961 	}
1962 
1963 	if (WARN_ON(!res->cdev))
1964 		return -EINVAL;
1965 	return 0;
1966 }
1967 
1968 /**
1969  * ib_set_client_data - Set IB client context
1970  * @device:Device to set context for
1971  * @client:Client to set context for
1972  * @data:Context to set
1973  *
1974  * ib_set_client_data() sets client context data that can be retrieved with
1975  * ib_get_client_data(). This can only be called while the client is
1976  * registered to the device, once the ib_client remove() callback returns this
1977  * cannot be called.
1978  */
1979 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1980 			void *data)
1981 {
1982 	void *rc;
1983 
1984 	if (WARN_ON(IS_ERR(data)))
1985 		data = NULL;
1986 
1987 	rc = xa_store(&device->client_data, client->client_id, data,
1988 		      GFP_KERNEL);
1989 	WARN_ON(xa_is_err(rc));
1990 }
1991 EXPORT_SYMBOL(ib_set_client_data);
1992 
1993 /**
1994  * ib_register_event_handler - Register an IB event handler
1995  * @event_handler:Handler to register
1996  *
1997  * ib_register_event_handler() registers an event handler that will be
1998  * called back when asynchronous IB events occur (as defined in
1999  * chapter 11 of the InfiniBand Architecture Specification). This
2000  * callback occurs in workqueue context.
2001  */
2002 void ib_register_event_handler(struct ib_event_handler *event_handler)
2003 {
2004 	down_write(&event_handler->device->event_handler_rwsem);
2005 	list_add_tail(&event_handler->list,
2006 		      &event_handler->device->event_handler_list);
2007 	up_write(&event_handler->device->event_handler_rwsem);
2008 }
2009 EXPORT_SYMBOL(ib_register_event_handler);
2010 
2011 /**
2012  * ib_unregister_event_handler - Unregister an event handler
2013  * @event_handler:Handler to unregister
2014  *
2015  * Unregister an event handler registered with
2016  * ib_register_event_handler().
2017  */
2018 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2019 {
2020 	down_write(&event_handler->device->event_handler_rwsem);
2021 	list_del(&event_handler->list);
2022 	up_write(&event_handler->device->event_handler_rwsem);
2023 }
2024 EXPORT_SYMBOL(ib_unregister_event_handler);
2025 
2026 void ib_dispatch_event_clients(struct ib_event *event)
2027 {
2028 	struct ib_event_handler *handler;
2029 
2030 	down_read(&event->device->event_handler_rwsem);
2031 
2032 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2033 		handler->handler(handler, event);
2034 
2035 	up_read(&event->device->event_handler_rwsem);
2036 }
2037 
2038 static int iw_query_port(struct ib_device *device,
2039 			   u32 port_num,
2040 			   struct ib_port_attr *port_attr)
2041 {
2042 	struct in_device *inetdev;
2043 	struct net_device *netdev;
2044 
2045 	memset(port_attr, 0, sizeof(*port_attr));
2046 
2047 	netdev = ib_device_get_netdev(device, port_num);
2048 	if (!netdev)
2049 		return -ENODEV;
2050 
2051 	port_attr->max_mtu = IB_MTU_4096;
2052 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2053 
2054 	if (!netif_carrier_ok(netdev)) {
2055 		port_attr->state = IB_PORT_DOWN;
2056 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2057 	} else {
2058 		rcu_read_lock();
2059 		inetdev = __in_dev_get_rcu(netdev);
2060 
2061 		if (inetdev && inetdev->ifa_list) {
2062 			port_attr->state = IB_PORT_ACTIVE;
2063 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2064 		} else {
2065 			port_attr->state = IB_PORT_INIT;
2066 			port_attr->phys_state =
2067 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2068 		}
2069 
2070 		rcu_read_unlock();
2071 	}
2072 
2073 	dev_put(netdev);
2074 	return device->ops.query_port(device, port_num, port_attr);
2075 }
2076 
2077 static int __ib_query_port(struct ib_device *device,
2078 			   u32 port_num,
2079 			   struct ib_port_attr *port_attr)
2080 {
2081 	int err;
2082 
2083 	memset(port_attr, 0, sizeof(*port_attr));
2084 
2085 	err = device->ops.query_port(device, port_num, port_attr);
2086 	if (err || port_attr->subnet_prefix)
2087 		return err;
2088 
2089 	if (rdma_port_get_link_layer(device, port_num) !=
2090 	    IB_LINK_LAYER_INFINIBAND)
2091 		return 0;
2092 
2093 	ib_get_cached_subnet_prefix(device, port_num,
2094 				    &port_attr->subnet_prefix);
2095 	return 0;
2096 }
2097 
2098 /**
2099  * ib_query_port - Query IB port attributes
2100  * @device:Device to query
2101  * @port_num:Port number to query
2102  * @port_attr:Port attributes
2103  *
2104  * ib_query_port() returns the attributes of a port through the
2105  * @port_attr pointer.
2106  */
2107 int ib_query_port(struct ib_device *device,
2108 		  u32 port_num,
2109 		  struct ib_port_attr *port_attr)
2110 {
2111 	if (!rdma_is_port_valid(device, port_num))
2112 		return -EINVAL;
2113 
2114 	if (rdma_protocol_iwarp(device, port_num))
2115 		return iw_query_port(device, port_num, port_attr);
2116 	else
2117 		return __ib_query_port(device, port_num, port_attr);
2118 }
2119 EXPORT_SYMBOL(ib_query_port);
2120 
2121 static void add_ndev_hash(struct ib_port_data *pdata)
2122 {
2123 	unsigned long flags;
2124 
2125 	might_sleep();
2126 
2127 	spin_lock_irqsave(&ndev_hash_lock, flags);
2128 	if (hash_hashed(&pdata->ndev_hash_link)) {
2129 		hash_del_rcu(&pdata->ndev_hash_link);
2130 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2131 		/*
2132 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2133 		 * grace period
2134 		 */
2135 		synchronize_rcu();
2136 		spin_lock_irqsave(&ndev_hash_lock, flags);
2137 	}
2138 	if (pdata->netdev)
2139 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2140 			     (uintptr_t)pdata->netdev);
2141 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2142 }
2143 
2144 /**
2145  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2146  * @ib_dev: Device to modify
2147  * @ndev: net_device to affiliate, may be NULL
2148  * @port: IB port the net_device is connected to
2149  *
2150  * Drivers should use this to link the ib_device to a netdev so the netdev
2151  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2152  * affiliated with any port.
2153  *
2154  * The caller must ensure that the given ndev is not unregistered or
2155  * unregistering, and that either the ib_device is unregistered or
2156  * ib_device_set_netdev() is called with NULL when the ndev sends a
2157  * NETDEV_UNREGISTER event.
2158  */
2159 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2160 			 u32 port)
2161 {
2162 	struct net_device *old_ndev;
2163 	struct ib_port_data *pdata;
2164 	unsigned long flags;
2165 	int ret;
2166 
2167 	if (!rdma_is_port_valid(ib_dev, port))
2168 		return -EINVAL;
2169 
2170 	/*
2171 	 * Drivers wish to call this before ib_register_driver, so we have to
2172 	 * setup the port data early.
2173 	 */
2174 	ret = alloc_port_data(ib_dev);
2175 	if (ret)
2176 		return ret;
2177 
2178 	pdata = &ib_dev->port_data[port];
2179 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2180 	old_ndev = rcu_dereference_protected(
2181 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2182 	if (old_ndev == ndev) {
2183 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2184 		return 0;
2185 	}
2186 
2187 	rcu_assign_pointer(pdata->netdev, ndev);
2188 	netdev_put(old_ndev, &pdata->netdev_tracker);
2189 	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2190 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2191 
2192 	add_ndev_hash(pdata);
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL(ib_device_set_netdev);
2196 
2197 static void free_netdevs(struct ib_device *ib_dev)
2198 {
2199 	unsigned long flags;
2200 	u32 port;
2201 
2202 	if (!ib_dev->port_data)
2203 		return;
2204 
2205 	rdma_for_each_port (ib_dev, port) {
2206 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2207 		struct net_device *ndev;
2208 
2209 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2210 		ndev = rcu_dereference_protected(
2211 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2212 		if (ndev) {
2213 			spin_lock(&ndev_hash_lock);
2214 			hash_del_rcu(&pdata->ndev_hash_link);
2215 			spin_unlock(&ndev_hash_lock);
2216 
2217 			/*
2218 			 * If this is the last dev_put there is still a
2219 			 * synchronize_rcu before the netdev is kfreed, so we
2220 			 * can continue to rely on unlocked pointer
2221 			 * comparisons after the put
2222 			 */
2223 			rcu_assign_pointer(pdata->netdev, NULL);
2224 			netdev_put(ndev, &pdata->netdev_tracker);
2225 		}
2226 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2227 	}
2228 }
2229 
2230 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2231 					u32 port)
2232 {
2233 	struct ib_port_data *pdata;
2234 	struct net_device *res;
2235 
2236 	if (!rdma_is_port_valid(ib_dev, port))
2237 		return NULL;
2238 
2239 	pdata = &ib_dev->port_data[port];
2240 
2241 	/*
2242 	 * New drivers should use ib_device_set_netdev() not the legacy
2243 	 * get_netdev().
2244 	 */
2245 	if (ib_dev->ops.get_netdev)
2246 		res = ib_dev->ops.get_netdev(ib_dev, port);
2247 	else {
2248 		spin_lock(&pdata->netdev_lock);
2249 		res = rcu_dereference_protected(
2250 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2251 		dev_hold(res);
2252 		spin_unlock(&pdata->netdev_lock);
2253 	}
2254 
2255 	/*
2256 	 * If we are starting to unregister expedite things by preventing
2257 	 * propagation of an unregistering netdev.
2258 	 */
2259 	if (res && res->reg_state != NETREG_REGISTERED) {
2260 		dev_put(res);
2261 		return NULL;
2262 	}
2263 
2264 	return res;
2265 }
2266 
2267 /**
2268  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2269  * @ndev: netdev to locate
2270  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2271  *
2272  * Find and hold an ib_device that is associated with a netdev via
2273  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2274  * returned pointer.
2275  */
2276 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2277 					  enum rdma_driver_id driver_id)
2278 {
2279 	struct ib_device *res = NULL;
2280 	struct ib_port_data *cur;
2281 
2282 	rcu_read_lock();
2283 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2284 				    (uintptr_t)ndev) {
2285 		if (rcu_access_pointer(cur->netdev) == ndev &&
2286 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2287 		     cur->ib_dev->ops.driver_id == driver_id) &&
2288 		    ib_device_try_get(cur->ib_dev)) {
2289 			res = cur->ib_dev;
2290 			break;
2291 		}
2292 	}
2293 	rcu_read_unlock();
2294 
2295 	return res;
2296 }
2297 EXPORT_SYMBOL(ib_device_get_by_netdev);
2298 
2299 /**
2300  * ib_enum_roce_netdev - enumerate all RoCE ports
2301  * @ib_dev : IB device we want to query
2302  * @filter: Should we call the callback?
2303  * @filter_cookie: Cookie passed to filter
2304  * @cb: Callback to call for each found RoCE ports
2305  * @cookie: Cookie passed back to the callback
2306  *
2307  * Enumerates all of the physical RoCE ports of ib_dev
2308  * which are related to netdevice and calls callback() on each
2309  * device for which filter() function returns non zero.
2310  */
2311 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2312 			 roce_netdev_filter filter,
2313 			 void *filter_cookie,
2314 			 roce_netdev_callback cb,
2315 			 void *cookie)
2316 {
2317 	u32 port;
2318 
2319 	rdma_for_each_port (ib_dev, port)
2320 		if (rdma_protocol_roce(ib_dev, port)) {
2321 			struct net_device *idev =
2322 				ib_device_get_netdev(ib_dev, port);
2323 
2324 			if (filter(ib_dev, port, idev, filter_cookie))
2325 				cb(ib_dev, port, idev, cookie);
2326 			dev_put(idev);
2327 		}
2328 }
2329 
2330 /**
2331  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2332  * @filter: Should we call the callback?
2333  * @filter_cookie: Cookie passed to filter
2334  * @cb: Callback to call for each found RoCE ports
2335  * @cookie: Cookie passed back to the callback
2336  *
2337  * Enumerates all RoCE devices' physical ports which are related
2338  * to netdevices and calls callback() on each device for which
2339  * filter() function returns non zero.
2340  */
2341 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2342 			      void *filter_cookie,
2343 			      roce_netdev_callback cb,
2344 			      void *cookie)
2345 {
2346 	struct ib_device *dev;
2347 	unsigned long index;
2348 
2349 	down_read(&devices_rwsem);
2350 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2351 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2352 	up_read(&devices_rwsem);
2353 }
2354 
2355 /*
2356  * ib_enum_all_devs - enumerate all ib_devices
2357  * @cb: Callback to call for each found ib_device
2358  *
2359  * Enumerates all ib_devices and calls callback() on each device.
2360  */
2361 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2362 		     struct netlink_callback *cb)
2363 {
2364 	unsigned long index;
2365 	struct ib_device *dev;
2366 	unsigned int idx = 0;
2367 	int ret = 0;
2368 
2369 	down_read(&devices_rwsem);
2370 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2371 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2372 			continue;
2373 
2374 		ret = nldev_cb(dev, skb, cb, idx);
2375 		if (ret)
2376 			break;
2377 		idx++;
2378 	}
2379 	up_read(&devices_rwsem);
2380 	return ret;
2381 }
2382 
2383 /**
2384  * ib_query_pkey - Get P_Key table entry
2385  * @device:Device to query
2386  * @port_num:Port number to query
2387  * @index:P_Key table index to query
2388  * @pkey:Returned P_Key
2389  *
2390  * ib_query_pkey() fetches the specified P_Key table entry.
2391  */
2392 int ib_query_pkey(struct ib_device *device,
2393 		  u32 port_num, u16 index, u16 *pkey)
2394 {
2395 	if (!rdma_is_port_valid(device, port_num))
2396 		return -EINVAL;
2397 
2398 	if (!device->ops.query_pkey)
2399 		return -EOPNOTSUPP;
2400 
2401 	return device->ops.query_pkey(device, port_num, index, pkey);
2402 }
2403 EXPORT_SYMBOL(ib_query_pkey);
2404 
2405 /**
2406  * ib_modify_device - Change IB device attributes
2407  * @device:Device to modify
2408  * @device_modify_mask:Mask of attributes to change
2409  * @device_modify:New attribute values
2410  *
2411  * ib_modify_device() changes a device's attributes as specified by
2412  * the @device_modify_mask and @device_modify structure.
2413  */
2414 int ib_modify_device(struct ib_device *device,
2415 		     int device_modify_mask,
2416 		     struct ib_device_modify *device_modify)
2417 {
2418 	if (!device->ops.modify_device)
2419 		return -EOPNOTSUPP;
2420 
2421 	return device->ops.modify_device(device, device_modify_mask,
2422 					 device_modify);
2423 }
2424 EXPORT_SYMBOL(ib_modify_device);
2425 
2426 /**
2427  * ib_modify_port - Modifies the attributes for the specified port.
2428  * @device: The device to modify.
2429  * @port_num: The number of the port to modify.
2430  * @port_modify_mask: Mask used to specify which attributes of the port
2431  *   to change.
2432  * @port_modify: New attribute values for the port.
2433  *
2434  * ib_modify_port() changes a port's attributes as specified by the
2435  * @port_modify_mask and @port_modify structure.
2436  */
2437 int ib_modify_port(struct ib_device *device,
2438 		   u32 port_num, int port_modify_mask,
2439 		   struct ib_port_modify *port_modify)
2440 {
2441 	int rc;
2442 
2443 	if (!rdma_is_port_valid(device, port_num))
2444 		return -EINVAL;
2445 
2446 	if (device->ops.modify_port)
2447 		rc = device->ops.modify_port(device, port_num,
2448 					     port_modify_mask,
2449 					     port_modify);
2450 	else if (rdma_protocol_roce(device, port_num) &&
2451 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2452 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2453 		rc = 0;
2454 	else
2455 		rc = -EOPNOTSUPP;
2456 	return rc;
2457 }
2458 EXPORT_SYMBOL(ib_modify_port);
2459 
2460 /**
2461  * ib_find_gid - Returns the port number and GID table index where
2462  *   a specified GID value occurs. Its searches only for IB link layer.
2463  * @device: The device to query.
2464  * @gid: The GID value to search for.
2465  * @port_num: The port number of the device where the GID value was found.
2466  * @index: The index into the GID table where the GID was found.  This
2467  *   parameter may be NULL.
2468  */
2469 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2470 		u32 *port_num, u16 *index)
2471 {
2472 	union ib_gid tmp_gid;
2473 	u32 port;
2474 	int ret, i;
2475 
2476 	rdma_for_each_port (device, port) {
2477 		if (!rdma_protocol_ib(device, port))
2478 			continue;
2479 
2480 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2481 		     ++i) {
2482 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2483 			if (ret)
2484 				continue;
2485 
2486 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2487 				*port_num = port;
2488 				if (index)
2489 					*index = i;
2490 				return 0;
2491 			}
2492 		}
2493 	}
2494 
2495 	return -ENOENT;
2496 }
2497 EXPORT_SYMBOL(ib_find_gid);
2498 
2499 /**
2500  * ib_find_pkey - Returns the PKey table index where a specified
2501  *   PKey value occurs.
2502  * @device: The device to query.
2503  * @port_num: The port number of the device to search for the PKey.
2504  * @pkey: The PKey value to search for.
2505  * @index: The index into the PKey table where the PKey was found.
2506  */
2507 int ib_find_pkey(struct ib_device *device,
2508 		 u32 port_num, u16 pkey, u16 *index)
2509 {
2510 	int ret, i;
2511 	u16 tmp_pkey;
2512 	int partial_ix = -1;
2513 
2514 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2515 	     ++i) {
2516 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2517 		if (ret)
2518 			return ret;
2519 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2520 			/* if there is full-member pkey take it.*/
2521 			if (tmp_pkey & 0x8000) {
2522 				*index = i;
2523 				return 0;
2524 			}
2525 			if (partial_ix < 0)
2526 				partial_ix = i;
2527 		}
2528 	}
2529 
2530 	/*no full-member, if exists take the limited*/
2531 	if (partial_ix >= 0) {
2532 		*index = partial_ix;
2533 		return 0;
2534 	}
2535 	return -ENOENT;
2536 }
2537 EXPORT_SYMBOL(ib_find_pkey);
2538 
2539 /**
2540  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2541  * for a received CM request
2542  * @dev:	An RDMA device on which the request has been received.
2543  * @port:	Port number on the RDMA device.
2544  * @pkey:	The Pkey the request came on.
2545  * @gid:	A GID that the net_dev uses to communicate.
2546  * @addr:	Contains the IP address that the request specified as its
2547  *		destination.
2548  *
2549  */
2550 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2551 					    u32 port,
2552 					    u16 pkey,
2553 					    const union ib_gid *gid,
2554 					    const struct sockaddr *addr)
2555 {
2556 	struct net_device *net_dev = NULL;
2557 	unsigned long index;
2558 	void *client_data;
2559 
2560 	if (!rdma_protocol_ib(dev, port))
2561 		return NULL;
2562 
2563 	/*
2564 	 * Holding the read side guarantees that the client will not become
2565 	 * unregistered while we are calling get_net_dev_by_params()
2566 	 */
2567 	down_read(&dev->client_data_rwsem);
2568 	xan_for_each_marked (&dev->client_data, index, client_data,
2569 			     CLIENT_DATA_REGISTERED) {
2570 		struct ib_client *client = xa_load(&clients, index);
2571 
2572 		if (!client || !client->get_net_dev_by_params)
2573 			continue;
2574 
2575 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2576 							addr, client_data);
2577 		if (net_dev)
2578 			break;
2579 	}
2580 	up_read(&dev->client_data_rwsem);
2581 
2582 	return net_dev;
2583 }
2584 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2585 
2586 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2587 {
2588 	struct ib_device_ops *dev_ops = &dev->ops;
2589 #define SET_DEVICE_OP(ptr, name)                                               \
2590 	do {                                                                   \
2591 		if (ops->name)                                                 \
2592 			if (!((ptr)->name))				       \
2593 				(ptr)->name = ops->name;                       \
2594 	} while (0)
2595 
2596 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2597 
2598 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2599 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2600 			dev_ops->driver_id != ops->driver_id);
2601 		dev_ops->driver_id = ops->driver_id;
2602 	}
2603 	if (ops->owner) {
2604 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2605 		dev_ops->owner = ops->owner;
2606 	}
2607 	if (ops->uverbs_abi_ver)
2608 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2609 
2610 	dev_ops->uverbs_no_driver_id_binding |=
2611 		ops->uverbs_no_driver_id_binding;
2612 
2613 	SET_DEVICE_OP(dev_ops, add_gid);
2614 	SET_DEVICE_OP(dev_ops, add_sub_dev);
2615 	SET_DEVICE_OP(dev_ops, advise_mr);
2616 	SET_DEVICE_OP(dev_ops, alloc_dm);
2617 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2618 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2619 	SET_DEVICE_OP(dev_ops, alloc_mr);
2620 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2621 	SET_DEVICE_OP(dev_ops, alloc_mw);
2622 	SET_DEVICE_OP(dev_ops, alloc_pd);
2623 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2624 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2625 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2626 	SET_DEVICE_OP(dev_ops, attach_mcast);
2627 	SET_DEVICE_OP(dev_ops, check_mr_status);
2628 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2629 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2630 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2631 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2632 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2633 	SET_DEVICE_OP(dev_ops, create_ah);
2634 	SET_DEVICE_OP(dev_ops, create_counters);
2635 	SET_DEVICE_OP(dev_ops, create_cq);
2636 	SET_DEVICE_OP(dev_ops, create_flow);
2637 	SET_DEVICE_OP(dev_ops, create_qp);
2638 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2639 	SET_DEVICE_OP(dev_ops, create_srq);
2640 	SET_DEVICE_OP(dev_ops, create_user_ah);
2641 	SET_DEVICE_OP(dev_ops, create_wq);
2642 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2643 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2644 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2645 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2646 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2647 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2648 	SET_DEVICE_OP(dev_ops, del_gid);
2649 	SET_DEVICE_OP(dev_ops, del_sub_dev);
2650 	SET_DEVICE_OP(dev_ops, dereg_mr);
2651 	SET_DEVICE_OP(dev_ops, destroy_ah);
2652 	SET_DEVICE_OP(dev_ops, destroy_counters);
2653 	SET_DEVICE_OP(dev_ops, destroy_cq);
2654 	SET_DEVICE_OP(dev_ops, destroy_flow);
2655 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2656 	SET_DEVICE_OP(dev_ops, destroy_qp);
2657 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2658 	SET_DEVICE_OP(dev_ops, destroy_srq);
2659 	SET_DEVICE_OP(dev_ops, destroy_wq);
2660 	SET_DEVICE_OP(dev_ops, device_group);
2661 	SET_DEVICE_OP(dev_ops, detach_mcast);
2662 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2663 	SET_DEVICE_OP(dev_ops, drain_rq);
2664 	SET_DEVICE_OP(dev_ops, drain_sq);
2665 	SET_DEVICE_OP(dev_ops, enable_driver);
2666 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2667 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2668 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2669 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2670 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2671 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2672 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2673 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2674 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2675 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2676 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2677 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2678 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2679 	SET_DEVICE_OP(dev_ops, get_link_layer);
2680 	SET_DEVICE_OP(dev_ops, get_netdev);
2681 	SET_DEVICE_OP(dev_ops, get_numa_node);
2682 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2683 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2684 	SET_DEVICE_OP(dev_ops, get_vf_config);
2685 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2686 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2687 	SET_DEVICE_OP(dev_ops, iw_accept);
2688 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2689 	SET_DEVICE_OP(dev_ops, iw_connect);
2690 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2691 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2692 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2693 	SET_DEVICE_OP(dev_ops, iw_reject);
2694 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2695 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2696 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2697 	SET_DEVICE_OP(dev_ops, mmap);
2698 	SET_DEVICE_OP(dev_ops, mmap_free);
2699 	SET_DEVICE_OP(dev_ops, modify_ah);
2700 	SET_DEVICE_OP(dev_ops, modify_cq);
2701 	SET_DEVICE_OP(dev_ops, modify_device);
2702 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2703 	SET_DEVICE_OP(dev_ops, modify_port);
2704 	SET_DEVICE_OP(dev_ops, modify_qp);
2705 	SET_DEVICE_OP(dev_ops, modify_srq);
2706 	SET_DEVICE_OP(dev_ops, modify_wq);
2707 	SET_DEVICE_OP(dev_ops, peek_cq);
2708 	SET_DEVICE_OP(dev_ops, poll_cq);
2709 	SET_DEVICE_OP(dev_ops, port_groups);
2710 	SET_DEVICE_OP(dev_ops, post_recv);
2711 	SET_DEVICE_OP(dev_ops, post_send);
2712 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2713 	SET_DEVICE_OP(dev_ops, process_mad);
2714 	SET_DEVICE_OP(dev_ops, query_ah);
2715 	SET_DEVICE_OP(dev_ops, query_device);
2716 	SET_DEVICE_OP(dev_ops, query_gid);
2717 	SET_DEVICE_OP(dev_ops, query_pkey);
2718 	SET_DEVICE_OP(dev_ops, query_port);
2719 	SET_DEVICE_OP(dev_ops, query_qp);
2720 	SET_DEVICE_OP(dev_ops, query_srq);
2721 	SET_DEVICE_OP(dev_ops, query_ucontext);
2722 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2723 	SET_DEVICE_OP(dev_ops, read_counters);
2724 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2725 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2726 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2727 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2728 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2729 	SET_DEVICE_OP(dev_ops, resize_cq);
2730 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2731 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2732 
2733 	SET_OBJ_SIZE(dev_ops, ib_ah);
2734 	SET_OBJ_SIZE(dev_ops, ib_counters);
2735 	SET_OBJ_SIZE(dev_ops, ib_cq);
2736 	SET_OBJ_SIZE(dev_ops, ib_mw);
2737 	SET_OBJ_SIZE(dev_ops, ib_pd);
2738 	SET_OBJ_SIZE(dev_ops, ib_qp);
2739 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2740 	SET_OBJ_SIZE(dev_ops, ib_srq);
2741 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2742 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2743 }
2744 EXPORT_SYMBOL(ib_set_device_ops);
2745 
2746 int ib_add_sub_device(struct ib_device *parent,
2747 		      enum rdma_nl_dev_type type,
2748 		      const char *name)
2749 {
2750 	struct ib_device *sub;
2751 	int ret = 0;
2752 
2753 	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2754 		return -EOPNOTSUPP;
2755 
2756 	if (!ib_device_try_get(parent))
2757 		return -EINVAL;
2758 
2759 	sub = parent->ops.add_sub_dev(parent, type, name);
2760 	if (IS_ERR(sub)) {
2761 		ib_device_put(parent);
2762 		return PTR_ERR(sub);
2763 	}
2764 
2765 	sub->type = type;
2766 	sub->parent = parent;
2767 
2768 	mutex_lock(&parent->subdev_lock);
2769 	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2770 	mutex_unlock(&parent->subdev_lock);
2771 
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL(ib_add_sub_device);
2775 
2776 int ib_del_sub_device_and_put(struct ib_device *sub)
2777 {
2778 	struct ib_device *parent = sub->parent;
2779 
2780 	if (!parent)
2781 		return -EOPNOTSUPP;
2782 
2783 	mutex_lock(&parent->subdev_lock);
2784 	list_del(&sub->subdev_list);
2785 	mutex_unlock(&parent->subdev_lock);
2786 
2787 	ib_device_put(sub);
2788 	parent->ops.del_sub_dev(sub);
2789 	ib_device_put(parent);
2790 
2791 	return 0;
2792 }
2793 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2794 
2795 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2796 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2797 {
2798 	struct scatterlist *s;
2799 	int i;
2800 
2801 	for_each_sg(sg, s, nents, i) {
2802 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2803 		sg_dma_len(s) = s->length;
2804 	}
2805 	return nents;
2806 }
2807 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2808 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2809 
2810 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2811 	[RDMA_NL_LS_OP_RESOLVE] = {
2812 		.doit = ib_nl_handle_resolve_resp,
2813 		.flags = RDMA_NL_ADMIN_PERM,
2814 	},
2815 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2816 		.doit = ib_nl_handle_set_timeout,
2817 		.flags = RDMA_NL_ADMIN_PERM,
2818 	},
2819 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2820 		.doit = ib_nl_handle_ip_res_resp,
2821 		.flags = RDMA_NL_ADMIN_PERM,
2822 	},
2823 };
2824 
2825 static int __init ib_core_init(void)
2826 {
2827 	int ret = -ENOMEM;
2828 
2829 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2830 	if (!ib_wq)
2831 		return -ENOMEM;
2832 
2833 	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2834 				      WQ_UNBOUND_MAX_ACTIVE);
2835 	if (!ib_unreg_wq)
2836 		goto err;
2837 
2838 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2839 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2840 	if (!ib_comp_wq)
2841 		goto err_unbound;
2842 
2843 	ib_comp_unbound_wq =
2844 		alloc_workqueue("ib-comp-unb-wq",
2845 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2846 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2847 	if (!ib_comp_unbound_wq)
2848 		goto err_comp;
2849 
2850 	ret = class_register(&ib_class);
2851 	if (ret) {
2852 		pr_warn("Couldn't create InfiniBand device class\n");
2853 		goto err_comp_unbound;
2854 	}
2855 
2856 	rdma_nl_init();
2857 
2858 	ret = addr_init();
2859 	if (ret) {
2860 		pr_warn("Couldn't init IB address resolution\n");
2861 		goto err_ibnl;
2862 	}
2863 
2864 	ret = ib_mad_init();
2865 	if (ret) {
2866 		pr_warn("Couldn't init IB MAD\n");
2867 		goto err_addr;
2868 	}
2869 
2870 	ret = ib_sa_init();
2871 	if (ret) {
2872 		pr_warn("Couldn't init SA\n");
2873 		goto err_mad;
2874 	}
2875 
2876 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2877 	if (ret) {
2878 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2879 		goto err_sa;
2880 	}
2881 
2882 	ret = register_pernet_device(&rdma_dev_net_ops);
2883 	if (ret) {
2884 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2885 		goto err_compat;
2886 	}
2887 
2888 	nldev_init();
2889 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2890 	ret = roce_gid_mgmt_init();
2891 	if (ret) {
2892 		pr_warn("Couldn't init RoCE GID management\n");
2893 		goto err_parent;
2894 	}
2895 
2896 	return 0;
2897 
2898 err_parent:
2899 	rdma_nl_unregister(RDMA_NL_LS);
2900 	nldev_exit();
2901 	unregister_pernet_device(&rdma_dev_net_ops);
2902 err_compat:
2903 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2904 err_sa:
2905 	ib_sa_cleanup();
2906 err_mad:
2907 	ib_mad_cleanup();
2908 err_addr:
2909 	addr_cleanup();
2910 err_ibnl:
2911 	class_unregister(&ib_class);
2912 err_comp_unbound:
2913 	destroy_workqueue(ib_comp_unbound_wq);
2914 err_comp:
2915 	destroy_workqueue(ib_comp_wq);
2916 err_unbound:
2917 	destroy_workqueue(ib_unreg_wq);
2918 err:
2919 	destroy_workqueue(ib_wq);
2920 	return ret;
2921 }
2922 
2923 static void __exit ib_core_cleanup(void)
2924 {
2925 	roce_gid_mgmt_cleanup();
2926 	rdma_nl_unregister(RDMA_NL_LS);
2927 	nldev_exit();
2928 	unregister_pernet_device(&rdma_dev_net_ops);
2929 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2930 	ib_sa_cleanup();
2931 	ib_mad_cleanup();
2932 	addr_cleanup();
2933 	rdma_nl_exit();
2934 	class_unregister(&ib_class);
2935 	destroy_workqueue(ib_comp_unbound_wq);
2936 	destroy_workqueue(ib_comp_wq);
2937 	/* Make sure that any pending umem accounting work is done. */
2938 	destroy_workqueue(ib_wq);
2939 	destroy_workqueue(ib_unreg_wq);
2940 	WARN_ON(!xa_empty(&clients));
2941 	WARN_ON(!xa_empty(&devices));
2942 }
2943 
2944 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2945 
2946 /* ib core relies on netdev stack to first register net_ns_type_operations
2947  * ns kobject type before ib_core initialization.
2948  */
2949 fs_initcall(ib_core_init);
2950 module_exit(ib_core_cleanup);
2951