xref: /linux/drivers/infiniband/core/device.c (revision 86f5536004a61a0c797c14a248fc976f03f55cd5)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 unsigned int rdma_dev_net_id;
115 
116 /*
117  * A list of net namespaces is maintained in an xarray. This is necessary
118  * because we can't get the locking right using the existing net ns list. We
119  * would require a init_net callback after the list is updated.
120  */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123  * rwsem to protect accessing the rdma_nets xarray entries.
124  */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126 
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 		 "Share device among net namespaces; default=1 (shared)");
131 /**
132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133  *			     from a specified net namespace or not.
134  * @dev:	Pointer to rdma device which needs to be checked
135  * @net:	Pointer to net namesapce for which access to be checked
136  *
137  * When the rdma device is in shared mode, it ignores the net namespace.
138  * When the rdma device is exclusive to a net namespace, rdma device net
139  * namespace is checked against the specified one.
140  */
141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 	return (ib_devices_shared_netns ||
144 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147 
148 /*
149  * xarray has this behavior where it won't iterate over NULL values stored in
150  * allocated arrays.  So we need our own iterator to see all values stored in
151  * the array. This does the same thing as xa_for_each except that it also
152  * returns NULL valued entries if the array is allocating. Simplified to only
153  * work on simple xarrays.
154  */
155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 			     xa_mark_t filter)
157 {
158 	XA_STATE(xas, xa, *indexp);
159 	void *entry;
160 
161 	rcu_read_lock();
162 	do {
163 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 		if (xa_is_zero(entry))
165 			break;
166 	} while (xas_retry(&xas, entry));
167 	rcu_read_unlock();
168 
169 	if (entry) {
170 		*indexp = xas.xa_index;
171 		if (xa_is_zero(entry))
172 			return NULL;
173 		return entry;
174 	}
175 	return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter)                          \
178 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179 	     !xa_is_err(entry);                                                \
180 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181 
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185 
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 			      void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193 
194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 			   struct va_format *vaf)
196 {
197 	if (ibdev && ibdev->dev.parent)
198 		dev_printk_emit(level[1] - '0',
199 				ibdev->dev.parent,
200 				"%s %s %s: %pV",
201 				dev_driver_string(ibdev->dev.parent),
202 				dev_name(ibdev->dev.parent),
203 				dev_name(&ibdev->dev),
204 				vaf);
205 	else if (ibdev)
206 		printk("%s%s: %pV",
207 		       level, dev_name(&ibdev->dev), vaf);
208 	else
209 		printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211 
212 #define define_ibdev_printk_level(func, level)                  \
213 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
214 {                                                               \
215 	struct va_format vaf;                                   \
216 	va_list args;                                           \
217 								\
218 	va_start(args, fmt);                                    \
219 								\
220 	vaf.fmt = fmt;                                          \
221 	vaf.va = &args;                                         \
222 								\
223 	__ibdev_printk(level, ibdev, &vaf);                     \
224 								\
225 	va_end(args);                                           \
226 }                                                               \
227 EXPORT_SYMBOL(func);
228 
229 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
230 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
231 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
232 define_ibdev_printk_level(ibdev_err, KERN_ERR);
233 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
234 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
235 define_ibdev_printk_level(ibdev_info, KERN_INFO);
236 
237 static struct notifier_block ibdev_lsm_nb = {
238 	.notifier_call = ib_security_change,
239 };
240 
241 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
242 				 struct net *net);
243 
244 /* Pointer to the RCU head at the start of the ib_port_data array */
245 struct ib_port_data_rcu {
246 	struct rcu_head rcu_head;
247 	struct ib_port_data pdata[];
248 };
249 
250 static void ib_device_check_mandatory(struct ib_device *device)
251 {
252 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
253 	static const struct {
254 		size_t offset;
255 		char  *name;
256 	} mandatory_table[] = {
257 		IB_MANDATORY_FUNC(query_device),
258 		IB_MANDATORY_FUNC(query_port),
259 		IB_MANDATORY_FUNC(alloc_pd),
260 		IB_MANDATORY_FUNC(dealloc_pd),
261 		IB_MANDATORY_FUNC(create_qp),
262 		IB_MANDATORY_FUNC(modify_qp),
263 		IB_MANDATORY_FUNC(destroy_qp),
264 		IB_MANDATORY_FUNC(post_send),
265 		IB_MANDATORY_FUNC(post_recv),
266 		IB_MANDATORY_FUNC(create_cq),
267 		IB_MANDATORY_FUNC(destroy_cq),
268 		IB_MANDATORY_FUNC(poll_cq),
269 		IB_MANDATORY_FUNC(req_notify_cq),
270 		IB_MANDATORY_FUNC(get_dma_mr),
271 		IB_MANDATORY_FUNC(reg_user_mr),
272 		IB_MANDATORY_FUNC(dereg_mr),
273 		IB_MANDATORY_FUNC(get_port_immutable)
274 	};
275 	int i;
276 
277 	device->kverbs_provider = true;
278 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
279 		if (!*(void **) ((void *) &device->ops +
280 				 mandatory_table[i].offset)) {
281 			device->kverbs_provider = false;
282 			break;
283 		}
284 	}
285 }
286 
287 /*
288  * Caller must perform ib_device_put() to return the device reference count
289  * when ib_device_get_by_index() returns valid device pointer.
290  */
291 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
292 {
293 	struct ib_device *device;
294 
295 	down_read(&devices_rwsem);
296 	device = xa_load(&devices, index);
297 	if (device) {
298 		if (!rdma_dev_access_netns(device, net)) {
299 			device = NULL;
300 			goto out;
301 		}
302 
303 		if (!ib_device_try_get(device))
304 			device = NULL;
305 	}
306 out:
307 	up_read(&devices_rwsem);
308 	return device;
309 }
310 
311 /**
312  * ib_device_put - Release IB device reference
313  * @device: device whose reference to be released
314  *
315  * ib_device_put() releases reference to the IB device to allow it to be
316  * unregistered and eventually free.
317  */
318 void ib_device_put(struct ib_device *device)
319 {
320 	if (refcount_dec_and_test(&device->refcount))
321 		complete(&device->unreg_completion);
322 }
323 EXPORT_SYMBOL(ib_device_put);
324 
325 static struct ib_device *__ib_device_get_by_name(const char *name)
326 {
327 	struct ib_device *device;
328 	unsigned long index;
329 
330 	xa_for_each (&devices, index, device)
331 		if (!strcmp(name, dev_name(&device->dev)))
332 			return device;
333 
334 	return NULL;
335 }
336 
337 /**
338  * ib_device_get_by_name - Find an IB device by name
339  * @name: The name to look for
340  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
341  *
342  * Find and hold an ib_device by its name. The caller must call
343  * ib_device_put() on the returned pointer.
344  */
345 struct ib_device *ib_device_get_by_name(const char *name,
346 					enum rdma_driver_id driver_id)
347 {
348 	struct ib_device *device;
349 
350 	down_read(&devices_rwsem);
351 	device = __ib_device_get_by_name(name);
352 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
353 	    device->ops.driver_id != driver_id)
354 		device = NULL;
355 
356 	if (device) {
357 		if (!ib_device_try_get(device))
358 			device = NULL;
359 	}
360 	up_read(&devices_rwsem);
361 	return device;
362 }
363 EXPORT_SYMBOL(ib_device_get_by_name);
364 
365 static int rename_compat_devs(struct ib_device *device)
366 {
367 	struct ib_core_device *cdev;
368 	unsigned long index;
369 	int ret = 0;
370 
371 	mutex_lock(&device->compat_devs_mutex);
372 	xa_for_each (&device->compat_devs, index, cdev) {
373 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
374 		if (ret) {
375 			dev_warn(&cdev->dev,
376 				 "Fail to rename compatdev to new name %s\n",
377 				 dev_name(&device->dev));
378 			break;
379 		}
380 	}
381 	mutex_unlock(&device->compat_devs_mutex);
382 	return ret;
383 }
384 
385 int ib_device_rename(struct ib_device *ibdev, const char *name)
386 {
387 	unsigned long index;
388 	void *client_data;
389 	int ret;
390 
391 	down_write(&devices_rwsem);
392 	if (!strcmp(name, dev_name(&ibdev->dev))) {
393 		up_write(&devices_rwsem);
394 		return 0;
395 	}
396 
397 	if (__ib_device_get_by_name(name)) {
398 		up_write(&devices_rwsem);
399 		return -EEXIST;
400 	}
401 
402 	ret = device_rename(&ibdev->dev, name);
403 	if (ret) {
404 		up_write(&devices_rwsem);
405 		return ret;
406 	}
407 
408 	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
409 	ret = rename_compat_devs(ibdev);
410 
411 	downgrade_write(&devices_rwsem);
412 	down_read(&ibdev->client_data_rwsem);
413 	xan_for_each_marked(&ibdev->client_data, index, client_data,
414 			    CLIENT_DATA_REGISTERED) {
415 		struct ib_client *client = xa_load(&clients, index);
416 
417 		if (!client || !client->rename)
418 			continue;
419 
420 		client->rename(ibdev, client_data);
421 	}
422 	up_read(&ibdev->client_data_rwsem);
423 	rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT);
424 	up_read(&devices_rwsem);
425 	return 0;
426 }
427 
428 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
429 {
430 	if (use_dim > 1)
431 		return -EINVAL;
432 	ibdev->use_cq_dim = use_dim;
433 
434 	return 0;
435 }
436 
437 static int alloc_name(struct ib_device *ibdev, const char *name)
438 {
439 	struct ib_device *device;
440 	unsigned long index;
441 	struct ida inuse;
442 	int rc;
443 	int i;
444 
445 	lockdep_assert_held_write(&devices_rwsem);
446 	ida_init(&inuse);
447 	xa_for_each (&devices, index, device) {
448 		char buf[IB_DEVICE_NAME_MAX];
449 
450 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
451 			continue;
452 		if (i < 0 || i >= INT_MAX)
453 			continue;
454 		snprintf(buf, sizeof buf, name, i);
455 		if (strcmp(buf, dev_name(&device->dev)) != 0)
456 			continue;
457 
458 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
459 		if (rc < 0)
460 			goto out;
461 	}
462 
463 	rc = ida_alloc(&inuse, GFP_KERNEL);
464 	if (rc < 0)
465 		goto out;
466 
467 	rc = dev_set_name(&ibdev->dev, name, rc);
468 out:
469 	ida_destroy(&inuse);
470 	return rc;
471 }
472 
473 static void ib_device_release(struct device *device)
474 {
475 	struct ib_device *dev = container_of(device, struct ib_device, dev);
476 
477 	free_netdevs(dev);
478 	WARN_ON(refcount_read(&dev->refcount));
479 	if (dev->hw_stats_data)
480 		ib_device_release_hw_stats(dev->hw_stats_data);
481 	if (dev->port_data) {
482 		ib_cache_release_one(dev);
483 		ib_security_release_port_pkey_list(dev);
484 		rdma_counter_release(dev);
485 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
486 				       pdata[0]),
487 			  rcu_head);
488 	}
489 
490 	mutex_destroy(&dev->subdev_lock);
491 	mutex_destroy(&dev->unregistration_lock);
492 	mutex_destroy(&dev->compat_devs_mutex);
493 
494 	xa_destroy(&dev->compat_devs);
495 	xa_destroy(&dev->client_data);
496 	kfree_rcu(dev, rcu_head);
497 }
498 
499 static int ib_device_uevent(const struct device *device,
500 			    struct kobj_uevent_env *env)
501 {
502 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
503 		return -ENOMEM;
504 
505 	/*
506 	 * It would be nice to pass the node GUID with the event...
507 	 */
508 
509 	return 0;
510 }
511 
512 static const void *net_namespace(const struct device *d)
513 {
514 	const struct ib_core_device *coredev =
515 			container_of(d, struct ib_core_device, dev);
516 
517 	return read_pnet(&coredev->rdma_net);
518 }
519 
520 static struct class ib_class = {
521 	.name    = "infiniband",
522 	.dev_release = ib_device_release,
523 	.dev_uevent = ib_device_uevent,
524 	.ns_type = &net_ns_type_operations,
525 	.namespace = net_namespace,
526 };
527 
528 static void rdma_init_coredev(struct ib_core_device *coredev,
529 			      struct ib_device *dev, struct net *net)
530 {
531 	/* This BUILD_BUG_ON is intended to catch layout change
532 	 * of union of ib_core_device and device.
533 	 * dev must be the first element as ib_core and providers
534 	 * driver uses it. Adding anything in ib_core_device before
535 	 * device will break this assumption.
536 	 */
537 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
538 		     offsetof(struct ib_device, dev));
539 
540 	coredev->dev.class = &ib_class;
541 	coredev->dev.groups = dev->groups;
542 	device_initialize(&coredev->dev);
543 	coredev->owner = dev;
544 	INIT_LIST_HEAD(&coredev->port_list);
545 	write_pnet(&coredev->rdma_net, net);
546 }
547 
548 /**
549  * _ib_alloc_device - allocate an IB device struct
550  * @size:size of structure to allocate
551  *
552  * Low-level drivers should use ib_alloc_device() to allocate &struct
553  * ib_device.  @size is the size of the structure to be allocated,
554  * including any private data used by the low-level driver.
555  * ib_dealloc_device() must be used to free structures allocated with
556  * ib_alloc_device().
557  */
558 struct ib_device *_ib_alloc_device(size_t size)
559 {
560 	struct ib_device *device;
561 	unsigned int i;
562 
563 	if (WARN_ON(size < sizeof(struct ib_device)))
564 		return NULL;
565 
566 	device = kzalloc(size, GFP_KERNEL);
567 	if (!device)
568 		return NULL;
569 
570 	if (rdma_restrack_init(device)) {
571 		kfree(device);
572 		return NULL;
573 	}
574 
575 	rdma_init_coredev(&device->coredev, device, &init_net);
576 
577 	INIT_LIST_HEAD(&device->event_handler_list);
578 	spin_lock_init(&device->qp_open_list_lock);
579 	init_rwsem(&device->event_handler_rwsem);
580 	mutex_init(&device->unregistration_lock);
581 	/*
582 	 * client_data needs to be alloc because we don't want our mark to be
583 	 * destroyed if the user stores NULL in the client data.
584 	 */
585 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
586 	init_rwsem(&device->client_data_rwsem);
587 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
588 	mutex_init(&device->compat_devs_mutex);
589 	init_completion(&device->unreg_completion);
590 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
591 
592 	spin_lock_init(&device->cq_pools_lock);
593 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
594 		INIT_LIST_HEAD(&device->cq_pools[i]);
595 
596 	rwlock_init(&device->cache_lock);
597 
598 	device->uverbs_cmd_mask =
599 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
600 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
601 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
602 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
603 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
604 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
605 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
606 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
607 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
608 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
609 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
610 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
611 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
612 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
613 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
614 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
615 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
616 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
617 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
618 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
619 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
620 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
621 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
622 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
623 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
624 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
625 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
626 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
627 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
628 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
629 
630 	mutex_init(&device->subdev_lock);
631 	INIT_LIST_HEAD(&device->subdev_list_head);
632 	INIT_LIST_HEAD(&device->subdev_list);
633 
634 	return device;
635 }
636 EXPORT_SYMBOL(_ib_alloc_device);
637 
638 /**
639  * ib_dealloc_device - free an IB device struct
640  * @device:structure to free
641  *
642  * Free a structure allocated with ib_alloc_device().
643  */
644 void ib_dealloc_device(struct ib_device *device)
645 {
646 	if (device->ops.dealloc_driver)
647 		device->ops.dealloc_driver(device);
648 
649 	/*
650 	 * ib_unregister_driver() requires all devices to remain in the xarray
651 	 * while their ops are callable. The last op we call is dealloc_driver
652 	 * above.  This is needed to create a fence on op callbacks prior to
653 	 * allowing the driver module to unload.
654 	 */
655 	down_write(&devices_rwsem);
656 	if (xa_load(&devices, device->index) == device)
657 		xa_erase(&devices, device->index);
658 	up_write(&devices_rwsem);
659 
660 	/* Expedite releasing netdev references */
661 	free_netdevs(device);
662 
663 	WARN_ON(!xa_empty(&device->compat_devs));
664 	WARN_ON(!xa_empty(&device->client_data));
665 	WARN_ON(refcount_read(&device->refcount));
666 	rdma_restrack_clean(device);
667 	/* Balances with device_initialize */
668 	put_device(&device->dev);
669 }
670 EXPORT_SYMBOL(ib_dealloc_device);
671 
672 /*
673  * add_client_context() and remove_client_context() must be safe against
674  * parallel calls on the same device - registration/unregistration of both the
675  * device and client can be occurring in parallel.
676  *
677  * The routines need to be a fence, any caller must not return until the add
678  * or remove is fully completed.
679  */
680 static int add_client_context(struct ib_device *device,
681 			      struct ib_client *client)
682 {
683 	int ret = 0;
684 
685 	if (!device->kverbs_provider && !client->no_kverbs_req)
686 		return 0;
687 
688 	down_write(&device->client_data_rwsem);
689 	/*
690 	 * So long as the client is registered hold both the client and device
691 	 * unregistration locks.
692 	 */
693 	if (!refcount_inc_not_zero(&client->uses))
694 		goto out_unlock;
695 	refcount_inc(&device->refcount);
696 
697 	/*
698 	 * Another caller to add_client_context got here first and has already
699 	 * completely initialized context.
700 	 */
701 	if (xa_get_mark(&device->client_data, client->client_id,
702 		    CLIENT_DATA_REGISTERED))
703 		goto out;
704 
705 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
706 			      GFP_KERNEL));
707 	if (ret)
708 		goto out;
709 	downgrade_write(&device->client_data_rwsem);
710 	if (client->add) {
711 		if (client->add(device)) {
712 			/*
713 			 * If a client fails to add then the error code is
714 			 * ignored, but we won't call any more ops on this
715 			 * client.
716 			 */
717 			xa_erase(&device->client_data, client->client_id);
718 			up_read(&device->client_data_rwsem);
719 			ib_device_put(device);
720 			ib_client_put(client);
721 			return 0;
722 		}
723 	}
724 
725 	/* Readers shall not see a client until add has been completed */
726 	xa_set_mark(&device->client_data, client->client_id,
727 		    CLIENT_DATA_REGISTERED);
728 	up_read(&device->client_data_rwsem);
729 	return 0;
730 
731 out:
732 	ib_device_put(device);
733 	ib_client_put(client);
734 out_unlock:
735 	up_write(&device->client_data_rwsem);
736 	return ret;
737 }
738 
739 static void remove_client_context(struct ib_device *device,
740 				  unsigned int client_id)
741 {
742 	struct ib_client *client;
743 	void *client_data;
744 
745 	down_write(&device->client_data_rwsem);
746 	if (!xa_get_mark(&device->client_data, client_id,
747 			 CLIENT_DATA_REGISTERED)) {
748 		up_write(&device->client_data_rwsem);
749 		return;
750 	}
751 	client_data = xa_load(&device->client_data, client_id);
752 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
753 	client = xa_load(&clients, client_id);
754 	up_write(&device->client_data_rwsem);
755 
756 	/*
757 	 * Notice we cannot be holding any exclusive locks when calling the
758 	 * remove callback as the remove callback can recurse back into any
759 	 * public functions in this module and thus try for any locks those
760 	 * functions take.
761 	 *
762 	 * For this reason clients and drivers should not call the
763 	 * unregistration functions will holdling any locks.
764 	 */
765 	if (client->remove)
766 		client->remove(device, client_data);
767 
768 	xa_erase(&device->client_data, client_id);
769 	ib_device_put(device);
770 	ib_client_put(client);
771 }
772 
773 static int alloc_port_data(struct ib_device *device)
774 {
775 	struct ib_port_data_rcu *pdata_rcu;
776 	u32 port;
777 
778 	if (device->port_data)
779 		return 0;
780 
781 	/* This can only be called once the physical port range is defined */
782 	if (WARN_ON(!device->phys_port_cnt))
783 		return -EINVAL;
784 
785 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
786 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
787 		return -EINVAL;
788 
789 	/*
790 	 * device->port_data is indexed directly by the port number to make
791 	 * access to this data as efficient as possible.
792 	 *
793 	 * Therefore port_data is declared as a 1 based array with potential
794 	 * empty slots at the beginning.
795 	 */
796 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
797 					size_add(rdma_end_port(device), 1)),
798 			    GFP_KERNEL);
799 	if (!pdata_rcu)
800 		return -ENOMEM;
801 	/*
802 	 * The rcu_head is put in front of the port data array and the stored
803 	 * pointer is adjusted since we never need to see that member until
804 	 * kfree_rcu.
805 	 */
806 	device->port_data = pdata_rcu->pdata;
807 
808 	rdma_for_each_port (device, port) {
809 		struct ib_port_data *pdata = &device->port_data[port];
810 
811 		pdata->ib_dev = device;
812 		spin_lock_init(&pdata->pkey_list_lock);
813 		INIT_LIST_HEAD(&pdata->pkey_list);
814 		spin_lock_init(&pdata->netdev_lock);
815 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
816 	}
817 	return 0;
818 }
819 
820 static int verify_immutable(const struct ib_device *dev, u32 port)
821 {
822 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
823 			    rdma_max_mad_size(dev, port) != 0);
824 }
825 
826 static int setup_port_data(struct ib_device *device)
827 {
828 	u32 port;
829 	int ret;
830 
831 	ret = alloc_port_data(device);
832 	if (ret)
833 		return ret;
834 
835 	rdma_for_each_port (device, port) {
836 		struct ib_port_data *pdata = &device->port_data[port];
837 
838 		ret = device->ops.get_port_immutable(device, port,
839 						     &pdata->immutable);
840 		if (ret)
841 			return ret;
842 
843 		if (verify_immutable(device, port))
844 			return -EINVAL;
845 	}
846 	return 0;
847 }
848 
849 /**
850  * ib_port_immutable_read() - Read rdma port's immutable data
851  * @dev: IB device
852  * @port: port number whose immutable data to read. It starts with index 1 and
853  *        valid upto including rdma_end_port().
854  */
855 const struct ib_port_immutable*
856 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
857 {
858 	WARN_ON(!rdma_is_port_valid(dev, port));
859 	return &dev->port_data[port].immutable;
860 }
861 EXPORT_SYMBOL(ib_port_immutable_read);
862 
863 void ib_get_device_fw_str(struct ib_device *dev, char *str)
864 {
865 	if (dev->ops.get_dev_fw_str)
866 		dev->ops.get_dev_fw_str(dev, str);
867 	else
868 		str[0] = '\0';
869 }
870 EXPORT_SYMBOL(ib_get_device_fw_str);
871 
872 static void ib_policy_change_task(struct work_struct *work)
873 {
874 	struct ib_device *dev;
875 	unsigned long index;
876 
877 	down_read(&devices_rwsem);
878 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
879 		unsigned int i;
880 
881 		rdma_for_each_port (dev, i) {
882 			u64 sp;
883 			ib_get_cached_subnet_prefix(dev, i, &sp);
884 			ib_security_cache_change(dev, i, sp);
885 		}
886 	}
887 	up_read(&devices_rwsem);
888 }
889 
890 static int ib_security_change(struct notifier_block *nb, unsigned long event,
891 			      void *lsm_data)
892 {
893 	if (event != LSM_POLICY_CHANGE)
894 		return NOTIFY_DONE;
895 
896 	schedule_work(&ib_policy_change_work);
897 	ib_mad_agent_security_change();
898 
899 	return NOTIFY_OK;
900 }
901 
902 static void compatdev_release(struct device *dev)
903 {
904 	struct ib_core_device *cdev =
905 		container_of(dev, struct ib_core_device, dev);
906 
907 	kfree(cdev);
908 }
909 
910 static int add_one_compat_dev(struct ib_device *device,
911 			      struct rdma_dev_net *rnet)
912 {
913 	struct ib_core_device *cdev;
914 	int ret;
915 
916 	lockdep_assert_held(&rdma_nets_rwsem);
917 	if (!ib_devices_shared_netns)
918 		return 0;
919 
920 	/*
921 	 * Create and add compat device in all namespaces other than where it
922 	 * is currently bound to.
923 	 */
924 	if (net_eq(read_pnet(&rnet->net),
925 		   read_pnet(&device->coredev.rdma_net)))
926 		return 0;
927 
928 	/*
929 	 * The first of init_net() or ib_register_device() to take the
930 	 * compat_devs_mutex wins and gets to add the device. Others will wait
931 	 * for completion here.
932 	 */
933 	mutex_lock(&device->compat_devs_mutex);
934 	cdev = xa_load(&device->compat_devs, rnet->id);
935 	if (cdev) {
936 		ret = 0;
937 		goto done;
938 	}
939 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
940 	if (ret)
941 		goto done;
942 
943 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
944 	if (!cdev) {
945 		ret = -ENOMEM;
946 		goto cdev_err;
947 	}
948 
949 	cdev->dev.parent = device->dev.parent;
950 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
951 	cdev->dev.release = compatdev_release;
952 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
953 	if (ret)
954 		goto add_err;
955 
956 	ret = device_add(&cdev->dev);
957 	if (ret)
958 		goto add_err;
959 	ret = ib_setup_port_attrs(cdev);
960 	if (ret)
961 		goto port_err;
962 
963 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
964 			      cdev, GFP_KERNEL));
965 	if (ret)
966 		goto insert_err;
967 
968 	mutex_unlock(&device->compat_devs_mutex);
969 	return 0;
970 
971 insert_err:
972 	ib_free_port_attrs(cdev);
973 port_err:
974 	device_del(&cdev->dev);
975 add_err:
976 	put_device(&cdev->dev);
977 cdev_err:
978 	xa_release(&device->compat_devs, rnet->id);
979 done:
980 	mutex_unlock(&device->compat_devs_mutex);
981 	return ret;
982 }
983 
984 static void remove_one_compat_dev(struct ib_device *device, u32 id)
985 {
986 	struct ib_core_device *cdev;
987 
988 	mutex_lock(&device->compat_devs_mutex);
989 	cdev = xa_erase(&device->compat_devs, id);
990 	mutex_unlock(&device->compat_devs_mutex);
991 	if (cdev) {
992 		ib_free_port_attrs(cdev);
993 		device_del(&cdev->dev);
994 		put_device(&cdev->dev);
995 	}
996 }
997 
998 static void remove_compat_devs(struct ib_device *device)
999 {
1000 	struct ib_core_device *cdev;
1001 	unsigned long index;
1002 
1003 	xa_for_each (&device->compat_devs, index, cdev)
1004 		remove_one_compat_dev(device, index);
1005 }
1006 
1007 static int add_compat_devs(struct ib_device *device)
1008 {
1009 	struct rdma_dev_net *rnet;
1010 	unsigned long index;
1011 	int ret = 0;
1012 
1013 	lockdep_assert_held(&devices_rwsem);
1014 
1015 	down_read(&rdma_nets_rwsem);
1016 	xa_for_each (&rdma_nets, index, rnet) {
1017 		ret = add_one_compat_dev(device, rnet);
1018 		if (ret)
1019 			break;
1020 	}
1021 	up_read(&rdma_nets_rwsem);
1022 	return ret;
1023 }
1024 
1025 static void remove_all_compat_devs(void)
1026 {
1027 	struct ib_compat_device *cdev;
1028 	struct ib_device *dev;
1029 	unsigned long index;
1030 
1031 	down_read(&devices_rwsem);
1032 	xa_for_each (&devices, index, dev) {
1033 		unsigned long c_index = 0;
1034 
1035 		/* Hold nets_rwsem so that any other thread modifying this
1036 		 * system param can sync with this thread.
1037 		 */
1038 		down_read(&rdma_nets_rwsem);
1039 		xa_for_each (&dev->compat_devs, c_index, cdev)
1040 			remove_one_compat_dev(dev, c_index);
1041 		up_read(&rdma_nets_rwsem);
1042 	}
1043 	up_read(&devices_rwsem);
1044 }
1045 
1046 static int add_all_compat_devs(void)
1047 {
1048 	struct rdma_dev_net *rnet;
1049 	struct ib_device *dev;
1050 	unsigned long index;
1051 	int ret = 0;
1052 
1053 	down_read(&devices_rwsem);
1054 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1055 		unsigned long net_index = 0;
1056 
1057 		/* Hold nets_rwsem so that any other thread modifying this
1058 		 * system param can sync with this thread.
1059 		 */
1060 		down_read(&rdma_nets_rwsem);
1061 		xa_for_each (&rdma_nets, net_index, rnet) {
1062 			ret = add_one_compat_dev(dev, rnet);
1063 			if (ret)
1064 				break;
1065 		}
1066 		up_read(&rdma_nets_rwsem);
1067 	}
1068 	up_read(&devices_rwsem);
1069 	if (ret)
1070 		remove_all_compat_devs();
1071 	return ret;
1072 }
1073 
1074 int rdma_compatdev_set(u8 enable)
1075 {
1076 	struct rdma_dev_net *rnet;
1077 	unsigned long index;
1078 	int ret = 0;
1079 
1080 	down_write(&rdma_nets_rwsem);
1081 	if (ib_devices_shared_netns == enable) {
1082 		up_write(&rdma_nets_rwsem);
1083 		return 0;
1084 	}
1085 
1086 	/* enable/disable of compat devices is not supported
1087 	 * when more than default init_net exists.
1088 	 */
1089 	xa_for_each (&rdma_nets, index, rnet) {
1090 		ret++;
1091 		break;
1092 	}
1093 	if (!ret)
1094 		ib_devices_shared_netns = enable;
1095 	up_write(&rdma_nets_rwsem);
1096 	if (ret)
1097 		return -EBUSY;
1098 
1099 	if (enable)
1100 		ret = add_all_compat_devs();
1101 	else
1102 		remove_all_compat_devs();
1103 	return ret;
1104 }
1105 
1106 static void rdma_dev_exit_net(struct net *net)
1107 {
1108 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1109 	struct ib_device *dev;
1110 	unsigned long index;
1111 	int ret;
1112 
1113 	down_write(&rdma_nets_rwsem);
1114 	/*
1115 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1116 	 */
1117 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1118 	WARN_ON(ret);
1119 	up_write(&rdma_nets_rwsem);
1120 
1121 	down_read(&devices_rwsem);
1122 	xa_for_each (&devices, index, dev) {
1123 		get_device(&dev->dev);
1124 		/*
1125 		 * Release the devices_rwsem so that pontentially blocking
1126 		 * device_del, doesn't hold the devices_rwsem for too long.
1127 		 */
1128 		up_read(&devices_rwsem);
1129 
1130 		remove_one_compat_dev(dev, rnet->id);
1131 
1132 		/*
1133 		 * If the real device is in the NS then move it back to init.
1134 		 */
1135 		rdma_dev_change_netns(dev, net, &init_net);
1136 
1137 		put_device(&dev->dev);
1138 		down_read(&devices_rwsem);
1139 	}
1140 	up_read(&devices_rwsem);
1141 
1142 	rdma_nl_net_exit(rnet);
1143 	xa_erase(&rdma_nets, rnet->id);
1144 }
1145 
1146 static __net_init int rdma_dev_init_net(struct net *net)
1147 {
1148 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1149 	unsigned long index;
1150 	struct ib_device *dev;
1151 	int ret;
1152 
1153 	write_pnet(&rnet->net, net);
1154 
1155 	ret = rdma_nl_net_init(rnet);
1156 	if (ret)
1157 		return ret;
1158 
1159 	/* No need to create any compat devices in default init_net. */
1160 	if (net_eq(net, &init_net))
1161 		return 0;
1162 
1163 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1164 	if (ret) {
1165 		rdma_nl_net_exit(rnet);
1166 		return ret;
1167 	}
1168 
1169 	down_read(&devices_rwsem);
1170 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1171 		/* Hold nets_rwsem so that netlink command cannot change
1172 		 * system configuration for device sharing mode.
1173 		 */
1174 		down_read(&rdma_nets_rwsem);
1175 		ret = add_one_compat_dev(dev, rnet);
1176 		up_read(&rdma_nets_rwsem);
1177 		if (ret)
1178 			break;
1179 	}
1180 	up_read(&devices_rwsem);
1181 
1182 	if (ret)
1183 		rdma_dev_exit_net(net);
1184 
1185 	return ret;
1186 }
1187 
1188 /*
1189  * Assign the unique string device name and the unique device index. This is
1190  * undone by ib_dealloc_device.
1191  */
1192 static int assign_name(struct ib_device *device, const char *name)
1193 {
1194 	static u32 last_id;
1195 	int ret;
1196 
1197 	down_write(&devices_rwsem);
1198 	/* Assign a unique name to the device */
1199 	if (strchr(name, '%'))
1200 		ret = alloc_name(device, name);
1201 	else
1202 		ret = dev_set_name(&device->dev, name);
1203 	if (ret)
1204 		goto out;
1205 
1206 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1207 		ret = -ENFILE;
1208 		goto out;
1209 	}
1210 	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1211 
1212 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1213 			&last_id, GFP_KERNEL);
1214 	if (ret > 0)
1215 		ret = 0;
1216 
1217 out:
1218 	up_write(&devices_rwsem);
1219 	return ret;
1220 }
1221 
1222 /*
1223  * setup_device() allocates memory and sets up data that requires calling the
1224  * device ops, this is the only reason these actions are not done during
1225  * ib_alloc_device. It is undone by ib_dealloc_device().
1226  */
1227 static int setup_device(struct ib_device *device)
1228 {
1229 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1230 	int ret;
1231 
1232 	ib_device_check_mandatory(device);
1233 
1234 	ret = setup_port_data(device);
1235 	if (ret) {
1236 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1237 		return ret;
1238 	}
1239 
1240 	memset(&device->attrs, 0, sizeof(device->attrs));
1241 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1242 	if (ret) {
1243 		dev_warn(&device->dev,
1244 			 "Couldn't query the device attributes\n");
1245 		return ret;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static void disable_device(struct ib_device *device)
1252 {
1253 	u32 cid;
1254 
1255 	WARN_ON(!refcount_read(&device->refcount));
1256 
1257 	down_write(&devices_rwsem);
1258 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1259 	up_write(&devices_rwsem);
1260 
1261 	/*
1262 	 * Remove clients in LIFO order, see assign_client_id. This could be
1263 	 * more efficient if xarray learns to reverse iterate. Since no new
1264 	 * clients can be added to this ib_device past this point we only need
1265 	 * the maximum possible client_id value here.
1266 	 */
1267 	down_read(&clients_rwsem);
1268 	cid = highest_client_id;
1269 	up_read(&clients_rwsem);
1270 	while (cid) {
1271 		cid--;
1272 		remove_client_context(device, cid);
1273 	}
1274 
1275 	ib_cq_pool_cleanup(device);
1276 
1277 	/* Pairs with refcount_set in enable_device */
1278 	ib_device_put(device);
1279 	wait_for_completion(&device->unreg_completion);
1280 
1281 	/*
1282 	 * compat devices must be removed after device refcount drops to zero.
1283 	 * Otherwise init_net() may add more compatdevs after removing compat
1284 	 * devices and before device is disabled.
1285 	 */
1286 	remove_compat_devs(device);
1287 }
1288 
1289 /*
1290  * An enabled device is visible to all clients and to all the public facing
1291  * APIs that return a device pointer. This always returns with a new get, even
1292  * if it fails.
1293  */
1294 static int enable_device_and_get(struct ib_device *device)
1295 {
1296 	struct ib_client *client;
1297 	unsigned long index;
1298 	int ret = 0;
1299 
1300 	/*
1301 	 * One ref belongs to the xa and the other belongs to this
1302 	 * thread. This is needed to guard against parallel unregistration.
1303 	 */
1304 	refcount_set(&device->refcount, 2);
1305 	down_write(&devices_rwsem);
1306 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1307 
1308 	/*
1309 	 * By using downgrade_write() we ensure that no other thread can clear
1310 	 * DEVICE_REGISTERED while we are completing the client setup.
1311 	 */
1312 	downgrade_write(&devices_rwsem);
1313 
1314 	if (device->ops.enable_driver) {
1315 		ret = device->ops.enable_driver(device);
1316 		if (ret)
1317 			goto out;
1318 	}
1319 
1320 	down_read(&clients_rwsem);
1321 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1322 		ret = add_client_context(device, client);
1323 		if (ret)
1324 			break;
1325 	}
1326 	up_read(&clients_rwsem);
1327 	if (!ret)
1328 		ret = add_compat_devs(device);
1329 out:
1330 	up_read(&devices_rwsem);
1331 	return ret;
1332 }
1333 
1334 static void prevent_dealloc_device(struct ib_device *ib_dev)
1335 {
1336 }
1337 
1338 static void ib_device_notify_register(struct ib_device *device)
1339 {
1340 	struct net_device *netdev;
1341 	u32 port;
1342 	int ret;
1343 
1344 	ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1345 	if (ret)
1346 		return;
1347 
1348 	rdma_for_each_port(device, port) {
1349 		netdev = ib_device_get_netdev(device, port);
1350 		if (!netdev)
1351 			continue;
1352 
1353 		ret = rdma_nl_notify_event(device, port,
1354 					   RDMA_NETDEV_ATTACH_EVENT);
1355 		dev_put(netdev);
1356 		if (ret)
1357 			return;
1358 	}
1359 }
1360 
1361 /**
1362  * ib_register_device - Register an IB device with IB core
1363  * @device: Device to register
1364  * @name: unique string device name. This may include a '%' which will
1365  * 	  cause a unique index to be added to the passed device name.
1366  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1367  *	        device will be used. In this case the caller should fully
1368  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1369  *
1370  * Low-level drivers use ib_register_device() to register their
1371  * devices with the IB core.  All registered clients will receive a
1372  * callback for each device that is added. @device must be allocated
1373  * with ib_alloc_device().
1374  *
1375  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1376  * asynchronously then the device pointer may become freed as soon as this
1377  * function returns.
1378  */
1379 int ib_register_device(struct ib_device *device, const char *name,
1380 		       struct device *dma_device)
1381 {
1382 	int ret;
1383 
1384 	ret = assign_name(device, name);
1385 	if (ret)
1386 		return ret;
1387 
1388 	/*
1389 	 * If the caller does not provide a DMA capable device then the IB core
1390 	 * will set up ib_sge and scatterlist structures that stash the kernel
1391 	 * virtual address into the address field.
1392 	 */
1393 	WARN_ON(dma_device && !dma_device->dma_parms);
1394 	device->dma_device = dma_device;
1395 
1396 	ret = setup_device(device);
1397 	if (ret)
1398 		return ret;
1399 
1400 	ret = ib_cache_setup_one(device);
1401 	if (ret) {
1402 		dev_warn(&device->dev,
1403 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1404 		return ret;
1405 	}
1406 
1407 	device->groups[0] = &ib_dev_attr_group;
1408 	device->groups[1] = device->ops.device_group;
1409 	ret = ib_setup_device_attrs(device);
1410 	if (ret)
1411 		goto cache_cleanup;
1412 
1413 	ib_device_register_rdmacg(device);
1414 
1415 	rdma_counter_init(device);
1416 
1417 	/*
1418 	 * Ensure that ADD uevent is not fired because it
1419 	 * is too early amd device is not initialized yet.
1420 	 */
1421 	dev_set_uevent_suppress(&device->dev, true);
1422 	ret = device_add(&device->dev);
1423 	if (ret)
1424 		goto cg_cleanup;
1425 
1426 	ret = ib_setup_port_attrs(&device->coredev);
1427 	if (ret) {
1428 		dev_warn(&device->dev,
1429 			 "Couldn't register device with driver model\n");
1430 		goto dev_cleanup;
1431 	}
1432 
1433 	ret = enable_device_and_get(device);
1434 	if (ret) {
1435 		void (*dealloc_fn)(struct ib_device *);
1436 
1437 		/*
1438 		 * If we hit this error flow then we don't want to
1439 		 * automatically dealloc the device since the caller is
1440 		 * expected to call ib_dealloc_device() after
1441 		 * ib_register_device() fails. This is tricky due to the
1442 		 * possibility for a parallel unregistration along with this
1443 		 * error flow. Since we have a refcount here we know any
1444 		 * parallel flow is stopped in disable_device and will see the
1445 		 * special dealloc_driver pointer, causing the responsibility to
1446 		 * ib_dealloc_device() to revert back to this thread.
1447 		 */
1448 		dealloc_fn = device->ops.dealloc_driver;
1449 		device->ops.dealloc_driver = prevent_dealloc_device;
1450 		ib_device_put(device);
1451 		__ib_unregister_device(device);
1452 		device->ops.dealloc_driver = dealloc_fn;
1453 		dev_set_uevent_suppress(&device->dev, false);
1454 		return ret;
1455 	}
1456 	dev_set_uevent_suppress(&device->dev, false);
1457 	/* Mark for userspace that device is ready */
1458 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1459 
1460 	ib_device_notify_register(device);
1461 	ib_device_put(device);
1462 
1463 	return 0;
1464 
1465 dev_cleanup:
1466 	device_del(&device->dev);
1467 cg_cleanup:
1468 	dev_set_uevent_suppress(&device->dev, false);
1469 	ib_device_unregister_rdmacg(device);
1470 cache_cleanup:
1471 	ib_cache_cleanup_one(device);
1472 	return ret;
1473 }
1474 EXPORT_SYMBOL(ib_register_device);
1475 
1476 /* Callers must hold a get on the device. */
1477 static void __ib_unregister_device(struct ib_device *ib_dev)
1478 {
1479 	struct ib_device *sub, *tmp;
1480 
1481 	mutex_lock(&ib_dev->subdev_lock);
1482 	list_for_each_entry_safe_reverse(sub, tmp,
1483 					 &ib_dev->subdev_list_head,
1484 					 subdev_list) {
1485 		list_del(&sub->subdev_list);
1486 		ib_dev->ops.del_sub_dev(sub);
1487 		ib_device_put(ib_dev);
1488 	}
1489 	mutex_unlock(&ib_dev->subdev_lock);
1490 
1491 	/*
1492 	 * We have a registration lock so that all the calls to unregister are
1493 	 * fully fenced, once any unregister returns the device is truely
1494 	 * unregistered even if multiple callers are unregistering it at the
1495 	 * same time. This also interacts with the registration flow and
1496 	 * provides sane semantics if register and unregister are racing.
1497 	 */
1498 	mutex_lock(&ib_dev->unregistration_lock);
1499 	if (!refcount_read(&ib_dev->refcount))
1500 		goto out;
1501 
1502 	disable_device(ib_dev);
1503 	rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1504 
1505 	/* Expedite removing unregistered pointers from the hash table */
1506 	free_netdevs(ib_dev);
1507 
1508 	ib_free_port_attrs(&ib_dev->coredev);
1509 	device_del(&ib_dev->dev);
1510 	ib_device_unregister_rdmacg(ib_dev);
1511 	ib_cache_cleanup_one(ib_dev);
1512 
1513 	/*
1514 	 * Drivers using the new flow may not call ib_dealloc_device except
1515 	 * in error unwind prior to registration success.
1516 	 */
1517 	if (ib_dev->ops.dealloc_driver &&
1518 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1519 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1520 		ib_dealloc_device(ib_dev);
1521 	}
1522 out:
1523 	mutex_unlock(&ib_dev->unregistration_lock);
1524 }
1525 
1526 /**
1527  * ib_unregister_device - Unregister an IB device
1528  * @ib_dev: The device to unregister
1529  *
1530  * Unregister an IB device.  All clients will receive a remove callback.
1531  *
1532  * Callers should call this routine only once, and protect against races with
1533  * registration. Typically it should only be called as part of a remove
1534  * callback in an implementation of driver core's struct device_driver and
1535  * related.
1536  *
1537  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1538  * this function.
1539  */
1540 void ib_unregister_device(struct ib_device *ib_dev)
1541 {
1542 	get_device(&ib_dev->dev);
1543 	__ib_unregister_device(ib_dev);
1544 	put_device(&ib_dev->dev);
1545 }
1546 EXPORT_SYMBOL(ib_unregister_device);
1547 
1548 /**
1549  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1550  * @ib_dev: The device to unregister
1551  *
1552  * This is the same as ib_unregister_device(), except it includes an internal
1553  * ib_device_put() that should match a 'get' obtained by the caller.
1554  *
1555  * It is safe to call this routine concurrently from multiple threads while
1556  * holding the 'get'. When the function returns the device is fully
1557  * unregistered.
1558  *
1559  * Drivers using this flow MUST use the driver_unregister callback to clean up
1560  * their resources associated with the device and dealloc it.
1561  */
1562 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1563 {
1564 	WARN_ON(!ib_dev->ops.dealloc_driver);
1565 	get_device(&ib_dev->dev);
1566 	ib_device_put(ib_dev);
1567 	__ib_unregister_device(ib_dev);
1568 	put_device(&ib_dev->dev);
1569 }
1570 EXPORT_SYMBOL(ib_unregister_device_and_put);
1571 
1572 /**
1573  * ib_unregister_driver - Unregister all IB devices for a driver
1574  * @driver_id: The driver to unregister
1575  *
1576  * This implements a fence for device unregistration. It only returns once all
1577  * devices associated with the driver_id have fully completed their
1578  * unregistration and returned from ib_unregister_device*().
1579  *
1580  * If device's are not yet unregistered it goes ahead and starts unregistering
1581  * them.
1582  *
1583  * This does not block creation of new devices with the given driver_id, that
1584  * is the responsibility of the caller.
1585  */
1586 void ib_unregister_driver(enum rdma_driver_id driver_id)
1587 {
1588 	struct ib_device *ib_dev;
1589 	unsigned long index;
1590 
1591 	down_read(&devices_rwsem);
1592 	xa_for_each (&devices, index, ib_dev) {
1593 		if (ib_dev->ops.driver_id != driver_id)
1594 			continue;
1595 
1596 		get_device(&ib_dev->dev);
1597 		up_read(&devices_rwsem);
1598 
1599 		WARN_ON(!ib_dev->ops.dealloc_driver);
1600 		__ib_unregister_device(ib_dev);
1601 
1602 		put_device(&ib_dev->dev);
1603 		down_read(&devices_rwsem);
1604 	}
1605 	up_read(&devices_rwsem);
1606 }
1607 EXPORT_SYMBOL(ib_unregister_driver);
1608 
1609 static void ib_unregister_work(struct work_struct *work)
1610 {
1611 	struct ib_device *ib_dev =
1612 		container_of(work, struct ib_device, unregistration_work);
1613 
1614 	__ib_unregister_device(ib_dev);
1615 	put_device(&ib_dev->dev);
1616 }
1617 
1618 /**
1619  * ib_unregister_device_queued - Unregister a device using a work queue
1620  * @ib_dev: The device to unregister
1621  *
1622  * This schedules an asynchronous unregistration using a WQ for the device. A
1623  * driver should use this to avoid holding locks while doing unregistration,
1624  * such as holding the RTNL lock.
1625  *
1626  * Drivers using this API must use ib_unregister_driver before module unload
1627  * to ensure that all scheduled unregistrations have completed.
1628  */
1629 void ib_unregister_device_queued(struct ib_device *ib_dev)
1630 {
1631 	WARN_ON(!refcount_read(&ib_dev->refcount));
1632 	WARN_ON(!ib_dev->ops.dealloc_driver);
1633 	get_device(&ib_dev->dev);
1634 	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1635 		put_device(&ib_dev->dev);
1636 }
1637 EXPORT_SYMBOL(ib_unregister_device_queued);
1638 
1639 /*
1640  * The caller must pass in a device that has the kref held and the refcount
1641  * released. If the device is in cur_net and still registered then it is moved
1642  * into net.
1643  */
1644 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1645 				 struct net *net)
1646 {
1647 	int ret2 = -EINVAL;
1648 	int ret;
1649 
1650 	mutex_lock(&device->unregistration_lock);
1651 
1652 	/*
1653 	 * If a device not under ib_device_get() or if the unregistration_lock
1654 	 * is not held, the namespace can be changed, or it can be unregistered.
1655 	 * Check again under the lock.
1656 	 */
1657 	if (refcount_read(&device->refcount) == 0 ||
1658 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1659 		ret = -ENODEV;
1660 		goto out;
1661 	}
1662 
1663 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1664 	disable_device(device);
1665 
1666 	/*
1667 	 * At this point no one can be using the device, so it is safe to
1668 	 * change the namespace.
1669 	 */
1670 	write_pnet(&device->coredev.rdma_net, net);
1671 
1672 	down_read(&devices_rwsem);
1673 	/*
1674 	 * Currently rdma devices are system wide unique. So the device name
1675 	 * is guaranteed free in the new namespace. Publish the new namespace
1676 	 * at the sysfs level.
1677 	 */
1678 	ret = device_rename(&device->dev, dev_name(&device->dev));
1679 	up_read(&devices_rwsem);
1680 	if (ret) {
1681 		dev_warn(&device->dev,
1682 			 "%s: Couldn't rename device after namespace change\n",
1683 			 __func__);
1684 		/* Try and put things back and re-enable the device */
1685 		write_pnet(&device->coredev.rdma_net, cur_net);
1686 	}
1687 
1688 	ret2 = enable_device_and_get(device);
1689 	if (ret2) {
1690 		/*
1691 		 * This shouldn't really happen, but if it does, let the user
1692 		 * retry at later point. So don't disable the device.
1693 		 */
1694 		dev_warn(&device->dev,
1695 			 "%s: Couldn't re-enable device after namespace change\n",
1696 			 __func__);
1697 	}
1698 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1699 
1700 	ib_device_put(device);
1701 out:
1702 	mutex_unlock(&device->unregistration_lock);
1703 	if (ret)
1704 		return ret;
1705 	return ret2;
1706 }
1707 
1708 int ib_device_set_netns_put(struct sk_buff *skb,
1709 			    struct ib_device *dev, u32 ns_fd)
1710 {
1711 	struct net *net;
1712 	int ret;
1713 
1714 	net = get_net_ns_by_fd(ns_fd);
1715 	if (IS_ERR(net)) {
1716 		ret = PTR_ERR(net);
1717 		goto net_err;
1718 	}
1719 
1720 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1721 		ret = -EPERM;
1722 		goto ns_err;
1723 	}
1724 
1725 	/*
1726 	 * All the ib_clients, including uverbs, are reset when the namespace is
1727 	 * changed and this cannot be blocked waiting for userspace to do
1728 	 * something, so disassociation is mandatory.
1729 	 */
1730 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1731 		ret = -EOPNOTSUPP;
1732 		goto ns_err;
1733 	}
1734 
1735 	get_device(&dev->dev);
1736 	ib_device_put(dev);
1737 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1738 	put_device(&dev->dev);
1739 
1740 	put_net(net);
1741 	return ret;
1742 
1743 ns_err:
1744 	put_net(net);
1745 net_err:
1746 	ib_device_put(dev);
1747 	return ret;
1748 }
1749 
1750 static struct pernet_operations rdma_dev_net_ops = {
1751 	.init = rdma_dev_init_net,
1752 	.exit = rdma_dev_exit_net,
1753 	.id = &rdma_dev_net_id,
1754 	.size = sizeof(struct rdma_dev_net),
1755 };
1756 
1757 static int assign_client_id(struct ib_client *client)
1758 {
1759 	int ret;
1760 
1761 	lockdep_assert_held(&clients_rwsem);
1762 	/*
1763 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1764 	 * achieve this we assign client_ids so they are sorted in
1765 	 * registration order.
1766 	 */
1767 	client->client_id = highest_client_id;
1768 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1769 	if (ret)
1770 		return ret;
1771 
1772 	highest_client_id++;
1773 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1774 	return 0;
1775 }
1776 
1777 static void remove_client_id(struct ib_client *client)
1778 {
1779 	down_write(&clients_rwsem);
1780 	xa_erase(&clients, client->client_id);
1781 	for (; highest_client_id; highest_client_id--)
1782 		if (xa_load(&clients, highest_client_id - 1))
1783 			break;
1784 	up_write(&clients_rwsem);
1785 }
1786 
1787 /**
1788  * ib_register_client - Register an IB client
1789  * @client:Client to register
1790  *
1791  * Upper level users of the IB drivers can use ib_register_client() to
1792  * register callbacks for IB device addition and removal.  When an IB
1793  * device is added, each registered client's add method will be called
1794  * (in the order the clients were registered), and when a device is
1795  * removed, each client's remove method will be called (in the reverse
1796  * order that clients were registered).  In addition, when
1797  * ib_register_client() is called, the client will receive an add
1798  * callback for all devices already registered.
1799  */
1800 int ib_register_client(struct ib_client *client)
1801 {
1802 	struct ib_device *device;
1803 	unsigned long index;
1804 	bool need_unreg = false;
1805 	int ret;
1806 
1807 	refcount_set(&client->uses, 1);
1808 	init_completion(&client->uses_zero);
1809 
1810 	/*
1811 	 * The devices_rwsem is held in write mode to ensure that a racing
1812 	 * ib_register_device() sees a consisent view of clients and devices.
1813 	 */
1814 	down_write(&devices_rwsem);
1815 	down_write(&clients_rwsem);
1816 	ret = assign_client_id(client);
1817 	if (ret)
1818 		goto out;
1819 
1820 	need_unreg = true;
1821 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1822 		ret = add_client_context(device, client);
1823 		if (ret)
1824 			goto out;
1825 	}
1826 	ret = 0;
1827 out:
1828 	up_write(&clients_rwsem);
1829 	up_write(&devices_rwsem);
1830 	if (need_unreg && ret)
1831 		ib_unregister_client(client);
1832 	return ret;
1833 }
1834 EXPORT_SYMBOL(ib_register_client);
1835 
1836 /**
1837  * ib_unregister_client - Unregister an IB client
1838  * @client:Client to unregister
1839  *
1840  * Upper level users use ib_unregister_client() to remove their client
1841  * registration.  When ib_unregister_client() is called, the client
1842  * will receive a remove callback for each IB device still registered.
1843  *
1844  * This is a full fence, once it returns no client callbacks will be called,
1845  * or are running in another thread.
1846  */
1847 void ib_unregister_client(struct ib_client *client)
1848 {
1849 	struct ib_device *device;
1850 	unsigned long index;
1851 
1852 	down_write(&clients_rwsem);
1853 	ib_client_put(client);
1854 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1855 	up_write(&clients_rwsem);
1856 
1857 	/* We do not want to have locks while calling client->remove() */
1858 	rcu_read_lock();
1859 	xa_for_each (&devices, index, device) {
1860 		if (!ib_device_try_get(device))
1861 			continue;
1862 		rcu_read_unlock();
1863 
1864 		remove_client_context(device, client->client_id);
1865 
1866 		ib_device_put(device);
1867 		rcu_read_lock();
1868 	}
1869 	rcu_read_unlock();
1870 
1871 	/*
1872 	 * remove_client_context() is not a fence, it can return even though a
1873 	 * removal is ongoing. Wait until all removals are completed.
1874 	 */
1875 	wait_for_completion(&client->uses_zero);
1876 	remove_client_id(client);
1877 }
1878 EXPORT_SYMBOL(ib_unregister_client);
1879 
1880 static int __ib_get_global_client_nl_info(const char *client_name,
1881 					  struct ib_client_nl_info *res)
1882 {
1883 	struct ib_client *client;
1884 	unsigned long index;
1885 	int ret = -ENOENT;
1886 
1887 	down_read(&clients_rwsem);
1888 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1889 		if (strcmp(client->name, client_name) != 0)
1890 			continue;
1891 		if (!client->get_global_nl_info) {
1892 			ret = -EOPNOTSUPP;
1893 			break;
1894 		}
1895 		ret = client->get_global_nl_info(res);
1896 		if (WARN_ON(ret == -ENOENT))
1897 			ret = -EINVAL;
1898 		if (!ret && res->cdev)
1899 			get_device(res->cdev);
1900 		break;
1901 	}
1902 	up_read(&clients_rwsem);
1903 	return ret;
1904 }
1905 
1906 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1907 				   const char *client_name,
1908 				   struct ib_client_nl_info *res)
1909 {
1910 	unsigned long index;
1911 	void *client_data;
1912 	int ret = -ENOENT;
1913 
1914 	down_read(&ibdev->client_data_rwsem);
1915 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1916 			     CLIENT_DATA_REGISTERED) {
1917 		struct ib_client *client = xa_load(&clients, index);
1918 
1919 		if (!client || strcmp(client->name, client_name) != 0)
1920 			continue;
1921 		if (!client->get_nl_info) {
1922 			ret = -EOPNOTSUPP;
1923 			break;
1924 		}
1925 		ret = client->get_nl_info(ibdev, client_data, res);
1926 		if (WARN_ON(ret == -ENOENT))
1927 			ret = -EINVAL;
1928 
1929 		/*
1930 		 * The cdev is guaranteed valid as long as we are inside the
1931 		 * client_data_rwsem as remove_one can't be called. Keep it
1932 		 * valid for the caller.
1933 		 */
1934 		if (!ret && res->cdev)
1935 			get_device(res->cdev);
1936 		break;
1937 	}
1938 	up_read(&ibdev->client_data_rwsem);
1939 
1940 	return ret;
1941 }
1942 
1943 /**
1944  * ib_get_client_nl_info - Fetch the nl_info from a client
1945  * @ibdev: IB device
1946  * @client_name: Name of the client
1947  * @res: Result of the query
1948  */
1949 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1950 			  struct ib_client_nl_info *res)
1951 {
1952 	int ret;
1953 
1954 	if (ibdev)
1955 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1956 	else
1957 		ret = __ib_get_global_client_nl_info(client_name, res);
1958 #ifdef CONFIG_MODULES
1959 	if (ret == -ENOENT) {
1960 		request_module("rdma-client-%s", client_name);
1961 		if (ibdev)
1962 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1963 		else
1964 			ret = __ib_get_global_client_nl_info(client_name, res);
1965 	}
1966 #endif
1967 	if (ret) {
1968 		if (ret == -ENOENT)
1969 			return -EOPNOTSUPP;
1970 		return ret;
1971 	}
1972 
1973 	if (WARN_ON(!res->cdev))
1974 		return -EINVAL;
1975 	return 0;
1976 }
1977 
1978 /**
1979  * ib_set_client_data - Set IB client context
1980  * @device:Device to set context for
1981  * @client:Client to set context for
1982  * @data:Context to set
1983  *
1984  * ib_set_client_data() sets client context data that can be retrieved with
1985  * ib_get_client_data(). This can only be called while the client is
1986  * registered to the device, once the ib_client remove() callback returns this
1987  * cannot be called.
1988  */
1989 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1990 			void *data)
1991 {
1992 	void *rc;
1993 
1994 	if (WARN_ON(IS_ERR(data)))
1995 		data = NULL;
1996 
1997 	rc = xa_store(&device->client_data, client->client_id, data,
1998 		      GFP_KERNEL);
1999 	WARN_ON(xa_is_err(rc));
2000 }
2001 EXPORT_SYMBOL(ib_set_client_data);
2002 
2003 /**
2004  * ib_register_event_handler - Register an IB event handler
2005  * @event_handler:Handler to register
2006  *
2007  * ib_register_event_handler() registers an event handler that will be
2008  * called back when asynchronous IB events occur (as defined in
2009  * chapter 11 of the InfiniBand Architecture Specification). This
2010  * callback occurs in workqueue context.
2011  */
2012 void ib_register_event_handler(struct ib_event_handler *event_handler)
2013 {
2014 	down_write(&event_handler->device->event_handler_rwsem);
2015 	list_add_tail(&event_handler->list,
2016 		      &event_handler->device->event_handler_list);
2017 	up_write(&event_handler->device->event_handler_rwsem);
2018 }
2019 EXPORT_SYMBOL(ib_register_event_handler);
2020 
2021 /**
2022  * ib_unregister_event_handler - Unregister an event handler
2023  * @event_handler:Handler to unregister
2024  *
2025  * Unregister an event handler registered with
2026  * ib_register_event_handler().
2027  */
2028 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2029 {
2030 	down_write(&event_handler->device->event_handler_rwsem);
2031 	list_del(&event_handler->list);
2032 	up_write(&event_handler->device->event_handler_rwsem);
2033 }
2034 EXPORT_SYMBOL(ib_unregister_event_handler);
2035 
2036 void ib_dispatch_event_clients(struct ib_event *event)
2037 {
2038 	struct ib_event_handler *handler;
2039 
2040 	down_read(&event->device->event_handler_rwsem);
2041 
2042 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2043 		handler->handler(handler, event);
2044 
2045 	up_read(&event->device->event_handler_rwsem);
2046 }
2047 
2048 static int iw_query_port(struct ib_device *device,
2049 			   u32 port_num,
2050 			   struct ib_port_attr *port_attr)
2051 {
2052 	struct in_device *inetdev;
2053 	struct net_device *netdev;
2054 
2055 	memset(port_attr, 0, sizeof(*port_attr));
2056 
2057 	netdev = ib_device_get_netdev(device, port_num);
2058 	if (!netdev)
2059 		return -ENODEV;
2060 
2061 	port_attr->max_mtu = IB_MTU_4096;
2062 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2063 
2064 	if (!netif_carrier_ok(netdev)) {
2065 		port_attr->state = IB_PORT_DOWN;
2066 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2067 	} else {
2068 		rcu_read_lock();
2069 		inetdev = __in_dev_get_rcu(netdev);
2070 
2071 		if (inetdev && inetdev->ifa_list) {
2072 			port_attr->state = IB_PORT_ACTIVE;
2073 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2074 		} else {
2075 			port_attr->state = IB_PORT_INIT;
2076 			port_attr->phys_state =
2077 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2078 		}
2079 
2080 		rcu_read_unlock();
2081 	}
2082 
2083 	dev_put(netdev);
2084 	return device->ops.query_port(device, port_num, port_attr);
2085 }
2086 
2087 static int __ib_query_port(struct ib_device *device,
2088 			   u32 port_num,
2089 			   struct ib_port_attr *port_attr)
2090 {
2091 	int err;
2092 
2093 	memset(port_attr, 0, sizeof(*port_attr));
2094 
2095 	err = device->ops.query_port(device, port_num, port_attr);
2096 	if (err || port_attr->subnet_prefix)
2097 		return err;
2098 
2099 	if (rdma_port_get_link_layer(device, port_num) !=
2100 	    IB_LINK_LAYER_INFINIBAND)
2101 		return 0;
2102 
2103 	ib_get_cached_subnet_prefix(device, port_num,
2104 				    &port_attr->subnet_prefix);
2105 	return 0;
2106 }
2107 
2108 /**
2109  * ib_query_port - Query IB port attributes
2110  * @device:Device to query
2111  * @port_num:Port number to query
2112  * @port_attr:Port attributes
2113  *
2114  * ib_query_port() returns the attributes of a port through the
2115  * @port_attr pointer.
2116  */
2117 int ib_query_port(struct ib_device *device,
2118 		  u32 port_num,
2119 		  struct ib_port_attr *port_attr)
2120 {
2121 	if (!rdma_is_port_valid(device, port_num))
2122 		return -EINVAL;
2123 
2124 	if (rdma_protocol_iwarp(device, port_num))
2125 		return iw_query_port(device, port_num, port_attr);
2126 	else
2127 		return __ib_query_port(device, port_num, port_attr);
2128 }
2129 EXPORT_SYMBOL(ib_query_port);
2130 
2131 static void add_ndev_hash(struct ib_port_data *pdata)
2132 {
2133 	unsigned long flags;
2134 
2135 	might_sleep();
2136 
2137 	spin_lock_irqsave(&ndev_hash_lock, flags);
2138 	if (hash_hashed(&pdata->ndev_hash_link)) {
2139 		hash_del_rcu(&pdata->ndev_hash_link);
2140 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2141 		/*
2142 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2143 		 * grace period
2144 		 */
2145 		synchronize_rcu();
2146 		spin_lock_irqsave(&ndev_hash_lock, flags);
2147 	}
2148 	if (pdata->netdev)
2149 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2150 			     (uintptr_t)pdata->netdev);
2151 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2152 }
2153 
2154 /**
2155  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2156  * @ib_dev: Device to modify
2157  * @ndev: net_device to affiliate, may be NULL
2158  * @port: IB port the net_device is connected to
2159  *
2160  * Drivers should use this to link the ib_device to a netdev so the netdev
2161  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2162  * affiliated with any port.
2163  *
2164  * The caller must ensure that the given ndev is not unregistered or
2165  * unregistering, and that either the ib_device is unregistered or
2166  * ib_device_set_netdev() is called with NULL when the ndev sends a
2167  * NETDEV_UNREGISTER event.
2168  */
2169 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2170 			 u32 port)
2171 {
2172 	enum rdma_nl_notify_event_type etype;
2173 	struct net_device *old_ndev;
2174 	struct ib_port_data *pdata;
2175 	unsigned long flags;
2176 	int ret;
2177 
2178 	if (!rdma_is_port_valid(ib_dev, port))
2179 		return -EINVAL;
2180 
2181 	/*
2182 	 * Drivers wish to call this before ib_register_driver, so we have to
2183 	 * setup the port data early.
2184 	 */
2185 	ret = alloc_port_data(ib_dev);
2186 	if (ret)
2187 		return ret;
2188 
2189 	pdata = &ib_dev->port_data[port];
2190 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2191 	old_ndev = rcu_dereference_protected(
2192 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2193 	if (old_ndev == ndev) {
2194 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2195 		return 0;
2196 	}
2197 
2198 	rcu_assign_pointer(pdata->netdev, ndev);
2199 	netdev_put(old_ndev, &pdata->netdev_tracker);
2200 	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2201 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2202 
2203 	add_ndev_hash(pdata);
2204 
2205 	/* Make sure that the device is registered before we send events */
2206 	if (xa_load(&devices, ib_dev->index) != ib_dev)
2207 		return 0;
2208 
2209 	etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2210 	rdma_nl_notify_event(ib_dev, port, etype);
2211 
2212 	return 0;
2213 }
2214 EXPORT_SYMBOL(ib_device_set_netdev);
2215 
2216 static void free_netdevs(struct ib_device *ib_dev)
2217 {
2218 	unsigned long flags;
2219 	u32 port;
2220 
2221 	if (!ib_dev->port_data)
2222 		return;
2223 
2224 	rdma_for_each_port (ib_dev, port) {
2225 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2226 		struct net_device *ndev;
2227 
2228 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2229 		ndev = rcu_dereference_protected(
2230 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2231 		if (ndev) {
2232 			spin_lock(&ndev_hash_lock);
2233 			hash_del_rcu(&pdata->ndev_hash_link);
2234 			spin_unlock(&ndev_hash_lock);
2235 
2236 			/*
2237 			 * If this is the last dev_put there is still a
2238 			 * synchronize_rcu before the netdev is kfreed, so we
2239 			 * can continue to rely on unlocked pointer
2240 			 * comparisons after the put
2241 			 */
2242 			rcu_assign_pointer(pdata->netdev, NULL);
2243 			netdev_put(ndev, &pdata->netdev_tracker);
2244 		}
2245 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2246 	}
2247 }
2248 
2249 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2250 					u32 port)
2251 {
2252 	struct ib_port_data *pdata;
2253 	struct net_device *res;
2254 
2255 	if (!rdma_is_port_valid(ib_dev, port))
2256 		return NULL;
2257 
2258 	if (!ib_dev->port_data)
2259 		return NULL;
2260 
2261 	pdata = &ib_dev->port_data[port];
2262 
2263 	/*
2264 	 * New drivers should use ib_device_set_netdev() not the legacy
2265 	 * get_netdev().
2266 	 */
2267 	if (ib_dev->ops.get_netdev)
2268 		res = ib_dev->ops.get_netdev(ib_dev, port);
2269 	else {
2270 		spin_lock(&pdata->netdev_lock);
2271 		res = rcu_dereference_protected(
2272 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2273 		dev_hold(res);
2274 		spin_unlock(&pdata->netdev_lock);
2275 	}
2276 
2277 	return res;
2278 }
2279 EXPORT_SYMBOL(ib_device_get_netdev);
2280 
2281 /**
2282  * ib_query_netdev_port - Query the port number of a net_device
2283  * associated with an ibdev
2284  * @ibdev: IB device
2285  * @ndev: Network device
2286  * @port: IB port the net_device is connected to
2287  */
2288 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
2289 			 u32 *port)
2290 {
2291 	struct net_device *ib_ndev;
2292 	u32 port_num;
2293 
2294 	rdma_for_each_port(ibdev, port_num) {
2295 		ib_ndev = ib_device_get_netdev(ibdev, port_num);
2296 		if (ndev == ib_ndev) {
2297 			*port = port_num;
2298 			dev_put(ib_ndev);
2299 			return 0;
2300 		}
2301 		dev_put(ib_ndev);
2302 	}
2303 
2304 	return -ENOENT;
2305 }
2306 EXPORT_SYMBOL(ib_query_netdev_port);
2307 
2308 /**
2309  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2310  * @ndev: netdev to locate
2311  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2312  *
2313  * Find and hold an ib_device that is associated with a netdev via
2314  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2315  * returned pointer.
2316  */
2317 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2318 					  enum rdma_driver_id driver_id)
2319 {
2320 	struct ib_device *res = NULL;
2321 	struct ib_port_data *cur;
2322 
2323 	rcu_read_lock();
2324 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2325 				    (uintptr_t)ndev) {
2326 		if (rcu_access_pointer(cur->netdev) == ndev &&
2327 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2328 		     cur->ib_dev->ops.driver_id == driver_id) &&
2329 		    ib_device_try_get(cur->ib_dev)) {
2330 			res = cur->ib_dev;
2331 			break;
2332 		}
2333 	}
2334 	rcu_read_unlock();
2335 
2336 	return res;
2337 }
2338 EXPORT_SYMBOL(ib_device_get_by_netdev);
2339 
2340 /**
2341  * ib_enum_roce_netdev - enumerate all RoCE ports
2342  * @ib_dev : IB device we want to query
2343  * @filter: Should we call the callback?
2344  * @filter_cookie: Cookie passed to filter
2345  * @cb: Callback to call for each found RoCE ports
2346  * @cookie: Cookie passed back to the callback
2347  *
2348  * Enumerates all of the physical RoCE ports of ib_dev
2349  * which are related to netdevice and calls callback() on each
2350  * device for which filter() function returns non zero.
2351  */
2352 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2353 			 roce_netdev_filter filter,
2354 			 void *filter_cookie,
2355 			 roce_netdev_callback cb,
2356 			 void *cookie)
2357 {
2358 	u32 port;
2359 
2360 	rdma_for_each_port (ib_dev, port)
2361 		if (rdma_protocol_roce(ib_dev, port)) {
2362 			struct net_device *idev =
2363 				ib_device_get_netdev(ib_dev, port);
2364 
2365 			if (filter(ib_dev, port, idev, filter_cookie))
2366 				cb(ib_dev, port, idev, cookie);
2367 			dev_put(idev);
2368 		}
2369 }
2370 
2371 /**
2372  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2373  * @filter: Should we call the callback?
2374  * @filter_cookie: Cookie passed to filter
2375  * @cb: Callback to call for each found RoCE ports
2376  * @cookie: Cookie passed back to the callback
2377  *
2378  * Enumerates all RoCE devices' physical ports which are related
2379  * to netdevices and calls callback() on each device for which
2380  * filter() function returns non zero.
2381  */
2382 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2383 			      void *filter_cookie,
2384 			      roce_netdev_callback cb,
2385 			      void *cookie)
2386 {
2387 	struct ib_device *dev;
2388 	unsigned long index;
2389 
2390 	down_read(&devices_rwsem);
2391 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2392 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2393 	up_read(&devices_rwsem);
2394 }
2395 
2396 /*
2397  * ib_enum_all_devs - enumerate all ib_devices
2398  * @cb: Callback to call for each found ib_device
2399  *
2400  * Enumerates all ib_devices and calls callback() on each device.
2401  */
2402 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2403 		     struct netlink_callback *cb)
2404 {
2405 	unsigned long index;
2406 	struct ib_device *dev;
2407 	unsigned int idx = 0;
2408 	int ret = 0;
2409 
2410 	down_read(&devices_rwsem);
2411 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2412 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2413 			continue;
2414 
2415 		ret = nldev_cb(dev, skb, cb, idx);
2416 		if (ret)
2417 			break;
2418 		idx++;
2419 	}
2420 	up_read(&devices_rwsem);
2421 	return ret;
2422 }
2423 
2424 /**
2425  * ib_query_pkey - Get P_Key table entry
2426  * @device:Device to query
2427  * @port_num:Port number to query
2428  * @index:P_Key table index to query
2429  * @pkey:Returned P_Key
2430  *
2431  * ib_query_pkey() fetches the specified P_Key table entry.
2432  */
2433 int ib_query_pkey(struct ib_device *device,
2434 		  u32 port_num, u16 index, u16 *pkey)
2435 {
2436 	if (!rdma_is_port_valid(device, port_num))
2437 		return -EINVAL;
2438 
2439 	if (!device->ops.query_pkey)
2440 		return -EOPNOTSUPP;
2441 
2442 	return device->ops.query_pkey(device, port_num, index, pkey);
2443 }
2444 EXPORT_SYMBOL(ib_query_pkey);
2445 
2446 /**
2447  * ib_modify_device - Change IB device attributes
2448  * @device:Device to modify
2449  * @device_modify_mask:Mask of attributes to change
2450  * @device_modify:New attribute values
2451  *
2452  * ib_modify_device() changes a device's attributes as specified by
2453  * the @device_modify_mask and @device_modify structure.
2454  */
2455 int ib_modify_device(struct ib_device *device,
2456 		     int device_modify_mask,
2457 		     struct ib_device_modify *device_modify)
2458 {
2459 	if (!device->ops.modify_device)
2460 		return -EOPNOTSUPP;
2461 
2462 	return device->ops.modify_device(device, device_modify_mask,
2463 					 device_modify);
2464 }
2465 EXPORT_SYMBOL(ib_modify_device);
2466 
2467 /**
2468  * ib_modify_port - Modifies the attributes for the specified port.
2469  * @device: The device to modify.
2470  * @port_num: The number of the port to modify.
2471  * @port_modify_mask: Mask used to specify which attributes of the port
2472  *   to change.
2473  * @port_modify: New attribute values for the port.
2474  *
2475  * ib_modify_port() changes a port's attributes as specified by the
2476  * @port_modify_mask and @port_modify structure.
2477  */
2478 int ib_modify_port(struct ib_device *device,
2479 		   u32 port_num, int port_modify_mask,
2480 		   struct ib_port_modify *port_modify)
2481 {
2482 	int rc;
2483 
2484 	if (!rdma_is_port_valid(device, port_num))
2485 		return -EINVAL;
2486 
2487 	if (device->ops.modify_port)
2488 		rc = device->ops.modify_port(device, port_num,
2489 					     port_modify_mask,
2490 					     port_modify);
2491 	else if (rdma_protocol_roce(device, port_num) &&
2492 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2493 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2494 		rc = 0;
2495 	else
2496 		rc = -EOPNOTSUPP;
2497 	return rc;
2498 }
2499 EXPORT_SYMBOL(ib_modify_port);
2500 
2501 /**
2502  * ib_find_gid - Returns the port number and GID table index where
2503  *   a specified GID value occurs. Its searches only for IB link layer.
2504  * @device: The device to query.
2505  * @gid: The GID value to search for.
2506  * @port_num: The port number of the device where the GID value was found.
2507  * @index: The index into the GID table where the GID was found.  This
2508  *   parameter may be NULL.
2509  */
2510 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2511 		u32 *port_num, u16 *index)
2512 {
2513 	union ib_gid tmp_gid;
2514 	u32 port;
2515 	int ret, i;
2516 
2517 	rdma_for_each_port (device, port) {
2518 		if (!rdma_protocol_ib(device, port))
2519 			continue;
2520 
2521 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2522 		     ++i) {
2523 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2524 			if (ret)
2525 				continue;
2526 
2527 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2528 				*port_num = port;
2529 				if (index)
2530 					*index = i;
2531 				return 0;
2532 			}
2533 		}
2534 	}
2535 
2536 	return -ENOENT;
2537 }
2538 EXPORT_SYMBOL(ib_find_gid);
2539 
2540 /**
2541  * ib_find_pkey - Returns the PKey table index where a specified
2542  *   PKey value occurs.
2543  * @device: The device to query.
2544  * @port_num: The port number of the device to search for the PKey.
2545  * @pkey: The PKey value to search for.
2546  * @index: The index into the PKey table where the PKey was found.
2547  */
2548 int ib_find_pkey(struct ib_device *device,
2549 		 u32 port_num, u16 pkey, u16 *index)
2550 {
2551 	int ret, i;
2552 	u16 tmp_pkey;
2553 	int partial_ix = -1;
2554 
2555 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2556 	     ++i) {
2557 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2558 		if (ret)
2559 			return ret;
2560 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2561 			/* if there is full-member pkey take it.*/
2562 			if (tmp_pkey & 0x8000) {
2563 				*index = i;
2564 				return 0;
2565 			}
2566 			if (partial_ix < 0)
2567 				partial_ix = i;
2568 		}
2569 	}
2570 
2571 	/*no full-member, if exists take the limited*/
2572 	if (partial_ix >= 0) {
2573 		*index = partial_ix;
2574 		return 0;
2575 	}
2576 	return -ENOENT;
2577 }
2578 EXPORT_SYMBOL(ib_find_pkey);
2579 
2580 /**
2581  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2582  * for a received CM request
2583  * @dev:	An RDMA device on which the request has been received.
2584  * @port:	Port number on the RDMA device.
2585  * @pkey:	The Pkey the request came on.
2586  * @gid:	A GID that the net_dev uses to communicate.
2587  * @addr:	Contains the IP address that the request specified as its
2588  *		destination.
2589  *
2590  */
2591 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2592 					    u32 port,
2593 					    u16 pkey,
2594 					    const union ib_gid *gid,
2595 					    const struct sockaddr *addr)
2596 {
2597 	struct net_device *net_dev = NULL;
2598 	unsigned long index;
2599 	void *client_data;
2600 
2601 	if (!rdma_protocol_ib(dev, port))
2602 		return NULL;
2603 
2604 	/*
2605 	 * Holding the read side guarantees that the client will not become
2606 	 * unregistered while we are calling get_net_dev_by_params()
2607 	 */
2608 	down_read(&dev->client_data_rwsem);
2609 	xan_for_each_marked (&dev->client_data, index, client_data,
2610 			     CLIENT_DATA_REGISTERED) {
2611 		struct ib_client *client = xa_load(&clients, index);
2612 
2613 		if (!client || !client->get_net_dev_by_params)
2614 			continue;
2615 
2616 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2617 							addr, client_data);
2618 		if (net_dev)
2619 			break;
2620 	}
2621 	up_read(&dev->client_data_rwsem);
2622 
2623 	return net_dev;
2624 }
2625 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2626 
2627 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2628 {
2629 	struct ib_device_ops *dev_ops = &dev->ops;
2630 #define SET_DEVICE_OP(ptr, name)                                               \
2631 	do {                                                                   \
2632 		if (ops->name)                                                 \
2633 			if (!((ptr)->name))				       \
2634 				(ptr)->name = ops->name;                       \
2635 	} while (0)
2636 
2637 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2638 
2639 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2640 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2641 			dev_ops->driver_id != ops->driver_id);
2642 		dev_ops->driver_id = ops->driver_id;
2643 	}
2644 	if (ops->owner) {
2645 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2646 		dev_ops->owner = ops->owner;
2647 	}
2648 	if (ops->uverbs_abi_ver)
2649 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2650 
2651 	dev_ops->uverbs_no_driver_id_binding |=
2652 		ops->uverbs_no_driver_id_binding;
2653 
2654 	SET_DEVICE_OP(dev_ops, add_gid);
2655 	SET_DEVICE_OP(dev_ops, add_sub_dev);
2656 	SET_DEVICE_OP(dev_ops, advise_mr);
2657 	SET_DEVICE_OP(dev_ops, alloc_dm);
2658 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2659 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2660 	SET_DEVICE_OP(dev_ops, alloc_mr);
2661 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2662 	SET_DEVICE_OP(dev_ops, alloc_mw);
2663 	SET_DEVICE_OP(dev_ops, alloc_pd);
2664 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2665 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2666 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2667 	SET_DEVICE_OP(dev_ops, attach_mcast);
2668 	SET_DEVICE_OP(dev_ops, check_mr_status);
2669 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2670 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2671 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2672 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2673 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2674 	SET_DEVICE_OP(dev_ops, create_ah);
2675 	SET_DEVICE_OP(dev_ops, create_counters);
2676 	SET_DEVICE_OP(dev_ops, create_cq);
2677 	SET_DEVICE_OP(dev_ops, create_flow);
2678 	SET_DEVICE_OP(dev_ops, create_qp);
2679 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2680 	SET_DEVICE_OP(dev_ops, create_srq);
2681 	SET_DEVICE_OP(dev_ops, create_user_ah);
2682 	SET_DEVICE_OP(dev_ops, create_wq);
2683 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2684 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2685 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2686 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2687 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2688 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2689 	SET_DEVICE_OP(dev_ops, del_gid);
2690 	SET_DEVICE_OP(dev_ops, del_sub_dev);
2691 	SET_DEVICE_OP(dev_ops, dereg_mr);
2692 	SET_DEVICE_OP(dev_ops, destroy_ah);
2693 	SET_DEVICE_OP(dev_ops, destroy_counters);
2694 	SET_DEVICE_OP(dev_ops, destroy_cq);
2695 	SET_DEVICE_OP(dev_ops, destroy_flow);
2696 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2697 	SET_DEVICE_OP(dev_ops, destroy_qp);
2698 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2699 	SET_DEVICE_OP(dev_ops, destroy_srq);
2700 	SET_DEVICE_OP(dev_ops, destroy_wq);
2701 	SET_DEVICE_OP(dev_ops, device_group);
2702 	SET_DEVICE_OP(dev_ops, detach_mcast);
2703 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2704 	SET_DEVICE_OP(dev_ops, drain_rq);
2705 	SET_DEVICE_OP(dev_ops, drain_sq);
2706 	SET_DEVICE_OP(dev_ops, enable_driver);
2707 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2708 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2709 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2710 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2711 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2712 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2713 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2714 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2715 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2716 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2717 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2718 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2719 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2720 	SET_DEVICE_OP(dev_ops, get_link_layer);
2721 	SET_DEVICE_OP(dev_ops, get_netdev);
2722 	SET_DEVICE_OP(dev_ops, get_numa_node);
2723 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2724 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2725 	SET_DEVICE_OP(dev_ops, get_vf_config);
2726 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2727 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2728 	SET_DEVICE_OP(dev_ops, iw_accept);
2729 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2730 	SET_DEVICE_OP(dev_ops, iw_connect);
2731 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2732 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2733 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2734 	SET_DEVICE_OP(dev_ops, iw_reject);
2735 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2736 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2737 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2738 	SET_DEVICE_OP(dev_ops, mmap);
2739 	SET_DEVICE_OP(dev_ops, mmap_free);
2740 	SET_DEVICE_OP(dev_ops, modify_ah);
2741 	SET_DEVICE_OP(dev_ops, modify_cq);
2742 	SET_DEVICE_OP(dev_ops, modify_device);
2743 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2744 	SET_DEVICE_OP(dev_ops, modify_port);
2745 	SET_DEVICE_OP(dev_ops, modify_qp);
2746 	SET_DEVICE_OP(dev_ops, modify_srq);
2747 	SET_DEVICE_OP(dev_ops, modify_wq);
2748 	SET_DEVICE_OP(dev_ops, peek_cq);
2749 	SET_DEVICE_OP(dev_ops, poll_cq);
2750 	SET_DEVICE_OP(dev_ops, port_groups);
2751 	SET_DEVICE_OP(dev_ops, post_recv);
2752 	SET_DEVICE_OP(dev_ops, post_send);
2753 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2754 	SET_DEVICE_OP(dev_ops, process_mad);
2755 	SET_DEVICE_OP(dev_ops, query_ah);
2756 	SET_DEVICE_OP(dev_ops, query_device);
2757 	SET_DEVICE_OP(dev_ops, query_gid);
2758 	SET_DEVICE_OP(dev_ops, query_pkey);
2759 	SET_DEVICE_OP(dev_ops, query_port);
2760 	SET_DEVICE_OP(dev_ops, query_qp);
2761 	SET_DEVICE_OP(dev_ops, query_srq);
2762 	SET_DEVICE_OP(dev_ops, query_ucontext);
2763 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2764 	SET_DEVICE_OP(dev_ops, read_counters);
2765 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2766 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2767 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2768 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2769 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2770 	SET_DEVICE_OP(dev_ops, resize_cq);
2771 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2772 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2773 	SET_DEVICE_OP(dev_ops, ufile_hw_cleanup);
2774 	SET_DEVICE_OP(dev_ops, report_port_event);
2775 
2776 	SET_OBJ_SIZE(dev_ops, ib_ah);
2777 	SET_OBJ_SIZE(dev_ops, ib_counters);
2778 	SET_OBJ_SIZE(dev_ops, ib_cq);
2779 	SET_OBJ_SIZE(dev_ops, ib_mw);
2780 	SET_OBJ_SIZE(dev_ops, ib_pd);
2781 	SET_OBJ_SIZE(dev_ops, ib_qp);
2782 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2783 	SET_OBJ_SIZE(dev_ops, ib_srq);
2784 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2785 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2786 }
2787 EXPORT_SYMBOL(ib_set_device_ops);
2788 
2789 int ib_add_sub_device(struct ib_device *parent,
2790 		      enum rdma_nl_dev_type type,
2791 		      const char *name)
2792 {
2793 	struct ib_device *sub;
2794 	int ret = 0;
2795 
2796 	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2797 		return -EOPNOTSUPP;
2798 
2799 	if (!ib_device_try_get(parent))
2800 		return -EINVAL;
2801 
2802 	sub = parent->ops.add_sub_dev(parent, type, name);
2803 	if (IS_ERR(sub)) {
2804 		ib_device_put(parent);
2805 		return PTR_ERR(sub);
2806 	}
2807 
2808 	sub->type = type;
2809 	sub->parent = parent;
2810 
2811 	mutex_lock(&parent->subdev_lock);
2812 	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2813 	mutex_unlock(&parent->subdev_lock);
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL(ib_add_sub_device);
2818 
2819 int ib_del_sub_device_and_put(struct ib_device *sub)
2820 {
2821 	struct ib_device *parent = sub->parent;
2822 
2823 	if (!parent)
2824 		return -EOPNOTSUPP;
2825 
2826 	mutex_lock(&parent->subdev_lock);
2827 	list_del(&sub->subdev_list);
2828 	mutex_unlock(&parent->subdev_lock);
2829 
2830 	ib_device_put(sub);
2831 	parent->ops.del_sub_dev(sub);
2832 	ib_device_put(parent);
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2837 
2838 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2839 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2840 {
2841 	struct scatterlist *s;
2842 	int i;
2843 
2844 	for_each_sg(sg, s, nents, i) {
2845 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2846 		sg_dma_len(s) = s->length;
2847 	}
2848 	return nents;
2849 }
2850 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2851 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2852 
2853 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2854 	[RDMA_NL_LS_OP_RESOLVE] = {
2855 		.doit = ib_nl_handle_resolve_resp,
2856 		.flags = RDMA_NL_ADMIN_PERM,
2857 	},
2858 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2859 		.doit = ib_nl_handle_set_timeout,
2860 		.flags = RDMA_NL_ADMIN_PERM,
2861 	},
2862 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2863 		.doit = ib_nl_handle_ip_res_resp,
2864 		.flags = RDMA_NL_ADMIN_PERM,
2865 	},
2866 };
2867 
2868 void ib_dispatch_port_state_event(struct ib_device *ibdev, struct net_device *ndev)
2869 {
2870 	enum ib_port_state curr_state;
2871 	struct ib_event ibevent = {};
2872 	u32 port;
2873 
2874 	if (ib_query_netdev_port(ibdev, ndev, &port))
2875 		return;
2876 
2877 	curr_state = ib_get_curr_port_state(ndev);
2878 
2879 	write_lock_irq(&ibdev->cache_lock);
2880 	if (ibdev->port_data[port].cache.last_port_state == curr_state) {
2881 		write_unlock_irq(&ibdev->cache_lock);
2882 		return;
2883 	}
2884 	ibdev->port_data[port].cache.last_port_state = curr_state;
2885 	write_unlock_irq(&ibdev->cache_lock);
2886 
2887 	ibevent.event = (curr_state == IB_PORT_DOWN) ?
2888 					IB_EVENT_PORT_ERR : IB_EVENT_PORT_ACTIVE;
2889 	ibevent.device = ibdev;
2890 	ibevent.element.port_num = port;
2891 	ib_dispatch_event(&ibevent);
2892 }
2893 EXPORT_SYMBOL(ib_dispatch_port_state_event);
2894 
2895 static void handle_port_event(struct net_device *ndev, unsigned long event)
2896 {
2897 	struct ib_device *ibdev;
2898 
2899 	/* Currently, link events in bonding scenarios are still
2900 	 * reported by drivers that support bonding.
2901 	 */
2902 	if (netif_is_lag_master(ndev) || netif_is_lag_port(ndev))
2903 		return;
2904 
2905 	ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2906 	if (!ibdev)
2907 		return;
2908 
2909 	if (ibdev->ops.report_port_event) {
2910 		ibdev->ops.report_port_event(ibdev, ndev, event);
2911 		goto put_ibdev;
2912 	}
2913 
2914 	ib_dispatch_port_state_event(ibdev, ndev);
2915 
2916 put_ibdev:
2917 	ib_device_put(ibdev);
2918 };
2919 
2920 static int ib_netdevice_event(struct notifier_block *this,
2921 			      unsigned long event, void *ptr)
2922 {
2923 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
2924 	struct ib_device *ibdev;
2925 	u32 port;
2926 
2927 	switch (event) {
2928 	case NETDEV_CHANGENAME:
2929 		ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2930 		if (!ibdev)
2931 			return NOTIFY_DONE;
2932 
2933 		if (ib_query_netdev_port(ibdev, ndev, &port)) {
2934 			ib_device_put(ibdev);
2935 			break;
2936 		}
2937 
2938 		rdma_nl_notify_event(ibdev, port, RDMA_NETDEV_RENAME_EVENT);
2939 		ib_device_put(ibdev);
2940 		break;
2941 
2942 	case NETDEV_UP:
2943 	case NETDEV_CHANGE:
2944 	case NETDEV_DOWN:
2945 		handle_port_event(ndev, event);
2946 		break;
2947 
2948 	default:
2949 		break;
2950 	}
2951 
2952 	return NOTIFY_DONE;
2953 }
2954 
2955 static struct notifier_block nb_netdevice = {
2956 	.notifier_call = ib_netdevice_event,
2957 };
2958 
2959 static int __init ib_core_init(void)
2960 {
2961 	int ret = -ENOMEM;
2962 
2963 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2964 	if (!ib_wq)
2965 		return -ENOMEM;
2966 
2967 	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2968 				      WQ_UNBOUND_MAX_ACTIVE);
2969 	if (!ib_unreg_wq)
2970 		goto err;
2971 
2972 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2973 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2974 	if (!ib_comp_wq)
2975 		goto err_unbound;
2976 
2977 	ib_comp_unbound_wq =
2978 		alloc_workqueue("ib-comp-unb-wq",
2979 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2980 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2981 	if (!ib_comp_unbound_wq)
2982 		goto err_comp;
2983 
2984 	ret = class_register(&ib_class);
2985 	if (ret) {
2986 		pr_warn("Couldn't create InfiniBand device class\n");
2987 		goto err_comp_unbound;
2988 	}
2989 
2990 	rdma_nl_init();
2991 
2992 	ret = addr_init();
2993 	if (ret) {
2994 		pr_warn("Couldn't init IB address resolution\n");
2995 		goto err_ibnl;
2996 	}
2997 
2998 	ret = ib_mad_init();
2999 	if (ret) {
3000 		pr_warn("Couldn't init IB MAD\n");
3001 		goto err_addr;
3002 	}
3003 
3004 	ret = ib_sa_init();
3005 	if (ret) {
3006 		pr_warn("Couldn't init SA\n");
3007 		goto err_mad;
3008 	}
3009 
3010 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
3011 	if (ret) {
3012 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
3013 		goto err_sa;
3014 	}
3015 
3016 	ret = register_pernet_device(&rdma_dev_net_ops);
3017 	if (ret) {
3018 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
3019 		goto err_compat;
3020 	}
3021 
3022 	nldev_init();
3023 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
3024 	ret = roce_gid_mgmt_init();
3025 	if (ret) {
3026 		pr_warn("Couldn't init RoCE GID management\n");
3027 		goto err_parent;
3028 	}
3029 
3030 	register_netdevice_notifier(&nb_netdevice);
3031 
3032 	return 0;
3033 
3034 err_parent:
3035 	rdma_nl_unregister(RDMA_NL_LS);
3036 	nldev_exit();
3037 	unregister_pernet_device(&rdma_dev_net_ops);
3038 err_compat:
3039 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3040 err_sa:
3041 	ib_sa_cleanup();
3042 err_mad:
3043 	ib_mad_cleanup();
3044 err_addr:
3045 	addr_cleanup();
3046 err_ibnl:
3047 	class_unregister(&ib_class);
3048 err_comp_unbound:
3049 	destroy_workqueue(ib_comp_unbound_wq);
3050 err_comp:
3051 	destroy_workqueue(ib_comp_wq);
3052 err_unbound:
3053 	destroy_workqueue(ib_unreg_wq);
3054 err:
3055 	destroy_workqueue(ib_wq);
3056 	return ret;
3057 }
3058 
3059 static void __exit ib_core_cleanup(void)
3060 {
3061 	unregister_netdevice_notifier(&nb_netdevice);
3062 	roce_gid_mgmt_cleanup();
3063 	rdma_nl_unregister(RDMA_NL_LS);
3064 	nldev_exit();
3065 	unregister_pernet_device(&rdma_dev_net_ops);
3066 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3067 	ib_sa_cleanup();
3068 	ib_mad_cleanup();
3069 	addr_cleanup();
3070 	rdma_nl_exit();
3071 	class_unregister(&ib_class);
3072 	destroy_workqueue(ib_comp_unbound_wq);
3073 	destroy_workqueue(ib_comp_wq);
3074 	/* Make sure that any pending umem accounting work is done. */
3075 	destroy_workqueue(ib_wq);
3076 	destroy_workqueue(ib_unreg_wq);
3077 	WARN_ON(!xa_empty(&clients));
3078 	WARN_ON(!xa_empty(&devices));
3079 }
3080 
3081 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
3082 
3083 /* ib core relies on netdev stack to first register net_ns_type_operations
3084  * ns kobject type before ib_core initialization.
3085  */
3086 fs_initcall(ib_core_init);
3087 module_exit(ib_core_cleanup);
3088