1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 static struct workqueue_struct *ib_unreg_wq; 62 63 /* 64 * Each of the three rwsem locks (devices, clients, client_data) protects the 65 * xarray of the same name. Specifically it allows the caller to assert that 66 * the MARK will/will not be changing under the lock, and for devices and 67 * clients, that the value in the xarray is still a valid pointer. Change of 68 * the MARK is linked to the object state, so holding the lock and testing the 69 * MARK also asserts that the contained object is in a certain state. 70 * 71 * This is used to build a two stage register/unregister flow where objects 72 * can continue to be in the xarray even though they are still in progress to 73 * register/unregister. 74 * 75 * The xarray itself provides additional locking, and restartable iteration, 76 * which is also relied on. 77 * 78 * Locks should not be nested, with the exception of client_data, which is 79 * allowed to nest under the read side of the other two locks. 80 * 81 * The devices_rwsem also protects the device name list, any change or 82 * assignment of device name must also hold the write side to guarantee unique 83 * names. 84 */ 85 86 /* 87 * devices contains devices that have had their names assigned. The 88 * devices may not be registered. Users that care about the registration 89 * status need to call ib_device_try_get() on the device to ensure it is 90 * registered, and keep it registered, for the required duration. 91 * 92 */ 93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 94 static DECLARE_RWSEM(devices_rwsem); 95 #define DEVICE_REGISTERED XA_MARK_1 96 97 static u32 highest_client_id; 98 #define CLIENT_REGISTERED XA_MARK_1 99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 100 static DECLARE_RWSEM(clients_rwsem); 101 102 static void ib_client_put(struct ib_client *client) 103 { 104 if (refcount_dec_and_test(&client->uses)) 105 complete(&client->uses_zero); 106 } 107 108 /* 109 * If client_data is registered then the corresponding client must also still 110 * be registered. 111 */ 112 #define CLIENT_DATA_REGISTERED XA_MARK_1 113 114 unsigned int rdma_dev_net_id; 115 116 /* 117 * A list of net namespaces is maintained in an xarray. This is necessary 118 * because we can't get the locking right using the existing net ns list. We 119 * would require a init_net callback after the list is updated. 120 */ 121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 122 /* 123 * rwsem to protect accessing the rdma_nets xarray entries. 124 */ 125 static DECLARE_RWSEM(rdma_nets_rwsem); 126 127 bool ib_devices_shared_netns = true; 128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 129 MODULE_PARM_DESC(netns_mode, 130 "Share device among net namespaces; default=1 (shared)"); 131 /** 132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 133 * from a specified net namespace or not. 134 * @dev: Pointer to rdma device which needs to be checked 135 * @net: Pointer to net namesapce for which access to be checked 136 * 137 * When the rdma device is in shared mode, it ignores the net namespace. 138 * When the rdma device is exclusive to a net namespace, rdma device net 139 * namespace is checked against the specified one. 140 */ 141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 142 { 143 return (ib_devices_shared_netns || 144 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 145 } 146 EXPORT_SYMBOL(rdma_dev_access_netns); 147 148 /* 149 * xarray has this behavior where it won't iterate over NULL values stored in 150 * allocated arrays. So we need our own iterator to see all values stored in 151 * the array. This does the same thing as xa_for_each except that it also 152 * returns NULL valued entries if the array is allocating. Simplified to only 153 * work on simple xarrays. 154 */ 155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 156 xa_mark_t filter) 157 { 158 XA_STATE(xas, xa, *indexp); 159 void *entry; 160 161 rcu_read_lock(); 162 do { 163 entry = xas_find_marked(&xas, ULONG_MAX, filter); 164 if (xa_is_zero(entry)) 165 break; 166 } while (xas_retry(&xas, entry)); 167 rcu_read_unlock(); 168 169 if (entry) { 170 *indexp = xas.xa_index; 171 if (xa_is_zero(entry)) 172 return NULL; 173 return entry; 174 } 175 return XA_ERROR(-ENOENT); 176 } 177 #define xan_for_each_marked(xa, index, entry, filter) \ 178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 179 !xa_is_err(entry); \ 180 (index)++, entry = xan_find_marked(xa, &(index), filter)) 181 182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 183 static DEFINE_SPINLOCK(ndev_hash_lock); 184 static DECLARE_HASHTABLE(ndev_hash, 5); 185 186 static void free_netdevs(struct ib_device *ib_dev); 187 static void ib_unregister_work(struct work_struct *work); 188 static void __ib_unregister_device(struct ib_device *device); 189 static int ib_security_change(struct notifier_block *nb, unsigned long event, 190 void *lsm_data); 191 static void ib_policy_change_task(struct work_struct *work); 192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 193 194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 195 struct va_format *vaf) 196 { 197 if (ibdev && ibdev->dev.parent) 198 dev_printk_emit(level[1] - '0', 199 ibdev->dev.parent, 200 "%s %s %s: %pV", 201 dev_driver_string(ibdev->dev.parent), 202 dev_name(ibdev->dev.parent), 203 dev_name(&ibdev->dev), 204 vaf); 205 else if (ibdev) 206 printk("%s%s: %pV", 207 level, dev_name(&ibdev->dev), vaf); 208 else 209 printk("%s(NULL ib_device): %pV", level, vaf); 210 } 211 212 void ibdev_printk(const char *level, const struct ib_device *ibdev, 213 const char *format, ...) 214 { 215 struct va_format vaf; 216 va_list args; 217 218 va_start(args, format); 219 220 vaf.fmt = format; 221 vaf.va = &args; 222 223 __ibdev_printk(level, ibdev, &vaf); 224 225 va_end(args); 226 } 227 EXPORT_SYMBOL(ibdev_printk); 228 229 #define define_ibdev_printk_level(func, level) \ 230 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 231 { \ 232 struct va_format vaf; \ 233 va_list args; \ 234 \ 235 va_start(args, fmt); \ 236 \ 237 vaf.fmt = fmt; \ 238 vaf.va = &args; \ 239 \ 240 __ibdev_printk(level, ibdev, &vaf); \ 241 \ 242 va_end(args); \ 243 } \ 244 EXPORT_SYMBOL(func); 245 246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 249 define_ibdev_printk_level(ibdev_err, KERN_ERR); 250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 252 define_ibdev_printk_level(ibdev_info, KERN_INFO); 253 254 static struct notifier_block ibdev_lsm_nb = { 255 .notifier_call = ib_security_change, 256 }; 257 258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 259 struct net *net); 260 261 /* Pointer to the RCU head at the start of the ib_port_data array */ 262 struct ib_port_data_rcu { 263 struct rcu_head rcu_head; 264 struct ib_port_data pdata[]; 265 }; 266 267 static void ib_device_check_mandatory(struct ib_device *device) 268 { 269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 270 static const struct { 271 size_t offset; 272 char *name; 273 } mandatory_table[] = { 274 IB_MANDATORY_FUNC(query_device), 275 IB_MANDATORY_FUNC(query_port), 276 IB_MANDATORY_FUNC(alloc_pd), 277 IB_MANDATORY_FUNC(dealloc_pd), 278 IB_MANDATORY_FUNC(create_qp), 279 IB_MANDATORY_FUNC(modify_qp), 280 IB_MANDATORY_FUNC(destroy_qp), 281 IB_MANDATORY_FUNC(post_send), 282 IB_MANDATORY_FUNC(post_recv), 283 IB_MANDATORY_FUNC(create_cq), 284 IB_MANDATORY_FUNC(destroy_cq), 285 IB_MANDATORY_FUNC(poll_cq), 286 IB_MANDATORY_FUNC(req_notify_cq), 287 IB_MANDATORY_FUNC(get_dma_mr), 288 IB_MANDATORY_FUNC(reg_user_mr), 289 IB_MANDATORY_FUNC(dereg_mr), 290 IB_MANDATORY_FUNC(get_port_immutable) 291 }; 292 int i; 293 294 device->kverbs_provider = true; 295 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 296 if (!*(void **) ((void *) &device->ops + 297 mandatory_table[i].offset)) { 298 device->kverbs_provider = false; 299 break; 300 } 301 } 302 } 303 304 /* 305 * Caller must perform ib_device_put() to return the device reference count 306 * when ib_device_get_by_index() returns valid device pointer. 307 */ 308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 309 { 310 struct ib_device *device; 311 312 down_read(&devices_rwsem); 313 device = xa_load(&devices, index); 314 if (device) { 315 if (!rdma_dev_access_netns(device, net)) { 316 device = NULL; 317 goto out; 318 } 319 320 if (!ib_device_try_get(device)) 321 device = NULL; 322 } 323 out: 324 up_read(&devices_rwsem); 325 return device; 326 } 327 328 /** 329 * ib_device_put - Release IB device reference 330 * @device: device whose reference to be released 331 * 332 * ib_device_put() releases reference to the IB device to allow it to be 333 * unregistered and eventually free. 334 */ 335 void ib_device_put(struct ib_device *device) 336 { 337 if (refcount_dec_and_test(&device->refcount)) 338 complete(&device->unreg_completion); 339 } 340 EXPORT_SYMBOL(ib_device_put); 341 342 static struct ib_device *__ib_device_get_by_name(const char *name) 343 { 344 struct ib_device *device; 345 unsigned long index; 346 347 xa_for_each (&devices, index, device) 348 if (!strcmp(name, dev_name(&device->dev))) 349 return device; 350 351 return NULL; 352 } 353 354 /** 355 * ib_device_get_by_name - Find an IB device by name 356 * @name: The name to look for 357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 358 * 359 * Find and hold an ib_device by its name. The caller must call 360 * ib_device_put() on the returned pointer. 361 */ 362 struct ib_device *ib_device_get_by_name(const char *name, 363 enum rdma_driver_id driver_id) 364 { 365 struct ib_device *device; 366 367 down_read(&devices_rwsem); 368 device = __ib_device_get_by_name(name); 369 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 370 device->ops.driver_id != driver_id) 371 device = NULL; 372 373 if (device) { 374 if (!ib_device_try_get(device)) 375 device = NULL; 376 } 377 up_read(&devices_rwsem); 378 return device; 379 } 380 EXPORT_SYMBOL(ib_device_get_by_name); 381 382 static int rename_compat_devs(struct ib_device *device) 383 { 384 struct ib_core_device *cdev; 385 unsigned long index; 386 int ret = 0; 387 388 mutex_lock(&device->compat_devs_mutex); 389 xa_for_each (&device->compat_devs, index, cdev) { 390 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 391 if (ret) { 392 dev_warn(&cdev->dev, 393 "Fail to rename compatdev to new name %s\n", 394 dev_name(&device->dev)); 395 break; 396 } 397 } 398 mutex_unlock(&device->compat_devs_mutex); 399 return ret; 400 } 401 402 int ib_device_rename(struct ib_device *ibdev, const char *name) 403 { 404 unsigned long index; 405 void *client_data; 406 int ret; 407 408 down_write(&devices_rwsem); 409 if (!strcmp(name, dev_name(&ibdev->dev))) { 410 up_write(&devices_rwsem); 411 return 0; 412 } 413 414 if (__ib_device_get_by_name(name)) { 415 up_write(&devices_rwsem); 416 return -EEXIST; 417 } 418 419 ret = device_rename(&ibdev->dev, name); 420 if (ret) { 421 up_write(&devices_rwsem); 422 return ret; 423 } 424 425 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 426 ret = rename_compat_devs(ibdev); 427 428 downgrade_write(&devices_rwsem); 429 down_read(&ibdev->client_data_rwsem); 430 xan_for_each_marked(&ibdev->client_data, index, client_data, 431 CLIENT_DATA_REGISTERED) { 432 struct ib_client *client = xa_load(&clients, index); 433 434 if (!client || !client->rename) 435 continue; 436 437 client->rename(ibdev, client_data); 438 } 439 up_read(&ibdev->client_data_rwsem); 440 rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT); 441 up_read(&devices_rwsem); 442 return 0; 443 } 444 445 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 446 { 447 if (use_dim > 1) 448 return -EINVAL; 449 ibdev->use_cq_dim = use_dim; 450 451 return 0; 452 } 453 454 static int alloc_name(struct ib_device *ibdev, const char *name) 455 { 456 struct ib_device *device; 457 unsigned long index; 458 struct ida inuse; 459 int rc; 460 int i; 461 462 lockdep_assert_held_write(&devices_rwsem); 463 ida_init(&inuse); 464 xa_for_each (&devices, index, device) { 465 char buf[IB_DEVICE_NAME_MAX]; 466 467 if (sscanf(dev_name(&device->dev), name, &i) != 1) 468 continue; 469 if (i < 0 || i >= INT_MAX) 470 continue; 471 snprintf(buf, sizeof buf, name, i); 472 if (strcmp(buf, dev_name(&device->dev)) != 0) 473 continue; 474 475 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 476 if (rc < 0) 477 goto out; 478 } 479 480 rc = ida_alloc(&inuse, GFP_KERNEL); 481 if (rc < 0) 482 goto out; 483 484 rc = dev_set_name(&ibdev->dev, name, rc); 485 out: 486 ida_destroy(&inuse); 487 return rc; 488 } 489 490 static void ib_device_release(struct device *device) 491 { 492 struct ib_device *dev = container_of(device, struct ib_device, dev); 493 494 free_netdevs(dev); 495 WARN_ON(refcount_read(&dev->refcount)); 496 if (dev->hw_stats_data) 497 ib_device_release_hw_stats(dev->hw_stats_data); 498 if (dev->port_data) { 499 ib_cache_release_one(dev); 500 ib_security_release_port_pkey_list(dev); 501 rdma_counter_release(dev); 502 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 503 pdata[0]), 504 rcu_head); 505 } 506 507 mutex_destroy(&dev->subdev_lock); 508 mutex_destroy(&dev->unregistration_lock); 509 mutex_destroy(&dev->compat_devs_mutex); 510 511 xa_destroy(&dev->compat_devs); 512 xa_destroy(&dev->client_data); 513 kfree_rcu(dev, rcu_head); 514 } 515 516 static int ib_device_uevent(const struct device *device, 517 struct kobj_uevent_env *env) 518 { 519 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 520 return -ENOMEM; 521 522 /* 523 * It would be nice to pass the node GUID with the event... 524 */ 525 526 return 0; 527 } 528 529 static const void *net_namespace(const struct device *d) 530 { 531 const struct ib_core_device *coredev = 532 container_of(d, struct ib_core_device, dev); 533 534 return read_pnet(&coredev->rdma_net); 535 } 536 537 static struct class ib_class = { 538 .name = "infiniband", 539 .dev_release = ib_device_release, 540 .dev_uevent = ib_device_uevent, 541 .ns_type = &net_ns_type_operations, 542 .namespace = net_namespace, 543 }; 544 545 static void rdma_init_coredev(struct ib_core_device *coredev, 546 struct ib_device *dev, struct net *net) 547 { 548 /* This BUILD_BUG_ON is intended to catch layout change 549 * of union of ib_core_device and device. 550 * dev must be the first element as ib_core and providers 551 * driver uses it. Adding anything in ib_core_device before 552 * device will break this assumption. 553 */ 554 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 555 offsetof(struct ib_device, dev)); 556 557 coredev->dev.class = &ib_class; 558 coredev->dev.groups = dev->groups; 559 device_initialize(&coredev->dev); 560 coredev->owner = dev; 561 INIT_LIST_HEAD(&coredev->port_list); 562 write_pnet(&coredev->rdma_net, net); 563 } 564 565 /** 566 * _ib_alloc_device - allocate an IB device struct 567 * @size:size of structure to allocate 568 * 569 * Low-level drivers should use ib_alloc_device() to allocate &struct 570 * ib_device. @size is the size of the structure to be allocated, 571 * including any private data used by the low-level driver. 572 * ib_dealloc_device() must be used to free structures allocated with 573 * ib_alloc_device(). 574 */ 575 struct ib_device *_ib_alloc_device(size_t size) 576 { 577 struct ib_device *device; 578 unsigned int i; 579 580 if (WARN_ON(size < sizeof(struct ib_device))) 581 return NULL; 582 583 device = kzalloc(size, GFP_KERNEL); 584 if (!device) 585 return NULL; 586 587 if (rdma_restrack_init(device)) { 588 kfree(device); 589 return NULL; 590 } 591 592 rdma_init_coredev(&device->coredev, device, &init_net); 593 594 INIT_LIST_HEAD(&device->event_handler_list); 595 spin_lock_init(&device->qp_open_list_lock); 596 init_rwsem(&device->event_handler_rwsem); 597 mutex_init(&device->unregistration_lock); 598 /* 599 * client_data needs to be alloc because we don't want our mark to be 600 * destroyed if the user stores NULL in the client data. 601 */ 602 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 603 init_rwsem(&device->client_data_rwsem); 604 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 605 mutex_init(&device->compat_devs_mutex); 606 init_completion(&device->unreg_completion); 607 INIT_WORK(&device->unregistration_work, ib_unregister_work); 608 609 spin_lock_init(&device->cq_pools_lock); 610 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++) 611 INIT_LIST_HEAD(&device->cq_pools[i]); 612 613 rwlock_init(&device->cache_lock); 614 615 device->uverbs_cmd_mask = 616 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) | 617 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) | 618 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) | 619 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) | 620 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) | 621 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | 622 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) | 623 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) | 624 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) | 625 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) | 626 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) | 627 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) | 628 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) | 629 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) | 630 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) | 631 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) | 632 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) | 633 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) | 634 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) | 635 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) | 636 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) | 637 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) | 638 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) | 639 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) | 640 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) | 641 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) | 642 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) | 643 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) | 644 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) | 645 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ); 646 647 mutex_init(&device->subdev_lock); 648 INIT_LIST_HEAD(&device->subdev_list_head); 649 INIT_LIST_HEAD(&device->subdev_list); 650 651 return device; 652 } 653 EXPORT_SYMBOL(_ib_alloc_device); 654 655 /** 656 * ib_dealloc_device - free an IB device struct 657 * @device:structure to free 658 * 659 * Free a structure allocated with ib_alloc_device(). 660 */ 661 void ib_dealloc_device(struct ib_device *device) 662 { 663 if (device->ops.dealloc_driver) 664 device->ops.dealloc_driver(device); 665 666 /* 667 * ib_unregister_driver() requires all devices to remain in the xarray 668 * while their ops are callable. The last op we call is dealloc_driver 669 * above. This is needed to create a fence on op callbacks prior to 670 * allowing the driver module to unload. 671 */ 672 down_write(&devices_rwsem); 673 if (xa_load(&devices, device->index) == device) 674 xa_erase(&devices, device->index); 675 up_write(&devices_rwsem); 676 677 /* Expedite releasing netdev references */ 678 free_netdevs(device); 679 680 WARN_ON(!xa_empty(&device->compat_devs)); 681 WARN_ON(!xa_empty(&device->client_data)); 682 WARN_ON(refcount_read(&device->refcount)); 683 rdma_restrack_clean(device); 684 /* Balances with device_initialize */ 685 put_device(&device->dev); 686 } 687 EXPORT_SYMBOL(ib_dealloc_device); 688 689 /* 690 * add_client_context() and remove_client_context() must be safe against 691 * parallel calls on the same device - registration/unregistration of both the 692 * device and client can be occurring in parallel. 693 * 694 * The routines need to be a fence, any caller must not return until the add 695 * or remove is fully completed. 696 */ 697 static int add_client_context(struct ib_device *device, 698 struct ib_client *client) 699 { 700 int ret = 0; 701 702 if (!device->kverbs_provider && !client->no_kverbs_req) 703 return 0; 704 705 down_write(&device->client_data_rwsem); 706 /* 707 * So long as the client is registered hold both the client and device 708 * unregistration locks. 709 */ 710 if (!refcount_inc_not_zero(&client->uses)) 711 goto out_unlock; 712 refcount_inc(&device->refcount); 713 714 /* 715 * Another caller to add_client_context got here first and has already 716 * completely initialized context. 717 */ 718 if (xa_get_mark(&device->client_data, client->client_id, 719 CLIENT_DATA_REGISTERED)) 720 goto out; 721 722 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 723 GFP_KERNEL)); 724 if (ret) 725 goto out; 726 downgrade_write(&device->client_data_rwsem); 727 if (client->add) { 728 if (client->add(device)) { 729 /* 730 * If a client fails to add then the error code is 731 * ignored, but we won't call any more ops on this 732 * client. 733 */ 734 xa_erase(&device->client_data, client->client_id); 735 up_read(&device->client_data_rwsem); 736 ib_device_put(device); 737 ib_client_put(client); 738 return 0; 739 } 740 } 741 742 /* Readers shall not see a client until add has been completed */ 743 xa_set_mark(&device->client_data, client->client_id, 744 CLIENT_DATA_REGISTERED); 745 up_read(&device->client_data_rwsem); 746 return 0; 747 748 out: 749 ib_device_put(device); 750 ib_client_put(client); 751 out_unlock: 752 up_write(&device->client_data_rwsem); 753 return ret; 754 } 755 756 static void remove_client_context(struct ib_device *device, 757 unsigned int client_id) 758 { 759 struct ib_client *client; 760 void *client_data; 761 762 down_write(&device->client_data_rwsem); 763 if (!xa_get_mark(&device->client_data, client_id, 764 CLIENT_DATA_REGISTERED)) { 765 up_write(&device->client_data_rwsem); 766 return; 767 } 768 client_data = xa_load(&device->client_data, client_id); 769 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 770 client = xa_load(&clients, client_id); 771 up_write(&device->client_data_rwsem); 772 773 /* 774 * Notice we cannot be holding any exclusive locks when calling the 775 * remove callback as the remove callback can recurse back into any 776 * public functions in this module and thus try for any locks those 777 * functions take. 778 * 779 * For this reason clients and drivers should not call the 780 * unregistration functions will holdling any locks. 781 */ 782 if (client->remove) 783 client->remove(device, client_data); 784 785 xa_erase(&device->client_data, client_id); 786 ib_device_put(device); 787 ib_client_put(client); 788 } 789 790 static int alloc_port_data(struct ib_device *device) 791 { 792 struct ib_port_data_rcu *pdata_rcu; 793 u32 port; 794 795 if (device->port_data) 796 return 0; 797 798 /* This can only be called once the physical port range is defined */ 799 if (WARN_ON(!device->phys_port_cnt)) 800 return -EINVAL; 801 802 /* Reserve U32_MAX so the logic to go over all the ports is sane */ 803 if (WARN_ON(device->phys_port_cnt == U32_MAX)) 804 return -EINVAL; 805 806 /* 807 * device->port_data is indexed directly by the port number to make 808 * access to this data as efficient as possible. 809 * 810 * Therefore port_data is declared as a 1 based array with potential 811 * empty slots at the beginning. 812 */ 813 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 814 size_add(rdma_end_port(device), 1)), 815 GFP_KERNEL); 816 if (!pdata_rcu) 817 return -ENOMEM; 818 /* 819 * The rcu_head is put in front of the port data array and the stored 820 * pointer is adjusted since we never need to see that member until 821 * kfree_rcu. 822 */ 823 device->port_data = pdata_rcu->pdata; 824 825 rdma_for_each_port (device, port) { 826 struct ib_port_data *pdata = &device->port_data[port]; 827 828 pdata->ib_dev = device; 829 spin_lock_init(&pdata->pkey_list_lock); 830 INIT_LIST_HEAD(&pdata->pkey_list); 831 spin_lock_init(&pdata->netdev_lock); 832 INIT_HLIST_NODE(&pdata->ndev_hash_link); 833 } 834 return 0; 835 } 836 837 static int verify_immutable(const struct ib_device *dev, u32 port) 838 { 839 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 840 rdma_max_mad_size(dev, port) != 0); 841 } 842 843 static int setup_port_data(struct ib_device *device) 844 { 845 u32 port; 846 int ret; 847 848 ret = alloc_port_data(device); 849 if (ret) 850 return ret; 851 852 rdma_for_each_port (device, port) { 853 struct ib_port_data *pdata = &device->port_data[port]; 854 855 ret = device->ops.get_port_immutable(device, port, 856 &pdata->immutable); 857 if (ret) 858 return ret; 859 860 if (verify_immutable(device, port)) 861 return -EINVAL; 862 } 863 return 0; 864 } 865 866 /** 867 * ib_port_immutable_read() - Read rdma port's immutable data 868 * @dev: IB device 869 * @port: port number whose immutable data to read. It starts with index 1 and 870 * valid upto including rdma_end_port(). 871 */ 872 const struct ib_port_immutable* 873 ib_port_immutable_read(struct ib_device *dev, unsigned int port) 874 { 875 WARN_ON(!rdma_is_port_valid(dev, port)); 876 return &dev->port_data[port].immutable; 877 } 878 EXPORT_SYMBOL(ib_port_immutable_read); 879 880 void ib_get_device_fw_str(struct ib_device *dev, char *str) 881 { 882 if (dev->ops.get_dev_fw_str) 883 dev->ops.get_dev_fw_str(dev, str); 884 else 885 str[0] = '\0'; 886 } 887 EXPORT_SYMBOL(ib_get_device_fw_str); 888 889 static void ib_policy_change_task(struct work_struct *work) 890 { 891 struct ib_device *dev; 892 unsigned long index; 893 894 down_read(&devices_rwsem); 895 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 896 unsigned int i; 897 898 rdma_for_each_port (dev, i) { 899 u64 sp; 900 ib_get_cached_subnet_prefix(dev, i, &sp); 901 ib_security_cache_change(dev, i, sp); 902 } 903 } 904 up_read(&devices_rwsem); 905 } 906 907 static int ib_security_change(struct notifier_block *nb, unsigned long event, 908 void *lsm_data) 909 { 910 if (event != LSM_POLICY_CHANGE) 911 return NOTIFY_DONE; 912 913 schedule_work(&ib_policy_change_work); 914 ib_mad_agent_security_change(); 915 916 return NOTIFY_OK; 917 } 918 919 static void compatdev_release(struct device *dev) 920 { 921 struct ib_core_device *cdev = 922 container_of(dev, struct ib_core_device, dev); 923 924 kfree(cdev); 925 } 926 927 static int add_one_compat_dev(struct ib_device *device, 928 struct rdma_dev_net *rnet) 929 { 930 struct ib_core_device *cdev; 931 int ret; 932 933 lockdep_assert_held(&rdma_nets_rwsem); 934 if (!ib_devices_shared_netns) 935 return 0; 936 937 /* 938 * Create and add compat device in all namespaces other than where it 939 * is currently bound to. 940 */ 941 if (net_eq(read_pnet(&rnet->net), 942 read_pnet(&device->coredev.rdma_net))) 943 return 0; 944 945 /* 946 * The first of init_net() or ib_register_device() to take the 947 * compat_devs_mutex wins and gets to add the device. Others will wait 948 * for completion here. 949 */ 950 mutex_lock(&device->compat_devs_mutex); 951 cdev = xa_load(&device->compat_devs, rnet->id); 952 if (cdev) { 953 ret = 0; 954 goto done; 955 } 956 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 957 if (ret) 958 goto done; 959 960 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 961 if (!cdev) { 962 ret = -ENOMEM; 963 goto cdev_err; 964 } 965 966 cdev->dev.parent = device->dev.parent; 967 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 968 cdev->dev.release = compatdev_release; 969 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 970 if (ret) 971 goto add_err; 972 973 ret = device_add(&cdev->dev); 974 if (ret) 975 goto add_err; 976 ret = ib_setup_port_attrs(cdev); 977 if (ret) 978 goto port_err; 979 980 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 981 cdev, GFP_KERNEL)); 982 if (ret) 983 goto insert_err; 984 985 mutex_unlock(&device->compat_devs_mutex); 986 return 0; 987 988 insert_err: 989 ib_free_port_attrs(cdev); 990 port_err: 991 device_del(&cdev->dev); 992 add_err: 993 put_device(&cdev->dev); 994 cdev_err: 995 xa_release(&device->compat_devs, rnet->id); 996 done: 997 mutex_unlock(&device->compat_devs_mutex); 998 return ret; 999 } 1000 1001 static void remove_one_compat_dev(struct ib_device *device, u32 id) 1002 { 1003 struct ib_core_device *cdev; 1004 1005 mutex_lock(&device->compat_devs_mutex); 1006 cdev = xa_erase(&device->compat_devs, id); 1007 mutex_unlock(&device->compat_devs_mutex); 1008 if (cdev) { 1009 ib_free_port_attrs(cdev); 1010 device_del(&cdev->dev); 1011 put_device(&cdev->dev); 1012 } 1013 } 1014 1015 static void remove_compat_devs(struct ib_device *device) 1016 { 1017 struct ib_core_device *cdev; 1018 unsigned long index; 1019 1020 xa_for_each (&device->compat_devs, index, cdev) 1021 remove_one_compat_dev(device, index); 1022 } 1023 1024 static int add_compat_devs(struct ib_device *device) 1025 { 1026 struct rdma_dev_net *rnet; 1027 unsigned long index; 1028 int ret = 0; 1029 1030 lockdep_assert_held(&devices_rwsem); 1031 1032 down_read(&rdma_nets_rwsem); 1033 xa_for_each (&rdma_nets, index, rnet) { 1034 ret = add_one_compat_dev(device, rnet); 1035 if (ret) 1036 break; 1037 } 1038 up_read(&rdma_nets_rwsem); 1039 return ret; 1040 } 1041 1042 static void remove_all_compat_devs(void) 1043 { 1044 struct ib_compat_device *cdev; 1045 struct ib_device *dev; 1046 unsigned long index; 1047 1048 down_read(&devices_rwsem); 1049 xa_for_each (&devices, index, dev) { 1050 unsigned long c_index = 0; 1051 1052 /* Hold nets_rwsem so that any other thread modifying this 1053 * system param can sync with this thread. 1054 */ 1055 down_read(&rdma_nets_rwsem); 1056 xa_for_each (&dev->compat_devs, c_index, cdev) 1057 remove_one_compat_dev(dev, c_index); 1058 up_read(&rdma_nets_rwsem); 1059 } 1060 up_read(&devices_rwsem); 1061 } 1062 1063 static int add_all_compat_devs(void) 1064 { 1065 struct rdma_dev_net *rnet; 1066 struct ib_device *dev; 1067 unsigned long index; 1068 int ret = 0; 1069 1070 down_read(&devices_rwsem); 1071 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1072 unsigned long net_index = 0; 1073 1074 /* Hold nets_rwsem so that any other thread modifying this 1075 * system param can sync with this thread. 1076 */ 1077 down_read(&rdma_nets_rwsem); 1078 xa_for_each (&rdma_nets, net_index, rnet) { 1079 ret = add_one_compat_dev(dev, rnet); 1080 if (ret) 1081 break; 1082 } 1083 up_read(&rdma_nets_rwsem); 1084 } 1085 up_read(&devices_rwsem); 1086 if (ret) 1087 remove_all_compat_devs(); 1088 return ret; 1089 } 1090 1091 int rdma_compatdev_set(u8 enable) 1092 { 1093 struct rdma_dev_net *rnet; 1094 unsigned long index; 1095 int ret = 0; 1096 1097 down_write(&rdma_nets_rwsem); 1098 if (ib_devices_shared_netns == enable) { 1099 up_write(&rdma_nets_rwsem); 1100 return 0; 1101 } 1102 1103 /* enable/disable of compat devices is not supported 1104 * when more than default init_net exists. 1105 */ 1106 xa_for_each (&rdma_nets, index, rnet) { 1107 ret++; 1108 break; 1109 } 1110 if (!ret) 1111 ib_devices_shared_netns = enable; 1112 up_write(&rdma_nets_rwsem); 1113 if (ret) 1114 return -EBUSY; 1115 1116 if (enable) 1117 ret = add_all_compat_devs(); 1118 else 1119 remove_all_compat_devs(); 1120 return ret; 1121 } 1122 1123 static void rdma_dev_exit_net(struct net *net) 1124 { 1125 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1126 struct ib_device *dev; 1127 unsigned long index; 1128 int ret; 1129 1130 down_write(&rdma_nets_rwsem); 1131 /* 1132 * Prevent the ID from being re-used and hide the id from xa_for_each. 1133 */ 1134 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1135 WARN_ON(ret); 1136 up_write(&rdma_nets_rwsem); 1137 1138 down_read(&devices_rwsem); 1139 xa_for_each (&devices, index, dev) { 1140 get_device(&dev->dev); 1141 /* 1142 * Release the devices_rwsem so that pontentially blocking 1143 * device_del, doesn't hold the devices_rwsem for too long. 1144 */ 1145 up_read(&devices_rwsem); 1146 1147 remove_one_compat_dev(dev, rnet->id); 1148 1149 /* 1150 * If the real device is in the NS then move it back to init. 1151 */ 1152 rdma_dev_change_netns(dev, net, &init_net); 1153 1154 put_device(&dev->dev); 1155 down_read(&devices_rwsem); 1156 } 1157 up_read(&devices_rwsem); 1158 1159 rdma_nl_net_exit(rnet); 1160 xa_erase(&rdma_nets, rnet->id); 1161 } 1162 1163 static __net_init int rdma_dev_init_net(struct net *net) 1164 { 1165 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1166 unsigned long index; 1167 struct ib_device *dev; 1168 int ret; 1169 1170 write_pnet(&rnet->net, net); 1171 1172 ret = rdma_nl_net_init(rnet); 1173 if (ret) 1174 return ret; 1175 1176 /* No need to create any compat devices in default init_net. */ 1177 if (net_eq(net, &init_net)) 1178 return 0; 1179 1180 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1181 if (ret) { 1182 rdma_nl_net_exit(rnet); 1183 return ret; 1184 } 1185 1186 down_read(&devices_rwsem); 1187 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1188 /* Hold nets_rwsem so that netlink command cannot change 1189 * system configuration for device sharing mode. 1190 */ 1191 down_read(&rdma_nets_rwsem); 1192 ret = add_one_compat_dev(dev, rnet); 1193 up_read(&rdma_nets_rwsem); 1194 if (ret) 1195 break; 1196 } 1197 up_read(&devices_rwsem); 1198 1199 if (ret) 1200 rdma_dev_exit_net(net); 1201 1202 return ret; 1203 } 1204 1205 /* 1206 * Assign the unique string device name and the unique device index. This is 1207 * undone by ib_dealloc_device. 1208 */ 1209 static int assign_name(struct ib_device *device, const char *name) 1210 { 1211 static u32 last_id; 1212 int ret; 1213 1214 down_write(&devices_rwsem); 1215 /* Assign a unique name to the device */ 1216 if (strchr(name, '%')) 1217 ret = alloc_name(device, name); 1218 else 1219 ret = dev_set_name(&device->dev, name); 1220 if (ret) 1221 goto out; 1222 1223 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1224 ret = -ENFILE; 1225 goto out; 1226 } 1227 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1228 1229 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1230 &last_id, GFP_KERNEL); 1231 if (ret > 0) 1232 ret = 0; 1233 1234 out: 1235 up_write(&devices_rwsem); 1236 return ret; 1237 } 1238 1239 /* 1240 * setup_device() allocates memory and sets up data that requires calling the 1241 * device ops, this is the only reason these actions are not done during 1242 * ib_alloc_device. It is undone by ib_dealloc_device(). 1243 */ 1244 static int setup_device(struct ib_device *device) 1245 { 1246 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1247 int ret; 1248 1249 ib_device_check_mandatory(device); 1250 1251 ret = setup_port_data(device); 1252 if (ret) { 1253 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1254 return ret; 1255 } 1256 1257 memset(&device->attrs, 0, sizeof(device->attrs)); 1258 ret = device->ops.query_device(device, &device->attrs, &uhw); 1259 if (ret) { 1260 dev_warn(&device->dev, 1261 "Couldn't query the device attributes\n"); 1262 return ret; 1263 } 1264 1265 return 0; 1266 } 1267 1268 static void disable_device(struct ib_device *device) 1269 { 1270 u32 cid; 1271 1272 WARN_ON(!refcount_read(&device->refcount)); 1273 1274 down_write(&devices_rwsem); 1275 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1276 up_write(&devices_rwsem); 1277 1278 /* 1279 * Remove clients in LIFO order, see assign_client_id. This could be 1280 * more efficient if xarray learns to reverse iterate. Since no new 1281 * clients can be added to this ib_device past this point we only need 1282 * the maximum possible client_id value here. 1283 */ 1284 down_read(&clients_rwsem); 1285 cid = highest_client_id; 1286 up_read(&clients_rwsem); 1287 while (cid) { 1288 cid--; 1289 remove_client_context(device, cid); 1290 } 1291 1292 ib_cq_pool_cleanup(device); 1293 1294 /* Pairs with refcount_set in enable_device */ 1295 ib_device_put(device); 1296 wait_for_completion(&device->unreg_completion); 1297 1298 /* 1299 * compat devices must be removed after device refcount drops to zero. 1300 * Otherwise init_net() may add more compatdevs after removing compat 1301 * devices and before device is disabled. 1302 */ 1303 remove_compat_devs(device); 1304 } 1305 1306 /* 1307 * An enabled device is visible to all clients and to all the public facing 1308 * APIs that return a device pointer. This always returns with a new get, even 1309 * if it fails. 1310 */ 1311 static int enable_device_and_get(struct ib_device *device) 1312 { 1313 struct ib_client *client; 1314 unsigned long index; 1315 int ret = 0; 1316 1317 /* 1318 * One ref belongs to the xa and the other belongs to this 1319 * thread. This is needed to guard against parallel unregistration. 1320 */ 1321 refcount_set(&device->refcount, 2); 1322 down_write(&devices_rwsem); 1323 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1324 1325 /* 1326 * By using downgrade_write() we ensure that no other thread can clear 1327 * DEVICE_REGISTERED while we are completing the client setup. 1328 */ 1329 downgrade_write(&devices_rwsem); 1330 1331 if (device->ops.enable_driver) { 1332 ret = device->ops.enable_driver(device); 1333 if (ret) 1334 goto out; 1335 } 1336 1337 down_read(&clients_rwsem); 1338 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1339 ret = add_client_context(device, client); 1340 if (ret) 1341 break; 1342 } 1343 up_read(&clients_rwsem); 1344 if (!ret) 1345 ret = add_compat_devs(device); 1346 out: 1347 up_read(&devices_rwsem); 1348 return ret; 1349 } 1350 1351 static void prevent_dealloc_device(struct ib_device *ib_dev) 1352 { 1353 } 1354 1355 static void ib_device_notify_register(struct ib_device *device) 1356 { 1357 struct net_device *netdev; 1358 u32 port; 1359 int ret; 1360 1361 ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT); 1362 if (ret) 1363 return; 1364 1365 rdma_for_each_port(device, port) { 1366 netdev = ib_device_get_netdev(device, port); 1367 if (!netdev) 1368 continue; 1369 1370 ret = rdma_nl_notify_event(device, port, 1371 RDMA_NETDEV_ATTACH_EVENT); 1372 dev_put(netdev); 1373 if (ret) 1374 return; 1375 } 1376 } 1377 1378 /** 1379 * ib_register_device - Register an IB device with IB core 1380 * @device: Device to register 1381 * @name: unique string device name. This may include a '%' which will 1382 * cause a unique index to be added to the passed device name. 1383 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB 1384 * device will be used. In this case the caller should fully 1385 * setup the ibdev for DMA. This usually means using dma_virt_ops. 1386 * 1387 * Low-level drivers use ib_register_device() to register their 1388 * devices with the IB core. All registered clients will receive a 1389 * callback for each device that is added. @device must be allocated 1390 * with ib_alloc_device(). 1391 * 1392 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1393 * asynchronously then the device pointer may become freed as soon as this 1394 * function returns. 1395 */ 1396 int ib_register_device(struct ib_device *device, const char *name, 1397 struct device *dma_device) 1398 { 1399 int ret; 1400 1401 ret = assign_name(device, name); 1402 if (ret) 1403 return ret; 1404 1405 /* 1406 * If the caller does not provide a DMA capable device then the IB core 1407 * will set up ib_sge and scatterlist structures that stash the kernel 1408 * virtual address into the address field. 1409 */ 1410 WARN_ON(dma_device && !dma_device->dma_parms); 1411 device->dma_device = dma_device; 1412 1413 ret = setup_device(device); 1414 if (ret) 1415 return ret; 1416 1417 ret = ib_cache_setup_one(device); 1418 if (ret) { 1419 dev_warn(&device->dev, 1420 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1421 return ret; 1422 } 1423 1424 device->groups[0] = &ib_dev_attr_group; 1425 device->groups[1] = device->ops.device_group; 1426 ret = ib_setup_device_attrs(device); 1427 if (ret) 1428 goto cache_cleanup; 1429 1430 ib_device_register_rdmacg(device); 1431 1432 rdma_counter_init(device); 1433 1434 /* 1435 * Ensure that ADD uevent is not fired because it 1436 * is too early amd device is not initialized yet. 1437 */ 1438 dev_set_uevent_suppress(&device->dev, true); 1439 ret = device_add(&device->dev); 1440 if (ret) 1441 goto cg_cleanup; 1442 1443 ret = ib_setup_port_attrs(&device->coredev); 1444 if (ret) { 1445 dev_warn(&device->dev, 1446 "Couldn't register device with driver model\n"); 1447 goto dev_cleanup; 1448 } 1449 1450 ret = enable_device_and_get(device); 1451 if (ret) { 1452 void (*dealloc_fn)(struct ib_device *); 1453 1454 /* 1455 * If we hit this error flow then we don't want to 1456 * automatically dealloc the device since the caller is 1457 * expected to call ib_dealloc_device() after 1458 * ib_register_device() fails. This is tricky due to the 1459 * possibility for a parallel unregistration along with this 1460 * error flow. Since we have a refcount here we know any 1461 * parallel flow is stopped in disable_device and will see the 1462 * special dealloc_driver pointer, causing the responsibility to 1463 * ib_dealloc_device() to revert back to this thread. 1464 */ 1465 dealloc_fn = device->ops.dealloc_driver; 1466 device->ops.dealloc_driver = prevent_dealloc_device; 1467 ib_device_put(device); 1468 __ib_unregister_device(device); 1469 device->ops.dealloc_driver = dealloc_fn; 1470 dev_set_uevent_suppress(&device->dev, false); 1471 return ret; 1472 } 1473 dev_set_uevent_suppress(&device->dev, false); 1474 /* Mark for userspace that device is ready */ 1475 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1476 1477 ib_device_notify_register(device); 1478 ib_device_put(device); 1479 1480 return 0; 1481 1482 dev_cleanup: 1483 device_del(&device->dev); 1484 cg_cleanup: 1485 dev_set_uevent_suppress(&device->dev, false); 1486 ib_device_unregister_rdmacg(device); 1487 cache_cleanup: 1488 ib_cache_cleanup_one(device); 1489 return ret; 1490 } 1491 EXPORT_SYMBOL(ib_register_device); 1492 1493 /* Callers must hold a get on the device. */ 1494 static void __ib_unregister_device(struct ib_device *ib_dev) 1495 { 1496 struct ib_device *sub, *tmp; 1497 1498 mutex_lock(&ib_dev->subdev_lock); 1499 list_for_each_entry_safe_reverse(sub, tmp, 1500 &ib_dev->subdev_list_head, 1501 subdev_list) { 1502 list_del(&sub->subdev_list); 1503 ib_dev->ops.del_sub_dev(sub); 1504 ib_device_put(ib_dev); 1505 } 1506 mutex_unlock(&ib_dev->subdev_lock); 1507 1508 /* 1509 * We have a registration lock so that all the calls to unregister are 1510 * fully fenced, once any unregister returns the device is truely 1511 * unregistered even if multiple callers are unregistering it at the 1512 * same time. This also interacts with the registration flow and 1513 * provides sane semantics if register and unregister are racing. 1514 */ 1515 mutex_lock(&ib_dev->unregistration_lock); 1516 if (!refcount_read(&ib_dev->refcount)) 1517 goto out; 1518 1519 disable_device(ib_dev); 1520 rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT); 1521 1522 /* Expedite removing unregistered pointers from the hash table */ 1523 free_netdevs(ib_dev); 1524 1525 ib_free_port_attrs(&ib_dev->coredev); 1526 device_del(&ib_dev->dev); 1527 ib_device_unregister_rdmacg(ib_dev); 1528 ib_cache_cleanup_one(ib_dev); 1529 1530 /* 1531 * Drivers using the new flow may not call ib_dealloc_device except 1532 * in error unwind prior to registration success. 1533 */ 1534 if (ib_dev->ops.dealloc_driver && 1535 ib_dev->ops.dealloc_driver != prevent_dealloc_device) { 1536 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1537 ib_dealloc_device(ib_dev); 1538 } 1539 out: 1540 mutex_unlock(&ib_dev->unregistration_lock); 1541 } 1542 1543 /** 1544 * ib_unregister_device - Unregister an IB device 1545 * @ib_dev: The device to unregister 1546 * 1547 * Unregister an IB device. All clients will receive a remove callback. 1548 * 1549 * Callers should call this routine only once, and protect against races with 1550 * registration. Typically it should only be called as part of a remove 1551 * callback in an implementation of driver core's struct device_driver and 1552 * related. 1553 * 1554 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1555 * this function. 1556 */ 1557 void ib_unregister_device(struct ib_device *ib_dev) 1558 { 1559 get_device(&ib_dev->dev); 1560 __ib_unregister_device(ib_dev); 1561 put_device(&ib_dev->dev); 1562 } 1563 EXPORT_SYMBOL(ib_unregister_device); 1564 1565 /** 1566 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1567 * @ib_dev: The device to unregister 1568 * 1569 * This is the same as ib_unregister_device(), except it includes an internal 1570 * ib_device_put() that should match a 'get' obtained by the caller. 1571 * 1572 * It is safe to call this routine concurrently from multiple threads while 1573 * holding the 'get'. When the function returns the device is fully 1574 * unregistered. 1575 * 1576 * Drivers using this flow MUST use the driver_unregister callback to clean up 1577 * their resources associated with the device and dealloc it. 1578 */ 1579 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1580 { 1581 WARN_ON(!ib_dev->ops.dealloc_driver); 1582 get_device(&ib_dev->dev); 1583 ib_device_put(ib_dev); 1584 __ib_unregister_device(ib_dev); 1585 put_device(&ib_dev->dev); 1586 } 1587 EXPORT_SYMBOL(ib_unregister_device_and_put); 1588 1589 /** 1590 * ib_unregister_driver - Unregister all IB devices for a driver 1591 * @driver_id: The driver to unregister 1592 * 1593 * This implements a fence for device unregistration. It only returns once all 1594 * devices associated with the driver_id have fully completed their 1595 * unregistration and returned from ib_unregister_device*(). 1596 * 1597 * If device's are not yet unregistered it goes ahead and starts unregistering 1598 * them. 1599 * 1600 * This does not block creation of new devices with the given driver_id, that 1601 * is the responsibility of the caller. 1602 */ 1603 void ib_unregister_driver(enum rdma_driver_id driver_id) 1604 { 1605 struct ib_device *ib_dev; 1606 unsigned long index; 1607 1608 down_read(&devices_rwsem); 1609 xa_for_each (&devices, index, ib_dev) { 1610 if (ib_dev->ops.driver_id != driver_id) 1611 continue; 1612 1613 get_device(&ib_dev->dev); 1614 up_read(&devices_rwsem); 1615 1616 WARN_ON(!ib_dev->ops.dealloc_driver); 1617 __ib_unregister_device(ib_dev); 1618 1619 put_device(&ib_dev->dev); 1620 down_read(&devices_rwsem); 1621 } 1622 up_read(&devices_rwsem); 1623 } 1624 EXPORT_SYMBOL(ib_unregister_driver); 1625 1626 static void ib_unregister_work(struct work_struct *work) 1627 { 1628 struct ib_device *ib_dev = 1629 container_of(work, struct ib_device, unregistration_work); 1630 1631 __ib_unregister_device(ib_dev); 1632 put_device(&ib_dev->dev); 1633 } 1634 1635 /** 1636 * ib_unregister_device_queued - Unregister a device using a work queue 1637 * @ib_dev: The device to unregister 1638 * 1639 * This schedules an asynchronous unregistration using a WQ for the device. A 1640 * driver should use this to avoid holding locks while doing unregistration, 1641 * such as holding the RTNL lock. 1642 * 1643 * Drivers using this API must use ib_unregister_driver before module unload 1644 * to ensure that all scheduled unregistrations have completed. 1645 */ 1646 void ib_unregister_device_queued(struct ib_device *ib_dev) 1647 { 1648 WARN_ON(!refcount_read(&ib_dev->refcount)); 1649 WARN_ON(!ib_dev->ops.dealloc_driver); 1650 get_device(&ib_dev->dev); 1651 if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work)) 1652 put_device(&ib_dev->dev); 1653 } 1654 EXPORT_SYMBOL(ib_unregister_device_queued); 1655 1656 /* 1657 * The caller must pass in a device that has the kref held and the refcount 1658 * released. If the device is in cur_net and still registered then it is moved 1659 * into net. 1660 */ 1661 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1662 struct net *net) 1663 { 1664 int ret2 = -EINVAL; 1665 int ret; 1666 1667 mutex_lock(&device->unregistration_lock); 1668 1669 /* 1670 * If a device not under ib_device_get() or if the unregistration_lock 1671 * is not held, the namespace can be changed, or it can be unregistered. 1672 * Check again under the lock. 1673 */ 1674 if (refcount_read(&device->refcount) == 0 || 1675 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1676 ret = -ENODEV; 1677 goto out; 1678 } 1679 1680 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1681 disable_device(device); 1682 1683 /* 1684 * At this point no one can be using the device, so it is safe to 1685 * change the namespace. 1686 */ 1687 write_pnet(&device->coredev.rdma_net, net); 1688 1689 down_read(&devices_rwsem); 1690 /* 1691 * Currently rdma devices are system wide unique. So the device name 1692 * is guaranteed free in the new namespace. Publish the new namespace 1693 * at the sysfs level. 1694 */ 1695 ret = device_rename(&device->dev, dev_name(&device->dev)); 1696 up_read(&devices_rwsem); 1697 if (ret) { 1698 dev_warn(&device->dev, 1699 "%s: Couldn't rename device after namespace change\n", 1700 __func__); 1701 /* Try and put things back and re-enable the device */ 1702 write_pnet(&device->coredev.rdma_net, cur_net); 1703 } 1704 1705 ret2 = enable_device_and_get(device); 1706 if (ret2) { 1707 /* 1708 * This shouldn't really happen, but if it does, let the user 1709 * retry at later point. So don't disable the device. 1710 */ 1711 dev_warn(&device->dev, 1712 "%s: Couldn't re-enable device after namespace change\n", 1713 __func__); 1714 } 1715 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1716 1717 ib_device_put(device); 1718 out: 1719 mutex_unlock(&device->unregistration_lock); 1720 if (ret) 1721 return ret; 1722 return ret2; 1723 } 1724 1725 int ib_device_set_netns_put(struct sk_buff *skb, 1726 struct ib_device *dev, u32 ns_fd) 1727 { 1728 struct net *net; 1729 int ret; 1730 1731 net = get_net_ns_by_fd(ns_fd); 1732 if (IS_ERR(net)) { 1733 ret = PTR_ERR(net); 1734 goto net_err; 1735 } 1736 1737 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1738 ret = -EPERM; 1739 goto ns_err; 1740 } 1741 1742 /* 1743 * All the ib_clients, including uverbs, are reset when the namespace is 1744 * changed and this cannot be blocked waiting for userspace to do 1745 * something, so disassociation is mandatory. 1746 */ 1747 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) { 1748 ret = -EOPNOTSUPP; 1749 goto ns_err; 1750 } 1751 1752 get_device(&dev->dev); 1753 ib_device_put(dev); 1754 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1755 put_device(&dev->dev); 1756 1757 put_net(net); 1758 return ret; 1759 1760 ns_err: 1761 put_net(net); 1762 net_err: 1763 ib_device_put(dev); 1764 return ret; 1765 } 1766 1767 static struct pernet_operations rdma_dev_net_ops = { 1768 .init = rdma_dev_init_net, 1769 .exit = rdma_dev_exit_net, 1770 .id = &rdma_dev_net_id, 1771 .size = sizeof(struct rdma_dev_net), 1772 }; 1773 1774 static int assign_client_id(struct ib_client *client) 1775 { 1776 int ret; 1777 1778 lockdep_assert_held(&clients_rwsem); 1779 /* 1780 * The add/remove callbacks must be called in FIFO/LIFO order. To 1781 * achieve this we assign client_ids so they are sorted in 1782 * registration order. 1783 */ 1784 client->client_id = highest_client_id; 1785 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1786 if (ret) 1787 return ret; 1788 1789 highest_client_id++; 1790 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1791 return 0; 1792 } 1793 1794 static void remove_client_id(struct ib_client *client) 1795 { 1796 down_write(&clients_rwsem); 1797 xa_erase(&clients, client->client_id); 1798 for (; highest_client_id; highest_client_id--) 1799 if (xa_load(&clients, highest_client_id - 1)) 1800 break; 1801 up_write(&clients_rwsem); 1802 } 1803 1804 /** 1805 * ib_register_client - Register an IB client 1806 * @client:Client to register 1807 * 1808 * Upper level users of the IB drivers can use ib_register_client() to 1809 * register callbacks for IB device addition and removal. When an IB 1810 * device is added, each registered client's add method will be called 1811 * (in the order the clients were registered), and when a device is 1812 * removed, each client's remove method will be called (in the reverse 1813 * order that clients were registered). In addition, when 1814 * ib_register_client() is called, the client will receive an add 1815 * callback for all devices already registered. 1816 */ 1817 int ib_register_client(struct ib_client *client) 1818 { 1819 struct ib_device *device; 1820 unsigned long index; 1821 bool need_unreg = false; 1822 int ret; 1823 1824 refcount_set(&client->uses, 1); 1825 init_completion(&client->uses_zero); 1826 1827 /* 1828 * The devices_rwsem is held in write mode to ensure that a racing 1829 * ib_register_device() sees a consisent view of clients and devices. 1830 */ 1831 down_write(&devices_rwsem); 1832 down_write(&clients_rwsem); 1833 ret = assign_client_id(client); 1834 if (ret) 1835 goto out; 1836 1837 need_unreg = true; 1838 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1839 ret = add_client_context(device, client); 1840 if (ret) 1841 goto out; 1842 } 1843 ret = 0; 1844 out: 1845 up_write(&clients_rwsem); 1846 up_write(&devices_rwsem); 1847 if (need_unreg && ret) 1848 ib_unregister_client(client); 1849 return ret; 1850 } 1851 EXPORT_SYMBOL(ib_register_client); 1852 1853 /** 1854 * ib_unregister_client - Unregister an IB client 1855 * @client:Client to unregister 1856 * 1857 * Upper level users use ib_unregister_client() to remove their client 1858 * registration. When ib_unregister_client() is called, the client 1859 * will receive a remove callback for each IB device still registered. 1860 * 1861 * This is a full fence, once it returns no client callbacks will be called, 1862 * or are running in another thread. 1863 */ 1864 void ib_unregister_client(struct ib_client *client) 1865 { 1866 struct ib_device *device; 1867 unsigned long index; 1868 1869 down_write(&clients_rwsem); 1870 ib_client_put(client); 1871 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1872 up_write(&clients_rwsem); 1873 1874 /* We do not want to have locks while calling client->remove() */ 1875 rcu_read_lock(); 1876 xa_for_each (&devices, index, device) { 1877 if (!ib_device_try_get(device)) 1878 continue; 1879 rcu_read_unlock(); 1880 1881 remove_client_context(device, client->client_id); 1882 1883 ib_device_put(device); 1884 rcu_read_lock(); 1885 } 1886 rcu_read_unlock(); 1887 1888 /* 1889 * remove_client_context() is not a fence, it can return even though a 1890 * removal is ongoing. Wait until all removals are completed. 1891 */ 1892 wait_for_completion(&client->uses_zero); 1893 remove_client_id(client); 1894 } 1895 EXPORT_SYMBOL(ib_unregister_client); 1896 1897 static int __ib_get_global_client_nl_info(const char *client_name, 1898 struct ib_client_nl_info *res) 1899 { 1900 struct ib_client *client; 1901 unsigned long index; 1902 int ret = -ENOENT; 1903 1904 down_read(&clients_rwsem); 1905 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1906 if (strcmp(client->name, client_name) != 0) 1907 continue; 1908 if (!client->get_global_nl_info) { 1909 ret = -EOPNOTSUPP; 1910 break; 1911 } 1912 ret = client->get_global_nl_info(res); 1913 if (WARN_ON(ret == -ENOENT)) 1914 ret = -EINVAL; 1915 if (!ret && res->cdev) 1916 get_device(res->cdev); 1917 break; 1918 } 1919 up_read(&clients_rwsem); 1920 return ret; 1921 } 1922 1923 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1924 const char *client_name, 1925 struct ib_client_nl_info *res) 1926 { 1927 unsigned long index; 1928 void *client_data; 1929 int ret = -ENOENT; 1930 1931 down_read(&ibdev->client_data_rwsem); 1932 xan_for_each_marked (&ibdev->client_data, index, client_data, 1933 CLIENT_DATA_REGISTERED) { 1934 struct ib_client *client = xa_load(&clients, index); 1935 1936 if (!client || strcmp(client->name, client_name) != 0) 1937 continue; 1938 if (!client->get_nl_info) { 1939 ret = -EOPNOTSUPP; 1940 break; 1941 } 1942 ret = client->get_nl_info(ibdev, client_data, res); 1943 if (WARN_ON(ret == -ENOENT)) 1944 ret = -EINVAL; 1945 1946 /* 1947 * The cdev is guaranteed valid as long as we are inside the 1948 * client_data_rwsem as remove_one can't be called. Keep it 1949 * valid for the caller. 1950 */ 1951 if (!ret && res->cdev) 1952 get_device(res->cdev); 1953 break; 1954 } 1955 up_read(&ibdev->client_data_rwsem); 1956 1957 return ret; 1958 } 1959 1960 /** 1961 * ib_get_client_nl_info - Fetch the nl_info from a client 1962 * @ibdev: IB device 1963 * @client_name: Name of the client 1964 * @res: Result of the query 1965 */ 1966 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1967 struct ib_client_nl_info *res) 1968 { 1969 int ret; 1970 1971 if (ibdev) 1972 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1973 else 1974 ret = __ib_get_global_client_nl_info(client_name, res); 1975 #ifdef CONFIG_MODULES 1976 if (ret == -ENOENT) { 1977 request_module("rdma-client-%s", client_name); 1978 if (ibdev) 1979 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1980 else 1981 ret = __ib_get_global_client_nl_info(client_name, res); 1982 } 1983 #endif 1984 if (ret) { 1985 if (ret == -ENOENT) 1986 return -EOPNOTSUPP; 1987 return ret; 1988 } 1989 1990 if (WARN_ON(!res->cdev)) 1991 return -EINVAL; 1992 return 0; 1993 } 1994 1995 /** 1996 * ib_set_client_data - Set IB client context 1997 * @device:Device to set context for 1998 * @client:Client to set context for 1999 * @data:Context to set 2000 * 2001 * ib_set_client_data() sets client context data that can be retrieved with 2002 * ib_get_client_data(). This can only be called while the client is 2003 * registered to the device, once the ib_client remove() callback returns this 2004 * cannot be called. 2005 */ 2006 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2007 void *data) 2008 { 2009 void *rc; 2010 2011 if (WARN_ON(IS_ERR(data))) 2012 data = NULL; 2013 2014 rc = xa_store(&device->client_data, client->client_id, data, 2015 GFP_KERNEL); 2016 WARN_ON(xa_is_err(rc)); 2017 } 2018 EXPORT_SYMBOL(ib_set_client_data); 2019 2020 /** 2021 * ib_register_event_handler - Register an IB event handler 2022 * @event_handler:Handler to register 2023 * 2024 * ib_register_event_handler() registers an event handler that will be 2025 * called back when asynchronous IB events occur (as defined in 2026 * chapter 11 of the InfiniBand Architecture Specification). This 2027 * callback occurs in workqueue context. 2028 */ 2029 void ib_register_event_handler(struct ib_event_handler *event_handler) 2030 { 2031 down_write(&event_handler->device->event_handler_rwsem); 2032 list_add_tail(&event_handler->list, 2033 &event_handler->device->event_handler_list); 2034 up_write(&event_handler->device->event_handler_rwsem); 2035 } 2036 EXPORT_SYMBOL(ib_register_event_handler); 2037 2038 /** 2039 * ib_unregister_event_handler - Unregister an event handler 2040 * @event_handler:Handler to unregister 2041 * 2042 * Unregister an event handler registered with 2043 * ib_register_event_handler(). 2044 */ 2045 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 2046 { 2047 down_write(&event_handler->device->event_handler_rwsem); 2048 list_del(&event_handler->list); 2049 up_write(&event_handler->device->event_handler_rwsem); 2050 } 2051 EXPORT_SYMBOL(ib_unregister_event_handler); 2052 2053 void ib_dispatch_event_clients(struct ib_event *event) 2054 { 2055 struct ib_event_handler *handler; 2056 2057 down_read(&event->device->event_handler_rwsem); 2058 2059 list_for_each_entry(handler, &event->device->event_handler_list, list) 2060 handler->handler(handler, event); 2061 2062 up_read(&event->device->event_handler_rwsem); 2063 } 2064 2065 static int iw_query_port(struct ib_device *device, 2066 u32 port_num, 2067 struct ib_port_attr *port_attr) 2068 { 2069 struct in_device *inetdev; 2070 struct net_device *netdev; 2071 2072 memset(port_attr, 0, sizeof(*port_attr)); 2073 2074 netdev = ib_device_get_netdev(device, port_num); 2075 if (!netdev) 2076 return -ENODEV; 2077 2078 port_attr->max_mtu = IB_MTU_4096; 2079 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 2080 2081 if (!netif_carrier_ok(netdev)) { 2082 port_attr->state = IB_PORT_DOWN; 2083 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 2084 } else { 2085 rcu_read_lock(); 2086 inetdev = __in_dev_get_rcu(netdev); 2087 2088 if (inetdev && inetdev->ifa_list) { 2089 port_attr->state = IB_PORT_ACTIVE; 2090 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2091 } else { 2092 port_attr->state = IB_PORT_INIT; 2093 port_attr->phys_state = 2094 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2095 } 2096 2097 rcu_read_unlock(); 2098 } 2099 2100 dev_put(netdev); 2101 return device->ops.query_port(device, port_num, port_attr); 2102 } 2103 2104 static int __ib_query_port(struct ib_device *device, 2105 u32 port_num, 2106 struct ib_port_attr *port_attr) 2107 { 2108 int err; 2109 2110 memset(port_attr, 0, sizeof(*port_attr)); 2111 2112 err = device->ops.query_port(device, port_num, port_attr); 2113 if (err || port_attr->subnet_prefix) 2114 return err; 2115 2116 if (rdma_port_get_link_layer(device, port_num) != 2117 IB_LINK_LAYER_INFINIBAND) 2118 return 0; 2119 2120 ib_get_cached_subnet_prefix(device, port_num, 2121 &port_attr->subnet_prefix); 2122 return 0; 2123 } 2124 2125 /** 2126 * ib_query_port - Query IB port attributes 2127 * @device:Device to query 2128 * @port_num:Port number to query 2129 * @port_attr:Port attributes 2130 * 2131 * ib_query_port() returns the attributes of a port through the 2132 * @port_attr pointer. 2133 */ 2134 int ib_query_port(struct ib_device *device, 2135 u32 port_num, 2136 struct ib_port_attr *port_attr) 2137 { 2138 if (!rdma_is_port_valid(device, port_num)) 2139 return -EINVAL; 2140 2141 if (rdma_protocol_iwarp(device, port_num)) 2142 return iw_query_port(device, port_num, port_attr); 2143 else 2144 return __ib_query_port(device, port_num, port_attr); 2145 } 2146 EXPORT_SYMBOL(ib_query_port); 2147 2148 static void add_ndev_hash(struct ib_port_data *pdata) 2149 { 2150 unsigned long flags; 2151 2152 might_sleep(); 2153 2154 spin_lock_irqsave(&ndev_hash_lock, flags); 2155 if (hash_hashed(&pdata->ndev_hash_link)) { 2156 hash_del_rcu(&pdata->ndev_hash_link); 2157 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2158 /* 2159 * We cannot do hash_add_rcu after a hash_del_rcu until the 2160 * grace period 2161 */ 2162 synchronize_rcu(); 2163 spin_lock_irqsave(&ndev_hash_lock, flags); 2164 } 2165 if (pdata->netdev) 2166 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2167 (uintptr_t)pdata->netdev); 2168 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2169 } 2170 2171 /** 2172 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2173 * @ib_dev: Device to modify 2174 * @ndev: net_device to affiliate, may be NULL 2175 * @port: IB port the net_device is connected to 2176 * 2177 * Drivers should use this to link the ib_device to a netdev so the netdev 2178 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2179 * affiliated with any port. 2180 * 2181 * The caller must ensure that the given ndev is not unregistered or 2182 * unregistering, and that either the ib_device is unregistered or 2183 * ib_device_set_netdev() is called with NULL when the ndev sends a 2184 * NETDEV_UNREGISTER event. 2185 */ 2186 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2187 u32 port) 2188 { 2189 enum rdma_nl_notify_event_type etype; 2190 struct net_device *old_ndev; 2191 struct ib_port_data *pdata; 2192 unsigned long flags; 2193 int ret; 2194 2195 if (!rdma_is_port_valid(ib_dev, port)) 2196 return -EINVAL; 2197 2198 /* 2199 * Drivers wish to call this before ib_register_driver, so we have to 2200 * setup the port data early. 2201 */ 2202 ret = alloc_port_data(ib_dev); 2203 if (ret) 2204 return ret; 2205 2206 pdata = &ib_dev->port_data[port]; 2207 spin_lock_irqsave(&pdata->netdev_lock, flags); 2208 old_ndev = rcu_dereference_protected( 2209 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2210 if (old_ndev == ndev) { 2211 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2212 return 0; 2213 } 2214 2215 rcu_assign_pointer(pdata->netdev, ndev); 2216 netdev_put(old_ndev, &pdata->netdev_tracker); 2217 netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC); 2218 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2219 2220 add_ndev_hash(pdata); 2221 2222 /* Make sure that the device is registered before we send events */ 2223 if (xa_load(&devices, ib_dev->index) != ib_dev) 2224 return 0; 2225 2226 etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT; 2227 rdma_nl_notify_event(ib_dev, port, etype); 2228 2229 return 0; 2230 } 2231 EXPORT_SYMBOL(ib_device_set_netdev); 2232 2233 static void free_netdevs(struct ib_device *ib_dev) 2234 { 2235 unsigned long flags; 2236 u32 port; 2237 2238 if (!ib_dev->port_data) 2239 return; 2240 2241 rdma_for_each_port (ib_dev, port) { 2242 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2243 struct net_device *ndev; 2244 2245 spin_lock_irqsave(&pdata->netdev_lock, flags); 2246 ndev = rcu_dereference_protected( 2247 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2248 if (ndev) { 2249 spin_lock(&ndev_hash_lock); 2250 hash_del_rcu(&pdata->ndev_hash_link); 2251 spin_unlock(&ndev_hash_lock); 2252 2253 /* 2254 * If this is the last dev_put there is still a 2255 * synchronize_rcu before the netdev is kfreed, so we 2256 * can continue to rely on unlocked pointer 2257 * comparisons after the put 2258 */ 2259 rcu_assign_pointer(pdata->netdev, NULL); 2260 netdev_put(ndev, &pdata->netdev_tracker); 2261 } 2262 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2263 } 2264 } 2265 2266 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2267 u32 port) 2268 { 2269 struct ib_port_data *pdata; 2270 struct net_device *res; 2271 2272 if (!rdma_is_port_valid(ib_dev, port)) 2273 return NULL; 2274 2275 if (!ib_dev->port_data) 2276 return NULL; 2277 2278 pdata = &ib_dev->port_data[port]; 2279 2280 /* 2281 * New drivers should use ib_device_set_netdev() not the legacy 2282 * get_netdev(). 2283 */ 2284 if (ib_dev->ops.get_netdev) 2285 res = ib_dev->ops.get_netdev(ib_dev, port); 2286 else { 2287 spin_lock(&pdata->netdev_lock); 2288 res = rcu_dereference_protected( 2289 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2290 dev_hold(res); 2291 spin_unlock(&pdata->netdev_lock); 2292 } 2293 2294 return res; 2295 } 2296 EXPORT_SYMBOL(ib_device_get_netdev); 2297 2298 /** 2299 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2300 * @ndev: netdev to locate 2301 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2302 * 2303 * Find and hold an ib_device that is associated with a netdev via 2304 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2305 * returned pointer. 2306 */ 2307 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2308 enum rdma_driver_id driver_id) 2309 { 2310 struct ib_device *res = NULL; 2311 struct ib_port_data *cur; 2312 2313 rcu_read_lock(); 2314 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2315 (uintptr_t)ndev) { 2316 if (rcu_access_pointer(cur->netdev) == ndev && 2317 (driver_id == RDMA_DRIVER_UNKNOWN || 2318 cur->ib_dev->ops.driver_id == driver_id) && 2319 ib_device_try_get(cur->ib_dev)) { 2320 res = cur->ib_dev; 2321 break; 2322 } 2323 } 2324 rcu_read_unlock(); 2325 2326 return res; 2327 } 2328 EXPORT_SYMBOL(ib_device_get_by_netdev); 2329 2330 /** 2331 * ib_enum_roce_netdev - enumerate all RoCE ports 2332 * @ib_dev : IB device we want to query 2333 * @filter: Should we call the callback? 2334 * @filter_cookie: Cookie passed to filter 2335 * @cb: Callback to call for each found RoCE ports 2336 * @cookie: Cookie passed back to the callback 2337 * 2338 * Enumerates all of the physical RoCE ports of ib_dev 2339 * which are related to netdevice and calls callback() on each 2340 * device for which filter() function returns non zero. 2341 */ 2342 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2343 roce_netdev_filter filter, 2344 void *filter_cookie, 2345 roce_netdev_callback cb, 2346 void *cookie) 2347 { 2348 u32 port; 2349 2350 rdma_for_each_port (ib_dev, port) 2351 if (rdma_protocol_roce(ib_dev, port)) { 2352 struct net_device *idev = 2353 ib_device_get_netdev(ib_dev, port); 2354 2355 if (filter(ib_dev, port, idev, filter_cookie)) 2356 cb(ib_dev, port, idev, cookie); 2357 dev_put(idev); 2358 } 2359 } 2360 2361 /** 2362 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2363 * @filter: Should we call the callback? 2364 * @filter_cookie: Cookie passed to filter 2365 * @cb: Callback to call for each found RoCE ports 2366 * @cookie: Cookie passed back to the callback 2367 * 2368 * Enumerates all RoCE devices' physical ports which are related 2369 * to netdevices and calls callback() on each device for which 2370 * filter() function returns non zero. 2371 */ 2372 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2373 void *filter_cookie, 2374 roce_netdev_callback cb, 2375 void *cookie) 2376 { 2377 struct ib_device *dev; 2378 unsigned long index; 2379 2380 down_read(&devices_rwsem); 2381 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2382 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2383 up_read(&devices_rwsem); 2384 } 2385 2386 /* 2387 * ib_enum_all_devs - enumerate all ib_devices 2388 * @cb: Callback to call for each found ib_device 2389 * 2390 * Enumerates all ib_devices and calls callback() on each device. 2391 */ 2392 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2393 struct netlink_callback *cb) 2394 { 2395 unsigned long index; 2396 struct ib_device *dev; 2397 unsigned int idx = 0; 2398 int ret = 0; 2399 2400 down_read(&devices_rwsem); 2401 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2402 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2403 continue; 2404 2405 ret = nldev_cb(dev, skb, cb, idx); 2406 if (ret) 2407 break; 2408 idx++; 2409 } 2410 up_read(&devices_rwsem); 2411 return ret; 2412 } 2413 2414 /** 2415 * ib_query_pkey - Get P_Key table entry 2416 * @device:Device to query 2417 * @port_num:Port number to query 2418 * @index:P_Key table index to query 2419 * @pkey:Returned P_Key 2420 * 2421 * ib_query_pkey() fetches the specified P_Key table entry. 2422 */ 2423 int ib_query_pkey(struct ib_device *device, 2424 u32 port_num, u16 index, u16 *pkey) 2425 { 2426 if (!rdma_is_port_valid(device, port_num)) 2427 return -EINVAL; 2428 2429 if (!device->ops.query_pkey) 2430 return -EOPNOTSUPP; 2431 2432 return device->ops.query_pkey(device, port_num, index, pkey); 2433 } 2434 EXPORT_SYMBOL(ib_query_pkey); 2435 2436 /** 2437 * ib_modify_device - Change IB device attributes 2438 * @device:Device to modify 2439 * @device_modify_mask:Mask of attributes to change 2440 * @device_modify:New attribute values 2441 * 2442 * ib_modify_device() changes a device's attributes as specified by 2443 * the @device_modify_mask and @device_modify structure. 2444 */ 2445 int ib_modify_device(struct ib_device *device, 2446 int device_modify_mask, 2447 struct ib_device_modify *device_modify) 2448 { 2449 if (!device->ops.modify_device) 2450 return -EOPNOTSUPP; 2451 2452 return device->ops.modify_device(device, device_modify_mask, 2453 device_modify); 2454 } 2455 EXPORT_SYMBOL(ib_modify_device); 2456 2457 /** 2458 * ib_modify_port - Modifies the attributes for the specified port. 2459 * @device: The device to modify. 2460 * @port_num: The number of the port to modify. 2461 * @port_modify_mask: Mask used to specify which attributes of the port 2462 * to change. 2463 * @port_modify: New attribute values for the port. 2464 * 2465 * ib_modify_port() changes a port's attributes as specified by the 2466 * @port_modify_mask and @port_modify structure. 2467 */ 2468 int ib_modify_port(struct ib_device *device, 2469 u32 port_num, int port_modify_mask, 2470 struct ib_port_modify *port_modify) 2471 { 2472 int rc; 2473 2474 if (!rdma_is_port_valid(device, port_num)) 2475 return -EINVAL; 2476 2477 if (device->ops.modify_port) 2478 rc = device->ops.modify_port(device, port_num, 2479 port_modify_mask, 2480 port_modify); 2481 else if (rdma_protocol_roce(device, port_num) && 2482 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2483 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2484 rc = 0; 2485 else 2486 rc = -EOPNOTSUPP; 2487 return rc; 2488 } 2489 EXPORT_SYMBOL(ib_modify_port); 2490 2491 /** 2492 * ib_find_gid - Returns the port number and GID table index where 2493 * a specified GID value occurs. Its searches only for IB link layer. 2494 * @device: The device to query. 2495 * @gid: The GID value to search for. 2496 * @port_num: The port number of the device where the GID value was found. 2497 * @index: The index into the GID table where the GID was found. This 2498 * parameter may be NULL. 2499 */ 2500 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2501 u32 *port_num, u16 *index) 2502 { 2503 union ib_gid tmp_gid; 2504 u32 port; 2505 int ret, i; 2506 2507 rdma_for_each_port (device, port) { 2508 if (!rdma_protocol_ib(device, port)) 2509 continue; 2510 2511 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2512 ++i) { 2513 ret = rdma_query_gid(device, port, i, &tmp_gid); 2514 if (ret) 2515 continue; 2516 2517 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2518 *port_num = port; 2519 if (index) 2520 *index = i; 2521 return 0; 2522 } 2523 } 2524 } 2525 2526 return -ENOENT; 2527 } 2528 EXPORT_SYMBOL(ib_find_gid); 2529 2530 /** 2531 * ib_find_pkey - Returns the PKey table index where a specified 2532 * PKey value occurs. 2533 * @device: The device to query. 2534 * @port_num: The port number of the device to search for the PKey. 2535 * @pkey: The PKey value to search for. 2536 * @index: The index into the PKey table where the PKey was found. 2537 */ 2538 int ib_find_pkey(struct ib_device *device, 2539 u32 port_num, u16 pkey, u16 *index) 2540 { 2541 int ret, i; 2542 u16 tmp_pkey; 2543 int partial_ix = -1; 2544 2545 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2546 ++i) { 2547 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2548 if (ret) 2549 return ret; 2550 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2551 /* if there is full-member pkey take it.*/ 2552 if (tmp_pkey & 0x8000) { 2553 *index = i; 2554 return 0; 2555 } 2556 if (partial_ix < 0) 2557 partial_ix = i; 2558 } 2559 } 2560 2561 /*no full-member, if exists take the limited*/ 2562 if (partial_ix >= 0) { 2563 *index = partial_ix; 2564 return 0; 2565 } 2566 return -ENOENT; 2567 } 2568 EXPORT_SYMBOL(ib_find_pkey); 2569 2570 /** 2571 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2572 * for a received CM request 2573 * @dev: An RDMA device on which the request has been received. 2574 * @port: Port number on the RDMA device. 2575 * @pkey: The Pkey the request came on. 2576 * @gid: A GID that the net_dev uses to communicate. 2577 * @addr: Contains the IP address that the request specified as its 2578 * destination. 2579 * 2580 */ 2581 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2582 u32 port, 2583 u16 pkey, 2584 const union ib_gid *gid, 2585 const struct sockaddr *addr) 2586 { 2587 struct net_device *net_dev = NULL; 2588 unsigned long index; 2589 void *client_data; 2590 2591 if (!rdma_protocol_ib(dev, port)) 2592 return NULL; 2593 2594 /* 2595 * Holding the read side guarantees that the client will not become 2596 * unregistered while we are calling get_net_dev_by_params() 2597 */ 2598 down_read(&dev->client_data_rwsem); 2599 xan_for_each_marked (&dev->client_data, index, client_data, 2600 CLIENT_DATA_REGISTERED) { 2601 struct ib_client *client = xa_load(&clients, index); 2602 2603 if (!client || !client->get_net_dev_by_params) 2604 continue; 2605 2606 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2607 addr, client_data); 2608 if (net_dev) 2609 break; 2610 } 2611 up_read(&dev->client_data_rwsem); 2612 2613 return net_dev; 2614 } 2615 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2616 2617 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2618 { 2619 struct ib_device_ops *dev_ops = &dev->ops; 2620 #define SET_DEVICE_OP(ptr, name) \ 2621 do { \ 2622 if (ops->name) \ 2623 if (!((ptr)->name)) \ 2624 (ptr)->name = ops->name; \ 2625 } while (0) 2626 2627 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2628 2629 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2630 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2631 dev_ops->driver_id != ops->driver_id); 2632 dev_ops->driver_id = ops->driver_id; 2633 } 2634 if (ops->owner) { 2635 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2636 dev_ops->owner = ops->owner; 2637 } 2638 if (ops->uverbs_abi_ver) 2639 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2640 2641 dev_ops->uverbs_no_driver_id_binding |= 2642 ops->uverbs_no_driver_id_binding; 2643 2644 SET_DEVICE_OP(dev_ops, add_gid); 2645 SET_DEVICE_OP(dev_ops, add_sub_dev); 2646 SET_DEVICE_OP(dev_ops, advise_mr); 2647 SET_DEVICE_OP(dev_ops, alloc_dm); 2648 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats); 2649 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats); 2650 SET_DEVICE_OP(dev_ops, alloc_mr); 2651 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2652 SET_DEVICE_OP(dev_ops, alloc_mw); 2653 SET_DEVICE_OP(dev_ops, alloc_pd); 2654 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2655 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2656 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2657 SET_DEVICE_OP(dev_ops, attach_mcast); 2658 SET_DEVICE_OP(dev_ops, check_mr_status); 2659 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2660 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2661 SET_DEVICE_OP(dev_ops, counter_dealloc); 2662 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2663 SET_DEVICE_OP(dev_ops, counter_update_stats); 2664 SET_DEVICE_OP(dev_ops, create_ah); 2665 SET_DEVICE_OP(dev_ops, create_counters); 2666 SET_DEVICE_OP(dev_ops, create_cq); 2667 SET_DEVICE_OP(dev_ops, create_flow); 2668 SET_DEVICE_OP(dev_ops, create_qp); 2669 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2670 SET_DEVICE_OP(dev_ops, create_srq); 2671 SET_DEVICE_OP(dev_ops, create_user_ah); 2672 SET_DEVICE_OP(dev_ops, create_wq); 2673 SET_DEVICE_OP(dev_ops, dealloc_dm); 2674 SET_DEVICE_OP(dev_ops, dealloc_driver); 2675 SET_DEVICE_OP(dev_ops, dealloc_mw); 2676 SET_DEVICE_OP(dev_ops, dealloc_pd); 2677 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2678 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2679 SET_DEVICE_OP(dev_ops, del_gid); 2680 SET_DEVICE_OP(dev_ops, del_sub_dev); 2681 SET_DEVICE_OP(dev_ops, dereg_mr); 2682 SET_DEVICE_OP(dev_ops, destroy_ah); 2683 SET_DEVICE_OP(dev_ops, destroy_counters); 2684 SET_DEVICE_OP(dev_ops, destroy_cq); 2685 SET_DEVICE_OP(dev_ops, destroy_flow); 2686 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2687 SET_DEVICE_OP(dev_ops, destroy_qp); 2688 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2689 SET_DEVICE_OP(dev_ops, destroy_srq); 2690 SET_DEVICE_OP(dev_ops, destroy_wq); 2691 SET_DEVICE_OP(dev_ops, device_group); 2692 SET_DEVICE_OP(dev_ops, detach_mcast); 2693 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2694 SET_DEVICE_OP(dev_ops, drain_rq); 2695 SET_DEVICE_OP(dev_ops, drain_sq); 2696 SET_DEVICE_OP(dev_ops, enable_driver); 2697 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry); 2698 SET_DEVICE_OP(dev_ops, fill_res_cq_entry); 2699 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw); 2700 SET_DEVICE_OP(dev_ops, fill_res_mr_entry); 2701 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw); 2702 SET_DEVICE_OP(dev_ops, fill_res_qp_entry); 2703 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw); 2704 SET_DEVICE_OP(dev_ops, fill_res_srq_entry); 2705 SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw); 2706 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry); 2707 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2708 SET_DEVICE_OP(dev_ops, get_dma_mr); 2709 SET_DEVICE_OP(dev_ops, get_hw_stats); 2710 SET_DEVICE_OP(dev_ops, get_link_layer); 2711 SET_DEVICE_OP(dev_ops, get_netdev); 2712 SET_DEVICE_OP(dev_ops, get_numa_node); 2713 SET_DEVICE_OP(dev_ops, get_port_immutable); 2714 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2715 SET_DEVICE_OP(dev_ops, get_vf_config); 2716 SET_DEVICE_OP(dev_ops, get_vf_guid); 2717 SET_DEVICE_OP(dev_ops, get_vf_stats); 2718 SET_DEVICE_OP(dev_ops, iw_accept); 2719 SET_DEVICE_OP(dev_ops, iw_add_ref); 2720 SET_DEVICE_OP(dev_ops, iw_connect); 2721 SET_DEVICE_OP(dev_ops, iw_create_listen); 2722 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2723 SET_DEVICE_OP(dev_ops, iw_get_qp); 2724 SET_DEVICE_OP(dev_ops, iw_reject); 2725 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2726 SET_DEVICE_OP(dev_ops, map_mr_sg); 2727 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2728 SET_DEVICE_OP(dev_ops, mmap); 2729 SET_DEVICE_OP(dev_ops, mmap_free); 2730 SET_DEVICE_OP(dev_ops, modify_ah); 2731 SET_DEVICE_OP(dev_ops, modify_cq); 2732 SET_DEVICE_OP(dev_ops, modify_device); 2733 SET_DEVICE_OP(dev_ops, modify_hw_stat); 2734 SET_DEVICE_OP(dev_ops, modify_port); 2735 SET_DEVICE_OP(dev_ops, modify_qp); 2736 SET_DEVICE_OP(dev_ops, modify_srq); 2737 SET_DEVICE_OP(dev_ops, modify_wq); 2738 SET_DEVICE_OP(dev_ops, peek_cq); 2739 SET_DEVICE_OP(dev_ops, poll_cq); 2740 SET_DEVICE_OP(dev_ops, port_groups); 2741 SET_DEVICE_OP(dev_ops, post_recv); 2742 SET_DEVICE_OP(dev_ops, post_send); 2743 SET_DEVICE_OP(dev_ops, post_srq_recv); 2744 SET_DEVICE_OP(dev_ops, process_mad); 2745 SET_DEVICE_OP(dev_ops, query_ah); 2746 SET_DEVICE_OP(dev_ops, query_device); 2747 SET_DEVICE_OP(dev_ops, query_gid); 2748 SET_DEVICE_OP(dev_ops, query_pkey); 2749 SET_DEVICE_OP(dev_ops, query_port); 2750 SET_DEVICE_OP(dev_ops, query_qp); 2751 SET_DEVICE_OP(dev_ops, query_srq); 2752 SET_DEVICE_OP(dev_ops, query_ucontext); 2753 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2754 SET_DEVICE_OP(dev_ops, read_counters); 2755 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2756 SET_DEVICE_OP(dev_ops, reg_user_mr); 2757 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf); 2758 SET_DEVICE_OP(dev_ops, req_notify_cq); 2759 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2760 SET_DEVICE_OP(dev_ops, resize_cq); 2761 SET_DEVICE_OP(dev_ops, set_vf_guid); 2762 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2763 SET_DEVICE_OP(dev_ops, ufile_hw_cleanup); 2764 2765 SET_OBJ_SIZE(dev_ops, ib_ah); 2766 SET_OBJ_SIZE(dev_ops, ib_counters); 2767 SET_OBJ_SIZE(dev_ops, ib_cq); 2768 SET_OBJ_SIZE(dev_ops, ib_mw); 2769 SET_OBJ_SIZE(dev_ops, ib_pd); 2770 SET_OBJ_SIZE(dev_ops, ib_qp); 2771 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table); 2772 SET_OBJ_SIZE(dev_ops, ib_srq); 2773 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2774 SET_OBJ_SIZE(dev_ops, ib_xrcd); 2775 } 2776 EXPORT_SYMBOL(ib_set_device_ops); 2777 2778 int ib_add_sub_device(struct ib_device *parent, 2779 enum rdma_nl_dev_type type, 2780 const char *name) 2781 { 2782 struct ib_device *sub; 2783 int ret = 0; 2784 2785 if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev) 2786 return -EOPNOTSUPP; 2787 2788 if (!ib_device_try_get(parent)) 2789 return -EINVAL; 2790 2791 sub = parent->ops.add_sub_dev(parent, type, name); 2792 if (IS_ERR(sub)) { 2793 ib_device_put(parent); 2794 return PTR_ERR(sub); 2795 } 2796 2797 sub->type = type; 2798 sub->parent = parent; 2799 2800 mutex_lock(&parent->subdev_lock); 2801 list_add_tail(&parent->subdev_list_head, &sub->subdev_list); 2802 mutex_unlock(&parent->subdev_lock); 2803 2804 return ret; 2805 } 2806 EXPORT_SYMBOL(ib_add_sub_device); 2807 2808 int ib_del_sub_device_and_put(struct ib_device *sub) 2809 { 2810 struct ib_device *parent = sub->parent; 2811 2812 if (!parent) 2813 return -EOPNOTSUPP; 2814 2815 mutex_lock(&parent->subdev_lock); 2816 list_del(&sub->subdev_list); 2817 mutex_unlock(&parent->subdev_lock); 2818 2819 ib_device_put(sub); 2820 parent->ops.del_sub_dev(sub); 2821 ib_device_put(parent); 2822 2823 return 0; 2824 } 2825 EXPORT_SYMBOL(ib_del_sub_device_and_put); 2826 2827 #ifdef CONFIG_INFINIBAND_VIRT_DMA 2828 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents) 2829 { 2830 struct scatterlist *s; 2831 int i; 2832 2833 for_each_sg(sg, s, nents, i) { 2834 sg_dma_address(s) = (uintptr_t)sg_virt(s); 2835 sg_dma_len(s) = s->length; 2836 } 2837 return nents; 2838 } 2839 EXPORT_SYMBOL(ib_dma_virt_map_sg); 2840 #endif /* CONFIG_INFINIBAND_VIRT_DMA */ 2841 2842 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2843 [RDMA_NL_LS_OP_RESOLVE] = { 2844 .doit = ib_nl_handle_resolve_resp, 2845 .flags = RDMA_NL_ADMIN_PERM, 2846 }, 2847 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2848 .doit = ib_nl_handle_set_timeout, 2849 .flags = RDMA_NL_ADMIN_PERM, 2850 }, 2851 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2852 .doit = ib_nl_handle_ip_res_resp, 2853 .flags = RDMA_NL_ADMIN_PERM, 2854 }, 2855 }; 2856 2857 static int ib_netdevice_event(struct notifier_block *this, 2858 unsigned long event, void *ptr) 2859 { 2860 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 2861 struct net_device *ib_ndev; 2862 struct ib_device *ibdev; 2863 u32 port; 2864 2865 switch (event) { 2866 case NETDEV_CHANGENAME: 2867 ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN); 2868 if (!ibdev) 2869 return NOTIFY_DONE; 2870 2871 rdma_for_each_port(ibdev, port) { 2872 ib_ndev = ib_device_get_netdev(ibdev, port); 2873 if (ndev == ib_ndev) 2874 rdma_nl_notify_event(ibdev, port, 2875 RDMA_NETDEV_RENAME_EVENT); 2876 dev_put(ib_ndev); 2877 } 2878 ib_device_put(ibdev); 2879 break; 2880 default: 2881 break; 2882 } 2883 2884 return NOTIFY_DONE; 2885 } 2886 2887 static struct notifier_block nb_netdevice = { 2888 .notifier_call = ib_netdevice_event, 2889 }; 2890 2891 static int __init ib_core_init(void) 2892 { 2893 int ret = -ENOMEM; 2894 2895 ib_wq = alloc_workqueue("infiniband", 0, 0); 2896 if (!ib_wq) 2897 return -ENOMEM; 2898 2899 ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND, 2900 WQ_UNBOUND_MAX_ACTIVE); 2901 if (!ib_unreg_wq) 2902 goto err; 2903 2904 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2905 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2906 if (!ib_comp_wq) 2907 goto err_unbound; 2908 2909 ib_comp_unbound_wq = 2910 alloc_workqueue("ib-comp-unb-wq", 2911 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2912 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2913 if (!ib_comp_unbound_wq) 2914 goto err_comp; 2915 2916 ret = class_register(&ib_class); 2917 if (ret) { 2918 pr_warn("Couldn't create InfiniBand device class\n"); 2919 goto err_comp_unbound; 2920 } 2921 2922 rdma_nl_init(); 2923 2924 ret = addr_init(); 2925 if (ret) { 2926 pr_warn("Couldn't init IB address resolution\n"); 2927 goto err_ibnl; 2928 } 2929 2930 ret = ib_mad_init(); 2931 if (ret) { 2932 pr_warn("Couldn't init IB MAD\n"); 2933 goto err_addr; 2934 } 2935 2936 ret = ib_sa_init(); 2937 if (ret) { 2938 pr_warn("Couldn't init SA\n"); 2939 goto err_mad; 2940 } 2941 2942 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 2943 if (ret) { 2944 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 2945 goto err_sa; 2946 } 2947 2948 ret = register_pernet_device(&rdma_dev_net_ops); 2949 if (ret) { 2950 pr_warn("Couldn't init compat dev. ret %d\n", ret); 2951 goto err_compat; 2952 } 2953 2954 nldev_init(); 2955 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 2956 ret = roce_gid_mgmt_init(); 2957 if (ret) { 2958 pr_warn("Couldn't init RoCE GID management\n"); 2959 goto err_parent; 2960 } 2961 2962 register_netdevice_notifier(&nb_netdevice); 2963 2964 return 0; 2965 2966 err_parent: 2967 rdma_nl_unregister(RDMA_NL_LS); 2968 nldev_exit(); 2969 unregister_pernet_device(&rdma_dev_net_ops); 2970 err_compat: 2971 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2972 err_sa: 2973 ib_sa_cleanup(); 2974 err_mad: 2975 ib_mad_cleanup(); 2976 err_addr: 2977 addr_cleanup(); 2978 err_ibnl: 2979 class_unregister(&ib_class); 2980 err_comp_unbound: 2981 destroy_workqueue(ib_comp_unbound_wq); 2982 err_comp: 2983 destroy_workqueue(ib_comp_wq); 2984 err_unbound: 2985 destroy_workqueue(ib_unreg_wq); 2986 err: 2987 destroy_workqueue(ib_wq); 2988 return ret; 2989 } 2990 2991 static void __exit ib_core_cleanup(void) 2992 { 2993 unregister_netdevice_notifier(&nb_netdevice); 2994 roce_gid_mgmt_cleanup(); 2995 rdma_nl_unregister(RDMA_NL_LS); 2996 nldev_exit(); 2997 unregister_pernet_device(&rdma_dev_net_ops); 2998 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2999 ib_sa_cleanup(); 3000 ib_mad_cleanup(); 3001 addr_cleanup(); 3002 rdma_nl_exit(); 3003 class_unregister(&ib_class); 3004 destroy_workqueue(ib_comp_unbound_wq); 3005 destroy_workqueue(ib_comp_wq); 3006 /* Make sure that any pending umem accounting work is done. */ 3007 destroy_workqueue(ib_wq); 3008 destroy_workqueue(ib_unreg_wq); 3009 WARN_ON(!xa_empty(&clients)); 3010 WARN_ON(!xa_empty(&devices)); 3011 } 3012 3013 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 3014 3015 /* ib core relies on netdev stack to first register net_ns_type_operations 3016 * ns kobject type before ib_core initialization. 3017 */ 3018 fs_initcall(ib_core_init); 3019 module_exit(ib_core_cleanup); 3020