xref: /linux/drivers/infiniband/core/device.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 unsigned int rdma_dev_net_id;
115 
116 /*
117  * A list of net namespaces is maintained in an xarray. This is necessary
118  * because we can't get the locking right using the existing net ns list. We
119  * would require a init_net callback after the list is updated.
120  */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123  * rwsem to protect accessing the rdma_nets xarray entries.
124  */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126 
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 		 "Share device among net namespaces; default=1 (shared)");
131 /**
132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133  *			     from a specified net namespace or not.
134  * @dev:	Pointer to rdma device which needs to be checked
135  * @net:	Pointer to net namesapce for which access to be checked
136  *
137  * When the rdma device is in shared mode, it ignores the net namespace.
138  * When the rdma device is exclusive to a net namespace, rdma device net
139  * namespace is checked against the specified one.
140  */
141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 	return (ib_devices_shared_netns ||
144 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147 
148 /*
149  * xarray has this behavior where it won't iterate over NULL values stored in
150  * allocated arrays.  So we need our own iterator to see all values stored in
151  * the array. This does the same thing as xa_for_each except that it also
152  * returns NULL valued entries if the array is allocating. Simplified to only
153  * work on simple xarrays.
154  */
155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 			     xa_mark_t filter)
157 {
158 	XA_STATE(xas, xa, *indexp);
159 	void *entry;
160 
161 	rcu_read_lock();
162 	do {
163 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 		if (xa_is_zero(entry))
165 			break;
166 	} while (xas_retry(&xas, entry));
167 	rcu_read_unlock();
168 
169 	if (entry) {
170 		*indexp = xas.xa_index;
171 		if (xa_is_zero(entry))
172 			return NULL;
173 		return entry;
174 	}
175 	return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter)                          \
178 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179 	     !xa_is_err(entry);                                                \
180 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181 
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185 
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 			      void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193 
194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 			   struct va_format *vaf)
196 {
197 	if (ibdev && ibdev->dev.parent)
198 		dev_printk_emit(level[1] - '0',
199 				ibdev->dev.parent,
200 				"%s %s %s: %pV",
201 				dev_driver_string(ibdev->dev.parent),
202 				dev_name(ibdev->dev.parent),
203 				dev_name(&ibdev->dev),
204 				vaf);
205 	else if (ibdev)
206 		printk("%s%s: %pV",
207 		       level, dev_name(&ibdev->dev), vaf);
208 	else
209 		printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211 
212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 		  const char *format, ...)
214 {
215 	struct va_format vaf;
216 	va_list args;
217 
218 	va_start(args, format);
219 
220 	vaf.fmt = format;
221 	vaf.va = &args;
222 
223 	__ibdev_printk(level, ibdev, &vaf);
224 
225 	va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228 
229 #define define_ibdev_printk_level(func, level)                  \
230 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
231 {                                                               \
232 	struct va_format vaf;                                   \
233 	va_list args;                                           \
234 								\
235 	va_start(args, fmt);                                    \
236 								\
237 	vaf.fmt = fmt;                                          \
238 	vaf.va = &args;                                         \
239 								\
240 	__ibdev_printk(level, ibdev, &vaf);                     \
241 								\
242 	va_end(args);                                           \
243 }                                                               \
244 EXPORT_SYMBOL(func);
245 
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253 
254 static struct notifier_block ibdev_lsm_nb = {
255 	.notifier_call = ib_security_change,
256 };
257 
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 				 struct net *net);
260 
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 	struct rcu_head rcu_head;
264 	struct ib_port_data pdata[];
265 };
266 
267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 	static const struct {
271 		size_t offset;
272 		char  *name;
273 	} mandatory_table[] = {
274 		IB_MANDATORY_FUNC(query_device),
275 		IB_MANDATORY_FUNC(query_port),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(reg_user_mr),
289 		IB_MANDATORY_FUNC(dereg_mr),
290 		IB_MANDATORY_FUNC(get_port_immutable)
291 	};
292 	int i;
293 
294 	device->kverbs_provider = true;
295 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 		if (!*(void **) ((void *) &device->ops +
297 				 mandatory_table[i].offset)) {
298 			device->kverbs_provider = false;
299 			break;
300 		}
301 	}
302 }
303 
304 /*
305  * Caller must perform ib_device_put() to return the device reference count
306  * when ib_device_get_by_index() returns valid device pointer.
307  */
308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 	struct ib_device *device;
311 
312 	down_read(&devices_rwsem);
313 	device = xa_load(&devices, index);
314 	if (device) {
315 		if (!rdma_dev_access_netns(device, net)) {
316 			device = NULL;
317 			goto out;
318 		}
319 
320 		if (!ib_device_try_get(device))
321 			device = NULL;
322 	}
323 out:
324 	up_read(&devices_rwsem);
325 	return device;
326 }
327 
328 /**
329  * ib_device_put - Release IB device reference
330  * @device: device whose reference to be released
331  *
332  * ib_device_put() releases reference to the IB device to allow it to be
333  * unregistered and eventually free.
334  */
335 void ib_device_put(struct ib_device *device)
336 {
337 	if (refcount_dec_and_test(&device->refcount))
338 		complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341 
342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 	struct ib_device *device;
345 	unsigned long index;
346 
347 	xa_for_each (&devices, index, device)
348 		if (!strcmp(name, dev_name(&device->dev)))
349 			return device;
350 
351 	return NULL;
352 }
353 
354 /**
355  * ib_device_get_by_name - Find an IB device by name
356  * @name: The name to look for
357  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358  *
359  * Find and hold an ib_device by its name. The caller must call
360  * ib_device_put() on the returned pointer.
361  */
362 struct ib_device *ib_device_get_by_name(const char *name,
363 					enum rdma_driver_id driver_id)
364 {
365 	struct ib_device *device;
366 
367 	down_read(&devices_rwsem);
368 	device = __ib_device_get_by_name(name);
369 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 	    device->ops.driver_id != driver_id)
371 		device = NULL;
372 
373 	if (device) {
374 		if (!ib_device_try_get(device))
375 			device = NULL;
376 	}
377 	up_read(&devices_rwsem);
378 	return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381 
382 static int rename_compat_devs(struct ib_device *device)
383 {
384 	struct ib_core_device *cdev;
385 	unsigned long index;
386 	int ret = 0;
387 
388 	mutex_lock(&device->compat_devs_mutex);
389 	xa_for_each (&device->compat_devs, index, cdev) {
390 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 		if (ret) {
392 			dev_warn(&cdev->dev,
393 				 "Fail to rename compatdev to new name %s\n",
394 				 dev_name(&device->dev));
395 			break;
396 		}
397 	}
398 	mutex_unlock(&device->compat_devs_mutex);
399 	return ret;
400 }
401 
402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 	unsigned long index;
405 	void *client_data;
406 	int ret;
407 
408 	down_write(&devices_rwsem);
409 	if (!strcmp(name, dev_name(&ibdev->dev))) {
410 		up_write(&devices_rwsem);
411 		return 0;
412 	}
413 
414 	if (__ib_device_get_by_name(name)) {
415 		up_write(&devices_rwsem);
416 		return -EEXIST;
417 	}
418 
419 	ret = device_rename(&ibdev->dev, name);
420 	if (ret) {
421 		up_write(&devices_rwsem);
422 		return ret;
423 	}
424 
425 	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 	ret = rename_compat_devs(ibdev);
427 
428 	downgrade_write(&devices_rwsem);
429 	down_read(&ibdev->client_data_rwsem);
430 	xan_for_each_marked(&ibdev->client_data, index, client_data,
431 			    CLIENT_DATA_REGISTERED) {
432 		struct ib_client *client = xa_load(&clients, index);
433 
434 		if (!client || !client->rename)
435 			continue;
436 
437 		client->rename(ibdev, client_data);
438 	}
439 	up_read(&ibdev->client_data_rwsem);
440 	rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT);
441 	up_read(&devices_rwsem);
442 	return 0;
443 }
444 
445 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
446 {
447 	if (use_dim > 1)
448 		return -EINVAL;
449 	ibdev->use_cq_dim = use_dim;
450 
451 	return 0;
452 }
453 
454 static int alloc_name(struct ib_device *ibdev, const char *name)
455 {
456 	struct ib_device *device;
457 	unsigned long index;
458 	struct ida inuse;
459 	int rc;
460 	int i;
461 
462 	lockdep_assert_held_write(&devices_rwsem);
463 	ida_init(&inuse);
464 	xa_for_each (&devices, index, device) {
465 		char buf[IB_DEVICE_NAME_MAX];
466 
467 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
468 			continue;
469 		if (i < 0 || i >= INT_MAX)
470 			continue;
471 		snprintf(buf, sizeof buf, name, i);
472 		if (strcmp(buf, dev_name(&device->dev)) != 0)
473 			continue;
474 
475 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
476 		if (rc < 0)
477 			goto out;
478 	}
479 
480 	rc = ida_alloc(&inuse, GFP_KERNEL);
481 	if (rc < 0)
482 		goto out;
483 
484 	rc = dev_set_name(&ibdev->dev, name, rc);
485 out:
486 	ida_destroy(&inuse);
487 	return rc;
488 }
489 
490 static void ib_device_release(struct device *device)
491 {
492 	struct ib_device *dev = container_of(device, struct ib_device, dev);
493 
494 	free_netdevs(dev);
495 	WARN_ON(refcount_read(&dev->refcount));
496 	if (dev->hw_stats_data)
497 		ib_device_release_hw_stats(dev->hw_stats_data);
498 	if (dev->port_data) {
499 		ib_cache_release_one(dev);
500 		ib_security_release_port_pkey_list(dev);
501 		rdma_counter_release(dev);
502 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
503 				       pdata[0]),
504 			  rcu_head);
505 	}
506 
507 	mutex_destroy(&dev->subdev_lock);
508 	mutex_destroy(&dev->unregistration_lock);
509 	mutex_destroy(&dev->compat_devs_mutex);
510 
511 	xa_destroy(&dev->compat_devs);
512 	xa_destroy(&dev->client_data);
513 	kfree_rcu(dev, rcu_head);
514 }
515 
516 static int ib_device_uevent(const struct device *device,
517 			    struct kobj_uevent_env *env)
518 {
519 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
520 		return -ENOMEM;
521 
522 	/*
523 	 * It would be nice to pass the node GUID with the event...
524 	 */
525 
526 	return 0;
527 }
528 
529 static const void *net_namespace(const struct device *d)
530 {
531 	const struct ib_core_device *coredev =
532 			container_of(d, struct ib_core_device, dev);
533 
534 	return read_pnet(&coredev->rdma_net);
535 }
536 
537 static struct class ib_class = {
538 	.name    = "infiniband",
539 	.dev_release = ib_device_release,
540 	.dev_uevent = ib_device_uevent,
541 	.ns_type = &net_ns_type_operations,
542 	.namespace = net_namespace,
543 };
544 
545 static void rdma_init_coredev(struct ib_core_device *coredev,
546 			      struct ib_device *dev, struct net *net)
547 {
548 	/* This BUILD_BUG_ON is intended to catch layout change
549 	 * of union of ib_core_device and device.
550 	 * dev must be the first element as ib_core and providers
551 	 * driver uses it. Adding anything in ib_core_device before
552 	 * device will break this assumption.
553 	 */
554 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
555 		     offsetof(struct ib_device, dev));
556 
557 	coredev->dev.class = &ib_class;
558 	coredev->dev.groups = dev->groups;
559 	device_initialize(&coredev->dev);
560 	coredev->owner = dev;
561 	INIT_LIST_HEAD(&coredev->port_list);
562 	write_pnet(&coredev->rdma_net, net);
563 }
564 
565 /**
566  * _ib_alloc_device - allocate an IB device struct
567  * @size:size of structure to allocate
568  *
569  * Low-level drivers should use ib_alloc_device() to allocate &struct
570  * ib_device.  @size is the size of the structure to be allocated,
571  * including any private data used by the low-level driver.
572  * ib_dealloc_device() must be used to free structures allocated with
573  * ib_alloc_device().
574  */
575 struct ib_device *_ib_alloc_device(size_t size)
576 {
577 	struct ib_device *device;
578 	unsigned int i;
579 
580 	if (WARN_ON(size < sizeof(struct ib_device)))
581 		return NULL;
582 
583 	device = kzalloc(size, GFP_KERNEL);
584 	if (!device)
585 		return NULL;
586 
587 	if (rdma_restrack_init(device)) {
588 		kfree(device);
589 		return NULL;
590 	}
591 
592 	rdma_init_coredev(&device->coredev, device, &init_net);
593 
594 	INIT_LIST_HEAD(&device->event_handler_list);
595 	spin_lock_init(&device->qp_open_list_lock);
596 	init_rwsem(&device->event_handler_rwsem);
597 	mutex_init(&device->unregistration_lock);
598 	/*
599 	 * client_data needs to be alloc because we don't want our mark to be
600 	 * destroyed if the user stores NULL in the client data.
601 	 */
602 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
603 	init_rwsem(&device->client_data_rwsem);
604 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
605 	mutex_init(&device->compat_devs_mutex);
606 	init_completion(&device->unreg_completion);
607 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
608 
609 	spin_lock_init(&device->cq_pools_lock);
610 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
611 		INIT_LIST_HEAD(&device->cq_pools[i]);
612 
613 	rwlock_init(&device->cache_lock);
614 
615 	device->uverbs_cmd_mask =
616 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
617 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
618 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
620 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
621 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
622 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
623 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
624 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
625 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
628 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
629 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
630 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
631 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
632 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
633 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
634 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
635 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
636 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
637 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
638 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
639 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
640 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
641 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
642 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
643 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
644 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
645 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
646 
647 	mutex_init(&device->subdev_lock);
648 	INIT_LIST_HEAD(&device->subdev_list_head);
649 	INIT_LIST_HEAD(&device->subdev_list);
650 
651 	return device;
652 }
653 EXPORT_SYMBOL(_ib_alloc_device);
654 
655 /**
656  * ib_dealloc_device - free an IB device struct
657  * @device:structure to free
658  *
659  * Free a structure allocated with ib_alloc_device().
660  */
661 void ib_dealloc_device(struct ib_device *device)
662 {
663 	if (device->ops.dealloc_driver)
664 		device->ops.dealloc_driver(device);
665 
666 	/*
667 	 * ib_unregister_driver() requires all devices to remain in the xarray
668 	 * while their ops are callable. The last op we call is dealloc_driver
669 	 * above.  This is needed to create a fence on op callbacks prior to
670 	 * allowing the driver module to unload.
671 	 */
672 	down_write(&devices_rwsem);
673 	if (xa_load(&devices, device->index) == device)
674 		xa_erase(&devices, device->index);
675 	up_write(&devices_rwsem);
676 
677 	/* Expedite releasing netdev references */
678 	free_netdevs(device);
679 
680 	WARN_ON(!xa_empty(&device->compat_devs));
681 	WARN_ON(!xa_empty(&device->client_data));
682 	WARN_ON(refcount_read(&device->refcount));
683 	rdma_restrack_clean(device);
684 	/* Balances with device_initialize */
685 	put_device(&device->dev);
686 }
687 EXPORT_SYMBOL(ib_dealloc_device);
688 
689 /*
690  * add_client_context() and remove_client_context() must be safe against
691  * parallel calls on the same device - registration/unregistration of both the
692  * device and client can be occurring in parallel.
693  *
694  * The routines need to be a fence, any caller must not return until the add
695  * or remove is fully completed.
696  */
697 static int add_client_context(struct ib_device *device,
698 			      struct ib_client *client)
699 {
700 	int ret = 0;
701 
702 	if (!device->kverbs_provider && !client->no_kverbs_req)
703 		return 0;
704 
705 	down_write(&device->client_data_rwsem);
706 	/*
707 	 * So long as the client is registered hold both the client and device
708 	 * unregistration locks.
709 	 */
710 	if (!refcount_inc_not_zero(&client->uses))
711 		goto out_unlock;
712 	refcount_inc(&device->refcount);
713 
714 	/*
715 	 * Another caller to add_client_context got here first and has already
716 	 * completely initialized context.
717 	 */
718 	if (xa_get_mark(&device->client_data, client->client_id,
719 		    CLIENT_DATA_REGISTERED))
720 		goto out;
721 
722 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
723 			      GFP_KERNEL));
724 	if (ret)
725 		goto out;
726 	downgrade_write(&device->client_data_rwsem);
727 	if (client->add) {
728 		if (client->add(device)) {
729 			/*
730 			 * If a client fails to add then the error code is
731 			 * ignored, but we won't call any more ops on this
732 			 * client.
733 			 */
734 			xa_erase(&device->client_data, client->client_id);
735 			up_read(&device->client_data_rwsem);
736 			ib_device_put(device);
737 			ib_client_put(client);
738 			return 0;
739 		}
740 	}
741 
742 	/* Readers shall not see a client until add has been completed */
743 	xa_set_mark(&device->client_data, client->client_id,
744 		    CLIENT_DATA_REGISTERED);
745 	up_read(&device->client_data_rwsem);
746 	return 0;
747 
748 out:
749 	ib_device_put(device);
750 	ib_client_put(client);
751 out_unlock:
752 	up_write(&device->client_data_rwsem);
753 	return ret;
754 }
755 
756 static void remove_client_context(struct ib_device *device,
757 				  unsigned int client_id)
758 {
759 	struct ib_client *client;
760 	void *client_data;
761 
762 	down_write(&device->client_data_rwsem);
763 	if (!xa_get_mark(&device->client_data, client_id,
764 			 CLIENT_DATA_REGISTERED)) {
765 		up_write(&device->client_data_rwsem);
766 		return;
767 	}
768 	client_data = xa_load(&device->client_data, client_id);
769 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
770 	client = xa_load(&clients, client_id);
771 	up_write(&device->client_data_rwsem);
772 
773 	/*
774 	 * Notice we cannot be holding any exclusive locks when calling the
775 	 * remove callback as the remove callback can recurse back into any
776 	 * public functions in this module and thus try for any locks those
777 	 * functions take.
778 	 *
779 	 * For this reason clients and drivers should not call the
780 	 * unregistration functions will holdling any locks.
781 	 */
782 	if (client->remove)
783 		client->remove(device, client_data);
784 
785 	xa_erase(&device->client_data, client_id);
786 	ib_device_put(device);
787 	ib_client_put(client);
788 }
789 
790 static int alloc_port_data(struct ib_device *device)
791 {
792 	struct ib_port_data_rcu *pdata_rcu;
793 	u32 port;
794 
795 	if (device->port_data)
796 		return 0;
797 
798 	/* This can only be called once the physical port range is defined */
799 	if (WARN_ON(!device->phys_port_cnt))
800 		return -EINVAL;
801 
802 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
803 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
804 		return -EINVAL;
805 
806 	/*
807 	 * device->port_data is indexed directly by the port number to make
808 	 * access to this data as efficient as possible.
809 	 *
810 	 * Therefore port_data is declared as a 1 based array with potential
811 	 * empty slots at the beginning.
812 	 */
813 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
814 					size_add(rdma_end_port(device), 1)),
815 			    GFP_KERNEL);
816 	if (!pdata_rcu)
817 		return -ENOMEM;
818 	/*
819 	 * The rcu_head is put in front of the port data array and the stored
820 	 * pointer is adjusted since we never need to see that member until
821 	 * kfree_rcu.
822 	 */
823 	device->port_data = pdata_rcu->pdata;
824 
825 	rdma_for_each_port (device, port) {
826 		struct ib_port_data *pdata = &device->port_data[port];
827 
828 		pdata->ib_dev = device;
829 		spin_lock_init(&pdata->pkey_list_lock);
830 		INIT_LIST_HEAD(&pdata->pkey_list);
831 		spin_lock_init(&pdata->netdev_lock);
832 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
833 	}
834 	return 0;
835 }
836 
837 static int verify_immutable(const struct ib_device *dev, u32 port)
838 {
839 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
840 			    rdma_max_mad_size(dev, port) != 0);
841 }
842 
843 static int setup_port_data(struct ib_device *device)
844 {
845 	u32 port;
846 	int ret;
847 
848 	ret = alloc_port_data(device);
849 	if (ret)
850 		return ret;
851 
852 	rdma_for_each_port (device, port) {
853 		struct ib_port_data *pdata = &device->port_data[port];
854 
855 		ret = device->ops.get_port_immutable(device, port,
856 						     &pdata->immutable);
857 		if (ret)
858 			return ret;
859 
860 		if (verify_immutable(device, port))
861 			return -EINVAL;
862 	}
863 	return 0;
864 }
865 
866 /**
867  * ib_port_immutable_read() - Read rdma port's immutable data
868  * @dev: IB device
869  * @port: port number whose immutable data to read. It starts with index 1 and
870  *        valid upto including rdma_end_port().
871  */
872 const struct ib_port_immutable*
873 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
874 {
875 	WARN_ON(!rdma_is_port_valid(dev, port));
876 	return &dev->port_data[port].immutable;
877 }
878 EXPORT_SYMBOL(ib_port_immutable_read);
879 
880 void ib_get_device_fw_str(struct ib_device *dev, char *str)
881 {
882 	if (dev->ops.get_dev_fw_str)
883 		dev->ops.get_dev_fw_str(dev, str);
884 	else
885 		str[0] = '\0';
886 }
887 EXPORT_SYMBOL(ib_get_device_fw_str);
888 
889 static void ib_policy_change_task(struct work_struct *work)
890 {
891 	struct ib_device *dev;
892 	unsigned long index;
893 
894 	down_read(&devices_rwsem);
895 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
896 		unsigned int i;
897 
898 		rdma_for_each_port (dev, i) {
899 			u64 sp;
900 			ib_get_cached_subnet_prefix(dev, i, &sp);
901 			ib_security_cache_change(dev, i, sp);
902 		}
903 	}
904 	up_read(&devices_rwsem);
905 }
906 
907 static int ib_security_change(struct notifier_block *nb, unsigned long event,
908 			      void *lsm_data)
909 {
910 	if (event != LSM_POLICY_CHANGE)
911 		return NOTIFY_DONE;
912 
913 	schedule_work(&ib_policy_change_work);
914 	ib_mad_agent_security_change();
915 
916 	return NOTIFY_OK;
917 }
918 
919 static void compatdev_release(struct device *dev)
920 {
921 	struct ib_core_device *cdev =
922 		container_of(dev, struct ib_core_device, dev);
923 
924 	kfree(cdev);
925 }
926 
927 static int add_one_compat_dev(struct ib_device *device,
928 			      struct rdma_dev_net *rnet)
929 {
930 	struct ib_core_device *cdev;
931 	int ret;
932 
933 	lockdep_assert_held(&rdma_nets_rwsem);
934 	if (!ib_devices_shared_netns)
935 		return 0;
936 
937 	/*
938 	 * Create and add compat device in all namespaces other than where it
939 	 * is currently bound to.
940 	 */
941 	if (net_eq(read_pnet(&rnet->net),
942 		   read_pnet(&device->coredev.rdma_net)))
943 		return 0;
944 
945 	/*
946 	 * The first of init_net() or ib_register_device() to take the
947 	 * compat_devs_mutex wins and gets to add the device. Others will wait
948 	 * for completion here.
949 	 */
950 	mutex_lock(&device->compat_devs_mutex);
951 	cdev = xa_load(&device->compat_devs, rnet->id);
952 	if (cdev) {
953 		ret = 0;
954 		goto done;
955 	}
956 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
957 	if (ret)
958 		goto done;
959 
960 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
961 	if (!cdev) {
962 		ret = -ENOMEM;
963 		goto cdev_err;
964 	}
965 
966 	cdev->dev.parent = device->dev.parent;
967 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
968 	cdev->dev.release = compatdev_release;
969 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
970 	if (ret)
971 		goto add_err;
972 
973 	ret = device_add(&cdev->dev);
974 	if (ret)
975 		goto add_err;
976 	ret = ib_setup_port_attrs(cdev);
977 	if (ret)
978 		goto port_err;
979 
980 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
981 			      cdev, GFP_KERNEL));
982 	if (ret)
983 		goto insert_err;
984 
985 	mutex_unlock(&device->compat_devs_mutex);
986 	return 0;
987 
988 insert_err:
989 	ib_free_port_attrs(cdev);
990 port_err:
991 	device_del(&cdev->dev);
992 add_err:
993 	put_device(&cdev->dev);
994 cdev_err:
995 	xa_release(&device->compat_devs, rnet->id);
996 done:
997 	mutex_unlock(&device->compat_devs_mutex);
998 	return ret;
999 }
1000 
1001 static void remove_one_compat_dev(struct ib_device *device, u32 id)
1002 {
1003 	struct ib_core_device *cdev;
1004 
1005 	mutex_lock(&device->compat_devs_mutex);
1006 	cdev = xa_erase(&device->compat_devs, id);
1007 	mutex_unlock(&device->compat_devs_mutex);
1008 	if (cdev) {
1009 		ib_free_port_attrs(cdev);
1010 		device_del(&cdev->dev);
1011 		put_device(&cdev->dev);
1012 	}
1013 }
1014 
1015 static void remove_compat_devs(struct ib_device *device)
1016 {
1017 	struct ib_core_device *cdev;
1018 	unsigned long index;
1019 
1020 	xa_for_each (&device->compat_devs, index, cdev)
1021 		remove_one_compat_dev(device, index);
1022 }
1023 
1024 static int add_compat_devs(struct ib_device *device)
1025 {
1026 	struct rdma_dev_net *rnet;
1027 	unsigned long index;
1028 	int ret = 0;
1029 
1030 	lockdep_assert_held(&devices_rwsem);
1031 
1032 	down_read(&rdma_nets_rwsem);
1033 	xa_for_each (&rdma_nets, index, rnet) {
1034 		ret = add_one_compat_dev(device, rnet);
1035 		if (ret)
1036 			break;
1037 	}
1038 	up_read(&rdma_nets_rwsem);
1039 	return ret;
1040 }
1041 
1042 static void remove_all_compat_devs(void)
1043 {
1044 	struct ib_compat_device *cdev;
1045 	struct ib_device *dev;
1046 	unsigned long index;
1047 
1048 	down_read(&devices_rwsem);
1049 	xa_for_each (&devices, index, dev) {
1050 		unsigned long c_index = 0;
1051 
1052 		/* Hold nets_rwsem so that any other thread modifying this
1053 		 * system param can sync with this thread.
1054 		 */
1055 		down_read(&rdma_nets_rwsem);
1056 		xa_for_each (&dev->compat_devs, c_index, cdev)
1057 			remove_one_compat_dev(dev, c_index);
1058 		up_read(&rdma_nets_rwsem);
1059 	}
1060 	up_read(&devices_rwsem);
1061 }
1062 
1063 static int add_all_compat_devs(void)
1064 {
1065 	struct rdma_dev_net *rnet;
1066 	struct ib_device *dev;
1067 	unsigned long index;
1068 	int ret = 0;
1069 
1070 	down_read(&devices_rwsem);
1071 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1072 		unsigned long net_index = 0;
1073 
1074 		/* Hold nets_rwsem so that any other thread modifying this
1075 		 * system param can sync with this thread.
1076 		 */
1077 		down_read(&rdma_nets_rwsem);
1078 		xa_for_each (&rdma_nets, net_index, rnet) {
1079 			ret = add_one_compat_dev(dev, rnet);
1080 			if (ret)
1081 				break;
1082 		}
1083 		up_read(&rdma_nets_rwsem);
1084 	}
1085 	up_read(&devices_rwsem);
1086 	if (ret)
1087 		remove_all_compat_devs();
1088 	return ret;
1089 }
1090 
1091 int rdma_compatdev_set(u8 enable)
1092 {
1093 	struct rdma_dev_net *rnet;
1094 	unsigned long index;
1095 	int ret = 0;
1096 
1097 	down_write(&rdma_nets_rwsem);
1098 	if (ib_devices_shared_netns == enable) {
1099 		up_write(&rdma_nets_rwsem);
1100 		return 0;
1101 	}
1102 
1103 	/* enable/disable of compat devices is not supported
1104 	 * when more than default init_net exists.
1105 	 */
1106 	xa_for_each (&rdma_nets, index, rnet) {
1107 		ret++;
1108 		break;
1109 	}
1110 	if (!ret)
1111 		ib_devices_shared_netns = enable;
1112 	up_write(&rdma_nets_rwsem);
1113 	if (ret)
1114 		return -EBUSY;
1115 
1116 	if (enable)
1117 		ret = add_all_compat_devs();
1118 	else
1119 		remove_all_compat_devs();
1120 	return ret;
1121 }
1122 
1123 static void rdma_dev_exit_net(struct net *net)
1124 {
1125 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1126 	struct ib_device *dev;
1127 	unsigned long index;
1128 	int ret;
1129 
1130 	down_write(&rdma_nets_rwsem);
1131 	/*
1132 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1133 	 */
1134 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1135 	WARN_ON(ret);
1136 	up_write(&rdma_nets_rwsem);
1137 
1138 	down_read(&devices_rwsem);
1139 	xa_for_each (&devices, index, dev) {
1140 		get_device(&dev->dev);
1141 		/*
1142 		 * Release the devices_rwsem so that pontentially blocking
1143 		 * device_del, doesn't hold the devices_rwsem for too long.
1144 		 */
1145 		up_read(&devices_rwsem);
1146 
1147 		remove_one_compat_dev(dev, rnet->id);
1148 
1149 		/*
1150 		 * If the real device is in the NS then move it back to init.
1151 		 */
1152 		rdma_dev_change_netns(dev, net, &init_net);
1153 
1154 		put_device(&dev->dev);
1155 		down_read(&devices_rwsem);
1156 	}
1157 	up_read(&devices_rwsem);
1158 
1159 	rdma_nl_net_exit(rnet);
1160 	xa_erase(&rdma_nets, rnet->id);
1161 }
1162 
1163 static __net_init int rdma_dev_init_net(struct net *net)
1164 {
1165 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1166 	unsigned long index;
1167 	struct ib_device *dev;
1168 	int ret;
1169 
1170 	write_pnet(&rnet->net, net);
1171 
1172 	ret = rdma_nl_net_init(rnet);
1173 	if (ret)
1174 		return ret;
1175 
1176 	/* No need to create any compat devices in default init_net. */
1177 	if (net_eq(net, &init_net))
1178 		return 0;
1179 
1180 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1181 	if (ret) {
1182 		rdma_nl_net_exit(rnet);
1183 		return ret;
1184 	}
1185 
1186 	down_read(&devices_rwsem);
1187 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1188 		/* Hold nets_rwsem so that netlink command cannot change
1189 		 * system configuration for device sharing mode.
1190 		 */
1191 		down_read(&rdma_nets_rwsem);
1192 		ret = add_one_compat_dev(dev, rnet);
1193 		up_read(&rdma_nets_rwsem);
1194 		if (ret)
1195 			break;
1196 	}
1197 	up_read(&devices_rwsem);
1198 
1199 	if (ret)
1200 		rdma_dev_exit_net(net);
1201 
1202 	return ret;
1203 }
1204 
1205 /*
1206  * Assign the unique string device name and the unique device index. This is
1207  * undone by ib_dealloc_device.
1208  */
1209 static int assign_name(struct ib_device *device, const char *name)
1210 {
1211 	static u32 last_id;
1212 	int ret;
1213 
1214 	down_write(&devices_rwsem);
1215 	/* Assign a unique name to the device */
1216 	if (strchr(name, '%'))
1217 		ret = alloc_name(device, name);
1218 	else
1219 		ret = dev_set_name(&device->dev, name);
1220 	if (ret)
1221 		goto out;
1222 
1223 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1224 		ret = -ENFILE;
1225 		goto out;
1226 	}
1227 	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1228 
1229 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1230 			&last_id, GFP_KERNEL);
1231 	if (ret > 0)
1232 		ret = 0;
1233 
1234 out:
1235 	up_write(&devices_rwsem);
1236 	return ret;
1237 }
1238 
1239 /*
1240  * setup_device() allocates memory and sets up data that requires calling the
1241  * device ops, this is the only reason these actions are not done during
1242  * ib_alloc_device. It is undone by ib_dealloc_device().
1243  */
1244 static int setup_device(struct ib_device *device)
1245 {
1246 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1247 	int ret;
1248 
1249 	ib_device_check_mandatory(device);
1250 
1251 	ret = setup_port_data(device);
1252 	if (ret) {
1253 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1254 		return ret;
1255 	}
1256 
1257 	memset(&device->attrs, 0, sizeof(device->attrs));
1258 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1259 	if (ret) {
1260 		dev_warn(&device->dev,
1261 			 "Couldn't query the device attributes\n");
1262 		return ret;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static void disable_device(struct ib_device *device)
1269 {
1270 	u32 cid;
1271 
1272 	WARN_ON(!refcount_read(&device->refcount));
1273 
1274 	down_write(&devices_rwsem);
1275 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1276 	up_write(&devices_rwsem);
1277 
1278 	/*
1279 	 * Remove clients in LIFO order, see assign_client_id. This could be
1280 	 * more efficient if xarray learns to reverse iterate. Since no new
1281 	 * clients can be added to this ib_device past this point we only need
1282 	 * the maximum possible client_id value here.
1283 	 */
1284 	down_read(&clients_rwsem);
1285 	cid = highest_client_id;
1286 	up_read(&clients_rwsem);
1287 	while (cid) {
1288 		cid--;
1289 		remove_client_context(device, cid);
1290 	}
1291 
1292 	ib_cq_pool_cleanup(device);
1293 
1294 	/* Pairs with refcount_set in enable_device */
1295 	ib_device_put(device);
1296 	wait_for_completion(&device->unreg_completion);
1297 
1298 	/*
1299 	 * compat devices must be removed after device refcount drops to zero.
1300 	 * Otherwise init_net() may add more compatdevs after removing compat
1301 	 * devices and before device is disabled.
1302 	 */
1303 	remove_compat_devs(device);
1304 }
1305 
1306 /*
1307  * An enabled device is visible to all clients and to all the public facing
1308  * APIs that return a device pointer. This always returns with a new get, even
1309  * if it fails.
1310  */
1311 static int enable_device_and_get(struct ib_device *device)
1312 {
1313 	struct ib_client *client;
1314 	unsigned long index;
1315 	int ret = 0;
1316 
1317 	/*
1318 	 * One ref belongs to the xa and the other belongs to this
1319 	 * thread. This is needed to guard against parallel unregistration.
1320 	 */
1321 	refcount_set(&device->refcount, 2);
1322 	down_write(&devices_rwsem);
1323 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1324 
1325 	/*
1326 	 * By using downgrade_write() we ensure that no other thread can clear
1327 	 * DEVICE_REGISTERED while we are completing the client setup.
1328 	 */
1329 	downgrade_write(&devices_rwsem);
1330 
1331 	if (device->ops.enable_driver) {
1332 		ret = device->ops.enable_driver(device);
1333 		if (ret)
1334 			goto out;
1335 	}
1336 
1337 	down_read(&clients_rwsem);
1338 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1339 		ret = add_client_context(device, client);
1340 		if (ret)
1341 			break;
1342 	}
1343 	up_read(&clients_rwsem);
1344 	if (!ret)
1345 		ret = add_compat_devs(device);
1346 out:
1347 	up_read(&devices_rwsem);
1348 	return ret;
1349 }
1350 
1351 static void prevent_dealloc_device(struct ib_device *ib_dev)
1352 {
1353 }
1354 
1355 static void ib_device_notify_register(struct ib_device *device)
1356 {
1357 	struct net_device *netdev;
1358 	u32 port;
1359 	int ret;
1360 
1361 	ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1362 	if (ret)
1363 		return;
1364 
1365 	rdma_for_each_port(device, port) {
1366 		netdev = ib_device_get_netdev(device, port);
1367 		if (!netdev)
1368 			continue;
1369 
1370 		ret = rdma_nl_notify_event(device, port,
1371 					   RDMA_NETDEV_ATTACH_EVENT);
1372 		dev_put(netdev);
1373 		if (ret)
1374 			return;
1375 	}
1376 }
1377 
1378 /**
1379  * ib_register_device - Register an IB device with IB core
1380  * @device: Device to register
1381  * @name: unique string device name. This may include a '%' which will
1382  * 	  cause a unique index to be added to the passed device name.
1383  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1384  *	        device will be used. In this case the caller should fully
1385  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1386  *
1387  * Low-level drivers use ib_register_device() to register their
1388  * devices with the IB core.  All registered clients will receive a
1389  * callback for each device that is added. @device must be allocated
1390  * with ib_alloc_device().
1391  *
1392  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1393  * asynchronously then the device pointer may become freed as soon as this
1394  * function returns.
1395  */
1396 int ib_register_device(struct ib_device *device, const char *name,
1397 		       struct device *dma_device)
1398 {
1399 	int ret;
1400 
1401 	ret = assign_name(device, name);
1402 	if (ret)
1403 		return ret;
1404 
1405 	/*
1406 	 * If the caller does not provide a DMA capable device then the IB core
1407 	 * will set up ib_sge and scatterlist structures that stash the kernel
1408 	 * virtual address into the address field.
1409 	 */
1410 	WARN_ON(dma_device && !dma_device->dma_parms);
1411 	device->dma_device = dma_device;
1412 
1413 	ret = setup_device(device);
1414 	if (ret)
1415 		return ret;
1416 
1417 	ret = ib_cache_setup_one(device);
1418 	if (ret) {
1419 		dev_warn(&device->dev,
1420 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1421 		return ret;
1422 	}
1423 
1424 	device->groups[0] = &ib_dev_attr_group;
1425 	device->groups[1] = device->ops.device_group;
1426 	ret = ib_setup_device_attrs(device);
1427 	if (ret)
1428 		goto cache_cleanup;
1429 
1430 	ib_device_register_rdmacg(device);
1431 
1432 	rdma_counter_init(device);
1433 
1434 	/*
1435 	 * Ensure that ADD uevent is not fired because it
1436 	 * is too early amd device is not initialized yet.
1437 	 */
1438 	dev_set_uevent_suppress(&device->dev, true);
1439 	ret = device_add(&device->dev);
1440 	if (ret)
1441 		goto cg_cleanup;
1442 
1443 	ret = ib_setup_port_attrs(&device->coredev);
1444 	if (ret) {
1445 		dev_warn(&device->dev,
1446 			 "Couldn't register device with driver model\n");
1447 		goto dev_cleanup;
1448 	}
1449 
1450 	ret = enable_device_and_get(device);
1451 	if (ret) {
1452 		void (*dealloc_fn)(struct ib_device *);
1453 
1454 		/*
1455 		 * If we hit this error flow then we don't want to
1456 		 * automatically dealloc the device since the caller is
1457 		 * expected to call ib_dealloc_device() after
1458 		 * ib_register_device() fails. This is tricky due to the
1459 		 * possibility for a parallel unregistration along with this
1460 		 * error flow. Since we have a refcount here we know any
1461 		 * parallel flow is stopped in disable_device and will see the
1462 		 * special dealloc_driver pointer, causing the responsibility to
1463 		 * ib_dealloc_device() to revert back to this thread.
1464 		 */
1465 		dealloc_fn = device->ops.dealloc_driver;
1466 		device->ops.dealloc_driver = prevent_dealloc_device;
1467 		ib_device_put(device);
1468 		__ib_unregister_device(device);
1469 		device->ops.dealloc_driver = dealloc_fn;
1470 		dev_set_uevent_suppress(&device->dev, false);
1471 		return ret;
1472 	}
1473 	dev_set_uevent_suppress(&device->dev, false);
1474 	/* Mark for userspace that device is ready */
1475 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1476 
1477 	ib_device_notify_register(device);
1478 	ib_device_put(device);
1479 
1480 	return 0;
1481 
1482 dev_cleanup:
1483 	device_del(&device->dev);
1484 cg_cleanup:
1485 	dev_set_uevent_suppress(&device->dev, false);
1486 	ib_device_unregister_rdmacg(device);
1487 cache_cleanup:
1488 	ib_cache_cleanup_one(device);
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL(ib_register_device);
1492 
1493 /* Callers must hold a get on the device. */
1494 static void __ib_unregister_device(struct ib_device *ib_dev)
1495 {
1496 	struct ib_device *sub, *tmp;
1497 
1498 	mutex_lock(&ib_dev->subdev_lock);
1499 	list_for_each_entry_safe_reverse(sub, tmp,
1500 					 &ib_dev->subdev_list_head,
1501 					 subdev_list) {
1502 		list_del(&sub->subdev_list);
1503 		ib_dev->ops.del_sub_dev(sub);
1504 		ib_device_put(ib_dev);
1505 	}
1506 	mutex_unlock(&ib_dev->subdev_lock);
1507 
1508 	/*
1509 	 * We have a registration lock so that all the calls to unregister are
1510 	 * fully fenced, once any unregister returns the device is truely
1511 	 * unregistered even if multiple callers are unregistering it at the
1512 	 * same time. This also interacts with the registration flow and
1513 	 * provides sane semantics if register and unregister are racing.
1514 	 */
1515 	mutex_lock(&ib_dev->unregistration_lock);
1516 	if (!refcount_read(&ib_dev->refcount))
1517 		goto out;
1518 
1519 	disable_device(ib_dev);
1520 	rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1521 
1522 	/* Expedite removing unregistered pointers from the hash table */
1523 	free_netdevs(ib_dev);
1524 
1525 	ib_free_port_attrs(&ib_dev->coredev);
1526 	device_del(&ib_dev->dev);
1527 	ib_device_unregister_rdmacg(ib_dev);
1528 	ib_cache_cleanup_one(ib_dev);
1529 
1530 	/*
1531 	 * Drivers using the new flow may not call ib_dealloc_device except
1532 	 * in error unwind prior to registration success.
1533 	 */
1534 	if (ib_dev->ops.dealloc_driver &&
1535 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1536 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1537 		ib_dealloc_device(ib_dev);
1538 	}
1539 out:
1540 	mutex_unlock(&ib_dev->unregistration_lock);
1541 }
1542 
1543 /**
1544  * ib_unregister_device - Unregister an IB device
1545  * @ib_dev: The device to unregister
1546  *
1547  * Unregister an IB device.  All clients will receive a remove callback.
1548  *
1549  * Callers should call this routine only once, and protect against races with
1550  * registration. Typically it should only be called as part of a remove
1551  * callback in an implementation of driver core's struct device_driver and
1552  * related.
1553  *
1554  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1555  * this function.
1556  */
1557 void ib_unregister_device(struct ib_device *ib_dev)
1558 {
1559 	get_device(&ib_dev->dev);
1560 	__ib_unregister_device(ib_dev);
1561 	put_device(&ib_dev->dev);
1562 }
1563 EXPORT_SYMBOL(ib_unregister_device);
1564 
1565 /**
1566  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1567  * @ib_dev: The device to unregister
1568  *
1569  * This is the same as ib_unregister_device(), except it includes an internal
1570  * ib_device_put() that should match a 'get' obtained by the caller.
1571  *
1572  * It is safe to call this routine concurrently from multiple threads while
1573  * holding the 'get'. When the function returns the device is fully
1574  * unregistered.
1575  *
1576  * Drivers using this flow MUST use the driver_unregister callback to clean up
1577  * their resources associated with the device and dealloc it.
1578  */
1579 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1580 {
1581 	WARN_ON(!ib_dev->ops.dealloc_driver);
1582 	get_device(&ib_dev->dev);
1583 	ib_device_put(ib_dev);
1584 	__ib_unregister_device(ib_dev);
1585 	put_device(&ib_dev->dev);
1586 }
1587 EXPORT_SYMBOL(ib_unregister_device_and_put);
1588 
1589 /**
1590  * ib_unregister_driver - Unregister all IB devices for a driver
1591  * @driver_id: The driver to unregister
1592  *
1593  * This implements a fence for device unregistration. It only returns once all
1594  * devices associated with the driver_id have fully completed their
1595  * unregistration and returned from ib_unregister_device*().
1596  *
1597  * If device's are not yet unregistered it goes ahead and starts unregistering
1598  * them.
1599  *
1600  * This does not block creation of new devices with the given driver_id, that
1601  * is the responsibility of the caller.
1602  */
1603 void ib_unregister_driver(enum rdma_driver_id driver_id)
1604 {
1605 	struct ib_device *ib_dev;
1606 	unsigned long index;
1607 
1608 	down_read(&devices_rwsem);
1609 	xa_for_each (&devices, index, ib_dev) {
1610 		if (ib_dev->ops.driver_id != driver_id)
1611 			continue;
1612 
1613 		get_device(&ib_dev->dev);
1614 		up_read(&devices_rwsem);
1615 
1616 		WARN_ON(!ib_dev->ops.dealloc_driver);
1617 		__ib_unregister_device(ib_dev);
1618 
1619 		put_device(&ib_dev->dev);
1620 		down_read(&devices_rwsem);
1621 	}
1622 	up_read(&devices_rwsem);
1623 }
1624 EXPORT_SYMBOL(ib_unregister_driver);
1625 
1626 static void ib_unregister_work(struct work_struct *work)
1627 {
1628 	struct ib_device *ib_dev =
1629 		container_of(work, struct ib_device, unregistration_work);
1630 
1631 	__ib_unregister_device(ib_dev);
1632 	put_device(&ib_dev->dev);
1633 }
1634 
1635 /**
1636  * ib_unregister_device_queued - Unregister a device using a work queue
1637  * @ib_dev: The device to unregister
1638  *
1639  * This schedules an asynchronous unregistration using a WQ for the device. A
1640  * driver should use this to avoid holding locks while doing unregistration,
1641  * such as holding the RTNL lock.
1642  *
1643  * Drivers using this API must use ib_unregister_driver before module unload
1644  * to ensure that all scheduled unregistrations have completed.
1645  */
1646 void ib_unregister_device_queued(struct ib_device *ib_dev)
1647 {
1648 	WARN_ON(!refcount_read(&ib_dev->refcount));
1649 	WARN_ON(!ib_dev->ops.dealloc_driver);
1650 	get_device(&ib_dev->dev);
1651 	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1652 		put_device(&ib_dev->dev);
1653 }
1654 EXPORT_SYMBOL(ib_unregister_device_queued);
1655 
1656 /*
1657  * The caller must pass in a device that has the kref held and the refcount
1658  * released. If the device is in cur_net and still registered then it is moved
1659  * into net.
1660  */
1661 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1662 				 struct net *net)
1663 {
1664 	int ret2 = -EINVAL;
1665 	int ret;
1666 
1667 	mutex_lock(&device->unregistration_lock);
1668 
1669 	/*
1670 	 * If a device not under ib_device_get() or if the unregistration_lock
1671 	 * is not held, the namespace can be changed, or it can be unregistered.
1672 	 * Check again under the lock.
1673 	 */
1674 	if (refcount_read(&device->refcount) == 0 ||
1675 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1676 		ret = -ENODEV;
1677 		goto out;
1678 	}
1679 
1680 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1681 	disable_device(device);
1682 
1683 	/*
1684 	 * At this point no one can be using the device, so it is safe to
1685 	 * change the namespace.
1686 	 */
1687 	write_pnet(&device->coredev.rdma_net, net);
1688 
1689 	down_read(&devices_rwsem);
1690 	/*
1691 	 * Currently rdma devices are system wide unique. So the device name
1692 	 * is guaranteed free in the new namespace. Publish the new namespace
1693 	 * at the sysfs level.
1694 	 */
1695 	ret = device_rename(&device->dev, dev_name(&device->dev));
1696 	up_read(&devices_rwsem);
1697 	if (ret) {
1698 		dev_warn(&device->dev,
1699 			 "%s: Couldn't rename device after namespace change\n",
1700 			 __func__);
1701 		/* Try and put things back and re-enable the device */
1702 		write_pnet(&device->coredev.rdma_net, cur_net);
1703 	}
1704 
1705 	ret2 = enable_device_and_get(device);
1706 	if (ret2) {
1707 		/*
1708 		 * This shouldn't really happen, but if it does, let the user
1709 		 * retry at later point. So don't disable the device.
1710 		 */
1711 		dev_warn(&device->dev,
1712 			 "%s: Couldn't re-enable device after namespace change\n",
1713 			 __func__);
1714 	}
1715 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1716 
1717 	ib_device_put(device);
1718 out:
1719 	mutex_unlock(&device->unregistration_lock);
1720 	if (ret)
1721 		return ret;
1722 	return ret2;
1723 }
1724 
1725 int ib_device_set_netns_put(struct sk_buff *skb,
1726 			    struct ib_device *dev, u32 ns_fd)
1727 {
1728 	struct net *net;
1729 	int ret;
1730 
1731 	net = get_net_ns_by_fd(ns_fd);
1732 	if (IS_ERR(net)) {
1733 		ret = PTR_ERR(net);
1734 		goto net_err;
1735 	}
1736 
1737 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1738 		ret = -EPERM;
1739 		goto ns_err;
1740 	}
1741 
1742 	/*
1743 	 * All the ib_clients, including uverbs, are reset when the namespace is
1744 	 * changed and this cannot be blocked waiting for userspace to do
1745 	 * something, so disassociation is mandatory.
1746 	 */
1747 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1748 		ret = -EOPNOTSUPP;
1749 		goto ns_err;
1750 	}
1751 
1752 	get_device(&dev->dev);
1753 	ib_device_put(dev);
1754 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1755 	put_device(&dev->dev);
1756 
1757 	put_net(net);
1758 	return ret;
1759 
1760 ns_err:
1761 	put_net(net);
1762 net_err:
1763 	ib_device_put(dev);
1764 	return ret;
1765 }
1766 
1767 static struct pernet_operations rdma_dev_net_ops = {
1768 	.init = rdma_dev_init_net,
1769 	.exit = rdma_dev_exit_net,
1770 	.id = &rdma_dev_net_id,
1771 	.size = sizeof(struct rdma_dev_net),
1772 };
1773 
1774 static int assign_client_id(struct ib_client *client)
1775 {
1776 	int ret;
1777 
1778 	lockdep_assert_held(&clients_rwsem);
1779 	/*
1780 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1781 	 * achieve this we assign client_ids so they are sorted in
1782 	 * registration order.
1783 	 */
1784 	client->client_id = highest_client_id;
1785 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1786 	if (ret)
1787 		return ret;
1788 
1789 	highest_client_id++;
1790 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1791 	return 0;
1792 }
1793 
1794 static void remove_client_id(struct ib_client *client)
1795 {
1796 	down_write(&clients_rwsem);
1797 	xa_erase(&clients, client->client_id);
1798 	for (; highest_client_id; highest_client_id--)
1799 		if (xa_load(&clients, highest_client_id - 1))
1800 			break;
1801 	up_write(&clients_rwsem);
1802 }
1803 
1804 /**
1805  * ib_register_client - Register an IB client
1806  * @client:Client to register
1807  *
1808  * Upper level users of the IB drivers can use ib_register_client() to
1809  * register callbacks for IB device addition and removal.  When an IB
1810  * device is added, each registered client's add method will be called
1811  * (in the order the clients were registered), and when a device is
1812  * removed, each client's remove method will be called (in the reverse
1813  * order that clients were registered).  In addition, when
1814  * ib_register_client() is called, the client will receive an add
1815  * callback for all devices already registered.
1816  */
1817 int ib_register_client(struct ib_client *client)
1818 {
1819 	struct ib_device *device;
1820 	unsigned long index;
1821 	bool need_unreg = false;
1822 	int ret;
1823 
1824 	refcount_set(&client->uses, 1);
1825 	init_completion(&client->uses_zero);
1826 
1827 	/*
1828 	 * The devices_rwsem is held in write mode to ensure that a racing
1829 	 * ib_register_device() sees a consisent view of clients and devices.
1830 	 */
1831 	down_write(&devices_rwsem);
1832 	down_write(&clients_rwsem);
1833 	ret = assign_client_id(client);
1834 	if (ret)
1835 		goto out;
1836 
1837 	need_unreg = true;
1838 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1839 		ret = add_client_context(device, client);
1840 		if (ret)
1841 			goto out;
1842 	}
1843 	ret = 0;
1844 out:
1845 	up_write(&clients_rwsem);
1846 	up_write(&devices_rwsem);
1847 	if (need_unreg && ret)
1848 		ib_unregister_client(client);
1849 	return ret;
1850 }
1851 EXPORT_SYMBOL(ib_register_client);
1852 
1853 /**
1854  * ib_unregister_client - Unregister an IB client
1855  * @client:Client to unregister
1856  *
1857  * Upper level users use ib_unregister_client() to remove their client
1858  * registration.  When ib_unregister_client() is called, the client
1859  * will receive a remove callback for each IB device still registered.
1860  *
1861  * This is a full fence, once it returns no client callbacks will be called,
1862  * or are running in another thread.
1863  */
1864 void ib_unregister_client(struct ib_client *client)
1865 {
1866 	struct ib_device *device;
1867 	unsigned long index;
1868 
1869 	down_write(&clients_rwsem);
1870 	ib_client_put(client);
1871 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1872 	up_write(&clients_rwsem);
1873 
1874 	/* We do not want to have locks while calling client->remove() */
1875 	rcu_read_lock();
1876 	xa_for_each (&devices, index, device) {
1877 		if (!ib_device_try_get(device))
1878 			continue;
1879 		rcu_read_unlock();
1880 
1881 		remove_client_context(device, client->client_id);
1882 
1883 		ib_device_put(device);
1884 		rcu_read_lock();
1885 	}
1886 	rcu_read_unlock();
1887 
1888 	/*
1889 	 * remove_client_context() is not a fence, it can return even though a
1890 	 * removal is ongoing. Wait until all removals are completed.
1891 	 */
1892 	wait_for_completion(&client->uses_zero);
1893 	remove_client_id(client);
1894 }
1895 EXPORT_SYMBOL(ib_unregister_client);
1896 
1897 static int __ib_get_global_client_nl_info(const char *client_name,
1898 					  struct ib_client_nl_info *res)
1899 {
1900 	struct ib_client *client;
1901 	unsigned long index;
1902 	int ret = -ENOENT;
1903 
1904 	down_read(&clients_rwsem);
1905 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1906 		if (strcmp(client->name, client_name) != 0)
1907 			continue;
1908 		if (!client->get_global_nl_info) {
1909 			ret = -EOPNOTSUPP;
1910 			break;
1911 		}
1912 		ret = client->get_global_nl_info(res);
1913 		if (WARN_ON(ret == -ENOENT))
1914 			ret = -EINVAL;
1915 		if (!ret && res->cdev)
1916 			get_device(res->cdev);
1917 		break;
1918 	}
1919 	up_read(&clients_rwsem);
1920 	return ret;
1921 }
1922 
1923 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1924 				   const char *client_name,
1925 				   struct ib_client_nl_info *res)
1926 {
1927 	unsigned long index;
1928 	void *client_data;
1929 	int ret = -ENOENT;
1930 
1931 	down_read(&ibdev->client_data_rwsem);
1932 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1933 			     CLIENT_DATA_REGISTERED) {
1934 		struct ib_client *client = xa_load(&clients, index);
1935 
1936 		if (!client || strcmp(client->name, client_name) != 0)
1937 			continue;
1938 		if (!client->get_nl_info) {
1939 			ret = -EOPNOTSUPP;
1940 			break;
1941 		}
1942 		ret = client->get_nl_info(ibdev, client_data, res);
1943 		if (WARN_ON(ret == -ENOENT))
1944 			ret = -EINVAL;
1945 
1946 		/*
1947 		 * The cdev is guaranteed valid as long as we are inside the
1948 		 * client_data_rwsem as remove_one can't be called. Keep it
1949 		 * valid for the caller.
1950 		 */
1951 		if (!ret && res->cdev)
1952 			get_device(res->cdev);
1953 		break;
1954 	}
1955 	up_read(&ibdev->client_data_rwsem);
1956 
1957 	return ret;
1958 }
1959 
1960 /**
1961  * ib_get_client_nl_info - Fetch the nl_info from a client
1962  * @ibdev: IB device
1963  * @client_name: Name of the client
1964  * @res: Result of the query
1965  */
1966 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1967 			  struct ib_client_nl_info *res)
1968 {
1969 	int ret;
1970 
1971 	if (ibdev)
1972 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1973 	else
1974 		ret = __ib_get_global_client_nl_info(client_name, res);
1975 #ifdef CONFIG_MODULES
1976 	if (ret == -ENOENT) {
1977 		request_module("rdma-client-%s", client_name);
1978 		if (ibdev)
1979 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1980 		else
1981 			ret = __ib_get_global_client_nl_info(client_name, res);
1982 	}
1983 #endif
1984 	if (ret) {
1985 		if (ret == -ENOENT)
1986 			return -EOPNOTSUPP;
1987 		return ret;
1988 	}
1989 
1990 	if (WARN_ON(!res->cdev))
1991 		return -EINVAL;
1992 	return 0;
1993 }
1994 
1995 /**
1996  * ib_set_client_data - Set IB client context
1997  * @device:Device to set context for
1998  * @client:Client to set context for
1999  * @data:Context to set
2000  *
2001  * ib_set_client_data() sets client context data that can be retrieved with
2002  * ib_get_client_data(). This can only be called while the client is
2003  * registered to the device, once the ib_client remove() callback returns this
2004  * cannot be called.
2005  */
2006 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2007 			void *data)
2008 {
2009 	void *rc;
2010 
2011 	if (WARN_ON(IS_ERR(data)))
2012 		data = NULL;
2013 
2014 	rc = xa_store(&device->client_data, client->client_id, data,
2015 		      GFP_KERNEL);
2016 	WARN_ON(xa_is_err(rc));
2017 }
2018 EXPORT_SYMBOL(ib_set_client_data);
2019 
2020 /**
2021  * ib_register_event_handler - Register an IB event handler
2022  * @event_handler:Handler to register
2023  *
2024  * ib_register_event_handler() registers an event handler that will be
2025  * called back when asynchronous IB events occur (as defined in
2026  * chapter 11 of the InfiniBand Architecture Specification). This
2027  * callback occurs in workqueue context.
2028  */
2029 void ib_register_event_handler(struct ib_event_handler *event_handler)
2030 {
2031 	down_write(&event_handler->device->event_handler_rwsem);
2032 	list_add_tail(&event_handler->list,
2033 		      &event_handler->device->event_handler_list);
2034 	up_write(&event_handler->device->event_handler_rwsem);
2035 }
2036 EXPORT_SYMBOL(ib_register_event_handler);
2037 
2038 /**
2039  * ib_unregister_event_handler - Unregister an event handler
2040  * @event_handler:Handler to unregister
2041  *
2042  * Unregister an event handler registered with
2043  * ib_register_event_handler().
2044  */
2045 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2046 {
2047 	down_write(&event_handler->device->event_handler_rwsem);
2048 	list_del(&event_handler->list);
2049 	up_write(&event_handler->device->event_handler_rwsem);
2050 }
2051 EXPORT_SYMBOL(ib_unregister_event_handler);
2052 
2053 void ib_dispatch_event_clients(struct ib_event *event)
2054 {
2055 	struct ib_event_handler *handler;
2056 
2057 	down_read(&event->device->event_handler_rwsem);
2058 
2059 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2060 		handler->handler(handler, event);
2061 
2062 	up_read(&event->device->event_handler_rwsem);
2063 }
2064 
2065 static int iw_query_port(struct ib_device *device,
2066 			   u32 port_num,
2067 			   struct ib_port_attr *port_attr)
2068 {
2069 	struct in_device *inetdev;
2070 	struct net_device *netdev;
2071 
2072 	memset(port_attr, 0, sizeof(*port_attr));
2073 
2074 	netdev = ib_device_get_netdev(device, port_num);
2075 	if (!netdev)
2076 		return -ENODEV;
2077 
2078 	port_attr->max_mtu = IB_MTU_4096;
2079 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2080 
2081 	if (!netif_carrier_ok(netdev)) {
2082 		port_attr->state = IB_PORT_DOWN;
2083 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2084 	} else {
2085 		rcu_read_lock();
2086 		inetdev = __in_dev_get_rcu(netdev);
2087 
2088 		if (inetdev && inetdev->ifa_list) {
2089 			port_attr->state = IB_PORT_ACTIVE;
2090 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2091 		} else {
2092 			port_attr->state = IB_PORT_INIT;
2093 			port_attr->phys_state =
2094 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2095 		}
2096 
2097 		rcu_read_unlock();
2098 	}
2099 
2100 	dev_put(netdev);
2101 	return device->ops.query_port(device, port_num, port_attr);
2102 }
2103 
2104 static int __ib_query_port(struct ib_device *device,
2105 			   u32 port_num,
2106 			   struct ib_port_attr *port_attr)
2107 {
2108 	int err;
2109 
2110 	memset(port_attr, 0, sizeof(*port_attr));
2111 
2112 	err = device->ops.query_port(device, port_num, port_attr);
2113 	if (err || port_attr->subnet_prefix)
2114 		return err;
2115 
2116 	if (rdma_port_get_link_layer(device, port_num) !=
2117 	    IB_LINK_LAYER_INFINIBAND)
2118 		return 0;
2119 
2120 	ib_get_cached_subnet_prefix(device, port_num,
2121 				    &port_attr->subnet_prefix);
2122 	return 0;
2123 }
2124 
2125 /**
2126  * ib_query_port - Query IB port attributes
2127  * @device:Device to query
2128  * @port_num:Port number to query
2129  * @port_attr:Port attributes
2130  *
2131  * ib_query_port() returns the attributes of a port through the
2132  * @port_attr pointer.
2133  */
2134 int ib_query_port(struct ib_device *device,
2135 		  u32 port_num,
2136 		  struct ib_port_attr *port_attr)
2137 {
2138 	if (!rdma_is_port_valid(device, port_num))
2139 		return -EINVAL;
2140 
2141 	if (rdma_protocol_iwarp(device, port_num))
2142 		return iw_query_port(device, port_num, port_attr);
2143 	else
2144 		return __ib_query_port(device, port_num, port_attr);
2145 }
2146 EXPORT_SYMBOL(ib_query_port);
2147 
2148 static void add_ndev_hash(struct ib_port_data *pdata)
2149 {
2150 	unsigned long flags;
2151 
2152 	might_sleep();
2153 
2154 	spin_lock_irqsave(&ndev_hash_lock, flags);
2155 	if (hash_hashed(&pdata->ndev_hash_link)) {
2156 		hash_del_rcu(&pdata->ndev_hash_link);
2157 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2158 		/*
2159 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2160 		 * grace period
2161 		 */
2162 		synchronize_rcu();
2163 		spin_lock_irqsave(&ndev_hash_lock, flags);
2164 	}
2165 	if (pdata->netdev)
2166 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2167 			     (uintptr_t)pdata->netdev);
2168 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2169 }
2170 
2171 /**
2172  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2173  * @ib_dev: Device to modify
2174  * @ndev: net_device to affiliate, may be NULL
2175  * @port: IB port the net_device is connected to
2176  *
2177  * Drivers should use this to link the ib_device to a netdev so the netdev
2178  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2179  * affiliated with any port.
2180  *
2181  * The caller must ensure that the given ndev is not unregistered or
2182  * unregistering, and that either the ib_device is unregistered or
2183  * ib_device_set_netdev() is called with NULL when the ndev sends a
2184  * NETDEV_UNREGISTER event.
2185  */
2186 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2187 			 u32 port)
2188 {
2189 	enum rdma_nl_notify_event_type etype;
2190 	struct net_device *old_ndev;
2191 	struct ib_port_data *pdata;
2192 	unsigned long flags;
2193 	int ret;
2194 
2195 	if (!rdma_is_port_valid(ib_dev, port))
2196 		return -EINVAL;
2197 
2198 	/*
2199 	 * Drivers wish to call this before ib_register_driver, so we have to
2200 	 * setup the port data early.
2201 	 */
2202 	ret = alloc_port_data(ib_dev);
2203 	if (ret)
2204 		return ret;
2205 
2206 	pdata = &ib_dev->port_data[port];
2207 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2208 	old_ndev = rcu_dereference_protected(
2209 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2210 	if (old_ndev == ndev) {
2211 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2212 		return 0;
2213 	}
2214 
2215 	rcu_assign_pointer(pdata->netdev, ndev);
2216 	netdev_put(old_ndev, &pdata->netdev_tracker);
2217 	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2218 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2219 
2220 	add_ndev_hash(pdata);
2221 
2222 	/* Make sure that the device is registered before we send events */
2223 	if (xa_load(&devices, ib_dev->index) != ib_dev)
2224 		return 0;
2225 
2226 	etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2227 	rdma_nl_notify_event(ib_dev, port, etype);
2228 
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(ib_device_set_netdev);
2232 
2233 static void free_netdevs(struct ib_device *ib_dev)
2234 {
2235 	unsigned long flags;
2236 	u32 port;
2237 
2238 	if (!ib_dev->port_data)
2239 		return;
2240 
2241 	rdma_for_each_port (ib_dev, port) {
2242 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2243 		struct net_device *ndev;
2244 
2245 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2246 		ndev = rcu_dereference_protected(
2247 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2248 		if (ndev) {
2249 			spin_lock(&ndev_hash_lock);
2250 			hash_del_rcu(&pdata->ndev_hash_link);
2251 			spin_unlock(&ndev_hash_lock);
2252 
2253 			/*
2254 			 * If this is the last dev_put there is still a
2255 			 * synchronize_rcu before the netdev is kfreed, so we
2256 			 * can continue to rely on unlocked pointer
2257 			 * comparisons after the put
2258 			 */
2259 			rcu_assign_pointer(pdata->netdev, NULL);
2260 			netdev_put(ndev, &pdata->netdev_tracker);
2261 		}
2262 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2263 	}
2264 }
2265 
2266 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2267 					u32 port)
2268 {
2269 	struct ib_port_data *pdata;
2270 	struct net_device *res;
2271 
2272 	if (!rdma_is_port_valid(ib_dev, port))
2273 		return NULL;
2274 
2275 	if (!ib_dev->port_data)
2276 		return NULL;
2277 
2278 	pdata = &ib_dev->port_data[port];
2279 
2280 	/*
2281 	 * New drivers should use ib_device_set_netdev() not the legacy
2282 	 * get_netdev().
2283 	 */
2284 	if (ib_dev->ops.get_netdev)
2285 		res = ib_dev->ops.get_netdev(ib_dev, port);
2286 	else {
2287 		spin_lock(&pdata->netdev_lock);
2288 		res = rcu_dereference_protected(
2289 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2290 		dev_hold(res);
2291 		spin_unlock(&pdata->netdev_lock);
2292 	}
2293 
2294 	return res;
2295 }
2296 EXPORT_SYMBOL(ib_device_get_netdev);
2297 
2298 /**
2299  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2300  * @ndev: netdev to locate
2301  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2302  *
2303  * Find and hold an ib_device that is associated with a netdev via
2304  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2305  * returned pointer.
2306  */
2307 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2308 					  enum rdma_driver_id driver_id)
2309 {
2310 	struct ib_device *res = NULL;
2311 	struct ib_port_data *cur;
2312 
2313 	rcu_read_lock();
2314 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2315 				    (uintptr_t)ndev) {
2316 		if (rcu_access_pointer(cur->netdev) == ndev &&
2317 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2318 		     cur->ib_dev->ops.driver_id == driver_id) &&
2319 		    ib_device_try_get(cur->ib_dev)) {
2320 			res = cur->ib_dev;
2321 			break;
2322 		}
2323 	}
2324 	rcu_read_unlock();
2325 
2326 	return res;
2327 }
2328 EXPORT_SYMBOL(ib_device_get_by_netdev);
2329 
2330 /**
2331  * ib_enum_roce_netdev - enumerate all RoCE ports
2332  * @ib_dev : IB device we want to query
2333  * @filter: Should we call the callback?
2334  * @filter_cookie: Cookie passed to filter
2335  * @cb: Callback to call for each found RoCE ports
2336  * @cookie: Cookie passed back to the callback
2337  *
2338  * Enumerates all of the physical RoCE ports of ib_dev
2339  * which are related to netdevice and calls callback() on each
2340  * device for which filter() function returns non zero.
2341  */
2342 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2343 			 roce_netdev_filter filter,
2344 			 void *filter_cookie,
2345 			 roce_netdev_callback cb,
2346 			 void *cookie)
2347 {
2348 	u32 port;
2349 
2350 	rdma_for_each_port (ib_dev, port)
2351 		if (rdma_protocol_roce(ib_dev, port)) {
2352 			struct net_device *idev =
2353 				ib_device_get_netdev(ib_dev, port);
2354 
2355 			if (filter(ib_dev, port, idev, filter_cookie))
2356 				cb(ib_dev, port, idev, cookie);
2357 			dev_put(idev);
2358 		}
2359 }
2360 
2361 /**
2362  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2363  * @filter: Should we call the callback?
2364  * @filter_cookie: Cookie passed to filter
2365  * @cb: Callback to call for each found RoCE ports
2366  * @cookie: Cookie passed back to the callback
2367  *
2368  * Enumerates all RoCE devices' physical ports which are related
2369  * to netdevices and calls callback() on each device for which
2370  * filter() function returns non zero.
2371  */
2372 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2373 			      void *filter_cookie,
2374 			      roce_netdev_callback cb,
2375 			      void *cookie)
2376 {
2377 	struct ib_device *dev;
2378 	unsigned long index;
2379 
2380 	down_read(&devices_rwsem);
2381 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2382 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2383 	up_read(&devices_rwsem);
2384 }
2385 
2386 /*
2387  * ib_enum_all_devs - enumerate all ib_devices
2388  * @cb: Callback to call for each found ib_device
2389  *
2390  * Enumerates all ib_devices and calls callback() on each device.
2391  */
2392 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2393 		     struct netlink_callback *cb)
2394 {
2395 	unsigned long index;
2396 	struct ib_device *dev;
2397 	unsigned int idx = 0;
2398 	int ret = 0;
2399 
2400 	down_read(&devices_rwsem);
2401 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2402 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2403 			continue;
2404 
2405 		ret = nldev_cb(dev, skb, cb, idx);
2406 		if (ret)
2407 			break;
2408 		idx++;
2409 	}
2410 	up_read(&devices_rwsem);
2411 	return ret;
2412 }
2413 
2414 /**
2415  * ib_query_pkey - Get P_Key table entry
2416  * @device:Device to query
2417  * @port_num:Port number to query
2418  * @index:P_Key table index to query
2419  * @pkey:Returned P_Key
2420  *
2421  * ib_query_pkey() fetches the specified P_Key table entry.
2422  */
2423 int ib_query_pkey(struct ib_device *device,
2424 		  u32 port_num, u16 index, u16 *pkey)
2425 {
2426 	if (!rdma_is_port_valid(device, port_num))
2427 		return -EINVAL;
2428 
2429 	if (!device->ops.query_pkey)
2430 		return -EOPNOTSUPP;
2431 
2432 	return device->ops.query_pkey(device, port_num, index, pkey);
2433 }
2434 EXPORT_SYMBOL(ib_query_pkey);
2435 
2436 /**
2437  * ib_modify_device - Change IB device attributes
2438  * @device:Device to modify
2439  * @device_modify_mask:Mask of attributes to change
2440  * @device_modify:New attribute values
2441  *
2442  * ib_modify_device() changes a device's attributes as specified by
2443  * the @device_modify_mask and @device_modify structure.
2444  */
2445 int ib_modify_device(struct ib_device *device,
2446 		     int device_modify_mask,
2447 		     struct ib_device_modify *device_modify)
2448 {
2449 	if (!device->ops.modify_device)
2450 		return -EOPNOTSUPP;
2451 
2452 	return device->ops.modify_device(device, device_modify_mask,
2453 					 device_modify);
2454 }
2455 EXPORT_SYMBOL(ib_modify_device);
2456 
2457 /**
2458  * ib_modify_port - Modifies the attributes for the specified port.
2459  * @device: The device to modify.
2460  * @port_num: The number of the port to modify.
2461  * @port_modify_mask: Mask used to specify which attributes of the port
2462  *   to change.
2463  * @port_modify: New attribute values for the port.
2464  *
2465  * ib_modify_port() changes a port's attributes as specified by the
2466  * @port_modify_mask and @port_modify structure.
2467  */
2468 int ib_modify_port(struct ib_device *device,
2469 		   u32 port_num, int port_modify_mask,
2470 		   struct ib_port_modify *port_modify)
2471 {
2472 	int rc;
2473 
2474 	if (!rdma_is_port_valid(device, port_num))
2475 		return -EINVAL;
2476 
2477 	if (device->ops.modify_port)
2478 		rc = device->ops.modify_port(device, port_num,
2479 					     port_modify_mask,
2480 					     port_modify);
2481 	else if (rdma_protocol_roce(device, port_num) &&
2482 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2483 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2484 		rc = 0;
2485 	else
2486 		rc = -EOPNOTSUPP;
2487 	return rc;
2488 }
2489 EXPORT_SYMBOL(ib_modify_port);
2490 
2491 /**
2492  * ib_find_gid - Returns the port number and GID table index where
2493  *   a specified GID value occurs. Its searches only for IB link layer.
2494  * @device: The device to query.
2495  * @gid: The GID value to search for.
2496  * @port_num: The port number of the device where the GID value was found.
2497  * @index: The index into the GID table where the GID was found.  This
2498  *   parameter may be NULL.
2499  */
2500 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2501 		u32 *port_num, u16 *index)
2502 {
2503 	union ib_gid tmp_gid;
2504 	u32 port;
2505 	int ret, i;
2506 
2507 	rdma_for_each_port (device, port) {
2508 		if (!rdma_protocol_ib(device, port))
2509 			continue;
2510 
2511 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2512 		     ++i) {
2513 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2514 			if (ret)
2515 				continue;
2516 
2517 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2518 				*port_num = port;
2519 				if (index)
2520 					*index = i;
2521 				return 0;
2522 			}
2523 		}
2524 	}
2525 
2526 	return -ENOENT;
2527 }
2528 EXPORT_SYMBOL(ib_find_gid);
2529 
2530 /**
2531  * ib_find_pkey - Returns the PKey table index where a specified
2532  *   PKey value occurs.
2533  * @device: The device to query.
2534  * @port_num: The port number of the device to search for the PKey.
2535  * @pkey: The PKey value to search for.
2536  * @index: The index into the PKey table where the PKey was found.
2537  */
2538 int ib_find_pkey(struct ib_device *device,
2539 		 u32 port_num, u16 pkey, u16 *index)
2540 {
2541 	int ret, i;
2542 	u16 tmp_pkey;
2543 	int partial_ix = -1;
2544 
2545 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2546 	     ++i) {
2547 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2548 		if (ret)
2549 			return ret;
2550 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2551 			/* if there is full-member pkey take it.*/
2552 			if (tmp_pkey & 0x8000) {
2553 				*index = i;
2554 				return 0;
2555 			}
2556 			if (partial_ix < 0)
2557 				partial_ix = i;
2558 		}
2559 	}
2560 
2561 	/*no full-member, if exists take the limited*/
2562 	if (partial_ix >= 0) {
2563 		*index = partial_ix;
2564 		return 0;
2565 	}
2566 	return -ENOENT;
2567 }
2568 EXPORT_SYMBOL(ib_find_pkey);
2569 
2570 /**
2571  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2572  * for a received CM request
2573  * @dev:	An RDMA device on which the request has been received.
2574  * @port:	Port number on the RDMA device.
2575  * @pkey:	The Pkey the request came on.
2576  * @gid:	A GID that the net_dev uses to communicate.
2577  * @addr:	Contains the IP address that the request specified as its
2578  *		destination.
2579  *
2580  */
2581 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2582 					    u32 port,
2583 					    u16 pkey,
2584 					    const union ib_gid *gid,
2585 					    const struct sockaddr *addr)
2586 {
2587 	struct net_device *net_dev = NULL;
2588 	unsigned long index;
2589 	void *client_data;
2590 
2591 	if (!rdma_protocol_ib(dev, port))
2592 		return NULL;
2593 
2594 	/*
2595 	 * Holding the read side guarantees that the client will not become
2596 	 * unregistered while we are calling get_net_dev_by_params()
2597 	 */
2598 	down_read(&dev->client_data_rwsem);
2599 	xan_for_each_marked (&dev->client_data, index, client_data,
2600 			     CLIENT_DATA_REGISTERED) {
2601 		struct ib_client *client = xa_load(&clients, index);
2602 
2603 		if (!client || !client->get_net_dev_by_params)
2604 			continue;
2605 
2606 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2607 							addr, client_data);
2608 		if (net_dev)
2609 			break;
2610 	}
2611 	up_read(&dev->client_data_rwsem);
2612 
2613 	return net_dev;
2614 }
2615 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2616 
2617 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2618 {
2619 	struct ib_device_ops *dev_ops = &dev->ops;
2620 #define SET_DEVICE_OP(ptr, name)                                               \
2621 	do {                                                                   \
2622 		if (ops->name)                                                 \
2623 			if (!((ptr)->name))				       \
2624 				(ptr)->name = ops->name;                       \
2625 	} while (0)
2626 
2627 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2628 
2629 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2630 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2631 			dev_ops->driver_id != ops->driver_id);
2632 		dev_ops->driver_id = ops->driver_id;
2633 	}
2634 	if (ops->owner) {
2635 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2636 		dev_ops->owner = ops->owner;
2637 	}
2638 	if (ops->uverbs_abi_ver)
2639 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2640 
2641 	dev_ops->uverbs_no_driver_id_binding |=
2642 		ops->uverbs_no_driver_id_binding;
2643 
2644 	SET_DEVICE_OP(dev_ops, add_gid);
2645 	SET_DEVICE_OP(dev_ops, add_sub_dev);
2646 	SET_DEVICE_OP(dev_ops, advise_mr);
2647 	SET_DEVICE_OP(dev_ops, alloc_dm);
2648 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2649 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2650 	SET_DEVICE_OP(dev_ops, alloc_mr);
2651 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2652 	SET_DEVICE_OP(dev_ops, alloc_mw);
2653 	SET_DEVICE_OP(dev_ops, alloc_pd);
2654 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2655 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2656 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2657 	SET_DEVICE_OP(dev_ops, attach_mcast);
2658 	SET_DEVICE_OP(dev_ops, check_mr_status);
2659 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2660 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2661 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2662 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2663 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2664 	SET_DEVICE_OP(dev_ops, create_ah);
2665 	SET_DEVICE_OP(dev_ops, create_counters);
2666 	SET_DEVICE_OP(dev_ops, create_cq);
2667 	SET_DEVICE_OP(dev_ops, create_flow);
2668 	SET_DEVICE_OP(dev_ops, create_qp);
2669 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2670 	SET_DEVICE_OP(dev_ops, create_srq);
2671 	SET_DEVICE_OP(dev_ops, create_user_ah);
2672 	SET_DEVICE_OP(dev_ops, create_wq);
2673 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2674 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2675 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2676 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2677 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2678 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2679 	SET_DEVICE_OP(dev_ops, del_gid);
2680 	SET_DEVICE_OP(dev_ops, del_sub_dev);
2681 	SET_DEVICE_OP(dev_ops, dereg_mr);
2682 	SET_DEVICE_OP(dev_ops, destroy_ah);
2683 	SET_DEVICE_OP(dev_ops, destroy_counters);
2684 	SET_DEVICE_OP(dev_ops, destroy_cq);
2685 	SET_DEVICE_OP(dev_ops, destroy_flow);
2686 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2687 	SET_DEVICE_OP(dev_ops, destroy_qp);
2688 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2689 	SET_DEVICE_OP(dev_ops, destroy_srq);
2690 	SET_DEVICE_OP(dev_ops, destroy_wq);
2691 	SET_DEVICE_OP(dev_ops, device_group);
2692 	SET_DEVICE_OP(dev_ops, detach_mcast);
2693 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2694 	SET_DEVICE_OP(dev_ops, drain_rq);
2695 	SET_DEVICE_OP(dev_ops, drain_sq);
2696 	SET_DEVICE_OP(dev_ops, enable_driver);
2697 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2698 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2699 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2700 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2701 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2702 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2703 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2704 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2705 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2706 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2707 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2708 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2709 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2710 	SET_DEVICE_OP(dev_ops, get_link_layer);
2711 	SET_DEVICE_OP(dev_ops, get_netdev);
2712 	SET_DEVICE_OP(dev_ops, get_numa_node);
2713 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2714 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2715 	SET_DEVICE_OP(dev_ops, get_vf_config);
2716 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2717 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2718 	SET_DEVICE_OP(dev_ops, iw_accept);
2719 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2720 	SET_DEVICE_OP(dev_ops, iw_connect);
2721 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2722 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2723 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2724 	SET_DEVICE_OP(dev_ops, iw_reject);
2725 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2726 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2727 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2728 	SET_DEVICE_OP(dev_ops, mmap);
2729 	SET_DEVICE_OP(dev_ops, mmap_free);
2730 	SET_DEVICE_OP(dev_ops, modify_ah);
2731 	SET_DEVICE_OP(dev_ops, modify_cq);
2732 	SET_DEVICE_OP(dev_ops, modify_device);
2733 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2734 	SET_DEVICE_OP(dev_ops, modify_port);
2735 	SET_DEVICE_OP(dev_ops, modify_qp);
2736 	SET_DEVICE_OP(dev_ops, modify_srq);
2737 	SET_DEVICE_OP(dev_ops, modify_wq);
2738 	SET_DEVICE_OP(dev_ops, peek_cq);
2739 	SET_DEVICE_OP(dev_ops, poll_cq);
2740 	SET_DEVICE_OP(dev_ops, port_groups);
2741 	SET_DEVICE_OP(dev_ops, post_recv);
2742 	SET_DEVICE_OP(dev_ops, post_send);
2743 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2744 	SET_DEVICE_OP(dev_ops, process_mad);
2745 	SET_DEVICE_OP(dev_ops, query_ah);
2746 	SET_DEVICE_OP(dev_ops, query_device);
2747 	SET_DEVICE_OP(dev_ops, query_gid);
2748 	SET_DEVICE_OP(dev_ops, query_pkey);
2749 	SET_DEVICE_OP(dev_ops, query_port);
2750 	SET_DEVICE_OP(dev_ops, query_qp);
2751 	SET_DEVICE_OP(dev_ops, query_srq);
2752 	SET_DEVICE_OP(dev_ops, query_ucontext);
2753 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2754 	SET_DEVICE_OP(dev_ops, read_counters);
2755 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2756 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2757 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2758 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2759 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2760 	SET_DEVICE_OP(dev_ops, resize_cq);
2761 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2762 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2763 	SET_DEVICE_OP(dev_ops, ufile_hw_cleanup);
2764 
2765 	SET_OBJ_SIZE(dev_ops, ib_ah);
2766 	SET_OBJ_SIZE(dev_ops, ib_counters);
2767 	SET_OBJ_SIZE(dev_ops, ib_cq);
2768 	SET_OBJ_SIZE(dev_ops, ib_mw);
2769 	SET_OBJ_SIZE(dev_ops, ib_pd);
2770 	SET_OBJ_SIZE(dev_ops, ib_qp);
2771 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2772 	SET_OBJ_SIZE(dev_ops, ib_srq);
2773 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2774 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2775 }
2776 EXPORT_SYMBOL(ib_set_device_ops);
2777 
2778 int ib_add_sub_device(struct ib_device *parent,
2779 		      enum rdma_nl_dev_type type,
2780 		      const char *name)
2781 {
2782 	struct ib_device *sub;
2783 	int ret = 0;
2784 
2785 	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2786 		return -EOPNOTSUPP;
2787 
2788 	if (!ib_device_try_get(parent))
2789 		return -EINVAL;
2790 
2791 	sub = parent->ops.add_sub_dev(parent, type, name);
2792 	if (IS_ERR(sub)) {
2793 		ib_device_put(parent);
2794 		return PTR_ERR(sub);
2795 	}
2796 
2797 	sub->type = type;
2798 	sub->parent = parent;
2799 
2800 	mutex_lock(&parent->subdev_lock);
2801 	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2802 	mutex_unlock(&parent->subdev_lock);
2803 
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL(ib_add_sub_device);
2807 
2808 int ib_del_sub_device_and_put(struct ib_device *sub)
2809 {
2810 	struct ib_device *parent = sub->parent;
2811 
2812 	if (!parent)
2813 		return -EOPNOTSUPP;
2814 
2815 	mutex_lock(&parent->subdev_lock);
2816 	list_del(&sub->subdev_list);
2817 	mutex_unlock(&parent->subdev_lock);
2818 
2819 	ib_device_put(sub);
2820 	parent->ops.del_sub_dev(sub);
2821 	ib_device_put(parent);
2822 
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2826 
2827 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2828 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2829 {
2830 	struct scatterlist *s;
2831 	int i;
2832 
2833 	for_each_sg(sg, s, nents, i) {
2834 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2835 		sg_dma_len(s) = s->length;
2836 	}
2837 	return nents;
2838 }
2839 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2840 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2841 
2842 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2843 	[RDMA_NL_LS_OP_RESOLVE] = {
2844 		.doit = ib_nl_handle_resolve_resp,
2845 		.flags = RDMA_NL_ADMIN_PERM,
2846 	},
2847 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2848 		.doit = ib_nl_handle_set_timeout,
2849 		.flags = RDMA_NL_ADMIN_PERM,
2850 	},
2851 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2852 		.doit = ib_nl_handle_ip_res_resp,
2853 		.flags = RDMA_NL_ADMIN_PERM,
2854 	},
2855 };
2856 
2857 static int ib_netdevice_event(struct notifier_block *this,
2858 			      unsigned long event, void *ptr)
2859 {
2860 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
2861 	struct net_device *ib_ndev;
2862 	struct ib_device *ibdev;
2863 	u32 port;
2864 
2865 	switch (event) {
2866 	case NETDEV_CHANGENAME:
2867 		ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2868 		if (!ibdev)
2869 			return NOTIFY_DONE;
2870 
2871 		rdma_for_each_port(ibdev, port) {
2872 			ib_ndev = ib_device_get_netdev(ibdev, port);
2873 			if (ndev == ib_ndev)
2874 				rdma_nl_notify_event(ibdev, port,
2875 						     RDMA_NETDEV_RENAME_EVENT);
2876 			dev_put(ib_ndev);
2877 		}
2878 		ib_device_put(ibdev);
2879 		break;
2880 	default:
2881 		break;
2882 	}
2883 
2884 	return NOTIFY_DONE;
2885 }
2886 
2887 static struct notifier_block nb_netdevice = {
2888 	.notifier_call = ib_netdevice_event,
2889 };
2890 
2891 static int __init ib_core_init(void)
2892 {
2893 	int ret = -ENOMEM;
2894 
2895 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2896 	if (!ib_wq)
2897 		return -ENOMEM;
2898 
2899 	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2900 				      WQ_UNBOUND_MAX_ACTIVE);
2901 	if (!ib_unreg_wq)
2902 		goto err;
2903 
2904 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2905 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2906 	if (!ib_comp_wq)
2907 		goto err_unbound;
2908 
2909 	ib_comp_unbound_wq =
2910 		alloc_workqueue("ib-comp-unb-wq",
2911 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2912 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2913 	if (!ib_comp_unbound_wq)
2914 		goto err_comp;
2915 
2916 	ret = class_register(&ib_class);
2917 	if (ret) {
2918 		pr_warn("Couldn't create InfiniBand device class\n");
2919 		goto err_comp_unbound;
2920 	}
2921 
2922 	rdma_nl_init();
2923 
2924 	ret = addr_init();
2925 	if (ret) {
2926 		pr_warn("Couldn't init IB address resolution\n");
2927 		goto err_ibnl;
2928 	}
2929 
2930 	ret = ib_mad_init();
2931 	if (ret) {
2932 		pr_warn("Couldn't init IB MAD\n");
2933 		goto err_addr;
2934 	}
2935 
2936 	ret = ib_sa_init();
2937 	if (ret) {
2938 		pr_warn("Couldn't init SA\n");
2939 		goto err_mad;
2940 	}
2941 
2942 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2943 	if (ret) {
2944 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2945 		goto err_sa;
2946 	}
2947 
2948 	ret = register_pernet_device(&rdma_dev_net_ops);
2949 	if (ret) {
2950 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2951 		goto err_compat;
2952 	}
2953 
2954 	nldev_init();
2955 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2956 	ret = roce_gid_mgmt_init();
2957 	if (ret) {
2958 		pr_warn("Couldn't init RoCE GID management\n");
2959 		goto err_parent;
2960 	}
2961 
2962 	register_netdevice_notifier(&nb_netdevice);
2963 
2964 	return 0;
2965 
2966 err_parent:
2967 	rdma_nl_unregister(RDMA_NL_LS);
2968 	nldev_exit();
2969 	unregister_pernet_device(&rdma_dev_net_ops);
2970 err_compat:
2971 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2972 err_sa:
2973 	ib_sa_cleanup();
2974 err_mad:
2975 	ib_mad_cleanup();
2976 err_addr:
2977 	addr_cleanup();
2978 err_ibnl:
2979 	class_unregister(&ib_class);
2980 err_comp_unbound:
2981 	destroy_workqueue(ib_comp_unbound_wq);
2982 err_comp:
2983 	destroy_workqueue(ib_comp_wq);
2984 err_unbound:
2985 	destroy_workqueue(ib_unreg_wq);
2986 err:
2987 	destroy_workqueue(ib_wq);
2988 	return ret;
2989 }
2990 
2991 static void __exit ib_core_cleanup(void)
2992 {
2993 	unregister_netdevice_notifier(&nb_netdevice);
2994 	roce_gid_mgmt_cleanup();
2995 	rdma_nl_unregister(RDMA_NL_LS);
2996 	nldev_exit();
2997 	unregister_pernet_device(&rdma_dev_net_ops);
2998 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2999 	ib_sa_cleanup();
3000 	ib_mad_cleanup();
3001 	addr_cleanup();
3002 	rdma_nl_exit();
3003 	class_unregister(&ib_class);
3004 	destroy_workqueue(ib_comp_unbound_wq);
3005 	destroy_workqueue(ib_comp_wq);
3006 	/* Make sure that any pending umem accounting work is done. */
3007 	destroy_workqueue(ib_wq);
3008 	destroy_workqueue(ib_unreg_wq);
3009 	WARN_ON(!xa_empty(&clients));
3010 	WARN_ON(!xa_empty(&devices));
3011 }
3012 
3013 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
3014 
3015 /* ib core relies on netdev stack to first register net_ns_type_operations
3016  * ns kobject type before ib_core initialization.
3017  */
3018 fs_initcall(ib_core_init);
3019 module_exit(ib_core_cleanup);
3020