xref: /linux/drivers/infiniband/core/device.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @device:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
137  *			     from a specified net namespace or not. When
138  *			     rdma device is in shared mode, it ignores the
139  *			     net namespace. When rdma device is exclusive
140  *			     to a net namespace, rdma device net namespace is
141  *			     checked against the specified one.
142  */
143 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
144 {
145 	return (ib_devices_shared_netns ||
146 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
147 }
148 EXPORT_SYMBOL(rdma_dev_access_netns);
149 
150 /*
151  * xarray has this behavior where it won't iterate over NULL values stored in
152  * allocated arrays.  So we need our own iterator to see all values stored in
153  * the array. This does the same thing as xa_for_each except that it also
154  * returns NULL valued entries if the array is allocating. Simplified to only
155  * work on simple xarrays.
156  */
157 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
158 			     xa_mark_t filter)
159 {
160 	XA_STATE(xas, xa, *indexp);
161 	void *entry;
162 
163 	rcu_read_lock();
164 	do {
165 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
166 		if (xa_is_zero(entry))
167 			break;
168 	} while (xas_retry(&xas, entry));
169 	rcu_read_unlock();
170 
171 	if (entry) {
172 		*indexp = xas.xa_index;
173 		if (xa_is_zero(entry))
174 			return NULL;
175 		return entry;
176 	}
177 	return XA_ERROR(-ENOENT);
178 }
179 #define xan_for_each_marked(xa, index, entry, filter)                          \
180 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
181 	     !xa_is_err(entry);                                                \
182 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
183 
184 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
185 static DEFINE_SPINLOCK(ndev_hash_lock);
186 static DECLARE_HASHTABLE(ndev_hash, 5);
187 
188 static void free_netdevs(struct ib_device *ib_dev);
189 static void ib_unregister_work(struct work_struct *work);
190 static void __ib_unregister_device(struct ib_device *device);
191 static int ib_security_change(struct notifier_block *nb, unsigned long event,
192 			      void *lsm_data);
193 static void ib_policy_change_task(struct work_struct *work);
194 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
195 
196 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
197 			   struct va_format *vaf)
198 {
199 	if (ibdev && ibdev->dev.parent)
200 		dev_printk_emit(level[1] - '0',
201 				ibdev->dev.parent,
202 				"%s %s %s: %pV",
203 				dev_driver_string(ibdev->dev.parent),
204 				dev_name(ibdev->dev.parent),
205 				dev_name(&ibdev->dev),
206 				vaf);
207 	else if (ibdev)
208 		printk("%s%s: %pV",
209 		       level, dev_name(&ibdev->dev), vaf);
210 	else
211 		printk("%s(NULL ib_device): %pV", level, vaf);
212 }
213 
214 void ibdev_printk(const char *level, const struct ib_device *ibdev,
215 		  const char *format, ...)
216 {
217 	struct va_format vaf;
218 	va_list args;
219 
220 	va_start(args, format);
221 
222 	vaf.fmt = format;
223 	vaf.va = &args;
224 
225 	__ibdev_printk(level, ibdev, &vaf);
226 
227 	va_end(args);
228 }
229 EXPORT_SYMBOL(ibdev_printk);
230 
231 #define define_ibdev_printk_level(func, level)                  \
232 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
233 {                                                               \
234 	struct va_format vaf;                                   \
235 	va_list args;                                           \
236 								\
237 	va_start(args, fmt);                                    \
238 								\
239 	vaf.fmt = fmt;                                          \
240 	vaf.va = &args;                                         \
241 								\
242 	__ibdev_printk(level, ibdev, &vaf);                     \
243 								\
244 	va_end(args);                                           \
245 }                                                               \
246 EXPORT_SYMBOL(func);
247 
248 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
249 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
250 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
251 define_ibdev_printk_level(ibdev_err, KERN_ERR);
252 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
253 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
254 define_ibdev_printk_level(ibdev_info, KERN_INFO);
255 
256 static struct notifier_block ibdev_lsm_nb = {
257 	.notifier_call = ib_security_change,
258 };
259 
260 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
261 				 struct net *net);
262 
263 /* Pointer to the RCU head at the start of the ib_port_data array */
264 struct ib_port_data_rcu {
265 	struct rcu_head rcu_head;
266 	struct ib_port_data pdata[];
267 };
268 
269 static void ib_device_check_mandatory(struct ib_device *device)
270 {
271 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
272 	static const struct {
273 		size_t offset;
274 		char  *name;
275 	} mandatory_table[] = {
276 		IB_MANDATORY_FUNC(query_device),
277 		IB_MANDATORY_FUNC(query_port),
278 		IB_MANDATORY_FUNC(query_pkey),
279 		IB_MANDATORY_FUNC(alloc_pd),
280 		IB_MANDATORY_FUNC(dealloc_pd),
281 		IB_MANDATORY_FUNC(create_qp),
282 		IB_MANDATORY_FUNC(modify_qp),
283 		IB_MANDATORY_FUNC(destroy_qp),
284 		IB_MANDATORY_FUNC(post_send),
285 		IB_MANDATORY_FUNC(post_recv),
286 		IB_MANDATORY_FUNC(create_cq),
287 		IB_MANDATORY_FUNC(destroy_cq),
288 		IB_MANDATORY_FUNC(poll_cq),
289 		IB_MANDATORY_FUNC(req_notify_cq),
290 		IB_MANDATORY_FUNC(get_dma_mr),
291 		IB_MANDATORY_FUNC(dereg_mr),
292 		IB_MANDATORY_FUNC(get_port_immutable)
293 	};
294 	int i;
295 
296 	device->kverbs_provider = true;
297 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
298 		if (!*(void **) ((void *) &device->ops +
299 				 mandatory_table[i].offset)) {
300 			device->kverbs_provider = false;
301 			break;
302 		}
303 	}
304 }
305 
306 /*
307  * Caller must perform ib_device_put() to return the device reference count
308  * when ib_device_get_by_index() returns valid device pointer.
309  */
310 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
311 {
312 	struct ib_device *device;
313 
314 	down_read(&devices_rwsem);
315 	device = xa_load(&devices, index);
316 	if (device) {
317 		if (!rdma_dev_access_netns(device, net)) {
318 			device = NULL;
319 			goto out;
320 		}
321 
322 		if (!ib_device_try_get(device))
323 			device = NULL;
324 	}
325 out:
326 	up_read(&devices_rwsem);
327 	return device;
328 }
329 
330 /**
331  * ib_device_put - Release IB device reference
332  * @device: device whose reference to be released
333  *
334  * ib_device_put() releases reference to the IB device to allow it to be
335  * unregistered and eventually free.
336  */
337 void ib_device_put(struct ib_device *device)
338 {
339 	if (refcount_dec_and_test(&device->refcount))
340 		complete(&device->unreg_completion);
341 }
342 EXPORT_SYMBOL(ib_device_put);
343 
344 static struct ib_device *__ib_device_get_by_name(const char *name)
345 {
346 	struct ib_device *device;
347 	unsigned long index;
348 
349 	xa_for_each (&devices, index, device)
350 		if (!strcmp(name, dev_name(&device->dev)))
351 			return device;
352 
353 	return NULL;
354 }
355 
356 /**
357  * ib_device_get_by_name - Find an IB device by name
358  * @name: The name to look for
359  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
360  *
361  * Find and hold an ib_device by its name. The caller must call
362  * ib_device_put() on the returned pointer.
363  */
364 struct ib_device *ib_device_get_by_name(const char *name,
365 					enum rdma_driver_id driver_id)
366 {
367 	struct ib_device *device;
368 
369 	down_read(&devices_rwsem);
370 	device = __ib_device_get_by_name(name);
371 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
372 	    device->ops.driver_id != driver_id)
373 		device = NULL;
374 
375 	if (device) {
376 		if (!ib_device_try_get(device))
377 			device = NULL;
378 	}
379 	up_read(&devices_rwsem);
380 	return device;
381 }
382 EXPORT_SYMBOL(ib_device_get_by_name);
383 
384 static int rename_compat_devs(struct ib_device *device)
385 {
386 	struct ib_core_device *cdev;
387 	unsigned long index;
388 	int ret = 0;
389 
390 	mutex_lock(&device->compat_devs_mutex);
391 	xa_for_each (&device->compat_devs, index, cdev) {
392 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
393 		if (ret) {
394 			dev_warn(&cdev->dev,
395 				 "Fail to rename compatdev to new name %s\n",
396 				 dev_name(&device->dev));
397 			break;
398 		}
399 	}
400 	mutex_unlock(&device->compat_devs_mutex);
401 	return ret;
402 }
403 
404 int ib_device_rename(struct ib_device *ibdev, const char *name)
405 {
406 	unsigned long index;
407 	void *client_data;
408 	int ret;
409 
410 	down_write(&devices_rwsem);
411 	if (!strcmp(name, dev_name(&ibdev->dev))) {
412 		up_write(&devices_rwsem);
413 		return 0;
414 	}
415 
416 	if (__ib_device_get_by_name(name)) {
417 		up_write(&devices_rwsem);
418 		return -EEXIST;
419 	}
420 
421 	ret = device_rename(&ibdev->dev, name);
422 	if (ret) {
423 		up_write(&devices_rwsem);
424 		return ret;
425 	}
426 
427 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
428 	ret = rename_compat_devs(ibdev);
429 
430 	downgrade_write(&devices_rwsem);
431 	down_read(&ibdev->client_data_rwsem);
432 	xan_for_each_marked(&ibdev->client_data, index, client_data,
433 			    CLIENT_DATA_REGISTERED) {
434 		struct ib_client *client = xa_load(&clients, index);
435 
436 		if (!client || !client->rename)
437 			continue;
438 
439 		client->rename(ibdev, client_data);
440 	}
441 	up_read(&ibdev->client_data_rwsem);
442 	up_read(&devices_rwsem);
443 	return 0;
444 }
445 
446 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
447 {
448 	if (use_dim > 1)
449 		return -EINVAL;
450 	ibdev->use_cq_dim = use_dim;
451 
452 	return 0;
453 }
454 
455 static int alloc_name(struct ib_device *ibdev, const char *name)
456 {
457 	struct ib_device *device;
458 	unsigned long index;
459 	struct ida inuse;
460 	int rc;
461 	int i;
462 
463 	lockdep_assert_held_write(&devices_rwsem);
464 	ida_init(&inuse);
465 	xa_for_each (&devices, index, device) {
466 		char buf[IB_DEVICE_NAME_MAX];
467 
468 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
469 			continue;
470 		if (i < 0 || i >= INT_MAX)
471 			continue;
472 		snprintf(buf, sizeof buf, name, i);
473 		if (strcmp(buf, dev_name(&device->dev)) != 0)
474 			continue;
475 
476 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
477 		if (rc < 0)
478 			goto out;
479 	}
480 
481 	rc = ida_alloc(&inuse, GFP_KERNEL);
482 	if (rc < 0)
483 		goto out;
484 
485 	rc = dev_set_name(&ibdev->dev, name, rc);
486 out:
487 	ida_destroy(&inuse);
488 	return rc;
489 }
490 
491 static void ib_device_release(struct device *device)
492 {
493 	struct ib_device *dev = container_of(device, struct ib_device, dev);
494 
495 	free_netdevs(dev);
496 	WARN_ON(refcount_read(&dev->refcount));
497 	if (dev->port_data) {
498 		ib_cache_release_one(dev);
499 		ib_security_release_port_pkey_list(dev);
500 		rdma_counter_release(dev);
501 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 				       pdata[0]),
503 			  rcu_head);
504 	}
505 
506 	mutex_destroy(&dev->unregistration_lock);
507 	mutex_destroy(&dev->compat_devs_mutex);
508 
509 	xa_destroy(&dev->compat_devs);
510 	xa_destroy(&dev->client_data);
511 	kfree_rcu(dev, rcu_head);
512 }
513 
514 static int ib_device_uevent(struct device *device,
515 			    struct kobj_uevent_env *env)
516 {
517 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518 		return -ENOMEM;
519 
520 	/*
521 	 * It would be nice to pass the node GUID with the event...
522 	 */
523 
524 	return 0;
525 }
526 
527 static const void *net_namespace(struct device *d)
528 {
529 	struct ib_core_device *coredev =
530 			container_of(d, struct ib_core_device, dev);
531 
532 	return read_pnet(&coredev->rdma_net);
533 }
534 
535 static struct class ib_class = {
536 	.name    = "infiniband",
537 	.dev_release = ib_device_release,
538 	.dev_uevent = ib_device_uevent,
539 	.ns_type = &net_ns_type_operations,
540 	.namespace = net_namespace,
541 };
542 
543 static void rdma_init_coredev(struct ib_core_device *coredev,
544 			      struct ib_device *dev, struct net *net)
545 {
546 	/* This BUILD_BUG_ON is intended to catch layout change
547 	 * of union of ib_core_device and device.
548 	 * dev must be the first element as ib_core and providers
549 	 * driver uses it. Adding anything in ib_core_device before
550 	 * device will break this assumption.
551 	 */
552 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
553 		     offsetof(struct ib_device, dev));
554 
555 	coredev->dev.class = &ib_class;
556 	coredev->dev.groups = dev->groups;
557 	device_initialize(&coredev->dev);
558 	coredev->owner = dev;
559 	INIT_LIST_HEAD(&coredev->port_list);
560 	write_pnet(&coredev->rdma_net, net);
561 }
562 
563 /**
564  * _ib_alloc_device - allocate an IB device struct
565  * @size:size of structure to allocate
566  *
567  * Low-level drivers should use ib_alloc_device() to allocate &struct
568  * ib_device.  @size is the size of the structure to be allocated,
569  * including any private data used by the low-level driver.
570  * ib_dealloc_device() must be used to free structures allocated with
571  * ib_alloc_device().
572  */
573 struct ib_device *_ib_alloc_device(size_t size)
574 {
575 	struct ib_device *device;
576 
577 	if (WARN_ON(size < sizeof(struct ib_device)))
578 		return NULL;
579 
580 	device = kzalloc(size, GFP_KERNEL);
581 	if (!device)
582 		return NULL;
583 
584 	if (rdma_restrack_init(device)) {
585 		kfree(device);
586 		return NULL;
587 	}
588 
589 	device->groups[0] = &ib_dev_attr_group;
590 	rdma_init_coredev(&device->coredev, device, &init_net);
591 
592 	INIT_LIST_HEAD(&device->event_handler_list);
593 	spin_lock_init(&device->event_handler_lock);
594 	mutex_init(&device->unregistration_lock);
595 	/*
596 	 * client_data needs to be alloc because we don't want our mark to be
597 	 * destroyed if the user stores NULL in the client data.
598 	 */
599 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
600 	init_rwsem(&device->client_data_rwsem);
601 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
602 	mutex_init(&device->compat_devs_mutex);
603 	init_completion(&device->unreg_completion);
604 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
605 
606 	return device;
607 }
608 EXPORT_SYMBOL(_ib_alloc_device);
609 
610 /**
611  * ib_dealloc_device - free an IB device struct
612  * @device:structure to free
613  *
614  * Free a structure allocated with ib_alloc_device().
615  */
616 void ib_dealloc_device(struct ib_device *device)
617 {
618 	if (device->ops.dealloc_driver)
619 		device->ops.dealloc_driver(device);
620 
621 	/*
622 	 * ib_unregister_driver() requires all devices to remain in the xarray
623 	 * while their ops are callable. The last op we call is dealloc_driver
624 	 * above.  This is needed to create a fence on op callbacks prior to
625 	 * allowing the driver module to unload.
626 	 */
627 	down_write(&devices_rwsem);
628 	if (xa_load(&devices, device->index) == device)
629 		xa_erase(&devices, device->index);
630 	up_write(&devices_rwsem);
631 
632 	/* Expedite releasing netdev references */
633 	free_netdevs(device);
634 
635 	WARN_ON(!xa_empty(&device->compat_devs));
636 	WARN_ON(!xa_empty(&device->client_data));
637 	WARN_ON(refcount_read(&device->refcount));
638 	rdma_restrack_clean(device);
639 	/* Balances with device_initialize */
640 	put_device(&device->dev);
641 }
642 EXPORT_SYMBOL(ib_dealloc_device);
643 
644 /*
645  * add_client_context() and remove_client_context() must be safe against
646  * parallel calls on the same device - registration/unregistration of both the
647  * device and client can be occurring in parallel.
648  *
649  * The routines need to be a fence, any caller must not return until the add
650  * or remove is fully completed.
651  */
652 static int add_client_context(struct ib_device *device,
653 			      struct ib_client *client)
654 {
655 	int ret = 0;
656 
657 	if (!device->kverbs_provider && !client->no_kverbs_req)
658 		return 0;
659 
660 	down_write(&device->client_data_rwsem);
661 	/*
662 	 * So long as the client is registered hold both the client and device
663 	 * unregistration locks.
664 	 */
665 	if (!refcount_inc_not_zero(&client->uses))
666 		goto out_unlock;
667 	refcount_inc(&device->refcount);
668 
669 	/*
670 	 * Another caller to add_client_context got here first and has already
671 	 * completely initialized context.
672 	 */
673 	if (xa_get_mark(&device->client_data, client->client_id,
674 		    CLIENT_DATA_REGISTERED))
675 		goto out;
676 
677 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
678 			      GFP_KERNEL));
679 	if (ret)
680 		goto out;
681 	downgrade_write(&device->client_data_rwsem);
682 	if (client->add)
683 		client->add(device);
684 
685 	/* Readers shall not see a client until add has been completed */
686 	xa_set_mark(&device->client_data, client->client_id,
687 		    CLIENT_DATA_REGISTERED);
688 	up_read(&device->client_data_rwsem);
689 	return 0;
690 
691 out:
692 	ib_device_put(device);
693 	ib_client_put(client);
694 out_unlock:
695 	up_write(&device->client_data_rwsem);
696 	return ret;
697 }
698 
699 static void remove_client_context(struct ib_device *device,
700 				  unsigned int client_id)
701 {
702 	struct ib_client *client;
703 	void *client_data;
704 
705 	down_write(&device->client_data_rwsem);
706 	if (!xa_get_mark(&device->client_data, client_id,
707 			 CLIENT_DATA_REGISTERED)) {
708 		up_write(&device->client_data_rwsem);
709 		return;
710 	}
711 	client_data = xa_load(&device->client_data, client_id);
712 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
713 	client = xa_load(&clients, client_id);
714 	up_write(&device->client_data_rwsem);
715 
716 	/*
717 	 * Notice we cannot be holding any exclusive locks when calling the
718 	 * remove callback as the remove callback can recurse back into any
719 	 * public functions in this module and thus try for any locks those
720 	 * functions take.
721 	 *
722 	 * For this reason clients and drivers should not call the
723 	 * unregistration functions will holdling any locks.
724 	 */
725 	if (client->remove)
726 		client->remove(device, client_data);
727 
728 	xa_erase(&device->client_data, client_id);
729 	ib_device_put(device);
730 	ib_client_put(client);
731 }
732 
733 static int alloc_port_data(struct ib_device *device)
734 {
735 	struct ib_port_data_rcu *pdata_rcu;
736 	unsigned int port;
737 
738 	if (device->port_data)
739 		return 0;
740 
741 	/* This can only be called once the physical port range is defined */
742 	if (WARN_ON(!device->phys_port_cnt))
743 		return -EINVAL;
744 
745 	/*
746 	 * device->port_data is indexed directly by the port number to make
747 	 * access to this data as efficient as possible.
748 	 *
749 	 * Therefore port_data is declared as a 1 based array with potential
750 	 * empty slots at the beginning.
751 	 */
752 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
753 					rdma_end_port(device) + 1),
754 			    GFP_KERNEL);
755 	if (!pdata_rcu)
756 		return -ENOMEM;
757 	/*
758 	 * The rcu_head is put in front of the port data array and the stored
759 	 * pointer is adjusted since we never need to see that member until
760 	 * kfree_rcu.
761 	 */
762 	device->port_data = pdata_rcu->pdata;
763 
764 	rdma_for_each_port (device, port) {
765 		struct ib_port_data *pdata = &device->port_data[port];
766 
767 		pdata->ib_dev = device;
768 		spin_lock_init(&pdata->pkey_list_lock);
769 		INIT_LIST_HEAD(&pdata->pkey_list);
770 		spin_lock_init(&pdata->netdev_lock);
771 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
772 	}
773 	return 0;
774 }
775 
776 static int verify_immutable(const struct ib_device *dev, u8 port)
777 {
778 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
779 			    rdma_max_mad_size(dev, port) != 0);
780 }
781 
782 static int setup_port_data(struct ib_device *device)
783 {
784 	unsigned int port;
785 	int ret;
786 
787 	ret = alloc_port_data(device);
788 	if (ret)
789 		return ret;
790 
791 	rdma_for_each_port (device, port) {
792 		struct ib_port_data *pdata = &device->port_data[port];
793 
794 		ret = device->ops.get_port_immutable(device, port,
795 						     &pdata->immutable);
796 		if (ret)
797 			return ret;
798 
799 		if (verify_immutable(device, port))
800 			return -EINVAL;
801 	}
802 	return 0;
803 }
804 
805 void ib_get_device_fw_str(struct ib_device *dev, char *str)
806 {
807 	if (dev->ops.get_dev_fw_str)
808 		dev->ops.get_dev_fw_str(dev, str);
809 	else
810 		str[0] = '\0';
811 }
812 EXPORT_SYMBOL(ib_get_device_fw_str);
813 
814 static void ib_policy_change_task(struct work_struct *work)
815 {
816 	struct ib_device *dev;
817 	unsigned long index;
818 
819 	down_read(&devices_rwsem);
820 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
821 		unsigned int i;
822 
823 		rdma_for_each_port (dev, i) {
824 			u64 sp;
825 			int ret = ib_get_cached_subnet_prefix(dev,
826 							      i,
827 							      &sp);
828 
829 			WARN_ONCE(ret,
830 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
831 				  ret);
832 			if (!ret)
833 				ib_security_cache_change(dev, i, sp);
834 		}
835 	}
836 	up_read(&devices_rwsem);
837 }
838 
839 static int ib_security_change(struct notifier_block *nb, unsigned long event,
840 			      void *lsm_data)
841 {
842 	if (event != LSM_POLICY_CHANGE)
843 		return NOTIFY_DONE;
844 
845 	schedule_work(&ib_policy_change_work);
846 	ib_mad_agent_security_change();
847 
848 	return NOTIFY_OK;
849 }
850 
851 static void compatdev_release(struct device *dev)
852 {
853 	struct ib_core_device *cdev =
854 		container_of(dev, struct ib_core_device, dev);
855 
856 	kfree(cdev);
857 }
858 
859 static int add_one_compat_dev(struct ib_device *device,
860 			      struct rdma_dev_net *rnet)
861 {
862 	struct ib_core_device *cdev;
863 	int ret;
864 
865 	lockdep_assert_held(&rdma_nets_rwsem);
866 	if (!ib_devices_shared_netns)
867 		return 0;
868 
869 	/*
870 	 * Create and add compat device in all namespaces other than where it
871 	 * is currently bound to.
872 	 */
873 	if (net_eq(read_pnet(&rnet->net),
874 		   read_pnet(&device->coredev.rdma_net)))
875 		return 0;
876 
877 	/*
878 	 * The first of init_net() or ib_register_device() to take the
879 	 * compat_devs_mutex wins and gets to add the device. Others will wait
880 	 * for completion here.
881 	 */
882 	mutex_lock(&device->compat_devs_mutex);
883 	cdev = xa_load(&device->compat_devs, rnet->id);
884 	if (cdev) {
885 		ret = 0;
886 		goto done;
887 	}
888 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
889 	if (ret)
890 		goto done;
891 
892 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
893 	if (!cdev) {
894 		ret = -ENOMEM;
895 		goto cdev_err;
896 	}
897 
898 	cdev->dev.parent = device->dev.parent;
899 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
900 	cdev->dev.release = compatdev_release;
901 	dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
902 
903 	ret = device_add(&cdev->dev);
904 	if (ret)
905 		goto add_err;
906 	ret = ib_setup_port_attrs(cdev);
907 	if (ret)
908 		goto port_err;
909 
910 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
911 			      cdev, GFP_KERNEL));
912 	if (ret)
913 		goto insert_err;
914 
915 	mutex_unlock(&device->compat_devs_mutex);
916 	return 0;
917 
918 insert_err:
919 	ib_free_port_attrs(cdev);
920 port_err:
921 	device_del(&cdev->dev);
922 add_err:
923 	put_device(&cdev->dev);
924 cdev_err:
925 	xa_release(&device->compat_devs, rnet->id);
926 done:
927 	mutex_unlock(&device->compat_devs_mutex);
928 	return ret;
929 }
930 
931 static void remove_one_compat_dev(struct ib_device *device, u32 id)
932 {
933 	struct ib_core_device *cdev;
934 
935 	mutex_lock(&device->compat_devs_mutex);
936 	cdev = xa_erase(&device->compat_devs, id);
937 	mutex_unlock(&device->compat_devs_mutex);
938 	if (cdev) {
939 		ib_free_port_attrs(cdev);
940 		device_del(&cdev->dev);
941 		put_device(&cdev->dev);
942 	}
943 }
944 
945 static void remove_compat_devs(struct ib_device *device)
946 {
947 	struct ib_core_device *cdev;
948 	unsigned long index;
949 
950 	xa_for_each (&device->compat_devs, index, cdev)
951 		remove_one_compat_dev(device, index);
952 }
953 
954 static int add_compat_devs(struct ib_device *device)
955 {
956 	struct rdma_dev_net *rnet;
957 	unsigned long index;
958 	int ret = 0;
959 
960 	lockdep_assert_held(&devices_rwsem);
961 
962 	down_read(&rdma_nets_rwsem);
963 	xa_for_each (&rdma_nets, index, rnet) {
964 		ret = add_one_compat_dev(device, rnet);
965 		if (ret)
966 			break;
967 	}
968 	up_read(&rdma_nets_rwsem);
969 	return ret;
970 }
971 
972 static void remove_all_compat_devs(void)
973 {
974 	struct ib_compat_device *cdev;
975 	struct ib_device *dev;
976 	unsigned long index;
977 
978 	down_read(&devices_rwsem);
979 	xa_for_each (&devices, index, dev) {
980 		unsigned long c_index = 0;
981 
982 		/* Hold nets_rwsem so that any other thread modifying this
983 		 * system param can sync with this thread.
984 		 */
985 		down_read(&rdma_nets_rwsem);
986 		xa_for_each (&dev->compat_devs, c_index, cdev)
987 			remove_one_compat_dev(dev, c_index);
988 		up_read(&rdma_nets_rwsem);
989 	}
990 	up_read(&devices_rwsem);
991 }
992 
993 static int add_all_compat_devs(void)
994 {
995 	struct rdma_dev_net *rnet;
996 	struct ib_device *dev;
997 	unsigned long index;
998 	int ret = 0;
999 
1000 	down_read(&devices_rwsem);
1001 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1002 		unsigned long net_index = 0;
1003 
1004 		/* Hold nets_rwsem so that any other thread modifying this
1005 		 * system param can sync with this thread.
1006 		 */
1007 		down_read(&rdma_nets_rwsem);
1008 		xa_for_each (&rdma_nets, net_index, rnet) {
1009 			ret = add_one_compat_dev(dev, rnet);
1010 			if (ret)
1011 				break;
1012 		}
1013 		up_read(&rdma_nets_rwsem);
1014 	}
1015 	up_read(&devices_rwsem);
1016 	if (ret)
1017 		remove_all_compat_devs();
1018 	return ret;
1019 }
1020 
1021 int rdma_compatdev_set(u8 enable)
1022 {
1023 	struct rdma_dev_net *rnet;
1024 	unsigned long index;
1025 	int ret = 0;
1026 
1027 	down_write(&rdma_nets_rwsem);
1028 	if (ib_devices_shared_netns == enable) {
1029 		up_write(&rdma_nets_rwsem);
1030 		return 0;
1031 	}
1032 
1033 	/* enable/disable of compat devices is not supported
1034 	 * when more than default init_net exists.
1035 	 */
1036 	xa_for_each (&rdma_nets, index, rnet) {
1037 		ret++;
1038 		break;
1039 	}
1040 	if (!ret)
1041 		ib_devices_shared_netns = enable;
1042 	up_write(&rdma_nets_rwsem);
1043 	if (ret)
1044 		return -EBUSY;
1045 
1046 	if (enable)
1047 		ret = add_all_compat_devs();
1048 	else
1049 		remove_all_compat_devs();
1050 	return ret;
1051 }
1052 
1053 static void rdma_dev_exit_net(struct net *net)
1054 {
1055 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1056 	struct ib_device *dev;
1057 	unsigned long index;
1058 	int ret;
1059 
1060 	down_write(&rdma_nets_rwsem);
1061 	/*
1062 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1063 	 */
1064 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1065 	WARN_ON(ret);
1066 	up_write(&rdma_nets_rwsem);
1067 
1068 	down_read(&devices_rwsem);
1069 	xa_for_each (&devices, index, dev) {
1070 		get_device(&dev->dev);
1071 		/*
1072 		 * Release the devices_rwsem so that pontentially blocking
1073 		 * device_del, doesn't hold the devices_rwsem for too long.
1074 		 */
1075 		up_read(&devices_rwsem);
1076 
1077 		remove_one_compat_dev(dev, rnet->id);
1078 
1079 		/*
1080 		 * If the real device is in the NS then move it back to init.
1081 		 */
1082 		rdma_dev_change_netns(dev, net, &init_net);
1083 
1084 		put_device(&dev->dev);
1085 		down_read(&devices_rwsem);
1086 	}
1087 	up_read(&devices_rwsem);
1088 
1089 	rdma_nl_net_exit(rnet);
1090 	xa_erase(&rdma_nets, rnet->id);
1091 }
1092 
1093 static __net_init int rdma_dev_init_net(struct net *net)
1094 {
1095 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1096 	unsigned long index;
1097 	struct ib_device *dev;
1098 	int ret;
1099 
1100 	write_pnet(&rnet->net, net);
1101 
1102 	ret = rdma_nl_net_init(rnet);
1103 	if (ret)
1104 		return ret;
1105 
1106 	/* No need to create any compat devices in default init_net. */
1107 	if (net_eq(net, &init_net))
1108 		return 0;
1109 
1110 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1111 	if (ret) {
1112 		rdma_nl_net_exit(rnet);
1113 		return ret;
1114 	}
1115 
1116 	down_read(&devices_rwsem);
1117 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1118 		/* Hold nets_rwsem so that netlink command cannot change
1119 		 * system configuration for device sharing mode.
1120 		 */
1121 		down_read(&rdma_nets_rwsem);
1122 		ret = add_one_compat_dev(dev, rnet);
1123 		up_read(&rdma_nets_rwsem);
1124 		if (ret)
1125 			break;
1126 	}
1127 	up_read(&devices_rwsem);
1128 
1129 	if (ret)
1130 		rdma_dev_exit_net(net);
1131 
1132 	return ret;
1133 }
1134 
1135 /*
1136  * Assign the unique string device name and the unique device index. This is
1137  * undone by ib_dealloc_device.
1138  */
1139 static int assign_name(struct ib_device *device, const char *name)
1140 {
1141 	static u32 last_id;
1142 	int ret;
1143 
1144 	down_write(&devices_rwsem);
1145 	/* Assign a unique name to the device */
1146 	if (strchr(name, '%'))
1147 		ret = alloc_name(device, name);
1148 	else
1149 		ret = dev_set_name(&device->dev, name);
1150 	if (ret)
1151 		goto out;
1152 
1153 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1154 		ret = -ENFILE;
1155 		goto out;
1156 	}
1157 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1158 
1159 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1160 			&last_id, GFP_KERNEL);
1161 	if (ret > 0)
1162 		ret = 0;
1163 
1164 out:
1165 	up_write(&devices_rwsem);
1166 	return ret;
1167 }
1168 
1169 static void setup_dma_device(struct ib_device *device)
1170 {
1171 	struct device *parent = device->dev.parent;
1172 
1173 	WARN_ON_ONCE(device->dma_device);
1174 	if (device->dev.dma_ops) {
1175 		/*
1176 		 * The caller provided custom DMA operations. Copy the
1177 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1178 		 * into device->dev.
1179 		 */
1180 		device->dma_device = &device->dev;
1181 		if (!device->dev.dma_mask) {
1182 			if (parent)
1183 				device->dev.dma_mask = parent->dma_mask;
1184 			else
1185 				WARN_ON_ONCE(true);
1186 		}
1187 		if (!device->dev.coherent_dma_mask) {
1188 			if (parent)
1189 				device->dev.coherent_dma_mask =
1190 					parent->coherent_dma_mask;
1191 			else
1192 				WARN_ON_ONCE(true);
1193 		}
1194 	} else {
1195 		/*
1196 		 * The caller did not provide custom DMA operations. Use the
1197 		 * DMA mapping operations of the parent device.
1198 		 */
1199 		WARN_ON_ONCE(!parent);
1200 		device->dma_device = parent;
1201 	}
1202 	/* Setup default max segment size for all IB devices */
1203 	dma_set_max_seg_size(device->dma_device, SZ_2G);
1204 
1205 }
1206 
1207 /*
1208  * setup_device() allocates memory and sets up data that requires calling the
1209  * device ops, this is the only reason these actions are not done during
1210  * ib_alloc_device. It is undone by ib_dealloc_device().
1211  */
1212 static int setup_device(struct ib_device *device)
1213 {
1214 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1215 	int ret;
1216 
1217 	setup_dma_device(device);
1218 	ib_device_check_mandatory(device);
1219 
1220 	ret = setup_port_data(device);
1221 	if (ret) {
1222 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1223 		return ret;
1224 	}
1225 
1226 	memset(&device->attrs, 0, sizeof(device->attrs));
1227 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1228 	if (ret) {
1229 		dev_warn(&device->dev,
1230 			 "Couldn't query the device attributes\n");
1231 		return ret;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static void disable_device(struct ib_device *device)
1238 {
1239 	u32 cid;
1240 
1241 	WARN_ON(!refcount_read(&device->refcount));
1242 
1243 	down_write(&devices_rwsem);
1244 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1245 	up_write(&devices_rwsem);
1246 
1247 	/*
1248 	 * Remove clients in LIFO order, see assign_client_id. This could be
1249 	 * more efficient if xarray learns to reverse iterate. Since no new
1250 	 * clients can be added to this ib_device past this point we only need
1251 	 * the maximum possible client_id value here.
1252 	 */
1253 	down_read(&clients_rwsem);
1254 	cid = highest_client_id;
1255 	up_read(&clients_rwsem);
1256 	while (cid) {
1257 		cid--;
1258 		remove_client_context(device, cid);
1259 	}
1260 
1261 	/* Pairs with refcount_set in enable_device */
1262 	ib_device_put(device);
1263 	wait_for_completion(&device->unreg_completion);
1264 
1265 	/*
1266 	 * compat devices must be removed after device refcount drops to zero.
1267 	 * Otherwise init_net() may add more compatdevs after removing compat
1268 	 * devices and before device is disabled.
1269 	 */
1270 	remove_compat_devs(device);
1271 }
1272 
1273 /*
1274  * An enabled device is visible to all clients and to all the public facing
1275  * APIs that return a device pointer. This always returns with a new get, even
1276  * if it fails.
1277  */
1278 static int enable_device_and_get(struct ib_device *device)
1279 {
1280 	struct ib_client *client;
1281 	unsigned long index;
1282 	int ret = 0;
1283 
1284 	/*
1285 	 * One ref belongs to the xa and the other belongs to this
1286 	 * thread. This is needed to guard against parallel unregistration.
1287 	 */
1288 	refcount_set(&device->refcount, 2);
1289 	down_write(&devices_rwsem);
1290 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1291 
1292 	/*
1293 	 * By using downgrade_write() we ensure that no other thread can clear
1294 	 * DEVICE_REGISTERED while we are completing the client setup.
1295 	 */
1296 	downgrade_write(&devices_rwsem);
1297 
1298 	if (device->ops.enable_driver) {
1299 		ret = device->ops.enable_driver(device);
1300 		if (ret)
1301 			goto out;
1302 	}
1303 
1304 	down_read(&clients_rwsem);
1305 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1306 		ret = add_client_context(device, client);
1307 		if (ret)
1308 			break;
1309 	}
1310 	up_read(&clients_rwsem);
1311 	if (!ret)
1312 		ret = add_compat_devs(device);
1313 out:
1314 	up_read(&devices_rwsem);
1315 	return ret;
1316 }
1317 
1318 /**
1319  * ib_register_device - Register an IB device with IB core
1320  * @device:Device to register
1321  *
1322  * Low-level drivers use ib_register_device() to register their
1323  * devices with the IB core.  All registered clients will receive a
1324  * callback for each device that is added. @device must be allocated
1325  * with ib_alloc_device().
1326  *
1327  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1328  * asynchronously then the device pointer may become freed as soon as this
1329  * function returns.
1330  */
1331 int ib_register_device(struct ib_device *device, const char *name)
1332 {
1333 	int ret;
1334 
1335 	ret = assign_name(device, name);
1336 	if (ret)
1337 		return ret;
1338 
1339 	ret = setup_device(device);
1340 	if (ret)
1341 		return ret;
1342 
1343 	ret = ib_cache_setup_one(device);
1344 	if (ret) {
1345 		dev_warn(&device->dev,
1346 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1347 		return ret;
1348 	}
1349 
1350 	ib_device_register_rdmacg(device);
1351 
1352 	rdma_counter_init(device);
1353 
1354 	/*
1355 	 * Ensure that ADD uevent is not fired because it
1356 	 * is too early amd device is not initialized yet.
1357 	 */
1358 	dev_set_uevent_suppress(&device->dev, true);
1359 	ret = device_add(&device->dev);
1360 	if (ret)
1361 		goto cg_cleanup;
1362 
1363 	ret = ib_device_register_sysfs(device);
1364 	if (ret) {
1365 		dev_warn(&device->dev,
1366 			 "Couldn't register device with driver model\n");
1367 		goto dev_cleanup;
1368 	}
1369 
1370 	ret = enable_device_and_get(device);
1371 	dev_set_uevent_suppress(&device->dev, false);
1372 	/* Mark for userspace that device is ready */
1373 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1374 	if (ret) {
1375 		void (*dealloc_fn)(struct ib_device *);
1376 
1377 		/*
1378 		 * If we hit this error flow then we don't want to
1379 		 * automatically dealloc the device since the caller is
1380 		 * expected to call ib_dealloc_device() after
1381 		 * ib_register_device() fails. This is tricky due to the
1382 		 * possibility for a parallel unregistration along with this
1383 		 * error flow. Since we have a refcount here we know any
1384 		 * parallel flow is stopped in disable_device and will see the
1385 		 * NULL pointers, causing the responsibility to
1386 		 * ib_dealloc_device() to revert back to this thread.
1387 		 */
1388 		dealloc_fn = device->ops.dealloc_driver;
1389 		device->ops.dealloc_driver = NULL;
1390 		ib_device_put(device);
1391 		__ib_unregister_device(device);
1392 		device->ops.dealloc_driver = dealloc_fn;
1393 		return ret;
1394 	}
1395 	ib_device_put(device);
1396 
1397 	return 0;
1398 
1399 dev_cleanup:
1400 	device_del(&device->dev);
1401 cg_cleanup:
1402 	dev_set_uevent_suppress(&device->dev, false);
1403 	ib_device_unregister_rdmacg(device);
1404 	ib_cache_cleanup_one(device);
1405 	return ret;
1406 }
1407 EXPORT_SYMBOL(ib_register_device);
1408 
1409 /* Callers must hold a get on the device. */
1410 static void __ib_unregister_device(struct ib_device *ib_dev)
1411 {
1412 	/*
1413 	 * We have a registration lock so that all the calls to unregister are
1414 	 * fully fenced, once any unregister returns the device is truely
1415 	 * unregistered even if multiple callers are unregistering it at the
1416 	 * same time. This also interacts with the registration flow and
1417 	 * provides sane semantics if register and unregister are racing.
1418 	 */
1419 	mutex_lock(&ib_dev->unregistration_lock);
1420 	if (!refcount_read(&ib_dev->refcount))
1421 		goto out;
1422 
1423 	disable_device(ib_dev);
1424 
1425 	/* Expedite removing unregistered pointers from the hash table */
1426 	free_netdevs(ib_dev);
1427 
1428 	ib_device_unregister_sysfs(ib_dev);
1429 	device_del(&ib_dev->dev);
1430 	ib_device_unregister_rdmacg(ib_dev);
1431 	ib_cache_cleanup_one(ib_dev);
1432 
1433 	/*
1434 	 * Drivers using the new flow may not call ib_dealloc_device except
1435 	 * in error unwind prior to registration success.
1436 	 */
1437 	if (ib_dev->ops.dealloc_driver) {
1438 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1439 		ib_dealloc_device(ib_dev);
1440 	}
1441 out:
1442 	mutex_unlock(&ib_dev->unregistration_lock);
1443 }
1444 
1445 /**
1446  * ib_unregister_device - Unregister an IB device
1447  * @device: The device to unregister
1448  *
1449  * Unregister an IB device.  All clients will receive a remove callback.
1450  *
1451  * Callers should call this routine only once, and protect against races with
1452  * registration. Typically it should only be called as part of a remove
1453  * callback in an implementation of driver core's struct device_driver and
1454  * related.
1455  *
1456  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1457  * this function.
1458  */
1459 void ib_unregister_device(struct ib_device *ib_dev)
1460 {
1461 	get_device(&ib_dev->dev);
1462 	__ib_unregister_device(ib_dev);
1463 	put_device(&ib_dev->dev);
1464 }
1465 EXPORT_SYMBOL(ib_unregister_device);
1466 
1467 /**
1468  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1469  * device: The device to unregister
1470  *
1471  * This is the same as ib_unregister_device(), except it includes an internal
1472  * ib_device_put() that should match a 'get' obtained by the caller.
1473  *
1474  * It is safe to call this routine concurrently from multiple threads while
1475  * holding the 'get'. When the function returns the device is fully
1476  * unregistered.
1477  *
1478  * Drivers using this flow MUST use the driver_unregister callback to clean up
1479  * their resources associated with the device and dealloc it.
1480  */
1481 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1482 {
1483 	WARN_ON(!ib_dev->ops.dealloc_driver);
1484 	get_device(&ib_dev->dev);
1485 	ib_device_put(ib_dev);
1486 	__ib_unregister_device(ib_dev);
1487 	put_device(&ib_dev->dev);
1488 }
1489 EXPORT_SYMBOL(ib_unregister_device_and_put);
1490 
1491 /**
1492  * ib_unregister_driver - Unregister all IB devices for a driver
1493  * @driver_id: The driver to unregister
1494  *
1495  * This implements a fence for device unregistration. It only returns once all
1496  * devices associated with the driver_id have fully completed their
1497  * unregistration and returned from ib_unregister_device*().
1498  *
1499  * If device's are not yet unregistered it goes ahead and starts unregistering
1500  * them.
1501  *
1502  * This does not block creation of new devices with the given driver_id, that
1503  * is the responsibility of the caller.
1504  */
1505 void ib_unregister_driver(enum rdma_driver_id driver_id)
1506 {
1507 	struct ib_device *ib_dev;
1508 	unsigned long index;
1509 
1510 	down_read(&devices_rwsem);
1511 	xa_for_each (&devices, index, ib_dev) {
1512 		if (ib_dev->ops.driver_id != driver_id)
1513 			continue;
1514 
1515 		get_device(&ib_dev->dev);
1516 		up_read(&devices_rwsem);
1517 
1518 		WARN_ON(!ib_dev->ops.dealloc_driver);
1519 		__ib_unregister_device(ib_dev);
1520 
1521 		put_device(&ib_dev->dev);
1522 		down_read(&devices_rwsem);
1523 	}
1524 	up_read(&devices_rwsem);
1525 }
1526 EXPORT_SYMBOL(ib_unregister_driver);
1527 
1528 static void ib_unregister_work(struct work_struct *work)
1529 {
1530 	struct ib_device *ib_dev =
1531 		container_of(work, struct ib_device, unregistration_work);
1532 
1533 	__ib_unregister_device(ib_dev);
1534 	put_device(&ib_dev->dev);
1535 }
1536 
1537 /**
1538  * ib_unregister_device_queued - Unregister a device using a work queue
1539  * device: The device to unregister
1540  *
1541  * This schedules an asynchronous unregistration using a WQ for the device. A
1542  * driver should use this to avoid holding locks while doing unregistration,
1543  * such as holding the RTNL lock.
1544  *
1545  * Drivers using this API must use ib_unregister_driver before module unload
1546  * to ensure that all scheduled unregistrations have completed.
1547  */
1548 void ib_unregister_device_queued(struct ib_device *ib_dev)
1549 {
1550 	WARN_ON(!refcount_read(&ib_dev->refcount));
1551 	WARN_ON(!ib_dev->ops.dealloc_driver);
1552 	get_device(&ib_dev->dev);
1553 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1554 		put_device(&ib_dev->dev);
1555 }
1556 EXPORT_SYMBOL(ib_unregister_device_queued);
1557 
1558 /*
1559  * The caller must pass in a device that has the kref held and the refcount
1560  * released. If the device is in cur_net and still registered then it is moved
1561  * into net.
1562  */
1563 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1564 				 struct net *net)
1565 {
1566 	int ret2 = -EINVAL;
1567 	int ret;
1568 
1569 	mutex_lock(&device->unregistration_lock);
1570 
1571 	/*
1572 	 * If a device not under ib_device_get() or if the unregistration_lock
1573 	 * is not held, the namespace can be changed, or it can be unregistered.
1574 	 * Check again under the lock.
1575 	 */
1576 	if (refcount_read(&device->refcount) == 0 ||
1577 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1578 		ret = -ENODEV;
1579 		goto out;
1580 	}
1581 
1582 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1583 	disable_device(device);
1584 
1585 	/*
1586 	 * At this point no one can be using the device, so it is safe to
1587 	 * change the namespace.
1588 	 */
1589 	write_pnet(&device->coredev.rdma_net, net);
1590 
1591 	down_read(&devices_rwsem);
1592 	/*
1593 	 * Currently rdma devices are system wide unique. So the device name
1594 	 * is guaranteed free in the new namespace. Publish the new namespace
1595 	 * at the sysfs level.
1596 	 */
1597 	ret = device_rename(&device->dev, dev_name(&device->dev));
1598 	up_read(&devices_rwsem);
1599 	if (ret) {
1600 		dev_warn(&device->dev,
1601 			 "%s: Couldn't rename device after namespace change\n",
1602 			 __func__);
1603 		/* Try and put things back and re-enable the device */
1604 		write_pnet(&device->coredev.rdma_net, cur_net);
1605 	}
1606 
1607 	ret2 = enable_device_and_get(device);
1608 	if (ret2) {
1609 		/*
1610 		 * This shouldn't really happen, but if it does, let the user
1611 		 * retry at later point. So don't disable the device.
1612 		 */
1613 		dev_warn(&device->dev,
1614 			 "%s: Couldn't re-enable device after namespace change\n",
1615 			 __func__);
1616 	}
1617 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1618 
1619 	ib_device_put(device);
1620 out:
1621 	mutex_unlock(&device->unregistration_lock);
1622 	if (ret)
1623 		return ret;
1624 	return ret2;
1625 }
1626 
1627 int ib_device_set_netns_put(struct sk_buff *skb,
1628 			    struct ib_device *dev, u32 ns_fd)
1629 {
1630 	struct net *net;
1631 	int ret;
1632 
1633 	net = get_net_ns_by_fd(ns_fd);
1634 	if (IS_ERR(net)) {
1635 		ret = PTR_ERR(net);
1636 		goto net_err;
1637 	}
1638 
1639 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1640 		ret = -EPERM;
1641 		goto ns_err;
1642 	}
1643 
1644 	/*
1645 	 * Currently supported only for those providers which support
1646 	 * disassociation and don't do port specific sysfs init. Once a
1647 	 * port_cleanup infrastructure is implemented, this limitation will be
1648 	 * removed.
1649 	 */
1650 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1651 	    ib_devices_shared_netns) {
1652 		ret = -EOPNOTSUPP;
1653 		goto ns_err;
1654 	}
1655 
1656 	get_device(&dev->dev);
1657 	ib_device_put(dev);
1658 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1659 	put_device(&dev->dev);
1660 
1661 	put_net(net);
1662 	return ret;
1663 
1664 ns_err:
1665 	put_net(net);
1666 net_err:
1667 	ib_device_put(dev);
1668 	return ret;
1669 }
1670 
1671 static struct pernet_operations rdma_dev_net_ops = {
1672 	.init = rdma_dev_init_net,
1673 	.exit = rdma_dev_exit_net,
1674 	.id = &rdma_dev_net_id,
1675 	.size = sizeof(struct rdma_dev_net),
1676 };
1677 
1678 static int assign_client_id(struct ib_client *client)
1679 {
1680 	int ret;
1681 
1682 	down_write(&clients_rwsem);
1683 	/*
1684 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1685 	 * achieve this we assign client_ids so they are sorted in
1686 	 * registration order.
1687 	 */
1688 	client->client_id = highest_client_id;
1689 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1690 	if (ret)
1691 		goto out;
1692 
1693 	highest_client_id++;
1694 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1695 
1696 out:
1697 	up_write(&clients_rwsem);
1698 	return ret;
1699 }
1700 
1701 static void remove_client_id(struct ib_client *client)
1702 {
1703 	down_write(&clients_rwsem);
1704 	xa_erase(&clients, client->client_id);
1705 	for (; highest_client_id; highest_client_id--)
1706 		if (xa_load(&clients, highest_client_id - 1))
1707 			break;
1708 	up_write(&clients_rwsem);
1709 }
1710 
1711 /**
1712  * ib_register_client - Register an IB client
1713  * @client:Client to register
1714  *
1715  * Upper level users of the IB drivers can use ib_register_client() to
1716  * register callbacks for IB device addition and removal.  When an IB
1717  * device is added, each registered client's add method will be called
1718  * (in the order the clients were registered), and when a device is
1719  * removed, each client's remove method will be called (in the reverse
1720  * order that clients were registered).  In addition, when
1721  * ib_register_client() is called, the client will receive an add
1722  * callback for all devices already registered.
1723  */
1724 int ib_register_client(struct ib_client *client)
1725 {
1726 	struct ib_device *device;
1727 	unsigned long index;
1728 	int ret;
1729 
1730 	refcount_set(&client->uses, 1);
1731 	init_completion(&client->uses_zero);
1732 	ret = assign_client_id(client);
1733 	if (ret)
1734 		return ret;
1735 
1736 	down_read(&devices_rwsem);
1737 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1738 		ret = add_client_context(device, client);
1739 		if (ret) {
1740 			up_read(&devices_rwsem);
1741 			ib_unregister_client(client);
1742 			return ret;
1743 		}
1744 	}
1745 	up_read(&devices_rwsem);
1746 	return 0;
1747 }
1748 EXPORT_SYMBOL(ib_register_client);
1749 
1750 /**
1751  * ib_unregister_client - Unregister an IB client
1752  * @client:Client to unregister
1753  *
1754  * Upper level users use ib_unregister_client() to remove their client
1755  * registration.  When ib_unregister_client() is called, the client
1756  * will receive a remove callback for each IB device still registered.
1757  *
1758  * This is a full fence, once it returns no client callbacks will be called,
1759  * or are running in another thread.
1760  */
1761 void ib_unregister_client(struct ib_client *client)
1762 {
1763 	struct ib_device *device;
1764 	unsigned long index;
1765 
1766 	down_write(&clients_rwsem);
1767 	ib_client_put(client);
1768 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1769 	up_write(&clients_rwsem);
1770 
1771 	/* We do not want to have locks while calling client->remove() */
1772 	rcu_read_lock();
1773 	xa_for_each (&devices, index, device) {
1774 		if (!ib_device_try_get(device))
1775 			continue;
1776 		rcu_read_unlock();
1777 
1778 		remove_client_context(device, client->client_id);
1779 
1780 		ib_device_put(device);
1781 		rcu_read_lock();
1782 	}
1783 	rcu_read_unlock();
1784 
1785 	/*
1786 	 * remove_client_context() is not a fence, it can return even though a
1787 	 * removal is ongoing. Wait until all removals are completed.
1788 	 */
1789 	wait_for_completion(&client->uses_zero);
1790 	remove_client_id(client);
1791 }
1792 EXPORT_SYMBOL(ib_unregister_client);
1793 
1794 static int __ib_get_global_client_nl_info(const char *client_name,
1795 					  struct ib_client_nl_info *res)
1796 {
1797 	struct ib_client *client;
1798 	unsigned long index;
1799 	int ret = -ENOENT;
1800 
1801 	down_read(&clients_rwsem);
1802 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1803 		if (strcmp(client->name, client_name) != 0)
1804 			continue;
1805 		if (!client->get_global_nl_info) {
1806 			ret = -EOPNOTSUPP;
1807 			break;
1808 		}
1809 		ret = client->get_global_nl_info(res);
1810 		if (WARN_ON(ret == -ENOENT))
1811 			ret = -EINVAL;
1812 		if (!ret && res->cdev)
1813 			get_device(res->cdev);
1814 		break;
1815 	}
1816 	up_read(&clients_rwsem);
1817 	return ret;
1818 }
1819 
1820 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1821 				   const char *client_name,
1822 				   struct ib_client_nl_info *res)
1823 {
1824 	unsigned long index;
1825 	void *client_data;
1826 	int ret = -ENOENT;
1827 
1828 	down_read(&ibdev->client_data_rwsem);
1829 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1830 			     CLIENT_DATA_REGISTERED) {
1831 		struct ib_client *client = xa_load(&clients, index);
1832 
1833 		if (!client || strcmp(client->name, client_name) != 0)
1834 			continue;
1835 		if (!client->get_nl_info) {
1836 			ret = -EOPNOTSUPP;
1837 			break;
1838 		}
1839 		ret = client->get_nl_info(ibdev, client_data, res);
1840 		if (WARN_ON(ret == -ENOENT))
1841 			ret = -EINVAL;
1842 
1843 		/*
1844 		 * The cdev is guaranteed valid as long as we are inside the
1845 		 * client_data_rwsem as remove_one can't be called. Keep it
1846 		 * valid for the caller.
1847 		 */
1848 		if (!ret && res->cdev)
1849 			get_device(res->cdev);
1850 		break;
1851 	}
1852 	up_read(&ibdev->client_data_rwsem);
1853 
1854 	return ret;
1855 }
1856 
1857 /**
1858  * ib_get_client_nl_info - Fetch the nl_info from a client
1859  * @device - IB device
1860  * @client_name - Name of the client
1861  * @res - Result of the query
1862  */
1863 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1864 			  struct ib_client_nl_info *res)
1865 {
1866 	int ret;
1867 
1868 	if (ibdev)
1869 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1870 	else
1871 		ret = __ib_get_global_client_nl_info(client_name, res);
1872 #ifdef CONFIG_MODULES
1873 	if (ret == -ENOENT) {
1874 		request_module("rdma-client-%s", client_name);
1875 		if (ibdev)
1876 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1877 		else
1878 			ret = __ib_get_global_client_nl_info(client_name, res);
1879 	}
1880 #endif
1881 	if (ret) {
1882 		if (ret == -ENOENT)
1883 			return -EOPNOTSUPP;
1884 		return ret;
1885 	}
1886 
1887 	if (WARN_ON(!res->cdev))
1888 		return -EINVAL;
1889 	return 0;
1890 }
1891 
1892 /**
1893  * ib_set_client_data - Set IB client context
1894  * @device:Device to set context for
1895  * @client:Client to set context for
1896  * @data:Context to set
1897  *
1898  * ib_set_client_data() sets client context data that can be retrieved with
1899  * ib_get_client_data(). This can only be called while the client is
1900  * registered to the device, once the ib_client remove() callback returns this
1901  * cannot be called.
1902  */
1903 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1904 			void *data)
1905 {
1906 	void *rc;
1907 
1908 	if (WARN_ON(IS_ERR(data)))
1909 		data = NULL;
1910 
1911 	rc = xa_store(&device->client_data, client->client_id, data,
1912 		      GFP_KERNEL);
1913 	WARN_ON(xa_is_err(rc));
1914 }
1915 EXPORT_SYMBOL(ib_set_client_data);
1916 
1917 /**
1918  * ib_register_event_handler - Register an IB event handler
1919  * @event_handler:Handler to register
1920  *
1921  * ib_register_event_handler() registers an event handler that will be
1922  * called back when asynchronous IB events occur (as defined in
1923  * chapter 11 of the InfiniBand Architecture Specification).  This
1924  * callback may occur in interrupt context.
1925  */
1926 void ib_register_event_handler(struct ib_event_handler *event_handler)
1927 {
1928 	unsigned long flags;
1929 
1930 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1931 	list_add_tail(&event_handler->list,
1932 		      &event_handler->device->event_handler_list);
1933 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1934 }
1935 EXPORT_SYMBOL(ib_register_event_handler);
1936 
1937 /**
1938  * ib_unregister_event_handler - Unregister an event handler
1939  * @event_handler:Handler to unregister
1940  *
1941  * Unregister an event handler registered with
1942  * ib_register_event_handler().
1943  */
1944 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1945 {
1946 	unsigned long flags;
1947 
1948 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1949 	list_del(&event_handler->list);
1950 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1951 }
1952 EXPORT_SYMBOL(ib_unregister_event_handler);
1953 
1954 /**
1955  * ib_dispatch_event - Dispatch an asynchronous event
1956  * @event:Event to dispatch
1957  *
1958  * Low-level drivers must call ib_dispatch_event() to dispatch the
1959  * event to all registered event handlers when an asynchronous event
1960  * occurs.
1961  */
1962 void ib_dispatch_event(struct ib_event *event)
1963 {
1964 	unsigned long flags;
1965 	struct ib_event_handler *handler;
1966 
1967 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
1968 
1969 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1970 		handler->handler(handler, event);
1971 
1972 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1973 }
1974 EXPORT_SYMBOL(ib_dispatch_event);
1975 
1976 static int iw_query_port(struct ib_device *device,
1977 			   u8 port_num,
1978 			   struct ib_port_attr *port_attr)
1979 {
1980 	struct in_device *inetdev;
1981 	struct net_device *netdev;
1982 	int err;
1983 
1984 	memset(port_attr, 0, sizeof(*port_attr));
1985 
1986 	netdev = ib_device_get_netdev(device, port_num);
1987 	if (!netdev)
1988 		return -ENODEV;
1989 
1990 	port_attr->max_mtu = IB_MTU_4096;
1991 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
1992 
1993 	if (!netif_carrier_ok(netdev)) {
1994 		port_attr->state = IB_PORT_DOWN;
1995 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
1996 	} else {
1997 		rcu_read_lock();
1998 		inetdev = __in_dev_get_rcu(netdev);
1999 
2000 		if (inetdev && inetdev->ifa_list) {
2001 			port_attr->state = IB_PORT_ACTIVE;
2002 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2003 		} else {
2004 			port_attr->state = IB_PORT_INIT;
2005 			port_attr->phys_state =
2006 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2007 		}
2008 
2009 		rcu_read_unlock();
2010 	}
2011 
2012 	dev_put(netdev);
2013 	err = device->ops.query_port(device, port_num, port_attr);
2014 	if (err)
2015 		return err;
2016 
2017 	return 0;
2018 }
2019 
2020 static int __ib_query_port(struct ib_device *device,
2021 			   u8 port_num,
2022 			   struct ib_port_attr *port_attr)
2023 {
2024 	union ib_gid gid = {};
2025 	int err;
2026 
2027 	memset(port_attr, 0, sizeof(*port_attr));
2028 
2029 	err = device->ops.query_port(device, port_num, port_attr);
2030 	if (err || port_attr->subnet_prefix)
2031 		return err;
2032 
2033 	if (rdma_port_get_link_layer(device, port_num) !=
2034 	    IB_LINK_LAYER_INFINIBAND)
2035 		return 0;
2036 
2037 	err = device->ops.query_gid(device, port_num, 0, &gid);
2038 	if (err)
2039 		return err;
2040 
2041 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2042 	return 0;
2043 }
2044 
2045 /**
2046  * ib_query_port - Query IB port attributes
2047  * @device:Device to query
2048  * @port_num:Port number to query
2049  * @port_attr:Port attributes
2050  *
2051  * ib_query_port() returns the attributes of a port through the
2052  * @port_attr pointer.
2053  */
2054 int ib_query_port(struct ib_device *device,
2055 		  u8 port_num,
2056 		  struct ib_port_attr *port_attr)
2057 {
2058 	if (!rdma_is_port_valid(device, port_num))
2059 		return -EINVAL;
2060 
2061 	if (rdma_protocol_iwarp(device, port_num))
2062 		return iw_query_port(device, port_num, port_attr);
2063 	else
2064 		return __ib_query_port(device, port_num, port_attr);
2065 }
2066 EXPORT_SYMBOL(ib_query_port);
2067 
2068 static void add_ndev_hash(struct ib_port_data *pdata)
2069 {
2070 	unsigned long flags;
2071 
2072 	might_sleep();
2073 
2074 	spin_lock_irqsave(&ndev_hash_lock, flags);
2075 	if (hash_hashed(&pdata->ndev_hash_link)) {
2076 		hash_del_rcu(&pdata->ndev_hash_link);
2077 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2078 		/*
2079 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2080 		 * grace period
2081 		 */
2082 		synchronize_rcu();
2083 		spin_lock_irqsave(&ndev_hash_lock, flags);
2084 	}
2085 	if (pdata->netdev)
2086 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2087 			     (uintptr_t)pdata->netdev);
2088 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2089 }
2090 
2091 /**
2092  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2093  * @ib_dev: Device to modify
2094  * @ndev: net_device to affiliate, may be NULL
2095  * @port: IB port the net_device is connected to
2096  *
2097  * Drivers should use this to link the ib_device to a netdev so the netdev
2098  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2099  * affiliated with any port.
2100  *
2101  * The caller must ensure that the given ndev is not unregistered or
2102  * unregistering, and that either the ib_device is unregistered or
2103  * ib_device_set_netdev() is called with NULL when the ndev sends a
2104  * NETDEV_UNREGISTER event.
2105  */
2106 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2107 			 unsigned int port)
2108 {
2109 	struct net_device *old_ndev;
2110 	struct ib_port_data *pdata;
2111 	unsigned long flags;
2112 	int ret;
2113 
2114 	/*
2115 	 * Drivers wish to call this before ib_register_driver, so we have to
2116 	 * setup the port data early.
2117 	 */
2118 	ret = alloc_port_data(ib_dev);
2119 	if (ret)
2120 		return ret;
2121 
2122 	if (!rdma_is_port_valid(ib_dev, port))
2123 		return -EINVAL;
2124 
2125 	pdata = &ib_dev->port_data[port];
2126 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2127 	old_ndev = rcu_dereference_protected(
2128 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2129 	if (old_ndev == ndev) {
2130 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2131 		return 0;
2132 	}
2133 
2134 	if (ndev)
2135 		dev_hold(ndev);
2136 	rcu_assign_pointer(pdata->netdev, ndev);
2137 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2138 
2139 	add_ndev_hash(pdata);
2140 	if (old_ndev)
2141 		dev_put(old_ndev);
2142 
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL(ib_device_set_netdev);
2146 
2147 static void free_netdevs(struct ib_device *ib_dev)
2148 {
2149 	unsigned long flags;
2150 	unsigned int port;
2151 
2152 	if (!ib_dev->port_data)
2153 		return;
2154 
2155 	rdma_for_each_port (ib_dev, port) {
2156 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2157 		struct net_device *ndev;
2158 
2159 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2160 		ndev = rcu_dereference_protected(
2161 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2162 		if (ndev) {
2163 			spin_lock(&ndev_hash_lock);
2164 			hash_del_rcu(&pdata->ndev_hash_link);
2165 			spin_unlock(&ndev_hash_lock);
2166 
2167 			/*
2168 			 * If this is the last dev_put there is still a
2169 			 * synchronize_rcu before the netdev is kfreed, so we
2170 			 * can continue to rely on unlocked pointer
2171 			 * comparisons after the put
2172 			 */
2173 			rcu_assign_pointer(pdata->netdev, NULL);
2174 			dev_put(ndev);
2175 		}
2176 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2177 	}
2178 }
2179 
2180 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2181 					unsigned int port)
2182 {
2183 	struct ib_port_data *pdata;
2184 	struct net_device *res;
2185 
2186 	if (!rdma_is_port_valid(ib_dev, port))
2187 		return NULL;
2188 
2189 	pdata = &ib_dev->port_data[port];
2190 
2191 	/*
2192 	 * New drivers should use ib_device_set_netdev() not the legacy
2193 	 * get_netdev().
2194 	 */
2195 	if (ib_dev->ops.get_netdev)
2196 		res = ib_dev->ops.get_netdev(ib_dev, port);
2197 	else {
2198 		spin_lock(&pdata->netdev_lock);
2199 		res = rcu_dereference_protected(
2200 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2201 		if (res)
2202 			dev_hold(res);
2203 		spin_unlock(&pdata->netdev_lock);
2204 	}
2205 
2206 	/*
2207 	 * If we are starting to unregister expedite things by preventing
2208 	 * propagation of an unregistering netdev.
2209 	 */
2210 	if (res && res->reg_state != NETREG_REGISTERED) {
2211 		dev_put(res);
2212 		return NULL;
2213 	}
2214 
2215 	return res;
2216 }
2217 
2218 /**
2219  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2220  * @ndev: netdev to locate
2221  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2222  *
2223  * Find and hold an ib_device that is associated with a netdev via
2224  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2225  * returned pointer.
2226  */
2227 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2228 					  enum rdma_driver_id driver_id)
2229 {
2230 	struct ib_device *res = NULL;
2231 	struct ib_port_data *cur;
2232 
2233 	rcu_read_lock();
2234 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2235 				    (uintptr_t)ndev) {
2236 		if (rcu_access_pointer(cur->netdev) == ndev &&
2237 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2238 		     cur->ib_dev->ops.driver_id == driver_id) &&
2239 		    ib_device_try_get(cur->ib_dev)) {
2240 			res = cur->ib_dev;
2241 			break;
2242 		}
2243 	}
2244 	rcu_read_unlock();
2245 
2246 	return res;
2247 }
2248 EXPORT_SYMBOL(ib_device_get_by_netdev);
2249 
2250 /**
2251  * ib_enum_roce_netdev - enumerate all RoCE ports
2252  * @ib_dev : IB device we want to query
2253  * @filter: Should we call the callback?
2254  * @filter_cookie: Cookie passed to filter
2255  * @cb: Callback to call for each found RoCE ports
2256  * @cookie: Cookie passed back to the callback
2257  *
2258  * Enumerates all of the physical RoCE ports of ib_dev
2259  * which are related to netdevice and calls callback() on each
2260  * device for which filter() function returns non zero.
2261  */
2262 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2263 			 roce_netdev_filter filter,
2264 			 void *filter_cookie,
2265 			 roce_netdev_callback cb,
2266 			 void *cookie)
2267 {
2268 	unsigned int port;
2269 
2270 	rdma_for_each_port (ib_dev, port)
2271 		if (rdma_protocol_roce(ib_dev, port)) {
2272 			struct net_device *idev =
2273 				ib_device_get_netdev(ib_dev, port);
2274 
2275 			if (filter(ib_dev, port, idev, filter_cookie))
2276 				cb(ib_dev, port, idev, cookie);
2277 
2278 			if (idev)
2279 				dev_put(idev);
2280 		}
2281 }
2282 
2283 /**
2284  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2285  * @filter: Should we call the callback?
2286  * @filter_cookie: Cookie passed to filter
2287  * @cb: Callback to call for each found RoCE ports
2288  * @cookie: Cookie passed back to the callback
2289  *
2290  * Enumerates all RoCE devices' physical ports which are related
2291  * to netdevices and calls callback() on each device for which
2292  * filter() function returns non zero.
2293  */
2294 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2295 			      void *filter_cookie,
2296 			      roce_netdev_callback cb,
2297 			      void *cookie)
2298 {
2299 	struct ib_device *dev;
2300 	unsigned long index;
2301 
2302 	down_read(&devices_rwsem);
2303 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2304 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2305 	up_read(&devices_rwsem);
2306 }
2307 
2308 /**
2309  * ib_enum_all_devs - enumerate all ib_devices
2310  * @cb: Callback to call for each found ib_device
2311  *
2312  * Enumerates all ib_devices and calls callback() on each device.
2313  */
2314 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2315 		     struct netlink_callback *cb)
2316 {
2317 	unsigned long index;
2318 	struct ib_device *dev;
2319 	unsigned int idx = 0;
2320 	int ret = 0;
2321 
2322 	down_read(&devices_rwsem);
2323 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2324 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2325 			continue;
2326 
2327 		ret = nldev_cb(dev, skb, cb, idx);
2328 		if (ret)
2329 			break;
2330 		idx++;
2331 	}
2332 	up_read(&devices_rwsem);
2333 	return ret;
2334 }
2335 
2336 /**
2337  * ib_query_pkey - Get P_Key table entry
2338  * @device:Device to query
2339  * @port_num:Port number to query
2340  * @index:P_Key table index to query
2341  * @pkey:Returned P_Key
2342  *
2343  * ib_query_pkey() fetches the specified P_Key table entry.
2344  */
2345 int ib_query_pkey(struct ib_device *device,
2346 		  u8 port_num, u16 index, u16 *pkey)
2347 {
2348 	if (!rdma_is_port_valid(device, port_num))
2349 		return -EINVAL;
2350 
2351 	return device->ops.query_pkey(device, port_num, index, pkey);
2352 }
2353 EXPORT_SYMBOL(ib_query_pkey);
2354 
2355 /**
2356  * ib_modify_device - Change IB device attributes
2357  * @device:Device to modify
2358  * @device_modify_mask:Mask of attributes to change
2359  * @device_modify:New attribute values
2360  *
2361  * ib_modify_device() changes a device's attributes as specified by
2362  * the @device_modify_mask and @device_modify structure.
2363  */
2364 int ib_modify_device(struct ib_device *device,
2365 		     int device_modify_mask,
2366 		     struct ib_device_modify *device_modify)
2367 {
2368 	if (!device->ops.modify_device)
2369 		return -ENOSYS;
2370 
2371 	return device->ops.modify_device(device, device_modify_mask,
2372 					 device_modify);
2373 }
2374 EXPORT_SYMBOL(ib_modify_device);
2375 
2376 /**
2377  * ib_modify_port - Modifies the attributes for the specified port.
2378  * @device: The device to modify.
2379  * @port_num: The number of the port to modify.
2380  * @port_modify_mask: Mask used to specify which attributes of the port
2381  *   to change.
2382  * @port_modify: New attribute values for the port.
2383  *
2384  * ib_modify_port() changes a port's attributes as specified by the
2385  * @port_modify_mask and @port_modify structure.
2386  */
2387 int ib_modify_port(struct ib_device *device,
2388 		   u8 port_num, int port_modify_mask,
2389 		   struct ib_port_modify *port_modify)
2390 {
2391 	int rc;
2392 
2393 	if (!rdma_is_port_valid(device, port_num))
2394 		return -EINVAL;
2395 
2396 	if (device->ops.modify_port)
2397 		rc = device->ops.modify_port(device, port_num,
2398 					     port_modify_mask,
2399 					     port_modify);
2400 	else
2401 		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
2402 	return rc;
2403 }
2404 EXPORT_SYMBOL(ib_modify_port);
2405 
2406 /**
2407  * ib_find_gid - Returns the port number and GID table index where
2408  *   a specified GID value occurs. Its searches only for IB link layer.
2409  * @device: The device to query.
2410  * @gid: The GID value to search for.
2411  * @port_num: The port number of the device where the GID value was found.
2412  * @index: The index into the GID table where the GID was found.  This
2413  *   parameter may be NULL.
2414  */
2415 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2416 		u8 *port_num, u16 *index)
2417 {
2418 	union ib_gid tmp_gid;
2419 	unsigned int port;
2420 	int ret, i;
2421 
2422 	rdma_for_each_port (device, port) {
2423 		if (!rdma_protocol_ib(device, port))
2424 			continue;
2425 
2426 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2427 		     ++i) {
2428 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2429 			if (ret)
2430 				return ret;
2431 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2432 				*port_num = port;
2433 				if (index)
2434 					*index = i;
2435 				return 0;
2436 			}
2437 		}
2438 	}
2439 
2440 	return -ENOENT;
2441 }
2442 EXPORT_SYMBOL(ib_find_gid);
2443 
2444 /**
2445  * ib_find_pkey - Returns the PKey table index where a specified
2446  *   PKey value occurs.
2447  * @device: The device to query.
2448  * @port_num: The port number of the device to search for the PKey.
2449  * @pkey: The PKey value to search for.
2450  * @index: The index into the PKey table where the PKey was found.
2451  */
2452 int ib_find_pkey(struct ib_device *device,
2453 		 u8 port_num, u16 pkey, u16 *index)
2454 {
2455 	int ret, i;
2456 	u16 tmp_pkey;
2457 	int partial_ix = -1;
2458 
2459 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2460 	     ++i) {
2461 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2462 		if (ret)
2463 			return ret;
2464 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2465 			/* if there is full-member pkey take it.*/
2466 			if (tmp_pkey & 0x8000) {
2467 				*index = i;
2468 				return 0;
2469 			}
2470 			if (partial_ix < 0)
2471 				partial_ix = i;
2472 		}
2473 	}
2474 
2475 	/*no full-member, if exists take the limited*/
2476 	if (partial_ix >= 0) {
2477 		*index = partial_ix;
2478 		return 0;
2479 	}
2480 	return -ENOENT;
2481 }
2482 EXPORT_SYMBOL(ib_find_pkey);
2483 
2484 /**
2485  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2486  * for a received CM request
2487  * @dev:	An RDMA device on which the request has been received.
2488  * @port:	Port number on the RDMA device.
2489  * @pkey:	The Pkey the request came on.
2490  * @gid:	A GID that the net_dev uses to communicate.
2491  * @addr:	Contains the IP address that the request specified as its
2492  *		destination.
2493  *
2494  */
2495 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2496 					    u8 port,
2497 					    u16 pkey,
2498 					    const union ib_gid *gid,
2499 					    const struct sockaddr *addr)
2500 {
2501 	struct net_device *net_dev = NULL;
2502 	unsigned long index;
2503 	void *client_data;
2504 
2505 	if (!rdma_protocol_ib(dev, port))
2506 		return NULL;
2507 
2508 	/*
2509 	 * Holding the read side guarantees that the client will not become
2510 	 * unregistered while we are calling get_net_dev_by_params()
2511 	 */
2512 	down_read(&dev->client_data_rwsem);
2513 	xan_for_each_marked (&dev->client_data, index, client_data,
2514 			     CLIENT_DATA_REGISTERED) {
2515 		struct ib_client *client = xa_load(&clients, index);
2516 
2517 		if (!client || !client->get_net_dev_by_params)
2518 			continue;
2519 
2520 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2521 							addr, client_data);
2522 		if (net_dev)
2523 			break;
2524 	}
2525 	up_read(&dev->client_data_rwsem);
2526 
2527 	return net_dev;
2528 }
2529 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2530 
2531 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2532 {
2533 	struct ib_device_ops *dev_ops = &dev->ops;
2534 #define SET_DEVICE_OP(ptr, name)                                               \
2535 	do {                                                                   \
2536 		if (ops->name)                                                 \
2537 			if (!((ptr)->name))				       \
2538 				(ptr)->name = ops->name;                       \
2539 	} while (0)
2540 
2541 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2542 
2543 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2544 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2545 			dev_ops->driver_id != ops->driver_id);
2546 		dev_ops->driver_id = ops->driver_id;
2547 	}
2548 	if (ops->owner) {
2549 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2550 		dev_ops->owner = ops->owner;
2551 	}
2552 	if (ops->uverbs_abi_ver)
2553 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2554 
2555 	dev_ops->uverbs_no_driver_id_binding |=
2556 		ops->uverbs_no_driver_id_binding;
2557 
2558 	SET_DEVICE_OP(dev_ops, add_gid);
2559 	SET_DEVICE_OP(dev_ops, advise_mr);
2560 	SET_DEVICE_OP(dev_ops, alloc_dm);
2561 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2562 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2563 	SET_DEVICE_OP(dev_ops, alloc_mr);
2564 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2565 	SET_DEVICE_OP(dev_ops, alloc_mw);
2566 	SET_DEVICE_OP(dev_ops, alloc_pd);
2567 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2568 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2569 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2570 	SET_DEVICE_OP(dev_ops, attach_mcast);
2571 	SET_DEVICE_OP(dev_ops, check_mr_status);
2572 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2573 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2574 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2575 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2576 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2577 	SET_DEVICE_OP(dev_ops, create_ah);
2578 	SET_DEVICE_OP(dev_ops, create_counters);
2579 	SET_DEVICE_OP(dev_ops, create_cq);
2580 	SET_DEVICE_OP(dev_ops, create_flow);
2581 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2582 	SET_DEVICE_OP(dev_ops, create_qp);
2583 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2584 	SET_DEVICE_OP(dev_ops, create_srq);
2585 	SET_DEVICE_OP(dev_ops, create_wq);
2586 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2587 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2588 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2589 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2590 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2591 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2592 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2593 	SET_DEVICE_OP(dev_ops, del_gid);
2594 	SET_DEVICE_OP(dev_ops, dereg_mr);
2595 	SET_DEVICE_OP(dev_ops, destroy_ah);
2596 	SET_DEVICE_OP(dev_ops, destroy_counters);
2597 	SET_DEVICE_OP(dev_ops, destroy_cq);
2598 	SET_DEVICE_OP(dev_ops, destroy_flow);
2599 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2600 	SET_DEVICE_OP(dev_ops, destroy_qp);
2601 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2602 	SET_DEVICE_OP(dev_ops, destroy_srq);
2603 	SET_DEVICE_OP(dev_ops, destroy_wq);
2604 	SET_DEVICE_OP(dev_ops, detach_mcast);
2605 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2606 	SET_DEVICE_OP(dev_ops, drain_rq);
2607 	SET_DEVICE_OP(dev_ops, drain_sq);
2608 	SET_DEVICE_OP(dev_ops, enable_driver);
2609 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2610 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2611 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2612 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2613 	SET_DEVICE_OP(dev_ops, get_link_layer);
2614 	SET_DEVICE_OP(dev_ops, get_netdev);
2615 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2616 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2617 	SET_DEVICE_OP(dev_ops, get_vf_config);
2618 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2619 	SET_DEVICE_OP(dev_ops, init_port);
2620 	SET_DEVICE_OP(dev_ops, invalidate_range);
2621 	SET_DEVICE_OP(dev_ops, iw_accept);
2622 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2623 	SET_DEVICE_OP(dev_ops, iw_connect);
2624 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2625 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2626 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2627 	SET_DEVICE_OP(dev_ops, iw_reject);
2628 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2629 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2630 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2631 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2632 	SET_DEVICE_OP(dev_ops, mmap);
2633 	SET_DEVICE_OP(dev_ops, modify_ah);
2634 	SET_DEVICE_OP(dev_ops, modify_cq);
2635 	SET_DEVICE_OP(dev_ops, modify_device);
2636 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2637 	SET_DEVICE_OP(dev_ops, modify_port);
2638 	SET_DEVICE_OP(dev_ops, modify_qp);
2639 	SET_DEVICE_OP(dev_ops, modify_srq);
2640 	SET_DEVICE_OP(dev_ops, modify_wq);
2641 	SET_DEVICE_OP(dev_ops, peek_cq);
2642 	SET_DEVICE_OP(dev_ops, poll_cq);
2643 	SET_DEVICE_OP(dev_ops, post_recv);
2644 	SET_DEVICE_OP(dev_ops, post_send);
2645 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2646 	SET_DEVICE_OP(dev_ops, process_mad);
2647 	SET_DEVICE_OP(dev_ops, query_ah);
2648 	SET_DEVICE_OP(dev_ops, query_device);
2649 	SET_DEVICE_OP(dev_ops, query_gid);
2650 	SET_DEVICE_OP(dev_ops, query_pkey);
2651 	SET_DEVICE_OP(dev_ops, query_port);
2652 	SET_DEVICE_OP(dev_ops, query_qp);
2653 	SET_DEVICE_OP(dev_ops, query_srq);
2654 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2655 	SET_DEVICE_OP(dev_ops, read_counters);
2656 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2657 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2658 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2659 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2660 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2661 	SET_DEVICE_OP(dev_ops, resize_cq);
2662 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2663 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2664 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2665 
2666 	SET_OBJ_SIZE(dev_ops, ib_ah);
2667 	SET_OBJ_SIZE(dev_ops, ib_cq);
2668 	SET_OBJ_SIZE(dev_ops, ib_pd);
2669 	SET_OBJ_SIZE(dev_ops, ib_srq);
2670 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2671 }
2672 EXPORT_SYMBOL(ib_set_device_ops);
2673 
2674 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2675 	[RDMA_NL_LS_OP_RESOLVE] = {
2676 		.doit = ib_nl_handle_resolve_resp,
2677 		.flags = RDMA_NL_ADMIN_PERM,
2678 	},
2679 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2680 		.doit = ib_nl_handle_set_timeout,
2681 		.flags = RDMA_NL_ADMIN_PERM,
2682 	},
2683 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2684 		.doit = ib_nl_handle_ip_res_resp,
2685 		.flags = RDMA_NL_ADMIN_PERM,
2686 	},
2687 };
2688 
2689 static int __init ib_core_init(void)
2690 {
2691 	int ret;
2692 
2693 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2694 	if (!ib_wq)
2695 		return -ENOMEM;
2696 
2697 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2698 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2699 	if (!ib_comp_wq) {
2700 		ret = -ENOMEM;
2701 		goto err;
2702 	}
2703 
2704 	ib_comp_unbound_wq =
2705 		alloc_workqueue("ib-comp-unb-wq",
2706 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2707 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2708 	if (!ib_comp_unbound_wq) {
2709 		ret = -ENOMEM;
2710 		goto err_comp;
2711 	}
2712 
2713 	ret = class_register(&ib_class);
2714 	if (ret) {
2715 		pr_warn("Couldn't create InfiniBand device class\n");
2716 		goto err_comp_unbound;
2717 	}
2718 
2719 	ret = addr_init();
2720 	if (ret) {
2721 		pr_warn("Could't init IB address resolution\n");
2722 		goto err_ibnl;
2723 	}
2724 
2725 	ret = ib_mad_init();
2726 	if (ret) {
2727 		pr_warn("Couldn't init IB MAD\n");
2728 		goto err_addr;
2729 	}
2730 
2731 	ret = ib_sa_init();
2732 	if (ret) {
2733 		pr_warn("Couldn't init SA\n");
2734 		goto err_mad;
2735 	}
2736 
2737 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2738 	if (ret) {
2739 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2740 		goto err_sa;
2741 	}
2742 
2743 	ret = register_pernet_device(&rdma_dev_net_ops);
2744 	if (ret) {
2745 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2746 		goto err_compat;
2747 	}
2748 
2749 	nldev_init();
2750 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2751 	roce_gid_mgmt_init();
2752 
2753 	return 0;
2754 
2755 err_compat:
2756 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2757 err_sa:
2758 	ib_sa_cleanup();
2759 err_mad:
2760 	ib_mad_cleanup();
2761 err_addr:
2762 	addr_cleanup();
2763 err_ibnl:
2764 	class_unregister(&ib_class);
2765 err_comp_unbound:
2766 	destroy_workqueue(ib_comp_unbound_wq);
2767 err_comp:
2768 	destroy_workqueue(ib_comp_wq);
2769 err:
2770 	destroy_workqueue(ib_wq);
2771 	return ret;
2772 }
2773 
2774 static void __exit ib_core_cleanup(void)
2775 {
2776 	roce_gid_mgmt_cleanup();
2777 	nldev_exit();
2778 	rdma_nl_unregister(RDMA_NL_LS);
2779 	unregister_pernet_device(&rdma_dev_net_ops);
2780 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2781 	ib_sa_cleanup();
2782 	ib_mad_cleanup();
2783 	addr_cleanup();
2784 	rdma_nl_exit();
2785 	class_unregister(&ib_class);
2786 	destroy_workqueue(ib_comp_unbound_wq);
2787 	destroy_workqueue(ib_comp_wq);
2788 	/* Make sure that any pending umem accounting work is done. */
2789 	destroy_workqueue(ib_wq);
2790 	flush_workqueue(system_unbound_wq);
2791 	WARN_ON(!xa_empty(&clients));
2792 	WARN_ON(!xa_empty(&devices));
2793 }
2794 
2795 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2796 
2797 /* ib core relies on netdev stack to first register net_ns_type_operations
2798  * ns kobject type before ib_core initialization.
2799  */
2800 fs_initcall(ib_core_init);
2801 module_exit(ib_core_cleanup);
2802