xref: /linux/drivers/infiniband/core/cma.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52 
53 static const char * const cma_events[] = {
54 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
55 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
56 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
57 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
58 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
59 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
61 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
62 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
63 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
64 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
65 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
66 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
67 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
68 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
69 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
70 };
71 
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 			      enum ib_gid_type gid_type);
74 
75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
76 {
77 	size_t index = event;
78 
79 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
80 			cma_events[index] : "unrecognized event";
81 }
82 EXPORT_SYMBOL(rdma_event_msg);
83 
84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
85 						int reason)
86 {
87 	if (rdma_ib_or_roce(id->device, id->port_num))
88 		return ibcm_reject_msg(reason);
89 
90 	if (rdma_protocol_iwarp(id->device, id->port_num))
91 		return iwcm_reject_msg(reason);
92 
93 	WARN_ON_ONCE(1);
94 	return "unrecognized transport";
95 }
96 EXPORT_SYMBOL(rdma_reject_msg);
97 
98 /**
99  * rdma_is_consumer_reject - return true if the consumer rejected the connect
100  *                           request.
101  * @id: Communication identifier that received the REJECT event.
102  * @reason: Value returned in the REJECT event status field.
103  */
104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
105 {
106 	if (rdma_ib_or_roce(id->device, id->port_num))
107 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
108 
109 	if (rdma_protocol_iwarp(id->device, id->port_num))
110 		return reason == -ECONNREFUSED;
111 
112 	WARN_ON_ONCE(1);
113 	return false;
114 }
115 
116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
117 				      struct rdma_cm_event *ev, u8 *data_len)
118 {
119 	const void *p;
120 
121 	if (rdma_is_consumer_reject(id, ev->status)) {
122 		*data_len = ev->param.conn.private_data_len;
123 		p = ev->param.conn.private_data;
124 	} else {
125 		*data_len = 0;
126 		p = NULL;
127 	}
128 	return p;
129 }
130 EXPORT_SYMBOL(rdma_consumer_reject_data);
131 
132 /**
133  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
134  * @id: Communication Identifier
135  */
136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
137 {
138 	struct rdma_id_private *id_priv;
139 
140 	id_priv = container_of(id, struct rdma_id_private, id);
141 	if (id->device->node_type == RDMA_NODE_RNIC)
142 		return id_priv->cm_id.iw;
143 	return NULL;
144 }
145 EXPORT_SYMBOL(rdma_iw_cm_id);
146 
147 /**
148  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
149  * @res: rdma resource tracking entry pointer
150  */
151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
152 {
153 	struct rdma_id_private *id_priv =
154 		container_of(res, struct rdma_id_private, res);
155 
156 	return &id_priv->id;
157 }
158 EXPORT_SYMBOL(rdma_res_to_id);
159 
160 static int cma_add_one(struct ib_device *device);
161 static void cma_remove_one(struct ib_device *device, void *client_data);
162 
163 static struct ib_client cma_client = {
164 	.name   = "cma",
165 	.add    = cma_add_one,
166 	.remove = cma_remove_one
167 };
168 
169 static struct ib_sa_client sa_client;
170 static LIST_HEAD(dev_list);
171 static LIST_HEAD(listen_any_list);
172 static DEFINE_MUTEX(lock);
173 static struct rb_root id_table = RB_ROOT;
174 /* Serialize operations of id_table tree */
175 static DEFINE_SPINLOCK(id_table_lock);
176 static struct workqueue_struct *cma_wq;
177 static unsigned int cma_pernet_id;
178 
179 struct cma_pernet {
180 	struct xarray tcp_ps;
181 	struct xarray udp_ps;
182 	struct xarray ipoib_ps;
183 	struct xarray ib_ps;
184 };
185 
186 static struct cma_pernet *cma_pernet(struct net *net)
187 {
188 	return net_generic(net, cma_pernet_id);
189 }
190 
191 static
192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
193 {
194 	struct cma_pernet *pernet = cma_pernet(net);
195 
196 	switch (ps) {
197 	case RDMA_PS_TCP:
198 		return &pernet->tcp_ps;
199 	case RDMA_PS_UDP:
200 		return &pernet->udp_ps;
201 	case RDMA_PS_IPOIB:
202 		return &pernet->ipoib_ps;
203 	case RDMA_PS_IB:
204 		return &pernet->ib_ps;
205 	default:
206 		return NULL;
207 	}
208 }
209 
210 struct id_table_entry {
211 	struct list_head id_list;
212 	struct rb_node rb_node;
213 };
214 
215 struct cma_device {
216 	struct list_head	list;
217 	struct ib_device	*device;
218 	struct completion	comp;
219 	refcount_t refcount;
220 	struct list_head	id_list;
221 	enum ib_gid_type	*default_gid_type;
222 	u8			*default_roce_tos;
223 };
224 
225 struct rdma_bind_list {
226 	enum rdma_ucm_port_space ps;
227 	struct hlist_head	owners;
228 	unsigned short		port;
229 };
230 
231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
232 			struct rdma_bind_list *bind_list, int snum)
233 {
234 	struct xarray *xa = cma_pernet_xa(net, ps);
235 
236 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
237 }
238 
239 static struct rdma_bind_list *cma_ps_find(struct net *net,
240 					  enum rdma_ucm_port_space ps, int snum)
241 {
242 	struct xarray *xa = cma_pernet_xa(net, ps);
243 
244 	return xa_load(xa, snum);
245 }
246 
247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
248 			  int snum)
249 {
250 	struct xarray *xa = cma_pernet_xa(net, ps);
251 
252 	xa_erase(xa, snum);
253 }
254 
255 enum {
256 	CMA_OPTION_AFONLY,
257 };
258 
259 void cma_dev_get(struct cma_device *cma_dev)
260 {
261 	refcount_inc(&cma_dev->refcount);
262 }
263 
264 void cma_dev_put(struct cma_device *cma_dev)
265 {
266 	if (refcount_dec_and_test(&cma_dev->refcount))
267 		complete(&cma_dev->comp);
268 }
269 
270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
271 					     void		*cookie)
272 {
273 	struct cma_device *cma_dev;
274 	struct cma_device *found_cma_dev = NULL;
275 
276 	mutex_lock(&lock);
277 
278 	list_for_each_entry(cma_dev, &dev_list, list)
279 		if (filter(cma_dev->device, cookie)) {
280 			found_cma_dev = cma_dev;
281 			break;
282 		}
283 
284 	if (found_cma_dev)
285 		cma_dev_get(found_cma_dev);
286 	mutex_unlock(&lock);
287 	return found_cma_dev;
288 }
289 
290 int cma_get_default_gid_type(struct cma_device *cma_dev,
291 			     u32 port)
292 {
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
297 }
298 
299 int cma_set_default_gid_type(struct cma_device *cma_dev,
300 			     u32 port,
301 			     enum ib_gid_type default_gid_type)
302 {
303 	unsigned long supported_gids;
304 
305 	if (!rdma_is_port_valid(cma_dev->device, port))
306 		return -EINVAL;
307 
308 	if (default_gid_type == IB_GID_TYPE_IB &&
309 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
310 		default_gid_type = IB_GID_TYPE_ROCE;
311 
312 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
313 
314 	if (!(supported_gids & 1 << default_gid_type))
315 		return -EINVAL;
316 
317 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
318 		default_gid_type;
319 
320 	return 0;
321 }
322 
323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
324 {
325 	if (!rdma_is_port_valid(cma_dev->device, port))
326 		return -EINVAL;
327 
328 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
329 }
330 
331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
332 			     u8 default_roce_tos)
333 {
334 	if (!rdma_is_port_valid(cma_dev->device, port))
335 		return -EINVAL;
336 
337 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
338 		 default_roce_tos;
339 
340 	return 0;
341 }
342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
343 {
344 	return cma_dev->device;
345 }
346 
347 /*
348  * Device removal can occur at anytime, so we need extra handling to
349  * serialize notifying the user of device removal with other callbacks.
350  * We do this by disabling removal notification while a callback is in process,
351  * and reporting it after the callback completes.
352  */
353 
354 struct cma_multicast {
355 	struct rdma_id_private *id_priv;
356 	union {
357 		struct ib_sa_multicast *sa_mc;
358 		struct {
359 			struct work_struct work;
360 			struct rdma_cm_event event;
361 		} iboe_join;
362 	};
363 	struct list_head	list;
364 	void			*context;
365 	struct sockaddr_storage	addr;
366 	u8			join_state;
367 };
368 
369 struct cma_work {
370 	struct work_struct	work;
371 	struct rdma_id_private	*id;
372 	enum rdma_cm_state	old_state;
373 	enum rdma_cm_state	new_state;
374 	struct rdma_cm_event	event;
375 };
376 
377 union cma_ip_addr {
378 	struct in6_addr ip6;
379 	struct {
380 		__be32 pad[3];
381 		__be32 addr;
382 	} ip4;
383 };
384 
385 struct cma_hdr {
386 	u8 cma_version;
387 	u8 ip_version;	/* IP version: 7:4 */
388 	__be16 port;
389 	union cma_ip_addr src_addr;
390 	union cma_ip_addr dst_addr;
391 };
392 
393 #define CMA_VERSION 0x00
394 
395 struct cma_req_info {
396 	struct sockaddr_storage listen_addr_storage;
397 	struct sockaddr_storage src_addr_storage;
398 	struct ib_device *device;
399 	union ib_gid local_gid;
400 	__be64 service_id;
401 	int port;
402 	bool has_gid;
403 	u16 pkey;
404 };
405 
406 static int cma_comp_exch(struct rdma_id_private *id_priv,
407 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
408 {
409 	unsigned long flags;
410 	int ret;
411 
412 	/*
413 	 * The FSM uses a funny double locking where state is protected by both
414 	 * the handler_mutex and the spinlock. State is not allowed to change
415 	 * to/from a handler_mutex protected value without also holding
416 	 * handler_mutex.
417 	 */
418 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
419 		lockdep_assert_held(&id_priv->handler_mutex);
420 
421 	spin_lock_irqsave(&id_priv->lock, flags);
422 	if ((ret = (id_priv->state == comp)))
423 		id_priv->state = exch;
424 	spin_unlock_irqrestore(&id_priv->lock, flags);
425 	return ret;
426 }
427 
428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
429 {
430 	return hdr->ip_version >> 4;
431 }
432 
433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
434 {
435 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
436 }
437 
438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
439 {
440 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
441 }
442 
443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
444 {
445 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
446 }
447 
448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
449 {
450 	struct in_device *in_dev = NULL;
451 
452 	if (ndev) {
453 		rtnl_lock();
454 		in_dev = __in_dev_get_rtnl(ndev);
455 		if (in_dev) {
456 			if (join)
457 				ip_mc_inc_group(in_dev,
458 						*(__be32 *)(mgid->raw + 12));
459 			else
460 				ip_mc_dec_group(in_dev,
461 						*(__be32 *)(mgid->raw + 12));
462 		}
463 		rtnl_unlock();
464 	}
465 	return (in_dev) ? 0 : -ENODEV;
466 }
467 
468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
469 				 struct id_table_entry *entry_b)
470 {
471 	struct rdma_id_private *id_priv = list_first_entry(
472 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
473 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
474 	struct sockaddr *sb = cma_dst_addr(id_priv);
475 
476 	if (ifindex_a != ifindex_b)
477 		return (ifindex_a > ifindex_b) ? 1 : -1;
478 
479 	if (sa->sa_family != sb->sa_family)
480 		return sa->sa_family - sb->sa_family;
481 
482 	if (sa->sa_family == AF_INET &&
483 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
484 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
485 			      &((struct sockaddr_in *)sb)->sin_addr,
486 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
487 	}
488 
489 	if (sa->sa_family == AF_INET6 &&
490 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
491 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
492 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
493 	}
494 
495 	return -1;
496 }
497 
498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
499 {
500 	struct rb_node **new, *parent = NULL;
501 	struct id_table_entry *this, *node;
502 	unsigned long flags;
503 	int result;
504 
505 	node = kzalloc(sizeof(*node), GFP_KERNEL);
506 	if (!node)
507 		return -ENOMEM;
508 
509 	spin_lock_irqsave(&id_table_lock, flags);
510 	new = &id_table.rb_node;
511 	while (*new) {
512 		this = container_of(*new, struct id_table_entry, rb_node);
513 		result = compare_netdev_and_ip(
514 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
515 			cma_dst_addr(node_id_priv), this);
516 
517 		parent = *new;
518 		if (result < 0)
519 			new = &((*new)->rb_left);
520 		else if (result > 0)
521 			new = &((*new)->rb_right);
522 		else {
523 			list_add_tail(&node_id_priv->id_list_entry,
524 				      &this->id_list);
525 			kfree(node);
526 			goto unlock;
527 		}
528 	}
529 
530 	INIT_LIST_HEAD(&node->id_list);
531 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
532 
533 	rb_link_node(&node->rb_node, parent, new);
534 	rb_insert_color(&node->rb_node, &id_table);
535 
536 unlock:
537 	spin_unlock_irqrestore(&id_table_lock, flags);
538 	return 0;
539 }
540 
541 static struct id_table_entry *
542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
543 {
544 	struct rb_node *node = root->rb_node;
545 	struct id_table_entry *data;
546 	int result;
547 
548 	while (node) {
549 		data = container_of(node, struct id_table_entry, rb_node);
550 		result = compare_netdev_and_ip(ifindex, sa, data);
551 		if (result < 0)
552 			node = node->rb_left;
553 		else if (result > 0)
554 			node = node->rb_right;
555 		else
556 			return data;
557 	}
558 
559 	return NULL;
560 }
561 
562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
563 {
564 	struct id_table_entry *data;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&id_table_lock, flags);
568 	if (list_empty(&id_priv->id_list_entry))
569 		goto out;
570 
571 	data = node_from_ndev_ip(&id_table,
572 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
573 				 cma_dst_addr(id_priv));
574 	if (!data)
575 		goto out;
576 
577 	list_del_init(&id_priv->id_list_entry);
578 	if (list_empty(&data->id_list)) {
579 		rb_erase(&data->rb_node, &id_table);
580 		kfree(data);
581 	}
582 out:
583 	spin_unlock_irqrestore(&id_table_lock, flags);
584 }
585 
586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
587 			       struct cma_device *cma_dev)
588 {
589 	cma_dev_get(cma_dev);
590 	id_priv->cma_dev = cma_dev;
591 	id_priv->id.device = cma_dev->device;
592 	id_priv->id.route.addr.dev_addr.transport =
593 		rdma_node_get_transport(cma_dev->device->node_type);
594 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
595 
596 	trace_cm_id_attach(id_priv, cma_dev->device);
597 }
598 
599 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
600 			      struct cma_device *cma_dev)
601 {
602 	_cma_attach_to_dev(id_priv, cma_dev);
603 	id_priv->gid_type =
604 		cma_dev->default_gid_type[id_priv->id.port_num -
605 					  rdma_start_port(cma_dev->device)];
606 }
607 
608 static void cma_release_dev(struct rdma_id_private *id_priv)
609 {
610 	mutex_lock(&lock);
611 	list_del_init(&id_priv->device_item);
612 	cma_dev_put(id_priv->cma_dev);
613 	id_priv->cma_dev = NULL;
614 	id_priv->id.device = NULL;
615 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
616 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
617 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
618 	}
619 	mutex_unlock(&lock);
620 }
621 
622 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
623 {
624 	return id_priv->id.route.addr.src_addr.ss_family;
625 }
626 
627 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
628 {
629 	struct ib_sa_mcmember_rec rec;
630 	int ret = 0;
631 
632 	switch (id_priv->id.ps) {
633 	case RDMA_PS_UDP:
634 	case RDMA_PS_IB:
635 		id_priv->qkey = RDMA_UDP_QKEY;
636 		break;
637 	case RDMA_PS_IPOIB:
638 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
639 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
640 					     id_priv->id.port_num, &rec.mgid,
641 					     &rec);
642 		if (!ret)
643 			id_priv->qkey = be32_to_cpu(rec.qkey);
644 		break;
645 	default:
646 		break;
647 	}
648 	return ret;
649 }
650 
651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
652 {
653 	if (!qkey ||
654 	    (id_priv->qkey && (id_priv->qkey != qkey)))
655 		return -EINVAL;
656 
657 	id_priv->qkey = qkey;
658 	return 0;
659 }
660 
661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
662 {
663 	dev_addr->dev_type = ARPHRD_INFINIBAND;
664 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
665 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
666 }
667 
668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
669 {
670 	int ret;
671 
672 	if (addr->sa_family != AF_IB) {
673 		ret = rdma_translate_ip(addr, dev_addr);
674 	} else {
675 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
676 		ret = 0;
677 	}
678 
679 	return ret;
680 }
681 
682 static const struct ib_gid_attr *
683 cma_validate_port(struct ib_device *device, u32 port,
684 		  enum ib_gid_type gid_type,
685 		  union ib_gid *gid,
686 		  struct rdma_id_private *id_priv)
687 {
688 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
689 	const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV);
690 	int bound_if_index = dev_addr->bound_dev_if;
691 	int dev_type = dev_addr->dev_type;
692 	struct net_device *ndev = NULL;
693 
694 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
695 		goto out;
696 
697 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
698 		goto out;
699 
700 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
701 		goto out;
702 
703 	/*
704 	 * For drivers that do not associate more than one net device with
705 	 * their gid tables, such as iWARP drivers, it is sufficient to
706 	 * return the first table entry.
707 	 *
708 	 * Other driver classes might be included in the future.
709 	 */
710 	if (rdma_protocol_iwarp(device, port)) {
711 		sgid_attr = rdma_get_gid_attr(device, port, 0);
712 		if (IS_ERR(sgid_attr))
713 			goto out;
714 
715 		rcu_read_lock();
716 		ndev = rcu_dereference(sgid_attr->ndev);
717 		if (!net_eq(dev_net(ndev), dev_addr->net) ||
718 		    ndev->ifindex != bound_if_index) {
719 			rdma_put_gid_attr(sgid_attr);
720 			sgid_attr = ERR_PTR(-ENODEV);
721 		}
722 		rcu_read_unlock();
723 		goto out;
724 	}
725 
726 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
727 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
728 		if (!ndev)
729 			goto out;
730 	} else {
731 		gid_type = IB_GID_TYPE_IB;
732 	}
733 
734 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
735 	dev_put(ndev);
736 out:
737 	return sgid_attr;
738 }
739 
740 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
741 			       const struct ib_gid_attr *sgid_attr)
742 {
743 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
744 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
745 }
746 
747 /**
748  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
749  * based on source ip address.
750  * @id_priv:	cm_id which should be bound to cma device
751  *
752  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
753  * based on source IP address. It returns 0 on success or error code otherwise.
754  * It is applicable to active and passive side cm_id.
755  */
756 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
757 {
758 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
759 	const struct ib_gid_attr *sgid_attr;
760 	union ib_gid gid, iboe_gid, *gidp;
761 	struct cma_device *cma_dev;
762 	enum ib_gid_type gid_type;
763 	int ret = -ENODEV;
764 	u32 port;
765 
766 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
767 	    id_priv->id.ps == RDMA_PS_IPOIB)
768 		return -EINVAL;
769 
770 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
771 		    &iboe_gid);
772 
773 	memcpy(&gid, dev_addr->src_dev_addr +
774 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
775 
776 	mutex_lock(&lock);
777 	list_for_each_entry(cma_dev, &dev_list, list) {
778 		rdma_for_each_port (cma_dev->device, port) {
779 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
780 			       &iboe_gid : &gid;
781 			gid_type = cma_dev->default_gid_type[port - 1];
782 			sgid_attr = cma_validate_port(cma_dev->device, port,
783 						      gid_type, gidp, id_priv);
784 			if (!IS_ERR(sgid_attr)) {
785 				id_priv->id.port_num = port;
786 				cma_bind_sgid_attr(id_priv, sgid_attr);
787 				cma_attach_to_dev(id_priv, cma_dev);
788 				ret = 0;
789 				goto out;
790 			}
791 		}
792 	}
793 out:
794 	mutex_unlock(&lock);
795 	return ret;
796 }
797 
798 /**
799  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
800  * @id_priv:		cm id to bind to cma device
801  * @listen_id_priv:	listener cm id to match against
802  * @req:		Pointer to req structure containaining incoming
803  *			request information
804  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
805  * rdma device matches for listen_id and incoming request. It also verifies
806  * that a GID table entry is present for the source address.
807  * Returns 0 on success, or returns error code otherwise.
808  */
809 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
810 			      const struct rdma_id_private *listen_id_priv,
811 			      struct cma_req_info *req)
812 {
813 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
814 	const struct ib_gid_attr *sgid_attr;
815 	enum ib_gid_type gid_type;
816 	union ib_gid gid;
817 
818 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
819 	    id_priv->id.ps == RDMA_PS_IPOIB)
820 		return -EINVAL;
821 
822 	if (rdma_protocol_roce(req->device, req->port))
823 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
824 			    &gid);
825 	else
826 		memcpy(&gid, dev_addr->src_dev_addr +
827 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
828 
829 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
830 	sgid_attr = cma_validate_port(req->device, req->port,
831 				      gid_type, &gid, id_priv);
832 	if (IS_ERR(sgid_attr))
833 		return PTR_ERR(sgid_attr);
834 
835 	id_priv->id.port_num = req->port;
836 	cma_bind_sgid_attr(id_priv, sgid_attr);
837 	/* Need to acquire lock to protect against reader
838 	 * of cma_dev->id_list such as cma_netdev_callback() and
839 	 * cma_process_remove().
840 	 */
841 	mutex_lock(&lock);
842 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
843 	mutex_unlock(&lock);
844 	rdma_restrack_add(&id_priv->res);
845 	return 0;
846 }
847 
848 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
849 			      const struct rdma_id_private *listen_id_priv)
850 {
851 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
852 	const struct ib_gid_attr *sgid_attr;
853 	struct cma_device *cma_dev;
854 	enum ib_gid_type gid_type;
855 	int ret = -ENODEV;
856 	union ib_gid gid;
857 	u32 port;
858 
859 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
860 	    id_priv->id.ps == RDMA_PS_IPOIB)
861 		return -EINVAL;
862 
863 	memcpy(&gid, dev_addr->src_dev_addr +
864 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
865 
866 	mutex_lock(&lock);
867 
868 	cma_dev = listen_id_priv->cma_dev;
869 	port = listen_id_priv->id.port_num;
870 	gid_type = listen_id_priv->gid_type;
871 	sgid_attr = cma_validate_port(cma_dev->device, port,
872 				      gid_type, &gid, id_priv);
873 	if (!IS_ERR(sgid_attr)) {
874 		id_priv->id.port_num = port;
875 		cma_bind_sgid_attr(id_priv, sgid_attr);
876 		ret = 0;
877 		goto out;
878 	}
879 
880 	list_for_each_entry(cma_dev, &dev_list, list) {
881 		rdma_for_each_port (cma_dev->device, port) {
882 			if (listen_id_priv->cma_dev == cma_dev &&
883 			    listen_id_priv->id.port_num == port)
884 				continue;
885 
886 			gid_type = cma_dev->default_gid_type[port - 1];
887 			sgid_attr = cma_validate_port(cma_dev->device, port,
888 						      gid_type, &gid, id_priv);
889 			if (!IS_ERR(sgid_attr)) {
890 				id_priv->id.port_num = port;
891 				cma_bind_sgid_attr(id_priv, sgid_attr);
892 				ret = 0;
893 				goto out;
894 			}
895 		}
896 	}
897 
898 out:
899 	if (!ret) {
900 		cma_attach_to_dev(id_priv, cma_dev);
901 		rdma_restrack_add(&id_priv->res);
902 	}
903 
904 	mutex_unlock(&lock);
905 	return ret;
906 }
907 
908 /*
909  * Select the source IB device and address to reach the destination IB address.
910  */
911 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
912 {
913 	struct cma_device *cma_dev, *cur_dev;
914 	struct sockaddr_ib *addr;
915 	union ib_gid gid, sgid, *dgid;
916 	unsigned int p;
917 	u16 pkey, index;
918 	enum ib_port_state port_state;
919 	int ret;
920 	int i;
921 
922 	cma_dev = NULL;
923 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
924 	dgid = (union ib_gid *) &addr->sib_addr;
925 	pkey = ntohs(addr->sib_pkey);
926 
927 	mutex_lock(&lock);
928 	list_for_each_entry(cur_dev, &dev_list, list) {
929 		rdma_for_each_port (cur_dev->device, p) {
930 			if (!rdma_cap_af_ib(cur_dev->device, p))
931 				continue;
932 
933 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
934 				continue;
935 
936 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
937 				continue;
938 
939 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
940 			     ++i) {
941 				ret = rdma_query_gid(cur_dev->device, p, i,
942 						     &gid);
943 				if (ret)
944 					continue;
945 
946 				if (!memcmp(&gid, dgid, sizeof(gid))) {
947 					cma_dev = cur_dev;
948 					sgid = gid;
949 					id_priv->id.port_num = p;
950 					goto found;
951 				}
952 
953 				if (!cma_dev && (gid.global.subnet_prefix ==
954 				    dgid->global.subnet_prefix) &&
955 				    port_state == IB_PORT_ACTIVE) {
956 					cma_dev = cur_dev;
957 					sgid = gid;
958 					id_priv->id.port_num = p;
959 					goto found;
960 				}
961 			}
962 		}
963 	}
964 	mutex_unlock(&lock);
965 	return -ENODEV;
966 
967 found:
968 	cma_attach_to_dev(id_priv, cma_dev);
969 	rdma_restrack_add(&id_priv->res);
970 	mutex_unlock(&lock);
971 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
972 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
973 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
974 	return 0;
975 }
976 
977 static void cma_id_get(struct rdma_id_private *id_priv)
978 {
979 	refcount_inc(&id_priv->refcount);
980 }
981 
982 static void cma_id_put(struct rdma_id_private *id_priv)
983 {
984 	if (refcount_dec_and_test(&id_priv->refcount))
985 		complete(&id_priv->comp);
986 }
987 
988 static struct rdma_id_private *
989 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
990 		 void *context, enum rdma_ucm_port_space ps,
991 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
992 {
993 	struct rdma_id_private *id_priv;
994 
995 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
996 	if (!id_priv)
997 		return ERR_PTR(-ENOMEM);
998 
999 	id_priv->state = RDMA_CM_IDLE;
1000 	id_priv->id.context = context;
1001 	id_priv->id.event_handler = event_handler;
1002 	id_priv->id.ps = ps;
1003 	id_priv->id.qp_type = qp_type;
1004 	id_priv->tos_set = false;
1005 	id_priv->timeout_set = false;
1006 	id_priv->min_rnr_timer_set = false;
1007 	id_priv->gid_type = IB_GID_TYPE_IB;
1008 	spin_lock_init(&id_priv->lock);
1009 	mutex_init(&id_priv->qp_mutex);
1010 	init_completion(&id_priv->comp);
1011 	refcount_set(&id_priv->refcount, 1);
1012 	mutex_init(&id_priv->handler_mutex);
1013 	INIT_LIST_HEAD(&id_priv->device_item);
1014 	INIT_LIST_HEAD(&id_priv->id_list_entry);
1015 	INIT_LIST_HEAD(&id_priv->listen_list);
1016 	INIT_LIST_HEAD(&id_priv->mc_list);
1017 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
1018 	id_priv->id.route.addr.dev_addr.net = get_net(net);
1019 	id_priv->seq_num &= 0x00ffffff;
1020 
1021 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1022 	if (parent)
1023 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1024 
1025 	return id_priv;
1026 }
1027 
1028 struct rdma_cm_id *
1029 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1030 			void *context, enum rdma_ucm_port_space ps,
1031 			enum ib_qp_type qp_type, const char *caller)
1032 {
1033 	struct rdma_id_private *ret;
1034 
1035 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1036 	if (IS_ERR(ret))
1037 		return ERR_CAST(ret);
1038 
1039 	rdma_restrack_set_name(&ret->res, caller);
1040 	return &ret->id;
1041 }
1042 EXPORT_SYMBOL(__rdma_create_kernel_id);
1043 
1044 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1045 				       void *context,
1046 				       enum rdma_ucm_port_space ps,
1047 				       enum ib_qp_type qp_type)
1048 {
1049 	struct rdma_id_private *ret;
1050 
1051 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1052 			       ps, qp_type, NULL);
1053 	if (IS_ERR(ret))
1054 		return ERR_CAST(ret);
1055 
1056 	rdma_restrack_set_name(&ret->res, NULL);
1057 	return &ret->id;
1058 }
1059 EXPORT_SYMBOL(rdma_create_user_id);
1060 
1061 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1062 {
1063 	struct ib_qp_attr qp_attr;
1064 	int qp_attr_mask, ret;
1065 
1066 	qp_attr.qp_state = IB_QPS_INIT;
1067 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1068 	if (ret)
1069 		return ret;
1070 
1071 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1072 	if (ret)
1073 		return ret;
1074 
1075 	qp_attr.qp_state = IB_QPS_RTR;
1076 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1077 	if (ret)
1078 		return ret;
1079 
1080 	qp_attr.qp_state = IB_QPS_RTS;
1081 	qp_attr.sq_psn = 0;
1082 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1083 
1084 	return ret;
1085 }
1086 
1087 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1088 {
1089 	struct ib_qp_attr qp_attr;
1090 	int qp_attr_mask, ret;
1091 
1092 	qp_attr.qp_state = IB_QPS_INIT;
1093 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1094 	if (ret)
1095 		return ret;
1096 
1097 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1098 }
1099 
1100 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1101 		   struct ib_qp_init_attr *qp_init_attr)
1102 {
1103 	struct rdma_id_private *id_priv;
1104 	struct ib_qp *qp;
1105 	int ret;
1106 
1107 	id_priv = container_of(id, struct rdma_id_private, id);
1108 	if (id->device != pd->device) {
1109 		ret = -EINVAL;
1110 		goto out_err;
1111 	}
1112 
1113 	qp_init_attr->port_num = id->port_num;
1114 	qp = ib_create_qp(pd, qp_init_attr);
1115 	if (IS_ERR(qp)) {
1116 		ret = PTR_ERR(qp);
1117 		goto out_err;
1118 	}
1119 
1120 	if (id->qp_type == IB_QPT_UD)
1121 		ret = cma_init_ud_qp(id_priv, qp);
1122 	else
1123 		ret = cma_init_conn_qp(id_priv, qp);
1124 	if (ret)
1125 		goto out_destroy;
1126 
1127 	id->qp = qp;
1128 	id_priv->qp_num = qp->qp_num;
1129 	id_priv->srq = (qp->srq != NULL);
1130 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1131 	return 0;
1132 out_destroy:
1133 	ib_destroy_qp(qp);
1134 out_err:
1135 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1136 	return ret;
1137 }
1138 EXPORT_SYMBOL(rdma_create_qp);
1139 
1140 void rdma_destroy_qp(struct rdma_cm_id *id)
1141 {
1142 	struct rdma_id_private *id_priv;
1143 
1144 	id_priv = container_of(id, struct rdma_id_private, id);
1145 	trace_cm_qp_destroy(id_priv);
1146 	mutex_lock(&id_priv->qp_mutex);
1147 	ib_destroy_qp(id_priv->id.qp);
1148 	id_priv->id.qp = NULL;
1149 	mutex_unlock(&id_priv->qp_mutex);
1150 }
1151 EXPORT_SYMBOL(rdma_destroy_qp);
1152 
1153 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1154 			     struct rdma_conn_param *conn_param)
1155 {
1156 	struct ib_qp_attr qp_attr;
1157 	int qp_attr_mask, ret;
1158 
1159 	mutex_lock(&id_priv->qp_mutex);
1160 	if (!id_priv->id.qp) {
1161 		ret = 0;
1162 		goto out;
1163 	}
1164 
1165 	/* Need to update QP attributes from default values. */
1166 	qp_attr.qp_state = IB_QPS_INIT;
1167 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1168 	if (ret)
1169 		goto out;
1170 
1171 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1172 	if (ret)
1173 		goto out;
1174 
1175 	qp_attr.qp_state = IB_QPS_RTR;
1176 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1177 	if (ret)
1178 		goto out;
1179 
1180 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1181 
1182 	if (conn_param)
1183 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1184 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1185 out:
1186 	mutex_unlock(&id_priv->qp_mutex);
1187 	return ret;
1188 }
1189 
1190 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1191 			     struct rdma_conn_param *conn_param)
1192 {
1193 	struct ib_qp_attr qp_attr;
1194 	int qp_attr_mask, ret;
1195 
1196 	mutex_lock(&id_priv->qp_mutex);
1197 	if (!id_priv->id.qp) {
1198 		ret = 0;
1199 		goto out;
1200 	}
1201 
1202 	qp_attr.qp_state = IB_QPS_RTS;
1203 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1204 	if (ret)
1205 		goto out;
1206 
1207 	if (conn_param)
1208 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1209 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1210 out:
1211 	mutex_unlock(&id_priv->qp_mutex);
1212 	return ret;
1213 }
1214 
1215 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1216 {
1217 	struct ib_qp_attr qp_attr;
1218 	int ret;
1219 
1220 	mutex_lock(&id_priv->qp_mutex);
1221 	if (!id_priv->id.qp) {
1222 		ret = 0;
1223 		goto out;
1224 	}
1225 
1226 	qp_attr.qp_state = IB_QPS_ERR;
1227 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1228 out:
1229 	mutex_unlock(&id_priv->qp_mutex);
1230 	return ret;
1231 }
1232 
1233 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1234 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1235 {
1236 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1237 	int ret;
1238 	u16 pkey;
1239 
1240 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1241 		pkey = 0xffff;
1242 	else
1243 		pkey = ib_addr_get_pkey(dev_addr);
1244 
1245 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1246 				  pkey, &qp_attr->pkey_index);
1247 	if (ret)
1248 		return ret;
1249 
1250 	qp_attr->port_num = id_priv->id.port_num;
1251 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1252 
1253 	if (id_priv->id.qp_type == IB_QPT_UD) {
1254 		ret = cma_set_default_qkey(id_priv);
1255 		if (ret)
1256 			return ret;
1257 
1258 		qp_attr->qkey = id_priv->qkey;
1259 		*qp_attr_mask |= IB_QP_QKEY;
1260 	} else {
1261 		qp_attr->qp_access_flags = 0;
1262 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1263 	}
1264 	return 0;
1265 }
1266 
1267 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1268 		       int *qp_attr_mask)
1269 {
1270 	struct rdma_id_private *id_priv;
1271 	int ret = 0;
1272 
1273 	id_priv = container_of(id, struct rdma_id_private, id);
1274 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1275 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1276 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1277 		else
1278 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1279 						 qp_attr_mask);
1280 
1281 		if (qp_attr->qp_state == IB_QPS_RTR)
1282 			qp_attr->rq_psn = id_priv->seq_num;
1283 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1284 		if (!id_priv->cm_id.iw) {
1285 			qp_attr->qp_access_flags = 0;
1286 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1287 		} else
1288 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1289 						 qp_attr_mask);
1290 		qp_attr->port_num = id_priv->id.port_num;
1291 		*qp_attr_mask |= IB_QP_PORT;
1292 	} else {
1293 		ret = -ENOSYS;
1294 	}
1295 
1296 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1297 		qp_attr->timeout = id_priv->timeout;
1298 
1299 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1300 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1301 
1302 	return ret;
1303 }
1304 EXPORT_SYMBOL(rdma_init_qp_attr);
1305 
1306 static inline bool cma_zero_addr(const struct sockaddr *addr)
1307 {
1308 	switch (addr->sa_family) {
1309 	case AF_INET:
1310 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1311 	case AF_INET6:
1312 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1313 	case AF_IB:
1314 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1315 	default:
1316 		return false;
1317 	}
1318 }
1319 
1320 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1321 {
1322 	switch (addr->sa_family) {
1323 	case AF_INET:
1324 		return ipv4_is_loopback(
1325 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1326 	case AF_INET6:
1327 		return ipv6_addr_loopback(
1328 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1329 	case AF_IB:
1330 		return ib_addr_loopback(
1331 			&((struct sockaddr_ib *)addr)->sib_addr);
1332 	default:
1333 		return false;
1334 	}
1335 }
1336 
1337 static inline bool cma_any_addr(const struct sockaddr *addr)
1338 {
1339 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1340 }
1341 
1342 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1343 {
1344 	if (src->sa_family != dst->sa_family)
1345 		return -1;
1346 
1347 	switch (src->sa_family) {
1348 	case AF_INET:
1349 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1350 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1351 	case AF_INET6: {
1352 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1353 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1354 		bool link_local;
1355 
1356 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1357 					  &dst_addr6->sin6_addr))
1358 			return 1;
1359 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1360 			     IPV6_ADDR_LINKLOCAL;
1361 		/* Link local must match their scope_ids */
1362 		return link_local ? (src_addr6->sin6_scope_id !=
1363 				     dst_addr6->sin6_scope_id) :
1364 				    0;
1365 	}
1366 
1367 	default:
1368 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1369 				   &((struct sockaddr_ib *) dst)->sib_addr);
1370 	}
1371 }
1372 
1373 static __be16 cma_port(const struct sockaddr *addr)
1374 {
1375 	struct sockaddr_ib *sib;
1376 
1377 	switch (addr->sa_family) {
1378 	case AF_INET:
1379 		return ((struct sockaddr_in *) addr)->sin_port;
1380 	case AF_INET6:
1381 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1382 	case AF_IB:
1383 		sib = (struct sockaddr_ib *) addr;
1384 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1385 				    be64_to_cpu(sib->sib_sid_mask)));
1386 	default:
1387 		return 0;
1388 	}
1389 }
1390 
1391 static inline int cma_any_port(const struct sockaddr *addr)
1392 {
1393 	return !cma_port(addr);
1394 }
1395 
1396 static void cma_save_ib_info(struct sockaddr *src_addr,
1397 			     struct sockaddr *dst_addr,
1398 			     const struct rdma_cm_id *listen_id,
1399 			     const struct sa_path_rec *path)
1400 {
1401 	struct sockaddr_ib *listen_ib, *ib;
1402 
1403 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1404 	if (src_addr) {
1405 		ib = (struct sockaddr_ib *)src_addr;
1406 		ib->sib_family = AF_IB;
1407 		if (path) {
1408 			ib->sib_pkey = path->pkey;
1409 			ib->sib_flowinfo = path->flow_label;
1410 			memcpy(&ib->sib_addr, &path->sgid, 16);
1411 			ib->sib_sid = path->service_id;
1412 			ib->sib_scope_id = 0;
1413 		} else {
1414 			ib->sib_pkey = listen_ib->sib_pkey;
1415 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1416 			ib->sib_addr = listen_ib->sib_addr;
1417 			ib->sib_sid = listen_ib->sib_sid;
1418 			ib->sib_scope_id = listen_ib->sib_scope_id;
1419 		}
1420 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1421 	}
1422 	if (dst_addr) {
1423 		ib = (struct sockaddr_ib *)dst_addr;
1424 		ib->sib_family = AF_IB;
1425 		if (path) {
1426 			ib->sib_pkey = path->pkey;
1427 			ib->sib_flowinfo = path->flow_label;
1428 			memcpy(&ib->sib_addr, &path->dgid, 16);
1429 		}
1430 	}
1431 }
1432 
1433 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1434 			      struct sockaddr_in *dst_addr,
1435 			      struct cma_hdr *hdr,
1436 			      __be16 local_port)
1437 {
1438 	if (src_addr) {
1439 		*src_addr = (struct sockaddr_in) {
1440 			.sin_family = AF_INET,
1441 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1442 			.sin_port = local_port,
1443 		};
1444 	}
1445 
1446 	if (dst_addr) {
1447 		*dst_addr = (struct sockaddr_in) {
1448 			.sin_family = AF_INET,
1449 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1450 			.sin_port = hdr->port,
1451 		};
1452 	}
1453 }
1454 
1455 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1456 			      struct sockaddr_in6 *dst_addr,
1457 			      struct cma_hdr *hdr,
1458 			      __be16 local_port)
1459 {
1460 	if (src_addr) {
1461 		*src_addr = (struct sockaddr_in6) {
1462 			.sin6_family = AF_INET6,
1463 			.sin6_addr = hdr->dst_addr.ip6,
1464 			.sin6_port = local_port,
1465 		};
1466 	}
1467 
1468 	if (dst_addr) {
1469 		*dst_addr = (struct sockaddr_in6) {
1470 			.sin6_family = AF_INET6,
1471 			.sin6_addr = hdr->src_addr.ip6,
1472 			.sin6_port = hdr->port,
1473 		};
1474 	}
1475 }
1476 
1477 static u16 cma_port_from_service_id(__be64 service_id)
1478 {
1479 	return (u16)be64_to_cpu(service_id);
1480 }
1481 
1482 static int cma_save_ip_info(struct sockaddr *src_addr,
1483 			    struct sockaddr *dst_addr,
1484 			    const struct ib_cm_event *ib_event,
1485 			    __be64 service_id)
1486 {
1487 	struct cma_hdr *hdr;
1488 	__be16 port;
1489 
1490 	hdr = ib_event->private_data;
1491 	if (hdr->cma_version != CMA_VERSION)
1492 		return -EINVAL;
1493 
1494 	port = htons(cma_port_from_service_id(service_id));
1495 
1496 	switch (cma_get_ip_ver(hdr)) {
1497 	case 4:
1498 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1499 				  (struct sockaddr_in *)dst_addr, hdr, port);
1500 		break;
1501 	case 6:
1502 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1503 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1504 		break;
1505 	default:
1506 		return -EAFNOSUPPORT;
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 static int cma_save_net_info(struct sockaddr *src_addr,
1513 			     struct sockaddr *dst_addr,
1514 			     const struct rdma_cm_id *listen_id,
1515 			     const struct ib_cm_event *ib_event,
1516 			     sa_family_t sa_family, __be64 service_id)
1517 {
1518 	if (sa_family == AF_IB) {
1519 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1520 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1521 					 ib_event->param.req_rcvd.primary_path);
1522 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1523 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1524 		return 0;
1525 	}
1526 
1527 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1528 }
1529 
1530 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1531 			     struct cma_req_info *req)
1532 {
1533 	const struct ib_cm_req_event_param *req_param =
1534 		&ib_event->param.req_rcvd;
1535 	const struct ib_cm_sidr_req_event_param *sidr_param =
1536 		&ib_event->param.sidr_req_rcvd;
1537 
1538 	switch (ib_event->event) {
1539 	case IB_CM_REQ_RECEIVED:
1540 		req->device	= req_param->listen_id->device;
1541 		req->port	= req_param->port;
1542 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1543 		       sizeof(req->local_gid));
1544 		req->has_gid	= true;
1545 		req->service_id = req_param->primary_path->service_id;
1546 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1547 		if (req->pkey != req_param->bth_pkey)
1548 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1549 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1550 					    req_param->bth_pkey, req->pkey);
1551 		break;
1552 	case IB_CM_SIDR_REQ_RECEIVED:
1553 		req->device	= sidr_param->listen_id->device;
1554 		req->port	= sidr_param->port;
1555 		req->has_gid	= false;
1556 		req->service_id	= sidr_param->service_id;
1557 		req->pkey	= sidr_param->pkey;
1558 		if (req->pkey != sidr_param->bth_pkey)
1559 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1560 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1561 					    sidr_param->bth_pkey, req->pkey);
1562 		break;
1563 	default:
1564 		return -EINVAL;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1571 				  const struct sockaddr_in *dst_addr,
1572 				  const struct sockaddr_in *src_addr)
1573 {
1574 	__be32 daddr = dst_addr->sin_addr.s_addr,
1575 	       saddr = src_addr->sin_addr.s_addr;
1576 	struct fib_result res;
1577 	struct flowi4 fl4;
1578 	int err;
1579 	bool ret;
1580 
1581 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1582 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1583 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1584 	    ipv4_is_loopback(saddr))
1585 		return false;
1586 
1587 	memset(&fl4, 0, sizeof(fl4));
1588 	fl4.flowi4_oif = net_dev->ifindex;
1589 	fl4.daddr = daddr;
1590 	fl4.saddr = saddr;
1591 
1592 	rcu_read_lock();
1593 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1594 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1595 	rcu_read_unlock();
1596 
1597 	return ret;
1598 }
1599 
1600 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1601 				  const struct sockaddr_in6 *dst_addr,
1602 				  const struct sockaddr_in6 *src_addr)
1603 {
1604 #if IS_ENABLED(CONFIG_IPV6)
1605 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1606 			   IPV6_ADDR_LINKLOCAL;
1607 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1608 					 &src_addr->sin6_addr, net_dev->ifindex,
1609 					 NULL, strict);
1610 	bool ret;
1611 
1612 	if (!rt)
1613 		return false;
1614 
1615 	ret = rt->rt6i_idev->dev == net_dev;
1616 	ip6_rt_put(rt);
1617 
1618 	return ret;
1619 #else
1620 	return false;
1621 #endif
1622 }
1623 
1624 static bool validate_net_dev(struct net_device *net_dev,
1625 			     const struct sockaddr *daddr,
1626 			     const struct sockaddr *saddr)
1627 {
1628 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1629 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1630 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1631 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1632 
1633 	switch (daddr->sa_family) {
1634 	case AF_INET:
1635 		return saddr->sa_family == AF_INET &&
1636 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1637 
1638 	case AF_INET6:
1639 		return saddr->sa_family == AF_INET6 &&
1640 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1641 
1642 	default:
1643 		return false;
1644 	}
1645 }
1646 
1647 static struct net_device *
1648 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1649 {
1650 	const struct ib_gid_attr *sgid_attr = NULL;
1651 	struct net_device *ndev;
1652 
1653 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1654 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1655 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1656 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1657 
1658 	if (!sgid_attr)
1659 		return NULL;
1660 
1661 	rcu_read_lock();
1662 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1663 	if (IS_ERR(ndev))
1664 		ndev = NULL;
1665 	else
1666 		dev_hold(ndev);
1667 	rcu_read_unlock();
1668 	return ndev;
1669 }
1670 
1671 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1672 					  struct cma_req_info *req)
1673 {
1674 	struct sockaddr *listen_addr =
1675 			(struct sockaddr *)&req->listen_addr_storage;
1676 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1677 	struct net_device *net_dev;
1678 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1679 	int err;
1680 
1681 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1682 			       req->service_id);
1683 	if (err)
1684 		return ERR_PTR(err);
1685 
1686 	if (rdma_protocol_roce(req->device, req->port))
1687 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1688 	else
1689 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1690 						   req->pkey,
1691 						   gid, listen_addr);
1692 	if (!net_dev)
1693 		return ERR_PTR(-ENODEV);
1694 
1695 	return net_dev;
1696 }
1697 
1698 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1699 {
1700 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1701 }
1702 
1703 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1704 				   const struct cma_hdr *hdr)
1705 {
1706 	struct sockaddr *addr = cma_src_addr(id_priv);
1707 	__be32 ip4_addr;
1708 	struct in6_addr ip6_addr;
1709 
1710 	if (cma_any_addr(addr) && !id_priv->afonly)
1711 		return true;
1712 
1713 	switch (addr->sa_family) {
1714 	case AF_INET:
1715 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1716 		if (cma_get_ip_ver(hdr) != 4)
1717 			return false;
1718 		if (!cma_any_addr(addr) &&
1719 		    hdr->dst_addr.ip4.addr != ip4_addr)
1720 			return false;
1721 		break;
1722 	case AF_INET6:
1723 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1724 		if (cma_get_ip_ver(hdr) != 6)
1725 			return false;
1726 		if (!cma_any_addr(addr) &&
1727 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1728 			return false;
1729 		break;
1730 	case AF_IB:
1731 		return true;
1732 	default:
1733 		return false;
1734 	}
1735 
1736 	return true;
1737 }
1738 
1739 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1740 {
1741 	struct ib_device *device = id->device;
1742 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1743 
1744 	return rdma_protocol_roce(device, port_num);
1745 }
1746 
1747 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1748 {
1749 	const struct sockaddr *daddr =
1750 			(const struct sockaddr *)&req->listen_addr_storage;
1751 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1752 
1753 	/* Returns true if the req is for IPv6 link local */
1754 	return (daddr->sa_family == AF_INET6 &&
1755 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1756 }
1757 
1758 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1759 			      const struct net_device *net_dev,
1760 			      const struct cma_req_info *req)
1761 {
1762 	const struct rdma_addr *addr = &id->route.addr;
1763 
1764 	if (!net_dev)
1765 		/* This request is an AF_IB request */
1766 		return (!id->port_num || id->port_num == req->port) &&
1767 		       (addr->src_addr.ss_family == AF_IB);
1768 
1769 	/*
1770 	 * If the request is not for IPv6 link local, allow matching
1771 	 * request to any netdevice of the one or multiport rdma device.
1772 	 */
1773 	if (!cma_is_req_ipv6_ll(req))
1774 		return true;
1775 	/*
1776 	 * Net namespaces must match, and if the listner is listening
1777 	 * on a specific netdevice than netdevice must match as well.
1778 	 */
1779 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1780 	    (!!addr->dev_addr.bound_dev_if ==
1781 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1782 		return true;
1783 	else
1784 		return false;
1785 }
1786 
1787 static struct rdma_id_private *cma_find_listener(
1788 		const struct rdma_bind_list *bind_list,
1789 		const struct ib_cm_id *cm_id,
1790 		const struct ib_cm_event *ib_event,
1791 		const struct cma_req_info *req,
1792 		const struct net_device *net_dev)
1793 {
1794 	struct rdma_id_private *id_priv, *id_priv_dev;
1795 
1796 	lockdep_assert_held(&lock);
1797 
1798 	if (!bind_list)
1799 		return ERR_PTR(-EINVAL);
1800 
1801 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1802 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1803 			if (id_priv->id.device == cm_id->device &&
1804 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1805 				return id_priv;
1806 			list_for_each_entry(id_priv_dev,
1807 					    &id_priv->listen_list,
1808 					    listen_item) {
1809 				if (id_priv_dev->id.device == cm_id->device &&
1810 				    cma_match_net_dev(&id_priv_dev->id,
1811 						      net_dev, req))
1812 					return id_priv_dev;
1813 			}
1814 		}
1815 	}
1816 
1817 	return ERR_PTR(-EINVAL);
1818 }
1819 
1820 static struct rdma_id_private *
1821 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1822 		     const struct ib_cm_event *ib_event,
1823 		     struct cma_req_info *req,
1824 		     struct net_device **net_dev)
1825 {
1826 	struct rdma_bind_list *bind_list;
1827 	struct rdma_id_private *id_priv;
1828 	int err;
1829 
1830 	err = cma_save_req_info(ib_event, req);
1831 	if (err)
1832 		return ERR_PTR(err);
1833 
1834 	*net_dev = cma_get_net_dev(ib_event, req);
1835 	if (IS_ERR(*net_dev)) {
1836 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1837 			/* Assuming the protocol is AF_IB */
1838 			*net_dev = NULL;
1839 		} else {
1840 			return ERR_CAST(*net_dev);
1841 		}
1842 	}
1843 
1844 	mutex_lock(&lock);
1845 	/*
1846 	 * Net namespace might be getting deleted while route lookup,
1847 	 * cm_id lookup is in progress. Therefore, perform netdevice
1848 	 * validation, cm_id lookup under rcu lock.
1849 	 * RCU lock along with netdevice state check, synchronizes with
1850 	 * netdevice migrating to different net namespace and also avoids
1851 	 * case where net namespace doesn't get deleted while lookup is in
1852 	 * progress.
1853 	 * If the device state is not IFF_UP, its properties such as ifindex
1854 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1855 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1856 	 * ongoing operations on net device after device is closed using
1857 	 * synchronize_net().
1858 	 */
1859 	rcu_read_lock();
1860 	if (*net_dev) {
1861 		/*
1862 		 * If netdevice is down, it is likely that it is administratively
1863 		 * down or it might be migrating to different namespace.
1864 		 * In that case avoid further processing, as the net namespace
1865 		 * or ifindex may change.
1866 		 */
1867 		if (((*net_dev)->flags & IFF_UP) == 0) {
1868 			id_priv = ERR_PTR(-EHOSTUNREACH);
1869 			goto err;
1870 		}
1871 
1872 		if (!validate_net_dev(*net_dev,
1873 				 (struct sockaddr *)&req->src_addr_storage,
1874 				 (struct sockaddr *)&req->listen_addr_storage)) {
1875 			id_priv = ERR_PTR(-EHOSTUNREACH);
1876 			goto err;
1877 		}
1878 	}
1879 
1880 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1881 				rdma_ps_from_service_id(req->service_id),
1882 				cma_port_from_service_id(req->service_id));
1883 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1884 err:
1885 	rcu_read_unlock();
1886 	mutex_unlock(&lock);
1887 	if (IS_ERR(id_priv) && *net_dev) {
1888 		dev_put(*net_dev);
1889 		*net_dev = NULL;
1890 	}
1891 	return id_priv;
1892 }
1893 
1894 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1895 {
1896 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1897 }
1898 
1899 static void cma_cancel_route(struct rdma_id_private *id_priv)
1900 {
1901 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1902 		if (id_priv->query)
1903 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1904 	}
1905 }
1906 
1907 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1908 {
1909 	struct rdma_id_private *dev_id_priv;
1910 
1911 	lockdep_assert_held(&lock);
1912 
1913 	/*
1914 	 * Remove from listen_any_list to prevent added devices from spawning
1915 	 * additional listen requests.
1916 	 */
1917 	list_del_init(&id_priv->listen_any_item);
1918 
1919 	while (!list_empty(&id_priv->listen_list)) {
1920 		dev_id_priv =
1921 			list_first_entry(&id_priv->listen_list,
1922 					 struct rdma_id_private, listen_item);
1923 		/* sync with device removal to avoid duplicate destruction */
1924 		list_del_init(&dev_id_priv->device_item);
1925 		list_del_init(&dev_id_priv->listen_item);
1926 		mutex_unlock(&lock);
1927 
1928 		rdma_destroy_id(&dev_id_priv->id);
1929 		mutex_lock(&lock);
1930 	}
1931 }
1932 
1933 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1934 {
1935 	mutex_lock(&lock);
1936 	_cma_cancel_listens(id_priv);
1937 	mutex_unlock(&lock);
1938 }
1939 
1940 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1941 				 enum rdma_cm_state state)
1942 {
1943 	switch (state) {
1944 	case RDMA_CM_ADDR_QUERY:
1945 		/*
1946 		 * We can avoid doing the rdma_addr_cancel() based on state,
1947 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1948 		 * Notice that the addr_handler work could still be exiting
1949 		 * outside this state, however due to the interaction with the
1950 		 * handler_mutex the work is guaranteed not to touch id_priv
1951 		 * during exit.
1952 		 */
1953 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1954 		break;
1955 	case RDMA_CM_ROUTE_QUERY:
1956 		cma_cancel_route(id_priv);
1957 		break;
1958 	case RDMA_CM_LISTEN:
1959 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1960 			cma_cancel_listens(id_priv);
1961 		break;
1962 	default:
1963 		break;
1964 	}
1965 }
1966 
1967 static void cma_release_port(struct rdma_id_private *id_priv)
1968 {
1969 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1970 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1971 
1972 	if (!bind_list)
1973 		return;
1974 
1975 	mutex_lock(&lock);
1976 	hlist_del(&id_priv->node);
1977 	if (hlist_empty(&bind_list->owners)) {
1978 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1979 		kfree(bind_list);
1980 	}
1981 	mutex_unlock(&lock);
1982 }
1983 
1984 static void destroy_mc(struct rdma_id_private *id_priv,
1985 		       struct cma_multicast *mc)
1986 {
1987 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1988 
1989 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1990 		ib_sa_free_multicast(mc->sa_mc);
1991 
1992 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1993 		struct rdma_dev_addr *dev_addr =
1994 			&id_priv->id.route.addr.dev_addr;
1995 		struct net_device *ndev = NULL;
1996 
1997 		if (dev_addr->bound_dev_if)
1998 			ndev = dev_get_by_index(dev_addr->net,
1999 						dev_addr->bound_dev_if);
2000 		if (ndev && !send_only) {
2001 			enum ib_gid_type gid_type;
2002 			union ib_gid mgid;
2003 
2004 			gid_type = id_priv->cma_dev->default_gid_type
2005 					   [id_priv->id.port_num -
2006 					    rdma_start_port(
2007 						    id_priv->cma_dev->device)];
2008 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
2009 					  gid_type);
2010 			cma_igmp_send(ndev, &mgid, false);
2011 		}
2012 		dev_put(ndev);
2013 
2014 		cancel_work_sync(&mc->iboe_join.work);
2015 	}
2016 	kfree(mc);
2017 }
2018 
2019 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
2020 {
2021 	struct cma_multicast *mc;
2022 
2023 	while (!list_empty(&id_priv->mc_list)) {
2024 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2025 				      list);
2026 		list_del(&mc->list);
2027 		destroy_mc(id_priv, mc);
2028 	}
2029 }
2030 
2031 static void _destroy_id(struct rdma_id_private *id_priv,
2032 			enum rdma_cm_state state)
2033 {
2034 	cma_cancel_operation(id_priv, state);
2035 
2036 	rdma_restrack_del(&id_priv->res);
2037 	cma_remove_id_from_tree(id_priv);
2038 	if (id_priv->cma_dev) {
2039 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2040 			if (id_priv->cm_id.ib)
2041 				ib_destroy_cm_id(id_priv->cm_id.ib);
2042 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2043 			if (id_priv->cm_id.iw)
2044 				iw_destroy_cm_id(id_priv->cm_id.iw);
2045 		}
2046 		cma_leave_mc_groups(id_priv);
2047 		cma_release_dev(id_priv);
2048 	}
2049 
2050 	cma_release_port(id_priv);
2051 	cma_id_put(id_priv);
2052 	wait_for_completion(&id_priv->comp);
2053 
2054 	if (id_priv->internal_id)
2055 		cma_id_put(id_priv->id.context);
2056 
2057 	kfree(id_priv->id.route.path_rec);
2058 	kfree(id_priv->id.route.path_rec_inbound);
2059 	kfree(id_priv->id.route.path_rec_outbound);
2060 
2061 	put_net(id_priv->id.route.addr.dev_addr.net);
2062 	kfree(id_priv);
2063 }
2064 
2065 /*
2066  * destroy an ID from within the handler_mutex. This ensures that no other
2067  * handlers can start running concurrently.
2068  */
2069 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2070 	__releases(&idprv->handler_mutex)
2071 {
2072 	enum rdma_cm_state state;
2073 	unsigned long flags;
2074 
2075 	trace_cm_id_destroy(id_priv);
2076 
2077 	/*
2078 	 * Setting the state to destroyed under the handler mutex provides a
2079 	 * fence against calling handler callbacks. If this is invoked due to
2080 	 * the failure of a handler callback then it guarentees that no future
2081 	 * handlers will be called.
2082 	 */
2083 	lockdep_assert_held(&id_priv->handler_mutex);
2084 	spin_lock_irqsave(&id_priv->lock, flags);
2085 	state = id_priv->state;
2086 	id_priv->state = RDMA_CM_DESTROYING;
2087 	spin_unlock_irqrestore(&id_priv->lock, flags);
2088 	mutex_unlock(&id_priv->handler_mutex);
2089 	_destroy_id(id_priv, state);
2090 }
2091 
2092 void rdma_destroy_id(struct rdma_cm_id *id)
2093 {
2094 	struct rdma_id_private *id_priv =
2095 		container_of(id, struct rdma_id_private, id);
2096 
2097 	mutex_lock(&id_priv->handler_mutex);
2098 	destroy_id_handler_unlock(id_priv);
2099 }
2100 EXPORT_SYMBOL(rdma_destroy_id);
2101 
2102 static int cma_rep_recv(struct rdma_id_private *id_priv)
2103 {
2104 	int ret;
2105 
2106 	ret = cma_modify_qp_rtr(id_priv, NULL);
2107 	if (ret)
2108 		goto reject;
2109 
2110 	ret = cma_modify_qp_rts(id_priv, NULL);
2111 	if (ret)
2112 		goto reject;
2113 
2114 	trace_cm_send_rtu(id_priv);
2115 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2116 	if (ret)
2117 		goto reject;
2118 
2119 	return 0;
2120 reject:
2121 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2122 	cma_modify_qp_err(id_priv);
2123 	trace_cm_send_rej(id_priv);
2124 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2125 		       NULL, 0, NULL, 0);
2126 	return ret;
2127 }
2128 
2129 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2130 				   const struct ib_cm_rep_event_param *rep_data,
2131 				   void *private_data)
2132 {
2133 	event->param.conn.private_data = private_data;
2134 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2135 	event->param.conn.responder_resources = rep_data->responder_resources;
2136 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2137 	event->param.conn.flow_control = rep_data->flow_control;
2138 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2139 	event->param.conn.srq = rep_data->srq;
2140 	event->param.conn.qp_num = rep_data->remote_qpn;
2141 
2142 	event->ece.vendor_id = rep_data->ece.vendor_id;
2143 	event->ece.attr_mod = rep_data->ece.attr_mod;
2144 }
2145 
2146 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2147 				struct rdma_cm_event *event)
2148 {
2149 	int ret;
2150 
2151 	lockdep_assert_held(&id_priv->handler_mutex);
2152 
2153 	trace_cm_event_handler(id_priv, event);
2154 	ret = id_priv->id.event_handler(&id_priv->id, event);
2155 	trace_cm_event_done(id_priv, event, ret);
2156 	return ret;
2157 }
2158 
2159 static int cma_ib_handler(struct ib_cm_id *cm_id,
2160 			  const struct ib_cm_event *ib_event)
2161 {
2162 	struct rdma_id_private *id_priv = cm_id->context;
2163 	struct rdma_cm_event event = {};
2164 	enum rdma_cm_state state;
2165 	int ret;
2166 
2167 	mutex_lock(&id_priv->handler_mutex);
2168 	state = READ_ONCE(id_priv->state);
2169 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2170 	     state != RDMA_CM_CONNECT) ||
2171 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2172 	     state != RDMA_CM_DISCONNECT))
2173 		goto out;
2174 
2175 	switch (ib_event->event) {
2176 	case IB_CM_REQ_ERROR:
2177 	case IB_CM_REP_ERROR:
2178 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2179 		event.status = -ETIMEDOUT;
2180 		break;
2181 	case IB_CM_REP_RECEIVED:
2182 		if (state == RDMA_CM_CONNECT &&
2183 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2184 			trace_cm_send_mra(id_priv);
2185 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2186 		}
2187 		if (id_priv->id.qp) {
2188 			event.status = cma_rep_recv(id_priv);
2189 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2190 						     RDMA_CM_EVENT_ESTABLISHED;
2191 		} else {
2192 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2193 		}
2194 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2195 				       ib_event->private_data);
2196 		break;
2197 	case IB_CM_RTU_RECEIVED:
2198 	case IB_CM_USER_ESTABLISHED:
2199 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2200 		break;
2201 	case IB_CM_DREQ_ERROR:
2202 		event.status = -ETIMEDOUT;
2203 		fallthrough;
2204 	case IB_CM_DREQ_RECEIVED:
2205 	case IB_CM_DREP_RECEIVED:
2206 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2207 				   RDMA_CM_DISCONNECT))
2208 			goto out;
2209 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2210 		break;
2211 	case IB_CM_TIMEWAIT_EXIT:
2212 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2213 		break;
2214 	case IB_CM_MRA_RECEIVED:
2215 		/* ignore event */
2216 		goto out;
2217 	case IB_CM_REJ_RECEIVED:
2218 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2219 										ib_event->param.rej_rcvd.reason));
2220 		cma_modify_qp_err(id_priv);
2221 		event.status = ib_event->param.rej_rcvd.reason;
2222 		event.event = RDMA_CM_EVENT_REJECTED;
2223 		event.param.conn.private_data = ib_event->private_data;
2224 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2225 		break;
2226 	default:
2227 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2228 		       ib_event->event);
2229 		goto out;
2230 	}
2231 
2232 	ret = cma_cm_event_handler(id_priv, &event);
2233 	if (ret) {
2234 		/* Destroy the CM ID by returning a non-zero value. */
2235 		id_priv->cm_id.ib = NULL;
2236 		destroy_id_handler_unlock(id_priv);
2237 		return ret;
2238 	}
2239 out:
2240 	mutex_unlock(&id_priv->handler_mutex);
2241 	return 0;
2242 }
2243 
2244 static struct rdma_id_private *
2245 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2246 		   const struct ib_cm_event *ib_event,
2247 		   struct net_device *net_dev)
2248 {
2249 	struct rdma_id_private *listen_id_priv;
2250 	struct rdma_id_private *id_priv;
2251 	struct rdma_cm_id *id;
2252 	struct rdma_route *rt;
2253 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2254 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2255 	const __be64 service_id =
2256 		ib_event->param.req_rcvd.primary_path->service_id;
2257 	int ret;
2258 
2259 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2260 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2261 				   listen_id->event_handler, listen_id->context,
2262 				   listen_id->ps,
2263 				   ib_event->param.req_rcvd.qp_type,
2264 				   listen_id_priv);
2265 	if (IS_ERR(id_priv))
2266 		return NULL;
2267 
2268 	id = &id_priv->id;
2269 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2270 			      (struct sockaddr *)&id->route.addr.dst_addr,
2271 			      listen_id, ib_event, ss_family, service_id))
2272 		goto err;
2273 
2274 	rt = &id->route;
2275 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2276 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2277 				     sizeof(*rt->path_rec), GFP_KERNEL);
2278 	if (!rt->path_rec)
2279 		goto err;
2280 
2281 	rt->path_rec[0] = *path;
2282 	if (rt->num_pri_alt_paths == 2)
2283 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2284 
2285 	if (net_dev) {
2286 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2287 	} else {
2288 		if (!cma_protocol_roce(listen_id) &&
2289 		    cma_any_addr(cma_src_addr(id_priv))) {
2290 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2291 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2292 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2293 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2294 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2295 			if (ret)
2296 				goto err;
2297 		}
2298 	}
2299 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2300 
2301 	id_priv->state = RDMA_CM_CONNECT;
2302 	return id_priv;
2303 
2304 err:
2305 	rdma_destroy_id(id);
2306 	return NULL;
2307 }
2308 
2309 static struct rdma_id_private *
2310 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2311 		  const struct ib_cm_event *ib_event,
2312 		  struct net_device *net_dev)
2313 {
2314 	const struct rdma_id_private *listen_id_priv;
2315 	struct rdma_id_private *id_priv;
2316 	struct rdma_cm_id *id;
2317 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2318 	struct net *net = listen_id->route.addr.dev_addr.net;
2319 	int ret;
2320 
2321 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2322 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2323 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2324 				   listen_id_priv);
2325 	if (IS_ERR(id_priv))
2326 		return NULL;
2327 
2328 	id = &id_priv->id;
2329 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2330 			      (struct sockaddr *)&id->route.addr.dst_addr,
2331 			      listen_id, ib_event, ss_family,
2332 			      ib_event->param.sidr_req_rcvd.service_id))
2333 		goto err;
2334 
2335 	if (net_dev) {
2336 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2337 	} else {
2338 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2339 			ret = cma_translate_addr(cma_src_addr(id_priv),
2340 						 &id->route.addr.dev_addr);
2341 			if (ret)
2342 				goto err;
2343 		}
2344 	}
2345 
2346 	id_priv->state = RDMA_CM_CONNECT;
2347 	return id_priv;
2348 err:
2349 	rdma_destroy_id(id);
2350 	return NULL;
2351 }
2352 
2353 static void cma_set_req_event_data(struct rdma_cm_event *event,
2354 				   const struct ib_cm_req_event_param *req_data,
2355 				   void *private_data, int offset)
2356 {
2357 	event->param.conn.private_data = private_data + offset;
2358 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2359 	event->param.conn.responder_resources = req_data->responder_resources;
2360 	event->param.conn.initiator_depth = req_data->initiator_depth;
2361 	event->param.conn.flow_control = req_data->flow_control;
2362 	event->param.conn.retry_count = req_data->retry_count;
2363 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2364 	event->param.conn.srq = req_data->srq;
2365 	event->param.conn.qp_num = req_data->remote_qpn;
2366 
2367 	event->ece.vendor_id = req_data->ece.vendor_id;
2368 	event->ece.attr_mod = req_data->ece.attr_mod;
2369 }
2370 
2371 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2372 				    const struct ib_cm_event *ib_event)
2373 {
2374 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2375 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2376 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2377 		 (id->qp_type == IB_QPT_UD)) ||
2378 		(!id->qp_type));
2379 }
2380 
2381 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2382 			      const struct ib_cm_event *ib_event)
2383 {
2384 	struct rdma_id_private *listen_id, *conn_id = NULL;
2385 	struct rdma_cm_event event = {};
2386 	struct cma_req_info req = {};
2387 	struct net_device *net_dev;
2388 	u8 offset;
2389 	int ret;
2390 
2391 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2392 	if (IS_ERR(listen_id))
2393 		return PTR_ERR(listen_id);
2394 
2395 	trace_cm_req_handler(listen_id, ib_event->event);
2396 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2397 		ret = -EINVAL;
2398 		goto net_dev_put;
2399 	}
2400 
2401 	mutex_lock(&listen_id->handler_mutex);
2402 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2403 		ret = -ECONNABORTED;
2404 		goto err_unlock;
2405 	}
2406 
2407 	offset = cma_user_data_offset(listen_id);
2408 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2409 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2410 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2411 		event.param.ud.private_data = ib_event->private_data + offset;
2412 		event.param.ud.private_data_len =
2413 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2414 	} else {
2415 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2416 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2417 				       ib_event->private_data, offset);
2418 	}
2419 	if (!conn_id) {
2420 		ret = -ENOMEM;
2421 		goto err_unlock;
2422 	}
2423 
2424 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2425 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2426 	if (ret) {
2427 		destroy_id_handler_unlock(conn_id);
2428 		goto err_unlock;
2429 	}
2430 
2431 	conn_id->cm_id.ib = cm_id;
2432 	cm_id->context = conn_id;
2433 	cm_id->cm_handler = cma_ib_handler;
2434 
2435 	ret = cma_cm_event_handler(conn_id, &event);
2436 	if (ret) {
2437 		/* Destroy the CM ID by returning a non-zero value. */
2438 		conn_id->cm_id.ib = NULL;
2439 		mutex_unlock(&listen_id->handler_mutex);
2440 		destroy_id_handler_unlock(conn_id);
2441 		goto net_dev_put;
2442 	}
2443 
2444 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2445 	    conn_id->id.qp_type != IB_QPT_UD) {
2446 		trace_cm_send_mra(cm_id->context);
2447 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2448 	}
2449 	mutex_unlock(&conn_id->handler_mutex);
2450 
2451 err_unlock:
2452 	mutex_unlock(&listen_id->handler_mutex);
2453 
2454 net_dev_put:
2455 	dev_put(net_dev);
2456 
2457 	return ret;
2458 }
2459 
2460 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2461 {
2462 	if (addr->sa_family == AF_IB)
2463 		return ((struct sockaddr_ib *) addr)->sib_sid;
2464 
2465 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2466 }
2467 EXPORT_SYMBOL(rdma_get_service_id);
2468 
2469 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2470 		    union ib_gid *dgid)
2471 {
2472 	struct rdma_addr *addr = &cm_id->route.addr;
2473 
2474 	if (!cm_id->device) {
2475 		if (sgid)
2476 			memset(sgid, 0, sizeof(*sgid));
2477 		if (dgid)
2478 			memset(dgid, 0, sizeof(*dgid));
2479 		return;
2480 	}
2481 
2482 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2483 		if (sgid)
2484 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2485 		if (dgid)
2486 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2487 	} else {
2488 		if (sgid)
2489 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2490 		if (dgid)
2491 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2492 	}
2493 }
2494 EXPORT_SYMBOL(rdma_read_gids);
2495 
2496 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2497 {
2498 	struct rdma_id_private *id_priv = iw_id->context;
2499 	struct rdma_cm_event event = {};
2500 	int ret = 0;
2501 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2502 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2503 
2504 	mutex_lock(&id_priv->handler_mutex);
2505 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2506 		goto out;
2507 
2508 	switch (iw_event->event) {
2509 	case IW_CM_EVENT_CLOSE:
2510 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2511 		break;
2512 	case IW_CM_EVENT_CONNECT_REPLY:
2513 		memcpy(cma_src_addr(id_priv), laddr,
2514 		       rdma_addr_size(laddr));
2515 		memcpy(cma_dst_addr(id_priv), raddr,
2516 		       rdma_addr_size(raddr));
2517 		switch (iw_event->status) {
2518 		case 0:
2519 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2520 			event.param.conn.initiator_depth = iw_event->ird;
2521 			event.param.conn.responder_resources = iw_event->ord;
2522 			break;
2523 		case -ECONNRESET:
2524 		case -ECONNREFUSED:
2525 			event.event = RDMA_CM_EVENT_REJECTED;
2526 			break;
2527 		case -ETIMEDOUT:
2528 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2529 			break;
2530 		default:
2531 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2532 			break;
2533 		}
2534 		break;
2535 	case IW_CM_EVENT_ESTABLISHED:
2536 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2537 		event.param.conn.initiator_depth = iw_event->ird;
2538 		event.param.conn.responder_resources = iw_event->ord;
2539 		break;
2540 	default:
2541 		goto out;
2542 	}
2543 
2544 	event.status = iw_event->status;
2545 	event.param.conn.private_data = iw_event->private_data;
2546 	event.param.conn.private_data_len = iw_event->private_data_len;
2547 	ret = cma_cm_event_handler(id_priv, &event);
2548 	if (ret) {
2549 		/* Destroy the CM ID by returning a non-zero value. */
2550 		id_priv->cm_id.iw = NULL;
2551 		destroy_id_handler_unlock(id_priv);
2552 		return ret;
2553 	}
2554 
2555 out:
2556 	mutex_unlock(&id_priv->handler_mutex);
2557 	return ret;
2558 }
2559 
2560 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2561 			       struct iw_cm_event *iw_event)
2562 {
2563 	struct rdma_id_private *listen_id, *conn_id;
2564 	struct rdma_cm_event event = {};
2565 	int ret = -ECONNABORTED;
2566 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2567 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2568 
2569 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2570 	event.param.conn.private_data = iw_event->private_data;
2571 	event.param.conn.private_data_len = iw_event->private_data_len;
2572 	event.param.conn.initiator_depth = iw_event->ird;
2573 	event.param.conn.responder_resources = iw_event->ord;
2574 
2575 	listen_id = cm_id->context;
2576 
2577 	mutex_lock(&listen_id->handler_mutex);
2578 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2579 		goto out;
2580 
2581 	/* Create a new RDMA id for the new IW CM ID */
2582 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2583 				   listen_id->id.event_handler,
2584 				   listen_id->id.context, RDMA_PS_TCP,
2585 				   IB_QPT_RC, listen_id);
2586 	if (IS_ERR(conn_id)) {
2587 		ret = -ENOMEM;
2588 		goto out;
2589 	}
2590 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2591 	conn_id->state = RDMA_CM_CONNECT;
2592 
2593 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2594 	if (ret) {
2595 		mutex_unlock(&listen_id->handler_mutex);
2596 		destroy_id_handler_unlock(conn_id);
2597 		return ret;
2598 	}
2599 
2600 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2601 	if (ret) {
2602 		mutex_unlock(&listen_id->handler_mutex);
2603 		destroy_id_handler_unlock(conn_id);
2604 		return ret;
2605 	}
2606 
2607 	conn_id->cm_id.iw = cm_id;
2608 	cm_id->context = conn_id;
2609 	cm_id->cm_handler = cma_iw_handler;
2610 
2611 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2612 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2613 
2614 	ret = cma_cm_event_handler(conn_id, &event);
2615 	if (ret) {
2616 		/* User wants to destroy the CM ID */
2617 		conn_id->cm_id.iw = NULL;
2618 		mutex_unlock(&listen_id->handler_mutex);
2619 		destroy_id_handler_unlock(conn_id);
2620 		return ret;
2621 	}
2622 
2623 	mutex_unlock(&conn_id->handler_mutex);
2624 
2625 out:
2626 	mutex_unlock(&listen_id->handler_mutex);
2627 	return ret;
2628 }
2629 
2630 static int cma_ib_listen(struct rdma_id_private *id_priv)
2631 {
2632 	struct sockaddr *addr;
2633 	struct ib_cm_id	*id;
2634 	__be64 svc_id;
2635 
2636 	addr = cma_src_addr(id_priv);
2637 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2638 	id = ib_cm_insert_listen(id_priv->id.device,
2639 				 cma_ib_req_handler, svc_id);
2640 	if (IS_ERR(id))
2641 		return PTR_ERR(id);
2642 	id_priv->cm_id.ib = id;
2643 
2644 	return 0;
2645 }
2646 
2647 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2648 {
2649 	int ret;
2650 	struct iw_cm_id	*id;
2651 
2652 	id = iw_create_cm_id(id_priv->id.device,
2653 			     iw_conn_req_handler,
2654 			     id_priv);
2655 	if (IS_ERR(id))
2656 		return PTR_ERR(id);
2657 
2658 	mutex_lock(&id_priv->qp_mutex);
2659 	id->tos = id_priv->tos;
2660 	id->tos_set = id_priv->tos_set;
2661 	mutex_unlock(&id_priv->qp_mutex);
2662 	id->afonly = id_priv->afonly;
2663 	id_priv->cm_id.iw = id;
2664 
2665 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2666 	       rdma_addr_size(cma_src_addr(id_priv)));
2667 
2668 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2669 
2670 	if (ret) {
2671 		iw_destroy_cm_id(id_priv->cm_id.iw);
2672 		id_priv->cm_id.iw = NULL;
2673 	}
2674 
2675 	return ret;
2676 }
2677 
2678 static int cma_listen_handler(struct rdma_cm_id *id,
2679 			      struct rdma_cm_event *event)
2680 {
2681 	struct rdma_id_private *id_priv = id->context;
2682 
2683 	/* Listening IDs are always destroyed on removal */
2684 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2685 		return -1;
2686 
2687 	id->context = id_priv->id.context;
2688 	id->event_handler = id_priv->id.event_handler;
2689 	trace_cm_event_handler(id_priv, event);
2690 	return id_priv->id.event_handler(id, event);
2691 }
2692 
2693 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2694 			     struct cma_device *cma_dev,
2695 			     struct rdma_id_private **to_destroy)
2696 {
2697 	struct rdma_id_private *dev_id_priv;
2698 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2699 	int ret;
2700 
2701 	lockdep_assert_held(&lock);
2702 
2703 	*to_destroy = NULL;
2704 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2705 		return 0;
2706 
2707 	dev_id_priv =
2708 		__rdma_create_id(net, cma_listen_handler, id_priv,
2709 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2710 	if (IS_ERR(dev_id_priv))
2711 		return PTR_ERR(dev_id_priv);
2712 
2713 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2714 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2715 	       rdma_addr_size(cma_src_addr(id_priv)));
2716 
2717 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2718 	rdma_restrack_add(&dev_id_priv->res);
2719 	cma_id_get(id_priv);
2720 	dev_id_priv->internal_id = 1;
2721 	dev_id_priv->afonly = id_priv->afonly;
2722 	mutex_lock(&id_priv->qp_mutex);
2723 	dev_id_priv->tos_set = id_priv->tos_set;
2724 	dev_id_priv->tos = id_priv->tos;
2725 	mutex_unlock(&id_priv->qp_mutex);
2726 
2727 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2728 	if (ret)
2729 		goto err_listen;
2730 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2731 	return 0;
2732 err_listen:
2733 	/* Caller must destroy this after releasing lock */
2734 	*to_destroy = dev_id_priv;
2735 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2736 	return ret;
2737 }
2738 
2739 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2740 {
2741 	struct rdma_id_private *to_destroy;
2742 	struct cma_device *cma_dev;
2743 	int ret;
2744 
2745 	mutex_lock(&lock);
2746 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2747 	list_for_each_entry(cma_dev, &dev_list, list) {
2748 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2749 		if (ret) {
2750 			/* Prevent racing with cma_process_remove() */
2751 			if (to_destroy)
2752 				list_del_init(&to_destroy->device_item);
2753 			goto err_listen;
2754 		}
2755 	}
2756 	mutex_unlock(&lock);
2757 	return 0;
2758 
2759 err_listen:
2760 	_cma_cancel_listens(id_priv);
2761 	mutex_unlock(&lock);
2762 	if (to_destroy)
2763 		rdma_destroy_id(&to_destroy->id);
2764 	return ret;
2765 }
2766 
2767 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2768 {
2769 	struct rdma_id_private *id_priv;
2770 
2771 	id_priv = container_of(id, struct rdma_id_private, id);
2772 	mutex_lock(&id_priv->qp_mutex);
2773 	id_priv->tos = (u8) tos;
2774 	id_priv->tos_set = true;
2775 	mutex_unlock(&id_priv->qp_mutex);
2776 }
2777 EXPORT_SYMBOL(rdma_set_service_type);
2778 
2779 /**
2780  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2781  *                          with a connection identifier.
2782  * @id: Communication identifier to associated with service type.
2783  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2784  *
2785  * This function should be called before rdma_connect() on active side,
2786  * and on passive side before rdma_accept(). It is applicable to primary
2787  * path only. The timeout will affect the local side of the QP, it is not
2788  * negotiated with remote side and zero disables the timer. In case it is
2789  * set before rdma_resolve_route, the value will also be used to determine
2790  * PacketLifeTime for RoCE.
2791  *
2792  * Return: 0 for success
2793  */
2794 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2795 {
2796 	struct rdma_id_private *id_priv;
2797 
2798 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2799 		return -EINVAL;
2800 
2801 	id_priv = container_of(id, struct rdma_id_private, id);
2802 	mutex_lock(&id_priv->qp_mutex);
2803 	id_priv->timeout = timeout;
2804 	id_priv->timeout_set = true;
2805 	mutex_unlock(&id_priv->qp_mutex);
2806 
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL(rdma_set_ack_timeout);
2810 
2811 /**
2812  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2813  *			      QP associated with a connection identifier.
2814  * @id: Communication identifier to associated with service type.
2815  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2816  *		   Timer Field" in the IBTA specification.
2817  *
2818  * This function should be called before rdma_connect() on active
2819  * side, and on passive side before rdma_accept(). The timer value
2820  * will be associated with the local QP. When it receives a send it is
2821  * not read to handle, typically if the receive queue is empty, an RNR
2822  * Retry NAK is returned to the requester with the min_rnr_timer
2823  * encoded. The requester will then wait at least the time specified
2824  * in the NAK before retrying. The default is zero, which translates
2825  * to a minimum RNR Timer value of 655 ms.
2826  *
2827  * Return: 0 for success
2828  */
2829 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2830 {
2831 	struct rdma_id_private *id_priv;
2832 
2833 	/* It is a five-bit value */
2834 	if (min_rnr_timer & 0xe0)
2835 		return -EINVAL;
2836 
2837 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2838 		return -EINVAL;
2839 
2840 	id_priv = container_of(id, struct rdma_id_private, id);
2841 	mutex_lock(&id_priv->qp_mutex);
2842 	id_priv->min_rnr_timer = min_rnr_timer;
2843 	id_priv->min_rnr_timer_set = true;
2844 	mutex_unlock(&id_priv->qp_mutex);
2845 
2846 	return 0;
2847 }
2848 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2849 
2850 static int route_set_path_rec_inbound(struct cma_work *work,
2851 				      struct sa_path_rec *path_rec)
2852 {
2853 	struct rdma_route *route = &work->id->id.route;
2854 
2855 	if (!route->path_rec_inbound) {
2856 		route->path_rec_inbound =
2857 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2858 		if (!route->path_rec_inbound)
2859 			return -ENOMEM;
2860 	}
2861 
2862 	*route->path_rec_inbound = *path_rec;
2863 	return 0;
2864 }
2865 
2866 static int route_set_path_rec_outbound(struct cma_work *work,
2867 				       struct sa_path_rec *path_rec)
2868 {
2869 	struct rdma_route *route = &work->id->id.route;
2870 
2871 	if (!route->path_rec_outbound) {
2872 		route->path_rec_outbound =
2873 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2874 		if (!route->path_rec_outbound)
2875 			return -ENOMEM;
2876 	}
2877 
2878 	*route->path_rec_outbound = *path_rec;
2879 	return 0;
2880 }
2881 
2882 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2883 			      unsigned int num_prs, void *context)
2884 {
2885 	struct cma_work *work = context;
2886 	struct rdma_route *route;
2887 	int i;
2888 
2889 	route = &work->id->id.route;
2890 
2891 	if (status)
2892 		goto fail;
2893 
2894 	for (i = 0; i < num_prs; i++) {
2895 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2896 			*route->path_rec = path_rec[i];
2897 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2898 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2899 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2900 			status = route_set_path_rec_outbound(work,
2901 							     &path_rec[i]);
2902 		else
2903 			status = -EINVAL;
2904 
2905 		if (status)
2906 			goto fail;
2907 	}
2908 
2909 	route->num_pri_alt_paths = 1;
2910 	queue_work(cma_wq, &work->work);
2911 	return;
2912 
2913 fail:
2914 	work->old_state = RDMA_CM_ROUTE_QUERY;
2915 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2916 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2917 	work->event.status = status;
2918 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2919 			     status);
2920 	queue_work(cma_wq, &work->work);
2921 }
2922 
2923 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2924 			      unsigned long timeout_ms, struct cma_work *work)
2925 {
2926 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2927 	struct sa_path_rec path_rec;
2928 	ib_sa_comp_mask comp_mask;
2929 	struct sockaddr_in6 *sin6;
2930 	struct sockaddr_ib *sib;
2931 
2932 	memset(&path_rec, 0, sizeof path_rec);
2933 
2934 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2935 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2936 	else
2937 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2938 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2939 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2940 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2941 	path_rec.numb_path = 1;
2942 	path_rec.reversible = 1;
2943 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2944 						  cma_dst_addr(id_priv));
2945 
2946 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2947 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2948 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2949 
2950 	switch (cma_family(id_priv)) {
2951 	case AF_INET:
2952 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2953 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2954 		break;
2955 	case AF_INET6:
2956 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2957 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2958 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2959 		break;
2960 	case AF_IB:
2961 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2962 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2963 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2964 		break;
2965 	}
2966 
2967 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2968 					       id_priv->id.port_num, &path_rec,
2969 					       comp_mask, timeout_ms,
2970 					       GFP_KERNEL, cma_query_handler,
2971 					       work, &id_priv->query);
2972 
2973 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2974 }
2975 
2976 static void cma_iboe_join_work_handler(struct work_struct *work)
2977 {
2978 	struct cma_multicast *mc =
2979 		container_of(work, struct cma_multicast, iboe_join.work);
2980 	struct rdma_cm_event *event = &mc->iboe_join.event;
2981 	struct rdma_id_private *id_priv = mc->id_priv;
2982 	int ret;
2983 
2984 	mutex_lock(&id_priv->handler_mutex);
2985 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2986 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2987 		goto out_unlock;
2988 
2989 	ret = cma_cm_event_handler(id_priv, event);
2990 	WARN_ON(ret);
2991 
2992 out_unlock:
2993 	mutex_unlock(&id_priv->handler_mutex);
2994 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2995 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2996 }
2997 
2998 static void cma_work_handler(struct work_struct *_work)
2999 {
3000 	struct cma_work *work = container_of(_work, struct cma_work, work);
3001 	struct rdma_id_private *id_priv = work->id;
3002 
3003 	mutex_lock(&id_priv->handler_mutex);
3004 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3005 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3006 		goto out_unlock;
3007 	if (work->old_state != 0 || work->new_state != 0) {
3008 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
3009 			goto out_unlock;
3010 	}
3011 
3012 	if (cma_cm_event_handler(id_priv, &work->event)) {
3013 		cma_id_put(id_priv);
3014 		destroy_id_handler_unlock(id_priv);
3015 		goto out_free;
3016 	}
3017 
3018 out_unlock:
3019 	mutex_unlock(&id_priv->handler_mutex);
3020 	cma_id_put(id_priv);
3021 out_free:
3022 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3023 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3024 	kfree(work);
3025 }
3026 
3027 static void cma_init_resolve_route_work(struct cma_work *work,
3028 					struct rdma_id_private *id_priv)
3029 {
3030 	work->id = id_priv;
3031 	INIT_WORK(&work->work, cma_work_handler);
3032 	work->old_state = RDMA_CM_ROUTE_QUERY;
3033 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3034 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3035 }
3036 
3037 static void enqueue_resolve_addr_work(struct cma_work *work,
3038 				      struct rdma_id_private *id_priv)
3039 {
3040 	/* Balances with cma_id_put() in cma_work_handler */
3041 	cma_id_get(id_priv);
3042 
3043 	work->id = id_priv;
3044 	INIT_WORK(&work->work, cma_work_handler);
3045 	work->old_state = RDMA_CM_ADDR_QUERY;
3046 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3047 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3048 
3049 	queue_work(cma_wq, &work->work);
3050 }
3051 
3052 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3053 				unsigned long timeout_ms)
3054 {
3055 	struct rdma_route *route = &id_priv->id.route;
3056 	struct cma_work *work;
3057 	int ret;
3058 
3059 	work = kzalloc(sizeof *work, GFP_KERNEL);
3060 	if (!work)
3061 		return -ENOMEM;
3062 
3063 	cma_init_resolve_route_work(work, id_priv);
3064 
3065 	if (!route->path_rec)
3066 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3067 	if (!route->path_rec) {
3068 		ret = -ENOMEM;
3069 		goto err1;
3070 	}
3071 
3072 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3073 	if (ret)
3074 		goto err2;
3075 
3076 	return 0;
3077 err2:
3078 	kfree(route->path_rec);
3079 	route->path_rec = NULL;
3080 err1:
3081 	kfree(work);
3082 	return ret;
3083 }
3084 
3085 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3086 					   unsigned long supported_gids,
3087 					   enum ib_gid_type default_gid)
3088 {
3089 	if ((network_type == RDMA_NETWORK_IPV4 ||
3090 	     network_type == RDMA_NETWORK_IPV6) &&
3091 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3092 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3093 
3094 	return default_gid;
3095 }
3096 
3097 /*
3098  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3099  * path record type based on GID type.
3100  * It also sets up other L2 fields which includes destination mac address
3101  * netdev ifindex, of the path record.
3102  * It returns the netdev of the bound interface for this path record entry.
3103  */
3104 static struct net_device *
3105 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3106 {
3107 	struct rdma_route *route = &id_priv->id.route;
3108 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3109 	struct rdma_addr *addr = &route->addr;
3110 	unsigned long supported_gids;
3111 	struct net_device *ndev;
3112 
3113 	if (!addr->dev_addr.bound_dev_if)
3114 		return NULL;
3115 
3116 	ndev = dev_get_by_index(addr->dev_addr.net,
3117 				addr->dev_addr.bound_dev_if);
3118 	if (!ndev)
3119 		return NULL;
3120 
3121 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3122 						    id_priv->id.port_num);
3123 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3124 				      supported_gids,
3125 				      id_priv->gid_type);
3126 	/* Use the hint from IP Stack to select GID Type */
3127 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3128 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3129 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3130 
3131 	route->path_rec->roce.route_resolved = true;
3132 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3133 	return ndev;
3134 }
3135 
3136 int rdma_set_ib_path(struct rdma_cm_id *id,
3137 		     struct sa_path_rec *path_rec)
3138 {
3139 	struct rdma_id_private *id_priv;
3140 	struct net_device *ndev;
3141 	int ret;
3142 
3143 	id_priv = container_of(id, struct rdma_id_private, id);
3144 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3145 			   RDMA_CM_ROUTE_RESOLVED))
3146 		return -EINVAL;
3147 
3148 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3149 				     GFP_KERNEL);
3150 	if (!id->route.path_rec) {
3151 		ret = -ENOMEM;
3152 		goto err;
3153 	}
3154 
3155 	if (rdma_protocol_roce(id->device, id->port_num)) {
3156 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3157 		if (!ndev) {
3158 			ret = -ENODEV;
3159 			goto err_free;
3160 		}
3161 		dev_put(ndev);
3162 	}
3163 
3164 	id->route.num_pri_alt_paths = 1;
3165 	return 0;
3166 
3167 err_free:
3168 	kfree(id->route.path_rec);
3169 	id->route.path_rec = NULL;
3170 err:
3171 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3172 	return ret;
3173 }
3174 EXPORT_SYMBOL(rdma_set_ib_path);
3175 
3176 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3177 {
3178 	struct cma_work *work;
3179 
3180 	work = kzalloc(sizeof *work, GFP_KERNEL);
3181 	if (!work)
3182 		return -ENOMEM;
3183 
3184 	cma_init_resolve_route_work(work, id_priv);
3185 	queue_work(cma_wq, &work->work);
3186 	return 0;
3187 }
3188 
3189 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3190 {
3191 	struct net_device *dev;
3192 
3193 	dev = vlan_dev_real_dev(vlan_ndev);
3194 	if (dev->num_tc)
3195 		return netdev_get_prio_tc_map(dev, prio);
3196 
3197 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3198 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3199 }
3200 
3201 struct iboe_prio_tc_map {
3202 	int input_prio;
3203 	int output_tc;
3204 	bool found;
3205 };
3206 
3207 static int get_lower_vlan_dev_tc(struct net_device *dev,
3208 				 struct netdev_nested_priv *priv)
3209 {
3210 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3211 
3212 	if (is_vlan_dev(dev))
3213 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3214 	else if (dev->num_tc)
3215 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3216 	else
3217 		map->output_tc = 0;
3218 	/* We are interested only in first level VLAN device, so always
3219 	 * return 1 to stop iterating over next level devices.
3220 	 */
3221 	map->found = true;
3222 	return 1;
3223 }
3224 
3225 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3226 {
3227 	struct iboe_prio_tc_map prio_tc_map = {};
3228 	int prio = rt_tos2priority(tos);
3229 	struct netdev_nested_priv priv;
3230 
3231 	/* If VLAN device, get it directly from the VLAN netdev */
3232 	if (is_vlan_dev(ndev))
3233 		return get_vlan_ndev_tc(ndev, prio);
3234 
3235 	prio_tc_map.input_prio = prio;
3236 	priv.data = (void *)&prio_tc_map;
3237 	rcu_read_lock();
3238 	netdev_walk_all_lower_dev_rcu(ndev,
3239 				      get_lower_vlan_dev_tc,
3240 				      &priv);
3241 	rcu_read_unlock();
3242 	/* If map is found from lower device, use it; Otherwise
3243 	 * continue with the current netdevice to get priority to tc map.
3244 	 */
3245 	if (prio_tc_map.found)
3246 		return prio_tc_map.output_tc;
3247 	else if (ndev->num_tc)
3248 		return netdev_get_prio_tc_map(ndev, prio);
3249 	else
3250 		return 0;
3251 }
3252 
3253 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3254 {
3255 	struct sockaddr_in6 *addr6;
3256 	u16 dport, sport;
3257 	u32 hash, fl;
3258 
3259 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3260 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3261 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3262 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3263 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3264 		hash = (u32)sport * 31 + dport;
3265 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3266 	}
3267 
3268 	return cpu_to_be32(fl);
3269 }
3270 
3271 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3272 {
3273 	struct rdma_route *route = &id_priv->id.route;
3274 	struct rdma_addr *addr = &route->addr;
3275 	struct cma_work *work;
3276 	int ret;
3277 	struct net_device *ndev;
3278 
3279 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3280 					rdma_start_port(id_priv->cma_dev->device)];
3281 	u8 tos;
3282 
3283 	mutex_lock(&id_priv->qp_mutex);
3284 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3285 	mutex_unlock(&id_priv->qp_mutex);
3286 
3287 	work = kzalloc(sizeof *work, GFP_KERNEL);
3288 	if (!work)
3289 		return -ENOMEM;
3290 
3291 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3292 	if (!route->path_rec) {
3293 		ret = -ENOMEM;
3294 		goto err1;
3295 	}
3296 
3297 	route->num_pri_alt_paths = 1;
3298 
3299 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3300 	if (!ndev) {
3301 		ret = -ENODEV;
3302 		goto err2;
3303 	}
3304 
3305 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3306 		    &route->path_rec->sgid);
3307 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3308 		    &route->path_rec->dgid);
3309 
3310 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3311 		/* TODO: get the hoplimit from the inet/inet6 device */
3312 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3313 	else
3314 		route->path_rec->hop_limit = 1;
3315 	route->path_rec->reversible = 1;
3316 	route->path_rec->pkey = cpu_to_be16(0xffff);
3317 	route->path_rec->mtu_selector = IB_SA_EQ;
3318 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3319 	route->path_rec->traffic_class = tos;
3320 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3321 	route->path_rec->rate_selector = IB_SA_EQ;
3322 	route->path_rec->rate = IB_RATE_PORT_CURRENT;
3323 	dev_put(ndev);
3324 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3325 	/* In case ACK timeout is set, use this value to calculate
3326 	 * PacketLifeTime.  As per IBTA 12.7.34,
3327 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3328 	 * Assuming a negligible local ACK delay, we can use
3329 	 * PacketLifeTime = local ACK timeout/2
3330 	 * as a reasonable approximation for RoCE networks.
3331 	 */
3332 	mutex_lock(&id_priv->qp_mutex);
3333 	if (id_priv->timeout_set && id_priv->timeout)
3334 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3335 	else
3336 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3337 	mutex_unlock(&id_priv->qp_mutex);
3338 
3339 	if (!route->path_rec->mtu) {
3340 		ret = -EINVAL;
3341 		goto err2;
3342 	}
3343 
3344 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3345 					 id_priv->id.port_num))
3346 		route->path_rec->flow_label =
3347 			cma_get_roce_udp_flow_label(id_priv);
3348 
3349 	cma_init_resolve_route_work(work, id_priv);
3350 	queue_work(cma_wq, &work->work);
3351 
3352 	return 0;
3353 
3354 err2:
3355 	kfree(route->path_rec);
3356 	route->path_rec = NULL;
3357 	route->num_pri_alt_paths = 0;
3358 err1:
3359 	kfree(work);
3360 	return ret;
3361 }
3362 
3363 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3364 {
3365 	struct rdma_id_private *id_priv;
3366 	int ret;
3367 
3368 	if (!timeout_ms)
3369 		return -EINVAL;
3370 
3371 	id_priv = container_of(id, struct rdma_id_private, id);
3372 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3373 		return -EINVAL;
3374 
3375 	cma_id_get(id_priv);
3376 	if (rdma_cap_ib_sa(id->device, id->port_num))
3377 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3378 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3379 		ret = cma_resolve_iboe_route(id_priv);
3380 		if (!ret)
3381 			cma_add_id_to_tree(id_priv);
3382 	}
3383 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3384 		ret = cma_resolve_iw_route(id_priv);
3385 	else
3386 		ret = -ENOSYS;
3387 
3388 	if (ret)
3389 		goto err;
3390 
3391 	return 0;
3392 err:
3393 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3394 	cma_id_put(id_priv);
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL(rdma_resolve_route);
3398 
3399 static void cma_set_loopback(struct sockaddr *addr)
3400 {
3401 	switch (addr->sa_family) {
3402 	case AF_INET:
3403 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3404 		break;
3405 	case AF_INET6:
3406 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3407 			      0, 0, 0, htonl(1));
3408 		break;
3409 	default:
3410 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3411 			    0, 0, 0, htonl(1));
3412 		break;
3413 	}
3414 }
3415 
3416 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3417 {
3418 	struct cma_device *cma_dev, *cur_dev;
3419 	union ib_gid gid;
3420 	enum ib_port_state port_state;
3421 	unsigned int p;
3422 	u16 pkey;
3423 	int ret;
3424 
3425 	cma_dev = NULL;
3426 	mutex_lock(&lock);
3427 	list_for_each_entry(cur_dev, &dev_list, list) {
3428 		if (cma_family(id_priv) == AF_IB &&
3429 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3430 			continue;
3431 
3432 		if (!cma_dev)
3433 			cma_dev = cur_dev;
3434 
3435 		rdma_for_each_port (cur_dev->device, p) {
3436 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3437 			    port_state == IB_PORT_ACTIVE) {
3438 				cma_dev = cur_dev;
3439 				goto port_found;
3440 			}
3441 		}
3442 	}
3443 
3444 	if (!cma_dev) {
3445 		ret = -ENODEV;
3446 		goto out;
3447 	}
3448 
3449 	p = 1;
3450 
3451 port_found:
3452 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3453 	if (ret)
3454 		goto out;
3455 
3456 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3457 	if (ret)
3458 		goto out;
3459 
3460 	id_priv->id.route.addr.dev_addr.dev_type =
3461 		(rdma_protocol_ib(cma_dev->device, p)) ?
3462 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3463 
3464 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3465 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3466 	id_priv->id.port_num = p;
3467 	cma_attach_to_dev(id_priv, cma_dev);
3468 	rdma_restrack_add(&id_priv->res);
3469 	cma_set_loopback(cma_src_addr(id_priv));
3470 out:
3471 	mutex_unlock(&lock);
3472 	return ret;
3473 }
3474 
3475 static void addr_handler(int status, struct sockaddr *src_addr,
3476 			 struct rdma_dev_addr *dev_addr, void *context)
3477 {
3478 	struct rdma_id_private *id_priv = context;
3479 	struct rdma_cm_event event = {};
3480 	struct sockaddr *addr;
3481 	struct sockaddr_storage old_addr;
3482 
3483 	mutex_lock(&id_priv->handler_mutex);
3484 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3485 			   RDMA_CM_ADDR_RESOLVED))
3486 		goto out;
3487 
3488 	/*
3489 	 * Store the previous src address, so that if we fail to acquire
3490 	 * matching rdma device, old address can be restored back, which helps
3491 	 * to cancel the cma listen operation correctly.
3492 	 */
3493 	addr = cma_src_addr(id_priv);
3494 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3495 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3496 	if (!status && !id_priv->cma_dev) {
3497 		status = cma_acquire_dev_by_src_ip(id_priv);
3498 		if (status)
3499 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3500 					     status);
3501 		rdma_restrack_add(&id_priv->res);
3502 	} else if (status) {
3503 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3504 	}
3505 
3506 	if (status) {
3507 		memcpy(addr, &old_addr,
3508 		       rdma_addr_size((struct sockaddr *)&old_addr));
3509 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3510 				   RDMA_CM_ADDR_BOUND))
3511 			goto out;
3512 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3513 		event.status = status;
3514 	} else
3515 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3516 
3517 	if (cma_cm_event_handler(id_priv, &event)) {
3518 		destroy_id_handler_unlock(id_priv);
3519 		return;
3520 	}
3521 out:
3522 	mutex_unlock(&id_priv->handler_mutex);
3523 }
3524 
3525 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3526 {
3527 	struct cma_work *work;
3528 	union ib_gid gid;
3529 	int ret;
3530 
3531 	work = kzalloc(sizeof *work, GFP_KERNEL);
3532 	if (!work)
3533 		return -ENOMEM;
3534 
3535 	if (!id_priv->cma_dev) {
3536 		ret = cma_bind_loopback(id_priv);
3537 		if (ret)
3538 			goto err;
3539 	}
3540 
3541 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3542 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3543 
3544 	enqueue_resolve_addr_work(work, id_priv);
3545 	return 0;
3546 err:
3547 	kfree(work);
3548 	return ret;
3549 }
3550 
3551 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3552 {
3553 	struct cma_work *work;
3554 	int ret;
3555 
3556 	work = kzalloc(sizeof *work, GFP_KERNEL);
3557 	if (!work)
3558 		return -ENOMEM;
3559 
3560 	if (!id_priv->cma_dev) {
3561 		ret = cma_resolve_ib_dev(id_priv);
3562 		if (ret)
3563 			goto err;
3564 	}
3565 
3566 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3567 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3568 
3569 	enqueue_resolve_addr_work(work, id_priv);
3570 	return 0;
3571 err:
3572 	kfree(work);
3573 	return ret;
3574 }
3575 
3576 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3577 {
3578 	struct rdma_id_private *id_priv;
3579 	unsigned long flags;
3580 	int ret;
3581 
3582 	id_priv = container_of(id, struct rdma_id_private, id);
3583 	spin_lock_irqsave(&id_priv->lock, flags);
3584 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3585 	    id_priv->state == RDMA_CM_IDLE) {
3586 		id_priv->reuseaddr = reuse;
3587 		ret = 0;
3588 	} else {
3589 		ret = -EINVAL;
3590 	}
3591 	spin_unlock_irqrestore(&id_priv->lock, flags);
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL(rdma_set_reuseaddr);
3595 
3596 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3597 {
3598 	struct rdma_id_private *id_priv;
3599 	unsigned long flags;
3600 	int ret;
3601 
3602 	id_priv = container_of(id, struct rdma_id_private, id);
3603 	spin_lock_irqsave(&id_priv->lock, flags);
3604 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3605 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3606 		id_priv->afonly = afonly;
3607 		ret = 0;
3608 	} else {
3609 		ret = -EINVAL;
3610 	}
3611 	spin_unlock_irqrestore(&id_priv->lock, flags);
3612 	return ret;
3613 }
3614 EXPORT_SYMBOL(rdma_set_afonly);
3615 
3616 static void cma_bind_port(struct rdma_bind_list *bind_list,
3617 			  struct rdma_id_private *id_priv)
3618 {
3619 	struct sockaddr *addr;
3620 	struct sockaddr_ib *sib;
3621 	u64 sid, mask;
3622 	__be16 port;
3623 
3624 	lockdep_assert_held(&lock);
3625 
3626 	addr = cma_src_addr(id_priv);
3627 	port = htons(bind_list->port);
3628 
3629 	switch (addr->sa_family) {
3630 	case AF_INET:
3631 		((struct sockaddr_in *) addr)->sin_port = port;
3632 		break;
3633 	case AF_INET6:
3634 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3635 		break;
3636 	case AF_IB:
3637 		sib = (struct sockaddr_ib *) addr;
3638 		sid = be64_to_cpu(sib->sib_sid);
3639 		mask = be64_to_cpu(sib->sib_sid_mask);
3640 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3641 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3642 		break;
3643 	}
3644 	id_priv->bind_list = bind_list;
3645 	hlist_add_head(&id_priv->node, &bind_list->owners);
3646 }
3647 
3648 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3649 			  struct rdma_id_private *id_priv, unsigned short snum)
3650 {
3651 	struct rdma_bind_list *bind_list;
3652 	int ret;
3653 
3654 	lockdep_assert_held(&lock);
3655 
3656 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3657 	if (!bind_list)
3658 		return -ENOMEM;
3659 
3660 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3661 			   snum);
3662 	if (ret < 0)
3663 		goto err;
3664 
3665 	bind_list->ps = ps;
3666 	bind_list->port = snum;
3667 	cma_bind_port(bind_list, id_priv);
3668 	return 0;
3669 err:
3670 	kfree(bind_list);
3671 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3672 }
3673 
3674 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3675 			      struct rdma_id_private *id_priv)
3676 {
3677 	struct rdma_id_private *cur_id;
3678 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3679 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3680 	__be16 dport = cma_port(daddr);
3681 
3682 	lockdep_assert_held(&lock);
3683 
3684 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3685 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3686 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3687 		__be16 cur_dport = cma_port(cur_daddr);
3688 
3689 		if (id_priv == cur_id)
3690 			continue;
3691 
3692 		/* different dest port -> unique */
3693 		if (!cma_any_port(daddr) &&
3694 		    !cma_any_port(cur_daddr) &&
3695 		    (dport != cur_dport))
3696 			continue;
3697 
3698 		/* different src address -> unique */
3699 		if (!cma_any_addr(saddr) &&
3700 		    !cma_any_addr(cur_saddr) &&
3701 		    cma_addr_cmp(saddr, cur_saddr))
3702 			continue;
3703 
3704 		/* different dst address -> unique */
3705 		if (!cma_any_addr(daddr) &&
3706 		    !cma_any_addr(cur_daddr) &&
3707 		    cma_addr_cmp(daddr, cur_daddr))
3708 			continue;
3709 
3710 		return -EADDRNOTAVAIL;
3711 	}
3712 	return 0;
3713 }
3714 
3715 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3716 			      struct rdma_id_private *id_priv)
3717 {
3718 	static unsigned int last_used_port;
3719 	int low, high, remaining;
3720 	unsigned int rover;
3721 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3722 
3723 	lockdep_assert_held(&lock);
3724 
3725 	inet_get_local_port_range(net, &low, &high);
3726 	remaining = (high - low) + 1;
3727 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3728 retry:
3729 	if (last_used_port != rover) {
3730 		struct rdma_bind_list *bind_list;
3731 		int ret;
3732 
3733 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3734 
3735 		if (!bind_list) {
3736 			ret = cma_alloc_port(ps, id_priv, rover);
3737 		} else {
3738 			ret = cma_port_is_unique(bind_list, id_priv);
3739 			if (!ret)
3740 				cma_bind_port(bind_list, id_priv);
3741 		}
3742 		/*
3743 		 * Remember previously used port number in order to avoid
3744 		 * re-using same port immediately after it is closed.
3745 		 */
3746 		if (!ret)
3747 			last_used_port = rover;
3748 		if (ret != -EADDRNOTAVAIL)
3749 			return ret;
3750 	}
3751 	if (--remaining) {
3752 		rover++;
3753 		if ((rover < low) || (rover > high))
3754 			rover = low;
3755 		goto retry;
3756 	}
3757 	return -EADDRNOTAVAIL;
3758 }
3759 
3760 /*
3761  * Check that the requested port is available.  This is called when trying to
3762  * bind to a specific port, or when trying to listen on a bound port.  In
3763  * the latter case, the provided id_priv may already be on the bind_list, but
3764  * we still need to check that it's okay to start listening.
3765  */
3766 static int cma_check_port(struct rdma_bind_list *bind_list,
3767 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3768 {
3769 	struct rdma_id_private *cur_id;
3770 	struct sockaddr *addr, *cur_addr;
3771 
3772 	lockdep_assert_held(&lock);
3773 
3774 	addr = cma_src_addr(id_priv);
3775 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3776 		if (id_priv == cur_id)
3777 			continue;
3778 
3779 		if (reuseaddr && cur_id->reuseaddr)
3780 			continue;
3781 
3782 		cur_addr = cma_src_addr(cur_id);
3783 		if (id_priv->afonly && cur_id->afonly &&
3784 		    (addr->sa_family != cur_addr->sa_family))
3785 			continue;
3786 
3787 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3788 			return -EADDRNOTAVAIL;
3789 
3790 		if (!cma_addr_cmp(addr, cur_addr))
3791 			return -EADDRINUSE;
3792 	}
3793 	return 0;
3794 }
3795 
3796 static int cma_use_port(enum rdma_ucm_port_space ps,
3797 			struct rdma_id_private *id_priv)
3798 {
3799 	struct rdma_bind_list *bind_list;
3800 	unsigned short snum;
3801 	int ret;
3802 
3803 	lockdep_assert_held(&lock);
3804 
3805 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3806 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3807 		return -EACCES;
3808 
3809 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3810 	if (!bind_list) {
3811 		ret = cma_alloc_port(ps, id_priv, snum);
3812 	} else {
3813 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3814 		if (!ret)
3815 			cma_bind_port(bind_list, id_priv);
3816 	}
3817 	return ret;
3818 }
3819 
3820 static enum rdma_ucm_port_space
3821 cma_select_inet_ps(struct rdma_id_private *id_priv)
3822 {
3823 	switch (id_priv->id.ps) {
3824 	case RDMA_PS_TCP:
3825 	case RDMA_PS_UDP:
3826 	case RDMA_PS_IPOIB:
3827 	case RDMA_PS_IB:
3828 		return id_priv->id.ps;
3829 	default:
3830 
3831 		return 0;
3832 	}
3833 }
3834 
3835 static enum rdma_ucm_port_space
3836 cma_select_ib_ps(struct rdma_id_private *id_priv)
3837 {
3838 	enum rdma_ucm_port_space ps = 0;
3839 	struct sockaddr_ib *sib;
3840 	u64 sid_ps, mask, sid;
3841 
3842 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3843 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3844 	sid = be64_to_cpu(sib->sib_sid) & mask;
3845 
3846 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3847 		sid_ps = RDMA_IB_IP_PS_IB;
3848 		ps = RDMA_PS_IB;
3849 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3850 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3851 		sid_ps = RDMA_IB_IP_PS_TCP;
3852 		ps = RDMA_PS_TCP;
3853 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3854 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3855 		sid_ps = RDMA_IB_IP_PS_UDP;
3856 		ps = RDMA_PS_UDP;
3857 	}
3858 
3859 	if (ps) {
3860 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3861 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3862 						be64_to_cpu(sib->sib_sid_mask));
3863 	}
3864 	return ps;
3865 }
3866 
3867 static int cma_get_port(struct rdma_id_private *id_priv)
3868 {
3869 	enum rdma_ucm_port_space ps;
3870 	int ret;
3871 
3872 	if (cma_family(id_priv) != AF_IB)
3873 		ps = cma_select_inet_ps(id_priv);
3874 	else
3875 		ps = cma_select_ib_ps(id_priv);
3876 	if (!ps)
3877 		return -EPROTONOSUPPORT;
3878 
3879 	mutex_lock(&lock);
3880 	if (cma_any_port(cma_src_addr(id_priv)))
3881 		ret = cma_alloc_any_port(ps, id_priv);
3882 	else
3883 		ret = cma_use_port(ps, id_priv);
3884 	mutex_unlock(&lock);
3885 
3886 	return ret;
3887 }
3888 
3889 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3890 			       struct sockaddr *addr)
3891 {
3892 #if IS_ENABLED(CONFIG_IPV6)
3893 	struct sockaddr_in6 *sin6;
3894 
3895 	if (addr->sa_family != AF_INET6)
3896 		return 0;
3897 
3898 	sin6 = (struct sockaddr_in6 *) addr;
3899 
3900 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3901 		return 0;
3902 
3903 	if (!sin6->sin6_scope_id)
3904 			return -EINVAL;
3905 
3906 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3907 #endif
3908 	return 0;
3909 }
3910 
3911 int rdma_listen(struct rdma_cm_id *id, int backlog)
3912 {
3913 	struct rdma_id_private *id_priv =
3914 		container_of(id, struct rdma_id_private, id);
3915 	int ret;
3916 
3917 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3918 		struct sockaddr_in any_in = {
3919 			.sin_family = AF_INET,
3920 			.sin_addr.s_addr = htonl(INADDR_ANY),
3921 		};
3922 
3923 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3924 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3925 		if (ret)
3926 			return ret;
3927 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3928 					   RDMA_CM_LISTEN)))
3929 			return -EINVAL;
3930 	}
3931 
3932 	/*
3933 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3934 	 * any more, and has to be unique in the bind list.
3935 	 */
3936 	if (id_priv->reuseaddr) {
3937 		mutex_lock(&lock);
3938 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3939 		if (!ret)
3940 			id_priv->reuseaddr = 0;
3941 		mutex_unlock(&lock);
3942 		if (ret)
3943 			goto err;
3944 	}
3945 
3946 	id_priv->backlog = backlog;
3947 	if (id_priv->cma_dev) {
3948 		if (rdma_cap_ib_cm(id->device, 1)) {
3949 			ret = cma_ib_listen(id_priv);
3950 			if (ret)
3951 				goto err;
3952 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3953 			ret = cma_iw_listen(id_priv, backlog);
3954 			if (ret)
3955 				goto err;
3956 		} else {
3957 			ret = -ENOSYS;
3958 			goto err;
3959 		}
3960 	} else {
3961 		ret = cma_listen_on_all(id_priv);
3962 		if (ret)
3963 			goto err;
3964 	}
3965 
3966 	return 0;
3967 err:
3968 	id_priv->backlog = 0;
3969 	/*
3970 	 * All the failure paths that lead here will not allow the req_handler's
3971 	 * to have run.
3972 	 */
3973 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3974 	return ret;
3975 }
3976 EXPORT_SYMBOL(rdma_listen);
3977 
3978 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
3979 			      struct sockaddr *addr, const struct sockaddr *daddr)
3980 {
3981 	struct sockaddr *id_daddr;
3982 	int ret;
3983 
3984 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3985 	    addr->sa_family != AF_IB)
3986 		return -EAFNOSUPPORT;
3987 
3988 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3989 		return -EINVAL;
3990 
3991 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
3992 	if (ret)
3993 		goto err1;
3994 
3995 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3996 	if (!cma_any_addr(addr)) {
3997 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
3998 		if (ret)
3999 			goto err1;
4000 
4001 		ret = cma_acquire_dev_by_src_ip(id_priv);
4002 		if (ret)
4003 			goto err1;
4004 	}
4005 
4006 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4007 		if (addr->sa_family == AF_INET)
4008 			id_priv->afonly = 1;
4009 #if IS_ENABLED(CONFIG_IPV6)
4010 		else if (addr->sa_family == AF_INET6) {
4011 			struct net *net = id_priv->id.route.addr.dev_addr.net;
4012 
4013 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
4014 		}
4015 #endif
4016 	}
4017 	id_daddr = cma_dst_addr(id_priv);
4018 	if (daddr != id_daddr)
4019 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
4020 	id_daddr->sa_family = addr->sa_family;
4021 
4022 	ret = cma_get_port(id_priv);
4023 	if (ret)
4024 		goto err2;
4025 
4026 	if (!cma_any_addr(addr))
4027 		rdma_restrack_add(&id_priv->res);
4028 	return 0;
4029 err2:
4030 	if (id_priv->cma_dev)
4031 		cma_release_dev(id_priv);
4032 err1:
4033 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4034 	return ret;
4035 }
4036 
4037 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4038 			 const struct sockaddr *dst_addr)
4039 {
4040 	struct rdma_id_private *id_priv =
4041 		container_of(id, struct rdma_id_private, id);
4042 	struct sockaddr_storage zero_sock = {};
4043 
4044 	if (src_addr && src_addr->sa_family)
4045 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4046 
4047 	/*
4048 	 * When the src_addr is not specified, automatically supply an any addr
4049 	 */
4050 	zero_sock.ss_family = dst_addr->sa_family;
4051 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4052 		struct sockaddr_in6 *src_addr6 =
4053 			(struct sockaddr_in6 *)&zero_sock;
4054 		struct sockaddr_in6 *dst_addr6 =
4055 			(struct sockaddr_in6 *)dst_addr;
4056 
4057 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4058 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4059 			id->route.addr.dev_addr.bound_dev_if =
4060 				dst_addr6->sin6_scope_id;
4061 	} else if (dst_addr->sa_family == AF_IB) {
4062 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4063 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4064 	}
4065 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4066 }
4067 
4068 /*
4069  * If required, resolve the source address for bind and leave the id_priv in
4070  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4071  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4072  * ignored.
4073  */
4074 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4075 			       struct sockaddr *src_addr,
4076 			       const struct sockaddr *dst_addr)
4077 {
4078 	int ret;
4079 
4080 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4081 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4082 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4083 		if (ret)
4084 			return ret;
4085 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4086 					   RDMA_CM_ADDR_QUERY)))
4087 			return -EINVAL;
4088 
4089 	} else {
4090 		memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4091 	}
4092 
4093 	if (cma_family(id_priv) != dst_addr->sa_family) {
4094 		ret = -EINVAL;
4095 		goto err_state;
4096 	}
4097 	return 0;
4098 
4099 err_state:
4100 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4101 	return ret;
4102 }
4103 
4104 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4105 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4106 {
4107 	struct rdma_id_private *id_priv =
4108 		container_of(id, struct rdma_id_private, id);
4109 	int ret;
4110 
4111 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4112 	if (ret)
4113 		return ret;
4114 
4115 	if (cma_any_addr(dst_addr)) {
4116 		ret = cma_resolve_loopback(id_priv);
4117 	} else {
4118 		if (dst_addr->sa_family == AF_IB) {
4119 			ret = cma_resolve_ib_addr(id_priv);
4120 		} else {
4121 			/*
4122 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4123 			 * rdma_resolve_ip() is called, eg through the error
4124 			 * path in addr_handler(). If this happens the existing
4125 			 * request must be canceled before issuing a new one.
4126 			 * Since canceling a request is a bit slow and this
4127 			 * oddball path is rare, keep track once a request has
4128 			 * been issued. The track turns out to be a permanent
4129 			 * state since this is the only cancel as it is
4130 			 * immediately before rdma_resolve_ip().
4131 			 */
4132 			if (id_priv->used_resolve_ip)
4133 				rdma_addr_cancel(&id->route.addr.dev_addr);
4134 			else
4135 				id_priv->used_resolve_ip = 1;
4136 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4137 					      &id->route.addr.dev_addr,
4138 					      timeout_ms, addr_handler,
4139 					      false, id_priv);
4140 		}
4141 	}
4142 	if (ret)
4143 		goto err;
4144 
4145 	return 0;
4146 err:
4147 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4148 	return ret;
4149 }
4150 EXPORT_SYMBOL(rdma_resolve_addr);
4151 
4152 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4153 {
4154 	struct rdma_id_private *id_priv =
4155 		container_of(id, struct rdma_id_private, id);
4156 
4157 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4158 }
4159 EXPORT_SYMBOL(rdma_bind_addr);
4160 
4161 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4162 {
4163 	struct cma_hdr *cma_hdr;
4164 
4165 	cma_hdr = hdr;
4166 	cma_hdr->cma_version = CMA_VERSION;
4167 	if (cma_family(id_priv) == AF_INET) {
4168 		struct sockaddr_in *src4, *dst4;
4169 
4170 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4171 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4172 
4173 		cma_set_ip_ver(cma_hdr, 4);
4174 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4175 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4176 		cma_hdr->port = src4->sin_port;
4177 	} else if (cma_family(id_priv) == AF_INET6) {
4178 		struct sockaddr_in6 *src6, *dst6;
4179 
4180 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4181 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4182 
4183 		cma_set_ip_ver(cma_hdr, 6);
4184 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4185 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4186 		cma_hdr->port = src6->sin6_port;
4187 	}
4188 	return 0;
4189 }
4190 
4191 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4192 				const struct ib_cm_event *ib_event)
4193 {
4194 	struct rdma_id_private *id_priv = cm_id->context;
4195 	struct rdma_cm_event event = {};
4196 	const struct ib_cm_sidr_rep_event_param *rep =
4197 				&ib_event->param.sidr_rep_rcvd;
4198 	int ret;
4199 
4200 	mutex_lock(&id_priv->handler_mutex);
4201 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4202 		goto out;
4203 
4204 	switch (ib_event->event) {
4205 	case IB_CM_SIDR_REQ_ERROR:
4206 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4207 		event.status = -ETIMEDOUT;
4208 		break;
4209 	case IB_CM_SIDR_REP_RECEIVED:
4210 		event.param.ud.private_data = ib_event->private_data;
4211 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4212 		if (rep->status != IB_SIDR_SUCCESS) {
4213 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4214 			event.status = ib_event->param.sidr_rep_rcvd.status;
4215 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4216 					     event.status);
4217 			break;
4218 		}
4219 		ret = cma_set_qkey(id_priv, rep->qkey);
4220 		if (ret) {
4221 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4222 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4223 			event.status = ret;
4224 			break;
4225 		}
4226 		ib_init_ah_attr_from_path(id_priv->id.device,
4227 					  id_priv->id.port_num,
4228 					  id_priv->id.route.path_rec,
4229 					  &event.param.ud.ah_attr,
4230 					  rep->sgid_attr);
4231 		event.param.ud.qp_num = rep->qpn;
4232 		event.param.ud.qkey = rep->qkey;
4233 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4234 		event.status = 0;
4235 		break;
4236 	default:
4237 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4238 		       ib_event->event);
4239 		goto out;
4240 	}
4241 
4242 	ret = cma_cm_event_handler(id_priv, &event);
4243 
4244 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4245 	if (ret) {
4246 		/* Destroy the CM ID by returning a non-zero value. */
4247 		id_priv->cm_id.ib = NULL;
4248 		destroy_id_handler_unlock(id_priv);
4249 		return ret;
4250 	}
4251 out:
4252 	mutex_unlock(&id_priv->handler_mutex);
4253 	return 0;
4254 }
4255 
4256 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4257 			      struct rdma_conn_param *conn_param)
4258 {
4259 	struct ib_cm_sidr_req_param req;
4260 	struct ib_cm_id	*id;
4261 	void *private_data;
4262 	u8 offset;
4263 	int ret;
4264 
4265 	memset(&req, 0, sizeof req);
4266 	offset = cma_user_data_offset(id_priv);
4267 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4268 		return -EINVAL;
4269 
4270 	if (req.private_data_len) {
4271 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4272 		if (!private_data)
4273 			return -ENOMEM;
4274 	} else {
4275 		private_data = NULL;
4276 	}
4277 
4278 	if (conn_param->private_data && conn_param->private_data_len)
4279 		memcpy(private_data + offset, conn_param->private_data,
4280 		       conn_param->private_data_len);
4281 
4282 	if (private_data) {
4283 		ret = cma_format_hdr(private_data, id_priv);
4284 		if (ret)
4285 			goto out;
4286 		req.private_data = private_data;
4287 	}
4288 
4289 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4290 			     id_priv);
4291 	if (IS_ERR(id)) {
4292 		ret = PTR_ERR(id);
4293 		goto out;
4294 	}
4295 	id_priv->cm_id.ib = id;
4296 
4297 	req.path = id_priv->id.route.path_rec;
4298 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4299 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4300 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4301 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4302 
4303 	trace_cm_send_sidr_req(id_priv);
4304 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4305 	if (ret) {
4306 		ib_destroy_cm_id(id_priv->cm_id.ib);
4307 		id_priv->cm_id.ib = NULL;
4308 	}
4309 out:
4310 	kfree(private_data);
4311 	return ret;
4312 }
4313 
4314 static int cma_connect_ib(struct rdma_id_private *id_priv,
4315 			  struct rdma_conn_param *conn_param)
4316 {
4317 	struct ib_cm_req_param req;
4318 	struct rdma_route *route;
4319 	void *private_data;
4320 	struct ib_cm_id	*id;
4321 	u8 offset;
4322 	int ret;
4323 
4324 	memset(&req, 0, sizeof req);
4325 	offset = cma_user_data_offset(id_priv);
4326 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4327 		return -EINVAL;
4328 
4329 	if (req.private_data_len) {
4330 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4331 		if (!private_data)
4332 			return -ENOMEM;
4333 	} else {
4334 		private_data = NULL;
4335 	}
4336 
4337 	if (conn_param->private_data && conn_param->private_data_len)
4338 		memcpy(private_data + offset, conn_param->private_data,
4339 		       conn_param->private_data_len);
4340 
4341 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4342 	if (IS_ERR(id)) {
4343 		ret = PTR_ERR(id);
4344 		goto out;
4345 	}
4346 	id_priv->cm_id.ib = id;
4347 
4348 	route = &id_priv->id.route;
4349 	if (private_data) {
4350 		ret = cma_format_hdr(private_data, id_priv);
4351 		if (ret)
4352 			goto out;
4353 		req.private_data = private_data;
4354 	}
4355 
4356 	req.primary_path = &route->path_rec[0];
4357 	req.primary_path_inbound = route->path_rec_inbound;
4358 	req.primary_path_outbound = route->path_rec_outbound;
4359 	if (route->num_pri_alt_paths == 2)
4360 		req.alternate_path = &route->path_rec[1];
4361 
4362 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4363 	/* Alternate path SGID attribute currently unsupported */
4364 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4365 	req.qp_num = id_priv->qp_num;
4366 	req.qp_type = id_priv->id.qp_type;
4367 	req.starting_psn = id_priv->seq_num;
4368 	req.responder_resources = conn_param->responder_resources;
4369 	req.initiator_depth = conn_param->initiator_depth;
4370 	req.flow_control = conn_param->flow_control;
4371 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4372 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4373 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4374 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4375 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4376 	req.srq = id_priv->srq ? 1 : 0;
4377 	req.ece.vendor_id = id_priv->ece.vendor_id;
4378 	req.ece.attr_mod = id_priv->ece.attr_mod;
4379 
4380 	trace_cm_send_req(id_priv);
4381 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4382 out:
4383 	if (ret && !IS_ERR(id)) {
4384 		ib_destroy_cm_id(id);
4385 		id_priv->cm_id.ib = NULL;
4386 	}
4387 
4388 	kfree(private_data);
4389 	return ret;
4390 }
4391 
4392 static int cma_connect_iw(struct rdma_id_private *id_priv,
4393 			  struct rdma_conn_param *conn_param)
4394 {
4395 	struct iw_cm_id *cm_id;
4396 	int ret;
4397 	struct iw_cm_conn_param iw_param;
4398 
4399 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4400 	if (IS_ERR(cm_id))
4401 		return PTR_ERR(cm_id);
4402 
4403 	mutex_lock(&id_priv->qp_mutex);
4404 	cm_id->tos = id_priv->tos;
4405 	cm_id->tos_set = id_priv->tos_set;
4406 	mutex_unlock(&id_priv->qp_mutex);
4407 
4408 	id_priv->cm_id.iw = cm_id;
4409 
4410 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4411 	       rdma_addr_size(cma_src_addr(id_priv)));
4412 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4413 	       rdma_addr_size(cma_dst_addr(id_priv)));
4414 
4415 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4416 	if (ret)
4417 		goto out;
4418 
4419 	if (conn_param) {
4420 		iw_param.ord = conn_param->initiator_depth;
4421 		iw_param.ird = conn_param->responder_resources;
4422 		iw_param.private_data = conn_param->private_data;
4423 		iw_param.private_data_len = conn_param->private_data_len;
4424 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4425 	} else {
4426 		memset(&iw_param, 0, sizeof iw_param);
4427 		iw_param.qpn = id_priv->qp_num;
4428 	}
4429 	ret = iw_cm_connect(cm_id, &iw_param);
4430 out:
4431 	if (ret) {
4432 		iw_destroy_cm_id(cm_id);
4433 		id_priv->cm_id.iw = NULL;
4434 	}
4435 	return ret;
4436 }
4437 
4438 /**
4439  * rdma_connect_locked - Initiate an active connection request.
4440  * @id: Connection identifier to connect.
4441  * @conn_param: Connection information used for connected QPs.
4442  *
4443  * Same as rdma_connect() but can only be called from the
4444  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4445  */
4446 int rdma_connect_locked(struct rdma_cm_id *id,
4447 			struct rdma_conn_param *conn_param)
4448 {
4449 	struct rdma_id_private *id_priv =
4450 		container_of(id, struct rdma_id_private, id);
4451 	int ret;
4452 
4453 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4454 		return -EINVAL;
4455 
4456 	if (!id->qp) {
4457 		id_priv->qp_num = conn_param->qp_num;
4458 		id_priv->srq = conn_param->srq;
4459 	}
4460 
4461 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4462 		if (id->qp_type == IB_QPT_UD)
4463 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4464 		else
4465 			ret = cma_connect_ib(id_priv, conn_param);
4466 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4467 		ret = cma_connect_iw(id_priv, conn_param);
4468 	} else {
4469 		ret = -ENOSYS;
4470 	}
4471 	if (ret)
4472 		goto err_state;
4473 	return 0;
4474 err_state:
4475 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4476 	return ret;
4477 }
4478 EXPORT_SYMBOL(rdma_connect_locked);
4479 
4480 /**
4481  * rdma_connect - Initiate an active connection request.
4482  * @id: Connection identifier to connect.
4483  * @conn_param: Connection information used for connected QPs.
4484  *
4485  * Users must have resolved a route for the rdma_cm_id to connect with by having
4486  * called rdma_resolve_route before calling this routine.
4487  *
4488  * This call will either connect to a remote QP or obtain remote QP information
4489  * for unconnected rdma_cm_id's.  The actual operation is based on the
4490  * rdma_cm_id's port space.
4491  */
4492 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4493 {
4494 	struct rdma_id_private *id_priv =
4495 		container_of(id, struct rdma_id_private, id);
4496 	int ret;
4497 
4498 	mutex_lock(&id_priv->handler_mutex);
4499 	ret = rdma_connect_locked(id, conn_param);
4500 	mutex_unlock(&id_priv->handler_mutex);
4501 	return ret;
4502 }
4503 EXPORT_SYMBOL(rdma_connect);
4504 
4505 /**
4506  * rdma_connect_ece - Initiate an active connection request with ECE data.
4507  * @id: Connection identifier to connect.
4508  * @conn_param: Connection information used for connected QPs.
4509  * @ece: ECE parameters
4510  *
4511  * See rdma_connect() explanation.
4512  */
4513 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4514 		     struct rdma_ucm_ece *ece)
4515 {
4516 	struct rdma_id_private *id_priv =
4517 		container_of(id, struct rdma_id_private, id);
4518 
4519 	id_priv->ece.vendor_id = ece->vendor_id;
4520 	id_priv->ece.attr_mod = ece->attr_mod;
4521 
4522 	return rdma_connect(id, conn_param);
4523 }
4524 EXPORT_SYMBOL(rdma_connect_ece);
4525 
4526 static int cma_accept_ib(struct rdma_id_private *id_priv,
4527 			 struct rdma_conn_param *conn_param)
4528 {
4529 	struct ib_cm_rep_param rep;
4530 	int ret;
4531 
4532 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4533 	if (ret)
4534 		goto out;
4535 
4536 	ret = cma_modify_qp_rts(id_priv, conn_param);
4537 	if (ret)
4538 		goto out;
4539 
4540 	memset(&rep, 0, sizeof rep);
4541 	rep.qp_num = id_priv->qp_num;
4542 	rep.starting_psn = id_priv->seq_num;
4543 	rep.private_data = conn_param->private_data;
4544 	rep.private_data_len = conn_param->private_data_len;
4545 	rep.responder_resources = conn_param->responder_resources;
4546 	rep.initiator_depth = conn_param->initiator_depth;
4547 	rep.failover_accepted = 0;
4548 	rep.flow_control = conn_param->flow_control;
4549 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4550 	rep.srq = id_priv->srq ? 1 : 0;
4551 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4552 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4553 
4554 	trace_cm_send_rep(id_priv);
4555 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4556 out:
4557 	return ret;
4558 }
4559 
4560 static int cma_accept_iw(struct rdma_id_private *id_priv,
4561 		  struct rdma_conn_param *conn_param)
4562 {
4563 	struct iw_cm_conn_param iw_param;
4564 	int ret;
4565 
4566 	if (!conn_param)
4567 		return -EINVAL;
4568 
4569 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4570 	if (ret)
4571 		return ret;
4572 
4573 	iw_param.ord = conn_param->initiator_depth;
4574 	iw_param.ird = conn_param->responder_resources;
4575 	iw_param.private_data = conn_param->private_data;
4576 	iw_param.private_data_len = conn_param->private_data_len;
4577 	if (id_priv->id.qp)
4578 		iw_param.qpn = id_priv->qp_num;
4579 	else
4580 		iw_param.qpn = conn_param->qp_num;
4581 
4582 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4583 }
4584 
4585 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4586 			     enum ib_cm_sidr_status status, u32 qkey,
4587 			     const void *private_data, int private_data_len)
4588 {
4589 	struct ib_cm_sidr_rep_param rep;
4590 	int ret;
4591 
4592 	memset(&rep, 0, sizeof rep);
4593 	rep.status = status;
4594 	if (status == IB_SIDR_SUCCESS) {
4595 		if (qkey)
4596 			ret = cma_set_qkey(id_priv, qkey);
4597 		else
4598 			ret = cma_set_default_qkey(id_priv);
4599 		if (ret)
4600 			return ret;
4601 		rep.qp_num = id_priv->qp_num;
4602 		rep.qkey = id_priv->qkey;
4603 
4604 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4605 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4606 	}
4607 
4608 	rep.private_data = private_data;
4609 	rep.private_data_len = private_data_len;
4610 
4611 	trace_cm_send_sidr_rep(id_priv);
4612 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4613 }
4614 
4615 /**
4616  * rdma_accept - Called to accept a connection request or response.
4617  * @id: Connection identifier associated with the request.
4618  * @conn_param: Information needed to establish the connection.  This must be
4619  *   provided if accepting a connection request.  If accepting a connection
4620  *   response, this parameter must be NULL.
4621  *
4622  * Typically, this routine is only called by the listener to accept a connection
4623  * request.  It must also be called on the active side of a connection if the
4624  * user is performing their own QP transitions.
4625  *
4626  * In the case of error, a reject message is sent to the remote side and the
4627  * state of the qp associated with the id is modified to error, such that any
4628  * previously posted receive buffers would be flushed.
4629  *
4630  * This function is for use by kernel ULPs and must be called from under the
4631  * handler callback.
4632  */
4633 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4634 {
4635 	struct rdma_id_private *id_priv =
4636 		container_of(id, struct rdma_id_private, id);
4637 	int ret;
4638 
4639 	lockdep_assert_held(&id_priv->handler_mutex);
4640 
4641 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4642 		return -EINVAL;
4643 
4644 	if (!id->qp && conn_param) {
4645 		id_priv->qp_num = conn_param->qp_num;
4646 		id_priv->srq = conn_param->srq;
4647 	}
4648 
4649 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4650 		if (id->qp_type == IB_QPT_UD) {
4651 			if (conn_param)
4652 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4653 							conn_param->qkey,
4654 							conn_param->private_data,
4655 							conn_param->private_data_len);
4656 			else
4657 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4658 							0, NULL, 0);
4659 		} else {
4660 			if (conn_param)
4661 				ret = cma_accept_ib(id_priv, conn_param);
4662 			else
4663 				ret = cma_rep_recv(id_priv);
4664 		}
4665 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4666 		ret = cma_accept_iw(id_priv, conn_param);
4667 	} else {
4668 		ret = -ENOSYS;
4669 	}
4670 	if (ret)
4671 		goto reject;
4672 
4673 	return 0;
4674 reject:
4675 	cma_modify_qp_err(id_priv);
4676 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4677 	return ret;
4678 }
4679 EXPORT_SYMBOL(rdma_accept);
4680 
4681 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4682 		    struct rdma_ucm_ece *ece)
4683 {
4684 	struct rdma_id_private *id_priv =
4685 		container_of(id, struct rdma_id_private, id);
4686 
4687 	id_priv->ece.vendor_id = ece->vendor_id;
4688 	id_priv->ece.attr_mod = ece->attr_mod;
4689 
4690 	return rdma_accept(id, conn_param);
4691 }
4692 EXPORT_SYMBOL(rdma_accept_ece);
4693 
4694 void rdma_lock_handler(struct rdma_cm_id *id)
4695 {
4696 	struct rdma_id_private *id_priv =
4697 		container_of(id, struct rdma_id_private, id);
4698 
4699 	mutex_lock(&id_priv->handler_mutex);
4700 }
4701 EXPORT_SYMBOL(rdma_lock_handler);
4702 
4703 void rdma_unlock_handler(struct rdma_cm_id *id)
4704 {
4705 	struct rdma_id_private *id_priv =
4706 		container_of(id, struct rdma_id_private, id);
4707 
4708 	mutex_unlock(&id_priv->handler_mutex);
4709 }
4710 EXPORT_SYMBOL(rdma_unlock_handler);
4711 
4712 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4713 {
4714 	struct rdma_id_private *id_priv;
4715 	int ret;
4716 
4717 	id_priv = container_of(id, struct rdma_id_private, id);
4718 	if (!id_priv->cm_id.ib)
4719 		return -EINVAL;
4720 
4721 	switch (id->device->node_type) {
4722 	case RDMA_NODE_IB_CA:
4723 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4724 		break;
4725 	default:
4726 		ret = 0;
4727 		break;
4728 	}
4729 	return ret;
4730 }
4731 EXPORT_SYMBOL(rdma_notify);
4732 
4733 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4734 		u8 private_data_len, u8 reason)
4735 {
4736 	struct rdma_id_private *id_priv;
4737 	int ret;
4738 
4739 	id_priv = container_of(id, struct rdma_id_private, id);
4740 	if (!id_priv->cm_id.ib)
4741 		return -EINVAL;
4742 
4743 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4744 		if (id->qp_type == IB_QPT_UD) {
4745 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4746 						private_data, private_data_len);
4747 		} else {
4748 			trace_cm_send_rej(id_priv);
4749 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4750 					     private_data, private_data_len);
4751 		}
4752 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4753 		ret = iw_cm_reject(id_priv->cm_id.iw,
4754 				   private_data, private_data_len);
4755 	} else {
4756 		ret = -ENOSYS;
4757 	}
4758 
4759 	return ret;
4760 }
4761 EXPORT_SYMBOL(rdma_reject);
4762 
4763 int rdma_disconnect(struct rdma_cm_id *id)
4764 {
4765 	struct rdma_id_private *id_priv;
4766 	int ret;
4767 
4768 	id_priv = container_of(id, struct rdma_id_private, id);
4769 	if (!id_priv->cm_id.ib)
4770 		return -EINVAL;
4771 
4772 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4773 		ret = cma_modify_qp_err(id_priv);
4774 		if (ret)
4775 			goto out;
4776 		/* Initiate or respond to a disconnect. */
4777 		trace_cm_disconnect(id_priv);
4778 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4779 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4780 				trace_cm_sent_drep(id_priv);
4781 		} else {
4782 			trace_cm_sent_dreq(id_priv);
4783 		}
4784 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4785 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4786 	} else
4787 		ret = -EINVAL;
4788 
4789 out:
4790 	return ret;
4791 }
4792 EXPORT_SYMBOL(rdma_disconnect);
4793 
4794 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4795 			      struct ib_sa_multicast *multicast,
4796 			      struct rdma_cm_event *event,
4797 			      struct cma_multicast *mc)
4798 {
4799 	struct rdma_dev_addr *dev_addr;
4800 	enum ib_gid_type gid_type;
4801 	struct net_device *ndev;
4802 
4803 	if (status)
4804 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4805 				     status);
4806 
4807 	event->status = status;
4808 	event->param.ud.private_data = mc->context;
4809 	if (status) {
4810 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4811 		return;
4812 	}
4813 
4814 	dev_addr = &id_priv->id.route.addr.dev_addr;
4815 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4816 	gid_type =
4817 		id_priv->cma_dev
4818 			->default_gid_type[id_priv->id.port_num -
4819 					   rdma_start_port(
4820 						   id_priv->cma_dev->device)];
4821 
4822 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4823 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4824 				     &multicast->rec, ndev, gid_type,
4825 				     &event->param.ud.ah_attr)) {
4826 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4827 		goto out;
4828 	}
4829 
4830 	event->param.ud.qp_num = 0xFFFFFF;
4831 	event->param.ud.qkey = id_priv->qkey;
4832 
4833 out:
4834 	dev_put(ndev);
4835 }
4836 
4837 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4838 {
4839 	struct cma_multicast *mc = multicast->context;
4840 	struct rdma_id_private *id_priv = mc->id_priv;
4841 	struct rdma_cm_event event = {};
4842 	int ret = 0;
4843 
4844 	mutex_lock(&id_priv->handler_mutex);
4845 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4846 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4847 		goto out;
4848 
4849 	ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4850 	if (!ret) {
4851 		cma_make_mc_event(status, id_priv, multicast, &event, mc);
4852 		ret = cma_cm_event_handler(id_priv, &event);
4853 	}
4854 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4855 	WARN_ON(ret);
4856 
4857 out:
4858 	mutex_unlock(&id_priv->handler_mutex);
4859 	return 0;
4860 }
4861 
4862 static void cma_set_mgid(struct rdma_id_private *id_priv,
4863 			 struct sockaddr *addr, union ib_gid *mgid)
4864 {
4865 	unsigned char mc_map[MAX_ADDR_LEN];
4866 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4867 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4868 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4869 
4870 	if (cma_any_addr(addr)) {
4871 		memset(mgid, 0, sizeof *mgid);
4872 	} else if ((addr->sa_family == AF_INET6) &&
4873 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4874 								 0xFF10A01B)) {
4875 		/* IPv6 address is an SA assigned MGID. */
4876 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4877 	} else if (addr->sa_family == AF_IB) {
4878 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4879 	} else if (addr->sa_family == AF_INET6) {
4880 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4881 		if (id_priv->id.ps == RDMA_PS_UDP)
4882 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4883 		*mgid = *(union ib_gid *) (mc_map + 4);
4884 	} else {
4885 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4886 		if (id_priv->id.ps == RDMA_PS_UDP)
4887 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4888 		*mgid = *(union ib_gid *) (mc_map + 4);
4889 	}
4890 }
4891 
4892 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4893 				 struct cma_multicast *mc)
4894 {
4895 	struct ib_sa_mcmember_rec rec;
4896 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4897 	ib_sa_comp_mask comp_mask;
4898 	int ret;
4899 
4900 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4901 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4902 				     &rec.mgid, &rec);
4903 	if (ret)
4904 		return ret;
4905 
4906 	if (!id_priv->qkey) {
4907 		ret = cma_set_default_qkey(id_priv);
4908 		if (ret)
4909 			return ret;
4910 	}
4911 
4912 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4913 	rec.qkey = cpu_to_be32(id_priv->qkey);
4914 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4915 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4916 	rec.join_state = mc->join_state;
4917 
4918 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4919 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4920 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4921 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4922 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4923 
4924 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4925 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4926 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4927 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4928 			     IB_SA_MCMEMBER_REC_MTU |
4929 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4930 
4931 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4932 					 id_priv->id.port_num, &rec, comp_mask,
4933 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4934 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4935 }
4936 
4937 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4938 			      enum ib_gid_type gid_type)
4939 {
4940 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4941 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4942 
4943 	if (cma_any_addr(addr)) {
4944 		memset(mgid, 0, sizeof *mgid);
4945 	} else if (addr->sa_family == AF_INET6) {
4946 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4947 	} else {
4948 		mgid->raw[0] =
4949 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4950 		mgid->raw[1] =
4951 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4952 		mgid->raw[2] = 0;
4953 		mgid->raw[3] = 0;
4954 		mgid->raw[4] = 0;
4955 		mgid->raw[5] = 0;
4956 		mgid->raw[6] = 0;
4957 		mgid->raw[7] = 0;
4958 		mgid->raw[8] = 0;
4959 		mgid->raw[9] = 0;
4960 		mgid->raw[10] = 0xff;
4961 		mgid->raw[11] = 0xff;
4962 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4963 	}
4964 }
4965 
4966 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4967 				   struct cma_multicast *mc)
4968 {
4969 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4970 	int err = 0;
4971 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4972 	struct net_device *ndev = NULL;
4973 	struct ib_sa_multicast ib = {};
4974 	enum ib_gid_type gid_type;
4975 	bool send_only;
4976 
4977 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4978 
4979 	if (cma_zero_addr(addr))
4980 		return -EINVAL;
4981 
4982 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4983 		   rdma_start_port(id_priv->cma_dev->device)];
4984 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4985 
4986 	ib.rec.pkey = cpu_to_be16(0xffff);
4987 	if (dev_addr->bound_dev_if)
4988 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4989 	if (!ndev)
4990 		return -ENODEV;
4991 
4992 	ib.rec.rate = IB_RATE_PORT_CURRENT;
4993 	ib.rec.hop_limit = 1;
4994 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4995 
4996 	if (addr->sa_family == AF_INET) {
4997 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4998 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4999 			if (!send_only) {
5000 				err = cma_igmp_send(ndev, &ib.rec.mgid,
5001 						    true);
5002 			}
5003 		}
5004 	} else {
5005 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
5006 			err = -ENOTSUPP;
5007 	}
5008 	dev_put(ndev);
5009 	if (err || !ib.rec.mtu)
5010 		return err ?: -EINVAL;
5011 
5012 	if (!id_priv->qkey)
5013 		cma_set_default_qkey(id_priv);
5014 
5015 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
5016 		    &ib.rec.port_gid);
5017 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
5018 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
5019 	queue_work(cma_wq, &mc->iboe_join.work);
5020 	return 0;
5021 }
5022 
5023 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5024 			u8 join_state, void *context)
5025 {
5026 	struct rdma_id_private *id_priv =
5027 		container_of(id, struct rdma_id_private, id);
5028 	struct cma_multicast *mc;
5029 	int ret;
5030 
5031 	/* Not supported for kernel QPs */
5032 	if (WARN_ON(id->qp))
5033 		return -EINVAL;
5034 
5035 	/* ULP is calling this wrong. */
5036 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5037 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5038 		return -EINVAL;
5039 
5040 	if (id_priv->id.qp_type != IB_QPT_UD)
5041 		return -EINVAL;
5042 
5043 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5044 	if (!mc)
5045 		return -ENOMEM;
5046 
5047 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5048 	mc->context = context;
5049 	mc->id_priv = id_priv;
5050 	mc->join_state = join_state;
5051 
5052 	if (rdma_protocol_roce(id->device, id->port_num)) {
5053 		ret = cma_iboe_join_multicast(id_priv, mc);
5054 		if (ret)
5055 			goto out_err;
5056 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5057 		ret = cma_join_ib_multicast(id_priv, mc);
5058 		if (ret)
5059 			goto out_err;
5060 	} else {
5061 		ret = -ENOSYS;
5062 		goto out_err;
5063 	}
5064 
5065 	spin_lock(&id_priv->lock);
5066 	list_add(&mc->list, &id_priv->mc_list);
5067 	spin_unlock(&id_priv->lock);
5068 
5069 	return 0;
5070 out_err:
5071 	kfree(mc);
5072 	return ret;
5073 }
5074 EXPORT_SYMBOL(rdma_join_multicast);
5075 
5076 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5077 {
5078 	struct rdma_id_private *id_priv;
5079 	struct cma_multicast *mc;
5080 
5081 	id_priv = container_of(id, struct rdma_id_private, id);
5082 	spin_lock_irq(&id_priv->lock);
5083 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5084 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5085 			continue;
5086 		list_del(&mc->list);
5087 		spin_unlock_irq(&id_priv->lock);
5088 
5089 		WARN_ON(id_priv->cma_dev->device != id->device);
5090 		destroy_mc(id_priv, mc);
5091 		return;
5092 	}
5093 	spin_unlock_irq(&id_priv->lock);
5094 }
5095 EXPORT_SYMBOL(rdma_leave_multicast);
5096 
5097 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5098 {
5099 	struct rdma_dev_addr *dev_addr;
5100 	struct cma_work *work;
5101 
5102 	dev_addr = &id_priv->id.route.addr.dev_addr;
5103 
5104 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5105 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5106 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5107 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5108 			ndev->name, &id_priv->id);
5109 		work = kzalloc(sizeof *work, GFP_KERNEL);
5110 		if (!work)
5111 			return -ENOMEM;
5112 
5113 		INIT_WORK(&work->work, cma_work_handler);
5114 		work->id = id_priv;
5115 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5116 		cma_id_get(id_priv);
5117 		queue_work(cma_wq, &work->work);
5118 	}
5119 
5120 	return 0;
5121 }
5122 
5123 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5124 			       void *ptr)
5125 {
5126 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5127 	struct cma_device *cma_dev;
5128 	struct rdma_id_private *id_priv;
5129 	int ret = NOTIFY_DONE;
5130 
5131 	if (event != NETDEV_BONDING_FAILOVER)
5132 		return NOTIFY_DONE;
5133 
5134 	if (!netif_is_bond_master(ndev))
5135 		return NOTIFY_DONE;
5136 
5137 	mutex_lock(&lock);
5138 	list_for_each_entry(cma_dev, &dev_list, list)
5139 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5140 			ret = cma_netdev_change(ndev, id_priv);
5141 			if (ret)
5142 				goto out;
5143 		}
5144 
5145 out:
5146 	mutex_unlock(&lock);
5147 	return ret;
5148 }
5149 
5150 static void cma_netevent_work_handler(struct work_struct *_work)
5151 {
5152 	struct rdma_id_private *id_priv =
5153 		container_of(_work, struct rdma_id_private, id.net_work);
5154 	struct rdma_cm_event event = {};
5155 
5156 	mutex_lock(&id_priv->handler_mutex);
5157 
5158 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5159 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5160 		goto out_unlock;
5161 
5162 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5163 	event.status = -ETIMEDOUT;
5164 
5165 	if (cma_cm_event_handler(id_priv, &event)) {
5166 		__acquire(&id_priv->handler_mutex);
5167 		id_priv->cm_id.ib = NULL;
5168 		cma_id_put(id_priv);
5169 		destroy_id_handler_unlock(id_priv);
5170 		return;
5171 	}
5172 
5173 out_unlock:
5174 	mutex_unlock(&id_priv->handler_mutex);
5175 	cma_id_put(id_priv);
5176 }
5177 
5178 static int cma_netevent_callback(struct notifier_block *self,
5179 				 unsigned long event, void *ctx)
5180 {
5181 	struct id_table_entry *ips_node = NULL;
5182 	struct rdma_id_private *current_id;
5183 	struct neighbour *neigh = ctx;
5184 	unsigned long flags;
5185 
5186 	if (event != NETEVENT_NEIGH_UPDATE)
5187 		return NOTIFY_DONE;
5188 
5189 	spin_lock_irqsave(&id_table_lock, flags);
5190 	if (neigh->tbl->family == AF_INET6) {
5191 		struct sockaddr_in6 neigh_sock_6;
5192 
5193 		neigh_sock_6.sin6_family = AF_INET6;
5194 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5195 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5196 					     (struct sockaddr *)&neigh_sock_6);
5197 	} else if (neigh->tbl->family == AF_INET) {
5198 		struct sockaddr_in neigh_sock_4;
5199 
5200 		neigh_sock_4.sin_family = AF_INET;
5201 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5202 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5203 					     (struct sockaddr *)&neigh_sock_4);
5204 	} else
5205 		goto out;
5206 
5207 	if (!ips_node)
5208 		goto out;
5209 
5210 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5211 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5212 			   neigh->ha, ETH_ALEN))
5213 			continue;
5214 		INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
5215 		cma_id_get(current_id);
5216 		queue_work(cma_wq, &current_id->id.net_work);
5217 	}
5218 out:
5219 	spin_unlock_irqrestore(&id_table_lock, flags);
5220 	return NOTIFY_DONE;
5221 }
5222 
5223 static struct notifier_block cma_nb = {
5224 	.notifier_call = cma_netdev_callback
5225 };
5226 
5227 static struct notifier_block cma_netevent_cb = {
5228 	.notifier_call = cma_netevent_callback
5229 };
5230 
5231 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5232 {
5233 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5234 	enum rdma_cm_state state;
5235 	unsigned long flags;
5236 
5237 	mutex_lock(&id_priv->handler_mutex);
5238 	/* Record that we want to remove the device */
5239 	spin_lock_irqsave(&id_priv->lock, flags);
5240 	state = id_priv->state;
5241 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5242 		spin_unlock_irqrestore(&id_priv->lock, flags);
5243 		mutex_unlock(&id_priv->handler_mutex);
5244 		cma_id_put(id_priv);
5245 		return;
5246 	}
5247 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5248 	spin_unlock_irqrestore(&id_priv->lock, flags);
5249 
5250 	if (cma_cm_event_handler(id_priv, &event)) {
5251 		/*
5252 		 * At this point the ULP promises it won't call
5253 		 * rdma_destroy_id() concurrently
5254 		 */
5255 		cma_id_put(id_priv);
5256 		mutex_unlock(&id_priv->handler_mutex);
5257 		trace_cm_id_destroy(id_priv);
5258 		_destroy_id(id_priv, state);
5259 		return;
5260 	}
5261 	mutex_unlock(&id_priv->handler_mutex);
5262 
5263 	/*
5264 	 * If this races with destroy then the thread that first assigns state
5265 	 * to a destroying does the cancel.
5266 	 */
5267 	cma_cancel_operation(id_priv, state);
5268 	cma_id_put(id_priv);
5269 }
5270 
5271 static void cma_process_remove(struct cma_device *cma_dev)
5272 {
5273 	mutex_lock(&lock);
5274 	while (!list_empty(&cma_dev->id_list)) {
5275 		struct rdma_id_private *id_priv = list_first_entry(
5276 			&cma_dev->id_list, struct rdma_id_private, device_item);
5277 
5278 		list_del_init(&id_priv->listen_item);
5279 		list_del_init(&id_priv->device_item);
5280 		cma_id_get(id_priv);
5281 		mutex_unlock(&lock);
5282 
5283 		cma_send_device_removal_put(id_priv);
5284 
5285 		mutex_lock(&lock);
5286 	}
5287 	mutex_unlock(&lock);
5288 
5289 	cma_dev_put(cma_dev);
5290 	wait_for_completion(&cma_dev->comp);
5291 }
5292 
5293 static bool cma_supported(struct ib_device *device)
5294 {
5295 	u32 i;
5296 
5297 	rdma_for_each_port(device, i) {
5298 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5299 			return true;
5300 	}
5301 	return false;
5302 }
5303 
5304 static int cma_add_one(struct ib_device *device)
5305 {
5306 	struct rdma_id_private *to_destroy;
5307 	struct cma_device *cma_dev;
5308 	struct rdma_id_private *id_priv;
5309 	unsigned long supported_gids = 0;
5310 	int ret;
5311 	u32 i;
5312 
5313 	if (!cma_supported(device))
5314 		return -EOPNOTSUPP;
5315 
5316 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5317 	if (!cma_dev)
5318 		return -ENOMEM;
5319 
5320 	cma_dev->device = device;
5321 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5322 					    sizeof(*cma_dev->default_gid_type),
5323 					    GFP_KERNEL);
5324 	if (!cma_dev->default_gid_type) {
5325 		ret = -ENOMEM;
5326 		goto free_cma_dev;
5327 	}
5328 
5329 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5330 					    sizeof(*cma_dev->default_roce_tos),
5331 					    GFP_KERNEL);
5332 	if (!cma_dev->default_roce_tos) {
5333 		ret = -ENOMEM;
5334 		goto free_gid_type;
5335 	}
5336 
5337 	rdma_for_each_port (device, i) {
5338 		supported_gids = roce_gid_type_mask_support(device, i);
5339 		WARN_ON(!supported_gids);
5340 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5341 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5342 				CMA_PREFERRED_ROCE_GID_TYPE;
5343 		else
5344 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5345 				find_first_bit(&supported_gids, BITS_PER_LONG);
5346 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5347 	}
5348 
5349 	init_completion(&cma_dev->comp);
5350 	refcount_set(&cma_dev->refcount, 1);
5351 	INIT_LIST_HEAD(&cma_dev->id_list);
5352 	ib_set_client_data(device, &cma_client, cma_dev);
5353 
5354 	mutex_lock(&lock);
5355 	list_add_tail(&cma_dev->list, &dev_list);
5356 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5357 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5358 		if (ret)
5359 			goto free_listen;
5360 	}
5361 	mutex_unlock(&lock);
5362 
5363 	trace_cm_add_one(device);
5364 	return 0;
5365 
5366 free_listen:
5367 	list_del(&cma_dev->list);
5368 	mutex_unlock(&lock);
5369 
5370 	/* cma_process_remove() will delete to_destroy */
5371 	cma_process_remove(cma_dev);
5372 	kfree(cma_dev->default_roce_tos);
5373 free_gid_type:
5374 	kfree(cma_dev->default_gid_type);
5375 
5376 free_cma_dev:
5377 	kfree(cma_dev);
5378 	return ret;
5379 }
5380 
5381 static void cma_remove_one(struct ib_device *device, void *client_data)
5382 {
5383 	struct cma_device *cma_dev = client_data;
5384 
5385 	trace_cm_remove_one(device);
5386 
5387 	mutex_lock(&lock);
5388 	list_del(&cma_dev->list);
5389 	mutex_unlock(&lock);
5390 
5391 	cma_process_remove(cma_dev);
5392 	kfree(cma_dev->default_roce_tos);
5393 	kfree(cma_dev->default_gid_type);
5394 	kfree(cma_dev);
5395 }
5396 
5397 static int cma_init_net(struct net *net)
5398 {
5399 	struct cma_pernet *pernet = cma_pernet(net);
5400 
5401 	xa_init(&pernet->tcp_ps);
5402 	xa_init(&pernet->udp_ps);
5403 	xa_init(&pernet->ipoib_ps);
5404 	xa_init(&pernet->ib_ps);
5405 
5406 	return 0;
5407 }
5408 
5409 static void cma_exit_net(struct net *net)
5410 {
5411 	struct cma_pernet *pernet = cma_pernet(net);
5412 
5413 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5414 	WARN_ON(!xa_empty(&pernet->udp_ps));
5415 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5416 	WARN_ON(!xa_empty(&pernet->ib_ps));
5417 }
5418 
5419 static struct pernet_operations cma_pernet_operations = {
5420 	.init = cma_init_net,
5421 	.exit = cma_exit_net,
5422 	.id = &cma_pernet_id,
5423 	.size = sizeof(struct cma_pernet),
5424 };
5425 
5426 static int __init cma_init(void)
5427 {
5428 	int ret;
5429 
5430 	/*
5431 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5432 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5433 	 * must never be nested under lock so it can find these without having
5434 	 * to test with bonding.
5435 	 */
5436 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5437 		rtnl_lock();
5438 		mutex_lock(&lock);
5439 		mutex_unlock(&lock);
5440 		rtnl_unlock();
5441 	}
5442 
5443 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5444 	if (!cma_wq)
5445 		return -ENOMEM;
5446 
5447 	ret = register_pernet_subsys(&cma_pernet_operations);
5448 	if (ret)
5449 		goto err_wq;
5450 
5451 	ib_sa_register_client(&sa_client);
5452 	register_netdevice_notifier(&cma_nb);
5453 	register_netevent_notifier(&cma_netevent_cb);
5454 
5455 	ret = ib_register_client(&cma_client);
5456 	if (ret)
5457 		goto err;
5458 
5459 	ret = cma_configfs_init();
5460 	if (ret)
5461 		goto err_ib;
5462 
5463 	return 0;
5464 
5465 err_ib:
5466 	ib_unregister_client(&cma_client);
5467 err:
5468 	unregister_netevent_notifier(&cma_netevent_cb);
5469 	unregister_netdevice_notifier(&cma_nb);
5470 	ib_sa_unregister_client(&sa_client);
5471 	unregister_pernet_subsys(&cma_pernet_operations);
5472 err_wq:
5473 	destroy_workqueue(cma_wq);
5474 	return ret;
5475 }
5476 
5477 static void __exit cma_cleanup(void)
5478 {
5479 	cma_configfs_exit();
5480 	ib_unregister_client(&cma_client);
5481 	unregister_netevent_notifier(&cma_netevent_cb);
5482 	unregister_netdevice_notifier(&cma_nb);
5483 	ib_sa_unregister_client(&sa_client);
5484 	unregister_pernet_subsys(&cma_pernet_operations);
5485 	destroy_workqueue(cma_wq);
5486 }
5487 
5488 module_init(cma_init);
5489 module_exit(cma_cleanup);
5490