1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 50 #define CMA_IBOE_PACKET_LIFETIME 16 51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 52 53 static const char * const cma_events[] = { 54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 62 [RDMA_CM_EVENT_REJECTED] = "rejected", 63 [RDMA_CM_EVENT_ESTABLISHED] = "established", 64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 70 }; 71 72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 73 enum ib_gid_type gid_type); 74 75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 76 { 77 size_t index = event; 78 79 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 80 cma_events[index] : "unrecognized event"; 81 } 82 EXPORT_SYMBOL(rdma_event_msg); 83 84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 85 int reason) 86 { 87 if (rdma_ib_or_roce(id->device, id->port_num)) 88 return ibcm_reject_msg(reason); 89 90 if (rdma_protocol_iwarp(id->device, id->port_num)) 91 return iwcm_reject_msg(reason); 92 93 WARN_ON_ONCE(1); 94 return "unrecognized transport"; 95 } 96 EXPORT_SYMBOL(rdma_reject_msg); 97 98 /** 99 * rdma_is_consumer_reject - return true if the consumer rejected the connect 100 * request. 101 * @id: Communication identifier that received the REJECT event. 102 * @reason: Value returned in the REJECT event status field. 103 */ 104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 105 { 106 if (rdma_ib_or_roce(id->device, id->port_num)) 107 return reason == IB_CM_REJ_CONSUMER_DEFINED; 108 109 if (rdma_protocol_iwarp(id->device, id->port_num)) 110 return reason == -ECONNREFUSED; 111 112 WARN_ON_ONCE(1); 113 return false; 114 } 115 116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 117 struct rdma_cm_event *ev, u8 *data_len) 118 { 119 const void *p; 120 121 if (rdma_is_consumer_reject(id, ev->status)) { 122 *data_len = ev->param.conn.private_data_len; 123 p = ev->param.conn.private_data; 124 } else { 125 *data_len = 0; 126 p = NULL; 127 } 128 return p; 129 } 130 EXPORT_SYMBOL(rdma_consumer_reject_data); 131 132 /** 133 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 134 * @id: Communication Identifier 135 */ 136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 137 { 138 struct rdma_id_private *id_priv; 139 140 id_priv = container_of(id, struct rdma_id_private, id); 141 if (id->device->node_type == RDMA_NODE_RNIC) 142 return id_priv->cm_id.iw; 143 return NULL; 144 } 145 EXPORT_SYMBOL(rdma_iw_cm_id); 146 147 /** 148 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 149 * @res: rdma resource tracking entry pointer 150 */ 151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 152 { 153 struct rdma_id_private *id_priv = 154 container_of(res, struct rdma_id_private, res); 155 156 return &id_priv->id; 157 } 158 EXPORT_SYMBOL(rdma_res_to_id); 159 160 static int cma_add_one(struct ib_device *device); 161 static void cma_remove_one(struct ib_device *device, void *client_data); 162 163 static struct ib_client cma_client = { 164 .name = "cma", 165 .add = cma_add_one, 166 .remove = cma_remove_one 167 }; 168 169 static struct ib_sa_client sa_client; 170 static LIST_HEAD(dev_list); 171 static LIST_HEAD(listen_any_list); 172 static DEFINE_MUTEX(lock); 173 static struct rb_root id_table = RB_ROOT; 174 /* Serialize operations of id_table tree */ 175 static DEFINE_SPINLOCK(id_table_lock); 176 static struct workqueue_struct *cma_wq; 177 static unsigned int cma_pernet_id; 178 179 struct cma_pernet { 180 struct xarray tcp_ps; 181 struct xarray udp_ps; 182 struct xarray ipoib_ps; 183 struct xarray ib_ps; 184 }; 185 186 static struct cma_pernet *cma_pernet(struct net *net) 187 { 188 return net_generic(net, cma_pernet_id); 189 } 190 191 static 192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 193 { 194 struct cma_pernet *pernet = cma_pernet(net); 195 196 switch (ps) { 197 case RDMA_PS_TCP: 198 return &pernet->tcp_ps; 199 case RDMA_PS_UDP: 200 return &pernet->udp_ps; 201 case RDMA_PS_IPOIB: 202 return &pernet->ipoib_ps; 203 case RDMA_PS_IB: 204 return &pernet->ib_ps; 205 default: 206 return NULL; 207 } 208 } 209 210 struct id_table_entry { 211 struct list_head id_list; 212 struct rb_node rb_node; 213 }; 214 215 struct cma_device { 216 struct list_head list; 217 struct ib_device *device; 218 struct completion comp; 219 refcount_t refcount; 220 struct list_head id_list; 221 enum ib_gid_type *default_gid_type; 222 u8 *default_roce_tos; 223 }; 224 225 struct rdma_bind_list { 226 enum rdma_ucm_port_space ps; 227 struct hlist_head owners; 228 unsigned short port; 229 }; 230 231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 232 struct rdma_bind_list *bind_list, int snum) 233 { 234 struct xarray *xa = cma_pernet_xa(net, ps); 235 236 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 237 } 238 239 static struct rdma_bind_list *cma_ps_find(struct net *net, 240 enum rdma_ucm_port_space ps, int snum) 241 { 242 struct xarray *xa = cma_pernet_xa(net, ps); 243 244 return xa_load(xa, snum); 245 } 246 247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 248 int snum) 249 { 250 struct xarray *xa = cma_pernet_xa(net, ps); 251 252 xa_erase(xa, snum); 253 } 254 255 enum { 256 CMA_OPTION_AFONLY, 257 }; 258 259 void cma_dev_get(struct cma_device *cma_dev) 260 { 261 refcount_inc(&cma_dev->refcount); 262 } 263 264 void cma_dev_put(struct cma_device *cma_dev) 265 { 266 if (refcount_dec_and_test(&cma_dev->refcount)) 267 complete(&cma_dev->comp); 268 } 269 270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 271 void *cookie) 272 { 273 struct cma_device *cma_dev; 274 struct cma_device *found_cma_dev = NULL; 275 276 mutex_lock(&lock); 277 278 list_for_each_entry(cma_dev, &dev_list, list) 279 if (filter(cma_dev->device, cookie)) { 280 found_cma_dev = cma_dev; 281 break; 282 } 283 284 if (found_cma_dev) 285 cma_dev_get(found_cma_dev); 286 mutex_unlock(&lock); 287 return found_cma_dev; 288 } 289 290 int cma_get_default_gid_type(struct cma_device *cma_dev, 291 u32 port) 292 { 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 297 } 298 299 int cma_set_default_gid_type(struct cma_device *cma_dev, 300 u32 port, 301 enum ib_gid_type default_gid_type) 302 { 303 unsigned long supported_gids; 304 305 if (!rdma_is_port_valid(cma_dev->device, port)) 306 return -EINVAL; 307 308 if (default_gid_type == IB_GID_TYPE_IB && 309 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 310 default_gid_type = IB_GID_TYPE_ROCE; 311 312 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 313 314 if (!(supported_gids & 1 << default_gid_type)) 315 return -EINVAL; 316 317 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 318 default_gid_type; 319 320 return 0; 321 } 322 323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 324 { 325 if (!rdma_is_port_valid(cma_dev->device, port)) 326 return -EINVAL; 327 328 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 329 } 330 331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 332 u8 default_roce_tos) 333 { 334 if (!rdma_is_port_valid(cma_dev->device, port)) 335 return -EINVAL; 336 337 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 338 default_roce_tos; 339 340 return 0; 341 } 342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 343 { 344 return cma_dev->device; 345 } 346 347 /* 348 * Device removal can occur at anytime, so we need extra handling to 349 * serialize notifying the user of device removal with other callbacks. 350 * We do this by disabling removal notification while a callback is in process, 351 * and reporting it after the callback completes. 352 */ 353 354 struct cma_multicast { 355 struct rdma_id_private *id_priv; 356 union { 357 struct ib_sa_multicast *sa_mc; 358 struct { 359 struct work_struct work; 360 struct rdma_cm_event event; 361 } iboe_join; 362 }; 363 struct list_head list; 364 void *context; 365 struct sockaddr_storage addr; 366 u8 join_state; 367 }; 368 369 struct cma_work { 370 struct work_struct work; 371 struct rdma_id_private *id; 372 enum rdma_cm_state old_state; 373 enum rdma_cm_state new_state; 374 struct rdma_cm_event event; 375 }; 376 377 union cma_ip_addr { 378 struct in6_addr ip6; 379 struct { 380 __be32 pad[3]; 381 __be32 addr; 382 } ip4; 383 }; 384 385 struct cma_hdr { 386 u8 cma_version; 387 u8 ip_version; /* IP version: 7:4 */ 388 __be16 port; 389 union cma_ip_addr src_addr; 390 union cma_ip_addr dst_addr; 391 }; 392 393 #define CMA_VERSION 0x00 394 395 struct cma_req_info { 396 struct sockaddr_storage listen_addr_storage; 397 struct sockaddr_storage src_addr_storage; 398 struct ib_device *device; 399 union ib_gid local_gid; 400 __be64 service_id; 401 int port; 402 bool has_gid; 403 u16 pkey; 404 }; 405 406 static int cma_comp_exch(struct rdma_id_private *id_priv, 407 enum rdma_cm_state comp, enum rdma_cm_state exch) 408 { 409 unsigned long flags; 410 int ret; 411 412 /* 413 * The FSM uses a funny double locking where state is protected by both 414 * the handler_mutex and the spinlock. State is not allowed to change 415 * to/from a handler_mutex protected value without also holding 416 * handler_mutex. 417 */ 418 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 419 lockdep_assert_held(&id_priv->handler_mutex); 420 421 spin_lock_irqsave(&id_priv->lock, flags); 422 if ((ret = (id_priv->state == comp))) 423 id_priv->state = exch; 424 spin_unlock_irqrestore(&id_priv->lock, flags); 425 return ret; 426 } 427 428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 429 { 430 return hdr->ip_version >> 4; 431 } 432 433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 434 { 435 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 436 } 437 438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 439 { 440 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 441 } 442 443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 444 { 445 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 446 } 447 448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 449 { 450 struct in_device *in_dev = NULL; 451 452 if (ndev) { 453 rtnl_lock(); 454 in_dev = __in_dev_get_rtnl(ndev); 455 if (in_dev) { 456 if (join) 457 ip_mc_inc_group(in_dev, 458 *(__be32 *)(mgid->raw + 12)); 459 else 460 ip_mc_dec_group(in_dev, 461 *(__be32 *)(mgid->raw + 12)); 462 } 463 rtnl_unlock(); 464 } 465 return (in_dev) ? 0 : -ENODEV; 466 } 467 468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 469 struct id_table_entry *entry_b) 470 { 471 struct rdma_id_private *id_priv = list_first_entry( 472 &entry_b->id_list, struct rdma_id_private, id_list_entry); 473 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 474 struct sockaddr *sb = cma_dst_addr(id_priv); 475 476 if (ifindex_a != ifindex_b) 477 return (ifindex_a > ifindex_b) ? 1 : -1; 478 479 if (sa->sa_family != sb->sa_family) 480 return sa->sa_family - sb->sa_family; 481 482 if (sa->sa_family == AF_INET && 483 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 484 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 485 &((struct sockaddr_in *)sb)->sin_addr, 486 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 487 } 488 489 if (sa->sa_family == AF_INET6 && 490 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 491 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 492 &((struct sockaddr_in6 *)sb)->sin6_addr); 493 } 494 495 return -1; 496 } 497 498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 499 { 500 struct rb_node **new, *parent = NULL; 501 struct id_table_entry *this, *node; 502 unsigned long flags; 503 int result; 504 505 node = kzalloc(sizeof(*node), GFP_KERNEL); 506 if (!node) 507 return -ENOMEM; 508 509 spin_lock_irqsave(&id_table_lock, flags); 510 new = &id_table.rb_node; 511 while (*new) { 512 this = container_of(*new, struct id_table_entry, rb_node); 513 result = compare_netdev_and_ip( 514 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 515 cma_dst_addr(node_id_priv), this); 516 517 parent = *new; 518 if (result < 0) 519 new = &((*new)->rb_left); 520 else if (result > 0) 521 new = &((*new)->rb_right); 522 else { 523 list_add_tail(&node_id_priv->id_list_entry, 524 &this->id_list); 525 kfree(node); 526 goto unlock; 527 } 528 } 529 530 INIT_LIST_HEAD(&node->id_list); 531 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 532 533 rb_link_node(&node->rb_node, parent, new); 534 rb_insert_color(&node->rb_node, &id_table); 535 536 unlock: 537 spin_unlock_irqrestore(&id_table_lock, flags); 538 return 0; 539 } 540 541 static struct id_table_entry * 542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 543 { 544 struct rb_node *node = root->rb_node; 545 struct id_table_entry *data; 546 int result; 547 548 while (node) { 549 data = container_of(node, struct id_table_entry, rb_node); 550 result = compare_netdev_and_ip(ifindex, sa, data); 551 if (result < 0) 552 node = node->rb_left; 553 else if (result > 0) 554 node = node->rb_right; 555 else 556 return data; 557 } 558 559 return NULL; 560 } 561 562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 563 { 564 struct id_table_entry *data; 565 unsigned long flags; 566 567 spin_lock_irqsave(&id_table_lock, flags); 568 if (list_empty(&id_priv->id_list_entry)) 569 goto out; 570 571 data = node_from_ndev_ip(&id_table, 572 id_priv->id.route.addr.dev_addr.bound_dev_if, 573 cma_dst_addr(id_priv)); 574 if (!data) 575 goto out; 576 577 list_del_init(&id_priv->id_list_entry); 578 if (list_empty(&data->id_list)) { 579 rb_erase(&data->rb_node, &id_table); 580 kfree(data); 581 } 582 out: 583 spin_unlock_irqrestore(&id_table_lock, flags); 584 } 585 586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 587 struct cma_device *cma_dev) 588 { 589 cma_dev_get(cma_dev); 590 id_priv->cma_dev = cma_dev; 591 id_priv->id.device = cma_dev->device; 592 id_priv->id.route.addr.dev_addr.transport = 593 rdma_node_get_transport(cma_dev->device->node_type); 594 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 595 596 trace_cm_id_attach(id_priv, cma_dev->device); 597 } 598 599 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 600 struct cma_device *cma_dev) 601 { 602 _cma_attach_to_dev(id_priv, cma_dev); 603 id_priv->gid_type = 604 cma_dev->default_gid_type[id_priv->id.port_num - 605 rdma_start_port(cma_dev->device)]; 606 } 607 608 static void cma_release_dev(struct rdma_id_private *id_priv) 609 { 610 mutex_lock(&lock); 611 list_del_init(&id_priv->device_item); 612 cma_dev_put(id_priv->cma_dev); 613 id_priv->cma_dev = NULL; 614 id_priv->id.device = NULL; 615 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 616 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 617 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 618 } 619 mutex_unlock(&lock); 620 } 621 622 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 623 { 624 return id_priv->id.route.addr.src_addr.ss_family; 625 } 626 627 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 628 { 629 struct ib_sa_mcmember_rec rec; 630 int ret = 0; 631 632 switch (id_priv->id.ps) { 633 case RDMA_PS_UDP: 634 case RDMA_PS_IB: 635 id_priv->qkey = RDMA_UDP_QKEY; 636 break; 637 case RDMA_PS_IPOIB: 638 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 639 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 640 id_priv->id.port_num, &rec.mgid, 641 &rec); 642 if (!ret) 643 id_priv->qkey = be32_to_cpu(rec.qkey); 644 break; 645 default: 646 break; 647 } 648 return ret; 649 } 650 651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 652 { 653 if (!qkey || 654 (id_priv->qkey && (id_priv->qkey != qkey))) 655 return -EINVAL; 656 657 id_priv->qkey = qkey; 658 return 0; 659 } 660 661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 662 { 663 dev_addr->dev_type = ARPHRD_INFINIBAND; 664 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 665 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 666 } 667 668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 669 { 670 int ret; 671 672 if (addr->sa_family != AF_IB) { 673 ret = rdma_translate_ip(addr, dev_addr); 674 } else { 675 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 676 ret = 0; 677 } 678 679 return ret; 680 } 681 682 static const struct ib_gid_attr * 683 cma_validate_port(struct ib_device *device, u32 port, 684 enum ib_gid_type gid_type, 685 union ib_gid *gid, 686 struct rdma_id_private *id_priv) 687 { 688 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 689 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 690 int bound_if_index = dev_addr->bound_dev_if; 691 int dev_type = dev_addr->dev_type; 692 struct net_device *ndev = NULL; 693 struct net_device *pdev = NULL; 694 695 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 696 goto out; 697 698 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 699 goto out; 700 701 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 702 goto out; 703 704 /* 705 * For drivers that do not associate more than one net device with 706 * their gid tables, such as iWARP drivers, it is sufficient to 707 * return the first table entry. 708 * 709 * Other driver classes might be included in the future. 710 */ 711 if (rdma_protocol_iwarp(device, port)) { 712 sgid_attr = rdma_get_gid_attr(device, port, 0); 713 if (IS_ERR(sgid_attr)) 714 goto out; 715 716 rcu_read_lock(); 717 ndev = rcu_dereference(sgid_attr->ndev); 718 if (ndev->ifindex != bound_if_index) { 719 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index); 720 if (pdev) { 721 if (is_vlan_dev(pdev)) { 722 pdev = vlan_dev_real_dev(pdev); 723 if (ndev->ifindex == pdev->ifindex) 724 bound_if_index = pdev->ifindex; 725 } 726 if (is_vlan_dev(ndev)) { 727 pdev = vlan_dev_real_dev(ndev); 728 if (bound_if_index == pdev->ifindex) 729 bound_if_index = ndev->ifindex; 730 } 731 } 732 } 733 if (!net_eq(dev_net(ndev), dev_addr->net) || 734 ndev->ifindex != bound_if_index) { 735 rdma_put_gid_attr(sgid_attr); 736 sgid_attr = ERR_PTR(-ENODEV); 737 } 738 rcu_read_unlock(); 739 goto out; 740 } 741 742 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 743 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 744 if (!ndev) 745 goto out; 746 } else { 747 gid_type = IB_GID_TYPE_IB; 748 } 749 750 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 751 dev_put(ndev); 752 out: 753 return sgid_attr; 754 } 755 756 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 757 const struct ib_gid_attr *sgid_attr) 758 { 759 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 760 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 761 } 762 763 /** 764 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 765 * based on source ip address. 766 * @id_priv: cm_id which should be bound to cma device 767 * 768 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 769 * based on source IP address. It returns 0 on success or error code otherwise. 770 * It is applicable to active and passive side cm_id. 771 */ 772 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 773 { 774 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 775 const struct ib_gid_attr *sgid_attr; 776 union ib_gid gid, iboe_gid, *gidp; 777 struct cma_device *cma_dev; 778 enum ib_gid_type gid_type; 779 int ret = -ENODEV; 780 u32 port; 781 782 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 783 id_priv->id.ps == RDMA_PS_IPOIB) 784 return -EINVAL; 785 786 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 787 &iboe_gid); 788 789 memcpy(&gid, dev_addr->src_dev_addr + 790 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 791 792 mutex_lock(&lock); 793 list_for_each_entry(cma_dev, &dev_list, list) { 794 rdma_for_each_port (cma_dev->device, port) { 795 gidp = rdma_protocol_roce(cma_dev->device, port) ? 796 &iboe_gid : &gid; 797 gid_type = cma_dev->default_gid_type[port - 1]; 798 sgid_attr = cma_validate_port(cma_dev->device, port, 799 gid_type, gidp, id_priv); 800 if (!IS_ERR(sgid_attr)) { 801 id_priv->id.port_num = port; 802 cma_bind_sgid_attr(id_priv, sgid_attr); 803 cma_attach_to_dev(id_priv, cma_dev); 804 ret = 0; 805 goto out; 806 } 807 } 808 } 809 out: 810 mutex_unlock(&lock); 811 return ret; 812 } 813 814 /** 815 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 816 * @id_priv: cm id to bind to cma device 817 * @listen_id_priv: listener cm id to match against 818 * @req: Pointer to req structure containaining incoming 819 * request information 820 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 821 * rdma device matches for listen_id and incoming request. It also verifies 822 * that a GID table entry is present for the source address. 823 * Returns 0 on success, or returns error code otherwise. 824 */ 825 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 826 const struct rdma_id_private *listen_id_priv, 827 struct cma_req_info *req) 828 { 829 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 830 const struct ib_gid_attr *sgid_attr; 831 enum ib_gid_type gid_type; 832 union ib_gid gid; 833 834 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 835 id_priv->id.ps == RDMA_PS_IPOIB) 836 return -EINVAL; 837 838 if (rdma_protocol_roce(req->device, req->port)) 839 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 840 &gid); 841 else 842 memcpy(&gid, dev_addr->src_dev_addr + 843 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 844 845 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 846 sgid_attr = cma_validate_port(req->device, req->port, 847 gid_type, &gid, id_priv); 848 if (IS_ERR(sgid_attr)) 849 return PTR_ERR(sgid_attr); 850 851 id_priv->id.port_num = req->port; 852 cma_bind_sgid_attr(id_priv, sgid_attr); 853 /* Need to acquire lock to protect against reader 854 * of cma_dev->id_list such as cma_netdev_callback() and 855 * cma_process_remove(). 856 */ 857 mutex_lock(&lock); 858 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 859 mutex_unlock(&lock); 860 rdma_restrack_add(&id_priv->res); 861 return 0; 862 } 863 864 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 865 const struct rdma_id_private *listen_id_priv) 866 { 867 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 868 const struct ib_gid_attr *sgid_attr; 869 struct cma_device *cma_dev; 870 enum ib_gid_type gid_type; 871 int ret = -ENODEV; 872 union ib_gid gid; 873 u32 port; 874 875 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 876 id_priv->id.ps == RDMA_PS_IPOIB) 877 return -EINVAL; 878 879 memcpy(&gid, dev_addr->src_dev_addr + 880 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 881 882 mutex_lock(&lock); 883 884 cma_dev = listen_id_priv->cma_dev; 885 port = listen_id_priv->id.port_num; 886 gid_type = listen_id_priv->gid_type; 887 sgid_attr = cma_validate_port(cma_dev->device, port, 888 gid_type, &gid, id_priv); 889 if (!IS_ERR(sgid_attr)) { 890 id_priv->id.port_num = port; 891 cma_bind_sgid_attr(id_priv, sgid_attr); 892 ret = 0; 893 goto out; 894 } 895 896 list_for_each_entry(cma_dev, &dev_list, list) { 897 rdma_for_each_port (cma_dev->device, port) { 898 if (listen_id_priv->cma_dev == cma_dev && 899 listen_id_priv->id.port_num == port) 900 continue; 901 902 gid_type = cma_dev->default_gid_type[port - 1]; 903 sgid_attr = cma_validate_port(cma_dev->device, port, 904 gid_type, &gid, id_priv); 905 if (!IS_ERR(sgid_attr)) { 906 id_priv->id.port_num = port; 907 cma_bind_sgid_attr(id_priv, sgid_attr); 908 ret = 0; 909 goto out; 910 } 911 } 912 } 913 914 out: 915 if (!ret) { 916 cma_attach_to_dev(id_priv, cma_dev); 917 rdma_restrack_add(&id_priv->res); 918 } 919 920 mutex_unlock(&lock); 921 return ret; 922 } 923 924 /* 925 * Select the source IB device and address to reach the destination IB address. 926 */ 927 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 928 { 929 struct cma_device *cma_dev, *cur_dev; 930 struct sockaddr_ib *addr; 931 union ib_gid gid, sgid, *dgid; 932 unsigned int p; 933 u16 pkey, index; 934 enum ib_port_state port_state; 935 int ret; 936 int i; 937 938 cma_dev = NULL; 939 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 940 dgid = (union ib_gid *) &addr->sib_addr; 941 pkey = ntohs(addr->sib_pkey); 942 943 mutex_lock(&lock); 944 list_for_each_entry(cur_dev, &dev_list, list) { 945 rdma_for_each_port (cur_dev->device, p) { 946 if (!rdma_cap_af_ib(cur_dev->device, p)) 947 continue; 948 949 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 950 continue; 951 952 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 953 continue; 954 955 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 956 ++i) { 957 ret = rdma_query_gid(cur_dev->device, p, i, 958 &gid); 959 if (ret) 960 continue; 961 962 if (!memcmp(&gid, dgid, sizeof(gid))) { 963 cma_dev = cur_dev; 964 sgid = gid; 965 id_priv->id.port_num = p; 966 goto found; 967 } 968 969 if (!cma_dev && (gid.global.subnet_prefix == 970 dgid->global.subnet_prefix) && 971 port_state == IB_PORT_ACTIVE) { 972 cma_dev = cur_dev; 973 sgid = gid; 974 id_priv->id.port_num = p; 975 goto found; 976 } 977 } 978 } 979 } 980 mutex_unlock(&lock); 981 return -ENODEV; 982 983 found: 984 cma_attach_to_dev(id_priv, cma_dev); 985 rdma_restrack_add(&id_priv->res); 986 mutex_unlock(&lock); 987 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 988 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 989 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 990 return 0; 991 } 992 993 static void cma_id_get(struct rdma_id_private *id_priv) 994 { 995 refcount_inc(&id_priv->refcount); 996 } 997 998 static void cma_id_put(struct rdma_id_private *id_priv) 999 { 1000 if (refcount_dec_and_test(&id_priv->refcount)) 1001 complete(&id_priv->comp); 1002 } 1003 1004 static struct rdma_id_private * 1005 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 1006 void *context, enum rdma_ucm_port_space ps, 1007 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 1008 { 1009 struct rdma_id_private *id_priv; 1010 1011 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 1012 if (!id_priv) 1013 return ERR_PTR(-ENOMEM); 1014 1015 id_priv->state = RDMA_CM_IDLE; 1016 id_priv->id.context = context; 1017 id_priv->id.event_handler = event_handler; 1018 id_priv->id.ps = ps; 1019 id_priv->id.qp_type = qp_type; 1020 id_priv->tos_set = false; 1021 id_priv->timeout_set = false; 1022 id_priv->min_rnr_timer_set = false; 1023 id_priv->gid_type = IB_GID_TYPE_IB; 1024 spin_lock_init(&id_priv->lock); 1025 mutex_init(&id_priv->qp_mutex); 1026 init_completion(&id_priv->comp); 1027 refcount_set(&id_priv->refcount, 1); 1028 mutex_init(&id_priv->handler_mutex); 1029 INIT_LIST_HEAD(&id_priv->device_item); 1030 INIT_LIST_HEAD(&id_priv->id_list_entry); 1031 INIT_LIST_HEAD(&id_priv->listen_list); 1032 INIT_LIST_HEAD(&id_priv->mc_list); 1033 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1034 id_priv->id.route.addr.dev_addr.net = get_net(net); 1035 id_priv->seq_num &= 0x00ffffff; 1036 1037 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1038 if (parent) 1039 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1040 1041 return id_priv; 1042 } 1043 1044 struct rdma_cm_id * 1045 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1046 void *context, enum rdma_ucm_port_space ps, 1047 enum ib_qp_type qp_type, const char *caller) 1048 { 1049 struct rdma_id_private *ret; 1050 1051 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1052 if (IS_ERR(ret)) 1053 return ERR_CAST(ret); 1054 1055 rdma_restrack_set_name(&ret->res, caller); 1056 return &ret->id; 1057 } 1058 EXPORT_SYMBOL(__rdma_create_kernel_id); 1059 1060 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1061 void *context, 1062 enum rdma_ucm_port_space ps, 1063 enum ib_qp_type qp_type) 1064 { 1065 struct rdma_id_private *ret; 1066 1067 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1068 ps, qp_type, NULL); 1069 if (IS_ERR(ret)) 1070 return ERR_CAST(ret); 1071 1072 rdma_restrack_set_name(&ret->res, NULL); 1073 return &ret->id; 1074 } 1075 EXPORT_SYMBOL(rdma_create_user_id); 1076 1077 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1078 { 1079 struct ib_qp_attr qp_attr; 1080 int qp_attr_mask, ret; 1081 1082 qp_attr.qp_state = IB_QPS_INIT; 1083 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1084 if (ret) 1085 return ret; 1086 1087 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1088 if (ret) 1089 return ret; 1090 1091 qp_attr.qp_state = IB_QPS_RTR; 1092 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1093 if (ret) 1094 return ret; 1095 1096 qp_attr.qp_state = IB_QPS_RTS; 1097 qp_attr.sq_psn = 0; 1098 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1099 1100 return ret; 1101 } 1102 1103 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1104 { 1105 struct ib_qp_attr qp_attr; 1106 int qp_attr_mask, ret; 1107 1108 qp_attr.qp_state = IB_QPS_INIT; 1109 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1110 if (ret) 1111 return ret; 1112 1113 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1114 } 1115 1116 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1117 struct ib_qp_init_attr *qp_init_attr) 1118 { 1119 struct rdma_id_private *id_priv; 1120 struct ib_qp *qp; 1121 int ret; 1122 1123 id_priv = container_of(id, struct rdma_id_private, id); 1124 if (id->device != pd->device) { 1125 ret = -EINVAL; 1126 goto out_err; 1127 } 1128 1129 qp_init_attr->port_num = id->port_num; 1130 qp = ib_create_qp(pd, qp_init_attr); 1131 if (IS_ERR(qp)) { 1132 ret = PTR_ERR(qp); 1133 goto out_err; 1134 } 1135 1136 if (id->qp_type == IB_QPT_UD) 1137 ret = cma_init_ud_qp(id_priv, qp); 1138 else 1139 ret = cma_init_conn_qp(id_priv, qp); 1140 if (ret) 1141 goto out_destroy; 1142 1143 id->qp = qp; 1144 id_priv->qp_num = qp->qp_num; 1145 id_priv->srq = (qp->srq != NULL); 1146 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1147 return 0; 1148 out_destroy: 1149 ib_destroy_qp(qp); 1150 out_err: 1151 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1152 return ret; 1153 } 1154 EXPORT_SYMBOL(rdma_create_qp); 1155 1156 void rdma_destroy_qp(struct rdma_cm_id *id) 1157 { 1158 struct rdma_id_private *id_priv; 1159 1160 id_priv = container_of(id, struct rdma_id_private, id); 1161 trace_cm_qp_destroy(id_priv); 1162 mutex_lock(&id_priv->qp_mutex); 1163 ib_destroy_qp(id_priv->id.qp); 1164 id_priv->id.qp = NULL; 1165 mutex_unlock(&id_priv->qp_mutex); 1166 } 1167 EXPORT_SYMBOL(rdma_destroy_qp); 1168 1169 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1170 struct rdma_conn_param *conn_param) 1171 { 1172 struct ib_qp_attr qp_attr; 1173 int qp_attr_mask, ret; 1174 1175 mutex_lock(&id_priv->qp_mutex); 1176 if (!id_priv->id.qp) { 1177 ret = 0; 1178 goto out; 1179 } 1180 1181 /* Need to update QP attributes from default values. */ 1182 qp_attr.qp_state = IB_QPS_INIT; 1183 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1184 if (ret) 1185 goto out; 1186 1187 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1188 if (ret) 1189 goto out; 1190 1191 qp_attr.qp_state = IB_QPS_RTR; 1192 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1193 if (ret) 1194 goto out; 1195 1196 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1197 1198 if (conn_param) 1199 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1200 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1201 out: 1202 mutex_unlock(&id_priv->qp_mutex); 1203 return ret; 1204 } 1205 1206 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1207 struct rdma_conn_param *conn_param) 1208 { 1209 struct ib_qp_attr qp_attr; 1210 int qp_attr_mask, ret; 1211 1212 mutex_lock(&id_priv->qp_mutex); 1213 if (!id_priv->id.qp) { 1214 ret = 0; 1215 goto out; 1216 } 1217 1218 qp_attr.qp_state = IB_QPS_RTS; 1219 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1220 if (ret) 1221 goto out; 1222 1223 if (conn_param) 1224 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1225 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1226 out: 1227 mutex_unlock(&id_priv->qp_mutex); 1228 return ret; 1229 } 1230 1231 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1232 { 1233 struct ib_qp_attr qp_attr; 1234 int ret; 1235 1236 mutex_lock(&id_priv->qp_mutex); 1237 if (!id_priv->id.qp) { 1238 ret = 0; 1239 goto out; 1240 } 1241 1242 qp_attr.qp_state = IB_QPS_ERR; 1243 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1244 out: 1245 mutex_unlock(&id_priv->qp_mutex); 1246 return ret; 1247 } 1248 1249 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1250 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1251 { 1252 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1253 int ret; 1254 u16 pkey; 1255 1256 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1257 pkey = 0xffff; 1258 else 1259 pkey = ib_addr_get_pkey(dev_addr); 1260 1261 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1262 pkey, &qp_attr->pkey_index); 1263 if (ret) 1264 return ret; 1265 1266 qp_attr->port_num = id_priv->id.port_num; 1267 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1268 1269 if (id_priv->id.qp_type == IB_QPT_UD) { 1270 ret = cma_set_default_qkey(id_priv); 1271 if (ret) 1272 return ret; 1273 1274 qp_attr->qkey = id_priv->qkey; 1275 *qp_attr_mask |= IB_QP_QKEY; 1276 } else { 1277 qp_attr->qp_access_flags = 0; 1278 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1279 } 1280 return 0; 1281 } 1282 1283 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1284 int *qp_attr_mask) 1285 { 1286 struct rdma_id_private *id_priv; 1287 int ret = 0; 1288 1289 id_priv = container_of(id, struct rdma_id_private, id); 1290 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1291 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1292 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1293 else 1294 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1295 qp_attr_mask); 1296 1297 if (qp_attr->qp_state == IB_QPS_RTR) 1298 qp_attr->rq_psn = id_priv->seq_num; 1299 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1300 if (!id_priv->cm_id.iw) { 1301 qp_attr->qp_access_flags = 0; 1302 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1303 } else 1304 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1305 qp_attr_mask); 1306 qp_attr->port_num = id_priv->id.port_num; 1307 *qp_attr_mask |= IB_QP_PORT; 1308 } else { 1309 ret = -ENOSYS; 1310 } 1311 1312 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1313 qp_attr->timeout = id_priv->timeout; 1314 1315 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1316 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1317 1318 return ret; 1319 } 1320 EXPORT_SYMBOL(rdma_init_qp_attr); 1321 1322 static inline bool cma_zero_addr(const struct sockaddr *addr) 1323 { 1324 switch (addr->sa_family) { 1325 case AF_INET: 1326 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1327 case AF_INET6: 1328 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1329 case AF_IB: 1330 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1331 default: 1332 return false; 1333 } 1334 } 1335 1336 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1337 { 1338 switch (addr->sa_family) { 1339 case AF_INET: 1340 return ipv4_is_loopback( 1341 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1342 case AF_INET6: 1343 return ipv6_addr_loopback( 1344 &((struct sockaddr_in6 *)addr)->sin6_addr); 1345 case AF_IB: 1346 return ib_addr_loopback( 1347 &((struct sockaddr_ib *)addr)->sib_addr); 1348 default: 1349 return false; 1350 } 1351 } 1352 1353 static inline bool cma_any_addr(const struct sockaddr *addr) 1354 { 1355 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1356 } 1357 1358 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1359 { 1360 if (src->sa_family != dst->sa_family) 1361 return -1; 1362 1363 switch (src->sa_family) { 1364 case AF_INET: 1365 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1366 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1367 case AF_INET6: { 1368 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1369 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1370 bool link_local; 1371 1372 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1373 &dst_addr6->sin6_addr)) 1374 return 1; 1375 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1376 IPV6_ADDR_LINKLOCAL; 1377 /* Link local must match their scope_ids */ 1378 return link_local ? (src_addr6->sin6_scope_id != 1379 dst_addr6->sin6_scope_id) : 1380 0; 1381 } 1382 1383 default: 1384 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1385 &((struct sockaddr_ib *) dst)->sib_addr); 1386 } 1387 } 1388 1389 static __be16 cma_port(const struct sockaddr *addr) 1390 { 1391 struct sockaddr_ib *sib; 1392 1393 switch (addr->sa_family) { 1394 case AF_INET: 1395 return ((struct sockaddr_in *) addr)->sin_port; 1396 case AF_INET6: 1397 return ((struct sockaddr_in6 *) addr)->sin6_port; 1398 case AF_IB: 1399 sib = (struct sockaddr_ib *) addr; 1400 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1401 be64_to_cpu(sib->sib_sid_mask))); 1402 default: 1403 return 0; 1404 } 1405 } 1406 1407 static inline int cma_any_port(const struct sockaddr *addr) 1408 { 1409 return !cma_port(addr); 1410 } 1411 1412 static void cma_save_ib_info(struct sockaddr *src_addr, 1413 struct sockaddr *dst_addr, 1414 const struct rdma_cm_id *listen_id, 1415 const struct sa_path_rec *path) 1416 { 1417 struct sockaddr_ib *listen_ib, *ib; 1418 1419 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1420 if (src_addr) { 1421 ib = (struct sockaddr_ib *)src_addr; 1422 ib->sib_family = AF_IB; 1423 if (path) { 1424 ib->sib_pkey = path->pkey; 1425 ib->sib_flowinfo = path->flow_label; 1426 memcpy(&ib->sib_addr, &path->sgid, 16); 1427 ib->sib_sid = path->service_id; 1428 ib->sib_scope_id = 0; 1429 } else { 1430 ib->sib_pkey = listen_ib->sib_pkey; 1431 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1432 ib->sib_addr = listen_ib->sib_addr; 1433 ib->sib_sid = listen_ib->sib_sid; 1434 ib->sib_scope_id = listen_ib->sib_scope_id; 1435 } 1436 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1437 } 1438 if (dst_addr) { 1439 ib = (struct sockaddr_ib *)dst_addr; 1440 ib->sib_family = AF_IB; 1441 if (path) { 1442 ib->sib_pkey = path->pkey; 1443 ib->sib_flowinfo = path->flow_label; 1444 memcpy(&ib->sib_addr, &path->dgid, 16); 1445 } 1446 } 1447 } 1448 1449 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1450 struct sockaddr_in *dst_addr, 1451 struct cma_hdr *hdr, 1452 __be16 local_port) 1453 { 1454 if (src_addr) { 1455 *src_addr = (struct sockaddr_in) { 1456 .sin_family = AF_INET, 1457 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1458 .sin_port = local_port, 1459 }; 1460 } 1461 1462 if (dst_addr) { 1463 *dst_addr = (struct sockaddr_in) { 1464 .sin_family = AF_INET, 1465 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1466 .sin_port = hdr->port, 1467 }; 1468 } 1469 } 1470 1471 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1472 struct sockaddr_in6 *dst_addr, 1473 struct cma_hdr *hdr, 1474 __be16 local_port) 1475 { 1476 if (src_addr) { 1477 *src_addr = (struct sockaddr_in6) { 1478 .sin6_family = AF_INET6, 1479 .sin6_addr = hdr->dst_addr.ip6, 1480 .sin6_port = local_port, 1481 }; 1482 } 1483 1484 if (dst_addr) { 1485 *dst_addr = (struct sockaddr_in6) { 1486 .sin6_family = AF_INET6, 1487 .sin6_addr = hdr->src_addr.ip6, 1488 .sin6_port = hdr->port, 1489 }; 1490 } 1491 } 1492 1493 static u16 cma_port_from_service_id(__be64 service_id) 1494 { 1495 return (u16)be64_to_cpu(service_id); 1496 } 1497 1498 static int cma_save_ip_info(struct sockaddr *src_addr, 1499 struct sockaddr *dst_addr, 1500 const struct ib_cm_event *ib_event, 1501 __be64 service_id) 1502 { 1503 struct cma_hdr *hdr; 1504 __be16 port; 1505 1506 hdr = ib_event->private_data; 1507 if (hdr->cma_version != CMA_VERSION) 1508 return -EINVAL; 1509 1510 port = htons(cma_port_from_service_id(service_id)); 1511 1512 switch (cma_get_ip_ver(hdr)) { 1513 case 4: 1514 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1515 (struct sockaddr_in *)dst_addr, hdr, port); 1516 break; 1517 case 6: 1518 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1519 (struct sockaddr_in6 *)dst_addr, hdr, port); 1520 break; 1521 default: 1522 return -EAFNOSUPPORT; 1523 } 1524 1525 return 0; 1526 } 1527 1528 static int cma_save_net_info(struct sockaddr *src_addr, 1529 struct sockaddr *dst_addr, 1530 const struct rdma_cm_id *listen_id, 1531 const struct ib_cm_event *ib_event, 1532 sa_family_t sa_family, __be64 service_id) 1533 { 1534 if (sa_family == AF_IB) { 1535 if (ib_event->event == IB_CM_REQ_RECEIVED) 1536 cma_save_ib_info(src_addr, dst_addr, listen_id, 1537 ib_event->param.req_rcvd.primary_path); 1538 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1539 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1540 return 0; 1541 } 1542 1543 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1544 } 1545 1546 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1547 struct cma_req_info *req) 1548 { 1549 const struct ib_cm_req_event_param *req_param = 1550 &ib_event->param.req_rcvd; 1551 const struct ib_cm_sidr_req_event_param *sidr_param = 1552 &ib_event->param.sidr_req_rcvd; 1553 1554 switch (ib_event->event) { 1555 case IB_CM_REQ_RECEIVED: 1556 req->device = req_param->listen_id->device; 1557 req->port = req_param->port; 1558 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1559 sizeof(req->local_gid)); 1560 req->has_gid = true; 1561 req->service_id = req_param->primary_path->service_id; 1562 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1563 if (req->pkey != req_param->bth_pkey) 1564 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1565 "RDMA CMA: in the future this may cause the request to be dropped\n", 1566 req_param->bth_pkey, req->pkey); 1567 break; 1568 case IB_CM_SIDR_REQ_RECEIVED: 1569 req->device = sidr_param->listen_id->device; 1570 req->port = sidr_param->port; 1571 req->has_gid = false; 1572 req->service_id = sidr_param->service_id; 1573 req->pkey = sidr_param->pkey; 1574 if (req->pkey != sidr_param->bth_pkey) 1575 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1576 "RDMA CMA: in the future this may cause the request to be dropped\n", 1577 sidr_param->bth_pkey, req->pkey); 1578 break; 1579 default: 1580 return -EINVAL; 1581 } 1582 1583 return 0; 1584 } 1585 1586 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1587 const struct sockaddr_in *dst_addr, 1588 const struct sockaddr_in *src_addr) 1589 { 1590 __be32 daddr = dst_addr->sin_addr.s_addr, 1591 saddr = src_addr->sin_addr.s_addr; 1592 struct fib_result res; 1593 struct flowi4 fl4; 1594 int err; 1595 bool ret; 1596 1597 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1598 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1599 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1600 ipv4_is_loopback(saddr)) 1601 return false; 1602 1603 memset(&fl4, 0, sizeof(fl4)); 1604 fl4.flowi4_oif = net_dev->ifindex; 1605 fl4.daddr = daddr; 1606 fl4.saddr = saddr; 1607 1608 rcu_read_lock(); 1609 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1610 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1611 rcu_read_unlock(); 1612 1613 return ret; 1614 } 1615 1616 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1617 const struct sockaddr_in6 *dst_addr, 1618 const struct sockaddr_in6 *src_addr) 1619 { 1620 #if IS_ENABLED(CONFIG_IPV6) 1621 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1622 IPV6_ADDR_LINKLOCAL; 1623 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1624 &src_addr->sin6_addr, net_dev->ifindex, 1625 NULL, strict); 1626 bool ret; 1627 1628 if (!rt) 1629 return false; 1630 1631 ret = rt->rt6i_idev->dev == net_dev; 1632 ip6_rt_put(rt); 1633 1634 return ret; 1635 #else 1636 return false; 1637 #endif 1638 } 1639 1640 static bool validate_net_dev(struct net_device *net_dev, 1641 const struct sockaddr *daddr, 1642 const struct sockaddr *saddr) 1643 { 1644 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1645 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1646 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1647 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1648 1649 switch (daddr->sa_family) { 1650 case AF_INET: 1651 return saddr->sa_family == AF_INET && 1652 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1653 1654 case AF_INET6: 1655 return saddr->sa_family == AF_INET6 && 1656 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1657 1658 default: 1659 return false; 1660 } 1661 } 1662 1663 static struct net_device * 1664 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1665 { 1666 const struct ib_gid_attr *sgid_attr = NULL; 1667 struct net_device *ndev; 1668 1669 if (ib_event->event == IB_CM_REQ_RECEIVED) 1670 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1671 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1672 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1673 1674 if (!sgid_attr) 1675 return NULL; 1676 1677 rcu_read_lock(); 1678 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1679 if (IS_ERR(ndev)) 1680 ndev = NULL; 1681 else 1682 dev_hold(ndev); 1683 rcu_read_unlock(); 1684 return ndev; 1685 } 1686 1687 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1688 struct cma_req_info *req) 1689 { 1690 struct sockaddr *listen_addr = 1691 (struct sockaddr *)&req->listen_addr_storage; 1692 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1693 struct net_device *net_dev; 1694 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1695 int err; 1696 1697 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1698 req->service_id); 1699 if (err) 1700 return ERR_PTR(err); 1701 1702 if (rdma_protocol_roce(req->device, req->port)) 1703 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1704 else 1705 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1706 req->pkey, 1707 gid, listen_addr); 1708 if (!net_dev) 1709 return ERR_PTR(-ENODEV); 1710 1711 return net_dev; 1712 } 1713 1714 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1715 { 1716 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1717 } 1718 1719 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1720 const struct cma_hdr *hdr) 1721 { 1722 struct sockaddr *addr = cma_src_addr(id_priv); 1723 __be32 ip4_addr; 1724 struct in6_addr ip6_addr; 1725 1726 if (cma_any_addr(addr) && !id_priv->afonly) 1727 return true; 1728 1729 switch (addr->sa_family) { 1730 case AF_INET: 1731 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1732 if (cma_get_ip_ver(hdr) != 4) 1733 return false; 1734 if (!cma_any_addr(addr) && 1735 hdr->dst_addr.ip4.addr != ip4_addr) 1736 return false; 1737 break; 1738 case AF_INET6: 1739 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1740 if (cma_get_ip_ver(hdr) != 6) 1741 return false; 1742 if (!cma_any_addr(addr) && 1743 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1744 return false; 1745 break; 1746 case AF_IB: 1747 return true; 1748 default: 1749 return false; 1750 } 1751 1752 return true; 1753 } 1754 1755 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1756 { 1757 struct ib_device *device = id->device; 1758 const u32 port_num = id->port_num ?: rdma_start_port(device); 1759 1760 return rdma_protocol_roce(device, port_num); 1761 } 1762 1763 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1764 { 1765 const struct sockaddr *daddr = 1766 (const struct sockaddr *)&req->listen_addr_storage; 1767 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1768 1769 /* Returns true if the req is for IPv6 link local */ 1770 return (daddr->sa_family == AF_INET6 && 1771 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1772 } 1773 1774 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1775 const struct net_device *net_dev, 1776 const struct cma_req_info *req) 1777 { 1778 const struct rdma_addr *addr = &id->route.addr; 1779 1780 if (!net_dev) 1781 /* This request is an AF_IB request */ 1782 return (!id->port_num || id->port_num == req->port) && 1783 (addr->src_addr.ss_family == AF_IB); 1784 1785 /* 1786 * If the request is not for IPv6 link local, allow matching 1787 * request to any netdevice of the one or multiport rdma device. 1788 */ 1789 if (!cma_is_req_ipv6_ll(req)) 1790 return true; 1791 /* 1792 * Net namespaces must match, and if the listner is listening 1793 * on a specific netdevice than netdevice must match as well. 1794 */ 1795 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1796 (!!addr->dev_addr.bound_dev_if == 1797 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1798 return true; 1799 else 1800 return false; 1801 } 1802 1803 static struct rdma_id_private *cma_find_listener( 1804 const struct rdma_bind_list *bind_list, 1805 const struct ib_cm_id *cm_id, 1806 const struct ib_cm_event *ib_event, 1807 const struct cma_req_info *req, 1808 const struct net_device *net_dev) 1809 { 1810 struct rdma_id_private *id_priv, *id_priv_dev; 1811 1812 lockdep_assert_held(&lock); 1813 1814 if (!bind_list) 1815 return ERR_PTR(-EINVAL); 1816 1817 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1818 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1819 if (id_priv->id.device == cm_id->device && 1820 cma_match_net_dev(&id_priv->id, net_dev, req)) 1821 return id_priv; 1822 list_for_each_entry(id_priv_dev, 1823 &id_priv->listen_list, 1824 listen_item) { 1825 if (id_priv_dev->id.device == cm_id->device && 1826 cma_match_net_dev(&id_priv_dev->id, 1827 net_dev, req)) 1828 return id_priv_dev; 1829 } 1830 } 1831 } 1832 1833 return ERR_PTR(-EINVAL); 1834 } 1835 1836 static struct rdma_id_private * 1837 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1838 const struct ib_cm_event *ib_event, 1839 struct cma_req_info *req, 1840 struct net_device **net_dev) 1841 { 1842 struct rdma_bind_list *bind_list; 1843 struct rdma_id_private *id_priv; 1844 int err; 1845 1846 err = cma_save_req_info(ib_event, req); 1847 if (err) 1848 return ERR_PTR(err); 1849 1850 *net_dev = cma_get_net_dev(ib_event, req); 1851 if (IS_ERR(*net_dev)) { 1852 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1853 /* Assuming the protocol is AF_IB */ 1854 *net_dev = NULL; 1855 } else { 1856 return ERR_CAST(*net_dev); 1857 } 1858 } 1859 1860 mutex_lock(&lock); 1861 /* 1862 * Net namespace might be getting deleted while route lookup, 1863 * cm_id lookup is in progress. Therefore, perform netdevice 1864 * validation, cm_id lookup under rcu lock. 1865 * RCU lock along with netdevice state check, synchronizes with 1866 * netdevice migrating to different net namespace and also avoids 1867 * case where net namespace doesn't get deleted while lookup is in 1868 * progress. 1869 * If the device state is not IFF_UP, its properties such as ifindex 1870 * and nd_net cannot be trusted to remain valid without rcu lock. 1871 * net/core/dev.c change_net_namespace() ensures to synchronize with 1872 * ongoing operations on net device after device is closed using 1873 * synchronize_net(). 1874 */ 1875 rcu_read_lock(); 1876 if (*net_dev) { 1877 /* 1878 * If netdevice is down, it is likely that it is administratively 1879 * down or it might be migrating to different namespace. 1880 * In that case avoid further processing, as the net namespace 1881 * or ifindex may change. 1882 */ 1883 if (((*net_dev)->flags & IFF_UP) == 0) { 1884 id_priv = ERR_PTR(-EHOSTUNREACH); 1885 goto err; 1886 } 1887 1888 if (!validate_net_dev(*net_dev, 1889 (struct sockaddr *)&req->src_addr_storage, 1890 (struct sockaddr *)&req->listen_addr_storage)) { 1891 id_priv = ERR_PTR(-EHOSTUNREACH); 1892 goto err; 1893 } 1894 } 1895 1896 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1897 rdma_ps_from_service_id(req->service_id), 1898 cma_port_from_service_id(req->service_id)); 1899 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1900 err: 1901 rcu_read_unlock(); 1902 mutex_unlock(&lock); 1903 if (IS_ERR(id_priv) && *net_dev) { 1904 dev_put(*net_dev); 1905 *net_dev = NULL; 1906 } 1907 return id_priv; 1908 } 1909 1910 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1911 { 1912 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1913 } 1914 1915 static void cma_cancel_route(struct rdma_id_private *id_priv) 1916 { 1917 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1918 if (id_priv->query) 1919 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1920 } 1921 } 1922 1923 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1924 { 1925 struct rdma_id_private *dev_id_priv; 1926 1927 lockdep_assert_held(&lock); 1928 1929 /* 1930 * Remove from listen_any_list to prevent added devices from spawning 1931 * additional listen requests. 1932 */ 1933 list_del_init(&id_priv->listen_any_item); 1934 1935 while (!list_empty(&id_priv->listen_list)) { 1936 dev_id_priv = 1937 list_first_entry(&id_priv->listen_list, 1938 struct rdma_id_private, listen_item); 1939 /* sync with device removal to avoid duplicate destruction */ 1940 list_del_init(&dev_id_priv->device_item); 1941 list_del_init(&dev_id_priv->listen_item); 1942 mutex_unlock(&lock); 1943 1944 rdma_destroy_id(&dev_id_priv->id); 1945 mutex_lock(&lock); 1946 } 1947 } 1948 1949 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1950 { 1951 mutex_lock(&lock); 1952 _cma_cancel_listens(id_priv); 1953 mutex_unlock(&lock); 1954 } 1955 1956 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1957 enum rdma_cm_state state) 1958 { 1959 switch (state) { 1960 case RDMA_CM_ADDR_QUERY: 1961 /* 1962 * We can avoid doing the rdma_addr_cancel() based on state, 1963 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1964 * Notice that the addr_handler work could still be exiting 1965 * outside this state, however due to the interaction with the 1966 * handler_mutex the work is guaranteed not to touch id_priv 1967 * during exit. 1968 */ 1969 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1970 break; 1971 case RDMA_CM_ROUTE_QUERY: 1972 cma_cancel_route(id_priv); 1973 break; 1974 case RDMA_CM_LISTEN: 1975 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1976 cma_cancel_listens(id_priv); 1977 break; 1978 default: 1979 break; 1980 } 1981 } 1982 1983 static void cma_release_port(struct rdma_id_private *id_priv) 1984 { 1985 struct rdma_bind_list *bind_list = id_priv->bind_list; 1986 struct net *net = id_priv->id.route.addr.dev_addr.net; 1987 1988 if (!bind_list) 1989 return; 1990 1991 mutex_lock(&lock); 1992 hlist_del(&id_priv->node); 1993 if (hlist_empty(&bind_list->owners)) { 1994 cma_ps_remove(net, bind_list->ps, bind_list->port); 1995 kfree(bind_list); 1996 } 1997 mutex_unlock(&lock); 1998 } 1999 2000 static void destroy_mc(struct rdma_id_private *id_priv, 2001 struct cma_multicast *mc) 2002 { 2003 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 2004 2005 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 2006 ib_sa_free_multicast(mc->sa_mc); 2007 2008 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 2009 struct rdma_dev_addr *dev_addr = 2010 &id_priv->id.route.addr.dev_addr; 2011 struct net_device *ndev = NULL; 2012 2013 if (dev_addr->bound_dev_if) 2014 ndev = dev_get_by_index(dev_addr->net, 2015 dev_addr->bound_dev_if); 2016 if (ndev && !send_only) { 2017 enum ib_gid_type gid_type; 2018 union ib_gid mgid; 2019 2020 gid_type = id_priv->cma_dev->default_gid_type 2021 [id_priv->id.port_num - 2022 rdma_start_port( 2023 id_priv->cma_dev->device)]; 2024 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2025 gid_type); 2026 cma_igmp_send(ndev, &mgid, false); 2027 } 2028 dev_put(ndev); 2029 2030 cancel_work_sync(&mc->iboe_join.work); 2031 } 2032 kfree(mc); 2033 } 2034 2035 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2036 { 2037 struct cma_multicast *mc; 2038 2039 while (!list_empty(&id_priv->mc_list)) { 2040 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2041 list); 2042 list_del(&mc->list); 2043 destroy_mc(id_priv, mc); 2044 } 2045 } 2046 2047 static void _destroy_id(struct rdma_id_private *id_priv, 2048 enum rdma_cm_state state) 2049 { 2050 cma_cancel_operation(id_priv, state); 2051 2052 rdma_restrack_del(&id_priv->res); 2053 cma_remove_id_from_tree(id_priv); 2054 if (id_priv->cma_dev) { 2055 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2056 if (id_priv->cm_id.ib) 2057 ib_destroy_cm_id(id_priv->cm_id.ib); 2058 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2059 if (id_priv->cm_id.iw) 2060 iw_destroy_cm_id(id_priv->cm_id.iw); 2061 } 2062 cma_leave_mc_groups(id_priv); 2063 cma_release_dev(id_priv); 2064 } 2065 2066 cma_release_port(id_priv); 2067 cma_id_put(id_priv); 2068 wait_for_completion(&id_priv->comp); 2069 2070 if (id_priv->internal_id) 2071 cma_id_put(id_priv->id.context); 2072 2073 kfree(id_priv->id.route.path_rec); 2074 kfree(id_priv->id.route.path_rec_inbound); 2075 kfree(id_priv->id.route.path_rec_outbound); 2076 2077 put_net(id_priv->id.route.addr.dev_addr.net); 2078 kfree(id_priv); 2079 } 2080 2081 /* 2082 * destroy an ID from within the handler_mutex. This ensures that no other 2083 * handlers can start running concurrently. 2084 */ 2085 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2086 __releases(&idprv->handler_mutex) 2087 { 2088 enum rdma_cm_state state; 2089 unsigned long flags; 2090 2091 trace_cm_id_destroy(id_priv); 2092 2093 /* 2094 * Setting the state to destroyed under the handler mutex provides a 2095 * fence against calling handler callbacks. If this is invoked due to 2096 * the failure of a handler callback then it guarentees that no future 2097 * handlers will be called. 2098 */ 2099 lockdep_assert_held(&id_priv->handler_mutex); 2100 spin_lock_irqsave(&id_priv->lock, flags); 2101 state = id_priv->state; 2102 id_priv->state = RDMA_CM_DESTROYING; 2103 spin_unlock_irqrestore(&id_priv->lock, flags); 2104 mutex_unlock(&id_priv->handler_mutex); 2105 _destroy_id(id_priv, state); 2106 } 2107 2108 void rdma_destroy_id(struct rdma_cm_id *id) 2109 { 2110 struct rdma_id_private *id_priv = 2111 container_of(id, struct rdma_id_private, id); 2112 2113 mutex_lock(&id_priv->handler_mutex); 2114 destroy_id_handler_unlock(id_priv); 2115 } 2116 EXPORT_SYMBOL(rdma_destroy_id); 2117 2118 static int cma_rep_recv(struct rdma_id_private *id_priv) 2119 { 2120 int ret; 2121 2122 ret = cma_modify_qp_rtr(id_priv, NULL); 2123 if (ret) 2124 goto reject; 2125 2126 ret = cma_modify_qp_rts(id_priv, NULL); 2127 if (ret) 2128 goto reject; 2129 2130 trace_cm_send_rtu(id_priv); 2131 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2132 if (ret) 2133 goto reject; 2134 2135 return 0; 2136 reject: 2137 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2138 cma_modify_qp_err(id_priv); 2139 trace_cm_send_rej(id_priv); 2140 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2141 NULL, 0, NULL, 0); 2142 return ret; 2143 } 2144 2145 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2146 const struct ib_cm_rep_event_param *rep_data, 2147 void *private_data) 2148 { 2149 event->param.conn.private_data = private_data; 2150 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2151 event->param.conn.responder_resources = rep_data->responder_resources; 2152 event->param.conn.initiator_depth = rep_data->initiator_depth; 2153 event->param.conn.flow_control = rep_data->flow_control; 2154 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2155 event->param.conn.srq = rep_data->srq; 2156 event->param.conn.qp_num = rep_data->remote_qpn; 2157 2158 event->ece.vendor_id = rep_data->ece.vendor_id; 2159 event->ece.attr_mod = rep_data->ece.attr_mod; 2160 } 2161 2162 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2163 struct rdma_cm_event *event) 2164 { 2165 int ret; 2166 2167 lockdep_assert_held(&id_priv->handler_mutex); 2168 2169 trace_cm_event_handler(id_priv, event); 2170 ret = id_priv->id.event_handler(&id_priv->id, event); 2171 trace_cm_event_done(id_priv, event, ret); 2172 return ret; 2173 } 2174 2175 static int cma_ib_handler(struct ib_cm_id *cm_id, 2176 const struct ib_cm_event *ib_event) 2177 { 2178 struct rdma_id_private *id_priv = cm_id->context; 2179 struct rdma_cm_event event = {}; 2180 enum rdma_cm_state state; 2181 int ret; 2182 2183 mutex_lock(&id_priv->handler_mutex); 2184 state = READ_ONCE(id_priv->state); 2185 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2186 state != RDMA_CM_CONNECT) || 2187 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2188 state != RDMA_CM_DISCONNECT)) 2189 goto out; 2190 2191 switch (ib_event->event) { 2192 case IB_CM_REQ_ERROR: 2193 case IB_CM_REP_ERROR: 2194 event.event = RDMA_CM_EVENT_UNREACHABLE; 2195 event.status = -ETIMEDOUT; 2196 break; 2197 case IB_CM_REP_RECEIVED: 2198 if (state == RDMA_CM_CONNECT && 2199 (id_priv->id.qp_type != IB_QPT_UD)) { 2200 trace_cm_send_mra(id_priv); 2201 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2202 } 2203 if (id_priv->id.qp) { 2204 event.status = cma_rep_recv(id_priv); 2205 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2206 RDMA_CM_EVENT_ESTABLISHED; 2207 } else { 2208 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2209 } 2210 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2211 ib_event->private_data); 2212 break; 2213 case IB_CM_RTU_RECEIVED: 2214 case IB_CM_USER_ESTABLISHED: 2215 event.event = RDMA_CM_EVENT_ESTABLISHED; 2216 break; 2217 case IB_CM_DREQ_ERROR: 2218 event.status = -ETIMEDOUT; 2219 fallthrough; 2220 case IB_CM_DREQ_RECEIVED: 2221 case IB_CM_DREP_RECEIVED: 2222 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2223 RDMA_CM_DISCONNECT)) 2224 goto out; 2225 event.event = RDMA_CM_EVENT_DISCONNECTED; 2226 break; 2227 case IB_CM_TIMEWAIT_EXIT: 2228 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2229 break; 2230 case IB_CM_MRA_RECEIVED: 2231 /* ignore event */ 2232 goto out; 2233 case IB_CM_REJ_RECEIVED: 2234 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2235 ib_event->param.rej_rcvd.reason)); 2236 cma_modify_qp_err(id_priv); 2237 event.status = ib_event->param.rej_rcvd.reason; 2238 event.event = RDMA_CM_EVENT_REJECTED; 2239 event.param.conn.private_data = ib_event->private_data; 2240 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2241 break; 2242 default: 2243 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2244 ib_event->event); 2245 goto out; 2246 } 2247 2248 ret = cma_cm_event_handler(id_priv, &event); 2249 if (ret) { 2250 /* Destroy the CM ID by returning a non-zero value. */ 2251 id_priv->cm_id.ib = NULL; 2252 destroy_id_handler_unlock(id_priv); 2253 return ret; 2254 } 2255 out: 2256 mutex_unlock(&id_priv->handler_mutex); 2257 return 0; 2258 } 2259 2260 static struct rdma_id_private * 2261 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2262 const struct ib_cm_event *ib_event, 2263 struct net_device *net_dev) 2264 { 2265 struct rdma_id_private *listen_id_priv; 2266 struct rdma_id_private *id_priv; 2267 struct rdma_cm_id *id; 2268 struct rdma_route *rt; 2269 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2270 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2271 const __be64 service_id = 2272 ib_event->param.req_rcvd.primary_path->service_id; 2273 int ret; 2274 2275 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2276 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2277 listen_id->event_handler, listen_id->context, 2278 listen_id->ps, 2279 ib_event->param.req_rcvd.qp_type, 2280 listen_id_priv); 2281 if (IS_ERR(id_priv)) 2282 return NULL; 2283 2284 id = &id_priv->id; 2285 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2286 (struct sockaddr *)&id->route.addr.dst_addr, 2287 listen_id, ib_event, ss_family, service_id)) 2288 goto err; 2289 2290 rt = &id->route; 2291 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2292 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2293 sizeof(*rt->path_rec), GFP_KERNEL); 2294 if (!rt->path_rec) 2295 goto err; 2296 2297 rt->path_rec[0] = *path; 2298 if (rt->num_pri_alt_paths == 2) 2299 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2300 2301 if (net_dev) { 2302 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2303 } else { 2304 if (!cma_protocol_roce(listen_id) && 2305 cma_any_addr(cma_src_addr(id_priv))) { 2306 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2307 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2308 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2309 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2310 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2311 if (ret) 2312 goto err; 2313 } 2314 } 2315 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2316 2317 id_priv->state = RDMA_CM_CONNECT; 2318 return id_priv; 2319 2320 err: 2321 rdma_destroy_id(id); 2322 return NULL; 2323 } 2324 2325 static struct rdma_id_private * 2326 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2327 const struct ib_cm_event *ib_event, 2328 struct net_device *net_dev) 2329 { 2330 const struct rdma_id_private *listen_id_priv; 2331 struct rdma_id_private *id_priv; 2332 struct rdma_cm_id *id; 2333 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2334 struct net *net = listen_id->route.addr.dev_addr.net; 2335 int ret; 2336 2337 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2338 id_priv = __rdma_create_id(net, listen_id->event_handler, 2339 listen_id->context, listen_id->ps, IB_QPT_UD, 2340 listen_id_priv); 2341 if (IS_ERR(id_priv)) 2342 return NULL; 2343 2344 id = &id_priv->id; 2345 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2346 (struct sockaddr *)&id->route.addr.dst_addr, 2347 listen_id, ib_event, ss_family, 2348 ib_event->param.sidr_req_rcvd.service_id)) 2349 goto err; 2350 2351 if (net_dev) { 2352 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2353 } else { 2354 if (!cma_any_addr(cma_src_addr(id_priv))) { 2355 ret = cma_translate_addr(cma_src_addr(id_priv), 2356 &id->route.addr.dev_addr); 2357 if (ret) 2358 goto err; 2359 } 2360 } 2361 2362 id_priv->state = RDMA_CM_CONNECT; 2363 return id_priv; 2364 err: 2365 rdma_destroy_id(id); 2366 return NULL; 2367 } 2368 2369 static void cma_set_req_event_data(struct rdma_cm_event *event, 2370 const struct ib_cm_req_event_param *req_data, 2371 void *private_data, int offset) 2372 { 2373 event->param.conn.private_data = private_data + offset; 2374 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2375 event->param.conn.responder_resources = req_data->responder_resources; 2376 event->param.conn.initiator_depth = req_data->initiator_depth; 2377 event->param.conn.flow_control = req_data->flow_control; 2378 event->param.conn.retry_count = req_data->retry_count; 2379 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2380 event->param.conn.srq = req_data->srq; 2381 event->param.conn.qp_num = req_data->remote_qpn; 2382 2383 event->ece.vendor_id = req_data->ece.vendor_id; 2384 event->ece.attr_mod = req_data->ece.attr_mod; 2385 } 2386 2387 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2388 const struct ib_cm_event *ib_event) 2389 { 2390 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2391 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2392 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2393 (id->qp_type == IB_QPT_UD)) || 2394 (!id->qp_type)); 2395 } 2396 2397 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2398 const struct ib_cm_event *ib_event) 2399 { 2400 struct rdma_id_private *listen_id, *conn_id = NULL; 2401 struct rdma_cm_event event = {}; 2402 struct cma_req_info req = {}; 2403 struct net_device *net_dev; 2404 u8 offset; 2405 int ret; 2406 2407 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2408 if (IS_ERR(listen_id)) 2409 return PTR_ERR(listen_id); 2410 2411 trace_cm_req_handler(listen_id, ib_event->event); 2412 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2413 ret = -EINVAL; 2414 goto net_dev_put; 2415 } 2416 2417 mutex_lock(&listen_id->handler_mutex); 2418 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2419 ret = -ECONNABORTED; 2420 goto err_unlock; 2421 } 2422 2423 offset = cma_user_data_offset(listen_id); 2424 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2425 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2426 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2427 event.param.ud.private_data = ib_event->private_data + offset; 2428 event.param.ud.private_data_len = 2429 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2430 } else { 2431 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2432 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2433 ib_event->private_data, offset); 2434 } 2435 if (!conn_id) { 2436 ret = -ENOMEM; 2437 goto err_unlock; 2438 } 2439 2440 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2441 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2442 if (ret) { 2443 destroy_id_handler_unlock(conn_id); 2444 goto err_unlock; 2445 } 2446 2447 conn_id->cm_id.ib = cm_id; 2448 cm_id->context = conn_id; 2449 cm_id->cm_handler = cma_ib_handler; 2450 2451 ret = cma_cm_event_handler(conn_id, &event); 2452 if (ret) { 2453 /* Destroy the CM ID by returning a non-zero value. */ 2454 conn_id->cm_id.ib = NULL; 2455 mutex_unlock(&listen_id->handler_mutex); 2456 destroy_id_handler_unlock(conn_id); 2457 goto net_dev_put; 2458 } 2459 2460 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2461 conn_id->id.qp_type != IB_QPT_UD) { 2462 trace_cm_send_mra(cm_id->context); 2463 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2464 } 2465 mutex_unlock(&conn_id->handler_mutex); 2466 2467 err_unlock: 2468 mutex_unlock(&listen_id->handler_mutex); 2469 2470 net_dev_put: 2471 dev_put(net_dev); 2472 2473 return ret; 2474 } 2475 2476 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2477 { 2478 if (addr->sa_family == AF_IB) 2479 return ((struct sockaddr_ib *) addr)->sib_sid; 2480 2481 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2482 } 2483 EXPORT_SYMBOL(rdma_get_service_id); 2484 2485 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2486 union ib_gid *dgid) 2487 { 2488 struct rdma_addr *addr = &cm_id->route.addr; 2489 2490 if (!cm_id->device) { 2491 if (sgid) 2492 memset(sgid, 0, sizeof(*sgid)); 2493 if (dgid) 2494 memset(dgid, 0, sizeof(*dgid)); 2495 return; 2496 } 2497 2498 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2499 if (sgid) 2500 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2501 if (dgid) 2502 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2503 } else { 2504 if (sgid) 2505 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2506 if (dgid) 2507 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2508 } 2509 } 2510 EXPORT_SYMBOL(rdma_read_gids); 2511 2512 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2513 { 2514 struct rdma_id_private *id_priv = iw_id->context; 2515 struct rdma_cm_event event = {}; 2516 int ret = 0; 2517 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2518 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2519 2520 mutex_lock(&id_priv->handler_mutex); 2521 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2522 goto out; 2523 2524 switch (iw_event->event) { 2525 case IW_CM_EVENT_CLOSE: 2526 event.event = RDMA_CM_EVENT_DISCONNECTED; 2527 break; 2528 case IW_CM_EVENT_CONNECT_REPLY: 2529 memcpy(cma_src_addr(id_priv), laddr, 2530 rdma_addr_size(laddr)); 2531 memcpy(cma_dst_addr(id_priv), raddr, 2532 rdma_addr_size(raddr)); 2533 switch (iw_event->status) { 2534 case 0: 2535 event.event = RDMA_CM_EVENT_ESTABLISHED; 2536 event.param.conn.initiator_depth = iw_event->ird; 2537 event.param.conn.responder_resources = iw_event->ord; 2538 break; 2539 case -ECONNRESET: 2540 case -ECONNREFUSED: 2541 event.event = RDMA_CM_EVENT_REJECTED; 2542 break; 2543 case -ETIMEDOUT: 2544 event.event = RDMA_CM_EVENT_UNREACHABLE; 2545 break; 2546 default: 2547 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2548 break; 2549 } 2550 break; 2551 case IW_CM_EVENT_ESTABLISHED: 2552 event.event = RDMA_CM_EVENT_ESTABLISHED; 2553 event.param.conn.initiator_depth = iw_event->ird; 2554 event.param.conn.responder_resources = iw_event->ord; 2555 break; 2556 default: 2557 goto out; 2558 } 2559 2560 event.status = iw_event->status; 2561 event.param.conn.private_data = iw_event->private_data; 2562 event.param.conn.private_data_len = iw_event->private_data_len; 2563 ret = cma_cm_event_handler(id_priv, &event); 2564 if (ret) { 2565 /* Destroy the CM ID by returning a non-zero value. */ 2566 id_priv->cm_id.iw = NULL; 2567 destroy_id_handler_unlock(id_priv); 2568 return ret; 2569 } 2570 2571 out: 2572 mutex_unlock(&id_priv->handler_mutex); 2573 return ret; 2574 } 2575 2576 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2577 struct iw_cm_event *iw_event) 2578 { 2579 struct rdma_id_private *listen_id, *conn_id; 2580 struct rdma_cm_event event = {}; 2581 int ret = -ECONNABORTED; 2582 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2583 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2584 2585 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2586 event.param.conn.private_data = iw_event->private_data; 2587 event.param.conn.private_data_len = iw_event->private_data_len; 2588 event.param.conn.initiator_depth = iw_event->ird; 2589 event.param.conn.responder_resources = iw_event->ord; 2590 2591 listen_id = cm_id->context; 2592 2593 mutex_lock(&listen_id->handler_mutex); 2594 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2595 goto out; 2596 2597 /* Create a new RDMA id for the new IW CM ID */ 2598 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2599 listen_id->id.event_handler, 2600 listen_id->id.context, RDMA_PS_TCP, 2601 IB_QPT_RC, listen_id); 2602 if (IS_ERR(conn_id)) { 2603 ret = -ENOMEM; 2604 goto out; 2605 } 2606 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2607 conn_id->state = RDMA_CM_CONNECT; 2608 2609 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2610 if (ret) { 2611 mutex_unlock(&listen_id->handler_mutex); 2612 destroy_id_handler_unlock(conn_id); 2613 return ret; 2614 } 2615 2616 ret = cma_iw_acquire_dev(conn_id, listen_id); 2617 if (ret) { 2618 mutex_unlock(&listen_id->handler_mutex); 2619 destroy_id_handler_unlock(conn_id); 2620 return ret; 2621 } 2622 2623 conn_id->cm_id.iw = cm_id; 2624 cm_id->context = conn_id; 2625 cm_id->cm_handler = cma_iw_handler; 2626 2627 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2628 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2629 2630 ret = cma_cm_event_handler(conn_id, &event); 2631 if (ret) { 2632 /* User wants to destroy the CM ID */ 2633 conn_id->cm_id.iw = NULL; 2634 mutex_unlock(&listen_id->handler_mutex); 2635 destroy_id_handler_unlock(conn_id); 2636 return ret; 2637 } 2638 2639 mutex_unlock(&conn_id->handler_mutex); 2640 2641 out: 2642 mutex_unlock(&listen_id->handler_mutex); 2643 return ret; 2644 } 2645 2646 static int cma_ib_listen(struct rdma_id_private *id_priv) 2647 { 2648 struct sockaddr *addr; 2649 struct ib_cm_id *id; 2650 __be64 svc_id; 2651 2652 addr = cma_src_addr(id_priv); 2653 svc_id = rdma_get_service_id(&id_priv->id, addr); 2654 id = ib_cm_insert_listen(id_priv->id.device, 2655 cma_ib_req_handler, svc_id); 2656 if (IS_ERR(id)) 2657 return PTR_ERR(id); 2658 id_priv->cm_id.ib = id; 2659 2660 return 0; 2661 } 2662 2663 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2664 { 2665 int ret; 2666 struct iw_cm_id *id; 2667 2668 id = iw_create_cm_id(id_priv->id.device, 2669 iw_conn_req_handler, 2670 id_priv); 2671 if (IS_ERR(id)) 2672 return PTR_ERR(id); 2673 2674 mutex_lock(&id_priv->qp_mutex); 2675 id->tos = id_priv->tos; 2676 id->tos_set = id_priv->tos_set; 2677 mutex_unlock(&id_priv->qp_mutex); 2678 id->afonly = id_priv->afonly; 2679 id_priv->cm_id.iw = id; 2680 2681 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2682 rdma_addr_size(cma_src_addr(id_priv))); 2683 2684 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2685 2686 if (ret) { 2687 iw_destroy_cm_id(id_priv->cm_id.iw); 2688 id_priv->cm_id.iw = NULL; 2689 } 2690 2691 return ret; 2692 } 2693 2694 static int cma_listen_handler(struct rdma_cm_id *id, 2695 struct rdma_cm_event *event) 2696 { 2697 struct rdma_id_private *id_priv = id->context; 2698 2699 /* Listening IDs are always destroyed on removal */ 2700 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2701 return -1; 2702 2703 id->context = id_priv->id.context; 2704 id->event_handler = id_priv->id.event_handler; 2705 trace_cm_event_handler(id_priv, event); 2706 return id_priv->id.event_handler(id, event); 2707 } 2708 2709 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2710 struct cma_device *cma_dev, 2711 struct rdma_id_private **to_destroy) 2712 { 2713 struct rdma_id_private *dev_id_priv; 2714 struct net *net = id_priv->id.route.addr.dev_addr.net; 2715 int ret; 2716 2717 lockdep_assert_held(&lock); 2718 2719 *to_destroy = NULL; 2720 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2721 return 0; 2722 2723 dev_id_priv = 2724 __rdma_create_id(net, cma_listen_handler, id_priv, 2725 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2726 if (IS_ERR(dev_id_priv)) 2727 return PTR_ERR(dev_id_priv); 2728 2729 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2730 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2731 rdma_addr_size(cma_src_addr(id_priv))); 2732 2733 _cma_attach_to_dev(dev_id_priv, cma_dev); 2734 rdma_restrack_add(&dev_id_priv->res); 2735 cma_id_get(id_priv); 2736 dev_id_priv->internal_id = 1; 2737 dev_id_priv->afonly = id_priv->afonly; 2738 mutex_lock(&id_priv->qp_mutex); 2739 dev_id_priv->tos_set = id_priv->tos_set; 2740 dev_id_priv->tos = id_priv->tos; 2741 mutex_unlock(&id_priv->qp_mutex); 2742 2743 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2744 if (ret) 2745 goto err_listen; 2746 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2747 return 0; 2748 err_listen: 2749 /* Caller must destroy this after releasing lock */ 2750 *to_destroy = dev_id_priv; 2751 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2752 return ret; 2753 } 2754 2755 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2756 { 2757 struct rdma_id_private *to_destroy; 2758 struct cma_device *cma_dev; 2759 int ret; 2760 2761 mutex_lock(&lock); 2762 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2763 list_for_each_entry(cma_dev, &dev_list, list) { 2764 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2765 if (ret) { 2766 /* Prevent racing with cma_process_remove() */ 2767 if (to_destroy) 2768 list_del_init(&to_destroy->device_item); 2769 goto err_listen; 2770 } 2771 } 2772 mutex_unlock(&lock); 2773 return 0; 2774 2775 err_listen: 2776 _cma_cancel_listens(id_priv); 2777 mutex_unlock(&lock); 2778 if (to_destroy) 2779 rdma_destroy_id(&to_destroy->id); 2780 return ret; 2781 } 2782 2783 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2784 { 2785 struct rdma_id_private *id_priv; 2786 2787 id_priv = container_of(id, struct rdma_id_private, id); 2788 mutex_lock(&id_priv->qp_mutex); 2789 id_priv->tos = (u8) tos; 2790 id_priv->tos_set = true; 2791 mutex_unlock(&id_priv->qp_mutex); 2792 } 2793 EXPORT_SYMBOL(rdma_set_service_type); 2794 2795 /** 2796 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2797 * with a connection identifier. 2798 * @id: Communication identifier to associated with service type. 2799 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2800 * 2801 * This function should be called before rdma_connect() on active side, 2802 * and on passive side before rdma_accept(). It is applicable to primary 2803 * path only. The timeout will affect the local side of the QP, it is not 2804 * negotiated with remote side and zero disables the timer. In case it is 2805 * set before rdma_resolve_route, the value will also be used to determine 2806 * PacketLifeTime for RoCE. 2807 * 2808 * Return: 0 for success 2809 */ 2810 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2811 { 2812 struct rdma_id_private *id_priv; 2813 2814 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2815 return -EINVAL; 2816 2817 id_priv = container_of(id, struct rdma_id_private, id); 2818 mutex_lock(&id_priv->qp_mutex); 2819 id_priv->timeout = timeout; 2820 id_priv->timeout_set = true; 2821 mutex_unlock(&id_priv->qp_mutex); 2822 2823 return 0; 2824 } 2825 EXPORT_SYMBOL(rdma_set_ack_timeout); 2826 2827 /** 2828 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2829 * QP associated with a connection identifier. 2830 * @id: Communication identifier to associated with service type. 2831 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2832 * Timer Field" in the IBTA specification. 2833 * 2834 * This function should be called before rdma_connect() on active 2835 * side, and on passive side before rdma_accept(). The timer value 2836 * will be associated with the local QP. When it receives a send it is 2837 * not read to handle, typically if the receive queue is empty, an RNR 2838 * Retry NAK is returned to the requester with the min_rnr_timer 2839 * encoded. The requester will then wait at least the time specified 2840 * in the NAK before retrying. The default is zero, which translates 2841 * to a minimum RNR Timer value of 655 ms. 2842 * 2843 * Return: 0 for success 2844 */ 2845 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2846 { 2847 struct rdma_id_private *id_priv; 2848 2849 /* It is a five-bit value */ 2850 if (min_rnr_timer & 0xe0) 2851 return -EINVAL; 2852 2853 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2854 return -EINVAL; 2855 2856 id_priv = container_of(id, struct rdma_id_private, id); 2857 mutex_lock(&id_priv->qp_mutex); 2858 id_priv->min_rnr_timer = min_rnr_timer; 2859 id_priv->min_rnr_timer_set = true; 2860 mutex_unlock(&id_priv->qp_mutex); 2861 2862 return 0; 2863 } 2864 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2865 2866 static int route_set_path_rec_inbound(struct cma_work *work, 2867 struct sa_path_rec *path_rec) 2868 { 2869 struct rdma_route *route = &work->id->id.route; 2870 2871 if (!route->path_rec_inbound) { 2872 route->path_rec_inbound = 2873 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2874 if (!route->path_rec_inbound) 2875 return -ENOMEM; 2876 } 2877 2878 *route->path_rec_inbound = *path_rec; 2879 return 0; 2880 } 2881 2882 static int route_set_path_rec_outbound(struct cma_work *work, 2883 struct sa_path_rec *path_rec) 2884 { 2885 struct rdma_route *route = &work->id->id.route; 2886 2887 if (!route->path_rec_outbound) { 2888 route->path_rec_outbound = 2889 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2890 if (!route->path_rec_outbound) 2891 return -ENOMEM; 2892 } 2893 2894 *route->path_rec_outbound = *path_rec; 2895 return 0; 2896 } 2897 2898 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2899 unsigned int num_prs, void *context) 2900 { 2901 struct cma_work *work = context; 2902 struct rdma_route *route; 2903 int i; 2904 2905 route = &work->id->id.route; 2906 2907 if (status) 2908 goto fail; 2909 2910 for (i = 0; i < num_prs; i++) { 2911 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2912 *route->path_rec = path_rec[i]; 2913 else if (path_rec[i].flags & IB_PATH_INBOUND) 2914 status = route_set_path_rec_inbound(work, &path_rec[i]); 2915 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2916 status = route_set_path_rec_outbound(work, 2917 &path_rec[i]); 2918 else 2919 status = -EINVAL; 2920 2921 if (status) 2922 goto fail; 2923 } 2924 2925 route->num_pri_alt_paths = 1; 2926 queue_work(cma_wq, &work->work); 2927 return; 2928 2929 fail: 2930 work->old_state = RDMA_CM_ROUTE_QUERY; 2931 work->new_state = RDMA_CM_ADDR_RESOLVED; 2932 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2933 work->event.status = status; 2934 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2935 status); 2936 queue_work(cma_wq, &work->work); 2937 } 2938 2939 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2940 unsigned long timeout_ms, struct cma_work *work) 2941 { 2942 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2943 struct sa_path_rec path_rec; 2944 ib_sa_comp_mask comp_mask; 2945 struct sockaddr_in6 *sin6; 2946 struct sockaddr_ib *sib; 2947 2948 memset(&path_rec, 0, sizeof path_rec); 2949 2950 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2951 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2952 else 2953 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2954 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2955 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2956 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2957 path_rec.numb_path = 1; 2958 path_rec.reversible = 1; 2959 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2960 cma_dst_addr(id_priv)); 2961 2962 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2963 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2964 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2965 2966 switch (cma_family(id_priv)) { 2967 case AF_INET: 2968 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2969 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2970 break; 2971 case AF_INET6: 2972 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2973 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2974 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2975 break; 2976 case AF_IB: 2977 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2978 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2979 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2980 break; 2981 } 2982 2983 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2984 id_priv->id.port_num, &path_rec, 2985 comp_mask, timeout_ms, 2986 GFP_KERNEL, cma_query_handler, 2987 work, &id_priv->query); 2988 2989 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2990 } 2991 2992 static void cma_iboe_join_work_handler(struct work_struct *work) 2993 { 2994 struct cma_multicast *mc = 2995 container_of(work, struct cma_multicast, iboe_join.work); 2996 struct rdma_cm_event *event = &mc->iboe_join.event; 2997 struct rdma_id_private *id_priv = mc->id_priv; 2998 int ret; 2999 3000 mutex_lock(&id_priv->handler_mutex); 3001 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3002 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3003 goto out_unlock; 3004 3005 ret = cma_cm_event_handler(id_priv, event); 3006 WARN_ON(ret); 3007 3008 out_unlock: 3009 mutex_unlock(&id_priv->handler_mutex); 3010 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 3011 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 3012 } 3013 3014 static void cma_work_handler(struct work_struct *_work) 3015 { 3016 struct cma_work *work = container_of(_work, struct cma_work, work); 3017 struct rdma_id_private *id_priv = work->id; 3018 3019 mutex_lock(&id_priv->handler_mutex); 3020 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3021 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3022 goto out_unlock; 3023 if (work->old_state != 0 || work->new_state != 0) { 3024 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3025 goto out_unlock; 3026 } 3027 3028 if (cma_cm_event_handler(id_priv, &work->event)) { 3029 cma_id_put(id_priv); 3030 destroy_id_handler_unlock(id_priv); 3031 goto out_free; 3032 } 3033 3034 out_unlock: 3035 mutex_unlock(&id_priv->handler_mutex); 3036 cma_id_put(id_priv); 3037 out_free: 3038 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3039 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3040 kfree(work); 3041 } 3042 3043 static void cma_init_resolve_route_work(struct cma_work *work, 3044 struct rdma_id_private *id_priv) 3045 { 3046 work->id = id_priv; 3047 INIT_WORK(&work->work, cma_work_handler); 3048 work->old_state = RDMA_CM_ROUTE_QUERY; 3049 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3050 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3051 } 3052 3053 static void enqueue_resolve_addr_work(struct cma_work *work, 3054 struct rdma_id_private *id_priv) 3055 { 3056 /* Balances with cma_id_put() in cma_work_handler */ 3057 cma_id_get(id_priv); 3058 3059 work->id = id_priv; 3060 INIT_WORK(&work->work, cma_work_handler); 3061 work->old_state = RDMA_CM_ADDR_QUERY; 3062 work->new_state = RDMA_CM_ADDR_RESOLVED; 3063 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3064 3065 queue_work(cma_wq, &work->work); 3066 } 3067 3068 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3069 unsigned long timeout_ms) 3070 { 3071 struct rdma_route *route = &id_priv->id.route; 3072 struct cma_work *work; 3073 int ret; 3074 3075 work = kzalloc(sizeof *work, GFP_KERNEL); 3076 if (!work) 3077 return -ENOMEM; 3078 3079 cma_init_resolve_route_work(work, id_priv); 3080 3081 if (!route->path_rec) 3082 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3083 if (!route->path_rec) { 3084 ret = -ENOMEM; 3085 goto err1; 3086 } 3087 3088 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3089 if (ret) 3090 goto err2; 3091 3092 return 0; 3093 err2: 3094 kfree(route->path_rec); 3095 route->path_rec = NULL; 3096 err1: 3097 kfree(work); 3098 return ret; 3099 } 3100 3101 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3102 unsigned long supported_gids, 3103 enum ib_gid_type default_gid) 3104 { 3105 if ((network_type == RDMA_NETWORK_IPV4 || 3106 network_type == RDMA_NETWORK_IPV6) && 3107 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3108 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3109 3110 return default_gid; 3111 } 3112 3113 /* 3114 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3115 * path record type based on GID type. 3116 * It also sets up other L2 fields which includes destination mac address 3117 * netdev ifindex, of the path record. 3118 * It returns the netdev of the bound interface for this path record entry. 3119 */ 3120 static struct net_device * 3121 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3122 { 3123 struct rdma_route *route = &id_priv->id.route; 3124 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3125 struct rdma_addr *addr = &route->addr; 3126 unsigned long supported_gids; 3127 struct net_device *ndev; 3128 3129 if (!addr->dev_addr.bound_dev_if) 3130 return NULL; 3131 3132 ndev = dev_get_by_index(addr->dev_addr.net, 3133 addr->dev_addr.bound_dev_if); 3134 if (!ndev) 3135 return NULL; 3136 3137 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3138 id_priv->id.port_num); 3139 gid_type = cma_route_gid_type(addr->dev_addr.network, 3140 supported_gids, 3141 id_priv->gid_type); 3142 /* Use the hint from IP Stack to select GID Type */ 3143 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3144 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3145 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3146 3147 route->path_rec->roce.route_resolved = true; 3148 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3149 return ndev; 3150 } 3151 3152 int rdma_set_ib_path(struct rdma_cm_id *id, 3153 struct sa_path_rec *path_rec) 3154 { 3155 struct rdma_id_private *id_priv; 3156 struct net_device *ndev; 3157 int ret; 3158 3159 id_priv = container_of(id, struct rdma_id_private, id); 3160 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3161 RDMA_CM_ROUTE_RESOLVED)) 3162 return -EINVAL; 3163 3164 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3165 GFP_KERNEL); 3166 if (!id->route.path_rec) { 3167 ret = -ENOMEM; 3168 goto err; 3169 } 3170 3171 if (rdma_protocol_roce(id->device, id->port_num)) { 3172 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3173 if (!ndev) { 3174 ret = -ENODEV; 3175 goto err_free; 3176 } 3177 dev_put(ndev); 3178 } 3179 3180 id->route.num_pri_alt_paths = 1; 3181 return 0; 3182 3183 err_free: 3184 kfree(id->route.path_rec); 3185 id->route.path_rec = NULL; 3186 err: 3187 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3188 return ret; 3189 } 3190 EXPORT_SYMBOL(rdma_set_ib_path); 3191 3192 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3193 { 3194 struct cma_work *work; 3195 3196 work = kzalloc(sizeof *work, GFP_KERNEL); 3197 if (!work) 3198 return -ENOMEM; 3199 3200 cma_init_resolve_route_work(work, id_priv); 3201 queue_work(cma_wq, &work->work); 3202 return 0; 3203 } 3204 3205 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3206 { 3207 struct net_device *dev; 3208 3209 dev = vlan_dev_real_dev(vlan_ndev); 3210 if (dev->num_tc) 3211 return netdev_get_prio_tc_map(dev, prio); 3212 3213 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3214 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3215 } 3216 3217 struct iboe_prio_tc_map { 3218 int input_prio; 3219 int output_tc; 3220 bool found; 3221 }; 3222 3223 static int get_lower_vlan_dev_tc(struct net_device *dev, 3224 struct netdev_nested_priv *priv) 3225 { 3226 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3227 3228 if (is_vlan_dev(dev)) 3229 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3230 else if (dev->num_tc) 3231 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3232 else 3233 map->output_tc = 0; 3234 /* We are interested only in first level VLAN device, so always 3235 * return 1 to stop iterating over next level devices. 3236 */ 3237 map->found = true; 3238 return 1; 3239 } 3240 3241 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3242 { 3243 struct iboe_prio_tc_map prio_tc_map = {}; 3244 int prio = rt_tos2priority(tos); 3245 struct netdev_nested_priv priv; 3246 3247 /* If VLAN device, get it directly from the VLAN netdev */ 3248 if (is_vlan_dev(ndev)) 3249 return get_vlan_ndev_tc(ndev, prio); 3250 3251 prio_tc_map.input_prio = prio; 3252 priv.data = (void *)&prio_tc_map; 3253 rcu_read_lock(); 3254 netdev_walk_all_lower_dev_rcu(ndev, 3255 get_lower_vlan_dev_tc, 3256 &priv); 3257 rcu_read_unlock(); 3258 /* If map is found from lower device, use it; Otherwise 3259 * continue with the current netdevice to get priority to tc map. 3260 */ 3261 if (prio_tc_map.found) 3262 return prio_tc_map.output_tc; 3263 else if (ndev->num_tc) 3264 return netdev_get_prio_tc_map(ndev, prio); 3265 else 3266 return 0; 3267 } 3268 3269 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3270 { 3271 struct sockaddr_in6 *addr6; 3272 u16 dport, sport; 3273 u32 hash, fl; 3274 3275 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3276 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3277 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3278 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3279 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3280 hash = (u32)sport * 31 + dport; 3281 fl = hash & IB_GRH_FLOWLABEL_MASK; 3282 } 3283 3284 return cpu_to_be32(fl); 3285 } 3286 3287 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3288 { 3289 struct rdma_route *route = &id_priv->id.route; 3290 struct rdma_addr *addr = &route->addr; 3291 struct cma_work *work; 3292 int ret; 3293 struct net_device *ndev; 3294 3295 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3296 rdma_start_port(id_priv->cma_dev->device)]; 3297 u8 tos; 3298 3299 mutex_lock(&id_priv->qp_mutex); 3300 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3301 mutex_unlock(&id_priv->qp_mutex); 3302 3303 work = kzalloc(sizeof *work, GFP_KERNEL); 3304 if (!work) 3305 return -ENOMEM; 3306 3307 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3308 if (!route->path_rec) { 3309 ret = -ENOMEM; 3310 goto err1; 3311 } 3312 3313 route->num_pri_alt_paths = 1; 3314 3315 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3316 if (!ndev) { 3317 ret = -ENODEV; 3318 goto err2; 3319 } 3320 3321 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3322 &route->path_rec->sgid); 3323 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3324 &route->path_rec->dgid); 3325 3326 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3327 /* TODO: get the hoplimit from the inet/inet6 device */ 3328 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3329 else 3330 route->path_rec->hop_limit = 1; 3331 route->path_rec->reversible = 1; 3332 route->path_rec->pkey = cpu_to_be16(0xffff); 3333 route->path_rec->mtu_selector = IB_SA_EQ; 3334 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3335 route->path_rec->traffic_class = tos; 3336 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3337 route->path_rec->rate_selector = IB_SA_EQ; 3338 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3339 dev_put(ndev); 3340 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3341 /* In case ACK timeout is set, use this value to calculate 3342 * PacketLifeTime. As per IBTA 12.7.34, 3343 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3344 * Assuming a negligible local ACK delay, we can use 3345 * PacketLifeTime = local ACK timeout/2 3346 * as a reasonable approximation for RoCE networks. 3347 */ 3348 mutex_lock(&id_priv->qp_mutex); 3349 if (id_priv->timeout_set && id_priv->timeout) 3350 route->path_rec->packet_life_time = id_priv->timeout - 1; 3351 else 3352 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3353 mutex_unlock(&id_priv->qp_mutex); 3354 3355 if (!route->path_rec->mtu) { 3356 ret = -EINVAL; 3357 goto err2; 3358 } 3359 3360 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3361 id_priv->id.port_num)) 3362 route->path_rec->flow_label = 3363 cma_get_roce_udp_flow_label(id_priv); 3364 3365 cma_init_resolve_route_work(work, id_priv); 3366 queue_work(cma_wq, &work->work); 3367 3368 return 0; 3369 3370 err2: 3371 kfree(route->path_rec); 3372 route->path_rec = NULL; 3373 route->num_pri_alt_paths = 0; 3374 err1: 3375 kfree(work); 3376 return ret; 3377 } 3378 3379 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3380 { 3381 struct rdma_id_private *id_priv; 3382 int ret; 3383 3384 if (!timeout_ms) 3385 return -EINVAL; 3386 3387 id_priv = container_of(id, struct rdma_id_private, id); 3388 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3389 return -EINVAL; 3390 3391 cma_id_get(id_priv); 3392 if (rdma_cap_ib_sa(id->device, id->port_num)) 3393 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3394 else if (rdma_protocol_roce(id->device, id->port_num)) { 3395 ret = cma_resolve_iboe_route(id_priv); 3396 if (!ret) 3397 cma_add_id_to_tree(id_priv); 3398 } 3399 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3400 ret = cma_resolve_iw_route(id_priv); 3401 else 3402 ret = -ENOSYS; 3403 3404 if (ret) 3405 goto err; 3406 3407 return 0; 3408 err: 3409 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3410 cma_id_put(id_priv); 3411 return ret; 3412 } 3413 EXPORT_SYMBOL(rdma_resolve_route); 3414 3415 static void cma_set_loopback(struct sockaddr *addr) 3416 { 3417 switch (addr->sa_family) { 3418 case AF_INET: 3419 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3420 break; 3421 case AF_INET6: 3422 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3423 0, 0, 0, htonl(1)); 3424 break; 3425 default: 3426 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3427 0, 0, 0, htonl(1)); 3428 break; 3429 } 3430 } 3431 3432 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3433 { 3434 struct cma_device *cma_dev, *cur_dev; 3435 union ib_gid gid; 3436 enum ib_port_state port_state; 3437 unsigned int p; 3438 u16 pkey; 3439 int ret; 3440 3441 cma_dev = NULL; 3442 mutex_lock(&lock); 3443 list_for_each_entry(cur_dev, &dev_list, list) { 3444 if (cma_family(id_priv) == AF_IB && 3445 !rdma_cap_ib_cm(cur_dev->device, 1)) 3446 continue; 3447 3448 if (!cma_dev) 3449 cma_dev = cur_dev; 3450 3451 rdma_for_each_port (cur_dev->device, p) { 3452 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3453 port_state == IB_PORT_ACTIVE) { 3454 cma_dev = cur_dev; 3455 goto port_found; 3456 } 3457 } 3458 } 3459 3460 if (!cma_dev) { 3461 ret = -ENODEV; 3462 goto out; 3463 } 3464 3465 p = 1; 3466 3467 port_found: 3468 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3469 if (ret) 3470 goto out; 3471 3472 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3473 if (ret) 3474 goto out; 3475 3476 id_priv->id.route.addr.dev_addr.dev_type = 3477 (rdma_protocol_ib(cma_dev->device, p)) ? 3478 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3479 3480 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3481 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3482 id_priv->id.port_num = p; 3483 cma_attach_to_dev(id_priv, cma_dev); 3484 rdma_restrack_add(&id_priv->res); 3485 cma_set_loopback(cma_src_addr(id_priv)); 3486 out: 3487 mutex_unlock(&lock); 3488 return ret; 3489 } 3490 3491 static void addr_handler(int status, struct sockaddr *src_addr, 3492 struct rdma_dev_addr *dev_addr, void *context) 3493 { 3494 struct rdma_id_private *id_priv = context; 3495 struct rdma_cm_event event = {}; 3496 struct sockaddr *addr; 3497 struct sockaddr_storage old_addr; 3498 3499 mutex_lock(&id_priv->handler_mutex); 3500 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3501 RDMA_CM_ADDR_RESOLVED)) 3502 goto out; 3503 3504 /* 3505 * Store the previous src address, so that if we fail to acquire 3506 * matching rdma device, old address can be restored back, which helps 3507 * to cancel the cma listen operation correctly. 3508 */ 3509 addr = cma_src_addr(id_priv); 3510 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3511 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3512 if (!status && !id_priv->cma_dev) { 3513 status = cma_acquire_dev_by_src_ip(id_priv); 3514 if (status) 3515 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3516 status); 3517 rdma_restrack_add(&id_priv->res); 3518 } else if (status) { 3519 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3520 } 3521 3522 if (status) { 3523 memcpy(addr, &old_addr, 3524 rdma_addr_size((struct sockaddr *)&old_addr)); 3525 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3526 RDMA_CM_ADDR_BOUND)) 3527 goto out; 3528 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3529 event.status = status; 3530 } else 3531 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3532 3533 if (cma_cm_event_handler(id_priv, &event)) { 3534 destroy_id_handler_unlock(id_priv); 3535 return; 3536 } 3537 out: 3538 mutex_unlock(&id_priv->handler_mutex); 3539 } 3540 3541 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3542 { 3543 struct cma_work *work; 3544 union ib_gid gid; 3545 int ret; 3546 3547 work = kzalloc(sizeof *work, GFP_KERNEL); 3548 if (!work) 3549 return -ENOMEM; 3550 3551 if (!id_priv->cma_dev) { 3552 ret = cma_bind_loopback(id_priv); 3553 if (ret) 3554 goto err; 3555 } 3556 3557 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3558 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3559 3560 enqueue_resolve_addr_work(work, id_priv); 3561 return 0; 3562 err: 3563 kfree(work); 3564 return ret; 3565 } 3566 3567 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3568 { 3569 struct cma_work *work; 3570 int ret; 3571 3572 work = kzalloc(sizeof *work, GFP_KERNEL); 3573 if (!work) 3574 return -ENOMEM; 3575 3576 if (!id_priv->cma_dev) { 3577 ret = cma_resolve_ib_dev(id_priv); 3578 if (ret) 3579 goto err; 3580 } 3581 3582 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3583 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3584 3585 enqueue_resolve_addr_work(work, id_priv); 3586 return 0; 3587 err: 3588 kfree(work); 3589 return ret; 3590 } 3591 3592 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3593 { 3594 struct rdma_id_private *id_priv; 3595 unsigned long flags; 3596 int ret; 3597 3598 id_priv = container_of(id, struct rdma_id_private, id); 3599 spin_lock_irqsave(&id_priv->lock, flags); 3600 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3601 id_priv->state == RDMA_CM_IDLE) { 3602 id_priv->reuseaddr = reuse; 3603 ret = 0; 3604 } else { 3605 ret = -EINVAL; 3606 } 3607 spin_unlock_irqrestore(&id_priv->lock, flags); 3608 return ret; 3609 } 3610 EXPORT_SYMBOL(rdma_set_reuseaddr); 3611 3612 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3613 { 3614 struct rdma_id_private *id_priv; 3615 unsigned long flags; 3616 int ret; 3617 3618 id_priv = container_of(id, struct rdma_id_private, id); 3619 spin_lock_irqsave(&id_priv->lock, flags); 3620 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3621 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3622 id_priv->afonly = afonly; 3623 ret = 0; 3624 } else { 3625 ret = -EINVAL; 3626 } 3627 spin_unlock_irqrestore(&id_priv->lock, flags); 3628 return ret; 3629 } 3630 EXPORT_SYMBOL(rdma_set_afonly); 3631 3632 static void cma_bind_port(struct rdma_bind_list *bind_list, 3633 struct rdma_id_private *id_priv) 3634 { 3635 struct sockaddr *addr; 3636 struct sockaddr_ib *sib; 3637 u64 sid, mask; 3638 __be16 port; 3639 3640 lockdep_assert_held(&lock); 3641 3642 addr = cma_src_addr(id_priv); 3643 port = htons(bind_list->port); 3644 3645 switch (addr->sa_family) { 3646 case AF_INET: 3647 ((struct sockaddr_in *) addr)->sin_port = port; 3648 break; 3649 case AF_INET6: 3650 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3651 break; 3652 case AF_IB: 3653 sib = (struct sockaddr_ib *) addr; 3654 sid = be64_to_cpu(sib->sib_sid); 3655 mask = be64_to_cpu(sib->sib_sid_mask); 3656 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3657 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3658 break; 3659 } 3660 id_priv->bind_list = bind_list; 3661 hlist_add_head(&id_priv->node, &bind_list->owners); 3662 } 3663 3664 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3665 struct rdma_id_private *id_priv, unsigned short snum) 3666 { 3667 struct rdma_bind_list *bind_list; 3668 int ret; 3669 3670 lockdep_assert_held(&lock); 3671 3672 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3673 if (!bind_list) 3674 return -ENOMEM; 3675 3676 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3677 snum); 3678 if (ret < 0) 3679 goto err; 3680 3681 bind_list->ps = ps; 3682 bind_list->port = snum; 3683 cma_bind_port(bind_list, id_priv); 3684 return 0; 3685 err: 3686 kfree(bind_list); 3687 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3688 } 3689 3690 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3691 struct rdma_id_private *id_priv) 3692 { 3693 struct rdma_id_private *cur_id; 3694 struct sockaddr *daddr = cma_dst_addr(id_priv); 3695 struct sockaddr *saddr = cma_src_addr(id_priv); 3696 __be16 dport = cma_port(daddr); 3697 3698 lockdep_assert_held(&lock); 3699 3700 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3701 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3702 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3703 __be16 cur_dport = cma_port(cur_daddr); 3704 3705 if (id_priv == cur_id) 3706 continue; 3707 3708 /* different dest port -> unique */ 3709 if (!cma_any_port(daddr) && 3710 !cma_any_port(cur_daddr) && 3711 (dport != cur_dport)) 3712 continue; 3713 3714 /* different src address -> unique */ 3715 if (!cma_any_addr(saddr) && 3716 !cma_any_addr(cur_saddr) && 3717 cma_addr_cmp(saddr, cur_saddr)) 3718 continue; 3719 3720 /* different dst address -> unique */ 3721 if (!cma_any_addr(daddr) && 3722 !cma_any_addr(cur_daddr) && 3723 cma_addr_cmp(daddr, cur_daddr)) 3724 continue; 3725 3726 return -EADDRNOTAVAIL; 3727 } 3728 return 0; 3729 } 3730 3731 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3732 struct rdma_id_private *id_priv) 3733 { 3734 static unsigned int last_used_port; 3735 int low, high, remaining; 3736 unsigned int rover; 3737 struct net *net = id_priv->id.route.addr.dev_addr.net; 3738 3739 lockdep_assert_held(&lock); 3740 3741 inet_get_local_port_range(net, &low, &high); 3742 remaining = (high - low) + 1; 3743 rover = get_random_u32_inclusive(low, remaining + low - 1); 3744 retry: 3745 if (last_used_port != rover) { 3746 struct rdma_bind_list *bind_list; 3747 int ret; 3748 3749 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3750 3751 if (!bind_list) { 3752 ret = cma_alloc_port(ps, id_priv, rover); 3753 } else { 3754 ret = cma_port_is_unique(bind_list, id_priv); 3755 if (!ret) 3756 cma_bind_port(bind_list, id_priv); 3757 } 3758 /* 3759 * Remember previously used port number in order to avoid 3760 * re-using same port immediately after it is closed. 3761 */ 3762 if (!ret) 3763 last_used_port = rover; 3764 if (ret != -EADDRNOTAVAIL) 3765 return ret; 3766 } 3767 if (--remaining) { 3768 rover++; 3769 if ((rover < low) || (rover > high)) 3770 rover = low; 3771 goto retry; 3772 } 3773 return -EADDRNOTAVAIL; 3774 } 3775 3776 /* 3777 * Check that the requested port is available. This is called when trying to 3778 * bind to a specific port, or when trying to listen on a bound port. In 3779 * the latter case, the provided id_priv may already be on the bind_list, but 3780 * we still need to check that it's okay to start listening. 3781 */ 3782 static int cma_check_port(struct rdma_bind_list *bind_list, 3783 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3784 { 3785 struct rdma_id_private *cur_id; 3786 struct sockaddr *addr, *cur_addr; 3787 3788 lockdep_assert_held(&lock); 3789 3790 addr = cma_src_addr(id_priv); 3791 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3792 if (id_priv == cur_id) 3793 continue; 3794 3795 if (reuseaddr && cur_id->reuseaddr) 3796 continue; 3797 3798 cur_addr = cma_src_addr(cur_id); 3799 if (id_priv->afonly && cur_id->afonly && 3800 (addr->sa_family != cur_addr->sa_family)) 3801 continue; 3802 3803 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3804 return -EADDRNOTAVAIL; 3805 3806 if (!cma_addr_cmp(addr, cur_addr)) 3807 return -EADDRINUSE; 3808 } 3809 return 0; 3810 } 3811 3812 static int cma_use_port(enum rdma_ucm_port_space ps, 3813 struct rdma_id_private *id_priv) 3814 { 3815 struct rdma_bind_list *bind_list; 3816 unsigned short snum; 3817 int ret; 3818 3819 lockdep_assert_held(&lock); 3820 3821 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3822 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3823 return -EACCES; 3824 3825 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3826 if (!bind_list) { 3827 ret = cma_alloc_port(ps, id_priv, snum); 3828 } else { 3829 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3830 if (!ret) 3831 cma_bind_port(bind_list, id_priv); 3832 } 3833 return ret; 3834 } 3835 3836 static enum rdma_ucm_port_space 3837 cma_select_inet_ps(struct rdma_id_private *id_priv) 3838 { 3839 switch (id_priv->id.ps) { 3840 case RDMA_PS_TCP: 3841 case RDMA_PS_UDP: 3842 case RDMA_PS_IPOIB: 3843 case RDMA_PS_IB: 3844 return id_priv->id.ps; 3845 default: 3846 3847 return 0; 3848 } 3849 } 3850 3851 static enum rdma_ucm_port_space 3852 cma_select_ib_ps(struct rdma_id_private *id_priv) 3853 { 3854 enum rdma_ucm_port_space ps = 0; 3855 struct sockaddr_ib *sib; 3856 u64 sid_ps, mask, sid; 3857 3858 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3859 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3860 sid = be64_to_cpu(sib->sib_sid) & mask; 3861 3862 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3863 sid_ps = RDMA_IB_IP_PS_IB; 3864 ps = RDMA_PS_IB; 3865 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3866 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3867 sid_ps = RDMA_IB_IP_PS_TCP; 3868 ps = RDMA_PS_TCP; 3869 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3870 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3871 sid_ps = RDMA_IB_IP_PS_UDP; 3872 ps = RDMA_PS_UDP; 3873 } 3874 3875 if (ps) { 3876 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3877 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3878 be64_to_cpu(sib->sib_sid_mask)); 3879 } 3880 return ps; 3881 } 3882 3883 static int cma_get_port(struct rdma_id_private *id_priv) 3884 { 3885 enum rdma_ucm_port_space ps; 3886 int ret; 3887 3888 if (cma_family(id_priv) != AF_IB) 3889 ps = cma_select_inet_ps(id_priv); 3890 else 3891 ps = cma_select_ib_ps(id_priv); 3892 if (!ps) 3893 return -EPROTONOSUPPORT; 3894 3895 mutex_lock(&lock); 3896 if (cma_any_port(cma_src_addr(id_priv))) 3897 ret = cma_alloc_any_port(ps, id_priv); 3898 else 3899 ret = cma_use_port(ps, id_priv); 3900 mutex_unlock(&lock); 3901 3902 return ret; 3903 } 3904 3905 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3906 struct sockaddr *addr) 3907 { 3908 #if IS_ENABLED(CONFIG_IPV6) 3909 struct sockaddr_in6 *sin6; 3910 3911 if (addr->sa_family != AF_INET6) 3912 return 0; 3913 3914 sin6 = (struct sockaddr_in6 *) addr; 3915 3916 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3917 return 0; 3918 3919 if (!sin6->sin6_scope_id) 3920 return -EINVAL; 3921 3922 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3923 #endif 3924 return 0; 3925 } 3926 3927 int rdma_listen(struct rdma_cm_id *id, int backlog) 3928 { 3929 struct rdma_id_private *id_priv = 3930 container_of(id, struct rdma_id_private, id); 3931 int ret; 3932 3933 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3934 struct sockaddr_in any_in = { 3935 .sin_family = AF_INET, 3936 .sin_addr.s_addr = htonl(INADDR_ANY), 3937 }; 3938 3939 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3940 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3941 if (ret) 3942 return ret; 3943 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3944 RDMA_CM_LISTEN))) 3945 return -EINVAL; 3946 } 3947 3948 /* 3949 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3950 * any more, and has to be unique in the bind list. 3951 */ 3952 if (id_priv->reuseaddr) { 3953 mutex_lock(&lock); 3954 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3955 if (!ret) 3956 id_priv->reuseaddr = 0; 3957 mutex_unlock(&lock); 3958 if (ret) 3959 goto err; 3960 } 3961 3962 id_priv->backlog = backlog; 3963 if (id_priv->cma_dev) { 3964 if (rdma_cap_ib_cm(id->device, 1)) { 3965 ret = cma_ib_listen(id_priv); 3966 if (ret) 3967 goto err; 3968 } else if (rdma_cap_iw_cm(id->device, 1)) { 3969 ret = cma_iw_listen(id_priv, backlog); 3970 if (ret) 3971 goto err; 3972 } else { 3973 ret = -ENOSYS; 3974 goto err; 3975 } 3976 } else { 3977 ret = cma_listen_on_all(id_priv); 3978 if (ret) 3979 goto err; 3980 } 3981 3982 return 0; 3983 err: 3984 id_priv->backlog = 0; 3985 /* 3986 * All the failure paths that lead here will not allow the req_handler's 3987 * to have run. 3988 */ 3989 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3990 return ret; 3991 } 3992 EXPORT_SYMBOL(rdma_listen); 3993 3994 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 3995 struct sockaddr *addr, const struct sockaddr *daddr) 3996 { 3997 struct sockaddr *id_daddr; 3998 int ret; 3999 4000 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 4001 addr->sa_family != AF_IB) 4002 return -EAFNOSUPPORT; 4003 4004 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 4005 return -EINVAL; 4006 4007 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 4008 if (ret) 4009 goto err1; 4010 4011 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 4012 if (!cma_any_addr(addr)) { 4013 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 4014 if (ret) 4015 goto err1; 4016 4017 ret = cma_acquire_dev_by_src_ip(id_priv); 4018 if (ret) 4019 goto err1; 4020 } 4021 4022 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4023 if (addr->sa_family == AF_INET) 4024 id_priv->afonly = 1; 4025 #if IS_ENABLED(CONFIG_IPV6) 4026 else if (addr->sa_family == AF_INET6) { 4027 struct net *net = id_priv->id.route.addr.dev_addr.net; 4028 4029 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4030 } 4031 #endif 4032 } 4033 id_daddr = cma_dst_addr(id_priv); 4034 if (daddr != id_daddr) 4035 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4036 id_daddr->sa_family = addr->sa_family; 4037 4038 ret = cma_get_port(id_priv); 4039 if (ret) 4040 goto err2; 4041 4042 if (!cma_any_addr(addr)) 4043 rdma_restrack_add(&id_priv->res); 4044 return 0; 4045 err2: 4046 if (id_priv->cma_dev) 4047 cma_release_dev(id_priv); 4048 err1: 4049 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4050 return ret; 4051 } 4052 4053 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4054 const struct sockaddr *dst_addr) 4055 { 4056 struct rdma_id_private *id_priv = 4057 container_of(id, struct rdma_id_private, id); 4058 struct sockaddr_storage zero_sock = {}; 4059 4060 if (src_addr && src_addr->sa_family) 4061 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4062 4063 /* 4064 * When the src_addr is not specified, automatically supply an any addr 4065 */ 4066 zero_sock.ss_family = dst_addr->sa_family; 4067 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4068 struct sockaddr_in6 *src_addr6 = 4069 (struct sockaddr_in6 *)&zero_sock; 4070 struct sockaddr_in6 *dst_addr6 = 4071 (struct sockaddr_in6 *)dst_addr; 4072 4073 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4074 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4075 id->route.addr.dev_addr.bound_dev_if = 4076 dst_addr6->sin6_scope_id; 4077 } else if (dst_addr->sa_family == AF_IB) { 4078 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4079 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4080 } 4081 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4082 } 4083 4084 /* 4085 * If required, resolve the source address for bind and leave the id_priv in 4086 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4087 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4088 * ignored. 4089 */ 4090 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4091 struct sockaddr *src_addr, 4092 const struct sockaddr *dst_addr) 4093 { 4094 int ret; 4095 4096 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4097 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4098 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4099 if (ret) 4100 return ret; 4101 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4102 RDMA_CM_ADDR_QUERY))) 4103 return -EINVAL; 4104 4105 } else { 4106 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4107 } 4108 4109 if (cma_family(id_priv) != dst_addr->sa_family) { 4110 ret = -EINVAL; 4111 goto err_state; 4112 } 4113 return 0; 4114 4115 err_state: 4116 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4117 return ret; 4118 } 4119 4120 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4121 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4122 { 4123 struct rdma_id_private *id_priv = 4124 container_of(id, struct rdma_id_private, id); 4125 int ret; 4126 4127 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4128 if (ret) 4129 return ret; 4130 4131 if (cma_any_addr(dst_addr)) { 4132 ret = cma_resolve_loopback(id_priv); 4133 } else { 4134 if (dst_addr->sa_family == AF_IB) { 4135 ret = cma_resolve_ib_addr(id_priv); 4136 } else { 4137 /* 4138 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4139 * rdma_resolve_ip() is called, eg through the error 4140 * path in addr_handler(). If this happens the existing 4141 * request must be canceled before issuing a new one. 4142 * Since canceling a request is a bit slow and this 4143 * oddball path is rare, keep track once a request has 4144 * been issued. The track turns out to be a permanent 4145 * state since this is the only cancel as it is 4146 * immediately before rdma_resolve_ip(). 4147 */ 4148 if (id_priv->used_resolve_ip) 4149 rdma_addr_cancel(&id->route.addr.dev_addr); 4150 else 4151 id_priv->used_resolve_ip = 1; 4152 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4153 &id->route.addr.dev_addr, 4154 timeout_ms, addr_handler, 4155 false, id_priv); 4156 } 4157 } 4158 if (ret) 4159 goto err; 4160 4161 return 0; 4162 err: 4163 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4164 return ret; 4165 } 4166 EXPORT_SYMBOL(rdma_resolve_addr); 4167 4168 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4169 { 4170 struct rdma_id_private *id_priv = 4171 container_of(id, struct rdma_id_private, id); 4172 4173 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4174 } 4175 EXPORT_SYMBOL(rdma_bind_addr); 4176 4177 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4178 { 4179 struct cma_hdr *cma_hdr; 4180 4181 cma_hdr = hdr; 4182 cma_hdr->cma_version = CMA_VERSION; 4183 if (cma_family(id_priv) == AF_INET) { 4184 struct sockaddr_in *src4, *dst4; 4185 4186 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4187 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4188 4189 cma_set_ip_ver(cma_hdr, 4); 4190 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4191 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4192 cma_hdr->port = src4->sin_port; 4193 } else if (cma_family(id_priv) == AF_INET6) { 4194 struct sockaddr_in6 *src6, *dst6; 4195 4196 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4197 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4198 4199 cma_set_ip_ver(cma_hdr, 6); 4200 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4201 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4202 cma_hdr->port = src6->sin6_port; 4203 } 4204 return 0; 4205 } 4206 4207 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4208 const struct ib_cm_event *ib_event) 4209 { 4210 struct rdma_id_private *id_priv = cm_id->context; 4211 struct rdma_cm_event event = {}; 4212 const struct ib_cm_sidr_rep_event_param *rep = 4213 &ib_event->param.sidr_rep_rcvd; 4214 int ret; 4215 4216 mutex_lock(&id_priv->handler_mutex); 4217 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4218 goto out; 4219 4220 switch (ib_event->event) { 4221 case IB_CM_SIDR_REQ_ERROR: 4222 event.event = RDMA_CM_EVENT_UNREACHABLE; 4223 event.status = -ETIMEDOUT; 4224 break; 4225 case IB_CM_SIDR_REP_RECEIVED: 4226 event.param.ud.private_data = ib_event->private_data; 4227 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4228 if (rep->status != IB_SIDR_SUCCESS) { 4229 event.event = RDMA_CM_EVENT_UNREACHABLE; 4230 event.status = ib_event->param.sidr_rep_rcvd.status; 4231 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4232 event.status); 4233 break; 4234 } 4235 ret = cma_set_qkey(id_priv, rep->qkey); 4236 if (ret) { 4237 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4238 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4239 event.status = ret; 4240 break; 4241 } 4242 ib_init_ah_attr_from_path(id_priv->id.device, 4243 id_priv->id.port_num, 4244 id_priv->id.route.path_rec, 4245 &event.param.ud.ah_attr, 4246 rep->sgid_attr); 4247 event.param.ud.qp_num = rep->qpn; 4248 event.param.ud.qkey = rep->qkey; 4249 event.event = RDMA_CM_EVENT_ESTABLISHED; 4250 event.status = 0; 4251 break; 4252 default: 4253 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4254 ib_event->event); 4255 goto out; 4256 } 4257 4258 ret = cma_cm_event_handler(id_priv, &event); 4259 4260 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4261 if (ret) { 4262 /* Destroy the CM ID by returning a non-zero value. */ 4263 id_priv->cm_id.ib = NULL; 4264 destroy_id_handler_unlock(id_priv); 4265 return ret; 4266 } 4267 out: 4268 mutex_unlock(&id_priv->handler_mutex); 4269 return 0; 4270 } 4271 4272 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4273 struct rdma_conn_param *conn_param) 4274 { 4275 struct ib_cm_sidr_req_param req; 4276 struct ib_cm_id *id; 4277 void *private_data; 4278 u8 offset; 4279 int ret; 4280 4281 memset(&req, 0, sizeof req); 4282 offset = cma_user_data_offset(id_priv); 4283 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4284 return -EINVAL; 4285 4286 if (req.private_data_len) { 4287 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4288 if (!private_data) 4289 return -ENOMEM; 4290 } else { 4291 private_data = NULL; 4292 } 4293 4294 if (conn_param->private_data && conn_param->private_data_len) 4295 memcpy(private_data + offset, conn_param->private_data, 4296 conn_param->private_data_len); 4297 4298 if (private_data) { 4299 ret = cma_format_hdr(private_data, id_priv); 4300 if (ret) 4301 goto out; 4302 req.private_data = private_data; 4303 } 4304 4305 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4306 id_priv); 4307 if (IS_ERR(id)) { 4308 ret = PTR_ERR(id); 4309 goto out; 4310 } 4311 id_priv->cm_id.ib = id; 4312 4313 req.path = id_priv->id.route.path_rec; 4314 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4315 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4316 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4317 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4318 4319 trace_cm_send_sidr_req(id_priv); 4320 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4321 if (ret) { 4322 ib_destroy_cm_id(id_priv->cm_id.ib); 4323 id_priv->cm_id.ib = NULL; 4324 } 4325 out: 4326 kfree(private_data); 4327 return ret; 4328 } 4329 4330 static int cma_connect_ib(struct rdma_id_private *id_priv, 4331 struct rdma_conn_param *conn_param) 4332 { 4333 struct ib_cm_req_param req; 4334 struct rdma_route *route; 4335 void *private_data; 4336 struct ib_cm_id *id; 4337 u8 offset; 4338 int ret; 4339 4340 memset(&req, 0, sizeof req); 4341 offset = cma_user_data_offset(id_priv); 4342 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4343 return -EINVAL; 4344 4345 if (req.private_data_len) { 4346 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4347 if (!private_data) 4348 return -ENOMEM; 4349 } else { 4350 private_data = NULL; 4351 } 4352 4353 if (conn_param->private_data && conn_param->private_data_len) 4354 memcpy(private_data + offset, conn_param->private_data, 4355 conn_param->private_data_len); 4356 4357 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4358 if (IS_ERR(id)) { 4359 ret = PTR_ERR(id); 4360 goto out; 4361 } 4362 id_priv->cm_id.ib = id; 4363 4364 route = &id_priv->id.route; 4365 if (private_data) { 4366 ret = cma_format_hdr(private_data, id_priv); 4367 if (ret) 4368 goto out; 4369 req.private_data = private_data; 4370 } 4371 4372 req.primary_path = &route->path_rec[0]; 4373 req.primary_path_inbound = route->path_rec_inbound; 4374 req.primary_path_outbound = route->path_rec_outbound; 4375 if (route->num_pri_alt_paths == 2) 4376 req.alternate_path = &route->path_rec[1]; 4377 4378 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4379 /* Alternate path SGID attribute currently unsupported */ 4380 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4381 req.qp_num = id_priv->qp_num; 4382 req.qp_type = id_priv->id.qp_type; 4383 req.starting_psn = id_priv->seq_num; 4384 req.responder_resources = conn_param->responder_resources; 4385 req.initiator_depth = conn_param->initiator_depth; 4386 req.flow_control = conn_param->flow_control; 4387 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4388 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4389 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4390 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4391 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4392 req.srq = id_priv->srq ? 1 : 0; 4393 req.ece.vendor_id = id_priv->ece.vendor_id; 4394 req.ece.attr_mod = id_priv->ece.attr_mod; 4395 4396 trace_cm_send_req(id_priv); 4397 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4398 out: 4399 if (ret && !IS_ERR(id)) { 4400 ib_destroy_cm_id(id); 4401 id_priv->cm_id.ib = NULL; 4402 } 4403 4404 kfree(private_data); 4405 return ret; 4406 } 4407 4408 static int cma_connect_iw(struct rdma_id_private *id_priv, 4409 struct rdma_conn_param *conn_param) 4410 { 4411 struct iw_cm_id *cm_id; 4412 int ret; 4413 struct iw_cm_conn_param iw_param; 4414 4415 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4416 if (IS_ERR(cm_id)) 4417 return PTR_ERR(cm_id); 4418 4419 mutex_lock(&id_priv->qp_mutex); 4420 cm_id->tos = id_priv->tos; 4421 cm_id->tos_set = id_priv->tos_set; 4422 mutex_unlock(&id_priv->qp_mutex); 4423 4424 id_priv->cm_id.iw = cm_id; 4425 4426 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4427 rdma_addr_size(cma_src_addr(id_priv))); 4428 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4429 rdma_addr_size(cma_dst_addr(id_priv))); 4430 4431 ret = cma_modify_qp_rtr(id_priv, conn_param); 4432 if (ret) 4433 goto out; 4434 4435 if (conn_param) { 4436 iw_param.ord = conn_param->initiator_depth; 4437 iw_param.ird = conn_param->responder_resources; 4438 iw_param.private_data = conn_param->private_data; 4439 iw_param.private_data_len = conn_param->private_data_len; 4440 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4441 } else { 4442 memset(&iw_param, 0, sizeof iw_param); 4443 iw_param.qpn = id_priv->qp_num; 4444 } 4445 ret = iw_cm_connect(cm_id, &iw_param); 4446 out: 4447 if (ret) { 4448 iw_destroy_cm_id(cm_id); 4449 id_priv->cm_id.iw = NULL; 4450 } 4451 return ret; 4452 } 4453 4454 /** 4455 * rdma_connect_locked - Initiate an active connection request. 4456 * @id: Connection identifier to connect. 4457 * @conn_param: Connection information used for connected QPs. 4458 * 4459 * Same as rdma_connect() but can only be called from the 4460 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4461 */ 4462 int rdma_connect_locked(struct rdma_cm_id *id, 4463 struct rdma_conn_param *conn_param) 4464 { 4465 struct rdma_id_private *id_priv = 4466 container_of(id, struct rdma_id_private, id); 4467 int ret; 4468 4469 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4470 return -EINVAL; 4471 4472 if (!id->qp) { 4473 id_priv->qp_num = conn_param->qp_num; 4474 id_priv->srq = conn_param->srq; 4475 } 4476 4477 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4478 if (id->qp_type == IB_QPT_UD) 4479 ret = cma_resolve_ib_udp(id_priv, conn_param); 4480 else 4481 ret = cma_connect_ib(id_priv, conn_param); 4482 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4483 ret = cma_connect_iw(id_priv, conn_param); 4484 } else { 4485 ret = -ENOSYS; 4486 } 4487 if (ret) 4488 goto err_state; 4489 return 0; 4490 err_state: 4491 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4492 return ret; 4493 } 4494 EXPORT_SYMBOL(rdma_connect_locked); 4495 4496 /** 4497 * rdma_connect - Initiate an active connection request. 4498 * @id: Connection identifier to connect. 4499 * @conn_param: Connection information used for connected QPs. 4500 * 4501 * Users must have resolved a route for the rdma_cm_id to connect with by having 4502 * called rdma_resolve_route before calling this routine. 4503 * 4504 * This call will either connect to a remote QP or obtain remote QP information 4505 * for unconnected rdma_cm_id's. The actual operation is based on the 4506 * rdma_cm_id's port space. 4507 */ 4508 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4509 { 4510 struct rdma_id_private *id_priv = 4511 container_of(id, struct rdma_id_private, id); 4512 int ret; 4513 4514 mutex_lock(&id_priv->handler_mutex); 4515 ret = rdma_connect_locked(id, conn_param); 4516 mutex_unlock(&id_priv->handler_mutex); 4517 return ret; 4518 } 4519 EXPORT_SYMBOL(rdma_connect); 4520 4521 /** 4522 * rdma_connect_ece - Initiate an active connection request with ECE data. 4523 * @id: Connection identifier to connect. 4524 * @conn_param: Connection information used for connected QPs. 4525 * @ece: ECE parameters 4526 * 4527 * See rdma_connect() explanation. 4528 */ 4529 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4530 struct rdma_ucm_ece *ece) 4531 { 4532 struct rdma_id_private *id_priv = 4533 container_of(id, struct rdma_id_private, id); 4534 4535 id_priv->ece.vendor_id = ece->vendor_id; 4536 id_priv->ece.attr_mod = ece->attr_mod; 4537 4538 return rdma_connect(id, conn_param); 4539 } 4540 EXPORT_SYMBOL(rdma_connect_ece); 4541 4542 static int cma_accept_ib(struct rdma_id_private *id_priv, 4543 struct rdma_conn_param *conn_param) 4544 { 4545 struct ib_cm_rep_param rep; 4546 int ret; 4547 4548 ret = cma_modify_qp_rtr(id_priv, conn_param); 4549 if (ret) 4550 goto out; 4551 4552 ret = cma_modify_qp_rts(id_priv, conn_param); 4553 if (ret) 4554 goto out; 4555 4556 memset(&rep, 0, sizeof rep); 4557 rep.qp_num = id_priv->qp_num; 4558 rep.starting_psn = id_priv->seq_num; 4559 rep.private_data = conn_param->private_data; 4560 rep.private_data_len = conn_param->private_data_len; 4561 rep.responder_resources = conn_param->responder_resources; 4562 rep.initiator_depth = conn_param->initiator_depth; 4563 rep.failover_accepted = 0; 4564 rep.flow_control = conn_param->flow_control; 4565 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4566 rep.srq = id_priv->srq ? 1 : 0; 4567 rep.ece.vendor_id = id_priv->ece.vendor_id; 4568 rep.ece.attr_mod = id_priv->ece.attr_mod; 4569 4570 trace_cm_send_rep(id_priv); 4571 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4572 out: 4573 return ret; 4574 } 4575 4576 static int cma_accept_iw(struct rdma_id_private *id_priv, 4577 struct rdma_conn_param *conn_param) 4578 { 4579 struct iw_cm_conn_param iw_param; 4580 int ret; 4581 4582 if (!conn_param) 4583 return -EINVAL; 4584 4585 ret = cma_modify_qp_rtr(id_priv, conn_param); 4586 if (ret) 4587 return ret; 4588 4589 iw_param.ord = conn_param->initiator_depth; 4590 iw_param.ird = conn_param->responder_resources; 4591 iw_param.private_data = conn_param->private_data; 4592 iw_param.private_data_len = conn_param->private_data_len; 4593 if (id_priv->id.qp) 4594 iw_param.qpn = id_priv->qp_num; 4595 else 4596 iw_param.qpn = conn_param->qp_num; 4597 4598 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4599 } 4600 4601 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4602 enum ib_cm_sidr_status status, u32 qkey, 4603 const void *private_data, int private_data_len) 4604 { 4605 struct ib_cm_sidr_rep_param rep; 4606 int ret; 4607 4608 memset(&rep, 0, sizeof rep); 4609 rep.status = status; 4610 if (status == IB_SIDR_SUCCESS) { 4611 if (qkey) 4612 ret = cma_set_qkey(id_priv, qkey); 4613 else 4614 ret = cma_set_default_qkey(id_priv); 4615 if (ret) 4616 return ret; 4617 rep.qp_num = id_priv->qp_num; 4618 rep.qkey = id_priv->qkey; 4619 4620 rep.ece.vendor_id = id_priv->ece.vendor_id; 4621 rep.ece.attr_mod = id_priv->ece.attr_mod; 4622 } 4623 4624 rep.private_data = private_data; 4625 rep.private_data_len = private_data_len; 4626 4627 trace_cm_send_sidr_rep(id_priv); 4628 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4629 } 4630 4631 /** 4632 * rdma_accept - Called to accept a connection request or response. 4633 * @id: Connection identifier associated with the request. 4634 * @conn_param: Information needed to establish the connection. This must be 4635 * provided if accepting a connection request. If accepting a connection 4636 * response, this parameter must be NULL. 4637 * 4638 * Typically, this routine is only called by the listener to accept a connection 4639 * request. It must also be called on the active side of a connection if the 4640 * user is performing their own QP transitions. 4641 * 4642 * In the case of error, a reject message is sent to the remote side and the 4643 * state of the qp associated with the id is modified to error, such that any 4644 * previously posted receive buffers would be flushed. 4645 * 4646 * This function is for use by kernel ULPs and must be called from under the 4647 * handler callback. 4648 */ 4649 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4650 { 4651 struct rdma_id_private *id_priv = 4652 container_of(id, struct rdma_id_private, id); 4653 int ret; 4654 4655 lockdep_assert_held(&id_priv->handler_mutex); 4656 4657 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4658 return -EINVAL; 4659 4660 if (!id->qp && conn_param) { 4661 id_priv->qp_num = conn_param->qp_num; 4662 id_priv->srq = conn_param->srq; 4663 } 4664 4665 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4666 if (id->qp_type == IB_QPT_UD) { 4667 if (conn_param) 4668 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4669 conn_param->qkey, 4670 conn_param->private_data, 4671 conn_param->private_data_len); 4672 else 4673 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4674 0, NULL, 0); 4675 } else { 4676 if (conn_param) 4677 ret = cma_accept_ib(id_priv, conn_param); 4678 else 4679 ret = cma_rep_recv(id_priv); 4680 } 4681 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4682 ret = cma_accept_iw(id_priv, conn_param); 4683 } else { 4684 ret = -ENOSYS; 4685 } 4686 if (ret) 4687 goto reject; 4688 4689 return 0; 4690 reject: 4691 cma_modify_qp_err(id_priv); 4692 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4693 return ret; 4694 } 4695 EXPORT_SYMBOL(rdma_accept); 4696 4697 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4698 struct rdma_ucm_ece *ece) 4699 { 4700 struct rdma_id_private *id_priv = 4701 container_of(id, struct rdma_id_private, id); 4702 4703 id_priv->ece.vendor_id = ece->vendor_id; 4704 id_priv->ece.attr_mod = ece->attr_mod; 4705 4706 return rdma_accept(id, conn_param); 4707 } 4708 EXPORT_SYMBOL(rdma_accept_ece); 4709 4710 void rdma_lock_handler(struct rdma_cm_id *id) 4711 { 4712 struct rdma_id_private *id_priv = 4713 container_of(id, struct rdma_id_private, id); 4714 4715 mutex_lock(&id_priv->handler_mutex); 4716 } 4717 EXPORT_SYMBOL(rdma_lock_handler); 4718 4719 void rdma_unlock_handler(struct rdma_cm_id *id) 4720 { 4721 struct rdma_id_private *id_priv = 4722 container_of(id, struct rdma_id_private, id); 4723 4724 mutex_unlock(&id_priv->handler_mutex); 4725 } 4726 EXPORT_SYMBOL(rdma_unlock_handler); 4727 4728 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4729 { 4730 struct rdma_id_private *id_priv; 4731 int ret; 4732 4733 id_priv = container_of(id, struct rdma_id_private, id); 4734 if (!id_priv->cm_id.ib) 4735 return -EINVAL; 4736 4737 switch (id->device->node_type) { 4738 case RDMA_NODE_IB_CA: 4739 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4740 break; 4741 default: 4742 ret = 0; 4743 break; 4744 } 4745 return ret; 4746 } 4747 EXPORT_SYMBOL(rdma_notify); 4748 4749 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4750 u8 private_data_len, u8 reason) 4751 { 4752 struct rdma_id_private *id_priv; 4753 int ret; 4754 4755 id_priv = container_of(id, struct rdma_id_private, id); 4756 if (!id_priv->cm_id.ib) 4757 return -EINVAL; 4758 4759 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4760 if (id->qp_type == IB_QPT_UD) { 4761 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4762 private_data, private_data_len); 4763 } else { 4764 trace_cm_send_rej(id_priv); 4765 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4766 private_data, private_data_len); 4767 } 4768 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4769 ret = iw_cm_reject(id_priv->cm_id.iw, 4770 private_data, private_data_len); 4771 } else { 4772 ret = -ENOSYS; 4773 } 4774 4775 return ret; 4776 } 4777 EXPORT_SYMBOL(rdma_reject); 4778 4779 int rdma_disconnect(struct rdma_cm_id *id) 4780 { 4781 struct rdma_id_private *id_priv; 4782 int ret; 4783 4784 id_priv = container_of(id, struct rdma_id_private, id); 4785 if (!id_priv->cm_id.ib) 4786 return -EINVAL; 4787 4788 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4789 ret = cma_modify_qp_err(id_priv); 4790 if (ret) 4791 goto out; 4792 /* Initiate or respond to a disconnect. */ 4793 trace_cm_disconnect(id_priv); 4794 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4795 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4796 trace_cm_sent_drep(id_priv); 4797 } else { 4798 trace_cm_sent_dreq(id_priv); 4799 } 4800 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4801 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4802 } else 4803 ret = -EINVAL; 4804 4805 out: 4806 return ret; 4807 } 4808 EXPORT_SYMBOL(rdma_disconnect); 4809 4810 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4811 struct ib_sa_multicast *multicast, 4812 struct rdma_cm_event *event, 4813 struct cma_multicast *mc) 4814 { 4815 struct rdma_dev_addr *dev_addr; 4816 enum ib_gid_type gid_type; 4817 struct net_device *ndev; 4818 4819 if (status) 4820 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4821 status); 4822 4823 event->status = status; 4824 event->param.ud.private_data = mc->context; 4825 if (status) { 4826 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4827 return; 4828 } 4829 4830 dev_addr = &id_priv->id.route.addr.dev_addr; 4831 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4832 gid_type = 4833 id_priv->cma_dev 4834 ->default_gid_type[id_priv->id.port_num - 4835 rdma_start_port( 4836 id_priv->cma_dev->device)]; 4837 4838 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4839 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4840 &multicast->rec, ndev, gid_type, 4841 &event->param.ud.ah_attr)) { 4842 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4843 goto out; 4844 } 4845 4846 event->param.ud.qp_num = 0xFFFFFF; 4847 event->param.ud.qkey = id_priv->qkey; 4848 4849 out: 4850 dev_put(ndev); 4851 } 4852 4853 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4854 { 4855 struct cma_multicast *mc = multicast->context; 4856 struct rdma_id_private *id_priv = mc->id_priv; 4857 struct rdma_cm_event event = {}; 4858 int ret = 0; 4859 4860 mutex_lock(&id_priv->handler_mutex); 4861 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4862 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4863 goto out; 4864 4865 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4866 if (!ret) { 4867 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4868 ret = cma_cm_event_handler(id_priv, &event); 4869 } 4870 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4871 WARN_ON(ret); 4872 4873 out: 4874 mutex_unlock(&id_priv->handler_mutex); 4875 return 0; 4876 } 4877 4878 static void cma_set_mgid(struct rdma_id_private *id_priv, 4879 struct sockaddr *addr, union ib_gid *mgid) 4880 { 4881 unsigned char mc_map[MAX_ADDR_LEN]; 4882 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4883 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4884 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4885 4886 if (cma_any_addr(addr)) { 4887 memset(mgid, 0, sizeof *mgid); 4888 } else if ((addr->sa_family == AF_INET6) && 4889 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4890 0xFF10A01B)) { 4891 /* IPv6 address is an SA assigned MGID. */ 4892 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4893 } else if (addr->sa_family == AF_IB) { 4894 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4895 } else if (addr->sa_family == AF_INET6) { 4896 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4897 if (id_priv->id.ps == RDMA_PS_UDP) 4898 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4899 *mgid = *(union ib_gid *) (mc_map + 4); 4900 } else { 4901 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4902 if (id_priv->id.ps == RDMA_PS_UDP) 4903 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4904 *mgid = *(union ib_gid *) (mc_map + 4); 4905 } 4906 } 4907 4908 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4909 struct cma_multicast *mc) 4910 { 4911 struct ib_sa_mcmember_rec rec; 4912 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4913 ib_sa_comp_mask comp_mask; 4914 int ret; 4915 4916 ib_addr_get_mgid(dev_addr, &rec.mgid); 4917 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4918 &rec.mgid, &rec); 4919 if (ret) 4920 return ret; 4921 4922 if (!id_priv->qkey) { 4923 ret = cma_set_default_qkey(id_priv); 4924 if (ret) 4925 return ret; 4926 } 4927 4928 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4929 rec.qkey = cpu_to_be32(id_priv->qkey); 4930 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4931 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4932 rec.join_state = mc->join_state; 4933 4934 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4935 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4936 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4937 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4938 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4939 4940 if (id_priv->id.ps == RDMA_PS_IPOIB) 4941 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4942 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4943 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4944 IB_SA_MCMEMBER_REC_MTU | 4945 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4946 4947 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4948 id_priv->id.port_num, &rec, comp_mask, 4949 GFP_KERNEL, cma_ib_mc_handler, mc); 4950 return PTR_ERR_OR_ZERO(mc->sa_mc); 4951 } 4952 4953 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4954 enum ib_gid_type gid_type) 4955 { 4956 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4957 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4958 4959 if (cma_any_addr(addr)) { 4960 memset(mgid, 0, sizeof *mgid); 4961 } else if (addr->sa_family == AF_INET6) { 4962 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4963 } else { 4964 mgid->raw[0] = 4965 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4966 mgid->raw[1] = 4967 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4968 mgid->raw[2] = 0; 4969 mgid->raw[3] = 0; 4970 mgid->raw[4] = 0; 4971 mgid->raw[5] = 0; 4972 mgid->raw[6] = 0; 4973 mgid->raw[7] = 0; 4974 mgid->raw[8] = 0; 4975 mgid->raw[9] = 0; 4976 mgid->raw[10] = 0xff; 4977 mgid->raw[11] = 0xff; 4978 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4979 } 4980 } 4981 4982 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4983 struct cma_multicast *mc) 4984 { 4985 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4986 int err = 0; 4987 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4988 struct net_device *ndev = NULL; 4989 struct ib_sa_multicast ib = {}; 4990 enum ib_gid_type gid_type; 4991 bool send_only; 4992 4993 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4994 4995 if (cma_zero_addr(addr)) 4996 return -EINVAL; 4997 4998 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4999 rdma_start_port(id_priv->cma_dev->device)]; 5000 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 5001 5002 ib.rec.pkey = cpu_to_be16(0xffff); 5003 if (dev_addr->bound_dev_if) 5004 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 5005 if (!ndev) 5006 return -ENODEV; 5007 5008 ib.rec.rate = IB_RATE_PORT_CURRENT; 5009 ib.rec.hop_limit = 1; 5010 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 5011 5012 if (addr->sa_family == AF_INET) { 5013 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 5014 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 5015 if (!send_only) { 5016 err = cma_igmp_send(ndev, &ib.rec.mgid, 5017 true); 5018 } 5019 } 5020 } else { 5021 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5022 err = -ENOTSUPP; 5023 } 5024 dev_put(ndev); 5025 if (err || !ib.rec.mtu) 5026 return err ?: -EINVAL; 5027 5028 if (!id_priv->qkey) 5029 cma_set_default_qkey(id_priv); 5030 5031 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5032 &ib.rec.port_gid); 5033 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5034 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5035 queue_work(cma_wq, &mc->iboe_join.work); 5036 return 0; 5037 } 5038 5039 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5040 u8 join_state, void *context) 5041 { 5042 struct rdma_id_private *id_priv = 5043 container_of(id, struct rdma_id_private, id); 5044 struct cma_multicast *mc; 5045 int ret; 5046 5047 /* Not supported for kernel QPs */ 5048 if (WARN_ON(id->qp)) 5049 return -EINVAL; 5050 5051 /* ULP is calling this wrong. */ 5052 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5053 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5054 return -EINVAL; 5055 5056 if (id_priv->id.qp_type != IB_QPT_UD) 5057 return -EINVAL; 5058 5059 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5060 if (!mc) 5061 return -ENOMEM; 5062 5063 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5064 mc->context = context; 5065 mc->id_priv = id_priv; 5066 mc->join_state = join_state; 5067 5068 if (rdma_protocol_roce(id->device, id->port_num)) { 5069 ret = cma_iboe_join_multicast(id_priv, mc); 5070 if (ret) 5071 goto out_err; 5072 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5073 ret = cma_join_ib_multicast(id_priv, mc); 5074 if (ret) 5075 goto out_err; 5076 } else { 5077 ret = -ENOSYS; 5078 goto out_err; 5079 } 5080 5081 spin_lock(&id_priv->lock); 5082 list_add(&mc->list, &id_priv->mc_list); 5083 spin_unlock(&id_priv->lock); 5084 5085 return 0; 5086 out_err: 5087 kfree(mc); 5088 return ret; 5089 } 5090 EXPORT_SYMBOL(rdma_join_multicast); 5091 5092 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5093 { 5094 struct rdma_id_private *id_priv; 5095 struct cma_multicast *mc; 5096 5097 id_priv = container_of(id, struct rdma_id_private, id); 5098 spin_lock_irq(&id_priv->lock); 5099 list_for_each_entry(mc, &id_priv->mc_list, list) { 5100 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5101 continue; 5102 list_del(&mc->list); 5103 spin_unlock_irq(&id_priv->lock); 5104 5105 WARN_ON(id_priv->cma_dev->device != id->device); 5106 destroy_mc(id_priv, mc); 5107 return; 5108 } 5109 spin_unlock_irq(&id_priv->lock); 5110 } 5111 EXPORT_SYMBOL(rdma_leave_multicast); 5112 5113 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5114 { 5115 struct rdma_dev_addr *dev_addr; 5116 struct cma_work *work; 5117 5118 dev_addr = &id_priv->id.route.addr.dev_addr; 5119 5120 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5121 (net_eq(dev_net(ndev), dev_addr->net)) && 5122 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5123 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5124 ndev->name, &id_priv->id); 5125 work = kzalloc(sizeof *work, GFP_KERNEL); 5126 if (!work) 5127 return -ENOMEM; 5128 5129 INIT_WORK(&work->work, cma_work_handler); 5130 work->id = id_priv; 5131 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5132 cma_id_get(id_priv); 5133 queue_work(cma_wq, &work->work); 5134 } 5135 5136 return 0; 5137 } 5138 5139 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5140 void *ptr) 5141 { 5142 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5143 struct cma_device *cma_dev; 5144 struct rdma_id_private *id_priv; 5145 int ret = NOTIFY_DONE; 5146 5147 if (event != NETDEV_BONDING_FAILOVER) 5148 return NOTIFY_DONE; 5149 5150 if (!netif_is_bond_master(ndev)) 5151 return NOTIFY_DONE; 5152 5153 mutex_lock(&lock); 5154 list_for_each_entry(cma_dev, &dev_list, list) 5155 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5156 ret = cma_netdev_change(ndev, id_priv); 5157 if (ret) 5158 goto out; 5159 } 5160 5161 out: 5162 mutex_unlock(&lock); 5163 return ret; 5164 } 5165 5166 static void cma_netevent_work_handler(struct work_struct *_work) 5167 { 5168 struct rdma_id_private *id_priv = 5169 container_of(_work, struct rdma_id_private, id.net_work); 5170 struct rdma_cm_event event = {}; 5171 5172 mutex_lock(&id_priv->handler_mutex); 5173 5174 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5175 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5176 goto out_unlock; 5177 5178 event.event = RDMA_CM_EVENT_UNREACHABLE; 5179 event.status = -ETIMEDOUT; 5180 5181 if (cma_cm_event_handler(id_priv, &event)) { 5182 __acquire(&id_priv->handler_mutex); 5183 id_priv->cm_id.ib = NULL; 5184 cma_id_put(id_priv); 5185 destroy_id_handler_unlock(id_priv); 5186 return; 5187 } 5188 5189 out_unlock: 5190 mutex_unlock(&id_priv->handler_mutex); 5191 cma_id_put(id_priv); 5192 } 5193 5194 static int cma_netevent_callback(struct notifier_block *self, 5195 unsigned long event, void *ctx) 5196 { 5197 struct id_table_entry *ips_node = NULL; 5198 struct rdma_id_private *current_id; 5199 struct neighbour *neigh = ctx; 5200 unsigned long flags; 5201 5202 if (event != NETEVENT_NEIGH_UPDATE) 5203 return NOTIFY_DONE; 5204 5205 spin_lock_irqsave(&id_table_lock, flags); 5206 if (neigh->tbl->family == AF_INET6) { 5207 struct sockaddr_in6 neigh_sock_6; 5208 5209 neigh_sock_6.sin6_family = AF_INET6; 5210 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5211 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5212 (struct sockaddr *)&neigh_sock_6); 5213 } else if (neigh->tbl->family == AF_INET) { 5214 struct sockaddr_in neigh_sock_4; 5215 5216 neigh_sock_4.sin_family = AF_INET; 5217 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5218 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5219 (struct sockaddr *)&neigh_sock_4); 5220 } else 5221 goto out; 5222 5223 if (!ips_node) 5224 goto out; 5225 5226 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5227 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5228 neigh->ha, ETH_ALEN)) 5229 continue; 5230 INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler); 5231 cma_id_get(current_id); 5232 queue_work(cma_wq, ¤t_id->id.net_work); 5233 } 5234 out: 5235 spin_unlock_irqrestore(&id_table_lock, flags); 5236 return NOTIFY_DONE; 5237 } 5238 5239 static struct notifier_block cma_nb = { 5240 .notifier_call = cma_netdev_callback 5241 }; 5242 5243 static struct notifier_block cma_netevent_cb = { 5244 .notifier_call = cma_netevent_callback 5245 }; 5246 5247 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5248 { 5249 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5250 enum rdma_cm_state state; 5251 unsigned long flags; 5252 5253 mutex_lock(&id_priv->handler_mutex); 5254 /* Record that we want to remove the device */ 5255 spin_lock_irqsave(&id_priv->lock, flags); 5256 state = id_priv->state; 5257 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5258 spin_unlock_irqrestore(&id_priv->lock, flags); 5259 mutex_unlock(&id_priv->handler_mutex); 5260 cma_id_put(id_priv); 5261 return; 5262 } 5263 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5264 spin_unlock_irqrestore(&id_priv->lock, flags); 5265 5266 if (cma_cm_event_handler(id_priv, &event)) { 5267 /* 5268 * At this point the ULP promises it won't call 5269 * rdma_destroy_id() concurrently 5270 */ 5271 cma_id_put(id_priv); 5272 mutex_unlock(&id_priv->handler_mutex); 5273 trace_cm_id_destroy(id_priv); 5274 _destroy_id(id_priv, state); 5275 return; 5276 } 5277 mutex_unlock(&id_priv->handler_mutex); 5278 5279 /* 5280 * If this races with destroy then the thread that first assigns state 5281 * to a destroying does the cancel. 5282 */ 5283 cma_cancel_operation(id_priv, state); 5284 cma_id_put(id_priv); 5285 } 5286 5287 static void cma_process_remove(struct cma_device *cma_dev) 5288 { 5289 mutex_lock(&lock); 5290 while (!list_empty(&cma_dev->id_list)) { 5291 struct rdma_id_private *id_priv = list_first_entry( 5292 &cma_dev->id_list, struct rdma_id_private, device_item); 5293 5294 list_del_init(&id_priv->listen_item); 5295 list_del_init(&id_priv->device_item); 5296 cma_id_get(id_priv); 5297 mutex_unlock(&lock); 5298 5299 cma_send_device_removal_put(id_priv); 5300 5301 mutex_lock(&lock); 5302 } 5303 mutex_unlock(&lock); 5304 5305 cma_dev_put(cma_dev); 5306 wait_for_completion(&cma_dev->comp); 5307 } 5308 5309 static bool cma_supported(struct ib_device *device) 5310 { 5311 u32 i; 5312 5313 rdma_for_each_port(device, i) { 5314 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5315 return true; 5316 } 5317 return false; 5318 } 5319 5320 static int cma_add_one(struct ib_device *device) 5321 { 5322 struct rdma_id_private *to_destroy; 5323 struct cma_device *cma_dev; 5324 struct rdma_id_private *id_priv; 5325 unsigned long supported_gids = 0; 5326 int ret; 5327 u32 i; 5328 5329 if (!cma_supported(device)) 5330 return -EOPNOTSUPP; 5331 5332 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5333 if (!cma_dev) 5334 return -ENOMEM; 5335 5336 cma_dev->device = device; 5337 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5338 sizeof(*cma_dev->default_gid_type), 5339 GFP_KERNEL); 5340 if (!cma_dev->default_gid_type) { 5341 ret = -ENOMEM; 5342 goto free_cma_dev; 5343 } 5344 5345 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5346 sizeof(*cma_dev->default_roce_tos), 5347 GFP_KERNEL); 5348 if (!cma_dev->default_roce_tos) { 5349 ret = -ENOMEM; 5350 goto free_gid_type; 5351 } 5352 5353 rdma_for_each_port (device, i) { 5354 supported_gids = roce_gid_type_mask_support(device, i); 5355 WARN_ON(!supported_gids); 5356 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5357 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5358 CMA_PREFERRED_ROCE_GID_TYPE; 5359 else 5360 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5361 find_first_bit(&supported_gids, BITS_PER_LONG); 5362 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5363 } 5364 5365 init_completion(&cma_dev->comp); 5366 refcount_set(&cma_dev->refcount, 1); 5367 INIT_LIST_HEAD(&cma_dev->id_list); 5368 ib_set_client_data(device, &cma_client, cma_dev); 5369 5370 mutex_lock(&lock); 5371 list_add_tail(&cma_dev->list, &dev_list); 5372 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5373 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5374 if (ret) 5375 goto free_listen; 5376 } 5377 mutex_unlock(&lock); 5378 5379 trace_cm_add_one(device); 5380 return 0; 5381 5382 free_listen: 5383 list_del(&cma_dev->list); 5384 mutex_unlock(&lock); 5385 5386 /* cma_process_remove() will delete to_destroy */ 5387 cma_process_remove(cma_dev); 5388 kfree(cma_dev->default_roce_tos); 5389 free_gid_type: 5390 kfree(cma_dev->default_gid_type); 5391 5392 free_cma_dev: 5393 kfree(cma_dev); 5394 return ret; 5395 } 5396 5397 static void cma_remove_one(struct ib_device *device, void *client_data) 5398 { 5399 struct cma_device *cma_dev = client_data; 5400 5401 trace_cm_remove_one(device); 5402 5403 mutex_lock(&lock); 5404 list_del(&cma_dev->list); 5405 mutex_unlock(&lock); 5406 5407 cma_process_remove(cma_dev); 5408 kfree(cma_dev->default_roce_tos); 5409 kfree(cma_dev->default_gid_type); 5410 kfree(cma_dev); 5411 } 5412 5413 static int cma_init_net(struct net *net) 5414 { 5415 struct cma_pernet *pernet = cma_pernet(net); 5416 5417 xa_init(&pernet->tcp_ps); 5418 xa_init(&pernet->udp_ps); 5419 xa_init(&pernet->ipoib_ps); 5420 xa_init(&pernet->ib_ps); 5421 5422 return 0; 5423 } 5424 5425 static void cma_exit_net(struct net *net) 5426 { 5427 struct cma_pernet *pernet = cma_pernet(net); 5428 5429 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5430 WARN_ON(!xa_empty(&pernet->udp_ps)); 5431 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5432 WARN_ON(!xa_empty(&pernet->ib_ps)); 5433 } 5434 5435 static struct pernet_operations cma_pernet_operations = { 5436 .init = cma_init_net, 5437 .exit = cma_exit_net, 5438 .id = &cma_pernet_id, 5439 .size = sizeof(struct cma_pernet), 5440 }; 5441 5442 static int __init cma_init(void) 5443 { 5444 int ret; 5445 5446 /* 5447 * There is a rare lock ordering dependency in cma_netdev_callback() 5448 * that only happens when bonding is enabled. Teach lockdep that rtnl 5449 * must never be nested under lock so it can find these without having 5450 * to test with bonding. 5451 */ 5452 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5453 rtnl_lock(); 5454 mutex_lock(&lock); 5455 mutex_unlock(&lock); 5456 rtnl_unlock(); 5457 } 5458 5459 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5460 if (!cma_wq) 5461 return -ENOMEM; 5462 5463 ret = register_pernet_subsys(&cma_pernet_operations); 5464 if (ret) 5465 goto err_wq; 5466 5467 ib_sa_register_client(&sa_client); 5468 register_netdevice_notifier(&cma_nb); 5469 register_netevent_notifier(&cma_netevent_cb); 5470 5471 ret = ib_register_client(&cma_client); 5472 if (ret) 5473 goto err; 5474 5475 ret = cma_configfs_init(); 5476 if (ret) 5477 goto err_ib; 5478 5479 return 0; 5480 5481 err_ib: 5482 ib_unregister_client(&cma_client); 5483 err: 5484 unregister_netevent_notifier(&cma_netevent_cb); 5485 unregister_netdevice_notifier(&cma_nb); 5486 ib_sa_unregister_client(&sa_client); 5487 unregister_pernet_subsys(&cma_pernet_operations); 5488 err_wq: 5489 destroy_workqueue(cma_wq); 5490 return ret; 5491 } 5492 5493 static void __exit cma_cleanup(void) 5494 { 5495 cma_configfs_exit(); 5496 ib_unregister_client(&cma_client); 5497 unregister_netevent_notifier(&cma_netevent_cb); 5498 unregister_netdevice_notifier(&cma_nb); 5499 ib_sa_unregister_client(&sa_client); 5500 unregister_pernet_subsys(&cma_pernet_operations); 5501 destroy_workqueue(cma_wq); 5502 } 5503 5504 module_init(cma_init); 5505 module_exit(cma_cleanup); 5506