1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000 47 #define CMA_MAX_CM_RETRIES 15 48 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 49 #define CMA_IBOE_PACKET_LIFETIME 18 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 72 union ib_gid *mgid); 73 74 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 75 { 76 size_t index = event; 77 78 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 79 cma_events[index] : "unrecognized event"; 80 } 81 EXPORT_SYMBOL(rdma_event_msg); 82 83 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 84 int reason) 85 { 86 if (rdma_ib_or_roce(id->device, id->port_num)) 87 return ibcm_reject_msg(reason); 88 89 if (rdma_protocol_iwarp(id->device, id->port_num)) 90 return iwcm_reject_msg(reason); 91 92 WARN_ON_ONCE(1); 93 return "unrecognized transport"; 94 } 95 EXPORT_SYMBOL(rdma_reject_msg); 96 97 /** 98 * rdma_is_consumer_reject - return true if the consumer rejected the connect 99 * request. 100 * @id: Communication identifier that received the REJECT event. 101 * @reason: Value returned in the REJECT event status field. 102 */ 103 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 104 { 105 if (rdma_ib_or_roce(id->device, id->port_num)) 106 return reason == IB_CM_REJ_CONSUMER_DEFINED; 107 108 if (rdma_protocol_iwarp(id->device, id->port_num)) 109 return reason == -ECONNREFUSED; 110 111 WARN_ON_ONCE(1); 112 return false; 113 } 114 115 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 116 struct rdma_cm_event *ev, u8 *data_len) 117 { 118 const void *p; 119 120 if (rdma_is_consumer_reject(id, ev->status)) { 121 *data_len = ev->param.conn.private_data_len; 122 p = ev->param.conn.private_data; 123 } else { 124 *data_len = 0; 125 p = NULL; 126 } 127 return p; 128 } 129 EXPORT_SYMBOL(rdma_consumer_reject_data); 130 131 /** 132 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 133 * @id: Communication Identifier 134 */ 135 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 136 { 137 struct rdma_id_private *id_priv; 138 139 id_priv = container_of(id, struct rdma_id_private, id); 140 if (id->device->node_type == RDMA_NODE_RNIC) 141 return id_priv->cm_id.iw; 142 return NULL; 143 } 144 EXPORT_SYMBOL(rdma_iw_cm_id); 145 146 /** 147 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 148 * @res: rdma resource tracking entry pointer 149 */ 150 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 151 { 152 struct rdma_id_private *id_priv = 153 container_of(res, struct rdma_id_private, res); 154 155 return &id_priv->id; 156 } 157 EXPORT_SYMBOL(rdma_res_to_id); 158 159 static int cma_add_one(struct ib_device *device); 160 static void cma_remove_one(struct ib_device *device, void *client_data); 161 162 static struct ib_client cma_client = { 163 .name = "cma", 164 .add = cma_add_one, 165 .remove = cma_remove_one 166 }; 167 168 static struct ib_sa_client sa_client; 169 static LIST_HEAD(dev_list); 170 static LIST_HEAD(listen_any_list); 171 static DEFINE_MUTEX(lock); 172 static struct workqueue_struct *cma_wq; 173 static unsigned int cma_pernet_id; 174 175 struct cma_pernet { 176 struct xarray tcp_ps; 177 struct xarray udp_ps; 178 struct xarray ipoib_ps; 179 struct xarray ib_ps; 180 }; 181 182 static struct cma_pernet *cma_pernet(struct net *net) 183 { 184 return net_generic(net, cma_pernet_id); 185 } 186 187 static 188 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 189 { 190 struct cma_pernet *pernet = cma_pernet(net); 191 192 switch (ps) { 193 case RDMA_PS_TCP: 194 return &pernet->tcp_ps; 195 case RDMA_PS_UDP: 196 return &pernet->udp_ps; 197 case RDMA_PS_IPOIB: 198 return &pernet->ipoib_ps; 199 case RDMA_PS_IB: 200 return &pernet->ib_ps; 201 default: 202 return NULL; 203 } 204 } 205 206 struct cma_device { 207 struct list_head list; 208 struct ib_device *device; 209 struct completion comp; 210 refcount_t refcount; 211 struct list_head id_list; 212 enum ib_gid_type *default_gid_type; 213 u8 *default_roce_tos; 214 }; 215 216 struct rdma_bind_list { 217 enum rdma_ucm_port_space ps; 218 struct hlist_head owners; 219 unsigned short port; 220 }; 221 222 struct class_port_info_context { 223 struct ib_class_port_info *class_port_info; 224 struct ib_device *device; 225 struct completion done; 226 struct ib_sa_query *sa_query; 227 u8 port_num; 228 }; 229 230 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 231 struct rdma_bind_list *bind_list, int snum) 232 { 233 struct xarray *xa = cma_pernet_xa(net, ps); 234 235 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 236 } 237 238 static struct rdma_bind_list *cma_ps_find(struct net *net, 239 enum rdma_ucm_port_space ps, int snum) 240 { 241 struct xarray *xa = cma_pernet_xa(net, ps); 242 243 return xa_load(xa, snum); 244 } 245 246 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 247 int snum) 248 { 249 struct xarray *xa = cma_pernet_xa(net, ps); 250 251 xa_erase(xa, snum); 252 } 253 254 enum { 255 CMA_OPTION_AFONLY, 256 }; 257 258 void cma_dev_get(struct cma_device *cma_dev) 259 { 260 refcount_inc(&cma_dev->refcount); 261 } 262 263 void cma_dev_put(struct cma_device *cma_dev) 264 { 265 if (refcount_dec_and_test(&cma_dev->refcount)) 266 complete(&cma_dev->comp); 267 } 268 269 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 270 void *cookie) 271 { 272 struct cma_device *cma_dev; 273 struct cma_device *found_cma_dev = NULL; 274 275 mutex_lock(&lock); 276 277 list_for_each_entry(cma_dev, &dev_list, list) 278 if (filter(cma_dev->device, cookie)) { 279 found_cma_dev = cma_dev; 280 break; 281 } 282 283 if (found_cma_dev) 284 cma_dev_get(found_cma_dev); 285 mutex_unlock(&lock); 286 return found_cma_dev; 287 } 288 289 int cma_get_default_gid_type(struct cma_device *cma_dev, 290 unsigned int port) 291 { 292 if (!rdma_is_port_valid(cma_dev->device, port)) 293 return -EINVAL; 294 295 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 296 } 297 298 int cma_set_default_gid_type(struct cma_device *cma_dev, 299 unsigned int port, 300 enum ib_gid_type default_gid_type) 301 { 302 unsigned long supported_gids; 303 304 if (!rdma_is_port_valid(cma_dev->device, port)) 305 return -EINVAL; 306 307 if (default_gid_type == IB_GID_TYPE_IB && 308 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 309 default_gid_type = IB_GID_TYPE_ROCE; 310 311 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 312 313 if (!(supported_gids & 1 << default_gid_type)) 314 return -EINVAL; 315 316 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 317 default_gid_type; 318 319 return 0; 320 } 321 322 int cma_get_default_roce_tos(struct cma_device *cma_dev, unsigned int port) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 328 } 329 330 int cma_set_default_roce_tos(struct cma_device *cma_dev, unsigned int port, 331 u8 default_roce_tos) 332 { 333 if (!rdma_is_port_valid(cma_dev->device, port)) 334 return -EINVAL; 335 336 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 337 default_roce_tos; 338 339 return 0; 340 } 341 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 342 { 343 return cma_dev->device; 344 } 345 346 /* 347 * Device removal can occur at anytime, so we need extra handling to 348 * serialize notifying the user of device removal with other callbacks. 349 * We do this by disabling removal notification while a callback is in process, 350 * and reporting it after the callback completes. 351 */ 352 353 struct cma_multicast { 354 struct rdma_id_private *id_priv; 355 struct ib_sa_multicast *sa_mc; 356 struct list_head list; 357 void *context; 358 struct sockaddr_storage addr; 359 u8 join_state; 360 }; 361 362 struct cma_work { 363 struct work_struct work; 364 struct rdma_id_private *id; 365 enum rdma_cm_state old_state; 366 enum rdma_cm_state new_state; 367 struct rdma_cm_event event; 368 }; 369 370 union cma_ip_addr { 371 struct in6_addr ip6; 372 struct { 373 __be32 pad[3]; 374 __be32 addr; 375 } ip4; 376 }; 377 378 struct cma_hdr { 379 u8 cma_version; 380 u8 ip_version; /* IP version: 7:4 */ 381 __be16 port; 382 union cma_ip_addr src_addr; 383 union cma_ip_addr dst_addr; 384 }; 385 386 #define CMA_VERSION 0x00 387 388 struct cma_req_info { 389 struct sockaddr_storage listen_addr_storage; 390 struct sockaddr_storage src_addr_storage; 391 struct ib_device *device; 392 union ib_gid local_gid; 393 __be64 service_id; 394 int port; 395 bool has_gid; 396 u16 pkey; 397 }; 398 399 static int cma_comp_exch(struct rdma_id_private *id_priv, 400 enum rdma_cm_state comp, enum rdma_cm_state exch) 401 { 402 unsigned long flags; 403 int ret; 404 405 /* 406 * The FSM uses a funny double locking where state is protected by both 407 * the handler_mutex and the spinlock. State is not allowed to change 408 * to/from a handler_mutex protected value without also holding 409 * handler_mutex. 410 */ 411 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 412 lockdep_assert_held(&id_priv->handler_mutex); 413 414 spin_lock_irqsave(&id_priv->lock, flags); 415 if ((ret = (id_priv->state == comp))) 416 id_priv->state = exch; 417 spin_unlock_irqrestore(&id_priv->lock, flags); 418 return ret; 419 } 420 421 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 422 { 423 return hdr->ip_version >> 4; 424 } 425 426 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 427 { 428 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 429 } 430 431 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 432 { 433 struct in_device *in_dev = NULL; 434 435 if (ndev) { 436 rtnl_lock(); 437 in_dev = __in_dev_get_rtnl(ndev); 438 if (in_dev) { 439 if (join) 440 ip_mc_inc_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 else 443 ip_mc_dec_group(in_dev, 444 *(__be32 *)(mgid->raw + 12)); 445 } 446 rtnl_unlock(); 447 } 448 return (in_dev) ? 0 : -ENODEV; 449 } 450 451 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 452 struct cma_device *cma_dev) 453 { 454 cma_dev_get(cma_dev); 455 id_priv->cma_dev = cma_dev; 456 id_priv->id.device = cma_dev->device; 457 id_priv->id.route.addr.dev_addr.transport = 458 rdma_node_get_transport(cma_dev->device->node_type); 459 list_add_tail(&id_priv->list, &cma_dev->id_list); 460 rdma_restrack_add(&id_priv->res); 461 462 trace_cm_id_attach(id_priv, cma_dev->device); 463 } 464 465 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 466 struct cma_device *cma_dev) 467 { 468 _cma_attach_to_dev(id_priv, cma_dev); 469 id_priv->gid_type = 470 cma_dev->default_gid_type[id_priv->id.port_num - 471 rdma_start_port(cma_dev->device)]; 472 } 473 474 static void cma_release_dev(struct rdma_id_private *id_priv) 475 { 476 mutex_lock(&lock); 477 list_del(&id_priv->list); 478 cma_dev_put(id_priv->cma_dev); 479 id_priv->cma_dev = NULL; 480 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 481 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 482 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 483 } 484 mutex_unlock(&lock); 485 } 486 487 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 488 { 489 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 490 } 491 492 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 493 { 494 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 495 } 496 497 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 498 { 499 return id_priv->id.route.addr.src_addr.ss_family; 500 } 501 502 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 503 { 504 struct ib_sa_mcmember_rec rec; 505 int ret = 0; 506 507 if (id_priv->qkey) { 508 if (qkey && id_priv->qkey != qkey) 509 return -EINVAL; 510 return 0; 511 } 512 513 if (qkey) { 514 id_priv->qkey = qkey; 515 return 0; 516 } 517 518 switch (id_priv->id.ps) { 519 case RDMA_PS_UDP: 520 case RDMA_PS_IB: 521 id_priv->qkey = RDMA_UDP_QKEY; 522 break; 523 case RDMA_PS_IPOIB: 524 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 525 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 526 id_priv->id.port_num, &rec.mgid, 527 &rec); 528 if (!ret) 529 id_priv->qkey = be32_to_cpu(rec.qkey); 530 break; 531 default: 532 break; 533 } 534 return ret; 535 } 536 537 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 538 { 539 dev_addr->dev_type = ARPHRD_INFINIBAND; 540 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 541 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 542 } 543 544 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 545 { 546 int ret; 547 548 if (addr->sa_family != AF_IB) { 549 ret = rdma_translate_ip(addr, dev_addr); 550 } else { 551 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 552 ret = 0; 553 } 554 555 return ret; 556 } 557 558 static const struct ib_gid_attr * 559 cma_validate_port(struct ib_device *device, u8 port, 560 enum ib_gid_type gid_type, 561 union ib_gid *gid, 562 struct rdma_id_private *id_priv) 563 { 564 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 565 int bound_if_index = dev_addr->bound_dev_if; 566 const struct ib_gid_attr *sgid_attr; 567 int dev_type = dev_addr->dev_type; 568 struct net_device *ndev = NULL; 569 570 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 577 return ERR_PTR(-ENODEV); 578 579 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 580 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 581 if (!ndev) 582 return ERR_PTR(-ENODEV); 583 } else { 584 gid_type = IB_GID_TYPE_IB; 585 } 586 587 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 588 if (ndev) 589 dev_put(ndev); 590 return sgid_attr; 591 } 592 593 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 594 const struct ib_gid_attr *sgid_attr) 595 { 596 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 597 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 598 } 599 600 /** 601 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 602 * based on source ip address. 603 * @id_priv: cm_id which should be bound to cma device 604 * 605 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 606 * based on source IP address. It returns 0 on success or error code otherwise. 607 * It is applicable to active and passive side cm_id. 608 */ 609 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 610 { 611 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 612 const struct ib_gid_attr *sgid_attr; 613 union ib_gid gid, iboe_gid, *gidp; 614 struct cma_device *cma_dev; 615 enum ib_gid_type gid_type; 616 int ret = -ENODEV; 617 unsigned int port; 618 619 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 620 id_priv->id.ps == RDMA_PS_IPOIB) 621 return -EINVAL; 622 623 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 624 &iboe_gid); 625 626 memcpy(&gid, dev_addr->src_dev_addr + 627 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 628 629 mutex_lock(&lock); 630 list_for_each_entry(cma_dev, &dev_list, list) { 631 rdma_for_each_port (cma_dev->device, port) { 632 gidp = rdma_protocol_roce(cma_dev->device, port) ? 633 &iboe_gid : &gid; 634 gid_type = cma_dev->default_gid_type[port - 1]; 635 sgid_attr = cma_validate_port(cma_dev->device, port, 636 gid_type, gidp, id_priv); 637 if (!IS_ERR(sgid_attr)) { 638 id_priv->id.port_num = port; 639 cma_bind_sgid_attr(id_priv, sgid_attr); 640 cma_attach_to_dev(id_priv, cma_dev); 641 ret = 0; 642 goto out; 643 } 644 } 645 } 646 out: 647 mutex_unlock(&lock); 648 return ret; 649 } 650 651 /** 652 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 653 * @id_priv: cm id to bind to cma device 654 * @listen_id_priv: listener cm id to match against 655 * @req: Pointer to req structure containaining incoming 656 * request information 657 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 658 * rdma device matches for listen_id and incoming request. It also verifies 659 * that a GID table entry is present for the source address. 660 * Returns 0 on success, or returns error code otherwise. 661 */ 662 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 663 const struct rdma_id_private *listen_id_priv, 664 struct cma_req_info *req) 665 { 666 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 667 const struct ib_gid_attr *sgid_attr; 668 enum ib_gid_type gid_type; 669 union ib_gid gid; 670 671 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 672 id_priv->id.ps == RDMA_PS_IPOIB) 673 return -EINVAL; 674 675 if (rdma_protocol_roce(req->device, req->port)) 676 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 677 &gid); 678 else 679 memcpy(&gid, dev_addr->src_dev_addr + 680 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 681 682 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 683 sgid_attr = cma_validate_port(req->device, req->port, 684 gid_type, &gid, id_priv); 685 if (IS_ERR(sgid_attr)) 686 return PTR_ERR(sgid_attr); 687 688 id_priv->id.port_num = req->port; 689 cma_bind_sgid_attr(id_priv, sgid_attr); 690 /* Need to acquire lock to protect against reader 691 * of cma_dev->id_list such as cma_netdev_callback() and 692 * cma_process_remove(). 693 */ 694 mutex_lock(&lock); 695 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 696 mutex_unlock(&lock); 697 return 0; 698 } 699 700 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 701 const struct rdma_id_private *listen_id_priv) 702 { 703 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 704 const struct ib_gid_attr *sgid_attr; 705 struct cma_device *cma_dev; 706 enum ib_gid_type gid_type; 707 int ret = -ENODEV; 708 unsigned int port; 709 union ib_gid gid; 710 711 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 712 id_priv->id.ps == RDMA_PS_IPOIB) 713 return -EINVAL; 714 715 memcpy(&gid, dev_addr->src_dev_addr + 716 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 717 718 mutex_lock(&lock); 719 720 cma_dev = listen_id_priv->cma_dev; 721 port = listen_id_priv->id.port_num; 722 gid_type = listen_id_priv->gid_type; 723 sgid_attr = cma_validate_port(cma_dev->device, port, 724 gid_type, &gid, id_priv); 725 if (!IS_ERR(sgid_attr)) { 726 id_priv->id.port_num = port; 727 cma_bind_sgid_attr(id_priv, sgid_attr); 728 ret = 0; 729 goto out; 730 } 731 732 list_for_each_entry(cma_dev, &dev_list, list) { 733 rdma_for_each_port (cma_dev->device, port) { 734 if (listen_id_priv->cma_dev == cma_dev && 735 listen_id_priv->id.port_num == port) 736 continue; 737 738 gid_type = cma_dev->default_gid_type[port - 1]; 739 sgid_attr = cma_validate_port(cma_dev->device, port, 740 gid_type, &gid, id_priv); 741 if (!IS_ERR(sgid_attr)) { 742 id_priv->id.port_num = port; 743 cma_bind_sgid_attr(id_priv, sgid_attr); 744 ret = 0; 745 goto out; 746 } 747 } 748 } 749 750 out: 751 if (!ret) 752 cma_attach_to_dev(id_priv, cma_dev); 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int i; 770 771 cma_dev = NULL; 772 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 773 dgid = (union ib_gid *) &addr->sib_addr; 774 pkey = ntohs(addr->sib_pkey); 775 776 mutex_lock(&lock); 777 list_for_each_entry(cur_dev, &dev_list, list) { 778 rdma_for_each_port (cur_dev->device, p) { 779 if (!rdma_cap_af_ib(cur_dev->device, p)) 780 continue; 781 782 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 783 continue; 784 785 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 786 continue; 787 for (i = 0; !rdma_query_gid(cur_dev->device, 788 p, i, &gid); 789 i++) { 790 if (!memcmp(&gid, dgid, sizeof(gid))) { 791 cma_dev = cur_dev; 792 sgid = gid; 793 id_priv->id.port_num = p; 794 goto found; 795 } 796 797 if (!cma_dev && (gid.global.subnet_prefix == 798 dgid->global.subnet_prefix) && 799 port_state == IB_PORT_ACTIVE) { 800 cma_dev = cur_dev; 801 sgid = gid; 802 id_priv->id.port_num = p; 803 goto found; 804 } 805 } 806 } 807 } 808 mutex_unlock(&lock); 809 return -ENODEV; 810 811 found: 812 cma_attach_to_dev(id_priv, cma_dev); 813 mutex_unlock(&lock); 814 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 815 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 816 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 817 return 0; 818 } 819 820 static void cma_id_get(struct rdma_id_private *id_priv) 821 { 822 refcount_inc(&id_priv->refcount); 823 } 824 825 static void cma_id_put(struct rdma_id_private *id_priv) 826 { 827 if (refcount_dec_and_test(&id_priv->refcount)) 828 complete(&id_priv->comp); 829 } 830 831 static struct rdma_id_private * 832 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 833 void *context, enum rdma_ucm_port_space ps, 834 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 835 { 836 struct rdma_id_private *id_priv; 837 838 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 839 if (!id_priv) 840 return ERR_PTR(-ENOMEM); 841 842 id_priv->state = RDMA_CM_IDLE; 843 id_priv->id.context = context; 844 id_priv->id.event_handler = event_handler; 845 id_priv->id.ps = ps; 846 id_priv->id.qp_type = qp_type; 847 id_priv->tos_set = false; 848 id_priv->timeout_set = false; 849 id_priv->gid_type = IB_GID_TYPE_IB; 850 spin_lock_init(&id_priv->lock); 851 mutex_init(&id_priv->qp_mutex); 852 init_completion(&id_priv->comp); 853 refcount_set(&id_priv->refcount, 1); 854 mutex_init(&id_priv->handler_mutex); 855 INIT_LIST_HEAD(&id_priv->listen_list); 856 INIT_LIST_HEAD(&id_priv->mc_list); 857 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 858 id_priv->id.route.addr.dev_addr.net = get_net(net); 859 id_priv->seq_num &= 0x00ffffff; 860 861 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 862 if (parent) 863 rdma_restrack_parent_name(&id_priv->res, &parent->res); 864 865 return id_priv; 866 } 867 868 struct rdma_cm_id * 869 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 870 void *context, enum rdma_ucm_port_space ps, 871 enum ib_qp_type qp_type, const char *caller) 872 { 873 struct rdma_id_private *ret; 874 875 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 876 if (IS_ERR(ret)) 877 return ERR_CAST(ret); 878 879 rdma_restrack_set_name(&ret->res, caller); 880 return &ret->id; 881 } 882 EXPORT_SYMBOL(__rdma_create_kernel_id); 883 884 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 885 void *context, 886 enum rdma_ucm_port_space ps, 887 enum ib_qp_type qp_type) 888 { 889 struct rdma_id_private *ret; 890 891 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 892 ps, qp_type, NULL); 893 if (IS_ERR(ret)) 894 return ERR_CAST(ret); 895 896 rdma_restrack_set_name(&ret->res, NULL); 897 return &ret->id; 898 } 899 EXPORT_SYMBOL(rdma_create_user_id); 900 901 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 902 { 903 struct ib_qp_attr qp_attr; 904 int qp_attr_mask, ret; 905 906 qp_attr.qp_state = IB_QPS_INIT; 907 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 908 if (ret) 909 return ret; 910 911 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 912 if (ret) 913 return ret; 914 915 qp_attr.qp_state = IB_QPS_RTR; 916 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 917 if (ret) 918 return ret; 919 920 qp_attr.qp_state = IB_QPS_RTS; 921 qp_attr.sq_psn = 0; 922 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 923 924 return ret; 925 } 926 927 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 928 { 929 struct ib_qp_attr qp_attr; 930 int qp_attr_mask, ret; 931 932 qp_attr.qp_state = IB_QPS_INIT; 933 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 934 if (ret) 935 return ret; 936 937 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 938 } 939 940 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 941 struct ib_qp_init_attr *qp_init_attr) 942 { 943 struct rdma_id_private *id_priv; 944 struct ib_qp *qp; 945 int ret; 946 947 id_priv = container_of(id, struct rdma_id_private, id); 948 if (id->device != pd->device) { 949 ret = -EINVAL; 950 goto out_err; 951 } 952 953 qp_init_attr->port_num = id->port_num; 954 qp = ib_create_qp(pd, qp_init_attr); 955 if (IS_ERR(qp)) { 956 ret = PTR_ERR(qp); 957 goto out_err; 958 } 959 960 if (id->qp_type == IB_QPT_UD) 961 ret = cma_init_ud_qp(id_priv, qp); 962 else 963 ret = cma_init_conn_qp(id_priv, qp); 964 if (ret) 965 goto out_destroy; 966 967 id->qp = qp; 968 id_priv->qp_num = qp->qp_num; 969 id_priv->srq = (qp->srq != NULL); 970 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 971 return 0; 972 out_destroy: 973 ib_destroy_qp(qp); 974 out_err: 975 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 976 return ret; 977 } 978 EXPORT_SYMBOL(rdma_create_qp); 979 980 void rdma_destroy_qp(struct rdma_cm_id *id) 981 { 982 struct rdma_id_private *id_priv; 983 984 id_priv = container_of(id, struct rdma_id_private, id); 985 trace_cm_qp_destroy(id_priv); 986 mutex_lock(&id_priv->qp_mutex); 987 ib_destroy_qp(id_priv->id.qp); 988 id_priv->id.qp = NULL; 989 mutex_unlock(&id_priv->qp_mutex); 990 } 991 EXPORT_SYMBOL(rdma_destroy_qp); 992 993 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 994 struct rdma_conn_param *conn_param) 995 { 996 struct ib_qp_attr qp_attr; 997 int qp_attr_mask, ret; 998 999 mutex_lock(&id_priv->qp_mutex); 1000 if (!id_priv->id.qp) { 1001 ret = 0; 1002 goto out; 1003 } 1004 1005 /* Need to update QP attributes from default values. */ 1006 qp_attr.qp_state = IB_QPS_INIT; 1007 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1008 if (ret) 1009 goto out; 1010 1011 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1012 if (ret) 1013 goto out; 1014 1015 qp_attr.qp_state = IB_QPS_RTR; 1016 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1017 if (ret) 1018 goto out; 1019 1020 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1021 1022 if (conn_param) 1023 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1024 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1025 out: 1026 mutex_unlock(&id_priv->qp_mutex); 1027 return ret; 1028 } 1029 1030 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1031 struct rdma_conn_param *conn_param) 1032 { 1033 struct ib_qp_attr qp_attr; 1034 int qp_attr_mask, ret; 1035 1036 mutex_lock(&id_priv->qp_mutex); 1037 if (!id_priv->id.qp) { 1038 ret = 0; 1039 goto out; 1040 } 1041 1042 qp_attr.qp_state = IB_QPS_RTS; 1043 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1044 if (ret) 1045 goto out; 1046 1047 if (conn_param) 1048 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1049 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1050 out: 1051 mutex_unlock(&id_priv->qp_mutex); 1052 return ret; 1053 } 1054 1055 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1056 { 1057 struct ib_qp_attr qp_attr; 1058 int ret; 1059 1060 mutex_lock(&id_priv->qp_mutex); 1061 if (!id_priv->id.qp) { 1062 ret = 0; 1063 goto out; 1064 } 1065 1066 qp_attr.qp_state = IB_QPS_ERR; 1067 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1068 out: 1069 mutex_unlock(&id_priv->qp_mutex); 1070 return ret; 1071 } 1072 1073 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1074 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1075 { 1076 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1077 int ret; 1078 u16 pkey; 1079 1080 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1081 pkey = 0xffff; 1082 else 1083 pkey = ib_addr_get_pkey(dev_addr); 1084 1085 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1086 pkey, &qp_attr->pkey_index); 1087 if (ret) 1088 return ret; 1089 1090 qp_attr->port_num = id_priv->id.port_num; 1091 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1092 1093 if (id_priv->id.qp_type == IB_QPT_UD) { 1094 ret = cma_set_qkey(id_priv, 0); 1095 if (ret) 1096 return ret; 1097 1098 qp_attr->qkey = id_priv->qkey; 1099 *qp_attr_mask |= IB_QP_QKEY; 1100 } else { 1101 qp_attr->qp_access_flags = 0; 1102 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1103 } 1104 return 0; 1105 } 1106 1107 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1108 int *qp_attr_mask) 1109 { 1110 struct rdma_id_private *id_priv; 1111 int ret = 0; 1112 1113 id_priv = container_of(id, struct rdma_id_private, id); 1114 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1115 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1116 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1117 else 1118 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1119 qp_attr_mask); 1120 1121 if (qp_attr->qp_state == IB_QPS_RTR) 1122 qp_attr->rq_psn = id_priv->seq_num; 1123 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1124 if (!id_priv->cm_id.iw) { 1125 qp_attr->qp_access_flags = 0; 1126 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1127 } else 1128 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1129 qp_attr_mask); 1130 qp_attr->port_num = id_priv->id.port_num; 1131 *qp_attr_mask |= IB_QP_PORT; 1132 } else 1133 ret = -ENOSYS; 1134 1135 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1136 qp_attr->timeout = id_priv->timeout; 1137 1138 return ret; 1139 } 1140 EXPORT_SYMBOL(rdma_init_qp_attr); 1141 1142 static inline bool cma_zero_addr(const struct sockaddr *addr) 1143 { 1144 switch (addr->sa_family) { 1145 case AF_INET: 1146 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1147 case AF_INET6: 1148 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1149 case AF_IB: 1150 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1151 default: 1152 return false; 1153 } 1154 } 1155 1156 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1157 { 1158 switch (addr->sa_family) { 1159 case AF_INET: 1160 return ipv4_is_loopback( 1161 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1162 case AF_INET6: 1163 return ipv6_addr_loopback( 1164 &((struct sockaddr_in6 *)addr)->sin6_addr); 1165 case AF_IB: 1166 return ib_addr_loopback( 1167 &((struct sockaddr_ib *)addr)->sib_addr); 1168 default: 1169 return false; 1170 } 1171 } 1172 1173 static inline bool cma_any_addr(const struct sockaddr *addr) 1174 { 1175 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1176 } 1177 1178 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1179 { 1180 if (src->sa_family != dst->sa_family) 1181 return -1; 1182 1183 switch (src->sa_family) { 1184 case AF_INET: 1185 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1186 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1187 case AF_INET6: { 1188 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1189 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1190 bool link_local; 1191 1192 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1193 &dst_addr6->sin6_addr)) 1194 return 1; 1195 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1196 IPV6_ADDR_LINKLOCAL; 1197 /* Link local must match their scope_ids */ 1198 return link_local ? (src_addr6->sin6_scope_id != 1199 dst_addr6->sin6_scope_id) : 1200 0; 1201 } 1202 1203 default: 1204 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1205 &((struct sockaddr_ib *) dst)->sib_addr); 1206 } 1207 } 1208 1209 static __be16 cma_port(const struct sockaddr *addr) 1210 { 1211 struct sockaddr_ib *sib; 1212 1213 switch (addr->sa_family) { 1214 case AF_INET: 1215 return ((struct sockaddr_in *) addr)->sin_port; 1216 case AF_INET6: 1217 return ((struct sockaddr_in6 *) addr)->sin6_port; 1218 case AF_IB: 1219 sib = (struct sockaddr_ib *) addr; 1220 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1221 be64_to_cpu(sib->sib_sid_mask))); 1222 default: 1223 return 0; 1224 } 1225 } 1226 1227 static inline int cma_any_port(const struct sockaddr *addr) 1228 { 1229 return !cma_port(addr); 1230 } 1231 1232 static void cma_save_ib_info(struct sockaddr *src_addr, 1233 struct sockaddr *dst_addr, 1234 const struct rdma_cm_id *listen_id, 1235 const struct sa_path_rec *path) 1236 { 1237 struct sockaddr_ib *listen_ib, *ib; 1238 1239 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1240 if (src_addr) { 1241 ib = (struct sockaddr_ib *)src_addr; 1242 ib->sib_family = AF_IB; 1243 if (path) { 1244 ib->sib_pkey = path->pkey; 1245 ib->sib_flowinfo = path->flow_label; 1246 memcpy(&ib->sib_addr, &path->sgid, 16); 1247 ib->sib_sid = path->service_id; 1248 ib->sib_scope_id = 0; 1249 } else { 1250 ib->sib_pkey = listen_ib->sib_pkey; 1251 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1252 ib->sib_addr = listen_ib->sib_addr; 1253 ib->sib_sid = listen_ib->sib_sid; 1254 ib->sib_scope_id = listen_ib->sib_scope_id; 1255 } 1256 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1257 } 1258 if (dst_addr) { 1259 ib = (struct sockaddr_ib *)dst_addr; 1260 ib->sib_family = AF_IB; 1261 if (path) { 1262 ib->sib_pkey = path->pkey; 1263 ib->sib_flowinfo = path->flow_label; 1264 memcpy(&ib->sib_addr, &path->dgid, 16); 1265 } 1266 } 1267 } 1268 1269 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1270 struct sockaddr_in *dst_addr, 1271 struct cma_hdr *hdr, 1272 __be16 local_port) 1273 { 1274 if (src_addr) { 1275 *src_addr = (struct sockaddr_in) { 1276 .sin_family = AF_INET, 1277 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1278 .sin_port = local_port, 1279 }; 1280 } 1281 1282 if (dst_addr) { 1283 *dst_addr = (struct sockaddr_in) { 1284 .sin_family = AF_INET, 1285 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1286 .sin_port = hdr->port, 1287 }; 1288 } 1289 } 1290 1291 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1292 struct sockaddr_in6 *dst_addr, 1293 struct cma_hdr *hdr, 1294 __be16 local_port) 1295 { 1296 if (src_addr) { 1297 *src_addr = (struct sockaddr_in6) { 1298 .sin6_family = AF_INET6, 1299 .sin6_addr = hdr->dst_addr.ip6, 1300 .sin6_port = local_port, 1301 }; 1302 } 1303 1304 if (dst_addr) { 1305 *dst_addr = (struct sockaddr_in6) { 1306 .sin6_family = AF_INET6, 1307 .sin6_addr = hdr->src_addr.ip6, 1308 .sin6_port = hdr->port, 1309 }; 1310 } 1311 } 1312 1313 static u16 cma_port_from_service_id(__be64 service_id) 1314 { 1315 return (u16)be64_to_cpu(service_id); 1316 } 1317 1318 static int cma_save_ip_info(struct sockaddr *src_addr, 1319 struct sockaddr *dst_addr, 1320 const struct ib_cm_event *ib_event, 1321 __be64 service_id) 1322 { 1323 struct cma_hdr *hdr; 1324 __be16 port; 1325 1326 hdr = ib_event->private_data; 1327 if (hdr->cma_version != CMA_VERSION) 1328 return -EINVAL; 1329 1330 port = htons(cma_port_from_service_id(service_id)); 1331 1332 switch (cma_get_ip_ver(hdr)) { 1333 case 4: 1334 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1335 (struct sockaddr_in *)dst_addr, hdr, port); 1336 break; 1337 case 6: 1338 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1339 (struct sockaddr_in6 *)dst_addr, hdr, port); 1340 break; 1341 default: 1342 return -EAFNOSUPPORT; 1343 } 1344 1345 return 0; 1346 } 1347 1348 static int cma_save_net_info(struct sockaddr *src_addr, 1349 struct sockaddr *dst_addr, 1350 const struct rdma_cm_id *listen_id, 1351 const struct ib_cm_event *ib_event, 1352 sa_family_t sa_family, __be64 service_id) 1353 { 1354 if (sa_family == AF_IB) { 1355 if (ib_event->event == IB_CM_REQ_RECEIVED) 1356 cma_save_ib_info(src_addr, dst_addr, listen_id, 1357 ib_event->param.req_rcvd.primary_path); 1358 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1359 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1360 return 0; 1361 } 1362 1363 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1364 } 1365 1366 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1367 struct cma_req_info *req) 1368 { 1369 const struct ib_cm_req_event_param *req_param = 1370 &ib_event->param.req_rcvd; 1371 const struct ib_cm_sidr_req_event_param *sidr_param = 1372 &ib_event->param.sidr_req_rcvd; 1373 1374 switch (ib_event->event) { 1375 case IB_CM_REQ_RECEIVED: 1376 req->device = req_param->listen_id->device; 1377 req->port = req_param->port; 1378 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1379 sizeof(req->local_gid)); 1380 req->has_gid = true; 1381 req->service_id = req_param->primary_path->service_id; 1382 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1383 if (req->pkey != req_param->bth_pkey) 1384 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1385 "RDMA CMA: in the future this may cause the request to be dropped\n", 1386 req_param->bth_pkey, req->pkey); 1387 break; 1388 case IB_CM_SIDR_REQ_RECEIVED: 1389 req->device = sidr_param->listen_id->device; 1390 req->port = sidr_param->port; 1391 req->has_gid = false; 1392 req->service_id = sidr_param->service_id; 1393 req->pkey = sidr_param->pkey; 1394 if (req->pkey != sidr_param->bth_pkey) 1395 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1396 "RDMA CMA: in the future this may cause the request to be dropped\n", 1397 sidr_param->bth_pkey, req->pkey); 1398 break; 1399 default: 1400 return -EINVAL; 1401 } 1402 1403 return 0; 1404 } 1405 1406 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1407 const struct sockaddr_in *dst_addr, 1408 const struct sockaddr_in *src_addr) 1409 { 1410 __be32 daddr = dst_addr->sin_addr.s_addr, 1411 saddr = src_addr->sin_addr.s_addr; 1412 struct fib_result res; 1413 struct flowi4 fl4; 1414 int err; 1415 bool ret; 1416 1417 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1418 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1419 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1420 ipv4_is_loopback(saddr)) 1421 return false; 1422 1423 memset(&fl4, 0, sizeof(fl4)); 1424 fl4.flowi4_iif = net_dev->ifindex; 1425 fl4.daddr = daddr; 1426 fl4.saddr = saddr; 1427 1428 rcu_read_lock(); 1429 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1430 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1431 rcu_read_unlock(); 1432 1433 return ret; 1434 } 1435 1436 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1437 const struct sockaddr_in6 *dst_addr, 1438 const struct sockaddr_in6 *src_addr) 1439 { 1440 #if IS_ENABLED(CONFIG_IPV6) 1441 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1442 IPV6_ADDR_LINKLOCAL; 1443 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1444 &src_addr->sin6_addr, net_dev->ifindex, 1445 NULL, strict); 1446 bool ret; 1447 1448 if (!rt) 1449 return false; 1450 1451 ret = rt->rt6i_idev->dev == net_dev; 1452 ip6_rt_put(rt); 1453 1454 return ret; 1455 #else 1456 return false; 1457 #endif 1458 } 1459 1460 static bool validate_net_dev(struct net_device *net_dev, 1461 const struct sockaddr *daddr, 1462 const struct sockaddr *saddr) 1463 { 1464 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1465 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1466 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1467 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1468 1469 switch (daddr->sa_family) { 1470 case AF_INET: 1471 return saddr->sa_family == AF_INET && 1472 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1473 1474 case AF_INET6: 1475 return saddr->sa_family == AF_INET6 && 1476 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1477 1478 default: 1479 return false; 1480 } 1481 } 1482 1483 static struct net_device * 1484 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1485 { 1486 const struct ib_gid_attr *sgid_attr = NULL; 1487 struct net_device *ndev; 1488 1489 if (ib_event->event == IB_CM_REQ_RECEIVED) 1490 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1491 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1492 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1493 1494 if (!sgid_attr) 1495 return NULL; 1496 1497 rcu_read_lock(); 1498 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1499 if (IS_ERR(ndev)) 1500 ndev = NULL; 1501 else 1502 dev_hold(ndev); 1503 rcu_read_unlock(); 1504 return ndev; 1505 } 1506 1507 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1508 struct cma_req_info *req) 1509 { 1510 struct sockaddr *listen_addr = 1511 (struct sockaddr *)&req->listen_addr_storage; 1512 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1513 struct net_device *net_dev; 1514 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1515 int err; 1516 1517 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1518 req->service_id); 1519 if (err) 1520 return ERR_PTR(err); 1521 1522 if (rdma_protocol_roce(req->device, req->port)) 1523 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1524 else 1525 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1526 req->pkey, 1527 gid, listen_addr); 1528 if (!net_dev) 1529 return ERR_PTR(-ENODEV); 1530 1531 return net_dev; 1532 } 1533 1534 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1535 { 1536 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1537 } 1538 1539 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1540 const struct cma_hdr *hdr) 1541 { 1542 struct sockaddr *addr = cma_src_addr(id_priv); 1543 __be32 ip4_addr; 1544 struct in6_addr ip6_addr; 1545 1546 if (cma_any_addr(addr) && !id_priv->afonly) 1547 return true; 1548 1549 switch (addr->sa_family) { 1550 case AF_INET: 1551 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1552 if (cma_get_ip_ver(hdr) != 4) 1553 return false; 1554 if (!cma_any_addr(addr) && 1555 hdr->dst_addr.ip4.addr != ip4_addr) 1556 return false; 1557 break; 1558 case AF_INET6: 1559 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1560 if (cma_get_ip_ver(hdr) != 6) 1561 return false; 1562 if (!cma_any_addr(addr) && 1563 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1564 return false; 1565 break; 1566 case AF_IB: 1567 return true; 1568 default: 1569 return false; 1570 } 1571 1572 return true; 1573 } 1574 1575 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1576 { 1577 struct ib_device *device = id->device; 1578 const int port_num = id->port_num ?: rdma_start_port(device); 1579 1580 return rdma_protocol_roce(device, port_num); 1581 } 1582 1583 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1584 { 1585 const struct sockaddr *daddr = 1586 (const struct sockaddr *)&req->listen_addr_storage; 1587 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1588 1589 /* Returns true if the req is for IPv6 link local */ 1590 return (daddr->sa_family == AF_INET6 && 1591 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1592 } 1593 1594 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1595 const struct net_device *net_dev, 1596 const struct cma_req_info *req) 1597 { 1598 const struct rdma_addr *addr = &id->route.addr; 1599 1600 if (!net_dev) 1601 /* This request is an AF_IB request */ 1602 return (!id->port_num || id->port_num == req->port) && 1603 (addr->src_addr.ss_family == AF_IB); 1604 1605 /* 1606 * If the request is not for IPv6 link local, allow matching 1607 * request to any netdevice of the one or multiport rdma device. 1608 */ 1609 if (!cma_is_req_ipv6_ll(req)) 1610 return true; 1611 /* 1612 * Net namespaces must match, and if the listner is listening 1613 * on a specific netdevice than netdevice must match as well. 1614 */ 1615 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1616 (!!addr->dev_addr.bound_dev_if == 1617 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1618 return true; 1619 else 1620 return false; 1621 } 1622 1623 static struct rdma_id_private *cma_find_listener( 1624 const struct rdma_bind_list *bind_list, 1625 const struct ib_cm_id *cm_id, 1626 const struct ib_cm_event *ib_event, 1627 const struct cma_req_info *req, 1628 const struct net_device *net_dev) 1629 { 1630 struct rdma_id_private *id_priv, *id_priv_dev; 1631 1632 lockdep_assert_held(&lock); 1633 1634 if (!bind_list) 1635 return ERR_PTR(-EINVAL); 1636 1637 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1638 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1639 if (id_priv->id.device == cm_id->device && 1640 cma_match_net_dev(&id_priv->id, net_dev, req)) 1641 return id_priv; 1642 list_for_each_entry(id_priv_dev, 1643 &id_priv->listen_list, 1644 listen_list) { 1645 if (id_priv_dev->id.device == cm_id->device && 1646 cma_match_net_dev(&id_priv_dev->id, 1647 net_dev, req)) 1648 return id_priv_dev; 1649 } 1650 } 1651 } 1652 1653 return ERR_PTR(-EINVAL); 1654 } 1655 1656 static struct rdma_id_private * 1657 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1658 const struct ib_cm_event *ib_event, 1659 struct cma_req_info *req, 1660 struct net_device **net_dev) 1661 { 1662 struct rdma_bind_list *bind_list; 1663 struct rdma_id_private *id_priv; 1664 int err; 1665 1666 err = cma_save_req_info(ib_event, req); 1667 if (err) 1668 return ERR_PTR(err); 1669 1670 *net_dev = cma_get_net_dev(ib_event, req); 1671 if (IS_ERR(*net_dev)) { 1672 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1673 /* Assuming the protocol is AF_IB */ 1674 *net_dev = NULL; 1675 } else { 1676 return ERR_CAST(*net_dev); 1677 } 1678 } 1679 1680 mutex_lock(&lock); 1681 /* 1682 * Net namespace might be getting deleted while route lookup, 1683 * cm_id lookup is in progress. Therefore, perform netdevice 1684 * validation, cm_id lookup under rcu lock. 1685 * RCU lock along with netdevice state check, synchronizes with 1686 * netdevice migrating to different net namespace and also avoids 1687 * case where net namespace doesn't get deleted while lookup is in 1688 * progress. 1689 * If the device state is not IFF_UP, its properties such as ifindex 1690 * and nd_net cannot be trusted to remain valid without rcu lock. 1691 * net/core/dev.c change_net_namespace() ensures to synchronize with 1692 * ongoing operations on net device after device is closed using 1693 * synchronize_net(). 1694 */ 1695 rcu_read_lock(); 1696 if (*net_dev) { 1697 /* 1698 * If netdevice is down, it is likely that it is administratively 1699 * down or it might be migrating to different namespace. 1700 * In that case avoid further processing, as the net namespace 1701 * or ifindex may change. 1702 */ 1703 if (((*net_dev)->flags & IFF_UP) == 0) { 1704 id_priv = ERR_PTR(-EHOSTUNREACH); 1705 goto err; 1706 } 1707 1708 if (!validate_net_dev(*net_dev, 1709 (struct sockaddr *)&req->listen_addr_storage, 1710 (struct sockaddr *)&req->src_addr_storage)) { 1711 id_priv = ERR_PTR(-EHOSTUNREACH); 1712 goto err; 1713 } 1714 } 1715 1716 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1717 rdma_ps_from_service_id(req->service_id), 1718 cma_port_from_service_id(req->service_id)); 1719 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1720 err: 1721 rcu_read_unlock(); 1722 mutex_unlock(&lock); 1723 if (IS_ERR(id_priv) && *net_dev) { 1724 dev_put(*net_dev); 1725 *net_dev = NULL; 1726 } 1727 return id_priv; 1728 } 1729 1730 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1731 { 1732 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1733 } 1734 1735 static void cma_cancel_route(struct rdma_id_private *id_priv) 1736 { 1737 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1738 if (id_priv->query) 1739 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1740 } 1741 } 1742 1743 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1744 { 1745 struct rdma_id_private *dev_id_priv; 1746 1747 /* 1748 * Remove from listen_any_list to prevent added devices from spawning 1749 * additional listen requests. 1750 */ 1751 mutex_lock(&lock); 1752 list_del(&id_priv->list); 1753 1754 while (!list_empty(&id_priv->listen_list)) { 1755 dev_id_priv = list_entry(id_priv->listen_list.next, 1756 struct rdma_id_private, listen_list); 1757 /* sync with device removal to avoid duplicate destruction */ 1758 list_del_init(&dev_id_priv->list); 1759 list_del(&dev_id_priv->listen_list); 1760 mutex_unlock(&lock); 1761 1762 rdma_destroy_id(&dev_id_priv->id); 1763 mutex_lock(&lock); 1764 } 1765 mutex_unlock(&lock); 1766 } 1767 1768 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1769 enum rdma_cm_state state) 1770 { 1771 switch (state) { 1772 case RDMA_CM_ADDR_QUERY: 1773 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1774 break; 1775 case RDMA_CM_ROUTE_QUERY: 1776 cma_cancel_route(id_priv); 1777 break; 1778 case RDMA_CM_LISTEN: 1779 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1780 cma_cancel_listens(id_priv); 1781 break; 1782 default: 1783 break; 1784 } 1785 } 1786 1787 static void cma_release_port(struct rdma_id_private *id_priv) 1788 { 1789 struct rdma_bind_list *bind_list = id_priv->bind_list; 1790 struct net *net = id_priv->id.route.addr.dev_addr.net; 1791 1792 if (!bind_list) 1793 return; 1794 1795 mutex_lock(&lock); 1796 hlist_del(&id_priv->node); 1797 if (hlist_empty(&bind_list->owners)) { 1798 cma_ps_remove(net, bind_list->ps, bind_list->port); 1799 kfree(bind_list); 1800 } 1801 mutex_unlock(&lock); 1802 } 1803 1804 static void destroy_mc(struct rdma_id_private *id_priv, 1805 struct cma_multicast *mc) 1806 { 1807 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1808 ib_sa_free_multicast(mc->sa_mc); 1809 1810 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1811 struct rdma_dev_addr *dev_addr = 1812 &id_priv->id.route.addr.dev_addr; 1813 struct net_device *ndev = NULL; 1814 1815 if (dev_addr->bound_dev_if) 1816 ndev = dev_get_by_index(dev_addr->net, 1817 dev_addr->bound_dev_if); 1818 if (ndev) { 1819 union ib_gid mgid; 1820 1821 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1822 &mgid); 1823 cma_igmp_send(ndev, &mgid, false); 1824 dev_put(ndev); 1825 } 1826 } 1827 kfree(mc); 1828 } 1829 1830 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1831 { 1832 struct cma_multicast *mc; 1833 1834 while (!list_empty(&id_priv->mc_list)) { 1835 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1836 list); 1837 list_del(&mc->list); 1838 destroy_mc(id_priv, mc); 1839 } 1840 } 1841 1842 static void _destroy_id(struct rdma_id_private *id_priv, 1843 enum rdma_cm_state state) 1844 { 1845 cma_cancel_operation(id_priv, state); 1846 1847 if (id_priv->cma_dev) { 1848 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1849 if (id_priv->cm_id.ib) 1850 ib_destroy_cm_id(id_priv->cm_id.ib); 1851 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1852 if (id_priv->cm_id.iw) 1853 iw_destroy_cm_id(id_priv->cm_id.iw); 1854 } 1855 cma_leave_mc_groups(id_priv); 1856 cma_release_dev(id_priv); 1857 } 1858 1859 cma_release_port(id_priv); 1860 cma_id_put(id_priv); 1861 wait_for_completion(&id_priv->comp); 1862 1863 if (id_priv->internal_id) 1864 cma_id_put(id_priv->id.context); 1865 1866 kfree(id_priv->id.route.path_rec); 1867 1868 put_net(id_priv->id.route.addr.dev_addr.net); 1869 rdma_restrack_del(&id_priv->res); 1870 kfree(id_priv); 1871 } 1872 1873 /* 1874 * destroy an ID from within the handler_mutex. This ensures that no other 1875 * handlers can start running concurrently. 1876 */ 1877 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1878 __releases(&idprv->handler_mutex) 1879 { 1880 enum rdma_cm_state state; 1881 unsigned long flags; 1882 1883 trace_cm_id_destroy(id_priv); 1884 1885 /* 1886 * Setting the state to destroyed under the handler mutex provides a 1887 * fence against calling handler callbacks. If this is invoked due to 1888 * the failure of a handler callback then it guarentees that no future 1889 * handlers will be called. 1890 */ 1891 lockdep_assert_held(&id_priv->handler_mutex); 1892 spin_lock_irqsave(&id_priv->lock, flags); 1893 state = id_priv->state; 1894 id_priv->state = RDMA_CM_DESTROYING; 1895 spin_unlock_irqrestore(&id_priv->lock, flags); 1896 mutex_unlock(&id_priv->handler_mutex); 1897 _destroy_id(id_priv, state); 1898 } 1899 1900 void rdma_destroy_id(struct rdma_cm_id *id) 1901 { 1902 struct rdma_id_private *id_priv = 1903 container_of(id, struct rdma_id_private, id); 1904 1905 mutex_lock(&id_priv->handler_mutex); 1906 destroy_id_handler_unlock(id_priv); 1907 } 1908 EXPORT_SYMBOL(rdma_destroy_id); 1909 1910 static int cma_rep_recv(struct rdma_id_private *id_priv) 1911 { 1912 int ret; 1913 1914 ret = cma_modify_qp_rtr(id_priv, NULL); 1915 if (ret) 1916 goto reject; 1917 1918 ret = cma_modify_qp_rts(id_priv, NULL); 1919 if (ret) 1920 goto reject; 1921 1922 trace_cm_send_rtu(id_priv); 1923 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1924 if (ret) 1925 goto reject; 1926 1927 return 0; 1928 reject: 1929 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1930 cma_modify_qp_err(id_priv); 1931 trace_cm_send_rej(id_priv); 1932 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1933 NULL, 0, NULL, 0); 1934 return ret; 1935 } 1936 1937 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1938 const struct ib_cm_rep_event_param *rep_data, 1939 void *private_data) 1940 { 1941 event->param.conn.private_data = private_data; 1942 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1943 event->param.conn.responder_resources = rep_data->responder_resources; 1944 event->param.conn.initiator_depth = rep_data->initiator_depth; 1945 event->param.conn.flow_control = rep_data->flow_control; 1946 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1947 event->param.conn.srq = rep_data->srq; 1948 event->param.conn.qp_num = rep_data->remote_qpn; 1949 1950 event->ece.vendor_id = rep_data->ece.vendor_id; 1951 event->ece.attr_mod = rep_data->ece.attr_mod; 1952 } 1953 1954 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1955 struct rdma_cm_event *event) 1956 { 1957 int ret; 1958 1959 lockdep_assert_held(&id_priv->handler_mutex); 1960 1961 trace_cm_event_handler(id_priv, event); 1962 ret = id_priv->id.event_handler(&id_priv->id, event); 1963 trace_cm_event_done(id_priv, event, ret); 1964 return ret; 1965 } 1966 1967 static int cma_ib_handler(struct ib_cm_id *cm_id, 1968 const struct ib_cm_event *ib_event) 1969 { 1970 struct rdma_id_private *id_priv = cm_id->context; 1971 struct rdma_cm_event event = {}; 1972 enum rdma_cm_state state; 1973 int ret; 1974 1975 mutex_lock(&id_priv->handler_mutex); 1976 state = READ_ONCE(id_priv->state); 1977 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1978 state != RDMA_CM_CONNECT) || 1979 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1980 state != RDMA_CM_DISCONNECT)) 1981 goto out; 1982 1983 switch (ib_event->event) { 1984 case IB_CM_REQ_ERROR: 1985 case IB_CM_REP_ERROR: 1986 event.event = RDMA_CM_EVENT_UNREACHABLE; 1987 event.status = -ETIMEDOUT; 1988 break; 1989 case IB_CM_REP_RECEIVED: 1990 if (state == RDMA_CM_CONNECT && 1991 (id_priv->id.qp_type != IB_QPT_UD)) { 1992 trace_cm_send_mra(id_priv); 1993 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 1994 } 1995 if (id_priv->id.qp) { 1996 event.status = cma_rep_recv(id_priv); 1997 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 1998 RDMA_CM_EVENT_ESTABLISHED; 1999 } else { 2000 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2001 } 2002 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2003 ib_event->private_data); 2004 break; 2005 case IB_CM_RTU_RECEIVED: 2006 case IB_CM_USER_ESTABLISHED: 2007 event.event = RDMA_CM_EVENT_ESTABLISHED; 2008 break; 2009 case IB_CM_DREQ_ERROR: 2010 event.status = -ETIMEDOUT; 2011 fallthrough; 2012 case IB_CM_DREQ_RECEIVED: 2013 case IB_CM_DREP_RECEIVED: 2014 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2015 RDMA_CM_DISCONNECT)) 2016 goto out; 2017 event.event = RDMA_CM_EVENT_DISCONNECTED; 2018 break; 2019 case IB_CM_TIMEWAIT_EXIT: 2020 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2021 break; 2022 case IB_CM_MRA_RECEIVED: 2023 /* ignore event */ 2024 goto out; 2025 case IB_CM_REJ_RECEIVED: 2026 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2027 ib_event->param.rej_rcvd.reason)); 2028 cma_modify_qp_err(id_priv); 2029 event.status = ib_event->param.rej_rcvd.reason; 2030 event.event = RDMA_CM_EVENT_REJECTED; 2031 event.param.conn.private_data = ib_event->private_data; 2032 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2033 break; 2034 default: 2035 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2036 ib_event->event); 2037 goto out; 2038 } 2039 2040 ret = cma_cm_event_handler(id_priv, &event); 2041 if (ret) { 2042 /* Destroy the CM ID by returning a non-zero value. */ 2043 id_priv->cm_id.ib = NULL; 2044 destroy_id_handler_unlock(id_priv); 2045 return ret; 2046 } 2047 out: 2048 mutex_unlock(&id_priv->handler_mutex); 2049 return 0; 2050 } 2051 2052 static struct rdma_id_private * 2053 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2054 const struct ib_cm_event *ib_event, 2055 struct net_device *net_dev) 2056 { 2057 struct rdma_id_private *listen_id_priv; 2058 struct rdma_id_private *id_priv; 2059 struct rdma_cm_id *id; 2060 struct rdma_route *rt; 2061 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2062 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2063 const __be64 service_id = 2064 ib_event->param.req_rcvd.primary_path->service_id; 2065 int ret; 2066 2067 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2068 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2069 listen_id->event_handler, listen_id->context, 2070 listen_id->ps, 2071 ib_event->param.req_rcvd.qp_type, 2072 listen_id_priv); 2073 if (IS_ERR(id_priv)) 2074 return NULL; 2075 2076 id = &id_priv->id; 2077 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2078 (struct sockaddr *)&id->route.addr.dst_addr, 2079 listen_id, ib_event, ss_family, service_id)) 2080 goto err; 2081 2082 rt = &id->route; 2083 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2084 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2085 GFP_KERNEL); 2086 if (!rt->path_rec) 2087 goto err; 2088 2089 rt->path_rec[0] = *path; 2090 if (rt->num_paths == 2) 2091 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2092 2093 if (net_dev) { 2094 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2095 } else { 2096 if (!cma_protocol_roce(listen_id) && 2097 cma_any_addr(cma_src_addr(id_priv))) { 2098 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2099 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2100 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2101 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2102 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2103 if (ret) 2104 goto err; 2105 } 2106 } 2107 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2108 2109 id_priv->state = RDMA_CM_CONNECT; 2110 return id_priv; 2111 2112 err: 2113 rdma_destroy_id(id); 2114 return NULL; 2115 } 2116 2117 static struct rdma_id_private * 2118 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2119 const struct ib_cm_event *ib_event, 2120 struct net_device *net_dev) 2121 { 2122 const struct rdma_id_private *listen_id_priv; 2123 struct rdma_id_private *id_priv; 2124 struct rdma_cm_id *id; 2125 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2126 struct net *net = listen_id->route.addr.dev_addr.net; 2127 int ret; 2128 2129 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2130 id_priv = __rdma_create_id(net, listen_id->event_handler, 2131 listen_id->context, listen_id->ps, IB_QPT_UD, 2132 listen_id_priv); 2133 if (IS_ERR(id_priv)) 2134 return NULL; 2135 2136 id = &id_priv->id; 2137 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2138 (struct sockaddr *)&id->route.addr.dst_addr, 2139 listen_id, ib_event, ss_family, 2140 ib_event->param.sidr_req_rcvd.service_id)) 2141 goto err; 2142 2143 if (net_dev) { 2144 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2145 } else { 2146 if (!cma_any_addr(cma_src_addr(id_priv))) { 2147 ret = cma_translate_addr(cma_src_addr(id_priv), 2148 &id->route.addr.dev_addr); 2149 if (ret) 2150 goto err; 2151 } 2152 } 2153 2154 id_priv->state = RDMA_CM_CONNECT; 2155 return id_priv; 2156 err: 2157 rdma_destroy_id(id); 2158 return NULL; 2159 } 2160 2161 static void cma_set_req_event_data(struct rdma_cm_event *event, 2162 const struct ib_cm_req_event_param *req_data, 2163 void *private_data, int offset) 2164 { 2165 event->param.conn.private_data = private_data + offset; 2166 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2167 event->param.conn.responder_resources = req_data->responder_resources; 2168 event->param.conn.initiator_depth = req_data->initiator_depth; 2169 event->param.conn.flow_control = req_data->flow_control; 2170 event->param.conn.retry_count = req_data->retry_count; 2171 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2172 event->param.conn.srq = req_data->srq; 2173 event->param.conn.qp_num = req_data->remote_qpn; 2174 2175 event->ece.vendor_id = req_data->ece.vendor_id; 2176 event->ece.attr_mod = req_data->ece.attr_mod; 2177 } 2178 2179 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2180 const struct ib_cm_event *ib_event) 2181 { 2182 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2183 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2184 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2185 (id->qp_type == IB_QPT_UD)) || 2186 (!id->qp_type)); 2187 } 2188 2189 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2190 const struct ib_cm_event *ib_event) 2191 { 2192 struct rdma_id_private *listen_id, *conn_id = NULL; 2193 struct rdma_cm_event event = {}; 2194 struct cma_req_info req = {}; 2195 struct net_device *net_dev; 2196 u8 offset; 2197 int ret; 2198 2199 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2200 if (IS_ERR(listen_id)) 2201 return PTR_ERR(listen_id); 2202 2203 trace_cm_req_handler(listen_id, ib_event->event); 2204 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2205 ret = -EINVAL; 2206 goto net_dev_put; 2207 } 2208 2209 mutex_lock(&listen_id->handler_mutex); 2210 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2211 ret = -ECONNABORTED; 2212 goto err_unlock; 2213 } 2214 2215 offset = cma_user_data_offset(listen_id); 2216 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2217 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2218 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2219 event.param.ud.private_data = ib_event->private_data + offset; 2220 event.param.ud.private_data_len = 2221 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2222 } else { 2223 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2224 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2225 ib_event->private_data, offset); 2226 } 2227 if (!conn_id) { 2228 ret = -ENOMEM; 2229 goto err_unlock; 2230 } 2231 2232 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2233 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2234 if (ret) { 2235 destroy_id_handler_unlock(conn_id); 2236 goto err_unlock; 2237 } 2238 2239 conn_id->cm_id.ib = cm_id; 2240 cm_id->context = conn_id; 2241 cm_id->cm_handler = cma_ib_handler; 2242 2243 ret = cma_cm_event_handler(conn_id, &event); 2244 if (ret) { 2245 /* Destroy the CM ID by returning a non-zero value. */ 2246 conn_id->cm_id.ib = NULL; 2247 mutex_unlock(&listen_id->handler_mutex); 2248 destroy_id_handler_unlock(conn_id); 2249 goto net_dev_put; 2250 } 2251 2252 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2253 conn_id->id.qp_type != IB_QPT_UD) { 2254 trace_cm_send_mra(cm_id->context); 2255 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2256 } 2257 mutex_unlock(&conn_id->handler_mutex); 2258 2259 err_unlock: 2260 mutex_unlock(&listen_id->handler_mutex); 2261 2262 net_dev_put: 2263 if (net_dev) 2264 dev_put(net_dev); 2265 2266 return ret; 2267 } 2268 2269 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2270 { 2271 if (addr->sa_family == AF_IB) 2272 return ((struct sockaddr_ib *) addr)->sib_sid; 2273 2274 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2275 } 2276 EXPORT_SYMBOL(rdma_get_service_id); 2277 2278 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2279 union ib_gid *dgid) 2280 { 2281 struct rdma_addr *addr = &cm_id->route.addr; 2282 2283 if (!cm_id->device) { 2284 if (sgid) 2285 memset(sgid, 0, sizeof(*sgid)); 2286 if (dgid) 2287 memset(dgid, 0, sizeof(*dgid)); 2288 return; 2289 } 2290 2291 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2292 if (sgid) 2293 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2294 if (dgid) 2295 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2296 } else { 2297 if (sgid) 2298 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2299 if (dgid) 2300 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2301 } 2302 } 2303 EXPORT_SYMBOL(rdma_read_gids); 2304 2305 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2306 { 2307 struct rdma_id_private *id_priv = iw_id->context; 2308 struct rdma_cm_event event = {}; 2309 int ret = 0; 2310 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2311 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2312 2313 mutex_lock(&id_priv->handler_mutex); 2314 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2315 goto out; 2316 2317 switch (iw_event->event) { 2318 case IW_CM_EVENT_CLOSE: 2319 event.event = RDMA_CM_EVENT_DISCONNECTED; 2320 break; 2321 case IW_CM_EVENT_CONNECT_REPLY: 2322 memcpy(cma_src_addr(id_priv), laddr, 2323 rdma_addr_size(laddr)); 2324 memcpy(cma_dst_addr(id_priv), raddr, 2325 rdma_addr_size(raddr)); 2326 switch (iw_event->status) { 2327 case 0: 2328 event.event = RDMA_CM_EVENT_ESTABLISHED; 2329 event.param.conn.initiator_depth = iw_event->ird; 2330 event.param.conn.responder_resources = iw_event->ord; 2331 break; 2332 case -ECONNRESET: 2333 case -ECONNREFUSED: 2334 event.event = RDMA_CM_EVENT_REJECTED; 2335 break; 2336 case -ETIMEDOUT: 2337 event.event = RDMA_CM_EVENT_UNREACHABLE; 2338 break; 2339 default: 2340 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2341 break; 2342 } 2343 break; 2344 case IW_CM_EVENT_ESTABLISHED: 2345 event.event = RDMA_CM_EVENT_ESTABLISHED; 2346 event.param.conn.initiator_depth = iw_event->ird; 2347 event.param.conn.responder_resources = iw_event->ord; 2348 break; 2349 default: 2350 goto out; 2351 } 2352 2353 event.status = iw_event->status; 2354 event.param.conn.private_data = iw_event->private_data; 2355 event.param.conn.private_data_len = iw_event->private_data_len; 2356 ret = cma_cm_event_handler(id_priv, &event); 2357 if (ret) { 2358 /* Destroy the CM ID by returning a non-zero value. */ 2359 id_priv->cm_id.iw = NULL; 2360 destroy_id_handler_unlock(id_priv); 2361 return ret; 2362 } 2363 2364 out: 2365 mutex_unlock(&id_priv->handler_mutex); 2366 return ret; 2367 } 2368 2369 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2370 struct iw_cm_event *iw_event) 2371 { 2372 struct rdma_id_private *listen_id, *conn_id; 2373 struct rdma_cm_event event = {}; 2374 int ret = -ECONNABORTED; 2375 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2376 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2377 2378 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2379 event.param.conn.private_data = iw_event->private_data; 2380 event.param.conn.private_data_len = iw_event->private_data_len; 2381 event.param.conn.initiator_depth = iw_event->ird; 2382 event.param.conn.responder_resources = iw_event->ord; 2383 2384 listen_id = cm_id->context; 2385 2386 mutex_lock(&listen_id->handler_mutex); 2387 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2388 goto out; 2389 2390 /* Create a new RDMA id for the new IW CM ID */ 2391 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2392 listen_id->id.event_handler, 2393 listen_id->id.context, RDMA_PS_TCP, 2394 IB_QPT_RC, listen_id); 2395 if (IS_ERR(conn_id)) { 2396 ret = -ENOMEM; 2397 goto out; 2398 } 2399 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2400 conn_id->state = RDMA_CM_CONNECT; 2401 2402 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2403 if (ret) { 2404 mutex_unlock(&listen_id->handler_mutex); 2405 destroy_id_handler_unlock(conn_id); 2406 return ret; 2407 } 2408 2409 ret = cma_iw_acquire_dev(conn_id, listen_id); 2410 if (ret) { 2411 mutex_unlock(&listen_id->handler_mutex); 2412 destroy_id_handler_unlock(conn_id); 2413 return ret; 2414 } 2415 2416 conn_id->cm_id.iw = cm_id; 2417 cm_id->context = conn_id; 2418 cm_id->cm_handler = cma_iw_handler; 2419 2420 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2421 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2422 2423 ret = cma_cm_event_handler(conn_id, &event); 2424 if (ret) { 2425 /* User wants to destroy the CM ID */ 2426 conn_id->cm_id.iw = NULL; 2427 mutex_unlock(&listen_id->handler_mutex); 2428 destroy_id_handler_unlock(conn_id); 2429 return ret; 2430 } 2431 2432 mutex_unlock(&conn_id->handler_mutex); 2433 2434 out: 2435 mutex_unlock(&listen_id->handler_mutex); 2436 return ret; 2437 } 2438 2439 static int cma_ib_listen(struct rdma_id_private *id_priv) 2440 { 2441 struct sockaddr *addr; 2442 struct ib_cm_id *id; 2443 __be64 svc_id; 2444 2445 addr = cma_src_addr(id_priv); 2446 svc_id = rdma_get_service_id(&id_priv->id, addr); 2447 id = ib_cm_insert_listen(id_priv->id.device, 2448 cma_ib_req_handler, svc_id); 2449 if (IS_ERR(id)) 2450 return PTR_ERR(id); 2451 id_priv->cm_id.ib = id; 2452 2453 return 0; 2454 } 2455 2456 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2457 { 2458 int ret; 2459 struct iw_cm_id *id; 2460 2461 id = iw_create_cm_id(id_priv->id.device, 2462 iw_conn_req_handler, 2463 id_priv); 2464 if (IS_ERR(id)) 2465 return PTR_ERR(id); 2466 2467 id->tos = id_priv->tos; 2468 id->tos_set = id_priv->tos_set; 2469 id_priv->cm_id.iw = id; 2470 2471 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2472 rdma_addr_size(cma_src_addr(id_priv))); 2473 2474 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2475 2476 if (ret) { 2477 iw_destroy_cm_id(id_priv->cm_id.iw); 2478 id_priv->cm_id.iw = NULL; 2479 } 2480 2481 return ret; 2482 } 2483 2484 static int cma_listen_handler(struct rdma_cm_id *id, 2485 struct rdma_cm_event *event) 2486 { 2487 struct rdma_id_private *id_priv = id->context; 2488 2489 /* Listening IDs are always destroyed on removal */ 2490 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2491 return -1; 2492 2493 id->context = id_priv->id.context; 2494 id->event_handler = id_priv->id.event_handler; 2495 trace_cm_event_handler(id_priv, event); 2496 return id_priv->id.event_handler(id, event); 2497 } 2498 2499 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2500 struct cma_device *cma_dev, 2501 struct rdma_id_private **to_destroy) 2502 { 2503 struct rdma_id_private *dev_id_priv; 2504 struct net *net = id_priv->id.route.addr.dev_addr.net; 2505 int ret; 2506 2507 lockdep_assert_held(&lock); 2508 2509 *to_destroy = NULL; 2510 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2511 return 0; 2512 2513 dev_id_priv = 2514 __rdma_create_id(net, cma_listen_handler, id_priv, 2515 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2516 if (IS_ERR(dev_id_priv)) 2517 return PTR_ERR(dev_id_priv); 2518 2519 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2520 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2521 rdma_addr_size(cma_src_addr(id_priv))); 2522 2523 _cma_attach_to_dev(dev_id_priv, cma_dev); 2524 cma_id_get(id_priv); 2525 dev_id_priv->internal_id = 1; 2526 dev_id_priv->afonly = id_priv->afonly; 2527 dev_id_priv->tos_set = id_priv->tos_set; 2528 dev_id_priv->tos = id_priv->tos; 2529 2530 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2531 if (ret) 2532 goto err_listen; 2533 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2534 return 0; 2535 err_listen: 2536 /* Caller must destroy this after releasing lock */ 2537 *to_destroy = dev_id_priv; 2538 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2539 return ret; 2540 } 2541 2542 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2543 { 2544 struct rdma_id_private *to_destroy; 2545 struct cma_device *cma_dev; 2546 int ret; 2547 2548 mutex_lock(&lock); 2549 list_add_tail(&id_priv->list, &listen_any_list); 2550 list_for_each_entry(cma_dev, &dev_list, list) { 2551 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2552 if (ret) { 2553 /* Prevent racing with cma_process_remove() */ 2554 if (to_destroy) 2555 list_del_init(&to_destroy->list); 2556 goto err_listen; 2557 } 2558 } 2559 mutex_unlock(&lock); 2560 return 0; 2561 2562 err_listen: 2563 list_del(&id_priv->list); 2564 mutex_unlock(&lock); 2565 if (to_destroy) 2566 rdma_destroy_id(&to_destroy->id); 2567 return ret; 2568 } 2569 2570 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2571 { 2572 struct rdma_id_private *id_priv; 2573 2574 id_priv = container_of(id, struct rdma_id_private, id); 2575 id_priv->tos = (u8) tos; 2576 id_priv->tos_set = true; 2577 } 2578 EXPORT_SYMBOL(rdma_set_service_type); 2579 2580 /** 2581 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2582 * with a connection identifier. 2583 * @id: Communication identifier to associated with service type. 2584 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2585 * 2586 * This function should be called before rdma_connect() on active side, 2587 * and on passive side before rdma_accept(). It is applicable to primary 2588 * path only. The timeout will affect the local side of the QP, it is not 2589 * negotiated with remote side and zero disables the timer. In case it is 2590 * set before rdma_resolve_route, the value will also be used to determine 2591 * PacketLifeTime for RoCE. 2592 * 2593 * Return: 0 for success 2594 */ 2595 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2596 { 2597 struct rdma_id_private *id_priv; 2598 2599 if (id->qp_type != IB_QPT_RC) 2600 return -EINVAL; 2601 2602 id_priv = container_of(id, struct rdma_id_private, id); 2603 id_priv->timeout = timeout; 2604 id_priv->timeout_set = true; 2605 2606 return 0; 2607 } 2608 EXPORT_SYMBOL(rdma_set_ack_timeout); 2609 2610 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2611 void *context) 2612 { 2613 struct cma_work *work = context; 2614 struct rdma_route *route; 2615 2616 route = &work->id->id.route; 2617 2618 if (!status) { 2619 route->num_paths = 1; 2620 *route->path_rec = *path_rec; 2621 } else { 2622 work->old_state = RDMA_CM_ROUTE_QUERY; 2623 work->new_state = RDMA_CM_ADDR_RESOLVED; 2624 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2625 work->event.status = status; 2626 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2627 status); 2628 } 2629 2630 queue_work(cma_wq, &work->work); 2631 } 2632 2633 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2634 unsigned long timeout_ms, struct cma_work *work) 2635 { 2636 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2637 struct sa_path_rec path_rec; 2638 ib_sa_comp_mask comp_mask; 2639 struct sockaddr_in6 *sin6; 2640 struct sockaddr_ib *sib; 2641 2642 memset(&path_rec, 0, sizeof path_rec); 2643 2644 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2645 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2646 else 2647 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2648 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2649 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2650 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2651 path_rec.numb_path = 1; 2652 path_rec.reversible = 1; 2653 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2654 cma_dst_addr(id_priv)); 2655 2656 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2657 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2658 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2659 2660 switch (cma_family(id_priv)) { 2661 case AF_INET: 2662 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2663 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2664 break; 2665 case AF_INET6: 2666 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2667 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2668 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2669 break; 2670 case AF_IB: 2671 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2672 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2673 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2674 break; 2675 } 2676 2677 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2678 id_priv->id.port_num, &path_rec, 2679 comp_mask, timeout_ms, 2680 GFP_KERNEL, cma_query_handler, 2681 work, &id_priv->query); 2682 2683 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2684 } 2685 2686 static void cma_work_handler(struct work_struct *_work) 2687 { 2688 struct cma_work *work = container_of(_work, struct cma_work, work); 2689 struct rdma_id_private *id_priv = work->id; 2690 2691 mutex_lock(&id_priv->handler_mutex); 2692 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2693 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2694 goto out_unlock; 2695 if (work->old_state != 0 || work->new_state != 0) { 2696 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2697 goto out_unlock; 2698 } 2699 2700 if (cma_cm_event_handler(id_priv, &work->event)) { 2701 cma_id_put(id_priv); 2702 destroy_id_handler_unlock(id_priv); 2703 goto out_free; 2704 } 2705 2706 out_unlock: 2707 mutex_unlock(&id_priv->handler_mutex); 2708 cma_id_put(id_priv); 2709 out_free: 2710 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2711 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2712 kfree(work); 2713 } 2714 2715 static void cma_init_resolve_route_work(struct cma_work *work, 2716 struct rdma_id_private *id_priv) 2717 { 2718 work->id = id_priv; 2719 INIT_WORK(&work->work, cma_work_handler); 2720 work->old_state = RDMA_CM_ROUTE_QUERY; 2721 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2722 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2723 } 2724 2725 static void enqueue_resolve_addr_work(struct cma_work *work, 2726 struct rdma_id_private *id_priv) 2727 { 2728 /* Balances with cma_id_put() in cma_work_handler */ 2729 cma_id_get(id_priv); 2730 2731 work->id = id_priv; 2732 INIT_WORK(&work->work, cma_work_handler); 2733 work->old_state = RDMA_CM_ADDR_QUERY; 2734 work->new_state = RDMA_CM_ADDR_RESOLVED; 2735 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2736 2737 queue_work(cma_wq, &work->work); 2738 } 2739 2740 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2741 unsigned long timeout_ms) 2742 { 2743 struct rdma_route *route = &id_priv->id.route; 2744 struct cma_work *work; 2745 int ret; 2746 2747 work = kzalloc(sizeof *work, GFP_KERNEL); 2748 if (!work) 2749 return -ENOMEM; 2750 2751 cma_init_resolve_route_work(work, id_priv); 2752 2753 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2754 if (!route->path_rec) { 2755 ret = -ENOMEM; 2756 goto err1; 2757 } 2758 2759 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2760 if (ret) 2761 goto err2; 2762 2763 return 0; 2764 err2: 2765 kfree(route->path_rec); 2766 route->path_rec = NULL; 2767 err1: 2768 kfree(work); 2769 return ret; 2770 } 2771 2772 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2773 unsigned long supported_gids, 2774 enum ib_gid_type default_gid) 2775 { 2776 if ((network_type == RDMA_NETWORK_IPV4 || 2777 network_type == RDMA_NETWORK_IPV6) && 2778 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2779 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2780 2781 return default_gid; 2782 } 2783 2784 /* 2785 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2786 * path record type based on GID type. 2787 * It also sets up other L2 fields which includes destination mac address 2788 * netdev ifindex, of the path record. 2789 * It returns the netdev of the bound interface for this path record entry. 2790 */ 2791 static struct net_device * 2792 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2793 { 2794 struct rdma_route *route = &id_priv->id.route; 2795 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2796 struct rdma_addr *addr = &route->addr; 2797 unsigned long supported_gids; 2798 struct net_device *ndev; 2799 2800 if (!addr->dev_addr.bound_dev_if) 2801 return NULL; 2802 2803 ndev = dev_get_by_index(addr->dev_addr.net, 2804 addr->dev_addr.bound_dev_if); 2805 if (!ndev) 2806 return NULL; 2807 2808 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2809 id_priv->id.port_num); 2810 gid_type = cma_route_gid_type(addr->dev_addr.network, 2811 supported_gids, 2812 id_priv->gid_type); 2813 /* Use the hint from IP Stack to select GID Type */ 2814 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2815 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2816 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2817 2818 route->path_rec->roce.route_resolved = true; 2819 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2820 return ndev; 2821 } 2822 2823 int rdma_set_ib_path(struct rdma_cm_id *id, 2824 struct sa_path_rec *path_rec) 2825 { 2826 struct rdma_id_private *id_priv; 2827 struct net_device *ndev; 2828 int ret; 2829 2830 id_priv = container_of(id, struct rdma_id_private, id); 2831 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2832 RDMA_CM_ROUTE_RESOLVED)) 2833 return -EINVAL; 2834 2835 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2836 GFP_KERNEL); 2837 if (!id->route.path_rec) { 2838 ret = -ENOMEM; 2839 goto err; 2840 } 2841 2842 if (rdma_protocol_roce(id->device, id->port_num)) { 2843 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2844 if (!ndev) { 2845 ret = -ENODEV; 2846 goto err_free; 2847 } 2848 dev_put(ndev); 2849 } 2850 2851 id->route.num_paths = 1; 2852 return 0; 2853 2854 err_free: 2855 kfree(id->route.path_rec); 2856 id->route.path_rec = NULL; 2857 err: 2858 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2859 return ret; 2860 } 2861 EXPORT_SYMBOL(rdma_set_ib_path); 2862 2863 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2864 { 2865 struct cma_work *work; 2866 2867 work = kzalloc(sizeof *work, GFP_KERNEL); 2868 if (!work) 2869 return -ENOMEM; 2870 2871 cma_init_resolve_route_work(work, id_priv); 2872 queue_work(cma_wq, &work->work); 2873 return 0; 2874 } 2875 2876 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2877 { 2878 struct net_device *dev; 2879 2880 dev = vlan_dev_real_dev(vlan_ndev); 2881 if (dev->num_tc) 2882 return netdev_get_prio_tc_map(dev, prio); 2883 2884 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2885 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2886 } 2887 2888 struct iboe_prio_tc_map { 2889 int input_prio; 2890 int output_tc; 2891 bool found; 2892 }; 2893 2894 static int get_lower_vlan_dev_tc(struct net_device *dev, 2895 struct netdev_nested_priv *priv) 2896 { 2897 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2898 2899 if (is_vlan_dev(dev)) 2900 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2901 else if (dev->num_tc) 2902 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2903 else 2904 map->output_tc = 0; 2905 /* We are interested only in first level VLAN device, so always 2906 * return 1 to stop iterating over next level devices. 2907 */ 2908 map->found = true; 2909 return 1; 2910 } 2911 2912 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2913 { 2914 struct iboe_prio_tc_map prio_tc_map = {}; 2915 int prio = rt_tos2priority(tos); 2916 struct netdev_nested_priv priv; 2917 2918 /* If VLAN device, get it directly from the VLAN netdev */ 2919 if (is_vlan_dev(ndev)) 2920 return get_vlan_ndev_tc(ndev, prio); 2921 2922 prio_tc_map.input_prio = prio; 2923 priv.data = (void *)&prio_tc_map; 2924 rcu_read_lock(); 2925 netdev_walk_all_lower_dev_rcu(ndev, 2926 get_lower_vlan_dev_tc, 2927 &priv); 2928 rcu_read_unlock(); 2929 /* If map is found from lower device, use it; Otherwise 2930 * continue with the current netdevice to get priority to tc map. 2931 */ 2932 if (prio_tc_map.found) 2933 return prio_tc_map.output_tc; 2934 else if (ndev->num_tc) 2935 return netdev_get_prio_tc_map(ndev, prio); 2936 else 2937 return 0; 2938 } 2939 2940 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 2941 { 2942 struct sockaddr_in6 *addr6; 2943 u16 dport, sport; 2944 u32 hash, fl; 2945 2946 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 2947 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 2948 if ((cma_family(id_priv) != AF_INET6) || !fl) { 2949 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 2950 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 2951 hash = (u32)sport * 31 + dport; 2952 fl = hash & IB_GRH_FLOWLABEL_MASK; 2953 } 2954 2955 return cpu_to_be32(fl); 2956 } 2957 2958 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 2959 { 2960 struct rdma_route *route = &id_priv->id.route; 2961 struct rdma_addr *addr = &route->addr; 2962 struct cma_work *work; 2963 int ret; 2964 struct net_device *ndev; 2965 2966 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 2967 rdma_start_port(id_priv->cma_dev->device)]; 2968 u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 2969 2970 2971 work = kzalloc(sizeof *work, GFP_KERNEL); 2972 if (!work) 2973 return -ENOMEM; 2974 2975 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 2976 if (!route->path_rec) { 2977 ret = -ENOMEM; 2978 goto err1; 2979 } 2980 2981 route->num_paths = 1; 2982 2983 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2984 if (!ndev) { 2985 ret = -ENODEV; 2986 goto err2; 2987 } 2988 2989 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 2990 &route->path_rec->sgid); 2991 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 2992 &route->path_rec->dgid); 2993 2994 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 2995 /* TODO: get the hoplimit from the inet/inet6 device */ 2996 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 2997 else 2998 route->path_rec->hop_limit = 1; 2999 route->path_rec->reversible = 1; 3000 route->path_rec->pkey = cpu_to_be16(0xffff); 3001 route->path_rec->mtu_selector = IB_SA_EQ; 3002 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3003 route->path_rec->traffic_class = tos; 3004 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3005 route->path_rec->rate_selector = IB_SA_EQ; 3006 route->path_rec->rate = iboe_get_rate(ndev); 3007 dev_put(ndev); 3008 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3009 /* In case ACK timeout is set, use this value to calculate 3010 * PacketLifeTime. As per IBTA 12.7.34, 3011 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3012 * Assuming a negligible local ACK delay, we can use 3013 * PacketLifeTime = local ACK timeout/2 3014 * as a reasonable approximation for RoCE networks. 3015 */ 3016 route->path_rec->packet_life_time = id_priv->timeout_set ? 3017 id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME; 3018 3019 if (!route->path_rec->mtu) { 3020 ret = -EINVAL; 3021 goto err2; 3022 } 3023 3024 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3025 id_priv->id.port_num)) 3026 route->path_rec->flow_label = 3027 cma_get_roce_udp_flow_label(id_priv); 3028 3029 cma_init_resolve_route_work(work, id_priv); 3030 queue_work(cma_wq, &work->work); 3031 3032 return 0; 3033 3034 err2: 3035 kfree(route->path_rec); 3036 route->path_rec = NULL; 3037 route->num_paths = 0; 3038 err1: 3039 kfree(work); 3040 return ret; 3041 } 3042 3043 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3044 { 3045 struct rdma_id_private *id_priv; 3046 int ret; 3047 3048 id_priv = container_of(id, struct rdma_id_private, id); 3049 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3050 return -EINVAL; 3051 3052 cma_id_get(id_priv); 3053 if (rdma_cap_ib_sa(id->device, id->port_num)) 3054 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3055 else if (rdma_protocol_roce(id->device, id->port_num)) 3056 ret = cma_resolve_iboe_route(id_priv); 3057 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3058 ret = cma_resolve_iw_route(id_priv); 3059 else 3060 ret = -ENOSYS; 3061 3062 if (ret) 3063 goto err; 3064 3065 return 0; 3066 err: 3067 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3068 cma_id_put(id_priv); 3069 return ret; 3070 } 3071 EXPORT_SYMBOL(rdma_resolve_route); 3072 3073 static void cma_set_loopback(struct sockaddr *addr) 3074 { 3075 switch (addr->sa_family) { 3076 case AF_INET: 3077 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3078 break; 3079 case AF_INET6: 3080 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3081 0, 0, 0, htonl(1)); 3082 break; 3083 default: 3084 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3085 0, 0, 0, htonl(1)); 3086 break; 3087 } 3088 } 3089 3090 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3091 { 3092 struct cma_device *cma_dev, *cur_dev; 3093 union ib_gid gid; 3094 enum ib_port_state port_state; 3095 unsigned int p; 3096 u16 pkey; 3097 int ret; 3098 3099 cma_dev = NULL; 3100 mutex_lock(&lock); 3101 list_for_each_entry(cur_dev, &dev_list, list) { 3102 if (cma_family(id_priv) == AF_IB && 3103 !rdma_cap_ib_cm(cur_dev->device, 1)) 3104 continue; 3105 3106 if (!cma_dev) 3107 cma_dev = cur_dev; 3108 3109 rdma_for_each_port (cur_dev->device, p) { 3110 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3111 port_state == IB_PORT_ACTIVE) { 3112 cma_dev = cur_dev; 3113 goto port_found; 3114 } 3115 } 3116 } 3117 3118 if (!cma_dev) { 3119 ret = -ENODEV; 3120 goto out; 3121 } 3122 3123 p = 1; 3124 3125 port_found: 3126 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3127 if (ret) 3128 goto out; 3129 3130 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3131 if (ret) 3132 goto out; 3133 3134 id_priv->id.route.addr.dev_addr.dev_type = 3135 (rdma_protocol_ib(cma_dev->device, p)) ? 3136 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3137 3138 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3139 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3140 id_priv->id.port_num = p; 3141 cma_attach_to_dev(id_priv, cma_dev); 3142 cma_set_loopback(cma_src_addr(id_priv)); 3143 out: 3144 mutex_unlock(&lock); 3145 return ret; 3146 } 3147 3148 static void addr_handler(int status, struct sockaddr *src_addr, 3149 struct rdma_dev_addr *dev_addr, void *context) 3150 { 3151 struct rdma_id_private *id_priv = context; 3152 struct rdma_cm_event event = {}; 3153 struct sockaddr *addr; 3154 struct sockaddr_storage old_addr; 3155 3156 mutex_lock(&id_priv->handler_mutex); 3157 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3158 RDMA_CM_ADDR_RESOLVED)) 3159 goto out; 3160 3161 /* 3162 * Store the previous src address, so that if we fail to acquire 3163 * matching rdma device, old address can be restored back, which helps 3164 * to cancel the cma listen operation correctly. 3165 */ 3166 addr = cma_src_addr(id_priv); 3167 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3168 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3169 if (!status && !id_priv->cma_dev) { 3170 status = cma_acquire_dev_by_src_ip(id_priv); 3171 if (status) 3172 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3173 status); 3174 } else if (status) { 3175 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3176 } 3177 3178 if (status) { 3179 memcpy(addr, &old_addr, 3180 rdma_addr_size((struct sockaddr *)&old_addr)); 3181 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3182 RDMA_CM_ADDR_BOUND)) 3183 goto out; 3184 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3185 event.status = status; 3186 } else 3187 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3188 3189 if (cma_cm_event_handler(id_priv, &event)) { 3190 destroy_id_handler_unlock(id_priv); 3191 return; 3192 } 3193 out: 3194 mutex_unlock(&id_priv->handler_mutex); 3195 } 3196 3197 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3198 { 3199 struct cma_work *work; 3200 union ib_gid gid; 3201 int ret; 3202 3203 work = kzalloc(sizeof *work, GFP_KERNEL); 3204 if (!work) 3205 return -ENOMEM; 3206 3207 if (!id_priv->cma_dev) { 3208 ret = cma_bind_loopback(id_priv); 3209 if (ret) 3210 goto err; 3211 } 3212 3213 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3214 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3215 3216 enqueue_resolve_addr_work(work, id_priv); 3217 return 0; 3218 err: 3219 kfree(work); 3220 return ret; 3221 } 3222 3223 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3224 { 3225 struct cma_work *work; 3226 int ret; 3227 3228 work = kzalloc(sizeof *work, GFP_KERNEL); 3229 if (!work) 3230 return -ENOMEM; 3231 3232 if (!id_priv->cma_dev) { 3233 ret = cma_resolve_ib_dev(id_priv); 3234 if (ret) 3235 goto err; 3236 } 3237 3238 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3239 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3240 3241 enqueue_resolve_addr_work(work, id_priv); 3242 return 0; 3243 err: 3244 kfree(work); 3245 return ret; 3246 } 3247 3248 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3249 const struct sockaddr *dst_addr) 3250 { 3251 if (!src_addr || !src_addr->sa_family) { 3252 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3253 src_addr->sa_family = dst_addr->sa_family; 3254 if (IS_ENABLED(CONFIG_IPV6) && 3255 dst_addr->sa_family == AF_INET6) { 3256 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3257 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3258 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3259 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3260 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3261 } else if (dst_addr->sa_family == AF_IB) { 3262 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3263 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3264 } 3265 } 3266 return rdma_bind_addr(id, src_addr); 3267 } 3268 3269 /* 3270 * If required, resolve the source address for bind and leave the id_priv in 3271 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3272 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3273 * ignored. 3274 */ 3275 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3276 struct sockaddr *src_addr, 3277 const struct sockaddr *dst_addr) 3278 { 3279 int ret; 3280 3281 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3282 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3283 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3284 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3285 if (ret) 3286 goto err_dst; 3287 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3288 RDMA_CM_ADDR_QUERY))) { 3289 ret = -EINVAL; 3290 goto err_dst; 3291 } 3292 } 3293 3294 if (cma_family(id_priv) != dst_addr->sa_family) { 3295 ret = -EINVAL; 3296 goto err_state; 3297 } 3298 return 0; 3299 3300 err_state: 3301 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3302 err_dst: 3303 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3304 return ret; 3305 } 3306 3307 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3308 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3309 { 3310 struct rdma_id_private *id_priv = 3311 container_of(id, struct rdma_id_private, id); 3312 int ret; 3313 3314 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3315 if (ret) 3316 return ret; 3317 3318 if (cma_any_addr(dst_addr)) { 3319 ret = cma_resolve_loopback(id_priv); 3320 } else { 3321 if (dst_addr->sa_family == AF_IB) { 3322 ret = cma_resolve_ib_addr(id_priv); 3323 } else { 3324 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3325 &id->route.addr.dev_addr, 3326 timeout_ms, addr_handler, 3327 false, id_priv); 3328 } 3329 } 3330 if (ret) 3331 goto err; 3332 3333 return 0; 3334 err: 3335 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3336 return ret; 3337 } 3338 EXPORT_SYMBOL(rdma_resolve_addr); 3339 3340 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3341 { 3342 struct rdma_id_private *id_priv; 3343 unsigned long flags; 3344 int ret; 3345 3346 id_priv = container_of(id, struct rdma_id_private, id); 3347 spin_lock_irqsave(&id_priv->lock, flags); 3348 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3349 id_priv->state == RDMA_CM_IDLE) { 3350 id_priv->reuseaddr = reuse; 3351 ret = 0; 3352 } else { 3353 ret = -EINVAL; 3354 } 3355 spin_unlock_irqrestore(&id_priv->lock, flags); 3356 return ret; 3357 } 3358 EXPORT_SYMBOL(rdma_set_reuseaddr); 3359 3360 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3361 { 3362 struct rdma_id_private *id_priv; 3363 unsigned long flags; 3364 int ret; 3365 3366 id_priv = container_of(id, struct rdma_id_private, id); 3367 spin_lock_irqsave(&id_priv->lock, flags); 3368 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3369 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3370 id_priv->afonly = afonly; 3371 ret = 0; 3372 } else { 3373 ret = -EINVAL; 3374 } 3375 spin_unlock_irqrestore(&id_priv->lock, flags); 3376 return ret; 3377 } 3378 EXPORT_SYMBOL(rdma_set_afonly); 3379 3380 static void cma_bind_port(struct rdma_bind_list *bind_list, 3381 struct rdma_id_private *id_priv) 3382 { 3383 struct sockaddr *addr; 3384 struct sockaddr_ib *sib; 3385 u64 sid, mask; 3386 __be16 port; 3387 3388 lockdep_assert_held(&lock); 3389 3390 addr = cma_src_addr(id_priv); 3391 port = htons(bind_list->port); 3392 3393 switch (addr->sa_family) { 3394 case AF_INET: 3395 ((struct sockaddr_in *) addr)->sin_port = port; 3396 break; 3397 case AF_INET6: 3398 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3399 break; 3400 case AF_IB: 3401 sib = (struct sockaddr_ib *) addr; 3402 sid = be64_to_cpu(sib->sib_sid); 3403 mask = be64_to_cpu(sib->sib_sid_mask); 3404 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3405 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3406 break; 3407 } 3408 id_priv->bind_list = bind_list; 3409 hlist_add_head(&id_priv->node, &bind_list->owners); 3410 } 3411 3412 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3413 struct rdma_id_private *id_priv, unsigned short snum) 3414 { 3415 struct rdma_bind_list *bind_list; 3416 int ret; 3417 3418 lockdep_assert_held(&lock); 3419 3420 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3421 if (!bind_list) 3422 return -ENOMEM; 3423 3424 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3425 snum); 3426 if (ret < 0) 3427 goto err; 3428 3429 bind_list->ps = ps; 3430 bind_list->port = snum; 3431 cma_bind_port(bind_list, id_priv); 3432 return 0; 3433 err: 3434 kfree(bind_list); 3435 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3436 } 3437 3438 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3439 struct rdma_id_private *id_priv) 3440 { 3441 struct rdma_id_private *cur_id; 3442 struct sockaddr *daddr = cma_dst_addr(id_priv); 3443 struct sockaddr *saddr = cma_src_addr(id_priv); 3444 __be16 dport = cma_port(daddr); 3445 3446 lockdep_assert_held(&lock); 3447 3448 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3449 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3450 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3451 __be16 cur_dport = cma_port(cur_daddr); 3452 3453 if (id_priv == cur_id) 3454 continue; 3455 3456 /* different dest port -> unique */ 3457 if (!cma_any_port(daddr) && 3458 !cma_any_port(cur_daddr) && 3459 (dport != cur_dport)) 3460 continue; 3461 3462 /* different src address -> unique */ 3463 if (!cma_any_addr(saddr) && 3464 !cma_any_addr(cur_saddr) && 3465 cma_addr_cmp(saddr, cur_saddr)) 3466 continue; 3467 3468 /* different dst address -> unique */ 3469 if (!cma_any_addr(daddr) && 3470 !cma_any_addr(cur_daddr) && 3471 cma_addr_cmp(daddr, cur_daddr)) 3472 continue; 3473 3474 return -EADDRNOTAVAIL; 3475 } 3476 return 0; 3477 } 3478 3479 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3480 struct rdma_id_private *id_priv) 3481 { 3482 static unsigned int last_used_port; 3483 int low, high, remaining; 3484 unsigned int rover; 3485 struct net *net = id_priv->id.route.addr.dev_addr.net; 3486 3487 lockdep_assert_held(&lock); 3488 3489 inet_get_local_port_range(net, &low, &high); 3490 remaining = (high - low) + 1; 3491 rover = prandom_u32() % remaining + low; 3492 retry: 3493 if (last_used_port != rover) { 3494 struct rdma_bind_list *bind_list; 3495 int ret; 3496 3497 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3498 3499 if (!bind_list) { 3500 ret = cma_alloc_port(ps, id_priv, rover); 3501 } else { 3502 ret = cma_port_is_unique(bind_list, id_priv); 3503 if (!ret) 3504 cma_bind_port(bind_list, id_priv); 3505 } 3506 /* 3507 * Remember previously used port number in order to avoid 3508 * re-using same port immediately after it is closed. 3509 */ 3510 if (!ret) 3511 last_used_port = rover; 3512 if (ret != -EADDRNOTAVAIL) 3513 return ret; 3514 } 3515 if (--remaining) { 3516 rover++; 3517 if ((rover < low) || (rover > high)) 3518 rover = low; 3519 goto retry; 3520 } 3521 return -EADDRNOTAVAIL; 3522 } 3523 3524 /* 3525 * Check that the requested port is available. This is called when trying to 3526 * bind to a specific port, or when trying to listen on a bound port. In 3527 * the latter case, the provided id_priv may already be on the bind_list, but 3528 * we still need to check that it's okay to start listening. 3529 */ 3530 static int cma_check_port(struct rdma_bind_list *bind_list, 3531 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3532 { 3533 struct rdma_id_private *cur_id; 3534 struct sockaddr *addr, *cur_addr; 3535 3536 lockdep_assert_held(&lock); 3537 3538 addr = cma_src_addr(id_priv); 3539 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3540 if (id_priv == cur_id) 3541 continue; 3542 3543 if (reuseaddr && cur_id->reuseaddr) 3544 continue; 3545 3546 cur_addr = cma_src_addr(cur_id); 3547 if (id_priv->afonly && cur_id->afonly && 3548 (addr->sa_family != cur_addr->sa_family)) 3549 continue; 3550 3551 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3552 return -EADDRNOTAVAIL; 3553 3554 if (!cma_addr_cmp(addr, cur_addr)) 3555 return -EADDRINUSE; 3556 } 3557 return 0; 3558 } 3559 3560 static int cma_use_port(enum rdma_ucm_port_space ps, 3561 struct rdma_id_private *id_priv) 3562 { 3563 struct rdma_bind_list *bind_list; 3564 unsigned short snum; 3565 int ret; 3566 3567 lockdep_assert_held(&lock); 3568 3569 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3570 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3571 return -EACCES; 3572 3573 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3574 if (!bind_list) { 3575 ret = cma_alloc_port(ps, id_priv, snum); 3576 } else { 3577 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3578 if (!ret) 3579 cma_bind_port(bind_list, id_priv); 3580 } 3581 return ret; 3582 } 3583 3584 static enum rdma_ucm_port_space 3585 cma_select_inet_ps(struct rdma_id_private *id_priv) 3586 { 3587 switch (id_priv->id.ps) { 3588 case RDMA_PS_TCP: 3589 case RDMA_PS_UDP: 3590 case RDMA_PS_IPOIB: 3591 case RDMA_PS_IB: 3592 return id_priv->id.ps; 3593 default: 3594 3595 return 0; 3596 } 3597 } 3598 3599 static enum rdma_ucm_port_space 3600 cma_select_ib_ps(struct rdma_id_private *id_priv) 3601 { 3602 enum rdma_ucm_port_space ps = 0; 3603 struct sockaddr_ib *sib; 3604 u64 sid_ps, mask, sid; 3605 3606 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3607 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3608 sid = be64_to_cpu(sib->sib_sid) & mask; 3609 3610 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3611 sid_ps = RDMA_IB_IP_PS_IB; 3612 ps = RDMA_PS_IB; 3613 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3614 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3615 sid_ps = RDMA_IB_IP_PS_TCP; 3616 ps = RDMA_PS_TCP; 3617 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3618 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3619 sid_ps = RDMA_IB_IP_PS_UDP; 3620 ps = RDMA_PS_UDP; 3621 } 3622 3623 if (ps) { 3624 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3625 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3626 be64_to_cpu(sib->sib_sid_mask)); 3627 } 3628 return ps; 3629 } 3630 3631 static int cma_get_port(struct rdma_id_private *id_priv) 3632 { 3633 enum rdma_ucm_port_space ps; 3634 int ret; 3635 3636 if (cma_family(id_priv) != AF_IB) 3637 ps = cma_select_inet_ps(id_priv); 3638 else 3639 ps = cma_select_ib_ps(id_priv); 3640 if (!ps) 3641 return -EPROTONOSUPPORT; 3642 3643 mutex_lock(&lock); 3644 if (cma_any_port(cma_src_addr(id_priv))) 3645 ret = cma_alloc_any_port(ps, id_priv); 3646 else 3647 ret = cma_use_port(ps, id_priv); 3648 mutex_unlock(&lock); 3649 3650 return ret; 3651 } 3652 3653 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3654 struct sockaddr *addr) 3655 { 3656 #if IS_ENABLED(CONFIG_IPV6) 3657 struct sockaddr_in6 *sin6; 3658 3659 if (addr->sa_family != AF_INET6) 3660 return 0; 3661 3662 sin6 = (struct sockaddr_in6 *) addr; 3663 3664 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3665 return 0; 3666 3667 if (!sin6->sin6_scope_id) 3668 return -EINVAL; 3669 3670 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3671 #endif 3672 return 0; 3673 } 3674 3675 int rdma_listen(struct rdma_cm_id *id, int backlog) 3676 { 3677 struct rdma_id_private *id_priv = 3678 container_of(id, struct rdma_id_private, id); 3679 int ret; 3680 3681 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3682 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3683 id->route.addr.src_addr.ss_family = AF_INET; 3684 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3685 if (ret) 3686 return ret; 3687 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3688 RDMA_CM_LISTEN))) 3689 return -EINVAL; 3690 } 3691 3692 /* 3693 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3694 * any more, and has to be unique in the bind list. 3695 */ 3696 if (id_priv->reuseaddr) { 3697 mutex_lock(&lock); 3698 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3699 if (!ret) 3700 id_priv->reuseaddr = 0; 3701 mutex_unlock(&lock); 3702 if (ret) 3703 goto err; 3704 } 3705 3706 id_priv->backlog = backlog; 3707 if (id->device) { 3708 if (rdma_cap_ib_cm(id->device, 1)) { 3709 ret = cma_ib_listen(id_priv); 3710 if (ret) 3711 goto err; 3712 } else if (rdma_cap_iw_cm(id->device, 1)) { 3713 ret = cma_iw_listen(id_priv, backlog); 3714 if (ret) 3715 goto err; 3716 } else { 3717 ret = -ENOSYS; 3718 goto err; 3719 } 3720 } else { 3721 ret = cma_listen_on_all(id_priv); 3722 if (ret) 3723 goto err; 3724 } 3725 3726 return 0; 3727 err: 3728 id_priv->backlog = 0; 3729 /* 3730 * All the failure paths that lead here will not allow the req_handler's 3731 * to have run. 3732 */ 3733 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3734 return ret; 3735 } 3736 EXPORT_SYMBOL(rdma_listen); 3737 3738 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3739 { 3740 struct rdma_id_private *id_priv; 3741 int ret; 3742 struct sockaddr *daddr; 3743 3744 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3745 addr->sa_family != AF_IB) 3746 return -EAFNOSUPPORT; 3747 3748 id_priv = container_of(id, struct rdma_id_private, id); 3749 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3750 return -EINVAL; 3751 3752 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3753 if (ret) 3754 goto err1; 3755 3756 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3757 if (!cma_any_addr(addr)) { 3758 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3759 if (ret) 3760 goto err1; 3761 3762 ret = cma_acquire_dev_by_src_ip(id_priv); 3763 if (ret) 3764 goto err1; 3765 } 3766 3767 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3768 if (addr->sa_family == AF_INET) 3769 id_priv->afonly = 1; 3770 #if IS_ENABLED(CONFIG_IPV6) 3771 else if (addr->sa_family == AF_INET6) { 3772 struct net *net = id_priv->id.route.addr.dev_addr.net; 3773 3774 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3775 } 3776 #endif 3777 } 3778 daddr = cma_dst_addr(id_priv); 3779 daddr->sa_family = addr->sa_family; 3780 3781 ret = cma_get_port(id_priv); 3782 if (ret) 3783 goto err2; 3784 3785 return 0; 3786 err2: 3787 if (id_priv->cma_dev) 3788 cma_release_dev(id_priv); 3789 err1: 3790 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3791 return ret; 3792 } 3793 EXPORT_SYMBOL(rdma_bind_addr); 3794 3795 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3796 { 3797 struct cma_hdr *cma_hdr; 3798 3799 cma_hdr = hdr; 3800 cma_hdr->cma_version = CMA_VERSION; 3801 if (cma_family(id_priv) == AF_INET) { 3802 struct sockaddr_in *src4, *dst4; 3803 3804 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3805 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3806 3807 cma_set_ip_ver(cma_hdr, 4); 3808 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3809 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3810 cma_hdr->port = src4->sin_port; 3811 } else if (cma_family(id_priv) == AF_INET6) { 3812 struct sockaddr_in6 *src6, *dst6; 3813 3814 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3815 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3816 3817 cma_set_ip_ver(cma_hdr, 6); 3818 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3819 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3820 cma_hdr->port = src6->sin6_port; 3821 } 3822 return 0; 3823 } 3824 3825 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3826 const struct ib_cm_event *ib_event) 3827 { 3828 struct rdma_id_private *id_priv = cm_id->context; 3829 struct rdma_cm_event event = {}; 3830 const struct ib_cm_sidr_rep_event_param *rep = 3831 &ib_event->param.sidr_rep_rcvd; 3832 int ret; 3833 3834 mutex_lock(&id_priv->handler_mutex); 3835 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3836 goto out; 3837 3838 switch (ib_event->event) { 3839 case IB_CM_SIDR_REQ_ERROR: 3840 event.event = RDMA_CM_EVENT_UNREACHABLE; 3841 event.status = -ETIMEDOUT; 3842 break; 3843 case IB_CM_SIDR_REP_RECEIVED: 3844 event.param.ud.private_data = ib_event->private_data; 3845 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3846 if (rep->status != IB_SIDR_SUCCESS) { 3847 event.event = RDMA_CM_EVENT_UNREACHABLE; 3848 event.status = ib_event->param.sidr_rep_rcvd.status; 3849 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3850 event.status); 3851 break; 3852 } 3853 ret = cma_set_qkey(id_priv, rep->qkey); 3854 if (ret) { 3855 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3856 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3857 event.status = ret; 3858 break; 3859 } 3860 ib_init_ah_attr_from_path(id_priv->id.device, 3861 id_priv->id.port_num, 3862 id_priv->id.route.path_rec, 3863 &event.param.ud.ah_attr, 3864 rep->sgid_attr); 3865 event.param.ud.qp_num = rep->qpn; 3866 event.param.ud.qkey = rep->qkey; 3867 event.event = RDMA_CM_EVENT_ESTABLISHED; 3868 event.status = 0; 3869 break; 3870 default: 3871 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3872 ib_event->event); 3873 goto out; 3874 } 3875 3876 ret = cma_cm_event_handler(id_priv, &event); 3877 3878 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3879 if (ret) { 3880 /* Destroy the CM ID by returning a non-zero value. */ 3881 id_priv->cm_id.ib = NULL; 3882 destroy_id_handler_unlock(id_priv); 3883 return ret; 3884 } 3885 out: 3886 mutex_unlock(&id_priv->handler_mutex); 3887 return 0; 3888 } 3889 3890 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3891 struct rdma_conn_param *conn_param) 3892 { 3893 struct ib_cm_sidr_req_param req; 3894 struct ib_cm_id *id; 3895 void *private_data; 3896 u8 offset; 3897 int ret; 3898 3899 memset(&req, 0, sizeof req); 3900 offset = cma_user_data_offset(id_priv); 3901 req.private_data_len = offset + conn_param->private_data_len; 3902 if (req.private_data_len < conn_param->private_data_len) 3903 return -EINVAL; 3904 3905 if (req.private_data_len) { 3906 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3907 if (!private_data) 3908 return -ENOMEM; 3909 } else { 3910 private_data = NULL; 3911 } 3912 3913 if (conn_param->private_data && conn_param->private_data_len) 3914 memcpy(private_data + offset, conn_param->private_data, 3915 conn_param->private_data_len); 3916 3917 if (private_data) { 3918 ret = cma_format_hdr(private_data, id_priv); 3919 if (ret) 3920 goto out; 3921 req.private_data = private_data; 3922 } 3923 3924 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 3925 id_priv); 3926 if (IS_ERR(id)) { 3927 ret = PTR_ERR(id); 3928 goto out; 3929 } 3930 id_priv->cm_id.ib = id; 3931 3932 req.path = id_priv->id.route.path_rec; 3933 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3934 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3935 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 3936 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3937 3938 trace_cm_send_sidr_req(id_priv); 3939 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 3940 if (ret) { 3941 ib_destroy_cm_id(id_priv->cm_id.ib); 3942 id_priv->cm_id.ib = NULL; 3943 } 3944 out: 3945 kfree(private_data); 3946 return ret; 3947 } 3948 3949 static int cma_connect_ib(struct rdma_id_private *id_priv, 3950 struct rdma_conn_param *conn_param) 3951 { 3952 struct ib_cm_req_param req; 3953 struct rdma_route *route; 3954 void *private_data; 3955 struct ib_cm_id *id; 3956 u8 offset; 3957 int ret; 3958 3959 memset(&req, 0, sizeof req); 3960 offset = cma_user_data_offset(id_priv); 3961 req.private_data_len = offset + conn_param->private_data_len; 3962 if (req.private_data_len < conn_param->private_data_len) 3963 return -EINVAL; 3964 3965 if (req.private_data_len) { 3966 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3967 if (!private_data) 3968 return -ENOMEM; 3969 } else { 3970 private_data = NULL; 3971 } 3972 3973 if (conn_param->private_data && conn_param->private_data_len) 3974 memcpy(private_data + offset, conn_param->private_data, 3975 conn_param->private_data_len); 3976 3977 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 3978 if (IS_ERR(id)) { 3979 ret = PTR_ERR(id); 3980 goto out; 3981 } 3982 id_priv->cm_id.ib = id; 3983 3984 route = &id_priv->id.route; 3985 if (private_data) { 3986 ret = cma_format_hdr(private_data, id_priv); 3987 if (ret) 3988 goto out; 3989 req.private_data = private_data; 3990 } 3991 3992 req.primary_path = &route->path_rec[0]; 3993 if (route->num_paths == 2) 3994 req.alternate_path = &route->path_rec[1]; 3995 3996 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3997 /* Alternate path SGID attribute currently unsupported */ 3998 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3999 req.qp_num = id_priv->qp_num; 4000 req.qp_type = id_priv->id.qp_type; 4001 req.starting_psn = id_priv->seq_num; 4002 req.responder_resources = conn_param->responder_resources; 4003 req.initiator_depth = conn_param->initiator_depth; 4004 req.flow_control = conn_param->flow_control; 4005 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4006 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4007 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4008 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4009 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4010 req.srq = id_priv->srq ? 1 : 0; 4011 req.ece.vendor_id = id_priv->ece.vendor_id; 4012 req.ece.attr_mod = id_priv->ece.attr_mod; 4013 4014 trace_cm_send_req(id_priv); 4015 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4016 out: 4017 if (ret && !IS_ERR(id)) { 4018 ib_destroy_cm_id(id); 4019 id_priv->cm_id.ib = NULL; 4020 } 4021 4022 kfree(private_data); 4023 return ret; 4024 } 4025 4026 static int cma_connect_iw(struct rdma_id_private *id_priv, 4027 struct rdma_conn_param *conn_param) 4028 { 4029 struct iw_cm_id *cm_id; 4030 int ret; 4031 struct iw_cm_conn_param iw_param; 4032 4033 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4034 if (IS_ERR(cm_id)) 4035 return PTR_ERR(cm_id); 4036 4037 cm_id->tos = id_priv->tos; 4038 cm_id->tos_set = id_priv->tos_set; 4039 id_priv->cm_id.iw = cm_id; 4040 4041 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4042 rdma_addr_size(cma_src_addr(id_priv))); 4043 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4044 rdma_addr_size(cma_dst_addr(id_priv))); 4045 4046 ret = cma_modify_qp_rtr(id_priv, conn_param); 4047 if (ret) 4048 goto out; 4049 4050 if (conn_param) { 4051 iw_param.ord = conn_param->initiator_depth; 4052 iw_param.ird = conn_param->responder_resources; 4053 iw_param.private_data = conn_param->private_data; 4054 iw_param.private_data_len = conn_param->private_data_len; 4055 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4056 } else { 4057 memset(&iw_param, 0, sizeof iw_param); 4058 iw_param.qpn = id_priv->qp_num; 4059 } 4060 ret = iw_cm_connect(cm_id, &iw_param); 4061 out: 4062 if (ret) { 4063 iw_destroy_cm_id(cm_id); 4064 id_priv->cm_id.iw = NULL; 4065 } 4066 return ret; 4067 } 4068 4069 /** 4070 * rdma_connect_locked - Initiate an active connection request. 4071 * @id: Connection identifier to connect. 4072 * @conn_param: Connection information used for connected QPs. 4073 * 4074 * Same as rdma_connect() but can only be called from the 4075 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4076 */ 4077 int rdma_connect_locked(struct rdma_cm_id *id, 4078 struct rdma_conn_param *conn_param) 4079 { 4080 struct rdma_id_private *id_priv = 4081 container_of(id, struct rdma_id_private, id); 4082 int ret; 4083 4084 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4085 return -EINVAL; 4086 4087 if (!id->qp) { 4088 id_priv->qp_num = conn_param->qp_num; 4089 id_priv->srq = conn_param->srq; 4090 } 4091 4092 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4093 if (id->qp_type == IB_QPT_UD) 4094 ret = cma_resolve_ib_udp(id_priv, conn_param); 4095 else 4096 ret = cma_connect_ib(id_priv, conn_param); 4097 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4098 ret = cma_connect_iw(id_priv, conn_param); 4099 else 4100 ret = -ENOSYS; 4101 if (ret) 4102 goto err_state; 4103 return 0; 4104 err_state: 4105 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4106 return ret; 4107 } 4108 EXPORT_SYMBOL(rdma_connect_locked); 4109 4110 /** 4111 * rdma_connect - Initiate an active connection request. 4112 * @id: Connection identifier to connect. 4113 * @conn_param: Connection information used for connected QPs. 4114 * 4115 * Users must have resolved a route for the rdma_cm_id to connect with by having 4116 * called rdma_resolve_route before calling this routine. 4117 * 4118 * This call will either connect to a remote QP or obtain remote QP information 4119 * for unconnected rdma_cm_id's. The actual operation is based on the 4120 * rdma_cm_id's port space. 4121 */ 4122 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4123 { 4124 struct rdma_id_private *id_priv = 4125 container_of(id, struct rdma_id_private, id); 4126 int ret; 4127 4128 mutex_lock(&id_priv->handler_mutex); 4129 ret = rdma_connect_locked(id, conn_param); 4130 mutex_unlock(&id_priv->handler_mutex); 4131 return ret; 4132 } 4133 EXPORT_SYMBOL(rdma_connect); 4134 4135 /** 4136 * rdma_connect_ece - Initiate an active connection request with ECE data. 4137 * @id: Connection identifier to connect. 4138 * @conn_param: Connection information used for connected QPs. 4139 * @ece: ECE parameters 4140 * 4141 * See rdma_connect() explanation. 4142 */ 4143 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4144 struct rdma_ucm_ece *ece) 4145 { 4146 struct rdma_id_private *id_priv = 4147 container_of(id, struct rdma_id_private, id); 4148 4149 id_priv->ece.vendor_id = ece->vendor_id; 4150 id_priv->ece.attr_mod = ece->attr_mod; 4151 4152 return rdma_connect(id, conn_param); 4153 } 4154 EXPORT_SYMBOL(rdma_connect_ece); 4155 4156 static int cma_accept_ib(struct rdma_id_private *id_priv, 4157 struct rdma_conn_param *conn_param) 4158 { 4159 struct ib_cm_rep_param rep; 4160 int ret; 4161 4162 ret = cma_modify_qp_rtr(id_priv, conn_param); 4163 if (ret) 4164 goto out; 4165 4166 ret = cma_modify_qp_rts(id_priv, conn_param); 4167 if (ret) 4168 goto out; 4169 4170 memset(&rep, 0, sizeof rep); 4171 rep.qp_num = id_priv->qp_num; 4172 rep.starting_psn = id_priv->seq_num; 4173 rep.private_data = conn_param->private_data; 4174 rep.private_data_len = conn_param->private_data_len; 4175 rep.responder_resources = conn_param->responder_resources; 4176 rep.initiator_depth = conn_param->initiator_depth; 4177 rep.failover_accepted = 0; 4178 rep.flow_control = conn_param->flow_control; 4179 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4180 rep.srq = id_priv->srq ? 1 : 0; 4181 rep.ece.vendor_id = id_priv->ece.vendor_id; 4182 rep.ece.attr_mod = id_priv->ece.attr_mod; 4183 4184 trace_cm_send_rep(id_priv); 4185 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4186 out: 4187 return ret; 4188 } 4189 4190 static int cma_accept_iw(struct rdma_id_private *id_priv, 4191 struct rdma_conn_param *conn_param) 4192 { 4193 struct iw_cm_conn_param iw_param; 4194 int ret; 4195 4196 if (!conn_param) 4197 return -EINVAL; 4198 4199 ret = cma_modify_qp_rtr(id_priv, conn_param); 4200 if (ret) 4201 return ret; 4202 4203 iw_param.ord = conn_param->initiator_depth; 4204 iw_param.ird = conn_param->responder_resources; 4205 iw_param.private_data = conn_param->private_data; 4206 iw_param.private_data_len = conn_param->private_data_len; 4207 if (id_priv->id.qp) { 4208 iw_param.qpn = id_priv->qp_num; 4209 } else 4210 iw_param.qpn = conn_param->qp_num; 4211 4212 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4213 } 4214 4215 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4216 enum ib_cm_sidr_status status, u32 qkey, 4217 const void *private_data, int private_data_len) 4218 { 4219 struct ib_cm_sidr_rep_param rep; 4220 int ret; 4221 4222 memset(&rep, 0, sizeof rep); 4223 rep.status = status; 4224 if (status == IB_SIDR_SUCCESS) { 4225 ret = cma_set_qkey(id_priv, qkey); 4226 if (ret) 4227 return ret; 4228 rep.qp_num = id_priv->qp_num; 4229 rep.qkey = id_priv->qkey; 4230 4231 rep.ece.vendor_id = id_priv->ece.vendor_id; 4232 rep.ece.attr_mod = id_priv->ece.attr_mod; 4233 } 4234 4235 rep.private_data = private_data; 4236 rep.private_data_len = private_data_len; 4237 4238 trace_cm_send_sidr_rep(id_priv); 4239 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4240 } 4241 4242 /** 4243 * rdma_accept - Called to accept a connection request or response. 4244 * @id: Connection identifier associated with the request. 4245 * @conn_param: Information needed to establish the connection. This must be 4246 * provided if accepting a connection request. If accepting a connection 4247 * response, this parameter must be NULL. 4248 * 4249 * Typically, this routine is only called by the listener to accept a connection 4250 * request. It must also be called on the active side of a connection if the 4251 * user is performing their own QP transitions. 4252 * 4253 * In the case of error, a reject message is sent to the remote side and the 4254 * state of the qp associated with the id is modified to error, such that any 4255 * previously posted receive buffers would be flushed. 4256 * 4257 * This function is for use by kernel ULPs and must be called from under the 4258 * handler callback. 4259 */ 4260 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4261 { 4262 struct rdma_id_private *id_priv = 4263 container_of(id, struct rdma_id_private, id); 4264 int ret; 4265 4266 lockdep_assert_held(&id_priv->handler_mutex); 4267 4268 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4269 return -EINVAL; 4270 4271 if (!id->qp && conn_param) { 4272 id_priv->qp_num = conn_param->qp_num; 4273 id_priv->srq = conn_param->srq; 4274 } 4275 4276 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4277 if (id->qp_type == IB_QPT_UD) { 4278 if (conn_param) 4279 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4280 conn_param->qkey, 4281 conn_param->private_data, 4282 conn_param->private_data_len); 4283 else 4284 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4285 0, NULL, 0); 4286 } else { 4287 if (conn_param) 4288 ret = cma_accept_ib(id_priv, conn_param); 4289 else 4290 ret = cma_rep_recv(id_priv); 4291 } 4292 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4293 ret = cma_accept_iw(id_priv, conn_param); 4294 else 4295 ret = -ENOSYS; 4296 4297 if (ret) 4298 goto reject; 4299 4300 return 0; 4301 reject: 4302 cma_modify_qp_err(id_priv); 4303 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4304 return ret; 4305 } 4306 EXPORT_SYMBOL(rdma_accept); 4307 4308 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4309 struct rdma_ucm_ece *ece) 4310 { 4311 struct rdma_id_private *id_priv = 4312 container_of(id, struct rdma_id_private, id); 4313 4314 id_priv->ece.vendor_id = ece->vendor_id; 4315 id_priv->ece.attr_mod = ece->attr_mod; 4316 4317 return rdma_accept(id, conn_param); 4318 } 4319 EXPORT_SYMBOL(rdma_accept_ece); 4320 4321 void rdma_lock_handler(struct rdma_cm_id *id) 4322 { 4323 struct rdma_id_private *id_priv = 4324 container_of(id, struct rdma_id_private, id); 4325 4326 mutex_lock(&id_priv->handler_mutex); 4327 } 4328 EXPORT_SYMBOL(rdma_lock_handler); 4329 4330 void rdma_unlock_handler(struct rdma_cm_id *id) 4331 { 4332 struct rdma_id_private *id_priv = 4333 container_of(id, struct rdma_id_private, id); 4334 4335 mutex_unlock(&id_priv->handler_mutex); 4336 } 4337 EXPORT_SYMBOL(rdma_unlock_handler); 4338 4339 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4340 { 4341 struct rdma_id_private *id_priv; 4342 int ret; 4343 4344 id_priv = container_of(id, struct rdma_id_private, id); 4345 if (!id_priv->cm_id.ib) 4346 return -EINVAL; 4347 4348 switch (id->device->node_type) { 4349 case RDMA_NODE_IB_CA: 4350 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4351 break; 4352 default: 4353 ret = 0; 4354 break; 4355 } 4356 return ret; 4357 } 4358 EXPORT_SYMBOL(rdma_notify); 4359 4360 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4361 u8 private_data_len, u8 reason) 4362 { 4363 struct rdma_id_private *id_priv; 4364 int ret; 4365 4366 id_priv = container_of(id, struct rdma_id_private, id); 4367 if (!id_priv->cm_id.ib) 4368 return -EINVAL; 4369 4370 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4371 if (id->qp_type == IB_QPT_UD) { 4372 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4373 private_data, private_data_len); 4374 } else { 4375 trace_cm_send_rej(id_priv); 4376 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4377 private_data, private_data_len); 4378 } 4379 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4380 ret = iw_cm_reject(id_priv->cm_id.iw, 4381 private_data, private_data_len); 4382 } else 4383 ret = -ENOSYS; 4384 4385 return ret; 4386 } 4387 EXPORT_SYMBOL(rdma_reject); 4388 4389 int rdma_disconnect(struct rdma_cm_id *id) 4390 { 4391 struct rdma_id_private *id_priv; 4392 int ret; 4393 4394 id_priv = container_of(id, struct rdma_id_private, id); 4395 if (!id_priv->cm_id.ib) 4396 return -EINVAL; 4397 4398 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4399 ret = cma_modify_qp_err(id_priv); 4400 if (ret) 4401 goto out; 4402 /* Initiate or respond to a disconnect. */ 4403 trace_cm_disconnect(id_priv); 4404 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4405 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4406 trace_cm_sent_drep(id_priv); 4407 } else { 4408 trace_cm_sent_dreq(id_priv); 4409 } 4410 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4411 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4412 } else 4413 ret = -EINVAL; 4414 4415 out: 4416 return ret; 4417 } 4418 EXPORT_SYMBOL(rdma_disconnect); 4419 4420 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4421 struct ib_sa_multicast *multicast, 4422 struct rdma_cm_event *event, 4423 struct cma_multicast *mc) 4424 { 4425 struct rdma_dev_addr *dev_addr; 4426 enum ib_gid_type gid_type; 4427 struct net_device *ndev; 4428 4429 if (!status) 4430 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4431 else 4432 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4433 status); 4434 4435 event->status = status; 4436 event->param.ud.private_data = mc->context; 4437 if (status) { 4438 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4439 return; 4440 } 4441 4442 dev_addr = &id_priv->id.route.addr.dev_addr; 4443 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4444 gid_type = 4445 id_priv->cma_dev 4446 ->default_gid_type[id_priv->id.port_num - 4447 rdma_start_port( 4448 id_priv->cma_dev->device)]; 4449 4450 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4451 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4452 &multicast->rec, ndev, gid_type, 4453 &event->param.ud.ah_attr)) { 4454 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4455 goto out; 4456 } 4457 4458 event->param.ud.qp_num = 0xFFFFFF; 4459 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4460 4461 out: 4462 if (ndev) 4463 dev_put(ndev); 4464 } 4465 4466 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4467 { 4468 struct cma_multicast *mc = multicast->context; 4469 struct rdma_id_private *id_priv = mc->id_priv; 4470 struct rdma_cm_event event = {}; 4471 int ret = 0; 4472 4473 mutex_lock(&id_priv->handler_mutex); 4474 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4475 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4476 goto out; 4477 4478 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4479 ret = cma_cm_event_handler(id_priv, &event); 4480 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4481 if (ret) { 4482 destroy_id_handler_unlock(id_priv); 4483 return 0; 4484 } 4485 4486 out: 4487 mutex_unlock(&id_priv->handler_mutex); 4488 return 0; 4489 } 4490 4491 static void cma_set_mgid(struct rdma_id_private *id_priv, 4492 struct sockaddr *addr, union ib_gid *mgid) 4493 { 4494 unsigned char mc_map[MAX_ADDR_LEN]; 4495 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4496 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4497 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4498 4499 if (cma_any_addr(addr)) { 4500 memset(mgid, 0, sizeof *mgid); 4501 } else if ((addr->sa_family == AF_INET6) && 4502 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4503 0xFF10A01B)) { 4504 /* IPv6 address is an SA assigned MGID. */ 4505 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4506 } else if (addr->sa_family == AF_IB) { 4507 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4508 } else if (addr->sa_family == AF_INET6) { 4509 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4510 if (id_priv->id.ps == RDMA_PS_UDP) 4511 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4512 *mgid = *(union ib_gid *) (mc_map + 4); 4513 } else { 4514 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4515 if (id_priv->id.ps == RDMA_PS_UDP) 4516 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4517 *mgid = *(union ib_gid *) (mc_map + 4); 4518 } 4519 } 4520 4521 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4522 struct cma_multicast *mc) 4523 { 4524 struct ib_sa_mcmember_rec rec; 4525 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4526 ib_sa_comp_mask comp_mask; 4527 int ret; 4528 4529 ib_addr_get_mgid(dev_addr, &rec.mgid); 4530 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4531 &rec.mgid, &rec); 4532 if (ret) 4533 return ret; 4534 4535 ret = cma_set_qkey(id_priv, 0); 4536 if (ret) 4537 return ret; 4538 4539 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4540 rec.qkey = cpu_to_be32(id_priv->qkey); 4541 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4542 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4543 rec.join_state = mc->join_state; 4544 4545 if ((rec.join_state == BIT(SENDONLY_FULLMEMBER_JOIN)) && 4546 (!ib_sa_sendonly_fullmem_support(&sa_client, 4547 id_priv->id.device, 4548 id_priv->id.port_num))) { 4549 dev_warn( 4550 &id_priv->id.device->dev, 4551 "RDMA CM: port %u Unable to multicast join: SM doesn't support Send Only Full Member option\n", 4552 id_priv->id.port_num); 4553 return -EOPNOTSUPP; 4554 } 4555 4556 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4557 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4558 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4559 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4560 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4561 4562 if (id_priv->id.ps == RDMA_PS_IPOIB) 4563 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4564 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4565 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4566 IB_SA_MCMEMBER_REC_MTU | 4567 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4568 4569 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4570 id_priv->id.port_num, &rec, comp_mask, 4571 GFP_KERNEL, cma_ib_mc_handler, mc); 4572 return PTR_ERR_OR_ZERO(mc->sa_mc); 4573 } 4574 4575 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4576 enum ib_gid_type gid_type) 4577 { 4578 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4579 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4580 4581 if (cma_any_addr(addr)) { 4582 memset(mgid, 0, sizeof *mgid); 4583 } else if (addr->sa_family == AF_INET6) { 4584 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4585 } else { 4586 mgid->raw[0] = 4587 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4588 mgid->raw[1] = 4589 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4590 mgid->raw[2] = 0; 4591 mgid->raw[3] = 0; 4592 mgid->raw[4] = 0; 4593 mgid->raw[5] = 0; 4594 mgid->raw[6] = 0; 4595 mgid->raw[7] = 0; 4596 mgid->raw[8] = 0; 4597 mgid->raw[9] = 0; 4598 mgid->raw[10] = 0xff; 4599 mgid->raw[11] = 0xff; 4600 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4601 } 4602 } 4603 4604 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4605 struct cma_multicast *mc) 4606 { 4607 struct cma_work *work; 4608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4609 int err = 0; 4610 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4611 struct net_device *ndev = NULL; 4612 struct ib_sa_multicast ib; 4613 enum ib_gid_type gid_type; 4614 bool send_only; 4615 4616 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4617 4618 if (cma_zero_addr(addr)) 4619 return -EINVAL; 4620 4621 work = kzalloc(sizeof *work, GFP_KERNEL); 4622 if (!work) 4623 return -ENOMEM; 4624 4625 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4626 rdma_start_port(id_priv->cma_dev->device)]; 4627 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4628 4629 ib.rec.pkey = cpu_to_be16(0xffff); 4630 if (id_priv->id.ps == RDMA_PS_UDP) 4631 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4632 4633 if (dev_addr->bound_dev_if) 4634 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4635 if (!ndev) { 4636 err = -ENODEV; 4637 goto err_free; 4638 } 4639 ib.rec.rate = iboe_get_rate(ndev); 4640 ib.rec.hop_limit = 1; 4641 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4642 4643 if (addr->sa_family == AF_INET) { 4644 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4645 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4646 if (!send_only) { 4647 err = cma_igmp_send(ndev, &ib.rec.mgid, 4648 true); 4649 } 4650 } 4651 } else { 4652 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4653 err = -ENOTSUPP; 4654 } 4655 dev_put(ndev); 4656 if (err || !ib.rec.mtu) { 4657 if (!err) 4658 err = -EINVAL; 4659 goto err_free; 4660 } 4661 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4662 &ib.rec.port_gid); 4663 work->id = id_priv; 4664 INIT_WORK(&work->work, cma_work_handler); 4665 cma_make_mc_event(0, id_priv, &ib, &work->event, mc); 4666 /* Balances with cma_id_put() in cma_work_handler */ 4667 cma_id_get(id_priv); 4668 queue_work(cma_wq, &work->work); 4669 return 0; 4670 4671 err_free: 4672 kfree(work); 4673 return err; 4674 } 4675 4676 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4677 u8 join_state, void *context) 4678 { 4679 struct rdma_id_private *id_priv = 4680 container_of(id, struct rdma_id_private, id); 4681 struct cma_multicast *mc; 4682 int ret; 4683 4684 /* Not supported for kernel QPs */ 4685 if (WARN_ON(id->qp)) 4686 return -EINVAL; 4687 4688 /* ULP is calling this wrong. */ 4689 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4690 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4691 return -EINVAL; 4692 4693 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4694 if (!mc) 4695 return -ENOMEM; 4696 4697 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4698 mc->context = context; 4699 mc->id_priv = id_priv; 4700 mc->join_state = join_state; 4701 4702 if (rdma_protocol_roce(id->device, id->port_num)) { 4703 ret = cma_iboe_join_multicast(id_priv, mc); 4704 if (ret) 4705 goto out_err; 4706 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4707 ret = cma_join_ib_multicast(id_priv, mc); 4708 if (ret) 4709 goto out_err; 4710 } else { 4711 ret = -ENOSYS; 4712 goto out_err; 4713 } 4714 4715 spin_lock(&id_priv->lock); 4716 list_add(&mc->list, &id_priv->mc_list); 4717 spin_unlock(&id_priv->lock); 4718 4719 return 0; 4720 out_err: 4721 kfree(mc); 4722 return ret; 4723 } 4724 EXPORT_SYMBOL(rdma_join_multicast); 4725 4726 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4727 { 4728 struct rdma_id_private *id_priv; 4729 struct cma_multicast *mc; 4730 4731 id_priv = container_of(id, struct rdma_id_private, id); 4732 spin_lock_irq(&id_priv->lock); 4733 list_for_each_entry(mc, &id_priv->mc_list, list) { 4734 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4735 continue; 4736 list_del(&mc->list); 4737 spin_unlock_irq(&id_priv->lock); 4738 4739 WARN_ON(id_priv->cma_dev->device != id->device); 4740 destroy_mc(id_priv, mc); 4741 return; 4742 } 4743 spin_unlock_irq(&id_priv->lock); 4744 } 4745 EXPORT_SYMBOL(rdma_leave_multicast); 4746 4747 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4748 { 4749 struct rdma_dev_addr *dev_addr; 4750 struct cma_work *work; 4751 4752 dev_addr = &id_priv->id.route.addr.dev_addr; 4753 4754 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4755 (net_eq(dev_net(ndev), dev_addr->net)) && 4756 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4757 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4758 ndev->name, &id_priv->id); 4759 work = kzalloc(sizeof *work, GFP_KERNEL); 4760 if (!work) 4761 return -ENOMEM; 4762 4763 INIT_WORK(&work->work, cma_work_handler); 4764 work->id = id_priv; 4765 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4766 cma_id_get(id_priv); 4767 queue_work(cma_wq, &work->work); 4768 } 4769 4770 return 0; 4771 } 4772 4773 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4774 void *ptr) 4775 { 4776 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4777 struct cma_device *cma_dev; 4778 struct rdma_id_private *id_priv; 4779 int ret = NOTIFY_DONE; 4780 4781 if (event != NETDEV_BONDING_FAILOVER) 4782 return NOTIFY_DONE; 4783 4784 if (!netif_is_bond_master(ndev)) 4785 return NOTIFY_DONE; 4786 4787 mutex_lock(&lock); 4788 list_for_each_entry(cma_dev, &dev_list, list) 4789 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4790 ret = cma_netdev_change(ndev, id_priv); 4791 if (ret) 4792 goto out; 4793 } 4794 4795 out: 4796 mutex_unlock(&lock); 4797 return ret; 4798 } 4799 4800 static struct notifier_block cma_nb = { 4801 .notifier_call = cma_netdev_callback 4802 }; 4803 4804 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4805 { 4806 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4807 enum rdma_cm_state state; 4808 unsigned long flags; 4809 4810 mutex_lock(&id_priv->handler_mutex); 4811 /* Record that we want to remove the device */ 4812 spin_lock_irqsave(&id_priv->lock, flags); 4813 state = id_priv->state; 4814 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4815 spin_unlock_irqrestore(&id_priv->lock, flags); 4816 mutex_unlock(&id_priv->handler_mutex); 4817 cma_id_put(id_priv); 4818 return; 4819 } 4820 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4821 spin_unlock_irqrestore(&id_priv->lock, flags); 4822 4823 if (cma_cm_event_handler(id_priv, &event)) { 4824 /* 4825 * At this point the ULP promises it won't call 4826 * rdma_destroy_id() concurrently 4827 */ 4828 cma_id_put(id_priv); 4829 mutex_unlock(&id_priv->handler_mutex); 4830 trace_cm_id_destroy(id_priv); 4831 _destroy_id(id_priv, state); 4832 return; 4833 } 4834 mutex_unlock(&id_priv->handler_mutex); 4835 4836 /* 4837 * If this races with destroy then the thread that first assigns state 4838 * to a destroying does the cancel. 4839 */ 4840 cma_cancel_operation(id_priv, state); 4841 cma_id_put(id_priv); 4842 } 4843 4844 static void cma_process_remove(struct cma_device *cma_dev) 4845 { 4846 mutex_lock(&lock); 4847 while (!list_empty(&cma_dev->id_list)) { 4848 struct rdma_id_private *id_priv = list_first_entry( 4849 &cma_dev->id_list, struct rdma_id_private, list); 4850 4851 list_del(&id_priv->listen_list); 4852 list_del_init(&id_priv->list); 4853 cma_id_get(id_priv); 4854 mutex_unlock(&lock); 4855 4856 cma_send_device_removal_put(id_priv); 4857 4858 mutex_lock(&lock); 4859 } 4860 mutex_unlock(&lock); 4861 4862 cma_dev_put(cma_dev); 4863 wait_for_completion(&cma_dev->comp); 4864 } 4865 4866 static int cma_add_one(struct ib_device *device) 4867 { 4868 struct rdma_id_private *to_destroy; 4869 struct cma_device *cma_dev; 4870 struct rdma_id_private *id_priv; 4871 unsigned int i; 4872 unsigned long supported_gids = 0; 4873 int ret; 4874 4875 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 4876 if (!cma_dev) 4877 return -ENOMEM; 4878 4879 cma_dev->device = device; 4880 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4881 sizeof(*cma_dev->default_gid_type), 4882 GFP_KERNEL); 4883 if (!cma_dev->default_gid_type) { 4884 ret = -ENOMEM; 4885 goto free_cma_dev; 4886 } 4887 4888 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4889 sizeof(*cma_dev->default_roce_tos), 4890 GFP_KERNEL); 4891 if (!cma_dev->default_roce_tos) { 4892 ret = -ENOMEM; 4893 goto free_gid_type; 4894 } 4895 4896 rdma_for_each_port (device, i) { 4897 supported_gids = roce_gid_type_mask_support(device, i); 4898 WARN_ON(!supported_gids); 4899 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4900 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4901 CMA_PREFERRED_ROCE_GID_TYPE; 4902 else 4903 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4904 find_first_bit(&supported_gids, BITS_PER_LONG); 4905 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4906 } 4907 4908 init_completion(&cma_dev->comp); 4909 refcount_set(&cma_dev->refcount, 1); 4910 INIT_LIST_HEAD(&cma_dev->id_list); 4911 ib_set_client_data(device, &cma_client, cma_dev); 4912 4913 mutex_lock(&lock); 4914 list_add_tail(&cma_dev->list, &dev_list); 4915 list_for_each_entry(id_priv, &listen_any_list, list) { 4916 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 4917 if (ret) 4918 goto free_listen; 4919 } 4920 mutex_unlock(&lock); 4921 4922 trace_cm_add_one(device); 4923 return 0; 4924 4925 free_listen: 4926 list_del(&cma_dev->list); 4927 mutex_unlock(&lock); 4928 4929 /* cma_process_remove() will delete to_destroy */ 4930 cma_process_remove(cma_dev); 4931 kfree(cma_dev->default_roce_tos); 4932 free_gid_type: 4933 kfree(cma_dev->default_gid_type); 4934 4935 free_cma_dev: 4936 kfree(cma_dev); 4937 return ret; 4938 } 4939 4940 static void cma_remove_one(struct ib_device *device, void *client_data) 4941 { 4942 struct cma_device *cma_dev = client_data; 4943 4944 trace_cm_remove_one(device); 4945 4946 mutex_lock(&lock); 4947 list_del(&cma_dev->list); 4948 mutex_unlock(&lock); 4949 4950 cma_process_remove(cma_dev); 4951 kfree(cma_dev->default_roce_tos); 4952 kfree(cma_dev->default_gid_type); 4953 kfree(cma_dev); 4954 } 4955 4956 static int cma_init_net(struct net *net) 4957 { 4958 struct cma_pernet *pernet = cma_pernet(net); 4959 4960 xa_init(&pernet->tcp_ps); 4961 xa_init(&pernet->udp_ps); 4962 xa_init(&pernet->ipoib_ps); 4963 xa_init(&pernet->ib_ps); 4964 4965 return 0; 4966 } 4967 4968 static void cma_exit_net(struct net *net) 4969 { 4970 struct cma_pernet *pernet = cma_pernet(net); 4971 4972 WARN_ON(!xa_empty(&pernet->tcp_ps)); 4973 WARN_ON(!xa_empty(&pernet->udp_ps)); 4974 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 4975 WARN_ON(!xa_empty(&pernet->ib_ps)); 4976 } 4977 4978 static struct pernet_operations cma_pernet_operations = { 4979 .init = cma_init_net, 4980 .exit = cma_exit_net, 4981 .id = &cma_pernet_id, 4982 .size = sizeof(struct cma_pernet), 4983 }; 4984 4985 static int __init cma_init(void) 4986 { 4987 int ret; 4988 4989 /* 4990 * There is a rare lock ordering dependency in cma_netdev_callback() 4991 * that only happens when bonding is enabled. Teach lockdep that rtnl 4992 * must never be nested under lock so it can find these without having 4993 * to test with bonding. 4994 */ 4995 if (IS_ENABLED(CONFIG_LOCKDEP)) { 4996 rtnl_lock(); 4997 mutex_lock(&lock); 4998 mutex_unlock(&lock); 4999 rtnl_unlock(); 5000 } 5001 5002 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5003 if (!cma_wq) 5004 return -ENOMEM; 5005 5006 ret = register_pernet_subsys(&cma_pernet_operations); 5007 if (ret) 5008 goto err_wq; 5009 5010 ib_sa_register_client(&sa_client); 5011 register_netdevice_notifier(&cma_nb); 5012 5013 ret = ib_register_client(&cma_client); 5014 if (ret) 5015 goto err; 5016 5017 ret = cma_configfs_init(); 5018 if (ret) 5019 goto err_ib; 5020 5021 return 0; 5022 5023 err_ib: 5024 ib_unregister_client(&cma_client); 5025 err: 5026 unregister_netdevice_notifier(&cma_nb); 5027 ib_sa_unregister_client(&sa_client); 5028 unregister_pernet_subsys(&cma_pernet_operations); 5029 err_wq: 5030 destroy_workqueue(cma_wq); 5031 return ret; 5032 } 5033 5034 static void __exit cma_cleanup(void) 5035 { 5036 cma_configfs_exit(); 5037 ib_unregister_client(&cma_client); 5038 unregister_netdevice_notifier(&cma_nb); 5039 ib_sa_unregister_client(&sa_client); 5040 unregister_pernet_subsys(&cma_pernet_operations); 5041 destroy_workqueue(cma_wq); 5042 } 5043 5044 module_init(cma_init); 5045 module_exit(cma_cleanup); 5046