1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000 47 #define CMA_MAX_CM_RETRIES 15 48 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 49 #define CMA_IBOE_PACKET_LIFETIME 18 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 72 { 73 size_t index = event; 74 75 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 76 cma_events[index] : "unrecognized event"; 77 } 78 EXPORT_SYMBOL(rdma_event_msg); 79 80 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 81 int reason) 82 { 83 if (rdma_ib_or_roce(id->device, id->port_num)) 84 return ibcm_reject_msg(reason); 85 86 if (rdma_protocol_iwarp(id->device, id->port_num)) 87 return iwcm_reject_msg(reason); 88 89 WARN_ON_ONCE(1); 90 return "unrecognized transport"; 91 } 92 EXPORT_SYMBOL(rdma_reject_msg); 93 94 /** 95 * rdma_is_consumer_reject - return true if the consumer rejected the connect 96 * request. 97 * @id: Communication identifier that received the REJECT event. 98 * @reason: Value returned in the REJECT event status field. 99 */ 100 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 101 { 102 if (rdma_ib_or_roce(id->device, id->port_num)) 103 return reason == IB_CM_REJ_CONSUMER_DEFINED; 104 105 if (rdma_protocol_iwarp(id->device, id->port_num)) 106 return reason == -ECONNREFUSED; 107 108 WARN_ON_ONCE(1); 109 return false; 110 } 111 112 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 113 struct rdma_cm_event *ev, u8 *data_len) 114 { 115 const void *p; 116 117 if (rdma_is_consumer_reject(id, ev->status)) { 118 *data_len = ev->param.conn.private_data_len; 119 p = ev->param.conn.private_data; 120 } else { 121 *data_len = 0; 122 p = NULL; 123 } 124 return p; 125 } 126 EXPORT_SYMBOL(rdma_consumer_reject_data); 127 128 /** 129 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 130 * @id: Communication Identifier 131 */ 132 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 133 { 134 struct rdma_id_private *id_priv; 135 136 id_priv = container_of(id, struct rdma_id_private, id); 137 if (id->device->node_type == RDMA_NODE_RNIC) 138 return id_priv->cm_id.iw; 139 return NULL; 140 } 141 EXPORT_SYMBOL(rdma_iw_cm_id); 142 143 /** 144 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 145 * @res: rdma resource tracking entry pointer 146 */ 147 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 148 { 149 struct rdma_id_private *id_priv = 150 container_of(res, struct rdma_id_private, res); 151 152 return &id_priv->id; 153 } 154 EXPORT_SYMBOL(rdma_res_to_id); 155 156 static int cma_add_one(struct ib_device *device); 157 static void cma_remove_one(struct ib_device *device, void *client_data); 158 159 static struct ib_client cma_client = { 160 .name = "cma", 161 .add = cma_add_one, 162 .remove = cma_remove_one 163 }; 164 165 static struct ib_sa_client sa_client; 166 static LIST_HEAD(dev_list); 167 static LIST_HEAD(listen_any_list); 168 static DEFINE_MUTEX(lock); 169 static struct workqueue_struct *cma_wq; 170 static unsigned int cma_pernet_id; 171 172 struct cma_pernet { 173 struct xarray tcp_ps; 174 struct xarray udp_ps; 175 struct xarray ipoib_ps; 176 struct xarray ib_ps; 177 }; 178 179 static struct cma_pernet *cma_pernet(struct net *net) 180 { 181 return net_generic(net, cma_pernet_id); 182 } 183 184 static 185 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 186 { 187 struct cma_pernet *pernet = cma_pernet(net); 188 189 switch (ps) { 190 case RDMA_PS_TCP: 191 return &pernet->tcp_ps; 192 case RDMA_PS_UDP: 193 return &pernet->udp_ps; 194 case RDMA_PS_IPOIB: 195 return &pernet->ipoib_ps; 196 case RDMA_PS_IB: 197 return &pernet->ib_ps; 198 default: 199 return NULL; 200 } 201 } 202 203 struct cma_device { 204 struct list_head list; 205 struct ib_device *device; 206 struct completion comp; 207 refcount_t refcount; 208 struct list_head id_list; 209 enum ib_gid_type *default_gid_type; 210 u8 *default_roce_tos; 211 }; 212 213 struct rdma_bind_list { 214 enum rdma_ucm_port_space ps; 215 struct hlist_head owners; 216 unsigned short port; 217 }; 218 219 struct class_port_info_context { 220 struct ib_class_port_info *class_port_info; 221 struct ib_device *device; 222 struct completion done; 223 struct ib_sa_query *sa_query; 224 u8 port_num; 225 }; 226 227 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 228 struct rdma_bind_list *bind_list, int snum) 229 { 230 struct xarray *xa = cma_pernet_xa(net, ps); 231 232 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 233 } 234 235 static struct rdma_bind_list *cma_ps_find(struct net *net, 236 enum rdma_ucm_port_space ps, int snum) 237 { 238 struct xarray *xa = cma_pernet_xa(net, ps); 239 240 return xa_load(xa, snum); 241 } 242 243 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 244 int snum) 245 { 246 struct xarray *xa = cma_pernet_xa(net, ps); 247 248 xa_erase(xa, snum); 249 } 250 251 enum { 252 CMA_OPTION_AFONLY, 253 }; 254 255 void cma_dev_get(struct cma_device *cma_dev) 256 { 257 refcount_inc(&cma_dev->refcount); 258 } 259 260 void cma_dev_put(struct cma_device *cma_dev) 261 { 262 if (refcount_dec_and_test(&cma_dev->refcount)) 263 complete(&cma_dev->comp); 264 } 265 266 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 267 void *cookie) 268 { 269 struct cma_device *cma_dev; 270 struct cma_device *found_cma_dev = NULL; 271 272 mutex_lock(&lock); 273 274 list_for_each_entry(cma_dev, &dev_list, list) 275 if (filter(cma_dev->device, cookie)) { 276 found_cma_dev = cma_dev; 277 break; 278 } 279 280 if (found_cma_dev) 281 cma_dev_get(found_cma_dev); 282 mutex_unlock(&lock); 283 return found_cma_dev; 284 } 285 286 int cma_get_default_gid_type(struct cma_device *cma_dev, 287 unsigned int port) 288 { 289 if (!rdma_is_port_valid(cma_dev->device, port)) 290 return -EINVAL; 291 292 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 293 } 294 295 int cma_set_default_gid_type(struct cma_device *cma_dev, 296 unsigned int port, 297 enum ib_gid_type default_gid_type) 298 { 299 unsigned long supported_gids; 300 301 if (!rdma_is_port_valid(cma_dev->device, port)) 302 return -EINVAL; 303 304 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 305 306 if (!(supported_gids & 1 << default_gid_type)) 307 return -EINVAL; 308 309 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 310 default_gid_type; 311 312 return 0; 313 } 314 315 int cma_get_default_roce_tos(struct cma_device *cma_dev, unsigned int port) 316 { 317 if (!rdma_is_port_valid(cma_dev->device, port)) 318 return -EINVAL; 319 320 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 321 } 322 323 int cma_set_default_roce_tos(struct cma_device *cma_dev, unsigned int port, 324 u8 default_roce_tos) 325 { 326 if (!rdma_is_port_valid(cma_dev->device, port)) 327 return -EINVAL; 328 329 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 330 default_roce_tos; 331 332 return 0; 333 } 334 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 335 { 336 return cma_dev->device; 337 } 338 339 /* 340 * Device removal can occur at anytime, so we need extra handling to 341 * serialize notifying the user of device removal with other callbacks. 342 * We do this by disabling removal notification while a callback is in process, 343 * and reporting it after the callback completes. 344 */ 345 346 struct cma_multicast { 347 struct rdma_id_private *id_priv; 348 union { 349 struct ib_sa_multicast *ib; 350 } multicast; 351 struct list_head list; 352 void *context; 353 struct sockaddr_storage addr; 354 struct kref mcref; 355 u8 join_state; 356 }; 357 358 struct cma_work { 359 struct work_struct work; 360 struct rdma_id_private *id; 361 enum rdma_cm_state old_state; 362 enum rdma_cm_state new_state; 363 struct rdma_cm_event event; 364 }; 365 366 struct cma_ndev_work { 367 struct work_struct work; 368 struct rdma_id_private *id; 369 struct rdma_cm_event event; 370 }; 371 372 struct iboe_mcast_work { 373 struct work_struct work; 374 struct rdma_id_private *id; 375 struct cma_multicast *mc; 376 }; 377 378 union cma_ip_addr { 379 struct in6_addr ip6; 380 struct { 381 __be32 pad[3]; 382 __be32 addr; 383 } ip4; 384 }; 385 386 struct cma_hdr { 387 u8 cma_version; 388 u8 ip_version; /* IP version: 7:4 */ 389 __be16 port; 390 union cma_ip_addr src_addr; 391 union cma_ip_addr dst_addr; 392 }; 393 394 #define CMA_VERSION 0x00 395 396 struct cma_req_info { 397 struct sockaddr_storage listen_addr_storage; 398 struct sockaddr_storage src_addr_storage; 399 struct ib_device *device; 400 union ib_gid local_gid; 401 __be64 service_id; 402 int port; 403 bool has_gid; 404 u16 pkey; 405 }; 406 407 static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp) 408 { 409 unsigned long flags; 410 int ret; 411 412 spin_lock_irqsave(&id_priv->lock, flags); 413 ret = (id_priv->state == comp); 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static int cma_comp_exch(struct rdma_id_private *id_priv, 419 enum rdma_cm_state comp, enum rdma_cm_state exch) 420 { 421 unsigned long flags; 422 int ret; 423 424 spin_lock_irqsave(&id_priv->lock, flags); 425 if ((ret = (id_priv->state == comp))) 426 id_priv->state = exch; 427 spin_unlock_irqrestore(&id_priv->lock, flags); 428 return ret; 429 } 430 431 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 432 { 433 return hdr->ip_version >> 4; 434 } 435 436 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 437 { 438 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 439 } 440 441 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 442 { 443 struct in_device *in_dev = NULL; 444 445 if (ndev) { 446 rtnl_lock(); 447 in_dev = __in_dev_get_rtnl(ndev); 448 if (in_dev) { 449 if (join) 450 ip_mc_inc_group(in_dev, 451 *(__be32 *)(mgid->raw + 12)); 452 else 453 ip_mc_dec_group(in_dev, 454 *(__be32 *)(mgid->raw + 12)); 455 } 456 rtnl_unlock(); 457 } 458 return (in_dev) ? 0 : -ENODEV; 459 } 460 461 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 cma_dev_get(cma_dev); 465 id_priv->cma_dev = cma_dev; 466 id_priv->id.device = cma_dev->device; 467 id_priv->id.route.addr.dev_addr.transport = 468 rdma_node_get_transport(cma_dev->device->node_type); 469 list_add_tail(&id_priv->list, &cma_dev->id_list); 470 if (id_priv->res.kern_name) 471 rdma_restrack_kadd(&id_priv->res); 472 else 473 rdma_restrack_uadd(&id_priv->res); 474 trace_cm_id_attach(id_priv, cma_dev->device); 475 } 476 477 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 478 struct cma_device *cma_dev) 479 { 480 _cma_attach_to_dev(id_priv, cma_dev); 481 id_priv->gid_type = 482 cma_dev->default_gid_type[id_priv->id.port_num - 483 rdma_start_port(cma_dev->device)]; 484 } 485 486 static inline void release_mc(struct kref *kref) 487 { 488 struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref); 489 490 kfree(mc->multicast.ib); 491 kfree(mc); 492 } 493 494 static void cma_release_dev(struct rdma_id_private *id_priv) 495 { 496 mutex_lock(&lock); 497 list_del(&id_priv->list); 498 cma_dev_put(id_priv->cma_dev); 499 id_priv->cma_dev = NULL; 500 mutex_unlock(&lock); 501 } 502 503 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 504 { 505 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 506 } 507 508 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 509 { 510 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 511 } 512 513 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 514 { 515 return id_priv->id.route.addr.src_addr.ss_family; 516 } 517 518 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 519 { 520 struct ib_sa_mcmember_rec rec; 521 int ret = 0; 522 523 if (id_priv->qkey) { 524 if (qkey && id_priv->qkey != qkey) 525 return -EINVAL; 526 return 0; 527 } 528 529 if (qkey) { 530 id_priv->qkey = qkey; 531 return 0; 532 } 533 534 switch (id_priv->id.ps) { 535 case RDMA_PS_UDP: 536 case RDMA_PS_IB: 537 id_priv->qkey = RDMA_UDP_QKEY; 538 break; 539 case RDMA_PS_IPOIB: 540 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 541 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 542 id_priv->id.port_num, &rec.mgid, 543 &rec); 544 if (!ret) 545 id_priv->qkey = be32_to_cpu(rec.qkey); 546 break; 547 default: 548 break; 549 } 550 return ret; 551 } 552 553 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 554 { 555 dev_addr->dev_type = ARPHRD_INFINIBAND; 556 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 557 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 558 } 559 560 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 561 { 562 int ret; 563 564 if (addr->sa_family != AF_IB) { 565 ret = rdma_translate_ip(addr, dev_addr); 566 } else { 567 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 568 ret = 0; 569 } 570 571 return ret; 572 } 573 574 static const struct ib_gid_attr * 575 cma_validate_port(struct ib_device *device, u8 port, 576 enum ib_gid_type gid_type, 577 union ib_gid *gid, 578 struct rdma_id_private *id_priv) 579 { 580 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 581 int bound_if_index = dev_addr->bound_dev_if; 582 const struct ib_gid_attr *sgid_attr; 583 int dev_type = dev_addr->dev_type; 584 struct net_device *ndev = NULL; 585 586 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 587 return ERR_PTR(-ENODEV); 588 589 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 590 return ERR_PTR(-ENODEV); 591 592 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 593 return ERR_PTR(-ENODEV); 594 595 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 596 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 597 if (!ndev) 598 return ERR_PTR(-ENODEV); 599 } else { 600 gid_type = IB_GID_TYPE_IB; 601 } 602 603 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 604 if (ndev) 605 dev_put(ndev); 606 return sgid_attr; 607 } 608 609 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 610 const struct ib_gid_attr *sgid_attr) 611 { 612 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 613 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 614 } 615 616 /** 617 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 618 * based on source ip address. 619 * @id_priv: cm_id which should be bound to cma device 620 * 621 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 622 * based on source IP address. It returns 0 on success or error code otherwise. 623 * It is applicable to active and passive side cm_id. 624 */ 625 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 626 { 627 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 628 const struct ib_gid_attr *sgid_attr; 629 union ib_gid gid, iboe_gid, *gidp; 630 struct cma_device *cma_dev; 631 enum ib_gid_type gid_type; 632 int ret = -ENODEV; 633 unsigned int port; 634 635 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 636 id_priv->id.ps == RDMA_PS_IPOIB) 637 return -EINVAL; 638 639 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 640 &iboe_gid); 641 642 memcpy(&gid, dev_addr->src_dev_addr + 643 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 644 645 mutex_lock(&lock); 646 list_for_each_entry(cma_dev, &dev_list, list) { 647 rdma_for_each_port (cma_dev->device, port) { 648 gidp = rdma_protocol_roce(cma_dev->device, port) ? 649 &iboe_gid : &gid; 650 gid_type = cma_dev->default_gid_type[port - 1]; 651 sgid_attr = cma_validate_port(cma_dev->device, port, 652 gid_type, gidp, id_priv); 653 if (!IS_ERR(sgid_attr)) { 654 id_priv->id.port_num = port; 655 cma_bind_sgid_attr(id_priv, sgid_attr); 656 cma_attach_to_dev(id_priv, cma_dev); 657 ret = 0; 658 goto out; 659 } 660 } 661 } 662 out: 663 mutex_unlock(&lock); 664 return ret; 665 } 666 667 /** 668 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 669 * @id_priv: cm id to bind to cma device 670 * @listen_id_priv: listener cm id to match against 671 * @req: Pointer to req structure containaining incoming 672 * request information 673 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 674 * rdma device matches for listen_id and incoming request. It also verifies 675 * that a GID table entry is present for the source address. 676 * Returns 0 on success, or returns error code otherwise. 677 */ 678 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 679 const struct rdma_id_private *listen_id_priv, 680 struct cma_req_info *req) 681 { 682 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 683 const struct ib_gid_attr *sgid_attr; 684 enum ib_gid_type gid_type; 685 union ib_gid gid; 686 687 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 688 id_priv->id.ps == RDMA_PS_IPOIB) 689 return -EINVAL; 690 691 if (rdma_protocol_roce(req->device, req->port)) 692 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 693 &gid); 694 else 695 memcpy(&gid, dev_addr->src_dev_addr + 696 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 697 698 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 699 sgid_attr = cma_validate_port(req->device, req->port, 700 gid_type, &gid, id_priv); 701 if (IS_ERR(sgid_attr)) 702 return PTR_ERR(sgid_attr); 703 704 id_priv->id.port_num = req->port; 705 cma_bind_sgid_attr(id_priv, sgid_attr); 706 /* Need to acquire lock to protect against reader 707 * of cma_dev->id_list such as cma_netdev_callback() and 708 * cma_process_remove(). 709 */ 710 mutex_lock(&lock); 711 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 712 mutex_unlock(&lock); 713 return 0; 714 } 715 716 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 717 const struct rdma_id_private *listen_id_priv) 718 { 719 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 720 const struct ib_gid_attr *sgid_attr; 721 struct cma_device *cma_dev; 722 enum ib_gid_type gid_type; 723 int ret = -ENODEV; 724 unsigned int port; 725 union ib_gid gid; 726 727 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 728 id_priv->id.ps == RDMA_PS_IPOIB) 729 return -EINVAL; 730 731 memcpy(&gid, dev_addr->src_dev_addr + 732 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 733 734 mutex_lock(&lock); 735 736 cma_dev = listen_id_priv->cma_dev; 737 port = listen_id_priv->id.port_num; 738 gid_type = listen_id_priv->gid_type; 739 sgid_attr = cma_validate_port(cma_dev->device, port, 740 gid_type, &gid, id_priv); 741 if (!IS_ERR(sgid_attr)) { 742 id_priv->id.port_num = port; 743 cma_bind_sgid_attr(id_priv, sgid_attr); 744 ret = 0; 745 goto out; 746 } 747 748 list_for_each_entry(cma_dev, &dev_list, list) { 749 rdma_for_each_port (cma_dev->device, port) { 750 if (listen_id_priv->cma_dev == cma_dev && 751 listen_id_priv->id.port_num == port) 752 continue; 753 754 gid_type = cma_dev->default_gid_type[port - 1]; 755 sgid_attr = cma_validate_port(cma_dev->device, port, 756 gid_type, &gid, id_priv); 757 if (!IS_ERR(sgid_attr)) { 758 id_priv->id.port_num = port; 759 cma_bind_sgid_attr(id_priv, sgid_attr); 760 ret = 0; 761 goto out; 762 } 763 } 764 } 765 766 out: 767 if (!ret) 768 cma_attach_to_dev(id_priv, cma_dev); 769 770 mutex_unlock(&lock); 771 return ret; 772 } 773 774 /* 775 * Select the source IB device and address to reach the destination IB address. 776 */ 777 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 778 { 779 struct cma_device *cma_dev, *cur_dev; 780 struct sockaddr_ib *addr; 781 union ib_gid gid, sgid, *dgid; 782 unsigned int p; 783 u16 pkey, index; 784 enum ib_port_state port_state; 785 int i; 786 787 cma_dev = NULL; 788 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 789 dgid = (union ib_gid *) &addr->sib_addr; 790 pkey = ntohs(addr->sib_pkey); 791 792 mutex_lock(&lock); 793 list_for_each_entry(cur_dev, &dev_list, list) { 794 rdma_for_each_port (cur_dev->device, p) { 795 if (!rdma_cap_af_ib(cur_dev->device, p)) 796 continue; 797 798 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 799 continue; 800 801 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 802 continue; 803 for (i = 0; !rdma_query_gid(cur_dev->device, 804 p, i, &gid); 805 i++) { 806 if (!memcmp(&gid, dgid, sizeof(gid))) { 807 cma_dev = cur_dev; 808 sgid = gid; 809 id_priv->id.port_num = p; 810 goto found; 811 } 812 813 if (!cma_dev && (gid.global.subnet_prefix == 814 dgid->global.subnet_prefix) && 815 port_state == IB_PORT_ACTIVE) { 816 cma_dev = cur_dev; 817 sgid = gid; 818 id_priv->id.port_num = p; 819 goto found; 820 } 821 } 822 } 823 } 824 mutex_unlock(&lock); 825 return -ENODEV; 826 827 found: 828 cma_attach_to_dev(id_priv, cma_dev); 829 mutex_unlock(&lock); 830 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 831 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 832 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 833 return 0; 834 } 835 836 static void cma_id_get(struct rdma_id_private *id_priv) 837 { 838 refcount_inc(&id_priv->refcount); 839 } 840 841 static void cma_id_put(struct rdma_id_private *id_priv) 842 { 843 if (refcount_dec_and_test(&id_priv->refcount)) 844 complete(&id_priv->comp); 845 } 846 847 struct rdma_cm_id *__rdma_create_id(struct net *net, 848 rdma_cm_event_handler event_handler, 849 void *context, enum rdma_ucm_port_space ps, 850 enum ib_qp_type qp_type, const char *caller) 851 { 852 struct rdma_id_private *id_priv; 853 854 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 855 if (!id_priv) 856 return ERR_PTR(-ENOMEM); 857 858 rdma_restrack_set_task(&id_priv->res, caller); 859 id_priv->res.type = RDMA_RESTRACK_CM_ID; 860 id_priv->state = RDMA_CM_IDLE; 861 id_priv->id.context = context; 862 id_priv->id.event_handler = event_handler; 863 id_priv->id.ps = ps; 864 id_priv->id.qp_type = qp_type; 865 id_priv->tos_set = false; 866 id_priv->timeout_set = false; 867 id_priv->gid_type = IB_GID_TYPE_IB; 868 spin_lock_init(&id_priv->lock); 869 mutex_init(&id_priv->qp_mutex); 870 init_completion(&id_priv->comp); 871 refcount_set(&id_priv->refcount, 1); 872 mutex_init(&id_priv->handler_mutex); 873 INIT_LIST_HEAD(&id_priv->listen_list); 874 INIT_LIST_HEAD(&id_priv->mc_list); 875 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 876 id_priv->id.route.addr.dev_addr.net = get_net(net); 877 id_priv->seq_num &= 0x00ffffff; 878 879 return &id_priv->id; 880 } 881 EXPORT_SYMBOL(__rdma_create_id); 882 883 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 884 { 885 struct ib_qp_attr qp_attr; 886 int qp_attr_mask, ret; 887 888 qp_attr.qp_state = IB_QPS_INIT; 889 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 890 if (ret) 891 return ret; 892 893 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 894 if (ret) 895 return ret; 896 897 qp_attr.qp_state = IB_QPS_RTR; 898 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 899 if (ret) 900 return ret; 901 902 qp_attr.qp_state = IB_QPS_RTS; 903 qp_attr.sq_psn = 0; 904 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 905 906 return ret; 907 } 908 909 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 910 { 911 struct ib_qp_attr qp_attr; 912 int qp_attr_mask, ret; 913 914 qp_attr.qp_state = IB_QPS_INIT; 915 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 916 if (ret) 917 return ret; 918 919 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 920 } 921 922 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 923 struct ib_qp_init_attr *qp_init_attr) 924 { 925 struct rdma_id_private *id_priv; 926 struct ib_qp *qp; 927 int ret; 928 929 id_priv = container_of(id, struct rdma_id_private, id); 930 if (id->device != pd->device) { 931 ret = -EINVAL; 932 goto out_err; 933 } 934 935 qp_init_attr->port_num = id->port_num; 936 qp = ib_create_qp(pd, qp_init_attr); 937 if (IS_ERR(qp)) { 938 ret = PTR_ERR(qp); 939 goto out_err; 940 } 941 942 if (id->qp_type == IB_QPT_UD) 943 ret = cma_init_ud_qp(id_priv, qp); 944 else 945 ret = cma_init_conn_qp(id_priv, qp); 946 if (ret) 947 goto out_destroy; 948 949 id->qp = qp; 950 id_priv->qp_num = qp->qp_num; 951 id_priv->srq = (qp->srq != NULL); 952 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 953 return 0; 954 out_destroy: 955 ib_destroy_qp(qp); 956 out_err: 957 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 958 return ret; 959 } 960 EXPORT_SYMBOL(rdma_create_qp); 961 962 void rdma_destroy_qp(struct rdma_cm_id *id) 963 { 964 struct rdma_id_private *id_priv; 965 966 id_priv = container_of(id, struct rdma_id_private, id); 967 trace_cm_qp_destroy(id_priv); 968 mutex_lock(&id_priv->qp_mutex); 969 ib_destroy_qp(id_priv->id.qp); 970 id_priv->id.qp = NULL; 971 mutex_unlock(&id_priv->qp_mutex); 972 } 973 EXPORT_SYMBOL(rdma_destroy_qp); 974 975 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 976 struct rdma_conn_param *conn_param) 977 { 978 struct ib_qp_attr qp_attr; 979 int qp_attr_mask, ret; 980 981 mutex_lock(&id_priv->qp_mutex); 982 if (!id_priv->id.qp) { 983 ret = 0; 984 goto out; 985 } 986 987 /* Need to update QP attributes from default values. */ 988 qp_attr.qp_state = IB_QPS_INIT; 989 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 990 if (ret) 991 goto out; 992 993 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 994 if (ret) 995 goto out; 996 997 qp_attr.qp_state = IB_QPS_RTR; 998 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 999 if (ret) 1000 goto out; 1001 1002 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1003 1004 if (conn_param) 1005 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1006 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1007 out: 1008 mutex_unlock(&id_priv->qp_mutex); 1009 return ret; 1010 } 1011 1012 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1013 struct rdma_conn_param *conn_param) 1014 { 1015 struct ib_qp_attr qp_attr; 1016 int qp_attr_mask, ret; 1017 1018 mutex_lock(&id_priv->qp_mutex); 1019 if (!id_priv->id.qp) { 1020 ret = 0; 1021 goto out; 1022 } 1023 1024 qp_attr.qp_state = IB_QPS_RTS; 1025 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1026 if (ret) 1027 goto out; 1028 1029 if (conn_param) 1030 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1031 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1032 out: 1033 mutex_unlock(&id_priv->qp_mutex); 1034 return ret; 1035 } 1036 1037 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 int ret; 1041 1042 mutex_lock(&id_priv->qp_mutex); 1043 if (!id_priv->id.qp) { 1044 ret = 0; 1045 goto out; 1046 } 1047 1048 qp_attr.qp_state = IB_QPS_ERR; 1049 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1050 out: 1051 mutex_unlock(&id_priv->qp_mutex); 1052 return ret; 1053 } 1054 1055 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1056 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1057 { 1058 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1059 int ret; 1060 u16 pkey; 1061 1062 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1063 pkey = 0xffff; 1064 else 1065 pkey = ib_addr_get_pkey(dev_addr); 1066 1067 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1068 pkey, &qp_attr->pkey_index); 1069 if (ret) 1070 return ret; 1071 1072 qp_attr->port_num = id_priv->id.port_num; 1073 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1074 1075 if (id_priv->id.qp_type == IB_QPT_UD) { 1076 ret = cma_set_qkey(id_priv, 0); 1077 if (ret) 1078 return ret; 1079 1080 qp_attr->qkey = id_priv->qkey; 1081 *qp_attr_mask |= IB_QP_QKEY; 1082 } else { 1083 qp_attr->qp_access_flags = 0; 1084 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1085 } 1086 return 0; 1087 } 1088 1089 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1090 int *qp_attr_mask) 1091 { 1092 struct rdma_id_private *id_priv; 1093 int ret = 0; 1094 1095 id_priv = container_of(id, struct rdma_id_private, id); 1096 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1097 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1098 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1099 else 1100 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1101 qp_attr_mask); 1102 1103 if (qp_attr->qp_state == IB_QPS_RTR) 1104 qp_attr->rq_psn = id_priv->seq_num; 1105 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1106 if (!id_priv->cm_id.iw) { 1107 qp_attr->qp_access_flags = 0; 1108 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1109 } else 1110 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1111 qp_attr_mask); 1112 qp_attr->port_num = id_priv->id.port_num; 1113 *qp_attr_mask |= IB_QP_PORT; 1114 } else 1115 ret = -ENOSYS; 1116 1117 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1118 qp_attr->timeout = id_priv->timeout; 1119 1120 return ret; 1121 } 1122 EXPORT_SYMBOL(rdma_init_qp_attr); 1123 1124 static inline bool cma_zero_addr(const struct sockaddr *addr) 1125 { 1126 switch (addr->sa_family) { 1127 case AF_INET: 1128 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1129 case AF_INET6: 1130 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1131 case AF_IB: 1132 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1133 default: 1134 return false; 1135 } 1136 } 1137 1138 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1139 { 1140 switch (addr->sa_family) { 1141 case AF_INET: 1142 return ipv4_is_loopback( 1143 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1144 case AF_INET6: 1145 return ipv6_addr_loopback( 1146 &((struct sockaddr_in6 *)addr)->sin6_addr); 1147 case AF_IB: 1148 return ib_addr_loopback( 1149 &((struct sockaddr_ib *)addr)->sib_addr); 1150 default: 1151 return false; 1152 } 1153 } 1154 1155 static inline bool cma_any_addr(const struct sockaddr *addr) 1156 { 1157 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1158 } 1159 1160 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1161 { 1162 if (src->sa_family != dst->sa_family) 1163 return -1; 1164 1165 switch (src->sa_family) { 1166 case AF_INET: 1167 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1168 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1169 case AF_INET6: { 1170 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1171 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1172 bool link_local; 1173 1174 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1175 &dst_addr6->sin6_addr)) 1176 return 1; 1177 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1178 IPV6_ADDR_LINKLOCAL; 1179 /* Link local must match their scope_ids */ 1180 return link_local ? (src_addr6->sin6_scope_id != 1181 dst_addr6->sin6_scope_id) : 1182 0; 1183 } 1184 1185 default: 1186 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1187 &((struct sockaddr_ib *) dst)->sib_addr); 1188 } 1189 } 1190 1191 static __be16 cma_port(const struct sockaddr *addr) 1192 { 1193 struct sockaddr_ib *sib; 1194 1195 switch (addr->sa_family) { 1196 case AF_INET: 1197 return ((struct sockaddr_in *) addr)->sin_port; 1198 case AF_INET6: 1199 return ((struct sockaddr_in6 *) addr)->sin6_port; 1200 case AF_IB: 1201 sib = (struct sockaddr_ib *) addr; 1202 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1203 be64_to_cpu(sib->sib_sid_mask))); 1204 default: 1205 return 0; 1206 } 1207 } 1208 1209 static inline int cma_any_port(const struct sockaddr *addr) 1210 { 1211 return !cma_port(addr); 1212 } 1213 1214 static void cma_save_ib_info(struct sockaddr *src_addr, 1215 struct sockaddr *dst_addr, 1216 const struct rdma_cm_id *listen_id, 1217 const struct sa_path_rec *path) 1218 { 1219 struct sockaddr_ib *listen_ib, *ib; 1220 1221 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1222 if (src_addr) { 1223 ib = (struct sockaddr_ib *)src_addr; 1224 ib->sib_family = AF_IB; 1225 if (path) { 1226 ib->sib_pkey = path->pkey; 1227 ib->sib_flowinfo = path->flow_label; 1228 memcpy(&ib->sib_addr, &path->sgid, 16); 1229 ib->sib_sid = path->service_id; 1230 ib->sib_scope_id = 0; 1231 } else { 1232 ib->sib_pkey = listen_ib->sib_pkey; 1233 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1234 ib->sib_addr = listen_ib->sib_addr; 1235 ib->sib_sid = listen_ib->sib_sid; 1236 ib->sib_scope_id = listen_ib->sib_scope_id; 1237 } 1238 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1239 } 1240 if (dst_addr) { 1241 ib = (struct sockaddr_ib *)dst_addr; 1242 ib->sib_family = AF_IB; 1243 if (path) { 1244 ib->sib_pkey = path->pkey; 1245 ib->sib_flowinfo = path->flow_label; 1246 memcpy(&ib->sib_addr, &path->dgid, 16); 1247 } 1248 } 1249 } 1250 1251 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1252 struct sockaddr_in *dst_addr, 1253 struct cma_hdr *hdr, 1254 __be16 local_port) 1255 { 1256 if (src_addr) { 1257 *src_addr = (struct sockaddr_in) { 1258 .sin_family = AF_INET, 1259 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1260 .sin_port = local_port, 1261 }; 1262 } 1263 1264 if (dst_addr) { 1265 *dst_addr = (struct sockaddr_in) { 1266 .sin_family = AF_INET, 1267 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1268 .sin_port = hdr->port, 1269 }; 1270 } 1271 } 1272 1273 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1274 struct sockaddr_in6 *dst_addr, 1275 struct cma_hdr *hdr, 1276 __be16 local_port) 1277 { 1278 if (src_addr) { 1279 *src_addr = (struct sockaddr_in6) { 1280 .sin6_family = AF_INET6, 1281 .sin6_addr = hdr->dst_addr.ip6, 1282 .sin6_port = local_port, 1283 }; 1284 } 1285 1286 if (dst_addr) { 1287 *dst_addr = (struct sockaddr_in6) { 1288 .sin6_family = AF_INET6, 1289 .sin6_addr = hdr->src_addr.ip6, 1290 .sin6_port = hdr->port, 1291 }; 1292 } 1293 } 1294 1295 static u16 cma_port_from_service_id(__be64 service_id) 1296 { 1297 return (u16)be64_to_cpu(service_id); 1298 } 1299 1300 static int cma_save_ip_info(struct sockaddr *src_addr, 1301 struct sockaddr *dst_addr, 1302 const struct ib_cm_event *ib_event, 1303 __be64 service_id) 1304 { 1305 struct cma_hdr *hdr; 1306 __be16 port; 1307 1308 hdr = ib_event->private_data; 1309 if (hdr->cma_version != CMA_VERSION) 1310 return -EINVAL; 1311 1312 port = htons(cma_port_from_service_id(service_id)); 1313 1314 switch (cma_get_ip_ver(hdr)) { 1315 case 4: 1316 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1317 (struct sockaddr_in *)dst_addr, hdr, port); 1318 break; 1319 case 6: 1320 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1321 (struct sockaddr_in6 *)dst_addr, hdr, port); 1322 break; 1323 default: 1324 return -EAFNOSUPPORT; 1325 } 1326 1327 return 0; 1328 } 1329 1330 static int cma_save_net_info(struct sockaddr *src_addr, 1331 struct sockaddr *dst_addr, 1332 const struct rdma_cm_id *listen_id, 1333 const struct ib_cm_event *ib_event, 1334 sa_family_t sa_family, __be64 service_id) 1335 { 1336 if (sa_family == AF_IB) { 1337 if (ib_event->event == IB_CM_REQ_RECEIVED) 1338 cma_save_ib_info(src_addr, dst_addr, listen_id, 1339 ib_event->param.req_rcvd.primary_path); 1340 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1341 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1342 return 0; 1343 } 1344 1345 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1346 } 1347 1348 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1349 struct cma_req_info *req) 1350 { 1351 const struct ib_cm_req_event_param *req_param = 1352 &ib_event->param.req_rcvd; 1353 const struct ib_cm_sidr_req_event_param *sidr_param = 1354 &ib_event->param.sidr_req_rcvd; 1355 1356 switch (ib_event->event) { 1357 case IB_CM_REQ_RECEIVED: 1358 req->device = req_param->listen_id->device; 1359 req->port = req_param->port; 1360 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1361 sizeof(req->local_gid)); 1362 req->has_gid = true; 1363 req->service_id = req_param->primary_path->service_id; 1364 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1365 if (req->pkey != req_param->bth_pkey) 1366 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1367 "RDMA CMA: in the future this may cause the request to be dropped\n", 1368 req_param->bth_pkey, req->pkey); 1369 break; 1370 case IB_CM_SIDR_REQ_RECEIVED: 1371 req->device = sidr_param->listen_id->device; 1372 req->port = sidr_param->port; 1373 req->has_gid = false; 1374 req->service_id = sidr_param->service_id; 1375 req->pkey = sidr_param->pkey; 1376 if (req->pkey != sidr_param->bth_pkey) 1377 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1378 "RDMA CMA: in the future this may cause the request to be dropped\n", 1379 sidr_param->bth_pkey, req->pkey); 1380 break; 1381 default: 1382 return -EINVAL; 1383 } 1384 1385 return 0; 1386 } 1387 1388 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1389 const struct sockaddr_in *dst_addr, 1390 const struct sockaddr_in *src_addr) 1391 { 1392 __be32 daddr = dst_addr->sin_addr.s_addr, 1393 saddr = src_addr->sin_addr.s_addr; 1394 struct fib_result res; 1395 struct flowi4 fl4; 1396 int err; 1397 bool ret; 1398 1399 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1400 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1401 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1402 ipv4_is_loopback(saddr)) 1403 return false; 1404 1405 memset(&fl4, 0, sizeof(fl4)); 1406 fl4.flowi4_iif = net_dev->ifindex; 1407 fl4.daddr = daddr; 1408 fl4.saddr = saddr; 1409 1410 rcu_read_lock(); 1411 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1412 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1413 rcu_read_unlock(); 1414 1415 return ret; 1416 } 1417 1418 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1419 const struct sockaddr_in6 *dst_addr, 1420 const struct sockaddr_in6 *src_addr) 1421 { 1422 #if IS_ENABLED(CONFIG_IPV6) 1423 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1424 IPV6_ADDR_LINKLOCAL; 1425 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1426 &src_addr->sin6_addr, net_dev->ifindex, 1427 NULL, strict); 1428 bool ret; 1429 1430 if (!rt) 1431 return false; 1432 1433 ret = rt->rt6i_idev->dev == net_dev; 1434 ip6_rt_put(rt); 1435 1436 return ret; 1437 #else 1438 return false; 1439 #endif 1440 } 1441 1442 static bool validate_net_dev(struct net_device *net_dev, 1443 const struct sockaddr *daddr, 1444 const struct sockaddr *saddr) 1445 { 1446 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1447 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1448 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1449 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1450 1451 switch (daddr->sa_family) { 1452 case AF_INET: 1453 return saddr->sa_family == AF_INET && 1454 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1455 1456 case AF_INET6: 1457 return saddr->sa_family == AF_INET6 && 1458 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1459 1460 default: 1461 return false; 1462 } 1463 } 1464 1465 static struct net_device * 1466 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1467 { 1468 const struct ib_gid_attr *sgid_attr = NULL; 1469 struct net_device *ndev; 1470 1471 if (ib_event->event == IB_CM_REQ_RECEIVED) 1472 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1473 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1474 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1475 1476 if (!sgid_attr) 1477 return NULL; 1478 1479 rcu_read_lock(); 1480 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1481 if (IS_ERR(ndev)) 1482 ndev = NULL; 1483 else 1484 dev_hold(ndev); 1485 rcu_read_unlock(); 1486 return ndev; 1487 } 1488 1489 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1490 struct cma_req_info *req) 1491 { 1492 struct sockaddr *listen_addr = 1493 (struct sockaddr *)&req->listen_addr_storage; 1494 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1495 struct net_device *net_dev; 1496 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1497 int err; 1498 1499 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1500 req->service_id); 1501 if (err) 1502 return ERR_PTR(err); 1503 1504 if (rdma_protocol_roce(req->device, req->port)) 1505 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1506 else 1507 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1508 req->pkey, 1509 gid, listen_addr); 1510 if (!net_dev) 1511 return ERR_PTR(-ENODEV); 1512 1513 return net_dev; 1514 } 1515 1516 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1517 { 1518 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1519 } 1520 1521 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1522 const struct cma_hdr *hdr) 1523 { 1524 struct sockaddr *addr = cma_src_addr(id_priv); 1525 __be32 ip4_addr; 1526 struct in6_addr ip6_addr; 1527 1528 if (cma_any_addr(addr) && !id_priv->afonly) 1529 return true; 1530 1531 switch (addr->sa_family) { 1532 case AF_INET: 1533 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1534 if (cma_get_ip_ver(hdr) != 4) 1535 return false; 1536 if (!cma_any_addr(addr) && 1537 hdr->dst_addr.ip4.addr != ip4_addr) 1538 return false; 1539 break; 1540 case AF_INET6: 1541 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1542 if (cma_get_ip_ver(hdr) != 6) 1543 return false; 1544 if (!cma_any_addr(addr) && 1545 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1546 return false; 1547 break; 1548 case AF_IB: 1549 return true; 1550 default: 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1558 { 1559 struct ib_device *device = id->device; 1560 const int port_num = id->port_num ?: rdma_start_port(device); 1561 1562 return rdma_protocol_roce(device, port_num); 1563 } 1564 1565 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1566 { 1567 const struct sockaddr *daddr = 1568 (const struct sockaddr *)&req->listen_addr_storage; 1569 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1570 1571 /* Returns true if the req is for IPv6 link local */ 1572 return (daddr->sa_family == AF_INET6 && 1573 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1574 } 1575 1576 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1577 const struct net_device *net_dev, 1578 const struct cma_req_info *req) 1579 { 1580 const struct rdma_addr *addr = &id->route.addr; 1581 1582 if (!net_dev) 1583 /* This request is an AF_IB request */ 1584 return (!id->port_num || id->port_num == req->port) && 1585 (addr->src_addr.ss_family == AF_IB); 1586 1587 /* 1588 * If the request is not for IPv6 link local, allow matching 1589 * request to any netdevice of the one or multiport rdma device. 1590 */ 1591 if (!cma_is_req_ipv6_ll(req)) 1592 return true; 1593 /* 1594 * Net namespaces must match, and if the listner is listening 1595 * on a specific netdevice than netdevice must match as well. 1596 */ 1597 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1598 (!!addr->dev_addr.bound_dev_if == 1599 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1600 return true; 1601 else 1602 return false; 1603 } 1604 1605 static struct rdma_id_private *cma_find_listener( 1606 const struct rdma_bind_list *bind_list, 1607 const struct ib_cm_id *cm_id, 1608 const struct ib_cm_event *ib_event, 1609 const struct cma_req_info *req, 1610 const struct net_device *net_dev) 1611 { 1612 struct rdma_id_private *id_priv, *id_priv_dev; 1613 1614 lockdep_assert_held(&lock); 1615 1616 if (!bind_list) 1617 return ERR_PTR(-EINVAL); 1618 1619 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1620 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1621 if (id_priv->id.device == cm_id->device && 1622 cma_match_net_dev(&id_priv->id, net_dev, req)) 1623 return id_priv; 1624 list_for_each_entry(id_priv_dev, 1625 &id_priv->listen_list, 1626 listen_list) { 1627 if (id_priv_dev->id.device == cm_id->device && 1628 cma_match_net_dev(&id_priv_dev->id, 1629 net_dev, req)) 1630 return id_priv_dev; 1631 } 1632 } 1633 } 1634 1635 return ERR_PTR(-EINVAL); 1636 } 1637 1638 static struct rdma_id_private * 1639 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1640 const struct ib_cm_event *ib_event, 1641 struct cma_req_info *req, 1642 struct net_device **net_dev) 1643 { 1644 struct rdma_bind_list *bind_list; 1645 struct rdma_id_private *id_priv; 1646 int err; 1647 1648 err = cma_save_req_info(ib_event, req); 1649 if (err) 1650 return ERR_PTR(err); 1651 1652 *net_dev = cma_get_net_dev(ib_event, req); 1653 if (IS_ERR(*net_dev)) { 1654 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1655 /* Assuming the protocol is AF_IB */ 1656 *net_dev = NULL; 1657 } else { 1658 return ERR_CAST(*net_dev); 1659 } 1660 } 1661 1662 mutex_lock(&lock); 1663 /* 1664 * Net namespace might be getting deleted while route lookup, 1665 * cm_id lookup is in progress. Therefore, perform netdevice 1666 * validation, cm_id lookup under rcu lock. 1667 * RCU lock along with netdevice state check, synchronizes with 1668 * netdevice migrating to different net namespace and also avoids 1669 * case where net namespace doesn't get deleted while lookup is in 1670 * progress. 1671 * If the device state is not IFF_UP, its properties such as ifindex 1672 * and nd_net cannot be trusted to remain valid without rcu lock. 1673 * net/core/dev.c change_net_namespace() ensures to synchronize with 1674 * ongoing operations on net device after device is closed using 1675 * synchronize_net(). 1676 */ 1677 rcu_read_lock(); 1678 if (*net_dev) { 1679 /* 1680 * If netdevice is down, it is likely that it is administratively 1681 * down or it might be migrating to different namespace. 1682 * In that case avoid further processing, as the net namespace 1683 * or ifindex may change. 1684 */ 1685 if (((*net_dev)->flags & IFF_UP) == 0) { 1686 id_priv = ERR_PTR(-EHOSTUNREACH); 1687 goto err; 1688 } 1689 1690 if (!validate_net_dev(*net_dev, 1691 (struct sockaddr *)&req->listen_addr_storage, 1692 (struct sockaddr *)&req->src_addr_storage)) { 1693 id_priv = ERR_PTR(-EHOSTUNREACH); 1694 goto err; 1695 } 1696 } 1697 1698 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1699 rdma_ps_from_service_id(req->service_id), 1700 cma_port_from_service_id(req->service_id)); 1701 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1702 err: 1703 rcu_read_unlock(); 1704 mutex_unlock(&lock); 1705 if (IS_ERR(id_priv) && *net_dev) { 1706 dev_put(*net_dev); 1707 *net_dev = NULL; 1708 } 1709 return id_priv; 1710 } 1711 1712 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1713 { 1714 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1715 } 1716 1717 static void cma_cancel_route(struct rdma_id_private *id_priv) 1718 { 1719 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1720 if (id_priv->query) 1721 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1722 } 1723 } 1724 1725 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1726 { 1727 struct rdma_id_private *dev_id_priv; 1728 1729 /* 1730 * Remove from listen_any_list to prevent added devices from spawning 1731 * additional listen requests. 1732 */ 1733 mutex_lock(&lock); 1734 list_del(&id_priv->list); 1735 1736 while (!list_empty(&id_priv->listen_list)) { 1737 dev_id_priv = list_entry(id_priv->listen_list.next, 1738 struct rdma_id_private, listen_list); 1739 /* sync with device removal to avoid duplicate destruction */ 1740 list_del_init(&dev_id_priv->list); 1741 list_del(&dev_id_priv->listen_list); 1742 mutex_unlock(&lock); 1743 1744 rdma_destroy_id(&dev_id_priv->id); 1745 mutex_lock(&lock); 1746 } 1747 mutex_unlock(&lock); 1748 } 1749 1750 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1751 enum rdma_cm_state state) 1752 { 1753 switch (state) { 1754 case RDMA_CM_ADDR_QUERY: 1755 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1756 break; 1757 case RDMA_CM_ROUTE_QUERY: 1758 cma_cancel_route(id_priv); 1759 break; 1760 case RDMA_CM_LISTEN: 1761 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1762 cma_cancel_listens(id_priv); 1763 break; 1764 default: 1765 break; 1766 } 1767 } 1768 1769 static void cma_release_port(struct rdma_id_private *id_priv) 1770 { 1771 struct rdma_bind_list *bind_list = id_priv->bind_list; 1772 struct net *net = id_priv->id.route.addr.dev_addr.net; 1773 1774 if (!bind_list) 1775 return; 1776 1777 mutex_lock(&lock); 1778 hlist_del(&id_priv->node); 1779 if (hlist_empty(&bind_list->owners)) { 1780 cma_ps_remove(net, bind_list->ps, bind_list->port); 1781 kfree(bind_list); 1782 } 1783 mutex_unlock(&lock); 1784 } 1785 1786 static void cma_leave_roce_mc_group(struct rdma_id_private *id_priv, 1787 struct cma_multicast *mc) 1788 { 1789 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1790 struct net_device *ndev = NULL; 1791 1792 if (dev_addr->bound_dev_if) 1793 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 1794 if (ndev) { 1795 cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, false); 1796 dev_put(ndev); 1797 } 1798 kref_put(&mc->mcref, release_mc); 1799 } 1800 1801 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1802 { 1803 struct cma_multicast *mc; 1804 1805 while (!list_empty(&id_priv->mc_list)) { 1806 mc = container_of(id_priv->mc_list.next, 1807 struct cma_multicast, list); 1808 list_del(&mc->list); 1809 if (rdma_cap_ib_mcast(id_priv->cma_dev->device, 1810 id_priv->id.port_num)) { 1811 ib_sa_free_multicast(mc->multicast.ib); 1812 kfree(mc); 1813 } else { 1814 cma_leave_roce_mc_group(id_priv, mc); 1815 } 1816 } 1817 } 1818 1819 static void _destroy_id(struct rdma_id_private *id_priv, 1820 enum rdma_cm_state state) 1821 { 1822 cma_cancel_operation(id_priv, state); 1823 1824 rdma_restrack_del(&id_priv->res); 1825 if (id_priv->cma_dev) { 1826 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1827 if (id_priv->cm_id.ib) 1828 ib_destroy_cm_id(id_priv->cm_id.ib); 1829 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1830 if (id_priv->cm_id.iw) 1831 iw_destroy_cm_id(id_priv->cm_id.iw); 1832 } 1833 cma_leave_mc_groups(id_priv); 1834 cma_release_dev(id_priv); 1835 } 1836 1837 cma_release_port(id_priv); 1838 cma_id_put(id_priv); 1839 wait_for_completion(&id_priv->comp); 1840 1841 if (id_priv->internal_id) 1842 cma_id_put(id_priv->id.context); 1843 1844 kfree(id_priv->id.route.path_rec); 1845 1846 if (id_priv->id.route.addr.dev_addr.sgid_attr) 1847 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 1848 1849 put_net(id_priv->id.route.addr.dev_addr.net); 1850 kfree(id_priv); 1851 } 1852 1853 /* 1854 * destroy an ID from within the handler_mutex. This ensures that no other 1855 * handlers can start running concurrently. 1856 */ 1857 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1858 __releases(&idprv->handler_mutex) 1859 { 1860 enum rdma_cm_state state; 1861 unsigned long flags; 1862 1863 trace_cm_id_destroy(id_priv); 1864 1865 /* 1866 * Setting the state to destroyed under the handler mutex provides a 1867 * fence against calling handler callbacks. If this is invoked due to 1868 * the failure of a handler callback then it guarentees that no future 1869 * handlers will be called. 1870 */ 1871 lockdep_assert_held(&id_priv->handler_mutex); 1872 spin_lock_irqsave(&id_priv->lock, flags); 1873 state = id_priv->state; 1874 id_priv->state = RDMA_CM_DESTROYING; 1875 spin_unlock_irqrestore(&id_priv->lock, flags); 1876 mutex_unlock(&id_priv->handler_mutex); 1877 _destroy_id(id_priv, state); 1878 } 1879 1880 void rdma_destroy_id(struct rdma_cm_id *id) 1881 { 1882 struct rdma_id_private *id_priv = 1883 container_of(id, struct rdma_id_private, id); 1884 1885 mutex_lock(&id_priv->handler_mutex); 1886 destroy_id_handler_unlock(id_priv); 1887 } 1888 EXPORT_SYMBOL(rdma_destroy_id); 1889 1890 static int cma_rep_recv(struct rdma_id_private *id_priv) 1891 { 1892 int ret; 1893 1894 ret = cma_modify_qp_rtr(id_priv, NULL); 1895 if (ret) 1896 goto reject; 1897 1898 ret = cma_modify_qp_rts(id_priv, NULL); 1899 if (ret) 1900 goto reject; 1901 1902 trace_cm_send_rtu(id_priv); 1903 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1904 if (ret) 1905 goto reject; 1906 1907 return 0; 1908 reject: 1909 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1910 cma_modify_qp_err(id_priv); 1911 trace_cm_send_rej(id_priv); 1912 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1913 NULL, 0, NULL, 0); 1914 return ret; 1915 } 1916 1917 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1918 const struct ib_cm_rep_event_param *rep_data, 1919 void *private_data) 1920 { 1921 event->param.conn.private_data = private_data; 1922 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1923 event->param.conn.responder_resources = rep_data->responder_resources; 1924 event->param.conn.initiator_depth = rep_data->initiator_depth; 1925 event->param.conn.flow_control = rep_data->flow_control; 1926 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1927 event->param.conn.srq = rep_data->srq; 1928 event->param.conn.qp_num = rep_data->remote_qpn; 1929 1930 event->ece.vendor_id = rep_data->ece.vendor_id; 1931 event->ece.attr_mod = rep_data->ece.attr_mod; 1932 } 1933 1934 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1935 struct rdma_cm_event *event) 1936 { 1937 int ret; 1938 1939 lockdep_assert_held(&id_priv->handler_mutex); 1940 1941 trace_cm_event_handler(id_priv, event); 1942 ret = id_priv->id.event_handler(&id_priv->id, event); 1943 trace_cm_event_done(id_priv, event, ret); 1944 return ret; 1945 } 1946 1947 static int cma_ib_handler(struct ib_cm_id *cm_id, 1948 const struct ib_cm_event *ib_event) 1949 { 1950 struct rdma_id_private *id_priv = cm_id->context; 1951 struct rdma_cm_event event = {}; 1952 int ret; 1953 1954 mutex_lock(&id_priv->handler_mutex); 1955 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1956 id_priv->state != RDMA_CM_CONNECT) || 1957 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1958 id_priv->state != RDMA_CM_DISCONNECT)) 1959 goto out; 1960 1961 switch (ib_event->event) { 1962 case IB_CM_REQ_ERROR: 1963 case IB_CM_REP_ERROR: 1964 event.event = RDMA_CM_EVENT_UNREACHABLE; 1965 event.status = -ETIMEDOUT; 1966 break; 1967 case IB_CM_REP_RECEIVED: 1968 if (cma_comp(id_priv, RDMA_CM_CONNECT) && 1969 (id_priv->id.qp_type != IB_QPT_UD)) { 1970 trace_cm_send_mra(id_priv); 1971 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 1972 } 1973 if (id_priv->id.qp) { 1974 event.status = cma_rep_recv(id_priv); 1975 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 1976 RDMA_CM_EVENT_ESTABLISHED; 1977 } else { 1978 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 1979 } 1980 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 1981 ib_event->private_data); 1982 break; 1983 case IB_CM_RTU_RECEIVED: 1984 case IB_CM_USER_ESTABLISHED: 1985 event.event = RDMA_CM_EVENT_ESTABLISHED; 1986 break; 1987 case IB_CM_DREQ_ERROR: 1988 event.status = -ETIMEDOUT; 1989 fallthrough; 1990 case IB_CM_DREQ_RECEIVED: 1991 case IB_CM_DREP_RECEIVED: 1992 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 1993 RDMA_CM_DISCONNECT)) 1994 goto out; 1995 event.event = RDMA_CM_EVENT_DISCONNECTED; 1996 break; 1997 case IB_CM_TIMEWAIT_EXIT: 1998 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 1999 break; 2000 case IB_CM_MRA_RECEIVED: 2001 /* ignore event */ 2002 goto out; 2003 case IB_CM_REJ_RECEIVED: 2004 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2005 ib_event->param.rej_rcvd.reason)); 2006 cma_modify_qp_err(id_priv); 2007 event.status = ib_event->param.rej_rcvd.reason; 2008 event.event = RDMA_CM_EVENT_REJECTED; 2009 event.param.conn.private_data = ib_event->private_data; 2010 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2011 break; 2012 default: 2013 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2014 ib_event->event); 2015 goto out; 2016 } 2017 2018 ret = cma_cm_event_handler(id_priv, &event); 2019 if (ret) { 2020 /* Destroy the CM ID by returning a non-zero value. */ 2021 id_priv->cm_id.ib = NULL; 2022 destroy_id_handler_unlock(id_priv); 2023 return ret; 2024 } 2025 out: 2026 mutex_unlock(&id_priv->handler_mutex); 2027 return 0; 2028 } 2029 2030 static struct rdma_id_private * 2031 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2032 const struct ib_cm_event *ib_event, 2033 struct net_device *net_dev) 2034 { 2035 struct rdma_id_private *listen_id_priv; 2036 struct rdma_id_private *id_priv; 2037 struct rdma_cm_id *id; 2038 struct rdma_route *rt; 2039 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2040 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2041 const __be64 service_id = 2042 ib_event->param.req_rcvd.primary_path->service_id; 2043 int ret; 2044 2045 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2046 id = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2047 listen_id->event_handler, listen_id->context, 2048 listen_id->ps, ib_event->param.req_rcvd.qp_type, 2049 listen_id_priv->res.kern_name); 2050 if (IS_ERR(id)) 2051 return NULL; 2052 2053 id_priv = container_of(id, struct rdma_id_private, id); 2054 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2055 (struct sockaddr *)&id->route.addr.dst_addr, 2056 listen_id, ib_event, ss_family, service_id)) 2057 goto err; 2058 2059 rt = &id->route; 2060 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2061 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2062 GFP_KERNEL); 2063 if (!rt->path_rec) 2064 goto err; 2065 2066 rt->path_rec[0] = *path; 2067 if (rt->num_paths == 2) 2068 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2069 2070 if (net_dev) { 2071 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2072 } else { 2073 if (!cma_protocol_roce(listen_id) && 2074 cma_any_addr(cma_src_addr(id_priv))) { 2075 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2076 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2077 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2078 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2079 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2080 if (ret) 2081 goto err; 2082 } 2083 } 2084 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2085 2086 id_priv->state = RDMA_CM_CONNECT; 2087 return id_priv; 2088 2089 err: 2090 rdma_destroy_id(id); 2091 return NULL; 2092 } 2093 2094 static struct rdma_id_private * 2095 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2096 const struct ib_cm_event *ib_event, 2097 struct net_device *net_dev) 2098 { 2099 const struct rdma_id_private *listen_id_priv; 2100 struct rdma_id_private *id_priv; 2101 struct rdma_cm_id *id; 2102 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2103 struct net *net = listen_id->route.addr.dev_addr.net; 2104 int ret; 2105 2106 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2107 id = __rdma_create_id(net, listen_id->event_handler, listen_id->context, 2108 listen_id->ps, IB_QPT_UD, 2109 listen_id_priv->res.kern_name); 2110 if (IS_ERR(id)) 2111 return NULL; 2112 2113 id_priv = container_of(id, struct rdma_id_private, id); 2114 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2115 (struct sockaddr *)&id->route.addr.dst_addr, 2116 listen_id, ib_event, ss_family, 2117 ib_event->param.sidr_req_rcvd.service_id)) 2118 goto err; 2119 2120 if (net_dev) { 2121 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2122 } else { 2123 if (!cma_any_addr(cma_src_addr(id_priv))) { 2124 ret = cma_translate_addr(cma_src_addr(id_priv), 2125 &id->route.addr.dev_addr); 2126 if (ret) 2127 goto err; 2128 } 2129 } 2130 2131 id_priv->state = RDMA_CM_CONNECT; 2132 return id_priv; 2133 err: 2134 rdma_destroy_id(id); 2135 return NULL; 2136 } 2137 2138 static void cma_set_req_event_data(struct rdma_cm_event *event, 2139 const struct ib_cm_req_event_param *req_data, 2140 void *private_data, int offset) 2141 { 2142 event->param.conn.private_data = private_data + offset; 2143 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2144 event->param.conn.responder_resources = req_data->responder_resources; 2145 event->param.conn.initiator_depth = req_data->initiator_depth; 2146 event->param.conn.flow_control = req_data->flow_control; 2147 event->param.conn.retry_count = req_data->retry_count; 2148 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2149 event->param.conn.srq = req_data->srq; 2150 event->param.conn.qp_num = req_data->remote_qpn; 2151 2152 event->ece.vendor_id = req_data->ece.vendor_id; 2153 event->ece.attr_mod = req_data->ece.attr_mod; 2154 } 2155 2156 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2157 const struct ib_cm_event *ib_event) 2158 { 2159 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2160 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2161 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2162 (id->qp_type == IB_QPT_UD)) || 2163 (!id->qp_type)); 2164 } 2165 2166 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2167 const struct ib_cm_event *ib_event) 2168 { 2169 struct rdma_id_private *listen_id, *conn_id = NULL; 2170 struct rdma_cm_event event = {}; 2171 struct cma_req_info req = {}; 2172 struct net_device *net_dev; 2173 u8 offset; 2174 int ret; 2175 2176 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2177 if (IS_ERR(listen_id)) 2178 return PTR_ERR(listen_id); 2179 2180 trace_cm_req_handler(listen_id, ib_event->event); 2181 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2182 ret = -EINVAL; 2183 goto net_dev_put; 2184 } 2185 2186 mutex_lock(&listen_id->handler_mutex); 2187 if (listen_id->state != RDMA_CM_LISTEN) { 2188 ret = -ECONNABORTED; 2189 goto err_unlock; 2190 } 2191 2192 offset = cma_user_data_offset(listen_id); 2193 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2194 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2195 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2196 event.param.ud.private_data = ib_event->private_data + offset; 2197 event.param.ud.private_data_len = 2198 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2199 } else { 2200 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2201 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2202 ib_event->private_data, offset); 2203 } 2204 if (!conn_id) { 2205 ret = -ENOMEM; 2206 goto err_unlock; 2207 } 2208 2209 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2210 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2211 if (ret) { 2212 destroy_id_handler_unlock(conn_id); 2213 goto err_unlock; 2214 } 2215 2216 conn_id->cm_id.ib = cm_id; 2217 cm_id->context = conn_id; 2218 cm_id->cm_handler = cma_ib_handler; 2219 2220 ret = cma_cm_event_handler(conn_id, &event); 2221 if (ret) { 2222 /* Destroy the CM ID by returning a non-zero value. */ 2223 conn_id->cm_id.ib = NULL; 2224 mutex_unlock(&listen_id->handler_mutex); 2225 destroy_id_handler_unlock(conn_id); 2226 goto net_dev_put; 2227 } 2228 2229 if (cma_comp(conn_id, RDMA_CM_CONNECT) && 2230 (conn_id->id.qp_type != IB_QPT_UD)) { 2231 trace_cm_send_mra(cm_id->context); 2232 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2233 } 2234 mutex_unlock(&conn_id->handler_mutex); 2235 2236 err_unlock: 2237 mutex_unlock(&listen_id->handler_mutex); 2238 2239 net_dev_put: 2240 if (net_dev) 2241 dev_put(net_dev); 2242 2243 return ret; 2244 } 2245 2246 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2247 { 2248 if (addr->sa_family == AF_IB) 2249 return ((struct sockaddr_ib *) addr)->sib_sid; 2250 2251 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2252 } 2253 EXPORT_SYMBOL(rdma_get_service_id); 2254 2255 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2256 union ib_gid *dgid) 2257 { 2258 struct rdma_addr *addr = &cm_id->route.addr; 2259 2260 if (!cm_id->device) { 2261 if (sgid) 2262 memset(sgid, 0, sizeof(*sgid)); 2263 if (dgid) 2264 memset(dgid, 0, sizeof(*dgid)); 2265 return; 2266 } 2267 2268 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2269 if (sgid) 2270 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2271 if (dgid) 2272 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2273 } else { 2274 if (sgid) 2275 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2276 if (dgid) 2277 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2278 } 2279 } 2280 EXPORT_SYMBOL(rdma_read_gids); 2281 2282 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2283 { 2284 struct rdma_id_private *id_priv = iw_id->context; 2285 struct rdma_cm_event event = {}; 2286 int ret = 0; 2287 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2288 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2289 2290 mutex_lock(&id_priv->handler_mutex); 2291 if (id_priv->state != RDMA_CM_CONNECT) 2292 goto out; 2293 2294 switch (iw_event->event) { 2295 case IW_CM_EVENT_CLOSE: 2296 event.event = RDMA_CM_EVENT_DISCONNECTED; 2297 break; 2298 case IW_CM_EVENT_CONNECT_REPLY: 2299 memcpy(cma_src_addr(id_priv), laddr, 2300 rdma_addr_size(laddr)); 2301 memcpy(cma_dst_addr(id_priv), raddr, 2302 rdma_addr_size(raddr)); 2303 switch (iw_event->status) { 2304 case 0: 2305 event.event = RDMA_CM_EVENT_ESTABLISHED; 2306 event.param.conn.initiator_depth = iw_event->ird; 2307 event.param.conn.responder_resources = iw_event->ord; 2308 break; 2309 case -ECONNRESET: 2310 case -ECONNREFUSED: 2311 event.event = RDMA_CM_EVENT_REJECTED; 2312 break; 2313 case -ETIMEDOUT: 2314 event.event = RDMA_CM_EVENT_UNREACHABLE; 2315 break; 2316 default: 2317 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2318 break; 2319 } 2320 break; 2321 case IW_CM_EVENT_ESTABLISHED: 2322 event.event = RDMA_CM_EVENT_ESTABLISHED; 2323 event.param.conn.initiator_depth = iw_event->ird; 2324 event.param.conn.responder_resources = iw_event->ord; 2325 break; 2326 default: 2327 goto out; 2328 } 2329 2330 event.status = iw_event->status; 2331 event.param.conn.private_data = iw_event->private_data; 2332 event.param.conn.private_data_len = iw_event->private_data_len; 2333 ret = cma_cm_event_handler(id_priv, &event); 2334 if (ret) { 2335 /* Destroy the CM ID by returning a non-zero value. */ 2336 id_priv->cm_id.iw = NULL; 2337 destroy_id_handler_unlock(id_priv); 2338 return ret; 2339 } 2340 2341 out: 2342 mutex_unlock(&id_priv->handler_mutex); 2343 return ret; 2344 } 2345 2346 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2347 struct iw_cm_event *iw_event) 2348 { 2349 struct rdma_cm_id *new_cm_id; 2350 struct rdma_id_private *listen_id, *conn_id; 2351 struct rdma_cm_event event = {}; 2352 int ret = -ECONNABORTED; 2353 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2354 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2355 2356 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2357 event.param.conn.private_data = iw_event->private_data; 2358 event.param.conn.private_data_len = iw_event->private_data_len; 2359 event.param.conn.initiator_depth = iw_event->ird; 2360 event.param.conn.responder_resources = iw_event->ord; 2361 2362 listen_id = cm_id->context; 2363 2364 mutex_lock(&listen_id->handler_mutex); 2365 if (listen_id->state != RDMA_CM_LISTEN) 2366 goto out; 2367 2368 /* Create a new RDMA id for the new IW CM ID */ 2369 new_cm_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2370 listen_id->id.event_handler, 2371 listen_id->id.context, 2372 RDMA_PS_TCP, IB_QPT_RC, 2373 listen_id->res.kern_name); 2374 if (IS_ERR(new_cm_id)) { 2375 ret = -ENOMEM; 2376 goto out; 2377 } 2378 conn_id = container_of(new_cm_id, struct rdma_id_private, id); 2379 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2380 conn_id->state = RDMA_CM_CONNECT; 2381 2382 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2383 if (ret) { 2384 mutex_unlock(&listen_id->handler_mutex); 2385 destroy_id_handler_unlock(conn_id); 2386 return ret; 2387 } 2388 2389 ret = cma_iw_acquire_dev(conn_id, listen_id); 2390 if (ret) { 2391 mutex_unlock(&listen_id->handler_mutex); 2392 destroy_id_handler_unlock(conn_id); 2393 return ret; 2394 } 2395 2396 conn_id->cm_id.iw = cm_id; 2397 cm_id->context = conn_id; 2398 cm_id->cm_handler = cma_iw_handler; 2399 2400 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2401 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2402 2403 ret = cma_cm_event_handler(conn_id, &event); 2404 if (ret) { 2405 /* User wants to destroy the CM ID */ 2406 conn_id->cm_id.iw = NULL; 2407 mutex_unlock(&listen_id->handler_mutex); 2408 destroy_id_handler_unlock(conn_id); 2409 return ret; 2410 } 2411 2412 mutex_unlock(&conn_id->handler_mutex); 2413 2414 out: 2415 mutex_unlock(&listen_id->handler_mutex); 2416 return ret; 2417 } 2418 2419 static int cma_ib_listen(struct rdma_id_private *id_priv) 2420 { 2421 struct sockaddr *addr; 2422 struct ib_cm_id *id; 2423 __be64 svc_id; 2424 2425 addr = cma_src_addr(id_priv); 2426 svc_id = rdma_get_service_id(&id_priv->id, addr); 2427 id = ib_cm_insert_listen(id_priv->id.device, 2428 cma_ib_req_handler, svc_id); 2429 if (IS_ERR(id)) 2430 return PTR_ERR(id); 2431 id_priv->cm_id.ib = id; 2432 2433 return 0; 2434 } 2435 2436 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2437 { 2438 int ret; 2439 struct iw_cm_id *id; 2440 2441 id = iw_create_cm_id(id_priv->id.device, 2442 iw_conn_req_handler, 2443 id_priv); 2444 if (IS_ERR(id)) 2445 return PTR_ERR(id); 2446 2447 id->tos = id_priv->tos; 2448 id->tos_set = id_priv->tos_set; 2449 id_priv->cm_id.iw = id; 2450 2451 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2452 rdma_addr_size(cma_src_addr(id_priv))); 2453 2454 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2455 2456 if (ret) { 2457 iw_destroy_cm_id(id_priv->cm_id.iw); 2458 id_priv->cm_id.iw = NULL; 2459 } 2460 2461 return ret; 2462 } 2463 2464 static int cma_listen_handler(struct rdma_cm_id *id, 2465 struct rdma_cm_event *event) 2466 { 2467 struct rdma_id_private *id_priv = id->context; 2468 2469 /* Listening IDs are always destroyed on removal */ 2470 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2471 return -1; 2472 2473 id->context = id_priv->id.context; 2474 id->event_handler = id_priv->id.event_handler; 2475 trace_cm_event_handler(id_priv, event); 2476 return id_priv->id.event_handler(id, event); 2477 } 2478 2479 static void cma_listen_on_dev(struct rdma_id_private *id_priv, 2480 struct cma_device *cma_dev) 2481 { 2482 struct rdma_id_private *dev_id_priv; 2483 struct rdma_cm_id *id; 2484 struct net *net = id_priv->id.route.addr.dev_addr.net; 2485 int ret; 2486 2487 lockdep_assert_held(&lock); 2488 2489 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2490 return; 2491 2492 id = __rdma_create_id(net, cma_listen_handler, id_priv, id_priv->id.ps, 2493 id_priv->id.qp_type, id_priv->res.kern_name); 2494 if (IS_ERR(id)) 2495 return; 2496 2497 dev_id_priv = container_of(id, struct rdma_id_private, id); 2498 2499 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2500 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2501 rdma_addr_size(cma_src_addr(id_priv))); 2502 2503 _cma_attach_to_dev(dev_id_priv, cma_dev); 2504 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2505 cma_id_get(id_priv); 2506 dev_id_priv->internal_id = 1; 2507 dev_id_priv->afonly = id_priv->afonly; 2508 dev_id_priv->tos_set = id_priv->tos_set; 2509 dev_id_priv->tos = id_priv->tos; 2510 2511 ret = rdma_listen(id, id_priv->backlog); 2512 if (ret) 2513 dev_warn(&cma_dev->device->dev, 2514 "RDMA CMA: cma_listen_on_dev, error %d\n", ret); 2515 } 2516 2517 static void cma_listen_on_all(struct rdma_id_private *id_priv) 2518 { 2519 struct cma_device *cma_dev; 2520 2521 mutex_lock(&lock); 2522 list_add_tail(&id_priv->list, &listen_any_list); 2523 list_for_each_entry(cma_dev, &dev_list, list) 2524 cma_listen_on_dev(id_priv, cma_dev); 2525 mutex_unlock(&lock); 2526 } 2527 2528 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2529 { 2530 struct rdma_id_private *id_priv; 2531 2532 id_priv = container_of(id, struct rdma_id_private, id); 2533 id_priv->tos = (u8) tos; 2534 id_priv->tos_set = true; 2535 } 2536 EXPORT_SYMBOL(rdma_set_service_type); 2537 2538 /** 2539 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2540 * with a connection identifier. 2541 * @id: Communication identifier to associated with service type. 2542 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2543 * 2544 * This function should be called before rdma_connect() on active side, 2545 * and on passive side before rdma_accept(). It is applicable to primary 2546 * path only. The timeout will affect the local side of the QP, it is not 2547 * negotiated with remote side and zero disables the timer. In case it is 2548 * set before rdma_resolve_route, the value will also be used to determine 2549 * PacketLifeTime for RoCE. 2550 * 2551 * Return: 0 for success 2552 */ 2553 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2554 { 2555 struct rdma_id_private *id_priv; 2556 2557 if (id->qp_type != IB_QPT_RC) 2558 return -EINVAL; 2559 2560 id_priv = container_of(id, struct rdma_id_private, id); 2561 id_priv->timeout = timeout; 2562 id_priv->timeout_set = true; 2563 2564 return 0; 2565 } 2566 EXPORT_SYMBOL(rdma_set_ack_timeout); 2567 2568 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2569 void *context) 2570 { 2571 struct cma_work *work = context; 2572 struct rdma_route *route; 2573 2574 route = &work->id->id.route; 2575 2576 if (!status) { 2577 route->num_paths = 1; 2578 *route->path_rec = *path_rec; 2579 } else { 2580 work->old_state = RDMA_CM_ROUTE_QUERY; 2581 work->new_state = RDMA_CM_ADDR_RESOLVED; 2582 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2583 work->event.status = status; 2584 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2585 status); 2586 } 2587 2588 queue_work(cma_wq, &work->work); 2589 } 2590 2591 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2592 unsigned long timeout_ms, struct cma_work *work) 2593 { 2594 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2595 struct sa_path_rec path_rec; 2596 ib_sa_comp_mask comp_mask; 2597 struct sockaddr_in6 *sin6; 2598 struct sockaddr_ib *sib; 2599 2600 memset(&path_rec, 0, sizeof path_rec); 2601 2602 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2603 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2604 else 2605 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2606 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2607 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2608 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2609 path_rec.numb_path = 1; 2610 path_rec.reversible = 1; 2611 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2612 cma_dst_addr(id_priv)); 2613 2614 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2615 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2616 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2617 2618 switch (cma_family(id_priv)) { 2619 case AF_INET: 2620 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2621 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2622 break; 2623 case AF_INET6: 2624 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2625 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2626 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2627 break; 2628 case AF_IB: 2629 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2630 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2631 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2632 break; 2633 } 2634 2635 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2636 id_priv->id.port_num, &path_rec, 2637 comp_mask, timeout_ms, 2638 GFP_KERNEL, cma_query_handler, 2639 work, &id_priv->query); 2640 2641 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2642 } 2643 2644 static void cma_work_handler(struct work_struct *_work) 2645 { 2646 struct cma_work *work = container_of(_work, struct cma_work, work); 2647 struct rdma_id_private *id_priv = work->id; 2648 2649 mutex_lock(&id_priv->handler_mutex); 2650 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2651 goto out_unlock; 2652 2653 if (cma_cm_event_handler(id_priv, &work->event)) { 2654 cma_id_put(id_priv); 2655 destroy_id_handler_unlock(id_priv); 2656 goto out_free; 2657 } 2658 2659 out_unlock: 2660 mutex_unlock(&id_priv->handler_mutex); 2661 cma_id_put(id_priv); 2662 out_free: 2663 kfree(work); 2664 } 2665 2666 static void cma_ndev_work_handler(struct work_struct *_work) 2667 { 2668 struct cma_ndev_work *work = container_of(_work, struct cma_ndev_work, work); 2669 struct rdma_id_private *id_priv = work->id; 2670 2671 mutex_lock(&id_priv->handler_mutex); 2672 if (id_priv->state == RDMA_CM_DESTROYING || 2673 id_priv->state == RDMA_CM_DEVICE_REMOVAL) 2674 goto out_unlock; 2675 2676 if (cma_cm_event_handler(id_priv, &work->event)) { 2677 cma_id_put(id_priv); 2678 destroy_id_handler_unlock(id_priv); 2679 goto out_free; 2680 } 2681 2682 out_unlock: 2683 mutex_unlock(&id_priv->handler_mutex); 2684 cma_id_put(id_priv); 2685 out_free: 2686 kfree(work); 2687 } 2688 2689 static void cma_init_resolve_route_work(struct cma_work *work, 2690 struct rdma_id_private *id_priv) 2691 { 2692 work->id = id_priv; 2693 INIT_WORK(&work->work, cma_work_handler); 2694 work->old_state = RDMA_CM_ROUTE_QUERY; 2695 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2696 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2697 } 2698 2699 static void enqueue_resolve_addr_work(struct cma_work *work, 2700 struct rdma_id_private *id_priv) 2701 { 2702 /* Balances with cma_id_put() in cma_work_handler */ 2703 cma_id_get(id_priv); 2704 2705 work->id = id_priv; 2706 INIT_WORK(&work->work, cma_work_handler); 2707 work->old_state = RDMA_CM_ADDR_QUERY; 2708 work->new_state = RDMA_CM_ADDR_RESOLVED; 2709 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2710 2711 queue_work(cma_wq, &work->work); 2712 } 2713 2714 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2715 unsigned long timeout_ms) 2716 { 2717 struct rdma_route *route = &id_priv->id.route; 2718 struct cma_work *work; 2719 int ret; 2720 2721 work = kzalloc(sizeof *work, GFP_KERNEL); 2722 if (!work) 2723 return -ENOMEM; 2724 2725 cma_init_resolve_route_work(work, id_priv); 2726 2727 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2728 if (!route->path_rec) { 2729 ret = -ENOMEM; 2730 goto err1; 2731 } 2732 2733 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2734 if (ret) 2735 goto err2; 2736 2737 return 0; 2738 err2: 2739 kfree(route->path_rec); 2740 route->path_rec = NULL; 2741 err1: 2742 kfree(work); 2743 return ret; 2744 } 2745 2746 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2747 unsigned long supported_gids, 2748 enum ib_gid_type default_gid) 2749 { 2750 if ((network_type == RDMA_NETWORK_IPV4 || 2751 network_type == RDMA_NETWORK_IPV6) && 2752 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2753 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2754 2755 return default_gid; 2756 } 2757 2758 /* 2759 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2760 * path record type based on GID type. 2761 * It also sets up other L2 fields which includes destination mac address 2762 * netdev ifindex, of the path record. 2763 * It returns the netdev of the bound interface for this path record entry. 2764 */ 2765 static struct net_device * 2766 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2767 { 2768 struct rdma_route *route = &id_priv->id.route; 2769 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2770 struct rdma_addr *addr = &route->addr; 2771 unsigned long supported_gids; 2772 struct net_device *ndev; 2773 2774 if (!addr->dev_addr.bound_dev_if) 2775 return NULL; 2776 2777 ndev = dev_get_by_index(addr->dev_addr.net, 2778 addr->dev_addr.bound_dev_if); 2779 if (!ndev) 2780 return NULL; 2781 2782 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2783 id_priv->id.port_num); 2784 gid_type = cma_route_gid_type(addr->dev_addr.network, 2785 supported_gids, 2786 id_priv->gid_type); 2787 /* Use the hint from IP Stack to select GID Type */ 2788 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2789 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2790 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2791 2792 route->path_rec->roce.route_resolved = true; 2793 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2794 return ndev; 2795 } 2796 2797 int rdma_set_ib_path(struct rdma_cm_id *id, 2798 struct sa_path_rec *path_rec) 2799 { 2800 struct rdma_id_private *id_priv; 2801 struct net_device *ndev; 2802 int ret; 2803 2804 id_priv = container_of(id, struct rdma_id_private, id); 2805 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2806 RDMA_CM_ROUTE_RESOLVED)) 2807 return -EINVAL; 2808 2809 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2810 GFP_KERNEL); 2811 if (!id->route.path_rec) { 2812 ret = -ENOMEM; 2813 goto err; 2814 } 2815 2816 if (rdma_protocol_roce(id->device, id->port_num)) { 2817 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2818 if (!ndev) { 2819 ret = -ENODEV; 2820 goto err_free; 2821 } 2822 dev_put(ndev); 2823 } 2824 2825 id->route.num_paths = 1; 2826 return 0; 2827 2828 err_free: 2829 kfree(id->route.path_rec); 2830 id->route.path_rec = NULL; 2831 err: 2832 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2833 return ret; 2834 } 2835 EXPORT_SYMBOL(rdma_set_ib_path); 2836 2837 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2838 { 2839 struct cma_work *work; 2840 2841 work = kzalloc(sizeof *work, GFP_KERNEL); 2842 if (!work) 2843 return -ENOMEM; 2844 2845 cma_init_resolve_route_work(work, id_priv); 2846 queue_work(cma_wq, &work->work); 2847 return 0; 2848 } 2849 2850 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2851 { 2852 struct net_device *dev; 2853 2854 dev = vlan_dev_real_dev(vlan_ndev); 2855 if (dev->num_tc) 2856 return netdev_get_prio_tc_map(dev, prio); 2857 2858 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2859 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2860 } 2861 2862 struct iboe_prio_tc_map { 2863 int input_prio; 2864 int output_tc; 2865 bool found; 2866 }; 2867 2868 static int get_lower_vlan_dev_tc(struct net_device *dev, 2869 struct netdev_nested_priv *priv) 2870 { 2871 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2872 2873 if (is_vlan_dev(dev)) 2874 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2875 else if (dev->num_tc) 2876 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2877 else 2878 map->output_tc = 0; 2879 /* We are interested only in first level VLAN device, so always 2880 * return 1 to stop iterating over next level devices. 2881 */ 2882 map->found = true; 2883 return 1; 2884 } 2885 2886 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2887 { 2888 struct iboe_prio_tc_map prio_tc_map = {}; 2889 int prio = rt_tos2priority(tos); 2890 struct netdev_nested_priv priv; 2891 2892 /* If VLAN device, get it directly from the VLAN netdev */ 2893 if (is_vlan_dev(ndev)) 2894 return get_vlan_ndev_tc(ndev, prio); 2895 2896 prio_tc_map.input_prio = prio; 2897 priv.data = (void *)&prio_tc_map; 2898 rcu_read_lock(); 2899 netdev_walk_all_lower_dev_rcu(ndev, 2900 get_lower_vlan_dev_tc, 2901 &priv); 2902 rcu_read_unlock(); 2903 /* If map is found from lower device, use it; Otherwise 2904 * continue with the current netdevice to get priority to tc map. 2905 */ 2906 if (prio_tc_map.found) 2907 return prio_tc_map.output_tc; 2908 else if (ndev->num_tc) 2909 return netdev_get_prio_tc_map(ndev, prio); 2910 else 2911 return 0; 2912 } 2913 2914 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 2915 { 2916 struct sockaddr_in6 *addr6; 2917 u16 dport, sport; 2918 u32 hash, fl; 2919 2920 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 2921 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 2922 if ((cma_family(id_priv) != AF_INET6) || !fl) { 2923 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 2924 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 2925 hash = (u32)sport * 31 + dport; 2926 fl = hash & IB_GRH_FLOWLABEL_MASK; 2927 } 2928 2929 return cpu_to_be32(fl); 2930 } 2931 2932 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 2933 { 2934 struct rdma_route *route = &id_priv->id.route; 2935 struct rdma_addr *addr = &route->addr; 2936 struct cma_work *work; 2937 int ret; 2938 struct net_device *ndev; 2939 2940 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 2941 rdma_start_port(id_priv->cma_dev->device)]; 2942 u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 2943 2944 2945 work = kzalloc(sizeof *work, GFP_KERNEL); 2946 if (!work) 2947 return -ENOMEM; 2948 2949 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 2950 if (!route->path_rec) { 2951 ret = -ENOMEM; 2952 goto err1; 2953 } 2954 2955 route->num_paths = 1; 2956 2957 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2958 if (!ndev) { 2959 ret = -ENODEV; 2960 goto err2; 2961 } 2962 2963 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 2964 &route->path_rec->sgid); 2965 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 2966 &route->path_rec->dgid); 2967 2968 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 2969 /* TODO: get the hoplimit from the inet/inet6 device */ 2970 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 2971 else 2972 route->path_rec->hop_limit = 1; 2973 route->path_rec->reversible = 1; 2974 route->path_rec->pkey = cpu_to_be16(0xffff); 2975 route->path_rec->mtu_selector = IB_SA_EQ; 2976 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 2977 route->path_rec->traffic_class = tos; 2978 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 2979 route->path_rec->rate_selector = IB_SA_EQ; 2980 route->path_rec->rate = iboe_get_rate(ndev); 2981 dev_put(ndev); 2982 route->path_rec->packet_life_time_selector = IB_SA_EQ; 2983 /* In case ACK timeout is set, use this value to calculate 2984 * PacketLifeTime. As per IBTA 12.7.34, 2985 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 2986 * Assuming a negligible local ACK delay, we can use 2987 * PacketLifeTime = local ACK timeout/2 2988 * as a reasonable approximation for RoCE networks. 2989 */ 2990 route->path_rec->packet_life_time = id_priv->timeout_set ? 2991 id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME; 2992 2993 if (!route->path_rec->mtu) { 2994 ret = -EINVAL; 2995 goto err2; 2996 } 2997 2998 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 2999 id_priv->id.port_num)) 3000 route->path_rec->flow_label = 3001 cma_get_roce_udp_flow_label(id_priv); 3002 3003 cma_init_resolve_route_work(work, id_priv); 3004 queue_work(cma_wq, &work->work); 3005 3006 return 0; 3007 3008 err2: 3009 kfree(route->path_rec); 3010 route->path_rec = NULL; 3011 route->num_paths = 0; 3012 err1: 3013 kfree(work); 3014 return ret; 3015 } 3016 3017 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3018 { 3019 struct rdma_id_private *id_priv; 3020 int ret; 3021 3022 id_priv = container_of(id, struct rdma_id_private, id); 3023 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3024 return -EINVAL; 3025 3026 cma_id_get(id_priv); 3027 if (rdma_cap_ib_sa(id->device, id->port_num)) 3028 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3029 else if (rdma_protocol_roce(id->device, id->port_num)) 3030 ret = cma_resolve_iboe_route(id_priv); 3031 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3032 ret = cma_resolve_iw_route(id_priv); 3033 else 3034 ret = -ENOSYS; 3035 3036 if (ret) 3037 goto err; 3038 3039 return 0; 3040 err: 3041 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3042 cma_id_put(id_priv); 3043 return ret; 3044 } 3045 EXPORT_SYMBOL(rdma_resolve_route); 3046 3047 static void cma_set_loopback(struct sockaddr *addr) 3048 { 3049 switch (addr->sa_family) { 3050 case AF_INET: 3051 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3052 break; 3053 case AF_INET6: 3054 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3055 0, 0, 0, htonl(1)); 3056 break; 3057 default: 3058 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3059 0, 0, 0, htonl(1)); 3060 break; 3061 } 3062 } 3063 3064 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3065 { 3066 struct cma_device *cma_dev, *cur_dev; 3067 union ib_gid gid; 3068 enum ib_port_state port_state; 3069 unsigned int p; 3070 u16 pkey; 3071 int ret; 3072 3073 cma_dev = NULL; 3074 mutex_lock(&lock); 3075 list_for_each_entry(cur_dev, &dev_list, list) { 3076 if (cma_family(id_priv) == AF_IB && 3077 !rdma_cap_ib_cm(cur_dev->device, 1)) 3078 continue; 3079 3080 if (!cma_dev) 3081 cma_dev = cur_dev; 3082 3083 rdma_for_each_port (cur_dev->device, p) { 3084 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3085 port_state == IB_PORT_ACTIVE) { 3086 cma_dev = cur_dev; 3087 goto port_found; 3088 } 3089 } 3090 } 3091 3092 if (!cma_dev) { 3093 ret = -ENODEV; 3094 goto out; 3095 } 3096 3097 p = 1; 3098 3099 port_found: 3100 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3101 if (ret) 3102 goto out; 3103 3104 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3105 if (ret) 3106 goto out; 3107 3108 id_priv->id.route.addr.dev_addr.dev_type = 3109 (rdma_protocol_ib(cma_dev->device, p)) ? 3110 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3111 3112 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3113 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3114 id_priv->id.port_num = p; 3115 cma_attach_to_dev(id_priv, cma_dev); 3116 cma_set_loopback(cma_src_addr(id_priv)); 3117 out: 3118 mutex_unlock(&lock); 3119 return ret; 3120 } 3121 3122 static void addr_handler(int status, struct sockaddr *src_addr, 3123 struct rdma_dev_addr *dev_addr, void *context) 3124 { 3125 struct rdma_id_private *id_priv = context; 3126 struct rdma_cm_event event = {}; 3127 struct sockaddr *addr; 3128 struct sockaddr_storage old_addr; 3129 3130 mutex_lock(&id_priv->handler_mutex); 3131 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3132 RDMA_CM_ADDR_RESOLVED)) 3133 goto out; 3134 3135 /* 3136 * Store the previous src address, so that if we fail to acquire 3137 * matching rdma device, old address can be restored back, which helps 3138 * to cancel the cma listen operation correctly. 3139 */ 3140 addr = cma_src_addr(id_priv); 3141 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3142 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3143 if (!status && !id_priv->cma_dev) { 3144 status = cma_acquire_dev_by_src_ip(id_priv); 3145 if (status) 3146 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3147 status); 3148 } else if (status) { 3149 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3150 } 3151 3152 if (status) { 3153 memcpy(addr, &old_addr, 3154 rdma_addr_size((struct sockaddr *)&old_addr)); 3155 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3156 RDMA_CM_ADDR_BOUND)) 3157 goto out; 3158 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3159 event.status = status; 3160 } else 3161 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3162 3163 if (cma_cm_event_handler(id_priv, &event)) { 3164 destroy_id_handler_unlock(id_priv); 3165 return; 3166 } 3167 out: 3168 mutex_unlock(&id_priv->handler_mutex); 3169 } 3170 3171 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3172 { 3173 struct cma_work *work; 3174 union ib_gid gid; 3175 int ret; 3176 3177 work = kzalloc(sizeof *work, GFP_KERNEL); 3178 if (!work) 3179 return -ENOMEM; 3180 3181 if (!id_priv->cma_dev) { 3182 ret = cma_bind_loopback(id_priv); 3183 if (ret) 3184 goto err; 3185 } 3186 3187 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3188 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3189 3190 enqueue_resolve_addr_work(work, id_priv); 3191 return 0; 3192 err: 3193 kfree(work); 3194 return ret; 3195 } 3196 3197 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3198 { 3199 struct cma_work *work; 3200 int ret; 3201 3202 work = kzalloc(sizeof *work, GFP_KERNEL); 3203 if (!work) 3204 return -ENOMEM; 3205 3206 if (!id_priv->cma_dev) { 3207 ret = cma_resolve_ib_dev(id_priv); 3208 if (ret) 3209 goto err; 3210 } 3211 3212 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3213 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3214 3215 enqueue_resolve_addr_work(work, id_priv); 3216 return 0; 3217 err: 3218 kfree(work); 3219 return ret; 3220 } 3221 3222 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3223 const struct sockaddr *dst_addr) 3224 { 3225 if (!src_addr || !src_addr->sa_family) { 3226 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3227 src_addr->sa_family = dst_addr->sa_family; 3228 if (IS_ENABLED(CONFIG_IPV6) && 3229 dst_addr->sa_family == AF_INET6) { 3230 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3231 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3232 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3233 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3234 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3235 } else if (dst_addr->sa_family == AF_IB) { 3236 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3237 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3238 } 3239 } 3240 return rdma_bind_addr(id, src_addr); 3241 } 3242 3243 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3244 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3245 { 3246 struct rdma_id_private *id_priv; 3247 int ret; 3248 3249 id_priv = container_of(id, struct rdma_id_private, id); 3250 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3251 if (id_priv->state == RDMA_CM_IDLE) { 3252 ret = cma_bind_addr(id, src_addr, dst_addr); 3253 if (ret) { 3254 memset(cma_dst_addr(id_priv), 0, 3255 rdma_addr_size(dst_addr)); 3256 return ret; 3257 } 3258 } 3259 3260 if (cma_family(id_priv) != dst_addr->sa_family) { 3261 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3262 return -EINVAL; 3263 } 3264 3265 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3266 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3267 return -EINVAL; 3268 } 3269 3270 if (cma_any_addr(dst_addr)) { 3271 ret = cma_resolve_loopback(id_priv); 3272 } else { 3273 if (dst_addr->sa_family == AF_IB) { 3274 ret = cma_resolve_ib_addr(id_priv); 3275 } else { 3276 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3277 &id->route.addr.dev_addr, 3278 timeout_ms, addr_handler, 3279 false, id_priv); 3280 } 3281 } 3282 if (ret) 3283 goto err; 3284 3285 return 0; 3286 err: 3287 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3288 return ret; 3289 } 3290 EXPORT_SYMBOL(rdma_resolve_addr); 3291 3292 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3293 { 3294 struct rdma_id_private *id_priv; 3295 unsigned long flags; 3296 int ret; 3297 3298 id_priv = container_of(id, struct rdma_id_private, id); 3299 spin_lock_irqsave(&id_priv->lock, flags); 3300 if (reuse || id_priv->state == RDMA_CM_IDLE) { 3301 id_priv->reuseaddr = reuse; 3302 ret = 0; 3303 } else { 3304 ret = -EINVAL; 3305 } 3306 spin_unlock_irqrestore(&id_priv->lock, flags); 3307 return ret; 3308 } 3309 EXPORT_SYMBOL(rdma_set_reuseaddr); 3310 3311 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3312 { 3313 struct rdma_id_private *id_priv; 3314 unsigned long flags; 3315 int ret; 3316 3317 id_priv = container_of(id, struct rdma_id_private, id); 3318 spin_lock_irqsave(&id_priv->lock, flags); 3319 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3320 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3321 id_priv->afonly = afonly; 3322 ret = 0; 3323 } else { 3324 ret = -EINVAL; 3325 } 3326 spin_unlock_irqrestore(&id_priv->lock, flags); 3327 return ret; 3328 } 3329 EXPORT_SYMBOL(rdma_set_afonly); 3330 3331 static void cma_bind_port(struct rdma_bind_list *bind_list, 3332 struct rdma_id_private *id_priv) 3333 { 3334 struct sockaddr *addr; 3335 struct sockaddr_ib *sib; 3336 u64 sid, mask; 3337 __be16 port; 3338 3339 lockdep_assert_held(&lock); 3340 3341 addr = cma_src_addr(id_priv); 3342 port = htons(bind_list->port); 3343 3344 switch (addr->sa_family) { 3345 case AF_INET: 3346 ((struct sockaddr_in *) addr)->sin_port = port; 3347 break; 3348 case AF_INET6: 3349 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3350 break; 3351 case AF_IB: 3352 sib = (struct sockaddr_ib *) addr; 3353 sid = be64_to_cpu(sib->sib_sid); 3354 mask = be64_to_cpu(sib->sib_sid_mask); 3355 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3356 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3357 break; 3358 } 3359 id_priv->bind_list = bind_list; 3360 hlist_add_head(&id_priv->node, &bind_list->owners); 3361 } 3362 3363 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3364 struct rdma_id_private *id_priv, unsigned short snum) 3365 { 3366 struct rdma_bind_list *bind_list; 3367 int ret; 3368 3369 lockdep_assert_held(&lock); 3370 3371 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3372 if (!bind_list) 3373 return -ENOMEM; 3374 3375 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3376 snum); 3377 if (ret < 0) 3378 goto err; 3379 3380 bind_list->ps = ps; 3381 bind_list->port = snum; 3382 cma_bind_port(bind_list, id_priv); 3383 return 0; 3384 err: 3385 kfree(bind_list); 3386 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3387 } 3388 3389 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3390 struct rdma_id_private *id_priv) 3391 { 3392 struct rdma_id_private *cur_id; 3393 struct sockaddr *daddr = cma_dst_addr(id_priv); 3394 struct sockaddr *saddr = cma_src_addr(id_priv); 3395 __be16 dport = cma_port(daddr); 3396 3397 lockdep_assert_held(&lock); 3398 3399 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3400 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3401 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3402 __be16 cur_dport = cma_port(cur_daddr); 3403 3404 if (id_priv == cur_id) 3405 continue; 3406 3407 /* different dest port -> unique */ 3408 if (!cma_any_port(daddr) && 3409 !cma_any_port(cur_daddr) && 3410 (dport != cur_dport)) 3411 continue; 3412 3413 /* different src address -> unique */ 3414 if (!cma_any_addr(saddr) && 3415 !cma_any_addr(cur_saddr) && 3416 cma_addr_cmp(saddr, cur_saddr)) 3417 continue; 3418 3419 /* different dst address -> unique */ 3420 if (!cma_any_addr(daddr) && 3421 !cma_any_addr(cur_daddr) && 3422 cma_addr_cmp(daddr, cur_daddr)) 3423 continue; 3424 3425 return -EADDRNOTAVAIL; 3426 } 3427 return 0; 3428 } 3429 3430 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3431 struct rdma_id_private *id_priv) 3432 { 3433 static unsigned int last_used_port; 3434 int low, high, remaining; 3435 unsigned int rover; 3436 struct net *net = id_priv->id.route.addr.dev_addr.net; 3437 3438 lockdep_assert_held(&lock); 3439 3440 inet_get_local_port_range(net, &low, &high); 3441 remaining = (high - low) + 1; 3442 rover = prandom_u32() % remaining + low; 3443 retry: 3444 if (last_used_port != rover) { 3445 struct rdma_bind_list *bind_list; 3446 int ret; 3447 3448 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3449 3450 if (!bind_list) { 3451 ret = cma_alloc_port(ps, id_priv, rover); 3452 } else { 3453 ret = cma_port_is_unique(bind_list, id_priv); 3454 if (!ret) 3455 cma_bind_port(bind_list, id_priv); 3456 } 3457 /* 3458 * Remember previously used port number in order to avoid 3459 * re-using same port immediately after it is closed. 3460 */ 3461 if (!ret) 3462 last_used_port = rover; 3463 if (ret != -EADDRNOTAVAIL) 3464 return ret; 3465 } 3466 if (--remaining) { 3467 rover++; 3468 if ((rover < low) || (rover > high)) 3469 rover = low; 3470 goto retry; 3471 } 3472 return -EADDRNOTAVAIL; 3473 } 3474 3475 /* 3476 * Check that the requested port is available. This is called when trying to 3477 * bind to a specific port, or when trying to listen on a bound port. In 3478 * the latter case, the provided id_priv may already be on the bind_list, but 3479 * we still need to check that it's okay to start listening. 3480 */ 3481 static int cma_check_port(struct rdma_bind_list *bind_list, 3482 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3483 { 3484 struct rdma_id_private *cur_id; 3485 struct sockaddr *addr, *cur_addr; 3486 3487 lockdep_assert_held(&lock); 3488 3489 addr = cma_src_addr(id_priv); 3490 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3491 if (id_priv == cur_id) 3492 continue; 3493 3494 if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr && 3495 cur_id->reuseaddr) 3496 continue; 3497 3498 cur_addr = cma_src_addr(cur_id); 3499 if (id_priv->afonly && cur_id->afonly && 3500 (addr->sa_family != cur_addr->sa_family)) 3501 continue; 3502 3503 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3504 return -EADDRNOTAVAIL; 3505 3506 if (!cma_addr_cmp(addr, cur_addr)) 3507 return -EADDRINUSE; 3508 } 3509 return 0; 3510 } 3511 3512 static int cma_use_port(enum rdma_ucm_port_space ps, 3513 struct rdma_id_private *id_priv) 3514 { 3515 struct rdma_bind_list *bind_list; 3516 unsigned short snum; 3517 int ret; 3518 3519 lockdep_assert_held(&lock); 3520 3521 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3522 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3523 return -EACCES; 3524 3525 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3526 if (!bind_list) { 3527 ret = cma_alloc_port(ps, id_priv, snum); 3528 } else { 3529 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3530 if (!ret) 3531 cma_bind_port(bind_list, id_priv); 3532 } 3533 return ret; 3534 } 3535 3536 static int cma_bind_listen(struct rdma_id_private *id_priv) 3537 { 3538 struct rdma_bind_list *bind_list = id_priv->bind_list; 3539 int ret = 0; 3540 3541 mutex_lock(&lock); 3542 if (bind_list->owners.first->next) 3543 ret = cma_check_port(bind_list, id_priv, 0); 3544 mutex_unlock(&lock); 3545 return ret; 3546 } 3547 3548 static enum rdma_ucm_port_space 3549 cma_select_inet_ps(struct rdma_id_private *id_priv) 3550 { 3551 switch (id_priv->id.ps) { 3552 case RDMA_PS_TCP: 3553 case RDMA_PS_UDP: 3554 case RDMA_PS_IPOIB: 3555 case RDMA_PS_IB: 3556 return id_priv->id.ps; 3557 default: 3558 3559 return 0; 3560 } 3561 } 3562 3563 static enum rdma_ucm_port_space 3564 cma_select_ib_ps(struct rdma_id_private *id_priv) 3565 { 3566 enum rdma_ucm_port_space ps = 0; 3567 struct sockaddr_ib *sib; 3568 u64 sid_ps, mask, sid; 3569 3570 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3571 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3572 sid = be64_to_cpu(sib->sib_sid) & mask; 3573 3574 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3575 sid_ps = RDMA_IB_IP_PS_IB; 3576 ps = RDMA_PS_IB; 3577 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3578 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3579 sid_ps = RDMA_IB_IP_PS_TCP; 3580 ps = RDMA_PS_TCP; 3581 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3582 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3583 sid_ps = RDMA_IB_IP_PS_UDP; 3584 ps = RDMA_PS_UDP; 3585 } 3586 3587 if (ps) { 3588 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3589 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3590 be64_to_cpu(sib->sib_sid_mask)); 3591 } 3592 return ps; 3593 } 3594 3595 static int cma_get_port(struct rdma_id_private *id_priv) 3596 { 3597 enum rdma_ucm_port_space ps; 3598 int ret; 3599 3600 if (cma_family(id_priv) != AF_IB) 3601 ps = cma_select_inet_ps(id_priv); 3602 else 3603 ps = cma_select_ib_ps(id_priv); 3604 if (!ps) 3605 return -EPROTONOSUPPORT; 3606 3607 mutex_lock(&lock); 3608 if (cma_any_port(cma_src_addr(id_priv))) 3609 ret = cma_alloc_any_port(ps, id_priv); 3610 else 3611 ret = cma_use_port(ps, id_priv); 3612 mutex_unlock(&lock); 3613 3614 return ret; 3615 } 3616 3617 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3618 struct sockaddr *addr) 3619 { 3620 #if IS_ENABLED(CONFIG_IPV6) 3621 struct sockaddr_in6 *sin6; 3622 3623 if (addr->sa_family != AF_INET6) 3624 return 0; 3625 3626 sin6 = (struct sockaddr_in6 *) addr; 3627 3628 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3629 return 0; 3630 3631 if (!sin6->sin6_scope_id) 3632 return -EINVAL; 3633 3634 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3635 #endif 3636 return 0; 3637 } 3638 3639 int rdma_listen(struct rdma_cm_id *id, int backlog) 3640 { 3641 struct rdma_id_private *id_priv; 3642 int ret; 3643 3644 id_priv = container_of(id, struct rdma_id_private, id); 3645 if (id_priv->state == RDMA_CM_IDLE) { 3646 id->route.addr.src_addr.ss_family = AF_INET; 3647 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3648 if (ret) 3649 return ret; 3650 } 3651 3652 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) 3653 return -EINVAL; 3654 3655 if (id_priv->reuseaddr) { 3656 ret = cma_bind_listen(id_priv); 3657 if (ret) 3658 goto err; 3659 } 3660 3661 id_priv->backlog = backlog; 3662 if (id->device) { 3663 if (rdma_cap_ib_cm(id->device, 1)) { 3664 ret = cma_ib_listen(id_priv); 3665 if (ret) 3666 goto err; 3667 } else if (rdma_cap_iw_cm(id->device, 1)) { 3668 ret = cma_iw_listen(id_priv, backlog); 3669 if (ret) 3670 goto err; 3671 } else { 3672 ret = -ENOSYS; 3673 goto err; 3674 } 3675 } else 3676 cma_listen_on_all(id_priv); 3677 3678 return 0; 3679 err: 3680 id_priv->backlog = 0; 3681 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3682 return ret; 3683 } 3684 EXPORT_SYMBOL(rdma_listen); 3685 3686 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3687 { 3688 struct rdma_id_private *id_priv; 3689 int ret; 3690 struct sockaddr *daddr; 3691 3692 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3693 addr->sa_family != AF_IB) 3694 return -EAFNOSUPPORT; 3695 3696 id_priv = container_of(id, struct rdma_id_private, id); 3697 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3698 return -EINVAL; 3699 3700 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3701 if (ret) 3702 goto err1; 3703 3704 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3705 if (!cma_any_addr(addr)) { 3706 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3707 if (ret) 3708 goto err1; 3709 3710 ret = cma_acquire_dev_by_src_ip(id_priv); 3711 if (ret) 3712 goto err1; 3713 } 3714 3715 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3716 if (addr->sa_family == AF_INET) 3717 id_priv->afonly = 1; 3718 #if IS_ENABLED(CONFIG_IPV6) 3719 else if (addr->sa_family == AF_INET6) { 3720 struct net *net = id_priv->id.route.addr.dev_addr.net; 3721 3722 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3723 } 3724 #endif 3725 } 3726 daddr = cma_dst_addr(id_priv); 3727 daddr->sa_family = addr->sa_family; 3728 3729 ret = cma_get_port(id_priv); 3730 if (ret) 3731 goto err2; 3732 3733 return 0; 3734 err2: 3735 rdma_restrack_del(&id_priv->res); 3736 if (id_priv->cma_dev) 3737 cma_release_dev(id_priv); 3738 err1: 3739 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3740 return ret; 3741 } 3742 EXPORT_SYMBOL(rdma_bind_addr); 3743 3744 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3745 { 3746 struct cma_hdr *cma_hdr; 3747 3748 cma_hdr = hdr; 3749 cma_hdr->cma_version = CMA_VERSION; 3750 if (cma_family(id_priv) == AF_INET) { 3751 struct sockaddr_in *src4, *dst4; 3752 3753 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3754 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3755 3756 cma_set_ip_ver(cma_hdr, 4); 3757 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3758 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3759 cma_hdr->port = src4->sin_port; 3760 } else if (cma_family(id_priv) == AF_INET6) { 3761 struct sockaddr_in6 *src6, *dst6; 3762 3763 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3764 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3765 3766 cma_set_ip_ver(cma_hdr, 6); 3767 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3768 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3769 cma_hdr->port = src6->sin6_port; 3770 } 3771 return 0; 3772 } 3773 3774 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3775 const struct ib_cm_event *ib_event) 3776 { 3777 struct rdma_id_private *id_priv = cm_id->context; 3778 struct rdma_cm_event event = {}; 3779 const struct ib_cm_sidr_rep_event_param *rep = 3780 &ib_event->param.sidr_rep_rcvd; 3781 int ret; 3782 3783 mutex_lock(&id_priv->handler_mutex); 3784 if (id_priv->state != RDMA_CM_CONNECT) 3785 goto out; 3786 3787 switch (ib_event->event) { 3788 case IB_CM_SIDR_REQ_ERROR: 3789 event.event = RDMA_CM_EVENT_UNREACHABLE; 3790 event.status = -ETIMEDOUT; 3791 break; 3792 case IB_CM_SIDR_REP_RECEIVED: 3793 event.param.ud.private_data = ib_event->private_data; 3794 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3795 if (rep->status != IB_SIDR_SUCCESS) { 3796 event.event = RDMA_CM_EVENT_UNREACHABLE; 3797 event.status = ib_event->param.sidr_rep_rcvd.status; 3798 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3799 event.status); 3800 break; 3801 } 3802 ret = cma_set_qkey(id_priv, rep->qkey); 3803 if (ret) { 3804 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3805 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3806 event.status = ret; 3807 break; 3808 } 3809 ib_init_ah_attr_from_path(id_priv->id.device, 3810 id_priv->id.port_num, 3811 id_priv->id.route.path_rec, 3812 &event.param.ud.ah_attr, 3813 rep->sgid_attr); 3814 event.param.ud.qp_num = rep->qpn; 3815 event.param.ud.qkey = rep->qkey; 3816 event.event = RDMA_CM_EVENT_ESTABLISHED; 3817 event.status = 0; 3818 break; 3819 default: 3820 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3821 ib_event->event); 3822 goto out; 3823 } 3824 3825 ret = cma_cm_event_handler(id_priv, &event); 3826 3827 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3828 if (ret) { 3829 /* Destroy the CM ID by returning a non-zero value. */ 3830 id_priv->cm_id.ib = NULL; 3831 destroy_id_handler_unlock(id_priv); 3832 return ret; 3833 } 3834 out: 3835 mutex_unlock(&id_priv->handler_mutex); 3836 return 0; 3837 } 3838 3839 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3840 struct rdma_conn_param *conn_param) 3841 { 3842 struct ib_cm_sidr_req_param req; 3843 struct ib_cm_id *id; 3844 void *private_data; 3845 u8 offset; 3846 int ret; 3847 3848 memset(&req, 0, sizeof req); 3849 offset = cma_user_data_offset(id_priv); 3850 req.private_data_len = offset + conn_param->private_data_len; 3851 if (req.private_data_len < conn_param->private_data_len) 3852 return -EINVAL; 3853 3854 if (req.private_data_len) { 3855 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3856 if (!private_data) 3857 return -ENOMEM; 3858 } else { 3859 private_data = NULL; 3860 } 3861 3862 if (conn_param->private_data && conn_param->private_data_len) 3863 memcpy(private_data + offset, conn_param->private_data, 3864 conn_param->private_data_len); 3865 3866 if (private_data) { 3867 ret = cma_format_hdr(private_data, id_priv); 3868 if (ret) 3869 goto out; 3870 req.private_data = private_data; 3871 } 3872 3873 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 3874 id_priv); 3875 if (IS_ERR(id)) { 3876 ret = PTR_ERR(id); 3877 goto out; 3878 } 3879 id_priv->cm_id.ib = id; 3880 3881 req.path = id_priv->id.route.path_rec; 3882 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3883 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3884 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 3885 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3886 3887 trace_cm_send_sidr_req(id_priv); 3888 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 3889 if (ret) { 3890 ib_destroy_cm_id(id_priv->cm_id.ib); 3891 id_priv->cm_id.ib = NULL; 3892 } 3893 out: 3894 kfree(private_data); 3895 return ret; 3896 } 3897 3898 static int cma_connect_ib(struct rdma_id_private *id_priv, 3899 struct rdma_conn_param *conn_param) 3900 { 3901 struct ib_cm_req_param req; 3902 struct rdma_route *route; 3903 void *private_data; 3904 struct ib_cm_id *id; 3905 u8 offset; 3906 int ret; 3907 3908 memset(&req, 0, sizeof req); 3909 offset = cma_user_data_offset(id_priv); 3910 req.private_data_len = offset + conn_param->private_data_len; 3911 if (req.private_data_len < conn_param->private_data_len) 3912 return -EINVAL; 3913 3914 if (req.private_data_len) { 3915 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3916 if (!private_data) 3917 return -ENOMEM; 3918 } else { 3919 private_data = NULL; 3920 } 3921 3922 if (conn_param->private_data && conn_param->private_data_len) 3923 memcpy(private_data + offset, conn_param->private_data, 3924 conn_param->private_data_len); 3925 3926 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 3927 if (IS_ERR(id)) { 3928 ret = PTR_ERR(id); 3929 goto out; 3930 } 3931 id_priv->cm_id.ib = id; 3932 3933 route = &id_priv->id.route; 3934 if (private_data) { 3935 ret = cma_format_hdr(private_data, id_priv); 3936 if (ret) 3937 goto out; 3938 req.private_data = private_data; 3939 } 3940 3941 req.primary_path = &route->path_rec[0]; 3942 if (route->num_paths == 2) 3943 req.alternate_path = &route->path_rec[1]; 3944 3945 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3946 /* Alternate path SGID attribute currently unsupported */ 3947 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3948 req.qp_num = id_priv->qp_num; 3949 req.qp_type = id_priv->id.qp_type; 3950 req.starting_psn = id_priv->seq_num; 3951 req.responder_resources = conn_param->responder_resources; 3952 req.initiator_depth = conn_param->initiator_depth; 3953 req.flow_control = conn_param->flow_control; 3954 req.retry_count = min_t(u8, 7, conn_param->retry_count); 3955 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 3956 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 3957 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 3958 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3959 req.srq = id_priv->srq ? 1 : 0; 3960 req.ece.vendor_id = id_priv->ece.vendor_id; 3961 req.ece.attr_mod = id_priv->ece.attr_mod; 3962 3963 trace_cm_send_req(id_priv); 3964 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 3965 out: 3966 if (ret && !IS_ERR(id)) { 3967 ib_destroy_cm_id(id); 3968 id_priv->cm_id.ib = NULL; 3969 } 3970 3971 kfree(private_data); 3972 return ret; 3973 } 3974 3975 static int cma_connect_iw(struct rdma_id_private *id_priv, 3976 struct rdma_conn_param *conn_param) 3977 { 3978 struct iw_cm_id *cm_id; 3979 int ret; 3980 struct iw_cm_conn_param iw_param; 3981 3982 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 3983 if (IS_ERR(cm_id)) 3984 return PTR_ERR(cm_id); 3985 3986 cm_id->tos = id_priv->tos; 3987 cm_id->tos_set = id_priv->tos_set; 3988 id_priv->cm_id.iw = cm_id; 3989 3990 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 3991 rdma_addr_size(cma_src_addr(id_priv))); 3992 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 3993 rdma_addr_size(cma_dst_addr(id_priv))); 3994 3995 ret = cma_modify_qp_rtr(id_priv, conn_param); 3996 if (ret) 3997 goto out; 3998 3999 if (conn_param) { 4000 iw_param.ord = conn_param->initiator_depth; 4001 iw_param.ird = conn_param->responder_resources; 4002 iw_param.private_data = conn_param->private_data; 4003 iw_param.private_data_len = conn_param->private_data_len; 4004 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4005 } else { 4006 memset(&iw_param, 0, sizeof iw_param); 4007 iw_param.qpn = id_priv->qp_num; 4008 } 4009 ret = iw_cm_connect(cm_id, &iw_param); 4010 out: 4011 if (ret) { 4012 iw_destroy_cm_id(cm_id); 4013 id_priv->cm_id.iw = NULL; 4014 } 4015 return ret; 4016 } 4017 4018 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4019 { 4020 struct rdma_id_private *id_priv; 4021 int ret; 4022 4023 id_priv = container_of(id, struct rdma_id_private, id); 4024 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4025 return -EINVAL; 4026 4027 if (!id->qp) { 4028 id_priv->qp_num = conn_param->qp_num; 4029 id_priv->srq = conn_param->srq; 4030 } 4031 4032 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4033 if (id->qp_type == IB_QPT_UD) 4034 ret = cma_resolve_ib_udp(id_priv, conn_param); 4035 else 4036 ret = cma_connect_ib(id_priv, conn_param); 4037 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4038 ret = cma_connect_iw(id_priv, conn_param); 4039 else 4040 ret = -ENOSYS; 4041 if (ret) 4042 goto err; 4043 4044 return 0; 4045 err: 4046 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4047 return ret; 4048 } 4049 EXPORT_SYMBOL(rdma_connect); 4050 4051 /** 4052 * rdma_connect_ece - Initiate an active connection request with ECE data. 4053 * @id: Connection identifier to connect. 4054 * @conn_param: Connection information used for connected QPs. 4055 * @ece: ECE parameters 4056 * 4057 * See rdma_connect() explanation. 4058 */ 4059 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4060 struct rdma_ucm_ece *ece) 4061 { 4062 struct rdma_id_private *id_priv = 4063 container_of(id, struct rdma_id_private, id); 4064 4065 id_priv->ece.vendor_id = ece->vendor_id; 4066 id_priv->ece.attr_mod = ece->attr_mod; 4067 4068 return rdma_connect(id, conn_param); 4069 } 4070 EXPORT_SYMBOL(rdma_connect_ece); 4071 4072 static int cma_accept_ib(struct rdma_id_private *id_priv, 4073 struct rdma_conn_param *conn_param) 4074 { 4075 struct ib_cm_rep_param rep; 4076 int ret; 4077 4078 ret = cma_modify_qp_rtr(id_priv, conn_param); 4079 if (ret) 4080 goto out; 4081 4082 ret = cma_modify_qp_rts(id_priv, conn_param); 4083 if (ret) 4084 goto out; 4085 4086 memset(&rep, 0, sizeof rep); 4087 rep.qp_num = id_priv->qp_num; 4088 rep.starting_psn = id_priv->seq_num; 4089 rep.private_data = conn_param->private_data; 4090 rep.private_data_len = conn_param->private_data_len; 4091 rep.responder_resources = conn_param->responder_resources; 4092 rep.initiator_depth = conn_param->initiator_depth; 4093 rep.failover_accepted = 0; 4094 rep.flow_control = conn_param->flow_control; 4095 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4096 rep.srq = id_priv->srq ? 1 : 0; 4097 rep.ece.vendor_id = id_priv->ece.vendor_id; 4098 rep.ece.attr_mod = id_priv->ece.attr_mod; 4099 4100 trace_cm_send_rep(id_priv); 4101 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4102 out: 4103 return ret; 4104 } 4105 4106 static int cma_accept_iw(struct rdma_id_private *id_priv, 4107 struct rdma_conn_param *conn_param) 4108 { 4109 struct iw_cm_conn_param iw_param; 4110 int ret; 4111 4112 if (!conn_param) 4113 return -EINVAL; 4114 4115 ret = cma_modify_qp_rtr(id_priv, conn_param); 4116 if (ret) 4117 return ret; 4118 4119 iw_param.ord = conn_param->initiator_depth; 4120 iw_param.ird = conn_param->responder_resources; 4121 iw_param.private_data = conn_param->private_data; 4122 iw_param.private_data_len = conn_param->private_data_len; 4123 if (id_priv->id.qp) { 4124 iw_param.qpn = id_priv->qp_num; 4125 } else 4126 iw_param.qpn = conn_param->qp_num; 4127 4128 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4129 } 4130 4131 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4132 enum ib_cm_sidr_status status, u32 qkey, 4133 const void *private_data, int private_data_len) 4134 { 4135 struct ib_cm_sidr_rep_param rep; 4136 int ret; 4137 4138 memset(&rep, 0, sizeof rep); 4139 rep.status = status; 4140 if (status == IB_SIDR_SUCCESS) { 4141 ret = cma_set_qkey(id_priv, qkey); 4142 if (ret) 4143 return ret; 4144 rep.qp_num = id_priv->qp_num; 4145 rep.qkey = id_priv->qkey; 4146 4147 rep.ece.vendor_id = id_priv->ece.vendor_id; 4148 rep.ece.attr_mod = id_priv->ece.attr_mod; 4149 } 4150 4151 rep.private_data = private_data; 4152 rep.private_data_len = private_data_len; 4153 4154 trace_cm_send_sidr_rep(id_priv); 4155 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4156 } 4157 4158 int __rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4159 const char *caller) 4160 { 4161 struct rdma_id_private *id_priv; 4162 int ret; 4163 4164 id_priv = container_of(id, struct rdma_id_private, id); 4165 4166 rdma_restrack_set_task(&id_priv->res, caller); 4167 4168 if (!cma_comp(id_priv, RDMA_CM_CONNECT)) 4169 return -EINVAL; 4170 4171 if (!id->qp && conn_param) { 4172 id_priv->qp_num = conn_param->qp_num; 4173 id_priv->srq = conn_param->srq; 4174 } 4175 4176 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4177 if (id->qp_type == IB_QPT_UD) { 4178 if (conn_param) 4179 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4180 conn_param->qkey, 4181 conn_param->private_data, 4182 conn_param->private_data_len); 4183 else 4184 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4185 0, NULL, 0); 4186 } else { 4187 if (conn_param) 4188 ret = cma_accept_ib(id_priv, conn_param); 4189 else 4190 ret = cma_rep_recv(id_priv); 4191 } 4192 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4193 ret = cma_accept_iw(id_priv, conn_param); 4194 else 4195 ret = -ENOSYS; 4196 4197 if (ret) 4198 goto reject; 4199 4200 return 0; 4201 reject: 4202 cma_modify_qp_err(id_priv); 4203 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4204 return ret; 4205 } 4206 EXPORT_SYMBOL(__rdma_accept); 4207 4208 int __rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4209 const char *caller, struct rdma_ucm_ece *ece) 4210 { 4211 struct rdma_id_private *id_priv = 4212 container_of(id, struct rdma_id_private, id); 4213 4214 id_priv->ece.vendor_id = ece->vendor_id; 4215 id_priv->ece.attr_mod = ece->attr_mod; 4216 4217 return __rdma_accept(id, conn_param, caller); 4218 } 4219 EXPORT_SYMBOL(__rdma_accept_ece); 4220 4221 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4222 { 4223 struct rdma_id_private *id_priv; 4224 int ret; 4225 4226 id_priv = container_of(id, struct rdma_id_private, id); 4227 if (!id_priv->cm_id.ib) 4228 return -EINVAL; 4229 4230 switch (id->device->node_type) { 4231 case RDMA_NODE_IB_CA: 4232 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4233 break; 4234 default: 4235 ret = 0; 4236 break; 4237 } 4238 return ret; 4239 } 4240 EXPORT_SYMBOL(rdma_notify); 4241 4242 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4243 u8 private_data_len, u8 reason) 4244 { 4245 struct rdma_id_private *id_priv; 4246 int ret; 4247 4248 id_priv = container_of(id, struct rdma_id_private, id); 4249 if (!id_priv->cm_id.ib) 4250 return -EINVAL; 4251 4252 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4253 if (id->qp_type == IB_QPT_UD) { 4254 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4255 private_data, private_data_len); 4256 } else { 4257 trace_cm_send_rej(id_priv); 4258 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4259 private_data, private_data_len); 4260 } 4261 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4262 ret = iw_cm_reject(id_priv->cm_id.iw, 4263 private_data, private_data_len); 4264 } else 4265 ret = -ENOSYS; 4266 4267 return ret; 4268 } 4269 EXPORT_SYMBOL(rdma_reject); 4270 4271 int rdma_disconnect(struct rdma_cm_id *id) 4272 { 4273 struct rdma_id_private *id_priv; 4274 int ret; 4275 4276 id_priv = container_of(id, struct rdma_id_private, id); 4277 if (!id_priv->cm_id.ib) 4278 return -EINVAL; 4279 4280 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4281 ret = cma_modify_qp_err(id_priv); 4282 if (ret) 4283 goto out; 4284 /* Initiate or respond to a disconnect. */ 4285 trace_cm_disconnect(id_priv); 4286 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4287 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4288 trace_cm_sent_drep(id_priv); 4289 } else { 4290 trace_cm_sent_dreq(id_priv); 4291 } 4292 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4293 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4294 } else 4295 ret = -EINVAL; 4296 4297 out: 4298 return ret; 4299 } 4300 EXPORT_SYMBOL(rdma_disconnect); 4301 4302 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4303 { 4304 struct rdma_id_private *id_priv; 4305 struct cma_multicast *mc = multicast->context; 4306 struct rdma_cm_event event = {}; 4307 int ret = 0; 4308 4309 id_priv = mc->id_priv; 4310 mutex_lock(&id_priv->handler_mutex); 4311 if (id_priv->state != RDMA_CM_ADDR_BOUND && 4312 id_priv->state != RDMA_CM_ADDR_RESOLVED) 4313 goto out; 4314 4315 if (!status) 4316 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4317 else 4318 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4319 status); 4320 mutex_lock(&id_priv->qp_mutex); 4321 if (!status && id_priv->id.qp) { 4322 status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid, 4323 be16_to_cpu(multicast->rec.mlid)); 4324 if (status) 4325 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to attach QP. status %d\n", 4326 status); 4327 } 4328 mutex_unlock(&id_priv->qp_mutex); 4329 4330 event.status = status; 4331 event.param.ud.private_data = mc->context; 4332 if (!status) { 4333 struct rdma_dev_addr *dev_addr = 4334 &id_priv->id.route.addr.dev_addr; 4335 struct net_device *ndev = 4336 dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4337 enum ib_gid_type gid_type = 4338 id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4339 rdma_start_port(id_priv->cma_dev->device)]; 4340 4341 event.event = RDMA_CM_EVENT_MULTICAST_JOIN; 4342 ret = ib_init_ah_from_mcmember(id_priv->id.device, 4343 id_priv->id.port_num, 4344 &multicast->rec, 4345 ndev, gid_type, 4346 &event.param.ud.ah_attr); 4347 if (ret) 4348 event.event = RDMA_CM_EVENT_MULTICAST_ERROR; 4349 4350 event.param.ud.qp_num = 0xFFFFFF; 4351 event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4352 if (ndev) 4353 dev_put(ndev); 4354 } else 4355 event.event = RDMA_CM_EVENT_MULTICAST_ERROR; 4356 4357 ret = cma_cm_event_handler(id_priv, &event); 4358 4359 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4360 if (ret) { 4361 destroy_id_handler_unlock(id_priv); 4362 return 0; 4363 } 4364 4365 out: 4366 mutex_unlock(&id_priv->handler_mutex); 4367 return 0; 4368 } 4369 4370 static void cma_set_mgid(struct rdma_id_private *id_priv, 4371 struct sockaddr *addr, union ib_gid *mgid) 4372 { 4373 unsigned char mc_map[MAX_ADDR_LEN]; 4374 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4375 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4376 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4377 4378 if (cma_any_addr(addr)) { 4379 memset(mgid, 0, sizeof *mgid); 4380 } else if ((addr->sa_family == AF_INET6) && 4381 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4382 0xFF10A01B)) { 4383 /* IPv6 address is an SA assigned MGID. */ 4384 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4385 } else if (addr->sa_family == AF_IB) { 4386 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4387 } else if (addr->sa_family == AF_INET6) { 4388 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4389 if (id_priv->id.ps == RDMA_PS_UDP) 4390 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4391 *mgid = *(union ib_gid *) (mc_map + 4); 4392 } else { 4393 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4394 if (id_priv->id.ps == RDMA_PS_UDP) 4395 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4396 *mgid = *(union ib_gid *) (mc_map + 4); 4397 } 4398 } 4399 4400 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4401 struct cma_multicast *mc) 4402 { 4403 struct ib_sa_mcmember_rec rec; 4404 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4405 ib_sa_comp_mask comp_mask; 4406 int ret; 4407 4408 ib_addr_get_mgid(dev_addr, &rec.mgid); 4409 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4410 &rec.mgid, &rec); 4411 if (ret) 4412 return ret; 4413 4414 ret = cma_set_qkey(id_priv, 0); 4415 if (ret) 4416 return ret; 4417 4418 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4419 rec.qkey = cpu_to_be32(id_priv->qkey); 4420 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4421 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4422 rec.join_state = mc->join_state; 4423 4424 if ((rec.join_state == BIT(SENDONLY_FULLMEMBER_JOIN)) && 4425 (!ib_sa_sendonly_fullmem_support(&sa_client, 4426 id_priv->id.device, 4427 id_priv->id.port_num))) { 4428 dev_warn( 4429 &id_priv->id.device->dev, 4430 "RDMA CM: port %u Unable to multicast join: SM doesn't support Send Only Full Member option\n", 4431 id_priv->id.port_num); 4432 return -EOPNOTSUPP; 4433 } 4434 4435 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4436 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4437 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4438 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4439 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4440 4441 if (id_priv->id.ps == RDMA_PS_IPOIB) 4442 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4443 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4444 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4445 IB_SA_MCMEMBER_REC_MTU | 4446 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4447 4448 mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4449 id_priv->id.port_num, &rec, 4450 comp_mask, GFP_KERNEL, 4451 cma_ib_mc_handler, mc); 4452 return PTR_ERR_OR_ZERO(mc->multicast.ib); 4453 } 4454 4455 static void iboe_mcast_work_handler(struct work_struct *work) 4456 { 4457 struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work); 4458 struct cma_multicast *mc = mw->mc; 4459 struct ib_sa_multicast *m = mc->multicast.ib; 4460 4461 mc->multicast.ib->context = mc; 4462 cma_ib_mc_handler(0, m); 4463 kref_put(&mc->mcref, release_mc); 4464 kfree(mw); 4465 } 4466 4467 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4468 enum ib_gid_type gid_type) 4469 { 4470 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4471 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4472 4473 if (cma_any_addr(addr)) { 4474 memset(mgid, 0, sizeof *mgid); 4475 } else if (addr->sa_family == AF_INET6) { 4476 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4477 } else { 4478 mgid->raw[0] = 4479 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4480 mgid->raw[1] = 4481 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4482 mgid->raw[2] = 0; 4483 mgid->raw[3] = 0; 4484 mgid->raw[4] = 0; 4485 mgid->raw[5] = 0; 4486 mgid->raw[6] = 0; 4487 mgid->raw[7] = 0; 4488 mgid->raw[8] = 0; 4489 mgid->raw[9] = 0; 4490 mgid->raw[10] = 0xff; 4491 mgid->raw[11] = 0xff; 4492 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4493 } 4494 } 4495 4496 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4497 struct cma_multicast *mc) 4498 { 4499 struct iboe_mcast_work *work; 4500 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4501 int err = 0; 4502 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4503 struct net_device *ndev = NULL; 4504 enum ib_gid_type gid_type; 4505 bool send_only; 4506 4507 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4508 4509 if (cma_zero_addr((struct sockaddr *)&mc->addr)) 4510 return -EINVAL; 4511 4512 work = kzalloc(sizeof *work, GFP_KERNEL); 4513 if (!work) 4514 return -ENOMEM; 4515 4516 mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL); 4517 if (!mc->multicast.ib) { 4518 err = -ENOMEM; 4519 goto out1; 4520 } 4521 4522 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4523 rdma_start_port(id_priv->cma_dev->device)]; 4524 cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid, gid_type); 4525 4526 mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff); 4527 if (id_priv->id.ps == RDMA_PS_UDP) 4528 mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4529 4530 if (dev_addr->bound_dev_if) 4531 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4532 if (!ndev) { 4533 err = -ENODEV; 4534 goto out2; 4535 } 4536 mc->multicast.ib->rec.rate = iboe_get_rate(ndev); 4537 mc->multicast.ib->rec.hop_limit = 1; 4538 mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->mtu); 4539 4540 if (addr->sa_family == AF_INET) { 4541 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4542 mc->multicast.ib->rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4543 if (!send_only) { 4544 err = cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, 4545 true); 4546 } 4547 } 4548 } else { 4549 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4550 err = -ENOTSUPP; 4551 } 4552 dev_put(ndev); 4553 if (err || !mc->multicast.ib->rec.mtu) { 4554 if (!err) 4555 err = -EINVAL; 4556 goto out2; 4557 } 4558 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4559 &mc->multicast.ib->rec.port_gid); 4560 work->id = id_priv; 4561 work->mc = mc; 4562 INIT_WORK(&work->work, iboe_mcast_work_handler); 4563 kref_get(&mc->mcref); 4564 queue_work(cma_wq, &work->work); 4565 4566 return 0; 4567 4568 out2: 4569 kfree(mc->multicast.ib); 4570 out1: 4571 kfree(work); 4572 return err; 4573 } 4574 4575 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4576 u8 join_state, void *context) 4577 { 4578 struct rdma_id_private *id_priv; 4579 struct cma_multicast *mc; 4580 int ret; 4581 4582 if (!id->device) 4583 return -EINVAL; 4584 4585 id_priv = container_of(id, struct rdma_id_private, id); 4586 if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) && 4587 !cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED)) 4588 return -EINVAL; 4589 4590 mc = kmalloc(sizeof *mc, GFP_KERNEL); 4591 if (!mc) 4592 return -ENOMEM; 4593 4594 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4595 mc->context = context; 4596 mc->id_priv = id_priv; 4597 mc->join_state = join_state; 4598 4599 if (rdma_protocol_roce(id->device, id->port_num)) { 4600 kref_init(&mc->mcref); 4601 ret = cma_iboe_join_multicast(id_priv, mc); 4602 if (ret) 4603 goto out_err; 4604 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4605 ret = cma_join_ib_multicast(id_priv, mc); 4606 if (ret) 4607 goto out_err; 4608 } else { 4609 ret = -ENOSYS; 4610 goto out_err; 4611 } 4612 4613 spin_lock(&id_priv->lock); 4614 list_add(&mc->list, &id_priv->mc_list); 4615 spin_unlock(&id_priv->lock); 4616 4617 return 0; 4618 out_err: 4619 kfree(mc); 4620 return ret; 4621 } 4622 EXPORT_SYMBOL(rdma_join_multicast); 4623 4624 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4625 { 4626 struct rdma_id_private *id_priv; 4627 struct cma_multicast *mc; 4628 4629 id_priv = container_of(id, struct rdma_id_private, id); 4630 spin_lock_irq(&id_priv->lock); 4631 list_for_each_entry(mc, &id_priv->mc_list, list) { 4632 if (!memcmp(&mc->addr, addr, rdma_addr_size(addr))) { 4633 list_del(&mc->list); 4634 spin_unlock_irq(&id_priv->lock); 4635 4636 if (id->qp) 4637 ib_detach_mcast(id->qp, 4638 &mc->multicast.ib->rec.mgid, 4639 be16_to_cpu(mc->multicast.ib->rec.mlid)); 4640 4641 BUG_ON(id_priv->cma_dev->device != id->device); 4642 4643 if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4644 ib_sa_free_multicast(mc->multicast.ib); 4645 kfree(mc); 4646 } else if (rdma_protocol_roce(id->device, id->port_num)) { 4647 cma_leave_roce_mc_group(id_priv, mc); 4648 } 4649 return; 4650 } 4651 } 4652 spin_unlock_irq(&id_priv->lock); 4653 } 4654 EXPORT_SYMBOL(rdma_leave_multicast); 4655 4656 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4657 { 4658 struct rdma_dev_addr *dev_addr; 4659 struct cma_ndev_work *work; 4660 4661 dev_addr = &id_priv->id.route.addr.dev_addr; 4662 4663 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4664 (net_eq(dev_net(ndev), dev_addr->net)) && 4665 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4666 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4667 ndev->name, &id_priv->id); 4668 work = kzalloc(sizeof *work, GFP_KERNEL); 4669 if (!work) 4670 return -ENOMEM; 4671 4672 INIT_WORK(&work->work, cma_ndev_work_handler); 4673 work->id = id_priv; 4674 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4675 cma_id_get(id_priv); 4676 queue_work(cma_wq, &work->work); 4677 } 4678 4679 return 0; 4680 } 4681 4682 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4683 void *ptr) 4684 { 4685 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4686 struct cma_device *cma_dev; 4687 struct rdma_id_private *id_priv; 4688 int ret = NOTIFY_DONE; 4689 4690 if (event != NETDEV_BONDING_FAILOVER) 4691 return NOTIFY_DONE; 4692 4693 if (!netif_is_bond_master(ndev)) 4694 return NOTIFY_DONE; 4695 4696 mutex_lock(&lock); 4697 list_for_each_entry(cma_dev, &dev_list, list) 4698 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4699 ret = cma_netdev_change(ndev, id_priv); 4700 if (ret) 4701 goto out; 4702 } 4703 4704 out: 4705 mutex_unlock(&lock); 4706 return ret; 4707 } 4708 4709 static struct notifier_block cma_nb = { 4710 .notifier_call = cma_netdev_callback 4711 }; 4712 4713 static int cma_add_one(struct ib_device *device) 4714 { 4715 struct cma_device *cma_dev; 4716 struct rdma_id_private *id_priv; 4717 unsigned int i; 4718 unsigned long supported_gids = 0; 4719 int ret; 4720 4721 cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL); 4722 if (!cma_dev) 4723 return -ENOMEM; 4724 4725 cma_dev->device = device; 4726 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4727 sizeof(*cma_dev->default_gid_type), 4728 GFP_KERNEL); 4729 if (!cma_dev->default_gid_type) { 4730 ret = -ENOMEM; 4731 goto free_cma_dev; 4732 } 4733 4734 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4735 sizeof(*cma_dev->default_roce_tos), 4736 GFP_KERNEL); 4737 if (!cma_dev->default_roce_tos) { 4738 ret = -ENOMEM; 4739 goto free_gid_type; 4740 } 4741 4742 rdma_for_each_port (device, i) { 4743 supported_gids = roce_gid_type_mask_support(device, i); 4744 WARN_ON(!supported_gids); 4745 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4746 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4747 CMA_PREFERRED_ROCE_GID_TYPE; 4748 else 4749 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4750 find_first_bit(&supported_gids, BITS_PER_LONG); 4751 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4752 } 4753 4754 init_completion(&cma_dev->comp); 4755 refcount_set(&cma_dev->refcount, 1); 4756 INIT_LIST_HEAD(&cma_dev->id_list); 4757 ib_set_client_data(device, &cma_client, cma_dev); 4758 4759 mutex_lock(&lock); 4760 list_add_tail(&cma_dev->list, &dev_list); 4761 list_for_each_entry(id_priv, &listen_any_list, list) 4762 cma_listen_on_dev(id_priv, cma_dev); 4763 mutex_unlock(&lock); 4764 4765 trace_cm_add_one(device); 4766 return 0; 4767 4768 free_gid_type: 4769 kfree(cma_dev->default_gid_type); 4770 4771 free_cma_dev: 4772 kfree(cma_dev); 4773 return ret; 4774 } 4775 4776 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4777 { 4778 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4779 enum rdma_cm_state state; 4780 unsigned long flags; 4781 4782 mutex_lock(&id_priv->handler_mutex); 4783 /* Record that we want to remove the device */ 4784 spin_lock_irqsave(&id_priv->lock, flags); 4785 state = id_priv->state; 4786 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4787 spin_unlock_irqrestore(&id_priv->lock, flags); 4788 mutex_unlock(&id_priv->handler_mutex); 4789 cma_id_put(id_priv); 4790 return; 4791 } 4792 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4793 spin_unlock_irqrestore(&id_priv->lock, flags); 4794 4795 if (cma_cm_event_handler(id_priv, &event)) { 4796 /* 4797 * At this point the ULP promises it won't call 4798 * rdma_destroy_id() concurrently 4799 */ 4800 cma_id_put(id_priv); 4801 mutex_unlock(&id_priv->handler_mutex); 4802 trace_cm_id_destroy(id_priv); 4803 _destroy_id(id_priv, state); 4804 return; 4805 } 4806 mutex_unlock(&id_priv->handler_mutex); 4807 4808 /* 4809 * If this races with destroy then the thread that first assigns state 4810 * to a destroying does the cancel. 4811 */ 4812 cma_cancel_operation(id_priv, state); 4813 cma_id_put(id_priv); 4814 } 4815 4816 static void cma_process_remove(struct cma_device *cma_dev) 4817 { 4818 mutex_lock(&lock); 4819 while (!list_empty(&cma_dev->id_list)) { 4820 struct rdma_id_private *id_priv = list_first_entry( 4821 &cma_dev->id_list, struct rdma_id_private, list); 4822 4823 list_del(&id_priv->listen_list); 4824 list_del_init(&id_priv->list); 4825 cma_id_get(id_priv); 4826 mutex_unlock(&lock); 4827 4828 cma_send_device_removal_put(id_priv); 4829 4830 mutex_lock(&lock); 4831 } 4832 mutex_unlock(&lock); 4833 4834 cma_dev_put(cma_dev); 4835 wait_for_completion(&cma_dev->comp); 4836 } 4837 4838 static void cma_remove_one(struct ib_device *device, void *client_data) 4839 { 4840 struct cma_device *cma_dev = client_data; 4841 4842 trace_cm_remove_one(device); 4843 4844 mutex_lock(&lock); 4845 list_del(&cma_dev->list); 4846 mutex_unlock(&lock); 4847 4848 cma_process_remove(cma_dev); 4849 kfree(cma_dev->default_roce_tos); 4850 kfree(cma_dev->default_gid_type); 4851 kfree(cma_dev); 4852 } 4853 4854 static int cma_init_net(struct net *net) 4855 { 4856 struct cma_pernet *pernet = cma_pernet(net); 4857 4858 xa_init(&pernet->tcp_ps); 4859 xa_init(&pernet->udp_ps); 4860 xa_init(&pernet->ipoib_ps); 4861 xa_init(&pernet->ib_ps); 4862 4863 return 0; 4864 } 4865 4866 static void cma_exit_net(struct net *net) 4867 { 4868 struct cma_pernet *pernet = cma_pernet(net); 4869 4870 WARN_ON(!xa_empty(&pernet->tcp_ps)); 4871 WARN_ON(!xa_empty(&pernet->udp_ps)); 4872 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 4873 WARN_ON(!xa_empty(&pernet->ib_ps)); 4874 } 4875 4876 static struct pernet_operations cma_pernet_operations = { 4877 .init = cma_init_net, 4878 .exit = cma_exit_net, 4879 .id = &cma_pernet_id, 4880 .size = sizeof(struct cma_pernet), 4881 }; 4882 4883 static int __init cma_init(void) 4884 { 4885 int ret; 4886 4887 /* 4888 * There is a rare lock ordering dependency in cma_netdev_callback() 4889 * that only happens when bonding is enabled. Teach lockdep that rtnl 4890 * must never be nested under lock so it can find these without having 4891 * to test with bonding. 4892 */ 4893 if (IS_ENABLED(CONFIG_LOCKDEP)) { 4894 rtnl_lock(); 4895 mutex_lock(&lock); 4896 mutex_unlock(&lock); 4897 rtnl_unlock(); 4898 } 4899 4900 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 4901 if (!cma_wq) 4902 return -ENOMEM; 4903 4904 ret = register_pernet_subsys(&cma_pernet_operations); 4905 if (ret) 4906 goto err_wq; 4907 4908 ib_sa_register_client(&sa_client); 4909 register_netdevice_notifier(&cma_nb); 4910 4911 ret = ib_register_client(&cma_client); 4912 if (ret) 4913 goto err; 4914 4915 ret = cma_configfs_init(); 4916 if (ret) 4917 goto err_ib; 4918 4919 return 0; 4920 4921 err_ib: 4922 ib_unregister_client(&cma_client); 4923 err: 4924 unregister_netdevice_notifier(&cma_nb); 4925 ib_sa_unregister_client(&sa_client); 4926 unregister_pernet_subsys(&cma_pernet_operations); 4927 err_wq: 4928 destroy_workqueue(cma_wq); 4929 return ret; 4930 } 4931 4932 static void __exit cma_cleanup(void) 4933 { 4934 cma_configfs_exit(); 4935 ib_unregister_client(&cma_client); 4936 unregister_netdevice_notifier(&cma_nb); 4937 ib_sa_unregister_client(&sa_client); 4938 unregister_pernet_subsys(&cma_pernet_operations); 4939 destroy_workqueue(cma_wq); 4940 } 4941 4942 module_init(cma_init); 4943 module_exit(cma_cleanup); 4944