xref: /linux/drivers/infiniband/core/cma.c (revision a23e1966932464e1c5226cb9ac4ce1d5fc10ba22)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52 
53 static const char * const cma_events[] = {
54 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
55 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
56 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
57 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
58 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
59 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
61 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
62 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
63 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
64 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
65 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
66 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
67 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
68 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
69 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
70 };
71 
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 			      enum ib_gid_type gid_type);
74 
75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
76 {
77 	size_t index = event;
78 
79 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
80 			cma_events[index] : "unrecognized event";
81 }
82 EXPORT_SYMBOL(rdma_event_msg);
83 
84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
85 						int reason)
86 {
87 	if (rdma_ib_or_roce(id->device, id->port_num))
88 		return ibcm_reject_msg(reason);
89 
90 	if (rdma_protocol_iwarp(id->device, id->port_num))
91 		return iwcm_reject_msg(reason);
92 
93 	WARN_ON_ONCE(1);
94 	return "unrecognized transport";
95 }
96 EXPORT_SYMBOL(rdma_reject_msg);
97 
98 /**
99  * rdma_is_consumer_reject - return true if the consumer rejected the connect
100  *                           request.
101  * @id: Communication identifier that received the REJECT event.
102  * @reason: Value returned in the REJECT event status field.
103  */
104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
105 {
106 	if (rdma_ib_or_roce(id->device, id->port_num))
107 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
108 
109 	if (rdma_protocol_iwarp(id->device, id->port_num))
110 		return reason == -ECONNREFUSED;
111 
112 	WARN_ON_ONCE(1);
113 	return false;
114 }
115 
116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
117 				      struct rdma_cm_event *ev, u8 *data_len)
118 {
119 	const void *p;
120 
121 	if (rdma_is_consumer_reject(id, ev->status)) {
122 		*data_len = ev->param.conn.private_data_len;
123 		p = ev->param.conn.private_data;
124 	} else {
125 		*data_len = 0;
126 		p = NULL;
127 	}
128 	return p;
129 }
130 EXPORT_SYMBOL(rdma_consumer_reject_data);
131 
132 /**
133  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
134  * @id: Communication Identifier
135  */
136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
137 {
138 	struct rdma_id_private *id_priv;
139 
140 	id_priv = container_of(id, struct rdma_id_private, id);
141 	if (id->device->node_type == RDMA_NODE_RNIC)
142 		return id_priv->cm_id.iw;
143 	return NULL;
144 }
145 EXPORT_SYMBOL(rdma_iw_cm_id);
146 
147 /**
148  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
149  * @res: rdma resource tracking entry pointer
150  */
151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
152 {
153 	struct rdma_id_private *id_priv =
154 		container_of(res, struct rdma_id_private, res);
155 
156 	return &id_priv->id;
157 }
158 EXPORT_SYMBOL(rdma_res_to_id);
159 
160 static int cma_add_one(struct ib_device *device);
161 static void cma_remove_one(struct ib_device *device, void *client_data);
162 
163 static struct ib_client cma_client = {
164 	.name   = "cma",
165 	.add    = cma_add_one,
166 	.remove = cma_remove_one
167 };
168 
169 static struct ib_sa_client sa_client;
170 static LIST_HEAD(dev_list);
171 static LIST_HEAD(listen_any_list);
172 static DEFINE_MUTEX(lock);
173 static struct rb_root id_table = RB_ROOT;
174 /* Serialize operations of id_table tree */
175 static DEFINE_SPINLOCK(id_table_lock);
176 static struct workqueue_struct *cma_wq;
177 static unsigned int cma_pernet_id;
178 
179 struct cma_pernet {
180 	struct xarray tcp_ps;
181 	struct xarray udp_ps;
182 	struct xarray ipoib_ps;
183 	struct xarray ib_ps;
184 };
185 
186 static struct cma_pernet *cma_pernet(struct net *net)
187 {
188 	return net_generic(net, cma_pernet_id);
189 }
190 
191 static
192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
193 {
194 	struct cma_pernet *pernet = cma_pernet(net);
195 
196 	switch (ps) {
197 	case RDMA_PS_TCP:
198 		return &pernet->tcp_ps;
199 	case RDMA_PS_UDP:
200 		return &pernet->udp_ps;
201 	case RDMA_PS_IPOIB:
202 		return &pernet->ipoib_ps;
203 	case RDMA_PS_IB:
204 		return &pernet->ib_ps;
205 	default:
206 		return NULL;
207 	}
208 }
209 
210 struct id_table_entry {
211 	struct list_head id_list;
212 	struct rb_node rb_node;
213 };
214 
215 struct cma_device {
216 	struct list_head	list;
217 	struct ib_device	*device;
218 	struct completion	comp;
219 	refcount_t refcount;
220 	struct list_head	id_list;
221 	enum ib_gid_type	*default_gid_type;
222 	u8			*default_roce_tos;
223 };
224 
225 struct rdma_bind_list {
226 	enum rdma_ucm_port_space ps;
227 	struct hlist_head	owners;
228 	unsigned short		port;
229 };
230 
231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
232 			struct rdma_bind_list *bind_list, int snum)
233 {
234 	struct xarray *xa = cma_pernet_xa(net, ps);
235 
236 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
237 }
238 
239 static struct rdma_bind_list *cma_ps_find(struct net *net,
240 					  enum rdma_ucm_port_space ps, int snum)
241 {
242 	struct xarray *xa = cma_pernet_xa(net, ps);
243 
244 	return xa_load(xa, snum);
245 }
246 
247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
248 			  int snum)
249 {
250 	struct xarray *xa = cma_pernet_xa(net, ps);
251 
252 	xa_erase(xa, snum);
253 }
254 
255 enum {
256 	CMA_OPTION_AFONLY,
257 };
258 
259 void cma_dev_get(struct cma_device *cma_dev)
260 {
261 	refcount_inc(&cma_dev->refcount);
262 }
263 
264 void cma_dev_put(struct cma_device *cma_dev)
265 {
266 	if (refcount_dec_and_test(&cma_dev->refcount))
267 		complete(&cma_dev->comp);
268 }
269 
270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
271 					     void		*cookie)
272 {
273 	struct cma_device *cma_dev;
274 	struct cma_device *found_cma_dev = NULL;
275 
276 	mutex_lock(&lock);
277 
278 	list_for_each_entry(cma_dev, &dev_list, list)
279 		if (filter(cma_dev->device, cookie)) {
280 			found_cma_dev = cma_dev;
281 			break;
282 		}
283 
284 	if (found_cma_dev)
285 		cma_dev_get(found_cma_dev);
286 	mutex_unlock(&lock);
287 	return found_cma_dev;
288 }
289 
290 int cma_get_default_gid_type(struct cma_device *cma_dev,
291 			     u32 port)
292 {
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
297 }
298 
299 int cma_set_default_gid_type(struct cma_device *cma_dev,
300 			     u32 port,
301 			     enum ib_gid_type default_gid_type)
302 {
303 	unsigned long supported_gids;
304 
305 	if (!rdma_is_port_valid(cma_dev->device, port))
306 		return -EINVAL;
307 
308 	if (default_gid_type == IB_GID_TYPE_IB &&
309 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
310 		default_gid_type = IB_GID_TYPE_ROCE;
311 
312 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
313 
314 	if (!(supported_gids & 1 << default_gid_type))
315 		return -EINVAL;
316 
317 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
318 		default_gid_type;
319 
320 	return 0;
321 }
322 
323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
324 {
325 	if (!rdma_is_port_valid(cma_dev->device, port))
326 		return -EINVAL;
327 
328 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
329 }
330 
331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
332 			     u8 default_roce_tos)
333 {
334 	if (!rdma_is_port_valid(cma_dev->device, port))
335 		return -EINVAL;
336 
337 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
338 		 default_roce_tos;
339 
340 	return 0;
341 }
342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
343 {
344 	return cma_dev->device;
345 }
346 
347 /*
348  * Device removal can occur at anytime, so we need extra handling to
349  * serialize notifying the user of device removal with other callbacks.
350  * We do this by disabling removal notification while a callback is in process,
351  * and reporting it after the callback completes.
352  */
353 
354 struct cma_multicast {
355 	struct rdma_id_private *id_priv;
356 	union {
357 		struct ib_sa_multicast *sa_mc;
358 		struct {
359 			struct work_struct work;
360 			struct rdma_cm_event event;
361 		} iboe_join;
362 	};
363 	struct list_head	list;
364 	void			*context;
365 	struct sockaddr_storage	addr;
366 	u8			join_state;
367 };
368 
369 struct cma_work {
370 	struct work_struct	work;
371 	struct rdma_id_private	*id;
372 	enum rdma_cm_state	old_state;
373 	enum rdma_cm_state	new_state;
374 	struct rdma_cm_event	event;
375 };
376 
377 union cma_ip_addr {
378 	struct in6_addr ip6;
379 	struct {
380 		__be32 pad[3];
381 		__be32 addr;
382 	} ip4;
383 };
384 
385 struct cma_hdr {
386 	u8 cma_version;
387 	u8 ip_version;	/* IP version: 7:4 */
388 	__be16 port;
389 	union cma_ip_addr src_addr;
390 	union cma_ip_addr dst_addr;
391 };
392 
393 #define CMA_VERSION 0x00
394 
395 struct cma_req_info {
396 	struct sockaddr_storage listen_addr_storage;
397 	struct sockaddr_storage src_addr_storage;
398 	struct ib_device *device;
399 	union ib_gid local_gid;
400 	__be64 service_id;
401 	int port;
402 	bool has_gid;
403 	u16 pkey;
404 };
405 
406 static int cma_comp_exch(struct rdma_id_private *id_priv,
407 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
408 {
409 	unsigned long flags;
410 	int ret;
411 
412 	/*
413 	 * The FSM uses a funny double locking where state is protected by both
414 	 * the handler_mutex and the spinlock. State is not allowed to change
415 	 * to/from a handler_mutex protected value without also holding
416 	 * handler_mutex.
417 	 */
418 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
419 		lockdep_assert_held(&id_priv->handler_mutex);
420 
421 	spin_lock_irqsave(&id_priv->lock, flags);
422 	if ((ret = (id_priv->state == comp)))
423 		id_priv->state = exch;
424 	spin_unlock_irqrestore(&id_priv->lock, flags);
425 	return ret;
426 }
427 
428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
429 {
430 	return hdr->ip_version >> 4;
431 }
432 
433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
434 {
435 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
436 }
437 
438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
439 {
440 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
441 }
442 
443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
444 {
445 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
446 }
447 
448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
449 {
450 	struct in_device *in_dev = NULL;
451 
452 	if (ndev) {
453 		rtnl_lock();
454 		in_dev = __in_dev_get_rtnl(ndev);
455 		if (in_dev) {
456 			if (join)
457 				ip_mc_inc_group(in_dev,
458 						*(__be32 *)(mgid->raw + 12));
459 			else
460 				ip_mc_dec_group(in_dev,
461 						*(__be32 *)(mgid->raw + 12));
462 		}
463 		rtnl_unlock();
464 	}
465 	return (in_dev) ? 0 : -ENODEV;
466 }
467 
468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
469 				 struct id_table_entry *entry_b)
470 {
471 	struct rdma_id_private *id_priv = list_first_entry(
472 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
473 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
474 	struct sockaddr *sb = cma_dst_addr(id_priv);
475 
476 	if (ifindex_a != ifindex_b)
477 		return (ifindex_a > ifindex_b) ? 1 : -1;
478 
479 	if (sa->sa_family != sb->sa_family)
480 		return sa->sa_family - sb->sa_family;
481 
482 	if (sa->sa_family == AF_INET &&
483 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
484 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
485 			      &((struct sockaddr_in *)sb)->sin_addr,
486 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
487 	}
488 
489 	if (sa->sa_family == AF_INET6 &&
490 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
491 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
492 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
493 	}
494 
495 	return -1;
496 }
497 
498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
499 {
500 	struct rb_node **new, *parent = NULL;
501 	struct id_table_entry *this, *node;
502 	unsigned long flags;
503 	int result;
504 
505 	node = kzalloc(sizeof(*node), GFP_KERNEL);
506 	if (!node)
507 		return -ENOMEM;
508 
509 	spin_lock_irqsave(&id_table_lock, flags);
510 	new = &id_table.rb_node;
511 	while (*new) {
512 		this = container_of(*new, struct id_table_entry, rb_node);
513 		result = compare_netdev_and_ip(
514 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
515 			cma_dst_addr(node_id_priv), this);
516 
517 		parent = *new;
518 		if (result < 0)
519 			new = &((*new)->rb_left);
520 		else if (result > 0)
521 			new = &((*new)->rb_right);
522 		else {
523 			list_add_tail(&node_id_priv->id_list_entry,
524 				      &this->id_list);
525 			kfree(node);
526 			goto unlock;
527 		}
528 	}
529 
530 	INIT_LIST_HEAD(&node->id_list);
531 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
532 
533 	rb_link_node(&node->rb_node, parent, new);
534 	rb_insert_color(&node->rb_node, &id_table);
535 
536 unlock:
537 	spin_unlock_irqrestore(&id_table_lock, flags);
538 	return 0;
539 }
540 
541 static struct id_table_entry *
542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
543 {
544 	struct rb_node *node = root->rb_node;
545 	struct id_table_entry *data;
546 	int result;
547 
548 	while (node) {
549 		data = container_of(node, struct id_table_entry, rb_node);
550 		result = compare_netdev_and_ip(ifindex, sa, data);
551 		if (result < 0)
552 			node = node->rb_left;
553 		else if (result > 0)
554 			node = node->rb_right;
555 		else
556 			return data;
557 	}
558 
559 	return NULL;
560 }
561 
562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
563 {
564 	struct id_table_entry *data;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&id_table_lock, flags);
568 	if (list_empty(&id_priv->id_list_entry))
569 		goto out;
570 
571 	data = node_from_ndev_ip(&id_table,
572 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
573 				 cma_dst_addr(id_priv));
574 	if (!data)
575 		goto out;
576 
577 	list_del_init(&id_priv->id_list_entry);
578 	if (list_empty(&data->id_list)) {
579 		rb_erase(&data->rb_node, &id_table);
580 		kfree(data);
581 	}
582 out:
583 	spin_unlock_irqrestore(&id_table_lock, flags);
584 }
585 
586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
587 			       struct cma_device *cma_dev)
588 {
589 	cma_dev_get(cma_dev);
590 	id_priv->cma_dev = cma_dev;
591 	id_priv->id.device = cma_dev->device;
592 	id_priv->id.route.addr.dev_addr.transport =
593 		rdma_node_get_transport(cma_dev->device->node_type);
594 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
595 
596 	trace_cm_id_attach(id_priv, cma_dev->device);
597 }
598 
599 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
600 			      struct cma_device *cma_dev)
601 {
602 	_cma_attach_to_dev(id_priv, cma_dev);
603 	id_priv->gid_type =
604 		cma_dev->default_gid_type[id_priv->id.port_num -
605 					  rdma_start_port(cma_dev->device)];
606 }
607 
608 static void cma_release_dev(struct rdma_id_private *id_priv)
609 {
610 	mutex_lock(&lock);
611 	list_del_init(&id_priv->device_item);
612 	cma_dev_put(id_priv->cma_dev);
613 	id_priv->cma_dev = NULL;
614 	id_priv->id.device = NULL;
615 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
616 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
617 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
618 	}
619 	mutex_unlock(&lock);
620 }
621 
622 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
623 {
624 	return id_priv->id.route.addr.src_addr.ss_family;
625 }
626 
627 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
628 {
629 	struct ib_sa_mcmember_rec rec;
630 	int ret = 0;
631 
632 	switch (id_priv->id.ps) {
633 	case RDMA_PS_UDP:
634 	case RDMA_PS_IB:
635 		id_priv->qkey = RDMA_UDP_QKEY;
636 		break;
637 	case RDMA_PS_IPOIB:
638 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
639 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
640 					     id_priv->id.port_num, &rec.mgid,
641 					     &rec);
642 		if (!ret)
643 			id_priv->qkey = be32_to_cpu(rec.qkey);
644 		break;
645 	default:
646 		break;
647 	}
648 	return ret;
649 }
650 
651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
652 {
653 	if (!qkey ||
654 	    (id_priv->qkey && (id_priv->qkey != qkey)))
655 		return -EINVAL;
656 
657 	id_priv->qkey = qkey;
658 	return 0;
659 }
660 
661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
662 {
663 	dev_addr->dev_type = ARPHRD_INFINIBAND;
664 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
665 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
666 }
667 
668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
669 {
670 	int ret;
671 
672 	if (addr->sa_family != AF_IB) {
673 		ret = rdma_translate_ip(addr, dev_addr);
674 	} else {
675 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
676 		ret = 0;
677 	}
678 
679 	return ret;
680 }
681 
682 static const struct ib_gid_attr *
683 cma_validate_port(struct ib_device *device, u32 port,
684 		  enum ib_gid_type gid_type,
685 		  union ib_gid *gid,
686 		  struct rdma_id_private *id_priv)
687 {
688 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
689 	const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV);
690 	int bound_if_index = dev_addr->bound_dev_if;
691 	int dev_type = dev_addr->dev_type;
692 	struct net_device *ndev = NULL;
693 
694 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
695 		goto out;
696 
697 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
698 		goto out;
699 
700 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
701 		goto out;
702 
703 	/*
704 	 * For drivers that do not associate more than one net device with
705 	 * their gid tables, such as iWARP drivers, it is sufficient to
706 	 * return the first table entry.
707 	 *
708 	 * Other driver classes might be included in the future.
709 	 */
710 	if (rdma_protocol_iwarp(device, port)) {
711 		sgid_attr = rdma_get_gid_attr(device, port, 0);
712 		if (IS_ERR(sgid_attr))
713 			goto out;
714 
715 		rcu_read_lock();
716 		ndev = rcu_dereference(sgid_attr->ndev);
717 		if (!net_eq(dev_net(ndev), dev_addr->net) ||
718 		    ndev->ifindex != bound_if_index)
719 			sgid_attr = ERR_PTR(-ENODEV);
720 		rcu_read_unlock();
721 		goto out;
722 	}
723 
724 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
725 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
726 		if (!ndev)
727 			goto out;
728 	} else {
729 		gid_type = IB_GID_TYPE_IB;
730 	}
731 
732 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
733 	dev_put(ndev);
734 out:
735 	return sgid_attr;
736 }
737 
738 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
739 			       const struct ib_gid_attr *sgid_attr)
740 {
741 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
742 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
743 }
744 
745 /**
746  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
747  * based on source ip address.
748  * @id_priv:	cm_id which should be bound to cma device
749  *
750  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
751  * based on source IP address. It returns 0 on success or error code otherwise.
752  * It is applicable to active and passive side cm_id.
753  */
754 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
755 {
756 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
757 	const struct ib_gid_attr *sgid_attr;
758 	union ib_gid gid, iboe_gid, *gidp;
759 	struct cma_device *cma_dev;
760 	enum ib_gid_type gid_type;
761 	int ret = -ENODEV;
762 	u32 port;
763 
764 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
765 	    id_priv->id.ps == RDMA_PS_IPOIB)
766 		return -EINVAL;
767 
768 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
769 		    &iboe_gid);
770 
771 	memcpy(&gid, dev_addr->src_dev_addr +
772 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
773 
774 	mutex_lock(&lock);
775 	list_for_each_entry(cma_dev, &dev_list, list) {
776 		rdma_for_each_port (cma_dev->device, port) {
777 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
778 			       &iboe_gid : &gid;
779 			gid_type = cma_dev->default_gid_type[port - 1];
780 			sgid_attr = cma_validate_port(cma_dev->device, port,
781 						      gid_type, gidp, id_priv);
782 			if (!IS_ERR(sgid_attr)) {
783 				id_priv->id.port_num = port;
784 				cma_bind_sgid_attr(id_priv, sgid_attr);
785 				cma_attach_to_dev(id_priv, cma_dev);
786 				ret = 0;
787 				goto out;
788 			}
789 		}
790 	}
791 out:
792 	mutex_unlock(&lock);
793 	return ret;
794 }
795 
796 /**
797  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
798  * @id_priv:		cm id to bind to cma device
799  * @listen_id_priv:	listener cm id to match against
800  * @req:		Pointer to req structure containaining incoming
801  *			request information
802  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
803  * rdma device matches for listen_id and incoming request. It also verifies
804  * that a GID table entry is present for the source address.
805  * Returns 0 on success, or returns error code otherwise.
806  */
807 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
808 			      const struct rdma_id_private *listen_id_priv,
809 			      struct cma_req_info *req)
810 {
811 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
812 	const struct ib_gid_attr *sgid_attr;
813 	enum ib_gid_type gid_type;
814 	union ib_gid gid;
815 
816 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
817 	    id_priv->id.ps == RDMA_PS_IPOIB)
818 		return -EINVAL;
819 
820 	if (rdma_protocol_roce(req->device, req->port))
821 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
822 			    &gid);
823 	else
824 		memcpy(&gid, dev_addr->src_dev_addr +
825 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
826 
827 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
828 	sgid_attr = cma_validate_port(req->device, req->port,
829 				      gid_type, &gid, id_priv);
830 	if (IS_ERR(sgid_attr))
831 		return PTR_ERR(sgid_attr);
832 
833 	id_priv->id.port_num = req->port;
834 	cma_bind_sgid_attr(id_priv, sgid_attr);
835 	/* Need to acquire lock to protect against reader
836 	 * of cma_dev->id_list such as cma_netdev_callback() and
837 	 * cma_process_remove().
838 	 */
839 	mutex_lock(&lock);
840 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
841 	mutex_unlock(&lock);
842 	rdma_restrack_add(&id_priv->res);
843 	return 0;
844 }
845 
846 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
847 			      const struct rdma_id_private *listen_id_priv)
848 {
849 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
850 	const struct ib_gid_attr *sgid_attr;
851 	struct cma_device *cma_dev;
852 	enum ib_gid_type gid_type;
853 	int ret = -ENODEV;
854 	union ib_gid gid;
855 	u32 port;
856 
857 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
858 	    id_priv->id.ps == RDMA_PS_IPOIB)
859 		return -EINVAL;
860 
861 	memcpy(&gid, dev_addr->src_dev_addr +
862 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
863 
864 	mutex_lock(&lock);
865 
866 	cma_dev = listen_id_priv->cma_dev;
867 	port = listen_id_priv->id.port_num;
868 	gid_type = listen_id_priv->gid_type;
869 	sgid_attr = cma_validate_port(cma_dev->device, port,
870 				      gid_type, &gid, id_priv);
871 	if (!IS_ERR(sgid_attr)) {
872 		id_priv->id.port_num = port;
873 		cma_bind_sgid_attr(id_priv, sgid_attr);
874 		ret = 0;
875 		goto out;
876 	}
877 
878 	list_for_each_entry(cma_dev, &dev_list, list) {
879 		rdma_for_each_port (cma_dev->device, port) {
880 			if (listen_id_priv->cma_dev == cma_dev &&
881 			    listen_id_priv->id.port_num == port)
882 				continue;
883 
884 			gid_type = cma_dev->default_gid_type[port - 1];
885 			sgid_attr = cma_validate_port(cma_dev->device, port,
886 						      gid_type, &gid, id_priv);
887 			if (!IS_ERR(sgid_attr)) {
888 				id_priv->id.port_num = port;
889 				cma_bind_sgid_attr(id_priv, sgid_attr);
890 				ret = 0;
891 				goto out;
892 			}
893 		}
894 	}
895 
896 out:
897 	if (!ret) {
898 		cma_attach_to_dev(id_priv, cma_dev);
899 		rdma_restrack_add(&id_priv->res);
900 	}
901 
902 	mutex_unlock(&lock);
903 	return ret;
904 }
905 
906 /*
907  * Select the source IB device and address to reach the destination IB address.
908  */
909 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
910 {
911 	struct cma_device *cma_dev, *cur_dev;
912 	struct sockaddr_ib *addr;
913 	union ib_gid gid, sgid, *dgid;
914 	unsigned int p;
915 	u16 pkey, index;
916 	enum ib_port_state port_state;
917 	int ret;
918 	int i;
919 
920 	cma_dev = NULL;
921 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
922 	dgid = (union ib_gid *) &addr->sib_addr;
923 	pkey = ntohs(addr->sib_pkey);
924 
925 	mutex_lock(&lock);
926 	list_for_each_entry(cur_dev, &dev_list, list) {
927 		rdma_for_each_port (cur_dev->device, p) {
928 			if (!rdma_cap_af_ib(cur_dev->device, p))
929 				continue;
930 
931 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
932 				continue;
933 
934 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
935 				continue;
936 
937 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
938 			     ++i) {
939 				ret = rdma_query_gid(cur_dev->device, p, i,
940 						     &gid);
941 				if (ret)
942 					continue;
943 
944 				if (!memcmp(&gid, dgid, sizeof(gid))) {
945 					cma_dev = cur_dev;
946 					sgid = gid;
947 					id_priv->id.port_num = p;
948 					goto found;
949 				}
950 
951 				if (!cma_dev && (gid.global.subnet_prefix ==
952 				    dgid->global.subnet_prefix) &&
953 				    port_state == IB_PORT_ACTIVE) {
954 					cma_dev = cur_dev;
955 					sgid = gid;
956 					id_priv->id.port_num = p;
957 					goto found;
958 				}
959 			}
960 		}
961 	}
962 	mutex_unlock(&lock);
963 	return -ENODEV;
964 
965 found:
966 	cma_attach_to_dev(id_priv, cma_dev);
967 	rdma_restrack_add(&id_priv->res);
968 	mutex_unlock(&lock);
969 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
970 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
971 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
972 	return 0;
973 }
974 
975 static void cma_id_get(struct rdma_id_private *id_priv)
976 {
977 	refcount_inc(&id_priv->refcount);
978 }
979 
980 static void cma_id_put(struct rdma_id_private *id_priv)
981 {
982 	if (refcount_dec_and_test(&id_priv->refcount))
983 		complete(&id_priv->comp);
984 }
985 
986 static struct rdma_id_private *
987 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
988 		 void *context, enum rdma_ucm_port_space ps,
989 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
990 {
991 	struct rdma_id_private *id_priv;
992 
993 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
994 	if (!id_priv)
995 		return ERR_PTR(-ENOMEM);
996 
997 	id_priv->state = RDMA_CM_IDLE;
998 	id_priv->id.context = context;
999 	id_priv->id.event_handler = event_handler;
1000 	id_priv->id.ps = ps;
1001 	id_priv->id.qp_type = qp_type;
1002 	id_priv->tos_set = false;
1003 	id_priv->timeout_set = false;
1004 	id_priv->min_rnr_timer_set = false;
1005 	id_priv->gid_type = IB_GID_TYPE_IB;
1006 	spin_lock_init(&id_priv->lock);
1007 	mutex_init(&id_priv->qp_mutex);
1008 	init_completion(&id_priv->comp);
1009 	refcount_set(&id_priv->refcount, 1);
1010 	mutex_init(&id_priv->handler_mutex);
1011 	INIT_LIST_HEAD(&id_priv->device_item);
1012 	INIT_LIST_HEAD(&id_priv->id_list_entry);
1013 	INIT_LIST_HEAD(&id_priv->listen_list);
1014 	INIT_LIST_HEAD(&id_priv->mc_list);
1015 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
1016 	id_priv->id.route.addr.dev_addr.net = get_net(net);
1017 	id_priv->seq_num &= 0x00ffffff;
1018 
1019 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1020 	if (parent)
1021 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1022 
1023 	return id_priv;
1024 }
1025 
1026 struct rdma_cm_id *
1027 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1028 			void *context, enum rdma_ucm_port_space ps,
1029 			enum ib_qp_type qp_type, const char *caller)
1030 {
1031 	struct rdma_id_private *ret;
1032 
1033 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1034 	if (IS_ERR(ret))
1035 		return ERR_CAST(ret);
1036 
1037 	rdma_restrack_set_name(&ret->res, caller);
1038 	return &ret->id;
1039 }
1040 EXPORT_SYMBOL(__rdma_create_kernel_id);
1041 
1042 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1043 				       void *context,
1044 				       enum rdma_ucm_port_space ps,
1045 				       enum ib_qp_type qp_type)
1046 {
1047 	struct rdma_id_private *ret;
1048 
1049 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1050 			       ps, qp_type, NULL);
1051 	if (IS_ERR(ret))
1052 		return ERR_CAST(ret);
1053 
1054 	rdma_restrack_set_name(&ret->res, NULL);
1055 	return &ret->id;
1056 }
1057 EXPORT_SYMBOL(rdma_create_user_id);
1058 
1059 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1060 {
1061 	struct ib_qp_attr qp_attr;
1062 	int qp_attr_mask, ret;
1063 
1064 	qp_attr.qp_state = IB_QPS_INIT;
1065 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1066 	if (ret)
1067 		return ret;
1068 
1069 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1070 	if (ret)
1071 		return ret;
1072 
1073 	qp_attr.qp_state = IB_QPS_RTR;
1074 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1075 	if (ret)
1076 		return ret;
1077 
1078 	qp_attr.qp_state = IB_QPS_RTS;
1079 	qp_attr.sq_psn = 0;
1080 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1081 
1082 	return ret;
1083 }
1084 
1085 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1086 {
1087 	struct ib_qp_attr qp_attr;
1088 	int qp_attr_mask, ret;
1089 
1090 	qp_attr.qp_state = IB_QPS_INIT;
1091 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1092 	if (ret)
1093 		return ret;
1094 
1095 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1096 }
1097 
1098 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1099 		   struct ib_qp_init_attr *qp_init_attr)
1100 {
1101 	struct rdma_id_private *id_priv;
1102 	struct ib_qp *qp;
1103 	int ret;
1104 
1105 	id_priv = container_of(id, struct rdma_id_private, id);
1106 	if (id->device != pd->device) {
1107 		ret = -EINVAL;
1108 		goto out_err;
1109 	}
1110 
1111 	qp_init_attr->port_num = id->port_num;
1112 	qp = ib_create_qp(pd, qp_init_attr);
1113 	if (IS_ERR(qp)) {
1114 		ret = PTR_ERR(qp);
1115 		goto out_err;
1116 	}
1117 
1118 	if (id->qp_type == IB_QPT_UD)
1119 		ret = cma_init_ud_qp(id_priv, qp);
1120 	else
1121 		ret = cma_init_conn_qp(id_priv, qp);
1122 	if (ret)
1123 		goto out_destroy;
1124 
1125 	id->qp = qp;
1126 	id_priv->qp_num = qp->qp_num;
1127 	id_priv->srq = (qp->srq != NULL);
1128 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1129 	return 0;
1130 out_destroy:
1131 	ib_destroy_qp(qp);
1132 out_err:
1133 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL(rdma_create_qp);
1137 
1138 void rdma_destroy_qp(struct rdma_cm_id *id)
1139 {
1140 	struct rdma_id_private *id_priv;
1141 
1142 	id_priv = container_of(id, struct rdma_id_private, id);
1143 	trace_cm_qp_destroy(id_priv);
1144 	mutex_lock(&id_priv->qp_mutex);
1145 	ib_destroy_qp(id_priv->id.qp);
1146 	id_priv->id.qp = NULL;
1147 	mutex_unlock(&id_priv->qp_mutex);
1148 }
1149 EXPORT_SYMBOL(rdma_destroy_qp);
1150 
1151 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1152 			     struct rdma_conn_param *conn_param)
1153 {
1154 	struct ib_qp_attr qp_attr;
1155 	int qp_attr_mask, ret;
1156 
1157 	mutex_lock(&id_priv->qp_mutex);
1158 	if (!id_priv->id.qp) {
1159 		ret = 0;
1160 		goto out;
1161 	}
1162 
1163 	/* Need to update QP attributes from default values. */
1164 	qp_attr.qp_state = IB_QPS_INIT;
1165 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1166 	if (ret)
1167 		goto out;
1168 
1169 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1170 	if (ret)
1171 		goto out;
1172 
1173 	qp_attr.qp_state = IB_QPS_RTR;
1174 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1175 	if (ret)
1176 		goto out;
1177 
1178 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1179 
1180 	if (conn_param)
1181 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1182 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1183 out:
1184 	mutex_unlock(&id_priv->qp_mutex);
1185 	return ret;
1186 }
1187 
1188 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1189 			     struct rdma_conn_param *conn_param)
1190 {
1191 	struct ib_qp_attr qp_attr;
1192 	int qp_attr_mask, ret;
1193 
1194 	mutex_lock(&id_priv->qp_mutex);
1195 	if (!id_priv->id.qp) {
1196 		ret = 0;
1197 		goto out;
1198 	}
1199 
1200 	qp_attr.qp_state = IB_QPS_RTS;
1201 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1202 	if (ret)
1203 		goto out;
1204 
1205 	if (conn_param)
1206 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1207 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1208 out:
1209 	mutex_unlock(&id_priv->qp_mutex);
1210 	return ret;
1211 }
1212 
1213 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1214 {
1215 	struct ib_qp_attr qp_attr;
1216 	int ret;
1217 
1218 	mutex_lock(&id_priv->qp_mutex);
1219 	if (!id_priv->id.qp) {
1220 		ret = 0;
1221 		goto out;
1222 	}
1223 
1224 	qp_attr.qp_state = IB_QPS_ERR;
1225 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1226 out:
1227 	mutex_unlock(&id_priv->qp_mutex);
1228 	return ret;
1229 }
1230 
1231 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1232 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1233 {
1234 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1235 	int ret;
1236 	u16 pkey;
1237 
1238 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1239 		pkey = 0xffff;
1240 	else
1241 		pkey = ib_addr_get_pkey(dev_addr);
1242 
1243 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1244 				  pkey, &qp_attr->pkey_index);
1245 	if (ret)
1246 		return ret;
1247 
1248 	qp_attr->port_num = id_priv->id.port_num;
1249 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1250 
1251 	if (id_priv->id.qp_type == IB_QPT_UD) {
1252 		ret = cma_set_default_qkey(id_priv);
1253 		if (ret)
1254 			return ret;
1255 
1256 		qp_attr->qkey = id_priv->qkey;
1257 		*qp_attr_mask |= IB_QP_QKEY;
1258 	} else {
1259 		qp_attr->qp_access_flags = 0;
1260 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1261 	}
1262 	return 0;
1263 }
1264 
1265 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1266 		       int *qp_attr_mask)
1267 {
1268 	struct rdma_id_private *id_priv;
1269 	int ret = 0;
1270 
1271 	id_priv = container_of(id, struct rdma_id_private, id);
1272 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1273 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1274 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1275 		else
1276 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1277 						 qp_attr_mask);
1278 
1279 		if (qp_attr->qp_state == IB_QPS_RTR)
1280 			qp_attr->rq_psn = id_priv->seq_num;
1281 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1282 		if (!id_priv->cm_id.iw) {
1283 			qp_attr->qp_access_flags = 0;
1284 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1285 		} else
1286 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1287 						 qp_attr_mask);
1288 		qp_attr->port_num = id_priv->id.port_num;
1289 		*qp_attr_mask |= IB_QP_PORT;
1290 	} else {
1291 		ret = -ENOSYS;
1292 	}
1293 
1294 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1295 		qp_attr->timeout = id_priv->timeout;
1296 
1297 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1298 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1299 
1300 	return ret;
1301 }
1302 EXPORT_SYMBOL(rdma_init_qp_attr);
1303 
1304 static inline bool cma_zero_addr(const struct sockaddr *addr)
1305 {
1306 	switch (addr->sa_family) {
1307 	case AF_INET:
1308 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1309 	case AF_INET6:
1310 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1311 	case AF_IB:
1312 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1313 	default:
1314 		return false;
1315 	}
1316 }
1317 
1318 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1319 {
1320 	switch (addr->sa_family) {
1321 	case AF_INET:
1322 		return ipv4_is_loopback(
1323 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1324 	case AF_INET6:
1325 		return ipv6_addr_loopback(
1326 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1327 	case AF_IB:
1328 		return ib_addr_loopback(
1329 			&((struct sockaddr_ib *)addr)->sib_addr);
1330 	default:
1331 		return false;
1332 	}
1333 }
1334 
1335 static inline bool cma_any_addr(const struct sockaddr *addr)
1336 {
1337 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1338 }
1339 
1340 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1341 {
1342 	if (src->sa_family != dst->sa_family)
1343 		return -1;
1344 
1345 	switch (src->sa_family) {
1346 	case AF_INET:
1347 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1348 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1349 	case AF_INET6: {
1350 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1351 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1352 		bool link_local;
1353 
1354 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1355 					  &dst_addr6->sin6_addr))
1356 			return 1;
1357 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1358 			     IPV6_ADDR_LINKLOCAL;
1359 		/* Link local must match their scope_ids */
1360 		return link_local ? (src_addr6->sin6_scope_id !=
1361 				     dst_addr6->sin6_scope_id) :
1362 				    0;
1363 	}
1364 
1365 	default:
1366 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1367 				   &((struct sockaddr_ib *) dst)->sib_addr);
1368 	}
1369 }
1370 
1371 static __be16 cma_port(const struct sockaddr *addr)
1372 {
1373 	struct sockaddr_ib *sib;
1374 
1375 	switch (addr->sa_family) {
1376 	case AF_INET:
1377 		return ((struct sockaddr_in *) addr)->sin_port;
1378 	case AF_INET6:
1379 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1380 	case AF_IB:
1381 		sib = (struct sockaddr_ib *) addr;
1382 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1383 				    be64_to_cpu(sib->sib_sid_mask)));
1384 	default:
1385 		return 0;
1386 	}
1387 }
1388 
1389 static inline int cma_any_port(const struct sockaddr *addr)
1390 {
1391 	return !cma_port(addr);
1392 }
1393 
1394 static void cma_save_ib_info(struct sockaddr *src_addr,
1395 			     struct sockaddr *dst_addr,
1396 			     const struct rdma_cm_id *listen_id,
1397 			     const struct sa_path_rec *path)
1398 {
1399 	struct sockaddr_ib *listen_ib, *ib;
1400 
1401 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1402 	if (src_addr) {
1403 		ib = (struct sockaddr_ib *)src_addr;
1404 		ib->sib_family = AF_IB;
1405 		if (path) {
1406 			ib->sib_pkey = path->pkey;
1407 			ib->sib_flowinfo = path->flow_label;
1408 			memcpy(&ib->sib_addr, &path->sgid, 16);
1409 			ib->sib_sid = path->service_id;
1410 			ib->sib_scope_id = 0;
1411 		} else {
1412 			ib->sib_pkey = listen_ib->sib_pkey;
1413 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1414 			ib->sib_addr = listen_ib->sib_addr;
1415 			ib->sib_sid = listen_ib->sib_sid;
1416 			ib->sib_scope_id = listen_ib->sib_scope_id;
1417 		}
1418 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1419 	}
1420 	if (dst_addr) {
1421 		ib = (struct sockaddr_ib *)dst_addr;
1422 		ib->sib_family = AF_IB;
1423 		if (path) {
1424 			ib->sib_pkey = path->pkey;
1425 			ib->sib_flowinfo = path->flow_label;
1426 			memcpy(&ib->sib_addr, &path->dgid, 16);
1427 		}
1428 	}
1429 }
1430 
1431 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1432 			      struct sockaddr_in *dst_addr,
1433 			      struct cma_hdr *hdr,
1434 			      __be16 local_port)
1435 {
1436 	if (src_addr) {
1437 		*src_addr = (struct sockaddr_in) {
1438 			.sin_family = AF_INET,
1439 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1440 			.sin_port = local_port,
1441 		};
1442 	}
1443 
1444 	if (dst_addr) {
1445 		*dst_addr = (struct sockaddr_in) {
1446 			.sin_family = AF_INET,
1447 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1448 			.sin_port = hdr->port,
1449 		};
1450 	}
1451 }
1452 
1453 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1454 			      struct sockaddr_in6 *dst_addr,
1455 			      struct cma_hdr *hdr,
1456 			      __be16 local_port)
1457 {
1458 	if (src_addr) {
1459 		*src_addr = (struct sockaddr_in6) {
1460 			.sin6_family = AF_INET6,
1461 			.sin6_addr = hdr->dst_addr.ip6,
1462 			.sin6_port = local_port,
1463 		};
1464 	}
1465 
1466 	if (dst_addr) {
1467 		*dst_addr = (struct sockaddr_in6) {
1468 			.sin6_family = AF_INET6,
1469 			.sin6_addr = hdr->src_addr.ip6,
1470 			.sin6_port = hdr->port,
1471 		};
1472 	}
1473 }
1474 
1475 static u16 cma_port_from_service_id(__be64 service_id)
1476 {
1477 	return (u16)be64_to_cpu(service_id);
1478 }
1479 
1480 static int cma_save_ip_info(struct sockaddr *src_addr,
1481 			    struct sockaddr *dst_addr,
1482 			    const struct ib_cm_event *ib_event,
1483 			    __be64 service_id)
1484 {
1485 	struct cma_hdr *hdr;
1486 	__be16 port;
1487 
1488 	hdr = ib_event->private_data;
1489 	if (hdr->cma_version != CMA_VERSION)
1490 		return -EINVAL;
1491 
1492 	port = htons(cma_port_from_service_id(service_id));
1493 
1494 	switch (cma_get_ip_ver(hdr)) {
1495 	case 4:
1496 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1497 				  (struct sockaddr_in *)dst_addr, hdr, port);
1498 		break;
1499 	case 6:
1500 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1501 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1502 		break;
1503 	default:
1504 		return -EAFNOSUPPORT;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 static int cma_save_net_info(struct sockaddr *src_addr,
1511 			     struct sockaddr *dst_addr,
1512 			     const struct rdma_cm_id *listen_id,
1513 			     const struct ib_cm_event *ib_event,
1514 			     sa_family_t sa_family, __be64 service_id)
1515 {
1516 	if (sa_family == AF_IB) {
1517 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1518 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1519 					 ib_event->param.req_rcvd.primary_path);
1520 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1521 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1522 		return 0;
1523 	}
1524 
1525 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1526 }
1527 
1528 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1529 			     struct cma_req_info *req)
1530 {
1531 	const struct ib_cm_req_event_param *req_param =
1532 		&ib_event->param.req_rcvd;
1533 	const struct ib_cm_sidr_req_event_param *sidr_param =
1534 		&ib_event->param.sidr_req_rcvd;
1535 
1536 	switch (ib_event->event) {
1537 	case IB_CM_REQ_RECEIVED:
1538 		req->device	= req_param->listen_id->device;
1539 		req->port	= req_param->port;
1540 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1541 		       sizeof(req->local_gid));
1542 		req->has_gid	= true;
1543 		req->service_id = req_param->primary_path->service_id;
1544 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1545 		if (req->pkey != req_param->bth_pkey)
1546 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1547 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1548 					    req_param->bth_pkey, req->pkey);
1549 		break;
1550 	case IB_CM_SIDR_REQ_RECEIVED:
1551 		req->device	= sidr_param->listen_id->device;
1552 		req->port	= sidr_param->port;
1553 		req->has_gid	= false;
1554 		req->service_id	= sidr_param->service_id;
1555 		req->pkey	= sidr_param->pkey;
1556 		if (req->pkey != sidr_param->bth_pkey)
1557 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1558 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1559 					    sidr_param->bth_pkey, req->pkey);
1560 		break;
1561 	default:
1562 		return -EINVAL;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1569 				  const struct sockaddr_in *dst_addr,
1570 				  const struct sockaddr_in *src_addr)
1571 {
1572 	__be32 daddr = dst_addr->sin_addr.s_addr,
1573 	       saddr = src_addr->sin_addr.s_addr;
1574 	struct fib_result res;
1575 	struct flowi4 fl4;
1576 	int err;
1577 	bool ret;
1578 
1579 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1580 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1581 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1582 	    ipv4_is_loopback(saddr))
1583 		return false;
1584 
1585 	memset(&fl4, 0, sizeof(fl4));
1586 	fl4.flowi4_oif = net_dev->ifindex;
1587 	fl4.daddr = daddr;
1588 	fl4.saddr = saddr;
1589 
1590 	rcu_read_lock();
1591 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1592 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1593 	rcu_read_unlock();
1594 
1595 	return ret;
1596 }
1597 
1598 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1599 				  const struct sockaddr_in6 *dst_addr,
1600 				  const struct sockaddr_in6 *src_addr)
1601 {
1602 #if IS_ENABLED(CONFIG_IPV6)
1603 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1604 			   IPV6_ADDR_LINKLOCAL;
1605 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1606 					 &src_addr->sin6_addr, net_dev->ifindex,
1607 					 NULL, strict);
1608 	bool ret;
1609 
1610 	if (!rt)
1611 		return false;
1612 
1613 	ret = rt->rt6i_idev->dev == net_dev;
1614 	ip6_rt_put(rt);
1615 
1616 	return ret;
1617 #else
1618 	return false;
1619 #endif
1620 }
1621 
1622 static bool validate_net_dev(struct net_device *net_dev,
1623 			     const struct sockaddr *daddr,
1624 			     const struct sockaddr *saddr)
1625 {
1626 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1627 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1628 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1629 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1630 
1631 	switch (daddr->sa_family) {
1632 	case AF_INET:
1633 		return saddr->sa_family == AF_INET &&
1634 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1635 
1636 	case AF_INET6:
1637 		return saddr->sa_family == AF_INET6 &&
1638 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1639 
1640 	default:
1641 		return false;
1642 	}
1643 }
1644 
1645 static struct net_device *
1646 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1647 {
1648 	const struct ib_gid_attr *sgid_attr = NULL;
1649 	struct net_device *ndev;
1650 
1651 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1652 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1653 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1654 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1655 
1656 	if (!sgid_attr)
1657 		return NULL;
1658 
1659 	rcu_read_lock();
1660 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1661 	if (IS_ERR(ndev))
1662 		ndev = NULL;
1663 	else
1664 		dev_hold(ndev);
1665 	rcu_read_unlock();
1666 	return ndev;
1667 }
1668 
1669 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1670 					  struct cma_req_info *req)
1671 {
1672 	struct sockaddr *listen_addr =
1673 			(struct sockaddr *)&req->listen_addr_storage;
1674 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1675 	struct net_device *net_dev;
1676 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1677 	int err;
1678 
1679 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1680 			       req->service_id);
1681 	if (err)
1682 		return ERR_PTR(err);
1683 
1684 	if (rdma_protocol_roce(req->device, req->port))
1685 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1686 	else
1687 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1688 						   req->pkey,
1689 						   gid, listen_addr);
1690 	if (!net_dev)
1691 		return ERR_PTR(-ENODEV);
1692 
1693 	return net_dev;
1694 }
1695 
1696 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1697 {
1698 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1699 }
1700 
1701 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1702 				   const struct cma_hdr *hdr)
1703 {
1704 	struct sockaddr *addr = cma_src_addr(id_priv);
1705 	__be32 ip4_addr;
1706 	struct in6_addr ip6_addr;
1707 
1708 	if (cma_any_addr(addr) && !id_priv->afonly)
1709 		return true;
1710 
1711 	switch (addr->sa_family) {
1712 	case AF_INET:
1713 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1714 		if (cma_get_ip_ver(hdr) != 4)
1715 			return false;
1716 		if (!cma_any_addr(addr) &&
1717 		    hdr->dst_addr.ip4.addr != ip4_addr)
1718 			return false;
1719 		break;
1720 	case AF_INET6:
1721 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1722 		if (cma_get_ip_ver(hdr) != 6)
1723 			return false;
1724 		if (!cma_any_addr(addr) &&
1725 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1726 			return false;
1727 		break;
1728 	case AF_IB:
1729 		return true;
1730 	default:
1731 		return false;
1732 	}
1733 
1734 	return true;
1735 }
1736 
1737 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1738 {
1739 	struct ib_device *device = id->device;
1740 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1741 
1742 	return rdma_protocol_roce(device, port_num);
1743 }
1744 
1745 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1746 {
1747 	const struct sockaddr *daddr =
1748 			(const struct sockaddr *)&req->listen_addr_storage;
1749 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1750 
1751 	/* Returns true if the req is for IPv6 link local */
1752 	return (daddr->sa_family == AF_INET6 &&
1753 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1754 }
1755 
1756 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1757 			      const struct net_device *net_dev,
1758 			      const struct cma_req_info *req)
1759 {
1760 	const struct rdma_addr *addr = &id->route.addr;
1761 
1762 	if (!net_dev)
1763 		/* This request is an AF_IB request */
1764 		return (!id->port_num || id->port_num == req->port) &&
1765 		       (addr->src_addr.ss_family == AF_IB);
1766 
1767 	/*
1768 	 * If the request is not for IPv6 link local, allow matching
1769 	 * request to any netdevice of the one or multiport rdma device.
1770 	 */
1771 	if (!cma_is_req_ipv6_ll(req))
1772 		return true;
1773 	/*
1774 	 * Net namespaces must match, and if the listner is listening
1775 	 * on a specific netdevice than netdevice must match as well.
1776 	 */
1777 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1778 	    (!!addr->dev_addr.bound_dev_if ==
1779 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1780 		return true;
1781 	else
1782 		return false;
1783 }
1784 
1785 static struct rdma_id_private *cma_find_listener(
1786 		const struct rdma_bind_list *bind_list,
1787 		const struct ib_cm_id *cm_id,
1788 		const struct ib_cm_event *ib_event,
1789 		const struct cma_req_info *req,
1790 		const struct net_device *net_dev)
1791 {
1792 	struct rdma_id_private *id_priv, *id_priv_dev;
1793 
1794 	lockdep_assert_held(&lock);
1795 
1796 	if (!bind_list)
1797 		return ERR_PTR(-EINVAL);
1798 
1799 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1800 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1801 			if (id_priv->id.device == cm_id->device &&
1802 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1803 				return id_priv;
1804 			list_for_each_entry(id_priv_dev,
1805 					    &id_priv->listen_list,
1806 					    listen_item) {
1807 				if (id_priv_dev->id.device == cm_id->device &&
1808 				    cma_match_net_dev(&id_priv_dev->id,
1809 						      net_dev, req))
1810 					return id_priv_dev;
1811 			}
1812 		}
1813 	}
1814 
1815 	return ERR_PTR(-EINVAL);
1816 }
1817 
1818 static struct rdma_id_private *
1819 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1820 		     const struct ib_cm_event *ib_event,
1821 		     struct cma_req_info *req,
1822 		     struct net_device **net_dev)
1823 {
1824 	struct rdma_bind_list *bind_list;
1825 	struct rdma_id_private *id_priv;
1826 	int err;
1827 
1828 	err = cma_save_req_info(ib_event, req);
1829 	if (err)
1830 		return ERR_PTR(err);
1831 
1832 	*net_dev = cma_get_net_dev(ib_event, req);
1833 	if (IS_ERR(*net_dev)) {
1834 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1835 			/* Assuming the protocol is AF_IB */
1836 			*net_dev = NULL;
1837 		} else {
1838 			return ERR_CAST(*net_dev);
1839 		}
1840 	}
1841 
1842 	mutex_lock(&lock);
1843 	/*
1844 	 * Net namespace might be getting deleted while route lookup,
1845 	 * cm_id lookup is in progress. Therefore, perform netdevice
1846 	 * validation, cm_id lookup under rcu lock.
1847 	 * RCU lock along with netdevice state check, synchronizes with
1848 	 * netdevice migrating to different net namespace and also avoids
1849 	 * case where net namespace doesn't get deleted while lookup is in
1850 	 * progress.
1851 	 * If the device state is not IFF_UP, its properties such as ifindex
1852 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1853 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1854 	 * ongoing operations on net device after device is closed using
1855 	 * synchronize_net().
1856 	 */
1857 	rcu_read_lock();
1858 	if (*net_dev) {
1859 		/*
1860 		 * If netdevice is down, it is likely that it is administratively
1861 		 * down or it might be migrating to different namespace.
1862 		 * In that case avoid further processing, as the net namespace
1863 		 * or ifindex may change.
1864 		 */
1865 		if (((*net_dev)->flags & IFF_UP) == 0) {
1866 			id_priv = ERR_PTR(-EHOSTUNREACH);
1867 			goto err;
1868 		}
1869 
1870 		if (!validate_net_dev(*net_dev,
1871 				 (struct sockaddr *)&req->src_addr_storage,
1872 				 (struct sockaddr *)&req->listen_addr_storage)) {
1873 			id_priv = ERR_PTR(-EHOSTUNREACH);
1874 			goto err;
1875 		}
1876 	}
1877 
1878 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1879 				rdma_ps_from_service_id(req->service_id),
1880 				cma_port_from_service_id(req->service_id));
1881 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1882 err:
1883 	rcu_read_unlock();
1884 	mutex_unlock(&lock);
1885 	if (IS_ERR(id_priv) && *net_dev) {
1886 		dev_put(*net_dev);
1887 		*net_dev = NULL;
1888 	}
1889 	return id_priv;
1890 }
1891 
1892 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1893 {
1894 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1895 }
1896 
1897 static void cma_cancel_route(struct rdma_id_private *id_priv)
1898 {
1899 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1900 		if (id_priv->query)
1901 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1902 	}
1903 }
1904 
1905 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1906 {
1907 	struct rdma_id_private *dev_id_priv;
1908 
1909 	lockdep_assert_held(&lock);
1910 
1911 	/*
1912 	 * Remove from listen_any_list to prevent added devices from spawning
1913 	 * additional listen requests.
1914 	 */
1915 	list_del_init(&id_priv->listen_any_item);
1916 
1917 	while (!list_empty(&id_priv->listen_list)) {
1918 		dev_id_priv =
1919 			list_first_entry(&id_priv->listen_list,
1920 					 struct rdma_id_private, listen_item);
1921 		/* sync with device removal to avoid duplicate destruction */
1922 		list_del_init(&dev_id_priv->device_item);
1923 		list_del_init(&dev_id_priv->listen_item);
1924 		mutex_unlock(&lock);
1925 
1926 		rdma_destroy_id(&dev_id_priv->id);
1927 		mutex_lock(&lock);
1928 	}
1929 }
1930 
1931 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1932 {
1933 	mutex_lock(&lock);
1934 	_cma_cancel_listens(id_priv);
1935 	mutex_unlock(&lock);
1936 }
1937 
1938 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1939 				 enum rdma_cm_state state)
1940 {
1941 	switch (state) {
1942 	case RDMA_CM_ADDR_QUERY:
1943 		/*
1944 		 * We can avoid doing the rdma_addr_cancel() based on state,
1945 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1946 		 * Notice that the addr_handler work could still be exiting
1947 		 * outside this state, however due to the interaction with the
1948 		 * handler_mutex the work is guaranteed not to touch id_priv
1949 		 * during exit.
1950 		 */
1951 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1952 		break;
1953 	case RDMA_CM_ROUTE_QUERY:
1954 		cma_cancel_route(id_priv);
1955 		break;
1956 	case RDMA_CM_LISTEN:
1957 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1958 			cma_cancel_listens(id_priv);
1959 		break;
1960 	default:
1961 		break;
1962 	}
1963 }
1964 
1965 static void cma_release_port(struct rdma_id_private *id_priv)
1966 {
1967 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1968 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1969 
1970 	if (!bind_list)
1971 		return;
1972 
1973 	mutex_lock(&lock);
1974 	hlist_del(&id_priv->node);
1975 	if (hlist_empty(&bind_list->owners)) {
1976 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1977 		kfree(bind_list);
1978 	}
1979 	mutex_unlock(&lock);
1980 }
1981 
1982 static void destroy_mc(struct rdma_id_private *id_priv,
1983 		       struct cma_multicast *mc)
1984 {
1985 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1986 
1987 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1988 		ib_sa_free_multicast(mc->sa_mc);
1989 
1990 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1991 		struct rdma_dev_addr *dev_addr =
1992 			&id_priv->id.route.addr.dev_addr;
1993 		struct net_device *ndev = NULL;
1994 
1995 		if (dev_addr->bound_dev_if)
1996 			ndev = dev_get_by_index(dev_addr->net,
1997 						dev_addr->bound_dev_if);
1998 		if (ndev && !send_only) {
1999 			enum ib_gid_type gid_type;
2000 			union ib_gid mgid;
2001 
2002 			gid_type = id_priv->cma_dev->default_gid_type
2003 					   [id_priv->id.port_num -
2004 					    rdma_start_port(
2005 						    id_priv->cma_dev->device)];
2006 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
2007 					  gid_type);
2008 			cma_igmp_send(ndev, &mgid, false);
2009 		}
2010 		dev_put(ndev);
2011 
2012 		cancel_work_sync(&mc->iboe_join.work);
2013 	}
2014 	kfree(mc);
2015 }
2016 
2017 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
2018 {
2019 	struct cma_multicast *mc;
2020 
2021 	while (!list_empty(&id_priv->mc_list)) {
2022 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2023 				      list);
2024 		list_del(&mc->list);
2025 		destroy_mc(id_priv, mc);
2026 	}
2027 }
2028 
2029 static void _destroy_id(struct rdma_id_private *id_priv,
2030 			enum rdma_cm_state state)
2031 {
2032 	cma_cancel_operation(id_priv, state);
2033 
2034 	rdma_restrack_del(&id_priv->res);
2035 	cma_remove_id_from_tree(id_priv);
2036 	if (id_priv->cma_dev) {
2037 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2038 			if (id_priv->cm_id.ib)
2039 				ib_destroy_cm_id(id_priv->cm_id.ib);
2040 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2041 			if (id_priv->cm_id.iw)
2042 				iw_destroy_cm_id(id_priv->cm_id.iw);
2043 		}
2044 		cma_leave_mc_groups(id_priv);
2045 		cma_release_dev(id_priv);
2046 	}
2047 
2048 	cma_release_port(id_priv);
2049 	cma_id_put(id_priv);
2050 	wait_for_completion(&id_priv->comp);
2051 
2052 	if (id_priv->internal_id)
2053 		cma_id_put(id_priv->id.context);
2054 
2055 	kfree(id_priv->id.route.path_rec);
2056 	kfree(id_priv->id.route.path_rec_inbound);
2057 	kfree(id_priv->id.route.path_rec_outbound);
2058 
2059 	put_net(id_priv->id.route.addr.dev_addr.net);
2060 	kfree(id_priv);
2061 }
2062 
2063 /*
2064  * destroy an ID from within the handler_mutex. This ensures that no other
2065  * handlers can start running concurrently.
2066  */
2067 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2068 	__releases(&idprv->handler_mutex)
2069 {
2070 	enum rdma_cm_state state;
2071 	unsigned long flags;
2072 
2073 	trace_cm_id_destroy(id_priv);
2074 
2075 	/*
2076 	 * Setting the state to destroyed under the handler mutex provides a
2077 	 * fence against calling handler callbacks. If this is invoked due to
2078 	 * the failure of a handler callback then it guarentees that no future
2079 	 * handlers will be called.
2080 	 */
2081 	lockdep_assert_held(&id_priv->handler_mutex);
2082 	spin_lock_irqsave(&id_priv->lock, flags);
2083 	state = id_priv->state;
2084 	id_priv->state = RDMA_CM_DESTROYING;
2085 	spin_unlock_irqrestore(&id_priv->lock, flags);
2086 	mutex_unlock(&id_priv->handler_mutex);
2087 	_destroy_id(id_priv, state);
2088 }
2089 
2090 void rdma_destroy_id(struct rdma_cm_id *id)
2091 {
2092 	struct rdma_id_private *id_priv =
2093 		container_of(id, struct rdma_id_private, id);
2094 
2095 	mutex_lock(&id_priv->handler_mutex);
2096 	destroy_id_handler_unlock(id_priv);
2097 }
2098 EXPORT_SYMBOL(rdma_destroy_id);
2099 
2100 static int cma_rep_recv(struct rdma_id_private *id_priv)
2101 {
2102 	int ret;
2103 
2104 	ret = cma_modify_qp_rtr(id_priv, NULL);
2105 	if (ret)
2106 		goto reject;
2107 
2108 	ret = cma_modify_qp_rts(id_priv, NULL);
2109 	if (ret)
2110 		goto reject;
2111 
2112 	trace_cm_send_rtu(id_priv);
2113 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2114 	if (ret)
2115 		goto reject;
2116 
2117 	return 0;
2118 reject:
2119 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2120 	cma_modify_qp_err(id_priv);
2121 	trace_cm_send_rej(id_priv);
2122 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2123 		       NULL, 0, NULL, 0);
2124 	return ret;
2125 }
2126 
2127 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2128 				   const struct ib_cm_rep_event_param *rep_data,
2129 				   void *private_data)
2130 {
2131 	event->param.conn.private_data = private_data;
2132 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2133 	event->param.conn.responder_resources = rep_data->responder_resources;
2134 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2135 	event->param.conn.flow_control = rep_data->flow_control;
2136 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2137 	event->param.conn.srq = rep_data->srq;
2138 	event->param.conn.qp_num = rep_data->remote_qpn;
2139 
2140 	event->ece.vendor_id = rep_data->ece.vendor_id;
2141 	event->ece.attr_mod = rep_data->ece.attr_mod;
2142 }
2143 
2144 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2145 				struct rdma_cm_event *event)
2146 {
2147 	int ret;
2148 
2149 	lockdep_assert_held(&id_priv->handler_mutex);
2150 
2151 	trace_cm_event_handler(id_priv, event);
2152 	ret = id_priv->id.event_handler(&id_priv->id, event);
2153 	trace_cm_event_done(id_priv, event, ret);
2154 	return ret;
2155 }
2156 
2157 static int cma_ib_handler(struct ib_cm_id *cm_id,
2158 			  const struct ib_cm_event *ib_event)
2159 {
2160 	struct rdma_id_private *id_priv = cm_id->context;
2161 	struct rdma_cm_event event = {};
2162 	enum rdma_cm_state state;
2163 	int ret;
2164 
2165 	mutex_lock(&id_priv->handler_mutex);
2166 	state = READ_ONCE(id_priv->state);
2167 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2168 	     state != RDMA_CM_CONNECT) ||
2169 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2170 	     state != RDMA_CM_DISCONNECT))
2171 		goto out;
2172 
2173 	switch (ib_event->event) {
2174 	case IB_CM_REQ_ERROR:
2175 	case IB_CM_REP_ERROR:
2176 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2177 		event.status = -ETIMEDOUT;
2178 		break;
2179 	case IB_CM_REP_RECEIVED:
2180 		if (state == RDMA_CM_CONNECT &&
2181 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2182 			trace_cm_send_mra(id_priv);
2183 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2184 		}
2185 		if (id_priv->id.qp) {
2186 			event.status = cma_rep_recv(id_priv);
2187 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2188 						     RDMA_CM_EVENT_ESTABLISHED;
2189 		} else {
2190 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2191 		}
2192 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2193 				       ib_event->private_data);
2194 		break;
2195 	case IB_CM_RTU_RECEIVED:
2196 	case IB_CM_USER_ESTABLISHED:
2197 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2198 		break;
2199 	case IB_CM_DREQ_ERROR:
2200 		event.status = -ETIMEDOUT;
2201 		fallthrough;
2202 	case IB_CM_DREQ_RECEIVED:
2203 	case IB_CM_DREP_RECEIVED:
2204 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2205 				   RDMA_CM_DISCONNECT))
2206 			goto out;
2207 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2208 		break;
2209 	case IB_CM_TIMEWAIT_EXIT:
2210 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2211 		break;
2212 	case IB_CM_MRA_RECEIVED:
2213 		/* ignore event */
2214 		goto out;
2215 	case IB_CM_REJ_RECEIVED:
2216 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2217 										ib_event->param.rej_rcvd.reason));
2218 		cma_modify_qp_err(id_priv);
2219 		event.status = ib_event->param.rej_rcvd.reason;
2220 		event.event = RDMA_CM_EVENT_REJECTED;
2221 		event.param.conn.private_data = ib_event->private_data;
2222 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2223 		break;
2224 	default:
2225 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2226 		       ib_event->event);
2227 		goto out;
2228 	}
2229 
2230 	ret = cma_cm_event_handler(id_priv, &event);
2231 	if (ret) {
2232 		/* Destroy the CM ID by returning a non-zero value. */
2233 		id_priv->cm_id.ib = NULL;
2234 		destroy_id_handler_unlock(id_priv);
2235 		return ret;
2236 	}
2237 out:
2238 	mutex_unlock(&id_priv->handler_mutex);
2239 	return 0;
2240 }
2241 
2242 static struct rdma_id_private *
2243 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2244 		   const struct ib_cm_event *ib_event,
2245 		   struct net_device *net_dev)
2246 {
2247 	struct rdma_id_private *listen_id_priv;
2248 	struct rdma_id_private *id_priv;
2249 	struct rdma_cm_id *id;
2250 	struct rdma_route *rt;
2251 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2252 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2253 	const __be64 service_id =
2254 		ib_event->param.req_rcvd.primary_path->service_id;
2255 	int ret;
2256 
2257 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2258 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2259 				   listen_id->event_handler, listen_id->context,
2260 				   listen_id->ps,
2261 				   ib_event->param.req_rcvd.qp_type,
2262 				   listen_id_priv);
2263 	if (IS_ERR(id_priv))
2264 		return NULL;
2265 
2266 	id = &id_priv->id;
2267 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2268 			      (struct sockaddr *)&id->route.addr.dst_addr,
2269 			      listen_id, ib_event, ss_family, service_id))
2270 		goto err;
2271 
2272 	rt = &id->route;
2273 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2274 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2275 				     sizeof(*rt->path_rec), GFP_KERNEL);
2276 	if (!rt->path_rec)
2277 		goto err;
2278 
2279 	rt->path_rec[0] = *path;
2280 	if (rt->num_pri_alt_paths == 2)
2281 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2282 
2283 	if (net_dev) {
2284 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2285 	} else {
2286 		if (!cma_protocol_roce(listen_id) &&
2287 		    cma_any_addr(cma_src_addr(id_priv))) {
2288 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2289 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2290 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2291 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2292 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2293 			if (ret)
2294 				goto err;
2295 		}
2296 	}
2297 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2298 
2299 	id_priv->state = RDMA_CM_CONNECT;
2300 	return id_priv;
2301 
2302 err:
2303 	rdma_destroy_id(id);
2304 	return NULL;
2305 }
2306 
2307 static struct rdma_id_private *
2308 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2309 		  const struct ib_cm_event *ib_event,
2310 		  struct net_device *net_dev)
2311 {
2312 	const struct rdma_id_private *listen_id_priv;
2313 	struct rdma_id_private *id_priv;
2314 	struct rdma_cm_id *id;
2315 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2316 	struct net *net = listen_id->route.addr.dev_addr.net;
2317 	int ret;
2318 
2319 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2320 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2321 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2322 				   listen_id_priv);
2323 	if (IS_ERR(id_priv))
2324 		return NULL;
2325 
2326 	id = &id_priv->id;
2327 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2328 			      (struct sockaddr *)&id->route.addr.dst_addr,
2329 			      listen_id, ib_event, ss_family,
2330 			      ib_event->param.sidr_req_rcvd.service_id))
2331 		goto err;
2332 
2333 	if (net_dev) {
2334 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2335 	} else {
2336 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2337 			ret = cma_translate_addr(cma_src_addr(id_priv),
2338 						 &id->route.addr.dev_addr);
2339 			if (ret)
2340 				goto err;
2341 		}
2342 	}
2343 
2344 	id_priv->state = RDMA_CM_CONNECT;
2345 	return id_priv;
2346 err:
2347 	rdma_destroy_id(id);
2348 	return NULL;
2349 }
2350 
2351 static void cma_set_req_event_data(struct rdma_cm_event *event,
2352 				   const struct ib_cm_req_event_param *req_data,
2353 				   void *private_data, int offset)
2354 {
2355 	event->param.conn.private_data = private_data + offset;
2356 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2357 	event->param.conn.responder_resources = req_data->responder_resources;
2358 	event->param.conn.initiator_depth = req_data->initiator_depth;
2359 	event->param.conn.flow_control = req_data->flow_control;
2360 	event->param.conn.retry_count = req_data->retry_count;
2361 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2362 	event->param.conn.srq = req_data->srq;
2363 	event->param.conn.qp_num = req_data->remote_qpn;
2364 
2365 	event->ece.vendor_id = req_data->ece.vendor_id;
2366 	event->ece.attr_mod = req_data->ece.attr_mod;
2367 }
2368 
2369 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2370 				    const struct ib_cm_event *ib_event)
2371 {
2372 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2373 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2374 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2375 		 (id->qp_type == IB_QPT_UD)) ||
2376 		(!id->qp_type));
2377 }
2378 
2379 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2380 			      const struct ib_cm_event *ib_event)
2381 {
2382 	struct rdma_id_private *listen_id, *conn_id = NULL;
2383 	struct rdma_cm_event event = {};
2384 	struct cma_req_info req = {};
2385 	struct net_device *net_dev;
2386 	u8 offset;
2387 	int ret;
2388 
2389 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2390 	if (IS_ERR(listen_id))
2391 		return PTR_ERR(listen_id);
2392 
2393 	trace_cm_req_handler(listen_id, ib_event->event);
2394 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2395 		ret = -EINVAL;
2396 		goto net_dev_put;
2397 	}
2398 
2399 	mutex_lock(&listen_id->handler_mutex);
2400 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2401 		ret = -ECONNABORTED;
2402 		goto err_unlock;
2403 	}
2404 
2405 	offset = cma_user_data_offset(listen_id);
2406 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2407 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2408 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2409 		event.param.ud.private_data = ib_event->private_data + offset;
2410 		event.param.ud.private_data_len =
2411 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2412 	} else {
2413 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2414 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2415 				       ib_event->private_data, offset);
2416 	}
2417 	if (!conn_id) {
2418 		ret = -ENOMEM;
2419 		goto err_unlock;
2420 	}
2421 
2422 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2423 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2424 	if (ret) {
2425 		destroy_id_handler_unlock(conn_id);
2426 		goto err_unlock;
2427 	}
2428 
2429 	conn_id->cm_id.ib = cm_id;
2430 	cm_id->context = conn_id;
2431 	cm_id->cm_handler = cma_ib_handler;
2432 
2433 	ret = cma_cm_event_handler(conn_id, &event);
2434 	if (ret) {
2435 		/* Destroy the CM ID by returning a non-zero value. */
2436 		conn_id->cm_id.ib = NULL;
2437 		mutex_unlock(&listen_id->handler_mutex);
2438 		destroy_id_handler_unlock(conn_id);
2439 		goto net_dev_put;
2440 	}
2441 
2442 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2443 	    conn_id->id.qp_type != IB_QPT_UD) {
2444 		trace_cm_send_mra(cm_id->context);
2445 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2446 	}
2447 	mutex_unlock(&conn_id->handler_mutex);
2448 
2449 err_unlock:
2450 	mutex_unlock(&listen_id->handler_mutex);
2451 
2452 net_dev_put:
2453 	dev_put(net_dev);
2454 
2455 	return ret;
2456 }
2457 
2458 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2459 {
2460 	if (addr->sa_family == AF_IB)
2461 		return ((struct sockaddr_ib *) addr)->sib_sid;
2462 
2463 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2464 }
2465 EXPORT_SYMBOL(rdma_get_service_id);
2466 
2467 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2468 		    union ib_gid *dgid)
2469 {
2470 	struct rdma_addr *addr = &cm_id->route.addr;
2471 
2472 	if (!cm_id->device) {
2473 		if (sgid)
2474 			memset(sgid, 0, sizeof(*sgid));
2475 		if (dgid)
2476 			memset(dgid, 0, sizeof(*dgid));
2477 		return;
2478 	}
2479 
2480 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2481 		if (sgid)
2482 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2483 		if (dgid)
2484 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2485 	} else {
2486 		if (sgid)
2487 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2488 		if (dgid)
2489 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2490 	}
2491 }
2492 EXPORT_SYMBOL(rdma_read_gids);
2493 
2494 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2495 {
2496 	struct rdma_id_private *id_priv = iw_id->context;
2497 	struct rdma_cm_event event = {};
2498 	int ret = 0;
2499 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2500 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2501 
2502 	mutex_lock(&id_priv->handler_mutex);
2503 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2504 		goto out;
2505 
2506 	switch (iw_event->event) {
2507 	case IW_CM_EVENT_CLOSE:
2508 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2509 		break;
2510 	case IW_CM_EVENT_CONNECT_REPLY:
2511 		memcpy(cma_src_addr(id_priv), laddr,
2512 		       rdma_addr_size(laddr));
2513 		memcpy(cma_dst_addr(id_priv), raddr,
2514 		       rdma_addr_size(raddr));
2515 		switch (iw_event->status) {
2516 		case 0:
2517 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2518 			event.param.conn.initiator_depth = iw_event->ird;
2519 			event.param.conn.responder_resources = iw_event->ord;
2520 			break;
2521 		case -ECONNRESET:
2522 		case -ECONNREFUSED:
2523 			event.event = RDMA_CM_EVENT_REJECTED;
2524 			break;
2525 		case -ETIMEDOUT:
2526 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2527 			break;
2528 		default:
2529 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2530 			break;
2531 		}
2532 		break;
2533 	case IW_CM_EVENT_ESTABLISHED:
2534 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2535 		event.param.conn.initiator_depth = iw_event->ird;
2536 		event.param.conn.responder_resources = iw_event->ord;
2537 		break;
2538 	default:
2539 		goto out;
2540 	}
2541 
2542 	event.status = iw_event->status;
2543 	event.param.conn.private_data = iw_event->private_data;
2544 	event.param.conn.private_data_len = iw_event->private_data_len;
2545 	ret = cma_cm_event_handler(id_priv, &event);
2546 	if (ret) {
2547 		/* Destroy the CM ID by returning a non-zero value. */
2548 		id_priv->cm_id.iw = NULL;
2549 		destroy_id_handler_unlock(id_priv);
2550 		return ret;
2551 	}
2552 
2553 out:
2554 	mutex_unlock(&id_priv->handler_mutex);
2555 	return ret;
2556 }
2557 
2558 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2559 			       struct iw_cm_event *iw_event)
2560 {
2561 	struct rdma_id_private *listen_id, *conn_id;
2562 	struct rdma_cm_event event = {};
2563 	int ret = -ECONNABORTED;
2564 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2565 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2566 
2567 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2568 	event.param.conn.private_data = iw_event->private_data;
2569 	event.param.conn.private_data_len = iw_event->private_data_len;
2570 	event.param.conn.initiator_depth = iw_event->ird;
2571 	event.param.conn.responder_resources = iw_event->ord;
2572 
2573 	listen_id = cm_id->context;
2574 
2575 	mutex_lock(&listen_id->handler_mutex);
2576 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2577 		goto out;
2578 
2579 	/* Create a new RDMA id for the new IW CM ID */
2580 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2581 				   listen_id->id.event_handler,
2582 				   listen_id->id.context, RDMA_PS_TCP,
2583 				   IB_QPT_RC, listen_id);
2584 	if (IS_ERR(conn_id)) {
2585 		ret = -ENOMEM;
2586 		goto out;
2587 	}
2588 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2589 	conn_id->state = RDMA_CM_CONNECT;
2590 
2591 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2592 	if (ret) {
2593 		mutex_unlock(&listen_id->handler_mutex);
2594 		destroy_id_handler_unlock(conn_id);
2595 		return ret;
2596 	}
2597 
2598 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2599 	if (ret) {
2600 		mutex_unlock(&listen_id->handler_mutex);
2601 		destroy_id_handler_unlock(conn_id);
2602 		return ret;
2603 	}
2604 
2605 	conn_id->cm_id.iw = cm_id;
2606 	cm_id->context = conn_id;
2607 	cm_id->cm_handler = cma_iw_handler;
2608 
2609 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2610 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2611 
2612 	ret = cma_cm_event_handler(conn_id, &event);
2613 	if (ret) {
2614 		/* User wants to destroy the CM ID */
2615 		conn_id->cm_id.iw = NULL;
2616 		mutex_unlock(&listen_id->handler_mutex);
2617 		destroy_id_handler_unlock(conn_id);
2618 		return ret;
2619 	}
2620 
2621 	mutex_unlock(&conn_id->handler_mutex);
2622 
2623 out:
2624 	mutex_unlock(&listen_id->handler_mutex);
2625 	return ret;
2626 }
2627 
2628 static int cma_ib_listen(struct rdma_id_private *id_priv)
2629 {
2630 	struct sockaddr *addr;
2631 	struct ib_cm_id	*id;
2632 	__be64 svc_id;
2633 
2634 	addr = cma_src_addr(id_priv);
2635 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2636 	id = ib_cm_insert_listen(id_priv->id.device,
2637 				 cma_ib_req_handler, svc_id);
2638 	if (IS_ERR(id))
2639 		return PTR_ERR(id);
2640 	id_priv->cm_id.ib = id;
2641 
2642 	return 0;
2643 }
2644 
2645 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2646 {
2647 	int ret;
2648 	struct iw_cm_id	*id;
2649 
2650 	id = iw_create_cm_id(id_priv->id.device,
2651 			     iw_conn_req_handler,
2652 			     id_priv);
2653 	if (IS_ERR(id))
2654 		return PTR_ERR(id);
2655 
2656 	mutex_lock(&id_priv->qp_mutex);
2657 	id->tos = id_priv->tos;
2658 	id->tos_set = id_priv->tos_set;
2659 	mutex_unlock(&id_priv->qp_mutex);
2660 	id->afonly = id_priv->afonly;
2661 	id_priv->cm_id.iw = id;
2662 
2663 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2664 	       rdma_addr_size(cma_src_addr(id_priv)));
2665 
2666 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2667 
2668 	if (ret) {
2669 		iw_destroy_cm_id(id_priv->cm_id.iw);
2670 		id_priv->cm_id.iw = NULL;
2671 	}
2672 
2673 	return ret;
2674 }
2675 
2676 static int cma_listen_handler(struct rdma_cm_id *id,
2677 			      struct rdma_cm_event *event)
2678 {
2679 	struct rdma_id_private *id_priv = id->context;
2680 
2681 	/* Listening IDs are always destroyed on removal */
2682 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2683 		return -1;
2684 
2685 	id->context = id_priv->id.context;
2686 	id->event_handler = id_priv->id.event_handler;
2687 	trace_cm_event_handler(id_priv, event);
2688 	return id_priv->id.event_handler(id, event);
2689 }
2690 
2691 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2692 			     struct cma_device *cma_dev,
2693 			     struct rdma_id_private **to_destroy)
2694 {
2695 	struct rdma_id_private *dev_id_priv;
2696 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2697 	int ret;
2698 
2699 	lockdep_assert_held(&lock);
2700 
2701 	*to_destroy = NULL;
2702 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2703 		return 0;
2704 
2705 	dev_id_priv =
2706 		__rdma_create_id(net, cma_listen_handler, id_priv,
2707 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2708 	if (IS_ERR(dev_id_priv))
2709 		return PTR_ERR(dev_id_priv);
2710 
2711 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2712 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2713 	       rdma_addr_size(cma_src_addr(id_priv)));
2714 
2715 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2716 	rdma_restrack_add(&dev_id_priv->res);
2717 	cma_id_get(id_priv);
2718 	dev_id_priv->internal_id = 1;
2719 	dev_id_priv->afonly = id_priv->afonly;
2720 	mutex_lock(&id_priv->qp_mutex);
2721 	dev_id_priv->tos_set = id_priv->tos_set;
2722 	dev_id_priv->tos = id_priv->tos;
2723 	mutex_unlock(&id_priv->qp_mutex);
2724 
2725 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2726 	if (ret)
2727 		goto err_listen;
2728 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2729 	return 0;
2730 err_listen:
2731 	/* Caller must destroy this after releasing lock */
2732 	*to_destroy = dev_id_priv;
2733 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2734 	return ret;
2735 }
2736 
2737 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2738 {
2739 	struct rdma_id_private *to_destroy;
2740 	struct cma_device *cma_dev;
2741 	int ret;
2742 
2743 	mutex_lock(&lock);
2744 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2745 	list_for_each_entry(cma_dev, &dev_list, list) {
2746 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2747 		if (ret) {
2748 			/* Prevent racing with cma_process_remove() */
2749 			if (to_destroy)
2750 				list_del_init(&to_destroy->device_item);
2751 			goto err_listen;
2752 		}
2753 	}
2754 	mutex_unlock(&lock);
2755 	return 0;
2756 
2757 err_listen:
2758 	_cma_cancel_listens(id_priv);
2759 	mutex_unlock(&lock);
2760 	if (to_destroy)
2761 		rdma_destroy_id(&to_destroy->id);
2762 	return ret;
2763 }
2764 
2765 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2766 {
2767 	struct rdma_id_private *id_priv;
2768 
2769 	id_priv = container_of(id, struct rdma_id_private, id);
2770 	mutex_lock(&id_priv->qp_mutex);
2771 	id_priv->tos = (u8) tos;
2772 	id_priv->tos_set = true;
2773 	mutex_unlock(&id_priv->qp_mutex);
2774 }
2775 EXPORT_SYMBOL(rdma_set_service_type);
2776 
2777 /**
2778  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2779  *                          with a connection identifier.
2780  * @id: Communication identifier to associated with service type.
2781  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2782  *
2783  * This function should be called before rdma_connect() on active side,
2784  * and on passive side before rdma_accept(). It is applicable to primary
2785  * path only. The timeout will affect the local side of the QP, it is not
2786  * negotiated with remote side and zero disables the timer. In case it is
2787  * set before rdma_resolve_route, the value will also be used to determine
2788  * PacketLifeTime for RoCE.
2789  *
2790  * Return: 0 for success
2791  */
2792 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2793 {
2794 	struct rdma_id_private *id_priv;
2795 
2796 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2797 		return -EINVAL;
2798 
2799 	id_priv = container_of(id, struct rdma_id_private, id);
2800 	mutex_lock(&id_priv->qp_mutex);
2801 	id_priv->timeout = timeout;
2802 	id_priv->timeout_set = true;
2803 	mutex_unlock(&id_priv->qp_mutex);
2804 
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL(rdma_set_ack_timeout);
2808 
2809 /**
2810  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2811  *			      QP associated with a connection identifier.
2812  * @id: Communication identifier to associated with service type.
2813  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2814  *		   Timer Field" in the IBTA specification.
2815  *
2816  * This function should be called before rdma_connect() on active
2817  * side, and on passive side before rdma_accept(). The timer value
2818  * will be associated with the local QP. When it receives a send it is
2819  * not read to handle, typically if the receive queue is empty, an RNR
2820  * Retry NAK is returned to the requester with the min_rnr_timer
2821  * encoded. The requester will then wait at least the time specified
2822  * in the NAK before retrying. The default is zero, which translates
2823  * to a minimum RNR Timer value of 655 ms.
2824  *
2825  * Return: 0 for success
2826  */
2827 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2828 {
2829 	struct rdma_id_private *id_priv;
2830 
2831 	/* It is a five-bit value */
2832 	if (min_rnr_timer & 0xe0)
2833 		return -EINVAL;
2834 
2835 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2836 		return -EINVAL;
2837 
2838 	id_priv = container_of(id, struct rdma_id_private, id);
2839 	mutex_lock(&id_priv->qp_mutex);
2840 	id_priv->min_rnr_timer = min_rnr_timer;
2841 	id_priv->min_rnr_timer_set = true;
2842 	mutex_unlock(&id_priv->qp_mutex);
2843 
2844 	return 0;
2845 }
2846 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2847 
2848 static int route_set_path_rec_inbound(struct cma_work *work,
2849 				      struct sa_path_rec *path_rec)
2850 {
2851 	struct rdma_route *route = &work->id->id.route;
2852 
2853 	if (!route->path_rec_inbound) {
2854 		route->path_rec_inbound =
2855 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2856 		if (!route->path_rec_inbound)
2857 			return -ENOMEM;
2858 	}
2859 
2860 	*route->path_rec_inbound = *path_rec;
2861 	return 0;
2862 }
2863 
2864 static int route_set_path_rec_outbound(struct cma_work *work,
2865 				       struct sa_path_rec *path_rec)
2866 {
2867 	struct rdma_route *route = &work->id->id.route;
2868 
2869 	if (!route->path_rec_outbound) {
2870 		route->path_rec_outbound =
2871 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2872 		if (!route->path_rec_outbound)
2873 			return -ENOMEM;
2874 	}
2875 
2876 	*route->path_rec_outbound = *path_rec;
2877 	return 0;
2878 }
2879 
2880 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2881 			      unsigned int num_prs, void *context)
2882 {
2883 	struct cma_work *work = context;
2884 	struct rdma_route *route;
2885 	int i;
2886 
2887 	route = &work->id->id.route;
2888 
2889 	if (status)
2890 		goto fail;
2891 
2892 	for (i = 0; i < num_prs; i++) {
2893 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2894 			*route->path_rec = path_rec[i];
2895 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2896 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2897 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2898 			status = route_set_path_rec_outbound(work,
2899 							     &path_rec[i]);
2900 		else
2901 			status = -EINVAL;
2902 
2903 		if (status)
2904 			goto fail;
2905 	}
2906 
2907 	route->num_pri_alt_paths = 1;
2908 	queue_work(cma_wq, &work->work);
2909 	return;
2910 
2911 fail:
2912 	work->old_state = RDMA_CM_ROUTE_QUERY;
2913 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2914 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2915 	work->event.status = status;
2916 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2917 			     status);
2918 	queue_work(cma_wq, &work->work);
2919 }
2920 
2921 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2922 			      unsigned long timeout_ms, struct cma_work *work)
2923 {
2924 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2925 	struct sa_path_rec path_rec;
2926 	ib_sa_comp_mask comp_mask;
2927 	struct sockaddr_in6 *sin6;
2928 	struct sockaddr_ib *sib;
2929 
2930 	memset(&path_rec, 0, sizeof path_rec);
2931 
2932 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2933 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2934 	else
2935 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2936 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2937 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2938 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2939 	path_rec.numb_path = 1;
2940 	path_rec.reversible = 1;
2941 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2942 						  cma_dst_addr(id_priv));
2943 
2944 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2945 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2946 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2947 
2948 	switch (cma_family(id_priv)) {
2949 	case AF_INET:
2950 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2951 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2952 		break;
2953 	case AF_INET6:
2954 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2955 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2956 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2957 		break;
2958 	case AF_IB:
2959 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2960 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2961 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2962 		break;
2963 	}
2964 
2965 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2966 					       id_priv->id.port_num, &path_rec,
2967 					       comp_mask, timeout_ms,
2968 					       GFP_KERNEL, cma_query_handler,
2969 					       work, &id_priv->query);
2970 
2971 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2972 }
2973 
2974 static void cma_iboe_join_work_handler(struct work_struct *work)
2975 {
2976 	struct cma_multicast *mc =
2977 		container_of(work, struct cma_multicast, iboe_join.work);
2978 	struct rdma_cm_event *event = &mc->iboe_join.event;
2979 	struct rdma_id_private *id_priv = mc->id_priv;
2980 	int ret;
2981 
2982 	mutex_lock(&id_priv->handler_mutex);
2983 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2984 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2985 		goto out_unlock;
2986 
2987 	ret = cma_cm_event_handler(id_priv, event);
2988 	WARN_ON(ret);
2989 
2990 out_unlock:
2991 	mutex_unlock(&id_priv->handler_mutex);
2992 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2993 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2994 }
2995 
2996 static void cma_work_handler(struct work_struct *_work)
2997 {
2998 	struct cma_work *work = container_of(_work, struct cma_work, work);
2999 	struct rdma_id_private *id_priv = work->id;
3000 
3001 	mutex_lock(&id_priv->handler_mutex);
3002 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3003 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3004 		goto out_unlock;
3005 	if (work->old_state != 0 || work->new_state != 0) {
3006 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
3007 			goto out_unlock;
3008 	}
3009 
3010 	if (cma_cm_event_handler(id_priv, &work->event)) {
3011 		cma_id_put(id_priv);
3012 		destroy_id_handler_unlock(id_priv);
3013 		goto out_free;
3014 	}
3015 
3016 out_unlock:
3017 	mutex_unlock(&id_priv->handler_mutex);
3018 	cma_id_put(id_priv);
3019 out_free:
3020 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3021 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3022 	kfree(work);
3023 }
3024 
3025 static void cma_init_resolve_route_work(struct cma_work *work,
3026 					struct rdma_id_private *id_priv)
3027 {
3028 	work->id = id_priv;
3029 	INIT_WORK(&work->work, cma_work_handler);
3030 	work->old_state = RDMA_CM_ROUTE_QUERY;
3031 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3032 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3033 }
3034 
3035 static void enqueue_resolve_addr_work(struct cma_work *work,
3036 				      struct rdma_id_private *id_priv)
3037 {
3038 	/* Balances with cma_id_put() in cma_work_handler */
3039 	cma_id_get(id_priv);
3040 
3041 	work->id = id_priv;
3042 	INIT_WORK(&work->work, cma_work_handler);
3043 	work->old_state = RDMA_CM_ADDR_QUERY;
3044 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3045 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3046 
3047 	queue_work(cma_wq, &work->work);
3048 }
3049 
3050 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3051 				unsigned long timeout_ms)
3052 {
3053 	struct rdma_route *route = &id_priv->id.route;
3054 	struct cma_work *work;
3055 	int ret;
3056 
3057 	work = kzalloc(sizeof *work, GFP_KERNEL);
3058 	if (!work)
3059 		return -ENOMEM;
3060 
3061 	cma_init_resolve_route_work(work, id_priv);
3062 
3063 	if (!route->path_rec)
3064 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3065 	if (!route->path_rec) {
3066 		ret = -ENOMEM;
3067 		goto err1;
3068 	}
3069 
3070 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3071 	if (ret)
3072 		goto err2;
3073 
3074 	return 0;
3075 err2:
3076 	kfree(route->path_rec);
3077 	route->path_rec = NULL;
3078 err1:
3079 	kfree(work);
3080 	return ret;
3081 }
3082 
3083 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3084 					   unsigned long supported_gids,
3085 					   enum ib_gid_type default_gid)
3086 {
3087 	if ((network_type == RDMA_NETWORK_IPV4 ||
3088 	     network_type == RDMA_NETWORK_IPV6) &&
3089 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3090 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3091 
3092 	return default_gid;
3093 }
3094 
3095 /*
3096  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3097  * path record type based on GID type.
3098  * It also sets up other L2 fields which includes destination mac address
3099  * netdev ifindex, of the path record.
3100  * It returns the netdev of the bound interface for this path record entry.
3101  */
3102 static struct net_device *
3103 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3104 {
3105 	struct rdma_route *route = &id_priv->id.route;
3106 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3107 	struct rdma_addr *addr = &route->addr;
3108 	unsigned long supported_gids;
3109 	struct net_device *ndev;
3110 
3111 	if (!addr->dev_addr.bound_dev_if)
3112 		return NULL;
3113 
3114 	ndev = dev_get_by_index(addr->dev_addr.net,
3115 				addr->dev_addr.bound_dev_if);
3116 	if (!ndev)
3117 		return NULL;
3118 
3119 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3120 						    id_priv->id.port_num);
3121 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3122 				      supported_gids,
3123 				      id_priv->gid_type);
3124 	/* Use the hint from IP Stack to select GID Type */
3125 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3126 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3127 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3128 
3129 	route->path_rec->roce.route_resolved = true;
3130 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3131 	return ndev;
3132 }
3133 
3134 int rdma_set_ib_path(struct rdma_cm_id *id,
3135 		     struct sa_path_rec *path_rec)
3136 {
3137 	struct rdma_id_private *id_priv;
3138 	struct net_device *ndev;
3139 	int ret;
3140 
3141 	id_priv = container_of(id, struct rdma_id_private, id);
3142 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3143 			   RDMA_CM_ROUTE_RESOLVED))
3144 		return -EINVAL;
3145 
3146 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3147 				     GFP_KERNEL);
3148 	if (!id->route.path_rec) {
3149 		ret = -ENOMEM;
3150 		goto err;
3151 	}
3152 
3153 	if (rdma_protocol_roce(id->device, id->port_num)) {
3154 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3155 		if (!ndev) {
3156 			ret = -ENODEV;
3157 			goto err_free;
3158 		}
3159 		dev_put(ndev);
3160 	}
3161 
3162 	id->route.num_pri_alt_paths = 1;
3163 	return 0;
3164 
3165 err_free:
3166 	kfree(id->route.path_rec);
3167 	id->route.path_rec = NULL;
3168 err:
3169 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3170 	return ret;
3171 }
3172 EXPORT_SYMBOL(rdma_set_ib_path);
3173 
3174 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3175 {
3176 	struct cma_work *work;
3177 
3178 	work = kzalloc(sizeof *work, GFP_KERNEL);
3179 	if (!work)
3180 		return -ENOMEM;
3181 
3182 	cma_init_resolve_route_work(work, id_priv);
3183 	queue_work(cma_wq, &work->work);
3184 	return 0;
3185 }
3186 
3187 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3188 {
3189 	struct net_device *dev;
3190 
3191 	dev = vlan_dev_real_dev(vlan_ndev);
3192 	if (dev->num_tc)
3193 		return netdev_get_prio_tc_map(dev, prio);
3194 
3195 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3196 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3197 }
3198 
3199 struct iboe_prio_tc_map {
3200 	int input_prio;
3201 	int output_tc;
3202 	bool found;
3203 };
3204 
3205 static int get_lower_vlan_dev_tc(struct net_device *dev,
3206 				 struct netdev_nested_priv *priv)
3207 {
3208 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3209 
3210 	if (is_vlan_dev(dev))
3211 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3212 	else if (dev->num_tc)
3213 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3214 	else
3215 		map->output_tc = 0;
3216 	/* We are interested only in first level VLAN device, so always
3217 	 * return 1 to stop iterating over next level devices.
3218 	 */
3219 	map->found = true;
3220 	return 1;
3221 }
3222 
3223 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3224 {
3225 	struct iboe_prio_tc_map prio_tc_map = {};
3226 	int prio = rt_tos2priority(tos);
3227 	struct netdev_nested_priv priv;
3228 
3229 	/* If VLAN device, get it directly from the VLAN netdev */
3230 	if (is_vlan_dev(ndev))
3231 		return get_vlan_ndev_tc(ndev, prio);
3232 
3233 	prio_tc_map.input_prio = prio;
3234 	priv.data = (void *)&prio_tc_map;
3235 	rcu_read_lock();
3236 	netdev_walk_all_lower_dev_rcu(ndev,
3237 				      get_lower_vlan_dev_tc,
3238 				      &priv);
3239 	rcu_read_unlock();
3240 	/* If map is found from lower device, use it; Otherwise
3241 	 * continue with the current netdevice to get priority to tc map.
3242 	 */
3243 	if (prio_tc_map.found)
3244 		return prio_tc_map.output_tc;
3245 	else if (ndev->num_tc)
3246 		return netdev_get_prio_tc_map(ndev, prio);
3247 	else
3248 		return 0;
3249 }
3250 
3251 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3252 {
3253 	struct sockaddr_in6 *addr6;
3254 	u16 dport, sport;
3255 	u32 hash, fl;
3256 
3257 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3258 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3259 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3260 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3261 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3262 		hash = (u32)sport * 31 + dport;
3263 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3264 	}
3265 
3266 	return cpu_to_be32(fl);
3267 }
3268 
3269 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3270 {
3271 	struct rdma_route *route = &id_priv->id.route;
3272 	struct rdma_addr *addr = &route->addr;
3273 	struct cma_work *work;
3274 	int ret;
3275 	struct net_device *ndev;
3276 
3277 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3278 					rdma_start_port(id_priv->cma_dev->device)];
3279 	u8 tos;
3280 
3281 	mutex_lock(&id_priv->qp_mutex);
3282 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3283 	mutex_unlock(&id_priv->qp_mutex);
3284 
3285 	work = kzalloc(sizeof *work, GFP_KERNEL);
3286 	if (!work)
3287 		return -ENOMEM;
3288 
3289 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3290 	if (!route->path_rec) {
3291 		ret = -ENOMEM;
3292 		goto err1;
3293 	}
3294 
3295 	route->num_pri_alt_paths = 1;
3296 
3297 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3298 	if (!ndev) {
3299 		ret = -ENODEV;
3300 		goto err2;
3301 	}
3302 
3303 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3304 		    &route->path_rec->sgid);
3305 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3306 		    &route->path_rec->dgid);
3307 
3308 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3309 		/* TODO: get the hoplimit from the inet/inet6 device */
3310 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3311 	else
3312 		route->path_rec->hop_limit = 1;
3313 	route->path_rec->reversible = 1;
3314 	route->path_rec->pkey = cpu_to_be16(0xffff);
3315 	route->path_rec->mtu_selector = IB_SA_EQ;
3316 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3317 	route->path_rec->traffic_class = tos;
3318 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3319 	route->path_rec->rate_selector = IB_SA_EQ;
3320 	route->path_rec->rate = IB_RATE_PORT_CURRENT;
3321 	dev_put(ndev);
3322 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3323 	/* In case ACK timeout is set, use this value to calculate
3324 	 * PacketLifeTime.  As per IBTA 12.7.34,
3325 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3326 	 * Assuming a negligible local ACK delay, we can use
3327 	 * PacketLifeTime = local ACK timeout/2
3328 	 * as a reasonable approximation for RoCE networks.
3329 	 */
3330 	mutex_lock(&id_priv->qp_mutex);
3331 	if (id_priv->timeout_set && id_priv->timeout)
3332 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3333 	else
3334 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3335 	mutex_unlock(&id_priv->qp_mutex);
3336 
3337 	if (!route->path_rec->mtu) {
3338 		ret = -EINVAL;
3339 		goto err2;
3340 	}
3341 
3342 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3343 					 id_priv->id.port_num))
3344 		route->path_rec->flow_label =
3345 			cma_get_roce_udp_flow_label(id_priv);
3346 
3347 	cma_init_resolve_route_work(work, id_priv);
3348 	queue_work(cma_wq, &work->work);
3349 
3350 	return 0;
3351 
3352 err2:
3353 	kfree(route->path_rec);
3354 	route->path_rec = NULL;
3355 	route->num_pri_alt_paths = 0;
3356 err1:
3357 	kfree(work);
3358 	return ret;
3359 }
3360 
3361 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3362 {
3363 	struct rdma_id_private *id_priv;
3364 	int ret;
3365 
3366 	if (!timeout_ms)
3367 		return -EINVAL;
3368 
3369 	id_priv = container_of(id, struct rdma_id_private, id);
3370 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3371 		return -EINVAL;
3372 
3373 	cma_id_get(id_priv);
3374 	if (rdma_cap_ib_sa(id->device, id->port_num))
3375 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3376 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3377 		ret = cma_resolve_iboe_route(id_priv);
3378 		if (!ret)
3379 			cma_add_id_to_tree(id_priv);
3380 	}
3381 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3382 		ret = cma_resolve_iw_route(id_priv);
3383 	else
3384 		ret = -ENOSYS;
3385 
3386 	if (ret)
3387 		goto err;
3388 
3389 	return 0;
3390 err:
3391 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3392 	cma_id_put(id_priv);
3393 	return ret;
3394 }
3395 EXPORT_SYMBOL(rdma_resolve_route);
3396 
3397 static void cma_set_loopback(struct sockaddr *addr)
3398 {
3399 	switch (addr->sa_family) {
3400 	case AF_INET:
3401 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3402 		break;
3403 	case AF_INET6:
3404 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3405 			      0, 0, 0, htonl(1));
3406 		break;
3407 	default:
3408 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3409 			    0, 0, 0, htonl(1));
3410 		break;
3411 	}
3412 }
3413 
3414 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3415 {
3416 	struct cma_device *cma_dev, *cur_dev;
3417 	union ib_gid gid;
3418 	enum ib_port_state port_state;
3419 	unsigned int p;
3420 	u16 pkey;
3421 	int ret;
3422 
3423 	cma_dev = NULL;
3424 	mutex_lock(&lock);
3425 	list_for_each_entry(cur_dev, &dev_list, list) {
3426 		if (cma_family(id_priv) == AF_IB &&
3427 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3428 			continue;
3429 
3430 		if (!cma_dev)
3431 			cma_dev = cur_dev;
3432 
3433 		rdma_for_each_port (cur_dev->device, p) {
3434 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3435 			    port_state == IB_PORT_ACTIVE) {
3436 				cma_dev = cur_dev;
3437 				goto port_found;
3438 			}
3439 		}
3440 	}
3441 
3442 	if (!cma_dev) {
3443 		ret = -ENODEV;
3444 		goto out;
3445 	}
3446 
3447 	p = 1;
3448 
3449 port_found:
3450 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3451 	if (ret)
3452 		goto out;
3453 
3454 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3455 	if (ret)
3456 		goto out;
3457 
3458 	id_priv->id.route.addr.dev_addr.dev_type =
3459 		(rdma_protocol_ib(cma_dev->device, p)) ?
3460 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3461 
3462 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3463 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3464 	id_priv->id.port_num = p;
3465 	cma_attach_to_dev(id_priv, cma_dev);
3466 	rdma_restrack_add(&id_priv->res);
3467 	cma_set_loopback(cma_src_addr(id_priv));
3468 out:
3469 	mutex_unlock(&lock);
3470 	return ret;
3471 }
3472 
3473 static void addr_handler(int status, struct sockaddr *src_addr,
3474 			 struct rdma_dev_addr *dev_addr, void *context)
3475 {
3476 	struct rdma_id_private *id_priv = context;
3477 	struct rdma_cm_event event = {};
3478 	struct sockaddr *addr;
3479 	struct sockaddr_storage old_addr;
3480 
3481 	mutex_lock(&id_priv->handler_mutex);
3482 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3483 			   RDMA_CM_ADDR_RESOLVED))
3484 		goto out;
3485 
3486 	/*
3487 	 * Store the previous src address, so that if we fail to acquire
3488 	 * matching rdma device, old address can be restored back, which helps
3489 	 * to cancel the cma listen operation correctly.
3490 	 */
3491 	addr = cma_src_addr(id_priv);
3492 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3493 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3494 	if (!status && !id_priv->cma_dev) {
3495 		status = cma_acquire_dev_by_src_ip(id_priv);
3496 		if (status)
3497 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3498 					     status);
3499 		rdma_restrack_add(&id_priv->res);
3500 	} else if (status) {
3501 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3502 	}
3503 
3504 	if (status) {
3505 		memcpy(addr, &old_addr,
3506 		       rdma_addr_size((struct sockaddr *)&old_addr));
3507 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3508 				   RDMA_CM_ADDR_BOUND))
3509 			goto out;
3510 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3511 		event.status = status;
3512 	} else
3513 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3514 
3515 	if (cma_cm_event_handler(id_priv, &event)) {
3516 		destroy_id_handler_unlock(id_priv);
3517 		return;
3518 	}
3519 out:
3520 	mutex_unlock(&id_priv->handler_mutex);
3521 }
3522 
3523 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3524 {
3525 	struct cma_work *work;
3526 	union ib_gid gid;
3527 	int ret;
3528 
3529 	work = kzalloc(sizeof *work, GFP_KERNEL);
3530 	if (!work)
3531 		return -ENOMEM;
3532 
3533 	if (!id_priv->cma_dev) {
3534 		ret = cma_bind_loopback(id_priv);
3535 		if (ret)
3536 			goto err;
3537 	}
3538 
3539 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3540 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3541 
3542 	enqueue_resolve_addr_work(work, id_priv);
3543 	return 0;
3544 err:
3545 	kfree(work);
3546 	return ret;
3547 }
3548 
3549 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3550 {
3551 	struct cma_work *work;
3552 	int ret;
3553 
3554 	work = kzalloc(sizeof *work, GFP_KERNEL);
3555 	if (!work)
3556 		return -ENOMEM;
3557 
3558 	if (!id_priv->cma_dev) {
3559 		ret = cma_resolve_ib_dev(id_priv);
3560 		if (ret)
3561 			goto err;
3562 	}
3563 
3564 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3565 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3566 
3567 	enqueue_resolve_addr_work(work, id_priv);
3568 	return 0;
3569 err:
3570 	kfree(work);
3571 	return ret;
3572 }
3573 
3574 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3575 {
3576 	struct rdma_id_private *id_priv;
3577 	unsigned long flags;
3578 	int ret;
3579 
3580 	id_priv = container_of(id, struct rdma_id_private, id);
3581 	spin_lock_irqsave(&id_priv->lock, flags);
3582 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3583 	    id_priv->state == RDMA_CM_IDLE) {
3584 		id_priv->reuseaddr = reuse;
3585 		ret = 0;
3586 	} else {
3587 		ret = -EINVAL;
3588 	}
3589 	spin_unlock_irqrestore(&id_priv->lock, flags);
3590 	return ret;
3591 }
3592 EXPORT_SYMBOL(rdma_set_reuseaddr);
3593 
3594 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3595 {
3596 	struct rdma_id_private *id_priv;
3597 	unsigned long flags;
3598 	int ret;
3599 
3600 	id_priv = container_of(id, struct rdma_id_private, id);
3601 	spin_lock_irqsave(&id_priv->lock, flags);
3602 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3603 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3604 		id_priv->afonly = afonly;
3605 		ret = 0;
3606 	} else {
3607 		ret = -EINVAL;
3608 	}
3609 	spin_unlock_irqrestore(&id_priv->lock, flags);
3610 	return ret;
3611 }
3612 EXPORT_SYMBOL(rdma_set_afonly);
3613 
3614 static void cma_bind_port(struct rdma_bind_list *bind_list,
3615 			  struct rdma_id_private *id_priv)
3616 {
3617 	struct sockaddr *addr;
3618 	struct sockaddr_ib *sib;
3619 	u64 sid, mask;
3620 	__be16 port;
3621 
3622 	lockdep_assert_held(&lock);
3623 
3624 	addr = cma_src_addr(id_priv);
3625 	port = htons(bind_list->port);
3626 
3627 	switch (addr->sa_family) {
3628 	case AF_INET:
3629 		((struct sockaddr_in *) addr)->sin_port = port;
3630 		break;
3631 	case AF_INET6:
3632 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3633 		break;
3634 	case AF_IB:
3635 		sib = (struct sockaddr_ib *) addr;
3636 		sid = be64_to_cpu(sib->sib_sid);
3637 		mask = be64_to_cpu(sib->sib_sid_mask);
3638 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3639 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3640 		break;
3641 	}
3642 	id_priv->bind_list = bind_list;
3643 	hlist_add_head(&id_priv->node, &bind_list->owners);
3644 }
3645 
3646 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3647 			  struct rdma_id_private *id_priv, unsigned short snum)
3648 {
3649 	struct rdma_bind_list *bind_list;
3650 	int ret;
3651 
3652 	lockdep_assert_held(&lock);
3653 
3654 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3655 	if (!bind_list)
3656 		return -ENOMEM;
3657 
3658 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3659 			   snum);
3660 	if (ret < 0)
3661 		goto err;
3662 
3663 	bind_list->ps = ps;
3664 	bind_list->port = snum;
3665 	cma_bind_port(bind_list, id_priv);
3666 	return 0;
3667 err:
3668 	kfree(bind_list);
3669 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3670 }
3671 
3672 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3673 			      struct rdma_id_private *id_priv)
3674 {
3675 	struct rdma_id_private *cur_id;
3676 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3677 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3678 	__be16 dport = cma_port(daddr);
3679 
3680 	lockdep_assert_held(&lock);
3681 
3682 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3683 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3684 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3685 		__be16 cur_dport = cma_port(cur_daddr);
3686 
3687 		if (id_priv == cur_id)
3688 			continue;
3689 
3690 		/* different dest port -> unique */
3691 		if (!cma_any_port(daddr) &&
3692 		    !cma_any_port(cur_daddr) &&
3693 		    (dport != cur_dport))
3694 			continue;
3695 
3696 		/* different src address -> unique */
3697 		if (!cma_any_addr(saddr) &&
3698 		    !cma_any_addr(cur_saddr) &&
3699 		    cma_addr_cmp(saddr, cur_saddr))
3700 			continue;
3701 
3702 		/* different dst address -> unique */
3703 		if (!cma_any_addr(daddr) &&
3704 		    !cma_any_addr(cur_daddr) &&
3705 		    cma_addr_cmp(daddr, cur_daddr))
3706 			continue;
3707 
3708 		return -EADDRNOTAVAIL;
3709 	}
3710 	return 0;
3711 }
3712 
3713 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3714 			      struct rdma_id_private *id_priv)
3715 {
3716 	static unsigned int last_used_port;
3717 	int low, high, remaining;
3718 	unsigned int rover;
3719 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3720 
3721 	lockdep_assert_held(&lock);
3722 
3723 	inet_get_local_port_range(net, &low, &high);
3724 	remaining = (high - low) + 1;
3725 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3726 retry:
3727 	if (last_used_port != rover) {
3728 		struct rdma_bind_list *bind_list;
3729 		int ret;
3730 
3731 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3732 
3733 		if (!bind_list) {
3734 			ret = cma_alloc_port(ps, id_priv, rover);
3735 		} else {
3736 			ret = cma_port_is_unique(bind_list, id_priv);
3737 			if (!ret)
3738 				cma_bind_port(bind_list, id_priv);
3739 		}
3740 		/*
3741 		 * Remember previously used port number in order to avoid
3742 		 * re-using same port immediately after it is closed.
3743 		 */
3744 		if (!ret)
3745 			last_used_port = rover;
3746 		if (ret != -EADDRNOTAVAIL)
3747 			return ret;
3748 	}
3749 	if (--remaining) {
3750 		rover++;
3751 		if ((rover < low) || (rover > high))
3752 			rover = low;
3753 		goto retry;
3754 	}
3755 	return -EADDRNOTAVAIL;
3756 }
3757 
3758 /*
3759  * Check that the requested port is available.  This is called when trying to
3760  * bind to a specific port, or when trying to listen on a bound port.  In
3761  * the latter case, the provided id_priv may already be on the bind_list, but
3762  * we still need to check that it's okay to start listening.
3763  */
3764 static int cma_check_port(struct rdma_bind_list *bind_list,
3765 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3766 {
3767 	struct rdma_id_private *cur_id;
3768 	struct sockaddr *addr, *cur_addr;
3769 
3770 	lockdep_assert_held(&lock);
3771 
3772 	addr = cma_src_addr(id_priv);
3773 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3774 		if (id_priv == cur_id)
3775 			continue;
3776 
3777 		if (reuseaddr && cur_id->reuseaddr)
3778 			continue;
3779 
3780 		cur_addr = cma_src_addr(cur_id);
3781 		if (id_priv->afonly && cur_id->afonly &&
3782 		    (addr->sa_family != cur_addr->sa_family))
3783 			continue;
3784 
3785 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3786 			return -EADDRNOTAVAIL;
3787 
3788 		if (!cma_addr_cmp(addr, cur_addr))
3789 			return -EADDRINUSE;
3790 	}
3791 	return 0;
3792 }
3793 
3794 static int cma_use_port(enum rdma_ucm_port_space ps,
3795 			struct rdma_id_private *id_priv)
3796 {
3797 	struct rdma_bind_list *bind_list;
3798 	unsigned short snum;
3799 	int ret;
3800 
3801 	lockdep_assert_held(&lock);
3802 
3803 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3804 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3805 		return -EACCES;
3806 
3807 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3808 	if (!bind_list) {
3809 		ret = cma_alloc_port(ps, id_priv, snum);
3810 	} else {
3811 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3812 		if (!ret)
3813 			cma_bind_port(bind_list, id_priv);
3814 	}
3815 	return ret;
3816 }
3817 
3818 static enum rdma_ucm_port_space
3819 cma_select_inet_ps(struct rdma_id_private *id_priv)
3820 {
3821 	switch (id_priv->id.ps) {
3822 	case RDMA_PS_TCP:
3823 	case RDMA_PS_UDP:
3824 	case RDMA_PS_IPOIB:
3825 	case RDMA_PS_IB:
3826 		return id_priv->id.ps;
3827 	default:
3828 
3829 		return 0;
3830 	}
3831 }
3832 
3833 static enum rdma_ucm_port_space
3834 cma_select_ib_ps(struct rdma_id_private *id_priv)
3835 {
3836 	enum rdma_ucm_port_space ps = 0;
3837 	struct sockaddr_ib *sib;
3838 	u64 sid_ps, mask, sid;
3839 
3840 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3841 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3842 	sid = be64_to_cpu(sib->sib_sid) & mask;
3843 
3844 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3845 		sid_ps = RDMA_IB_IP_PS_IB;
3846 		ps = RDMA_PS_IB;
3847 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3848 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3849 		sid_ps = RDMA_IB_IP_PS_TCP;
3850 		ps = RDMA_PS_TCP;
3851 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3852 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3853 		sid_ps = RDMA_IB_IP_PS_UDP;
3854 		ps = RDMA_PS_UDP;
3855 	}
3856 
3857 	if (ps) {
3858 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3859 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3860 						be64_to_cpu(sib->sib_sid_mask));
3861 	}
3862 	return ps;
3863 }
3864 
3865 static int cma_get_port(struct rdma_id_private *id_priv)
3866 {
3867 	enum rdma_ucm_port_space ps;
3868 	int ret;
3869 
3870 	if (cma_family(id_priv) != AF_IB)
3871 		ps = cma_select_inet_ps(id_priv);
3872 	else
3873 		ps = cma_select_ib_ps(id_priv);
3874 	if (!ps)
3875 		return -EPROTONOSUPPORT;
3876 
3877 	mutex_lock(&lock);
3878 	if (cma_any_port(cma_src_addr(id_priv)))
3879 		ret = cma_alloc_any_port(ps, id_priv);
3880 	else
3881 		ret = cma_use_port(ps, id_priv);
3882 	mutex_unlock(&lock);
3883 
3884 	return ret;
3885 }
3886 
3887 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3888 			       struct sockaddr *addr)
3889 {
3890 #if IS_ENABLED(CONFIG_IPV6)
3891 	struct sockaddr_in6 *sin6;
3892 
3893 	if (addr->sa_family != AF_INET6)
3894 		return 0;
3895 
3896 	sin6 = (struct sockaddr_in6 *) addr;
3897 
3898 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3899 		return 0;
3900 
3901 	if (!sin6->sin6_scope_id)
3902 			return -EINVAL;
3903 
3904 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3905 #endif
3906 	return 0;
3907 }
3908 
3909 int rdma_listen(struct rdma_cm_id *id, int backlog)
3910 {
3911 	struct rdma_id_private *id_priv =
3912 		container_of(id, struct rdma_id_private, id);
3913 	int ret;
3914 
3915 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3916 		struct sockaddr_in any_in = {
3917 			.sin_family = AF_INET,
3918 			.sin_addr.s_addr = htonl(INADDR_ANY),
3919 		};
3920 
3921 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3922 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3923 		if (ret)
3924 			return ret;
3925 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3926 					   RDMA_CM_LISTEN)))
3927 			return -EINVAL;
3928 	}
3929 
3930 	/*
3931 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3932 	 * any more, and has to be unique in the bind list.
3933 	 */
3934 	if (id_priv->reuseaddr) {
3935 		mutex_lock(&lock);
3936 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3937 		if (!ret)
3938 			id_priv->reuseaddr = 0;
3939 		mutex_unlock(&lock);
3940 		if (ret)
3941 			goto err;
3942 	}
3943 
3944 	id_priv->backlog = backlog;
3945 	if (id_priv->cma_dev) {
3946 		if (rdma_cap_ib_cm(id->device, 1)) {
3947 			ret = cma_ib_listen(id_priv);
3948 			if (ret)
3949 				goto err;
3950 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3951 			ret = cma_iw_listen(id_priv, backlog);
3952 			if (ret)
3953 				goto err;
3954 		} else {
3955 			ret = -ENOSYS;
3956 			goto err;
3957 		}
3958 	} else {
3959 		ret = cma_listen_on_all(id_priv);
3960 		if (ret)
3961 			goto err;
3962 	}
3963 
3964 	return 0;
3965 err:
3966 	id_priv->backlog = 0;
3967 	/*
3968 	 * All the failure paths that lead here will not allow the req_handler's
3969 	 * to have run.
3970 	 */
3971 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3972 	return ret;
3973 }
3974 EXPORT_SYMBOL(rdma_listen);
3975 
3976 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
3977 			      struct sockaddr *addr, const struct sockaddr *daddr)
3978 {
3979 	struct sockaddr *id_daddr;
3980 	int ret;
3981 
3982 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3983 	    addr->sa_family != AF_IB)
3984 		return -EAFNOSUPPORT;
3985 
3986 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3987 		return -EINVAL;
3988 
3989 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
3990 	if (ret)
3991 		goto err1;
3992 
3993 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3994 	if (!cma_any_addr(addr)) {
3995 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
3996 		if (ret)
3997 			goto err1;
3998 
3999 		ret = cma_acquire_dev_by_src_ip(id_priv);
4000 		if (ret)
4001 			goto err1;
4002 	}
4003 
4004 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4005 		if (addr->sa_family == AF_INET)
4006 			id_priv->afonly = 1;
4007 #if IS_ENABLED(CONFIG_IPV6)
4008 		else if (addr->sa_family == AF_INET6) {
4009 			struct net *net = id_priv->id.route.addr.dev_addr.net;
4010 
4011 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
4012 		}
4013 #endif
4014 	}
4015 	id_daddr = cma_dst_addr(id_priv);
4016 	if (daddr != id_daddr)
4017 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
4018 	id_daddr->sa_family = addr->sa_family;
4019 
4020 	ret = cma_get_port(id_priv);
4021 	if (ret)
4022 		goto err2;
4023 
4024 	if (!cma_any_addr(addr))
4025 		rdma_restrack_add(&id_priv->res);
4026 	return 0;
4027 err2:
4028 	if (id_priv->cma_dev)
4029 		cma_release_dev(id_priv);
4030 err1:
4031 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4032 	return ret;
4033 }
4034 
4035 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4036 			 const struct sockaddr *dst_addr)
4037 {
4038 	struct rdma_id_private *id_priv =
4039 		container_of(id, struct rdma_id_private, id);
4040 	struct sockaddr_storage zero_sock = {};
4041 
4042 	if (src_addr && src_addr->sa_family)
4043 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4044 
4045 	/*
4046 	 * When the src_addr is not specified, automatically supply an any addr
4047 	 */
4048 	zero_sock.ss_family = dst_addr->sa_family;
4049 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4050 		struct sockaddr_in6 *src_addr6 =
4051 			(struct sockaddr_in6 *)&zero_sock;
4052 		struct sockaddr_in6 *dst_addr6 =
4053 			(struct sockaddr_in6 *)dst_addr;
4054 
4055 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4056 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4057 			id->route.addr.dev_addr.bound_dev_if =
4058 				dst_addr6->sin6_scope_id;
4059 	} else if (dst_addr->sa_family == AF_IB) {
4060 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4061 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4062 	}
4063 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4064 }
4065 
4066 /*
4067  * If required, resolve the source address for bind and leave the id_priv in
4068  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4069  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4070  * ignored.
4071  */
4072 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4073 			       struct sockaddr *src_addr,
4074 			       const struct sockaddr *dst_addr)
4075 {
4076 	int ret;
4077 
4078 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4079 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4080 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4081 		if (ret)
4082 			return ret;
4083 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4084 					   RDMA_CM_ADDR_QUERY)))
4085 			return -EINVAL;
4086 
4087 	} else {
4088 		memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4089 	}
4090 
4091 	if (cma_family(id_priv) != dst_addr->sa_family) {
4092 		ret = -EINVAL;
4093 		goto err_state;
4094 	}
4095 	return 0;
4096 
4097 err_state:
4098 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4099 	return ret;
4100 }
4101 
4102 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4103 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4104 {
4105 	struct rdma_id_private *id_priv =
4106 		container_of(id, struct rdma_id_private, id);
4107 	int ret;
4108 
4109 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4110 	if (ret)
4111 		return ret;
4112 
4113 	if (cma_any_addr(dst_addr)) {
4114 		ret = cma_resolve_loopback(id_priv);
4115 	} else {
4116 		if (dst_addr->sa_family == AF_IB) {
4117 			ret = cma_resolve_ib_addr(id_priv);
4118 		} else {
4119 			/*
4120 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4121 			 * rdma_resolve_ip() is called, eg through the error
4122 			 * path in addr_handler(). If this happens the existing
4123 			 * request must be canceled before issuing a new one.
4124 			 * Since canceling a request is a bit slow and this
4125 			 * oddball path is rare, keep track once a request has
4126 			 * been issued. The track turns out to be a permanent
4127 			 * state since this is the only cancel as it is
4128 			 * immediately before rdma_resolve_ip().
4129 			 */
4130 			if (id_priv->used_resolve_ip)
4131 				rdma_addr_cancel(&id->route.addr.dev_addr);
4132 			else
4133 				id_priv->used_resolve_ip = 1;
4134 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4135 					      &id->route.addr.dev_addr,
4136 					      timeout_ms, addr_handler,
4137 					      false, id_priv);
4138 		}
4139 	}
4140 	if (ret)
4141 		goto err;
4142 
4143 	return 0;
4144 err:
4145 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4146 	return ret;
4147 }
4148 EXPORT_SYMBOL(rdma_resolve_addr);
4149 
4150 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4151 {
4152 	struct rdma_id_private *id_priv =
4153 		container_of(id, struct rdma_id_private, id);
4154 
4155 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4156 }
4157 EXPORT_SYMBOL(rdma_bind_addr);
4158 
4159 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4160 {
4161 	struct cma_hdr *cma_hdr;
4162 
4163 	cma_hdr = hdr;
4164 	cma_hdr->cma_version = CMA_VERSION;
4165 	if (cma_family(id_priv) == AF_INET) {
4166 		struct sockaddr_in *src4, *dst4;
4167 
4168 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4169 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4170 
4171 		cma_set_ip_ver(cma_hdr, 4);
4172 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4173 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4174 		cma_hdr->port = src4->sin_port;
4175 	} else if (cma_family(id_priv) == AF_INET6) {
4176 		struct sockaddr_in6 *src6, *dst6;
4177 
4178 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4179 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4180 
4181 		cma_set_ip_ver(cma_hdr, 6);
4182 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4183 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4184 		cma_hdr->port = src6->sin6_port;
4185 	}
4186 	return 0;
4187 }
4188 
4189 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4190 				const struct ib_cm_event *ib_event)
4191 {
4192 	struct rdma_id_private *id_priv = cm_id->context;
4193 	struct rdma_cm_event event = {};
4194 	const struct ib_cm_sidr_rep_event_param *rep =
4195 				&ib_event->param.sidr_rep_rcvd;
4196 	int ret;
4197 
4198 	mutex_lock(&id_priv->handler_mutex);
4199 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4200 		goto out;
4201 
4202 	switch (ib_event->event) {
4203 	case IB_CM_SIDR_REQ_ERROR:
4204 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4205 		event.status = -ETIMEDOUT;
4206 		break;
4207 	case IB_CM_SIDR_REP_RECEIVED:
4208 		event.param.ud.private_data = ib_event->private_data;
4209 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4210 		if (rep->status != IB_SIDR_SUCCESS) {
4211 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4212 			event.status = ib_event->param.sidr_rep_rcvd.status;
4213 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4214 					     event.status);
4215 			break;
4216 		}
4217 		ret = cma_set_qkey(id_priv, rep->qkey);
4218 		if (ret) {
4219 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4220 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4221 			event.status = ret;
4222 			break;
4223 		}
4224 		ib_init_ah_attr_from_path(id_priv->id.device,
4225 					  id_priv->id.port_num,
4226 					  id_priv->id.route.path_rec,
4227 					  &event.param.ud.ah_attr,
4228 					  rep->sgid_attr);
4229 		event.param.ud.qp_num = rep->qpn;
4230 		event.param.ud.qkey = rep->qkey;
4231 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4232 		event.status = 0;
4233 		break;
4234 	default:
4235 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4236 		       ib_event->event);
4237 		goto out;
4238 	}
4239 
4240 	ret = cma_cm_event_handler(id_priv, &event);
4241 
4242 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4243 	if (ret) {
4244 		/* Destroy the CM ID by returning a non-zero value. */
4245 		id_priv->cm_id.ib = NULL;
4246 		destroy_id_handler_unlock(id_priv);
4247 		return ret;
4248 	}
4249 out:
4250 	mutex_unlock(&id_priv->handler_mutex);
4251 	return 0;
4252 }
4253 
4254 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4255 			      struct rdma_conn_param *conn_param)
4256 {
4257 	struct ib_cm_sidr_req_param req;
4258 	struct ib_cm_id	*id;
4259 	void *private_data;
4260 	u8 offset;
4261 	int ret;
4262 
4263 	memset(&req, 0, sizeof req);
4264 	offset = cma_user_data_offset(id_priv);
4265 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4266 		return -EINVAL;
4267 
4268 	if (req.private_data_len) {
4269 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4270 		if (!private_data)
4271 			return -ENOMEM;
4272 	} else {
4273 		private_data = NULL;
4274 	}
4275 
4276 	if (conn_param->private_data && conn_param->private_data_len)
4277 		memcpy(private_data + offset, conn_param->private_data,
4278 		       conn_param->private_data_len);
4279 
4280 	if (private_data) {
4281 		ret = cma_format_hdr(private_data, id_priv);
4282 		if (ret)
4283 			goto out;
4284 		req.private_data = private_data;
4285 	}
4286 
4287 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4288 			     id_priv);
4289 	if (IS_ERR(id)) {
4290 		ret = PTR_ERR(id);
4291 		goto out;
4292 	}
4293 	id_priv->cm_id.ib = id;
4294 
4295 	req.path = id_priv->id.route.path_rec;
4296 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4297 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4298 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4299 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4300 
4301 	trace_cm_send_sidr_req(id_priv);
4302 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4303 	if (ret) {
4304 		ib_destroy_cm_id(id_priv->cm_id.ib);
4305 		id_priv->cm_id.ib = NULL;
4306 	}
4307 out:
4308 	kfree(private_data);
4309 	return ret;
4310 }
4311 
4312 static int cma_connect_ib(struct rdma_id_private *id_priv,
4313 			  struct rdma_conn_param *conn_param)
4314 {
4315 	struct ib_cm_req_param req;
4316 	struct rdma_route *route;
4317 	void *private_data;
4318 	struct ib_cm_id	*id;
4319 	u8 offset;
4320 	int ret;
4321 
4322 	memset(&req, 0, sizeof req);
4323 	offset = cma_user_data_offset(id_priv);
4324 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4325 		return -EINVAL;
4326 
4327 	if (req.private_data_len) {
4328 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4329 		if (!private_data)
4330 			return -ENOMEM;
4331 	} else {
4332 		private_data = NULL;
4333 	}
4334 
4335 	if (conn_param->private_data && conn_param->private_data_len)
4336 		memcpy(private_data + offset, conn_param->private_data,
4337 		       conn_param->private_data_len);
4338 
4339 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4340 	if (IS_ERR(id)) {
4341 		ret = PTR_ERR(id);
4342 		goto out;
4343 	}
4344 	id_priv->cm_id.ib = id;
4345 
4346 	route = &id_priv->id.route;
4347 	if (private_data) {
4348 		ret = cma_format_hdr(private_data, id_priv);
4349 		if (ret)
4350 			goto out;
4351 		req.private_data = private_data;
4352 	}
4353 
4354 	req.primary_path = &route->path_rec[0];
4355 	req.primary_path_inbound = route->path_rec_inbound;
4356 	req.primary_path_outbound = route->path_rec_outbound;
4357 	if (route->num_pri_alt_paths == 2)
4358 		req.alternate_path = &route->path_rec[1];
4359 
4360 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4361 	/* Alternate path SGID attribute currently unsupported */
4362 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4363 	req.qp_num = id_priv->qp_num;
4364 	req.qp_type = id_priv->id.qp_type;
4365 	req.starting_psn = id_priv->seq_num;
4366 	req.responder_resources = conn_param->responder_resources;
4367 	req.initiator_depth = conn_param->initiator_depth;
4368 	req.flow_control = conn_param->flow_control;
4369 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4370 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4371 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4372 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4373 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4374 	req.srq = id_priv->srq ? 1 : 0;
4375 	req.ece.vendor_id = id_priv->ece.vendor_id;
4376 	req.ece.attr_mod = id_priv->ece.attr_mod;
4377 
4378 	trace_cm_send_req(id_priv);
4379 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4380 out:
4381 	if (ret && !IS_ERR(id)) {
4382 		ib_destroy_cm_id(id);
4383 		id_priv->cm_id.ib = NULL;
4384 	}
4385 
4386 	kfree(private_data);
4387 	return ret;
4388 }
4389 
4390 static int cma_connect_iw(struct rdma_id_private *id_priv,
4391 			  struct rdma_conn_param *conn_param)
4392 {
4393 	struct iw_cm_id *cm_id;
4394 	int ret;
4395 	struct iw_cm_conn_param iw_param;
4396 
4397 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4398 	if (IS_ERR(cm_id))
4399 		return PTR_ERR(cm_id);
4400 
4401 	mutex_lock(&id_priv->qp_mutex);
4402 	cm_id->tos = id_priv->tos;
4403 	cm_id->tos_set = id_priv->tos_set;
4404 	mutex_unlock(&id_priv->qp_mutex);
4405 
4406 	id_priv->cm_id.iw = cm_id;
4407 
4408 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4409 	       rdma_addr_size(cma_src_addr(id_priv)));
4410 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4411 	       rdma_addr_size(cma_dst_addr(id_priv)));
4412 
4413 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4414 	if (ret)
4415 		goto out;
4416 
4417 	if (conn_param) {
4418 		iw_param.ord = conn_param->initiator_depth;
4419 		iw_param.ird = conn_param->responder_resources;
4420 		iw_param.private_data = conn_param->private_data;
4421 		iw_param.private_data_len = conn_param->private_data_len;
4422 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4423 	} else {
4424 		memset(&iw_param, 0, sizeof iw_param);
4425 		iw_param.qpn = id_priv->qp_num;
4426 	}
4427 	ret = iw_cm_connect(cm_id, &iw_param);
4428 out:
4429 	if (ret) {
4430 		iw_destroy_cm_id(cm_id);
4431 		id_priv->cm_id.iw = NULL;
4432 	}
4433 	return ret;
4434 }
4435 
4436 /**
4437  * rdma_connect_locked - Initiate an active connection request.
4438  * @id: Connection identifier to connect.
4439  * @conn_param: Connection information used for connected QPs.
4440  *
4441  * Same as rdma_connect() but can only be called from the
4442  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4443  */
4444 int rdma_connect_locked(struct rdma_cm_id *id,
4445 			struct rdma_conn_param *conn_param)
4446 {
4447 	struct rdma_id_private *id_priv =
4448 		container_of(id, struct rdma_id_private, id);
4449 	int ret;
4450 
4451 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4452 		return -EINVAL;
4453 
4454 	if (!id->qp) {
4455 		id_priv->qp_num = conn_param->qp_num;
4456 		id_priv->srq = conn_param->srq;
4457 	}
4458 
4459 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4460 		if (id->qp_type == IB_QPT_UD)
4461 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4462 		else
4463 			ret = cma_connect_ib(id_priv, conn_param);
4464 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4465 		ret = cma_connect_iw(id_priv, conn_param);
4466 	} else {
4467 		ret = -ENOSYS;
4468 	}
4469 	if (ret)
4470 		goto err_state;
4471 	return 0;
4472 err_state:
4473 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4474 	return ret;
4475 }
4476 EXPORT_SYMBOL(rdma_connect_locked);
4477 
4478 /**
4479  * rdma_connect - Initiate an active connection request.
4480  * @id: Connection identifier to connect.
4481  * @conn_param: Connection information used for connected QPs.
4482  *
4483  * Users must have resolved a route for the rdma_cm_id to connect with by having
4484  * called rdma_resolve_route before calling this routine.
4485  *
4486  * This call will either connect to a remote QP or obtain remote QP information
4487  * for unconnected rdma_cm_id's.  The actual operation is based on the
4488  * rdma_cm_id's port space.
4489  */
4490 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4491 {
4492 	struct rdma_id_private *id_priv =
4493 		container_of(id, struct rdma_id_private, id);
4494 	int ret;
4495 
4496 	mutex_lock(&id_priv->handler_mutex);
4497 	ret = rdma_connect_locked(id, conn_param);
4498 	mutex_unlock(&id_priv->handler_mutex);
4499 	return ret;
4500 }
4501 EXPORT_SYMBOL(rdma_connect);
4502 
4503 /**
4504  * rdma_connect_ece - Initiate an active connection request with ECE data.
4505  * @id: Connection identifier to connect.
4506  * @conn_param: Connection information used for connected QPs.
4507  * @ece: ECE parameters
4508  *
4509  * See rdma_connect() explanation.
4510  */
4511 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4512 		     struct rdma_ucm_ece *ece)
4513 {
4514 	struct rdma_id_private *id_priv =
4515 		container_of(id, struct rdma_id_private, id);
4516 
4517 	id_priv->ece.vendor_id = ece->vendor_id;
4518 	id_priv->ece.attr_mod = ece->attr_mod;
4519 
4520 	return rdma_connect(id, conn_param);
4521 }
4522 EXPORT_SYMBOL(rdma_connect_ece);
4523 
4524 static int cma_accept_ib(struct rdma_id_private *id_priv,
4525 			 struct rdma_conn_param *conn_param)
4526 {
4527 	struct ib_cm_rep_param rep;
4528 	int ret;
4529 
4530 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4531 	if (ret)
4532 		goto out;
4533 
4534 	ret = cma_modify_qp_rts(id_priv, conn_param);
4535 	if (ret)
4536 		goto out;
4537 
4538 	memset(&rep, 0, sizeof rep);
4539 	rep.qp_num = id_priv->qp_num;
4540 	rep.starting_psn = id_priv->seq_num;
4541 	rep.private_data = conn_param->private_data;
4542 	rep.private_data_len = conn_param->private_data_len;
4543 	rep.responder_resources = conn_param->responder_resources;
4544 	rep.initiator_depth = conn_param->initiator_depth;
4545 	rep.failover_accepted = 0;
4546 	rep.flow_control = conn_param->flow_control;
4547 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4548 	rep.srq = id_priv->srq ? 1 : 0;
4549 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4550 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4551 
4552 	trace_cm_send_rep(id_priv);
4553 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4554 out:
4555 	return ret;
4556 }
4557 
4558 static int cma_accept_iw(struct rdma_id_private *id_priv,
4559 		  struct rdma_conn_param *conn_param)
4560 {
4561 	struct iw_cm_conn_param iw_param;
4562 	int ret;
4563 
4564 	if (!conn_param)
4565 		return -EINVAL;
4566 
4567 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4568 	if (ret)
4569 		return ret;
4570 
4571 	iw_param.ord = conn_param->initiator_depth;
4572 	iw_param.ird = conn_param->responder_resources;
4573 	iw_param.private_data = conn_param->private_data;
4574 	iw_param.private_data_len = conn_param->private_data_len;
4575 	if (id_priv->id.qp)
4576 		iw_param.qpn = id_priv->qp_num;
4577 	else
4578 		iw_param.qpn = conn_param->qp_num;
4579 
4580 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4581 }
4582 
4583 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4584 			     enum ib_cm_sidr_status status, u32 qkey,
4585 			     const void *private_data, int private_data_len)
4586 {
4587 	struct ib_cm_sidr_rep_param rep;
4588 	int ret;
4589 
4590 	memset(&rep, 0, sizeof rep);
4591 	rep.status = status;
4592 	if (status == IB_SIDR_SUCCESS) {
4593 		if (qkey)
4594 			ret = cma_set_qkey(id_priv, qkey);
4595 		else
4596 			ret = cma_set_default_qkey(id_priv);
4597 		if (ret)
4598 			return ret;
4599 		rep.qp_num = id_priv->qp_num;
4600 		rep.qkey = id_priv->qkey;
4601 
4602 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4603 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4604 	}
4605 
4606 	rep.private_data = private_data;
4607 	rep.private_data_len = private_data_len;
4608 
4609 	trace_cm_send_sidr_rep(id_priv);
4610 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4611 }
4612 
4613 /**
4614  * rdma_accept - Called to accept a connection request or response.
4615  * @id: Connection identifier associated with the request.
4616  * @conn_param: Information needed to establish the connection.  This must be
4617  *   provided if accepting a connection request.  If accepting a connection
4618  *   response, this parameter must be NULL.
4619  *
4620  * Typically, this routine is only called by the listener to accept a connection
4621  * request.  It must also be called on the active side of a connection if the
4622  * user is performing their own QP transitions.
4623  *
4624  * In the case of error, a reject message is sent to the remote side and the
4625  * state of the qp associated with the id is modified to error, such that any
4626  * previously posted receive buffers would be flushed.
4627  *
4628  * This function is for use by kernel ULPs and must be called from under the
4629  * handler callback.
4630  */
4631 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4632 {
4633 	struct rdma_id_private *id_priv =
4634 		container_of(id, struct rdma_id_private, id);
4635 	int ret;
4636 
4637 	lockdep_assert_held(&id_priv->handler_mutex);
4638 
4639 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4640 		return -EINVAL;
4641 
4642 	if (!id->qp && conn_param) {
4643 		id_priv->qp_num = conn_param->qp_num;
4644 		id_priv->srq = conn_param->srq;
4645 	}
4646 
4647 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4648 		if (id->qp_type == IB_QPT_UD) {
4649 			if (conn_param)
4650 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4651 							conn_param->qkey,
4652 							conn_param->private_data,
4653 							conn_param->private_data_len);
4654 			else
4655 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4656 							0, NULL, 0);
4657 		} else {
4658 			if (conn_param)
4659 				ret = cma_accept_ib(id_priv, conn_param);
4660 			else
4661 				ret = cma_rep_recv(id_priv);
4662 		}
4663 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4664 		ret = cma_accept_iw(id_priv, conn_param);
4665 	} else {
4666 		ret = -ENOSYS;
4667 	}
4668 	if (ret)
4669 		goto reject;
4670 
4671 	return 0;
4672 reject:
4673 	cma_modify_qp_err(id_priv);
4674 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4675 	return ret;
4676 }
4677 EXPORT_SYMBOL(rdma_accept);
4678 
4679 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4680 		    struct rdma_ucm_ece *ece)
4681 {
4682 	struct rdma_id_private *id_priv =
4683 		container_of(id, struct rdma_id_private, id);
4684 
4685 	id_priv->ece.vendor_id = ece->vendor_id;
4686 	id_priv->ece.attr_mod = ece->attr_mod;
4687 
4688 	return rdma_accept(id, conn_param);
4689 }
4690 EXPORT_SYMBOL(rdma_accept_ece);
4691 
4692 void rdma_lock_handler(struct rdma_cm_id *id)
4693 {
4694 	struct rdma_id_private *id_priv =
4695 		container_of(id, struct rdma_id_private, id);
4696 
4697 	mutex_lock(&id_priv->handler_mutex);
4698 }
4699 EXPORT_SYMBOL(rdma_lock_handler);
4700 
4701 void rdma_unlock_handler(struct rdma_cm_id *id)
4702 {
4703 	struct rdma_id_private *id_priv =
4704 		container_of(id, struct rdma_id_private, id);
4705 
4706 	mutex_unlock(&id_priv->handler_mutex);
4707 }
4708 EXPORT_SYMBOL(rdma_unlock_handler);
4709 
4710 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4711 {
4712 	struct rdma_id_private *id_priv;
4713 	int ret;
4714 
4715 	id_priv = container_of(id, struct rdma_id_private, id);
4716 	if (!id_priv->cm_id.ib)
4717 		return -EINVAL;
4718 
4719 	switch (id->device->node_type) {
4720 	case RDMA_NODE_IB_CA:
4721 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4722 		break;
4723 	default:
4724 		ret = 0;
4725 		break;
4726 	}
4727 	return ret;
4728 }
4729 EXPORT_SYMBOL(rdma_notify);
4730 
4731 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4732 		u8 private_data_len, u8 reason)
4733 {
4734 	struct rdma_id_private *id_priv;
4735 	int ret;
4736 
4737 	id_priv = container_of(id, struct rdma_id_private, id);
4738 	if (!id_priv->cm_id.ib)
4739 		return -EINVAL;
4740 
4741 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4742 		if (id->qp_type == IB_QPT_UD) {
4743 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4744 						private_data, private_data_len);
4745 		} else {
4746 			trace_cm_send_rej(id_priv);
4747 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4748 					     private_data, private_data_len);
4749 		}
4750 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4751 		ret = iw_cm_reject(id_priv->cm_id.iw,
4752 				   private_data, private_data_len);
4753 	} else {
4754 		ret = -ENOSYS;
4755 	}
4756 
4757 	return ret;
4758 }
4759 EXPORT_SYMBOL(rdma_reject);
4760 
4761 int rdma_disconnect(struct rdma_cm_id *id)
4762 {
4763 	struct rdma_id_private *id_priv;
4764 	int ret;
4765 
4766 	id_priv = container_of(id, struct rdma_id_private, id);
4767 	if (!id_priv->cm_id.ib)
4768 		return -EINVAL;
4769 
4770 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4771 		ret = cma_modify_qp_err(id_priv);
4772 		if (ret)
4773 			goto out;
4774 		/* Initiate or respond to a disconnect. */
4775 		trace_cm_disconnect(id_priv);
4776 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4777 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4778 				trace_cm_sent_drep(id_priv);
4779 		} else {
4780 			trace_cm_sent_dreq(id_priv);
4781 		}
4782 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4783 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4784 	} else
4785 		ret = -EINVAL;
4786 
4787 out:
4788 	return ret;
4789 }
4790 EXPORT_SYMBOL(rdma_disconnect);
4791 
4792 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4793 			      struct ib_sa_multicast *multicast,
4794 			      struct rdma_cm_event *event,
4795 			      struct cma_multicast *mc)
4796 {
4797 	struct rdma_dev_addr *dev_addr;
4798 	enum ib_gid_type gid_type;
4799 	struct net_device *ndev;
4800 
4801 	if (status)
4802 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4803 				     status);
4804 
4805 	event->status = status;
4806 	event->param.ud.private_data = mc->context;
4807 	if (status) {
4808 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4809 		return;
4810 	}
4811 
4812 	dev_addr = &id_priv->id.route.addr.dev_addr;
4813 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4814 	gid_type =
4815 		id_priv->cma_dev
4816 			->default_gid_type[id_priv->id.port_num -
4817 					   rdma_start_port(
4818 						   id_priv->cma_dev->device)];
4819 
4820 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4821 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4822 				     &multicast->rec, ndev, gid_type,
4823 				     &event->param.ud.ah_attr)) {
4824 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4825 		goto out;
4826 	}
4827 
4828 	event->param.ud.qp_num = 0xFFFFFF;
4829 	event->param.ud.qkey = id_priv->qkey;
4830 
4831 out:
4832 	dev_put(ndev);
4833 }
4834 
4835 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4836 {
4837 	struct cma_multicast *mc = multicast->context;
4838 	struct rdma_id_private *id_priv = mc->id_priv;
4839 	struct rdma_cm_event event = {};
4840 	int ret = 0;
4841 
4842 	mutex_lock(&id_priv->handler_mutex);
4843 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4844 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4845 		goto out;
4846 
4847 	ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4848 	if (!ret) {
4849 		cma_make_mc_event(status, id_priv, multicast, &event, mc);
4850 		ret = cma_cm_event_handler(id_priv, &event);
4851 	}
4852 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4853 	WARN_ON(ret);
4854 
4855 out:
4856 	mutex_unlock(&id_priv->handler_mutex);
4857 	return 0;
4858 }
4859 
4860 static void cma_set_mgid(struct rdma_id_private *id_priv,
4861 			 struct sockaddr *addr, union ib_gid *mgid)
4862 {
4863 	unsigned char mc_map[MAX_ADDR_LEN];
4864 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4865 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4866 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4867 
4868 	if (cma_any_addr(addr)) {
4869 		memset(mgid, 0, sizeof *mgid);
4870 	} else if ((addr->sa_family == AF_INET6) &&
4871 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4872 								 0xFF10A01B)) {
4873 		/* IPv6 address is an SA assigned MGID. */
4874 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4875 	} else if (addr->sa_family == AF_IB) {
4876 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4877 	} else if (addr->sa_family == AF_INET6) {
4878 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4879 		if (id_priv->id.ps == RDMA_PS_UDP)
4880 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4881 		*mgid = *(union ib_gid *) (mc_map + 4);
4882 	} else {
4883 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4884 		if (id_priv->id.ps == RDMA_PS_UDP)
4885 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4886 		*mgid = *(union ib_gid *) (mc_map + 4);
4887 	}
4888 }
4889 
4890 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4891 				 struct cma_multicast *mc)
4892 {
4893 	struct ib_sa_mcmember_rec rec;
4894 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4895 	ib_sa_comp_mask comp_mask;
4896 	int ret;
4897 
4898 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4899 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4900 				     &rec.mgid, &rec);
4901 	if (ret)
4902 		return ret;
4903 
4904 	if (!id_priv->qkey) {
4905 		ret = cma_set_default_qkey(id_priv);
4906 		if (ret)
4907 			return ret;
4908 	}
4909 
4910 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4911 	rec.qkey = cpu_to_be32(id_priv->qkey);
4912 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4913 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4914 	rec.join_state = mc->join_state;
4915 
4916 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4917 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4918 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4919 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4920 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4921 
4922 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4923 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4924 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4925 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4926 			     IB_SA_MCMEMBER_REC_MTU |
4927 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4928 
4929 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4930 					 id_priv->id.port_num, &rec, comp_mask,
4931 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4932 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4933 }
4934 
4935 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4936 			      enum ib_gid_type gid_type)
4937 {
4938 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4939 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4940 
4941 	if (cma_any_addr(addr)) {
4942 		memset(mgid, 0, sizeof *mgid);
4943 	} else if (addr->sa_family == AF_INET6) {
4944 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4945 	} else {
4946 		mgid->raw[0] =
4947 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4948 		mgid->raw[1] =
4949 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4950 		mgid->raw[2] = 0;
4951 		mgid->raw[3] = 0;
4952 		mgid->raw[4] = 0;
4953 		mgid->raw[5] = 0;
4954 		mgid->raw[6] = 0;
4955 		mgid->raw[7] = 0;
4956 		mgid->raw[8] = 0;
4957 		mgid->raw[9] = 0;
4958 		mgid->raw[10] = 0xff;
4959 		mgid->raw[11] = 0xff;
4960 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4961 	}
4962 }
4963 
4964 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4965 				   struct cma_multicast *mc)
4966 {
4967 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4968 	int err = 0;
4969 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4970 	struct net_device *ndev = NULL;
4971 	struct ib_sa_multicast ib = {};
4972 	enum ib_gid_type gid_type;
4973 	bool send_only;
4974 
4975 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4976 
4977 	if (cma_zero_addr(addr))
4978 		return -EINVAL;
4979 
4980 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4981 		   rdma_start_port(id_priv->cma_dev->device)];
4982 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4983 
4984 	ib.rec.pkey = cpu_to_be16(0xffff);
4985 	if (dev_addr->bound_dev_if)
4986 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4987 	if (!ndev)
4988 		return -ENODEV;
4989 
4990 	ib.rec.rate = IB_RATE_PORT_CURRENT;
4991 	ib.rec.hop_limit = 1;
4992 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4993 
4994 	if (addr->sa_family == AF_INET) {
4995 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4996 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4997 			if (!send_only) {
4998 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4999 						    true);
5000 			}
5001 		}
5002 	} else {
5003 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
5004 			err = -ENOTSUPP;
5005 	}
5006 	dev_put(ndev);
5007 	if (err || !ib.rec.mtu)
5008 		return err ?: -EINVAL;
5009 
5010 	if (!id_priv->qkey)
5011 		cma_set_default_qkey(id_priv);
5012 
5013 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
5014 		    &ib.rec.port_gid);
5015 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
5016 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
5017 	queue_work(cma_wq, &mc->iboe_join.work);
5018 	return 0;
5019 }
5020 
5021 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5022 			u8 join_state, void *context)
5023 {
5024 	struct rdma_id_private *id_priv =
5025 		container_of(id, struct rdma_id_private, id);
5026 	struct cma_multicast *mc;
5027 	int ret;
5028 
5029 	/* Not supported for kernel QPs */
5030 	if (WARN_ON(id->qp))
5031 		return -EINVAL;
5032 
5033 	/* ULP is calling this wrong. */
5034 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5035 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5036 		return -EINVAL;
5037 
5038 	if (id_priv->id.qp_type != IB_QPT_UD)
5039 		return -EINVAL;
5040 
5041 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5042 	if (!mc)
5043 		return -ENOMEM;
5044 
5045 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5046 	mc->context = context;
5047 	mc->id_priv = id_priv;
5048 	mc->join_state = join_state;
5049 
5050 	if (rdma_protocol_roce(id->device, id->port_num)) {
5051 		ret = cma_iboe_join_multicast(id_priv, mc);
5052 		if (ret)
5053 			goto out_err;
5054 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5055 		ret = cma_join_ib_multicast(id_priv, mc);
5056 		if (ret)
5057 			goto out_err;
5058 	} else {
5059 		ret = -ENOSYS;
5060 		goto out_err;
5061 	}
5062 
5063 	spin_lock(&id_priv->lock);
5064 	list_add(&mc->list, &id_priv->mc_list);
5065 	spin_unlock(&id_priv->lock);
5066 
5067 	return 0;
5068 out_err:
5069 	kfree(mc);
5070 	return ret;
5071 }
5072 EXPORT_SYMBOL(rdma_join_multicast);
5073 
5074 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5075 {
5076 	struct rdma_id_private *id_priv;
5077 	struct cma_multicast *mc;
5078 
5079 	id_priv = container_of(id, struct rdma_id_private, id);
5080 	spin_lock_irq(&id_priv->lock);
5081 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5082 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5083 			continue;
5084 		list_del(&mc->list);
5085 		spin_unlock_irq(&id_priv->lock);
5086 
5087 		WARN_ON(id_priv->cma_dev->device != id->device);
5088 		destroy_mc(id_priv, mc);
5089 		return;
5090 	}
5091 	spin_unlock_irq(&id_priv->lock);
5092 }
5093 EXPORT_SYMBOL(rdma_leave_multicast);
5094 
5095 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5096 {
5097 	struct rdma_dev_addr *dev_addr;
5098 	struct cma_work *work;
5099 
5100 	dev_addr = &id_priv->id.route.addr.dev_addr;
5101 
5102 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5103 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5104 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5105 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5106 			ndev->name, &id_priv->id);
5107 		work = kzalloc(sizeof *work, GFP_KERNEL);
5108 		if (!work)
5109 			return -ENOMEM;
5110 
5111 		INIT_WORK(&work->work, cma_work_handler);
5112 		work->id = id_priv;
5113 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5114 		cma_id_get(id_priv);
5115 		queue_work(cma_wq, &work->work);
5116 	}
5117 
5118 	return 0;
5119 }
5120 
5121 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5122 			       void *ptr)
5123 {
5124 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5125 	struct cma_device *cma_dev;
5126 	struct rdma_id_private *id_priv;
5127 	int ret = NOTIFY_DONE;
5128 
5129 	if (event != NETDEV_BONDING_FAILOVER)
5130 		return NOTIFY_DONE;
5131 
5132 	if (!netif_is_bond_master(ndev))
5133 		return NOTIFY_DONE;
5134 
5135 	mutex_lock(&lock);
5136 	list_for_each_entry(cma_dev, &dev_list, list)
5137 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5138 			ret = cma_netdev_change(ndev, id_priv);
5139 			if (ret)
5140 				goto out;
5141 		}
5142 
5143 out:
5144 	mutex_unlock(&lock);
5145 	return ret;
5146 }
5147 
5148 static void cma_netevent_work_handler(struct work_struct *_work)
5149 {
5150 	struct rdma_id_private *id_priv =
5151 		container_of(_work, struct rdma_id_private, id.net_work);
5152 	struct rdma_cm_event event = {};
5153 
5154 	mutex_lock(&id_priv->handler_mutex);
5155 
5156 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5157 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5158 		goto out_unlock;
5159 
5160 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5161 	event.status = -ETIMEDOUT;
5162 
5163 	if (cma_cm_event_handler(id_priv, &event)) {
5164 		__acquire(&id_priv->handler_mutex);
5165 		id_priv->cm_id.ib = NULL;
5166 		cma_id_put(id_priv);
5167 		destroy_id_handler_unlock(id_priv);
5168 		return;
5169 	}
5170 
5171 out_unlock:
5172 	mutex_unlock(&id_priv->handler_mutex);
5173 	cma_id_put(id_priv);
5174 }
5175 
5176 static int cma_netevent_callback(struct notifier_block *self,
5177 				 unsigned long event, void *ctx)
5178 {
5179 	struct id_table_entry *ips_node = NULL;
5180 	struct rdma_id_private *current_id;
5181 	struct neighbour *neigh = ctx;
5182 	unsigned long flags;
5183 
5184 	if (event != NETEVENT_NEIGH_UPDATE)
5185 		return NOTIFY_DONE;
5186 
5187 	spin_lock_irqsave(&id_table_lock, flags);
5188 	if (neigh->tbl->family == AF_INET6) {
5189 		struct sockaddr_in6 neigh_sock_6;
5190 
5191 		neigh_sock_6.sin6_family = AF_INET6;
5192 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5193 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5194 					     (struct sockaddr *)&neigh_sock_6);
5195 	} else if (neigh->tbl->family == AF_INET) {
5196 		struct sockaddr_in neigh_sock_4;
5197 
5198 		neigh_sock_4.sin_family = AF_INET;
5199 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5200 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5201 					     (struct sockaddr *)&neigh_sock_4);
5202 	} else
5203 		goto out;
5204 
5205 	if (!ips_node)
5206 		goto out;
5207 
5208 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5209 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5210 			   neigh->ha, ETH_ALEN))
5211 			continue;
5212 		INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
5213 		cma_id_get(current_id);
5214 		queue_work(cma_wq, &current_id->id.net_work);
5215 	}
5216 out:
5217 	spin_unlock_irqrestore(&id_table_lock, flags);
5218 	return NOTIFY_DONE;
5219 }
5220 
5221 static struct notifier_block cma_nb = {
5222 	.notifier_call = cma_netdev_callback
5223 };
5224 
5225 static struct notifier_block cma_netevent_cb = {
5226 	.notifier_call = cma_netevent_callback
5227 };
5228 
5229 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5230 {
5231 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5232 	enum rdma_cm_state state;
5233 	unsigned long flags;
5234 
5235 	mutex_lock(&id_priv->handler_mutex);
5236 	/* Record that we want to remove the device */
5237 	spin_lock_irqsave(&id_priv->lock, flags);
5238 	state = id_priv->state;
5239 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5240 		spin_unlock_irqrestore(&id_priv->lock, flags);
5241 		mutex_unlock(&id_priv->handler_mutex);
5242 		cma_id_put(id_priv);
5243 		return;
5244 	}
5245 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5246 	spin_unlock_irqrestore(&id_priv->lock, flags);
5247 
5248 	if (cma_cm_event_handler(id_priv, &event)) {
5249 		/*
5250 		 * At this point the ULP promises it won't call
5251 		 * rdma_destroy_id() concurrently
5252 		 */
5253 		cma_id_put(id_priv);
5254 		mutex_unlock(&id_priv->handler_mutex);
5255 		trace_cm_id_destroy(id_priv);
5256 		_destroy_id(id_priv, state);
5257 		return;
5258 	}
5259 	mutex_unlock(&id_priv->handler_mutex);
5260 
5261 	/*
5262 	 * If this races with destroy then the thread that first assigns state
5263 	 * to a destroying does the cancel.
5264 	 */
5265 	cma_cancel_operation(id_priv, state);
5266 	cma_id_put(id_priv);
5267 }
5268 
5269 static void cma_process_remove(struct cma_device *cma_dev)
5270 {
5271 	mutex_lock(&lock);
5272 	while (!list_empty(&cma_dev->id_list)) {
5273 		struct rdma_id_private *id_priv = list_first_entry(
5274 			&cma_dev->id_list, struct rdma_id_private, device_item);
5275 
5276 		list_del_init(&id_priv->listen_item);
5277 		list_del_init(&id_priv->device_item);
5278 		cma_id_get(id_priv);
5279 		mutex_unlock(&lock);
5280 
5281 		cma_send_device_removal_put(id_priv);
5282 
5283 		mutex_lock(&lock);
5284 	}
5285 	mutex_unlock(&lock);
5286 
5287 	cma_dev_put(cma_dev);
5288 	wait_for_completion(&cma_dev->comp);
5289 }
5290 
5291 static bool cma_supported(struct ib_device *device)
5292 {
5293 	u32 i;
5294 
5295 	rdma_for_each_port(device, i) {
5296 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5297 			return true;
5298 	}
5299 	return false;
5300 }
5301 
5302 static int cma_add_one(struct ib_device *device)
5303 {
5304 	struct rdma_id_private *to_destroy;
5305 	struct cma_device *cma_dev;
5306 	struct rdma_id_private *id_priv;
5307 	unsigned long supported_gids = 0;
5308 	int ret;
5309 	u32 i;
5310 
5311 	if (!cma_supported(device))
5312 		return -EOPNOTSUPP;
5313 
5314 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5315 	if (!cma_dev)
5316 		return -ENOMEM;
5317 
5318 	cma_dev->device = device;
5319 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5320 					    sizeof(*cma_dev->default_gid_type),
5321 					    GFP_KERNEL);
5322 	if (!cma_dev->default_gid_type) {
5323 		ret = -ENOMEM;
5324 		goto free_cma_dev;
5325 	}
5326 
5327 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5328 					    sizeof(*cma_dev->default_roce_tos),
5329 					    GFP_KERNEL);
5330 	if (!cma_dev->default_roce_tos) {
5331 		ret = -ENOMEM;
5332 		goto free_gid_type;
5333 	}
5334 
5335 	rdma_for_each_port (device, i) {
5336 		supported_gids = roce_gid_type_mask_support(device, i);
5337 		WARN_ON(!supported_gids);
5338 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5339 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5340 				CMA_PREFERRED_ROCE_GID_TYPE;
5341 		else
5342 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5343 				find_first_bit(&supported_gids, BITS_PER_LONG);
5344 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5345 	}
5346 
5347 	init_completion(&cma_dev->comp);
5348 	refcount_set(&cma_dev->refcount, 1);
5349 	INIT_LIST_HEAD(&cma_dev->id_list);
5350 	ib_set_client_data(device, &cma_client, cma_dev);
5351 
5352 	mutex_lock(&lock);
5353 	list_add_tail(&cma_dev->list, &dev_list);
5354 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5355 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5356 		if (ret)
5357 			goto free_listen;
5358 	}
5359 	mutex_unlock(&lock);
5360 
5361 	trace_cm_add_one(device);
5362 	return 0;
5363 
5364 free_listen:
5365 	list_del(&cma_dev->list);
5366 	mutex_unlock(&lock);
5367 
5368 	/* cma_process_remove() will delete to_destroy */
5369 	cma_process_remove(cma_dev);
5370 	kfree(cma_dev->default_roce_tos);
5371 free_gid_type:
5372 	kfree(cma_dev->default_gid_type);
5373 
5374 free_cma_dev:
5375 	kfree(cma_dev);
5376 	return ret;
5377 }
5378 
5379 static void cma_remove_one(struct ib_device *device, void *client_data)
5380 {
5381 	struct cma_device *cma_dev = client_data;
5382 
5383 	trace_cm_remove_one(device);
5384 
5385 	mutex_lock(&lock);
5386 	list_del(&cma_dev->list);
5387 	mutex_unlock(&lock);
5388 
5389 	cma_process_remove(cma_dev);
5390 	kfree(cma_dev->default_roce_tos);
5391 	kfree(cma_dev->default_gid_type);
5392 	kfree(cma_dev);
5393 }
5394 
5395 static int cma_init_net(struct net *net)
5396 {
5397 	struct cma_pernet *pernet = cma_pernet(net);
5398 
5399 	xa_init(&pernet->tcp_ps);
5400 	xa_init(&pernet->udp_ps);
5401 	xa_init(&pernet->ipoib_ps);
5402 	xa_init(&pernet->ib_ps);
5403 
5404 	return 0;
5405 }
5406 
5407 static void cma_exit_net(struct net *net)
5408 {
5409 	struct cma_pernet *pernet = cma_pernet(net);
5410 
5411 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5412 	WARN_ON(!xa_empty(&pernet->udp_ps));
5413 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5414 	WARN_ON(!xa_empty(&pernet->ib_ps));
5415 }
5416 
5417 static struct pernet_operations cma_pernet_operations = {
5418 	.init = cma_init_net,
5419 	.exit = cma_exit_net,
5420 	.id = &cma_pernet_id,
5421 	.size = sizeof(struct cma_pernet),
5422 };
5423 
5424 static int __init cma_init(void)
5425 {
5426 	int ret;
5427 
5428 	/*
5429 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5430 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5431 	 * must never be nested under lock so it can find these without having
5432 	 * to test with bonding.
5433 	 */
5434 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5435 		rtnl_lock();
5436 		mutex_lock(&lock);
5437 		mutex_unlock(&lock);
5438 		rtnl_unlock();
5439 	}
5440 
5441 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5442 	if (!cma_wq)
5443 		return -ENOMEM;
5444 
5445 	ret = register_pernet_subsys(&cma_pernet_operations);
5446 	if (ret)
5447 		goto err_wq;
5448 
5449 	ib_sa_register_client(&sa_client);
5450 	register_netdevice_notifier(&cma_nb);
5451 	register_netevent_notifier(&cma_netevent_cb);
5452 
5453 	ret = ib_register_client(&cma_client);
5454 	if (ret)
5455 		goto err;
5456 
5457 	ret = cma_configfs_init();
5458 	if (ret)
5459 		goto err_ib;
5460 
5461 	return 0;
5462 
5463 err_ib:
5464 	ib_unregister_client(&cma_client);
5465 err:
5466 	unregister_netevent_notifier(&cma_netevent_cb);
5467 	unregister_netdevice_notifier(&cma_nb);
5468 	ib_sa_unregister_client(&sa_client);
5469 	unregister_pernet_subsys(&cma_pernet_operations);
5470 err_wq:
5471 	destroy_workqueue(cma_wq);
5472 	return ret;
5473 }
5474 
5475 static void __exit cma_cleanup(void)
5476 {
5477 	cma_configfs_exit();
5478 	ib_unregister_client(&cma_client);
5479 	unregister_netevent_notifier(&cma_netevent_cb);
5480 	unregister_netdevice_notifier(&cma_nb);
5481 	ib_sa_unregister_client(&sa_client);
5482 	unregister_pernet_subsys(&cma_pernet_operations);
5483 	destroy_workqueue(cma_wq);
5484 }
5485 
5486 module_init(cma_init);
5487 module_exit(cma_cleanup);
5488