1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 50 #define CMA_IBOE_PACKET_LIFETIME 16 51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 52 53 static const char * const cma_events[] = { 54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 62 [RDMA_CM_EVENT_REJECTED] = "rejected", 63 [RDMA_CM_EVENT_ESTABLISHED] = "established", 64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 70 }; 71 72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 73 enum ib_gid_type gid_type); 74 75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 76 { 77 size_t index = event; 78 79 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 80 cma_events[index] : "unrecognized event"; 81 } 82 EXPORT_SYMBOL(rdma_event_msg); 83 84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 85 int reason) 86 { 87 if (rdma_ib_or_roce(id->device, id->port_num)) 88 return ibcm_reject_msg(reason); 89 90 if (rdma_protocol_iwarp(id->device, id->port_num)) 91 return iwcm_reject_msg(reason); 92 93 WARN_ON_ONCE(1); 94 return "unrecognized transport"; 95 } 96 EXPORT_SYMBOL(rdma_reject_msg); 97 98 /** 99 * rdma_is_consumer_reject - return true if the consumer rejected the connect 100 * request. 101 * @id: Communication identifier that received the REJECT event. 102 * @reason: Value returned in the REJECT event status field. 103 */ 104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 105 { 106 if (rdma_ib_or_roce(id->device, id->port_num)) 107 return reason == IB_CM_REJ_CONSUMER_DEFINED; 108 109 if (rdma_protocol_iwarp(id->device, id->port_num)) 110 return reason == -ECONNREFUSED; 111 112 WARN_ON_ONCE(1); 113 return false; 114 } 115 116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 117 struct rdma_cm_event *ev, u8 *data_len) 118 { 119 const void *p; 120 121 if (rdma_is_consumer_reject(id, ev->status)) { 122 *data_len = ev->param.conn.private_data_len; 123 p = ev->param.conn.private_data; 124 } else { 125 *data_len = 0; 126 p = NULL; 127 } 128 return p; 129 } 130 EXPORT_SYMBOL(rdma_consumer_reject_data); 131 132 /** 133 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 134 * @id: Communication Identifier 135 */ 136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 137 { 138 struct rdma_id_private *id_priv; 139 140 id_priv = container_of(id, struct rdma_id_private, id); 141 if (id->device->node_type == RDMA_NODE_RNIC) 142 return id_priv->cm_id.iw; 143 return NULL; 144 } 145 EXPORT_SYMBOL(rdma_iw_cm_id); 146 147 /** 148 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 149 * @res: rdma resource tracking entry pointer 150 */ 151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 152 { 153 struct rdma_id_private *id_priv = 154 container_of(res, struct rdma_id_private, res); 155 156 return &id_priv->id; 157 } 158 EXPORT_SYMBOL(rdma_res_to_id); 159 160 static int cma_add_one(struct ib_device *device); 161 static void cma_remove_one(struct ib_device *device, void *client_data); 162 163 static struct ib_client cma_client = { 164 .name = "cma", 165 .add = cma_add_one, 166 .remove = cma_remove_one 167 }; 168 169 static struct ib_sa_client sa_client; 170 static LIST_HEAD(dev_list); 171 static LIST_HEAD(listen_any_list); 172 static DEFINE_MUTEX(lock); 173 static struct rb_root id_table = RB_ROOT; 174 /* Serialize operations of id_table tree */ 175 static DEFINE_SPINLOCK(id_table_lock); 176 static struct workqueue_struct *cma_wq; 177 static unsigned int cma_pernet_id; 178 179 struct cma_pernet { 180 struct xarray tcp_ps; 181 struct xarray udp_ps; 182 struct xarray ipoib_ps; 183 struct xarray ib_ps; 184 }; 185 186 static struct cma_pernet *cma_pernet(struct net *net) 187 { 188 return net_generic(net, cma_pernet_id); 189 } 190 191 static 192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 193 { 194 struct cma_pernet *pernet = cma_pernet(net); 195 196 switch (ps) { 197 case RDMA_PS_TCP: 198 return &pernet->tcp_ps; 199 case RDMA_PS_UDP: 200 return &pernet->udp_ps; 201 case RDMA_PS_IPOIB: 202 return &pernet->ipoib_ps; 203 case RDMA_PS_IB: 204 return &pernet->ib_ps; 205 default: 206 return NULL; 207 } 208 } 209 210 struct id_table_entry { 211 struct list_head id_list; 212 struct rb_node rb_node; 213 }; 214 215 struct cma_device { 216 struct list_head list; 217 struct ib_device *device; 218 struct completion comp; 219 refcount_t refcount; 220 struct list_head id_list; 221 enum ib_gid_type *default_gid_type; 222 u8 *default_roce_tos; 223 }; 224 225 struct rdma_bind_list { 226 enum rdma_ucm_port_space ps; 227 struct hlist_head owners; 228 unsigned short port; 229 }; 230 231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 232 struct rdma_bind_list *bind_list, int snum) 233 { 234 struct xarray *xa = cma_pernet_xa(net, ps); 235 236 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 237 } 238 239 static struct rdma_bind_list *cma_ps_find(struct net *net, 240 enum rdma_ucm_port_space ps, int snum) 241 { 242 struct xarray *xa = cma_pernet_xa(net, ps); 243 244 return xa_load(xa, snum); 245 } 246 247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 248 int snum) 249 { 250 struct xarray *xa = cma_pernet_xa(net, ps); 251 252 xa_erase(xa, snum); 253 } 254 255 enum { 256 CMA_OPTION_AFONLY, 257 }; 258 259 void cma_dev_get(struct cma_device *cma_dev) 260 { 261 refcount_inc(&cma_dev->refcount); 262 } 263 264 void cma_dev_put(struct cma_device *cma_dev) 265 { 266 if (refcount_dec_and_test(&cma_dev->refcount)) 267 complete(&cma_dev->comp); 268 } 269 270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 271 void *cookie) 272 { 273 struct cma_device *cma_dev; 274 struct cma_device *found_cma_dev = NULL; 275 276 mutex_lock(&lock); 277 278 list_for_each_entry(cma_dev, &dev_list, list) 279 if (filter(cma_dev->device, cookie)) { 280 found_cma_dev = cma_dev; 281 break; 282 } 283 284 if (found_cma_dev) 285 cma_dev_get(found_cma_dev); 286 mutex_unlock(&lock); 287 return found_cma_dev; 288 } 289 290 int cma_get_default_gid_type(struct cma_device *cma_dev, 291 u32 port) 292 { 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 297 } 298 299 int cma_set_default_gid_type(struct cma_device *cma_dev, 300 u32 port, 301 enum ib_gid_type default_gid_type) 302 { 303 unsigned long supported_gids; 304 305 if (!rdma_is_port_valid(cma_dev->device, port)) 306 return -EINVAL; 307 308 if (default_gid_type == IB_GID_TYPE_IB && 309 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 310 default_gid_type = IB_GID_TYPE_ROCE; 311 312 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 313 314 if (!(supported_gids & 1 << default_gid_type)) 315 return -EINVAL; 316 317 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 318 default_gid_type; 319 320 return 0; 321 } 322 323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 324 { 325 if (!rdma_is_port_valid(cma_dev->device, port)) 326 return -EINVAL; 327 328 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 329 } 330 331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 332 u8 default_roce_tos) 333 { 334 if (!rdma_is_port_valid(cma_dev->device, port)) 335 return -EINVAL; 336 337 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 338 default_roce_tos; 339 340 return 0; 341 } 342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 343 { 344 return cma_dev->device; 345 } 346 347 /* 348 * Device removal can occur at anytime, so we need extra handling to 349 * serialize notifying the user of device removal with other callbacks. 350 * We do this by disabling removal notification while a callback is in process, 351 * and reporting it after the callback completes. 352 */ 353 354 struct cma_multicast { 355 struct rdma_id_private *id_priv; 356 union { 357 struct ib_sa_multicast *sa_mc; 358 struct { 359 struct work_struct work; 360 struct rdma_cm_event event; 361 } iboe_join; 362 }; 363 struct list_head list; 364 void *context; 365 struct sockaddr_storage addr; 366 u8 join_state; 367 }; 368 369 struct cma_work { 370 struct work_struct work; 371 struct rdma_id_private *id; 372 enum rdma_cm_state old_state; 373 enum rdma_cm_state new_state; 374 struct rdma_cm_event event; 375 }; 376 377 union cma_ip_addr { 378 struct in6_addr ip6; 379 struct { 380 __be32 pad[3]; 381 __be32 addr; 382 } ip4; 383 }; 384 385 struct cma_hdr { 386 u8 cma_version; 387 u8 ip_version; /* IP version: 7:4 */ 388 __be16 port; 389 union cma_ip_addr src_addr; 390 union cma_ip_addr dst_addr; 391 }; 392 393 #define CMA_VERSION 0x00 394 395 struct cma_req_info { 396 struct sockaddr_storage listen_addr_storage; 397 struct sockaddr_storage src_addr_storage; 398 struct ib_device *device; 399 union ib_gid local_gid; 400 __be64 service_id; 401 int port; 402 bool has_gid; 403 u16 pkey; 404 }; 405 406 static int cma_comp_exch(struct rdma_id_private *id_priv, 407 enum rdma_cm_state comp, enum rdma_cm_state exch) 408 { 409 unsigned long flags; 410 int ret; 411 412 /* 413 * The FSM uses a funny double locking where state is protected by both 414 * the handler_mutex and the spinlock. State is not allowed to change 415 * to/from a handler_mutex protected value without also holding 416 * handler_mutex. 417 */ 418 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 419 lockdep_assert_held(&id_priv->handler_mutex); 420 421 spin_lock_irqsave(&id_priv->lock, flags); 422 if ((ret = (id_priv->state == comp))) 423 id_priv->state = exch; 424 spin_unlock_irqrestore(&id_priv->lock, flags); 425 return ret; 426 } 427 428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 429 { 430 return hdr->ip_version >> 4; 431 } 432 433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 434 { 435 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 436 } 437 438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 439 { 440 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 441 } 442 443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 444 { 445 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 446 } 447 448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 449 { 450 struct in_device *in_dev = NULL; 451 452 if (ndev) { 453 rtnl_lock(); 454 in_dev = __in_dev_get_rtnl(ndev); 455 if (in_dev) { 456 if (join) 457 ip_mc_inc_group(in_dev, 458 *(__be32 *)(mgid->raw + 12)); 459 else 460 ip_mc_dec_group(in_dev, 461 *(__be32 *)(mgid->raw + 12)); 462 } 463 rtnl_unlock(); 464 } 465 return (in_dev) ? 0 : -ENODEV; 466 } 467 468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 469 struct id_table_entry *entry_b) 470 { 471 struct rdma_id_private *id_priv = list_first_entry( 472 &entry_b->id_list, struct rdma_id_private, id_list_entry); 473 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 474 struct sockaddr *sb = cma_dst_addr(id_priv); 475 476 if (ifindex_a != ifindex_b) 477 return (ifindex_a > ifindex_b) ? 1 : -1; 478 479 if (sa->sa_family != sb->sa_family) 480 return sa->sa_family - sb->sa_family; 481 482 if (sa->sa_family == AF_INET && 483 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 484 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 485 &((struct sockaddr_in *)sb)->sin_addr, 486 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 487 } 488 489 if (sa->sa_family == AF_INET6 && 490 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 491 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 492 &((struct sockaddr_in6 *)sb)->sin6_addr); 493 } 494 495 return -1; 496 } 497 498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 499 { 500 struct rb_node **new, *parent = NULL; 501 struct id_table_entry *this, *node; 502 unsigned long flags; 503 int result; 504 505 node = kzalloc(sizeof(*node), GFP_KERNEL); 506 if (!node) 507 return -ENOMEM; 508 509 spin_lock_irqsave(&id_table_lock, flags); 510 new = &id_table.rb_node; 511 while (*new) { 512 this = container_of(*new, struct id_table_entry, rb_node); 513 result = compare_netdev_and_ip( 514 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 515 cma_dst_addr(node_id_priv), this); 516 517 parent = *new; 518 if (result < 0) 519 new = &((*new)->rb_left); 520 else if (result > 0) 521 new = &((*new)->rb_right); 522 else { 523 list_add_tail(&node_id_priv->id_list_entry, 524 &this->id_list); 525 kfree(node); 526 goto unlock; 527 } 528 } 529 530 INIT_LIST_HEAD(&node->id_list); 531 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 532 533 rb_link_node(&node->rb_node, parent, new); 534 rb_insert_color(&node->rb_node, &id_table); 535 536 unlock: 537 spin_unlock_irqrestore(&id_table_lock, flags); 538 return 0; 539 } 540 541 static struct id_table_entry * 542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 543 { 544 struct rb_node *node = root->rb_node; 545 struct id_table_entry *data; 546 int result; 547 548 while (node) { 549 data = container_of(node, struct id_table_entry, rb_node); 550 result = compare_netdev_and_ip(ifindex, sa, data); 551 if (result < 0) 552 node = node->rb_left; 553 else if (result > 0) 554 node = node->rb_right; 555 else 556 return data; 557 } 558 559 return NULL; 560 } 561 562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 563 { 564 struct id_table_entry *data; 565 unsigned long flags; 566 567 spin_lock_irqsave(&id_table_lock, flags); 568 if (list_empty(&id_priv->id_list_entry)) 569 goto out; 570 571 data = node_from_ndev_ip(&id_table, 572 id_priv->id.route.addr.dev_addr.bound_dev_if, 573 cma_dst_addr(id_priv)); 574 if (!data) 575 goto out; 576 577 list_del_init(&id_priv->id_list_entry); 578 if (list_empty(&data->id_list)) { 579 rb_erase(&data->rb_node, &id_table); 580 kfree(data); 581 } 582 out: 583 spin_unlock_irqrestore(&id_table_lock, flags); 584 } 585 586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 587 struct cma_device *cma_dev) 588 { 589 cma_dev_get(cma_dev); 590 id_priv->cma_dev = cma_dev; 591 id_priv->id.device = cma_dev->device; 592 id_priv->id.route.addr.dev_addr.transport = 593 rdma_node_get_transport(cma_dev->device->node_type); 594 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 595 596 trace_cm_id_attach(id_priv, cma_dev->device); 597 } 598 599 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 600 struct cma_device *cma_dev) 601 { 602 _cma_attach_to_dev(id_priv, cma_dev); 603 id_priv->gid_type = 604 cma_dev->default_gid_type[id_priv->id.port_num - 605 rdma_start_port(cma_dev->device)]; 606 } 607 608 static void cma_release_dev(struct rdma_id_private *id_priv) 609 { 610 mutex_lock(&lock); 611 list_del_init(&id_priv->device_item); 612 cma_dev_put(id_priv->cma_dev); 613 id_priv->cma_dev = NULL; 614 id_priv->id.device = NULL; 615 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 616 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 617 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 618 } 619 mutex_unlock(&lock); 620 } 621 622 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 623 { 624 return id_priv->id.route.addr.src_addr.ss_family; 625 } 626 627 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 628 { 629 struct ib_sa_mcmember_rec rec; 630 int ret = 0; 631 632 switch (id_priv->id.ps) { 633 case RDMA_PS_UDP: 634 case RDMA_PS_IB: 635 id_priv->qkey = RDMA_UDP_QKEY; 636 break; 637 case RDMA_PS_IPOIB: 638 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 639 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 640 id_priv->id.port_num, &rec.mgid, 641 &rec); 642 if (!ret) 643 id_priv->qkey = be32_to_cpu(rec.qkey); 644 break; 645 default: 646 break; 647 } 648 return ret; 649 } 650 651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 652 { 653 if (!qkey || 654 (id_priv->qkey && (id_priv->qkey != qkey))) 655 return -EINVAL; 656 657 id_priv->qkey = qkey; 658 return 0; 659 } 660 661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 662 { 663 dev_addr->dev_type = ARPHRD_INFINIBAND; 664 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 665 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 666 } 667 668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 669 { 670 int ret; 671 672 if (addr->sa_family != AF_IB) { 673 ret = rdma_translate_ip(addr, dev_addr); 674 } else { 675 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 676 ret = 0; 677 } 678 679 return ret; 680 } 681 682 static const struct ib_gid_attr * 683 cma_validate_port(struct ib_device *device, u32 port, 684 enum ib_gid_type gid_type, 685 union ib_gid *gid, 686 struct rdma_id_private *id_priv) 687 { 688 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 689 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 690 int bound_if_index = dev_addr->bound_dev_if; 691 int dev_type = dev_addr->dev_type; 692 struct net_device *ndev = NULL; 693 694 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 695 goto out; 696 697 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 698 goto out; 699 700 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 701 goto out; 702 703 /* 704 * For drivers that do not associate more than one net device with 705 * their gid tables, such as iWARP drivers, it is sufficient to 706 * return the first table entry. 707 * 708 * Other driver classes might be included in the future. 709 */ 710 if (rdma_protocol_iwarp(device, port)) { 711 sgid_attr = rdma_get_gid_attr(device, port, 0); 712 if (IS_ERR(sgid_attr)) 713 goto out; 714 715 rcu_read_lock(); 716 ndev = rcu_dereference(sgid_attr->ndev); 717 if (!net_eq(dev_net(ndev), dev_addr->net) || 718 ndev->ifindex != bound_if_index) 719 sgid_attr = ERR_PTR(-ENODEV); 720 rcu_read_unlock(); 721 goto out; 722 } 723 724 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 725 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 726 if (!ndev) 727 goto out; 728 } else { 729 gid_type = IB_GID_TYPE_IB; 730 } 731 732 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 733 dev_put(ndev); 734 out: 735 return sgid_attr; 736 } 737 738 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 739 const struct ib_gid_attr *sgid_attr) 740 { 741 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 742 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 743 } 744 745 /** 746 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 747 * based on source ip address. 748 * @id_priv: cm_id which should be bound to cma device 749 * 750 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 751 * based on source IP address. It returns 0 on success or error code otherwise. 752 * It is applicable to active and passive side cm_id. 753 */ 754 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 755 { 756 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 757 const struct ib_gid_attr *sgid_attr; 758 union ib_gid gid, iboe_gid, *gidp; 759 struct cma_device *cma_dev; 760 enum ib_gid_type gid_type; 761 int ret = -ENODEV; 762 u32 port; 763 764 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 765 id_priv->id.ps == RDMA_PS_IPOIB) 766 return -EINVAL; 767 768 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 769 &iboe_gid); 770 771 memcpy(&gid, dev_addr->src_dev_addr + 772 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 773 774 mutex_lock(&lock); 775 list_for_each_entry(cma_dev, &dev_list, list) { 776 rdma_for_each_port (cma_dev->device, port) { 777 gidp = rdma_protocol_roce(cma_dev->device, port) ? 778 &iboe_gid : &gid; 779 gid_type = cma_dev->default_gid_type[port - 1]; 780 sgid_attr = cma_validate_port(cma_dev->device, port, 781 gid_type, gidp, id_priv); 782 if (!IS_ERR(sgid_attr)) { 783 id_priv->id.port_num = port; 784 cma_bind_sgid_attr(id_priv, sgid_attr); 785 cma_attach_to_dev(id_priv, cma_dev); 786 ret = 0; 787 goto out; 788 } 789 } 790 } 791 out: 792 mutex_unlock(&lock); 793 return ret; 794 } 795 796 /** 797 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 798 * @id_priv: cm id to bind to cma device 799 * @listen_id_priv: listener cm id to match against 800 * @req: Pointer to req structure containaining incoming 801 * request information 802 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 803 * rdma device matches for listen_id and incoming request. It also verifies 804 * that a GID table entry is present for the source address. 805 * Returns 0 on success, or returns error code otherwise. 806 */ 807 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 808 const struct rdma_id_private *listen_id_priv, 809 struct cma_req_info *req) 810 { 811 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 812 const struct ib_gid_attr *sgid_attr; 813 enum ib_gid_type gid_type; 814 union ib_gid gid; 815 816 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 817 id_priv->id.ps == RDMA_PS_IPOIB) 818 return -EINVAL; 819 820 if (rdma_protocol_roce(req->device, req->port)) 821 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 822 &gid); 823 else 824 memcpy(&gid, dev_addr->src_dev_addr + 825 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 826 827 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 828 sgid_attr = cma_validate_port(req->device, req->port, 829 gid_type, &gid, id_priv); 830 if (IS_ERR(sgid_attr)) 831 return PTR_ERR(sgid_attr); 832 833 id_priv->id.port_num = req->port; 834 cma_bind_sgid_attr(id_priv, sgid_attr); 835 /* Need to acquire lock to protect against reader 836 * of cma_dev->id_list such as cma_netdev_callback() and 837 * cma_process_remove(). 838 */ 839 mutex_lock(&lock); 840 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 841 mutex_unlock(&lock); 842 rdma_restrack_add(&id_priv->res); 843 return 0; 844 } 845 846 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 847 const struct rdma_id_private *listen_id_priv) 848 { 849 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 850 const struct ib_gid_attr *sgid_attr; 851 struct cma_device *cma_dev; 852 enum ib_gid_type gid_type; 853 int ret = -ENODEV; 854 union ib_gid gid; 855 u32 port; 856 857 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 858 id_priv->id.ps == RDMA_PS_IPOIB) 859 return -EINVAL; 860 861 memcpy(&gid, dev_addr->src_dev_addr + 862 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 863 864 mutex_lock(&lock); 865 866 cma_dev = listen_id_priv->cma_dev; 867 port = listen_id_priv->id.port_num; 868 gid_type = listen_id_priv->gid_type; 869 sgid_attr = cma_validate_port(cma_dev->device, port, 870 gid_type, &gid, id_priv); 871 if (!IS_ERR(sgid_attr)) { 872 id_priv->id.port_num = port; 873 cma_bind_sgid_attr(id_priv, sgid_attr); 874 ret = 0; 875 goto out; 876 } 877 878 list_for_each_entry(cma_dev, &dev_list, list) { 879 rdma_for_each_port (cma_dev->device, port) { 880 if (listen_id_priv->cma_dev == cma_dev && 881 listen_id_priv->id.port_num == port) 882 continue; 883 884 gid_type = cma_dev->default_gid_type[port - 1]; 885 sgid_attr = cma_validate_port(cma_dev->device, port, 886 gid_type, &gid, id_priv); 887 if (!IS_ERR(sgid_attr)) { 888 id_priv->id.port_num = port; 889 cma_bind_sgid_attr(id_priv, sgid_attr); 890 ret = 0; 891 goto out; 892 } 893 } 894 } 895 896 out: 897 if (!ret) { 898 cma_attach_to_dev(id_priv, cma_dev); 899 rdma_restrack_add(&id_priv->res); 900 } 901 902 mutex_unlock(&lock); 903 return ret; 904 } 905 906 /* 907 * Select the source IB device and address to reach the destination IB address. 908 */ 909 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 910 { 911 struct cma_device *cma_dev, *cur_dev; 912 struct sockaddr_ib *addr; 913 union ib_gid gid, sgid, *dgid; 914 unsigned int p; 915 u16 pkey, index; 916 enum ib_port_state port_state; 917 int ret; 918 int i; 919 920 cma_dev = NULL; 921 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 922 dgid = (union ib_gid *) &addr->sib_addr; 923 pkey = ntohs(addr->sib_pkey); 924 925 mutex_lock(&lock); 926 list_for_each_entry(cur_dev, &dev_list, list) { 927 rdma_for_each_port (cur_dev->device, p) { 928 if (!rdma_cap_af_ib(cur_dev->device, p)) 929 continue; 930 931 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 932 continue; 933 934 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 935 continue; 936 937 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 938 ++i) { 939 ret = rdma_query_gid(cur_dev->device, p, i, 940 &gid); 941 if (ret) 942 continue; 943 944 if (!memcmp(&gid, dgid, sizeof(gid))) { 945 cma_dev = cur_dev; 946 sgid = gid; 947 id_priv->id.port_num = p; 948 goto found; 949 } 950 951 if (!cma_dev && (gid.global.subnet_prefix == 952 dgid->global.subnet_prefix) && 953 port_state == IB_PORT_ACTIVE) { 954 cma_dev = cur_dev; 955 sgid = gid; 956 id_priv->id.port_num = p; 957 goto found; 958 } 959 } 960 } 961 } 962 mutex_unlock(&lock); 963 return -ENODEV; 964 965 found: 966 cma_attach_to_dev(id_priv, cma_dev); 967 rdma_restrack_add(&id_priv->res); 968 mutex_unlock(&lock); 969 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 970 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 971 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 972 return 0; 973 } 974 975 static void cma_id_get(struct rdma_id_private *id_priv) 976 { 977 refcount_inc(&id_priv->refcount); 978 } 979 980 static void cma_id_put(struct rdma_id_private *id_priv) 981 { 982 if (refcount_dec_and_test(&id_priv->refcount)) 983 complete(&id_priv->comp); 984 } 985 986 static struct rdma_id_private * 987 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 988 void *context, enum rdma_ucm_port_space ps, 989 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 990 { 991 struct rdma_id_private *id_priv; 992 993 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 994 if (!id_priv) 995 return ERR_PTR(-ENOMEM); 996 997 id_priv->state = RDMA_CM_IDLE; 998 id_priv->id.context = context; 999 id_priv->id.event_handler = event_handler; 1000 id_priv->id.ps = ps; 1001 id_priv->id.qp_type = qp_type; 1002 id_priv->tos_set = false; 1003 id_priv->timeout_set = false; 1004 id_priv->min_rnr_timer_set = false; 1005 id_priv->gid_type = IB_GID_TYPE_IB; 1006 spin_lock_init(&id_priv->lock); 1007 mutex_init(&id_priv->qp_mutex); 1008 init_completion(&id_priv->comp); 1009 refcount_set(&id_priv->refcount, 1); 1010 mutex_init(&id_priv->handler_mutex); 1011 INIT_LIST_HEAD(&id_priv->device_item); 1012 INIT_LIST_HEAD(&id_priv->id_list_entry); 1013 INIT_LIST_HEAD(&id_priv->listen_list); 1014 INIT_LIST_HEAD(&id_priv->mc_list); 1015 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1016 id_priv->id.route.addr.dev_addr.net = get_net(net); 1017 id_priv->seq_num &= 0x00ffffff; 1018 1019 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1020 if (parent) 1021 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1022 1023 return id_priv; 1024 } 1025 1026 struct rdma_cm_id * 1027 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1028 void *context, enum rdma_ucm_port_space ps, 1029 enum ib_qp_type qp_type, const char *caller) 1030 { 1031 struct rdma_id_private *ret; 1032 1033 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1034 if (IS_ERR(ret)) 1035 return ERR_CAST(ret); 1036 1037 rdma_restrack_set_name(&ret->res, caller); 1038 return &ret->id; 1039 } 1040 EXPORT_SYMBOL(__rdma_create_kernel_id); 1041 1042 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1043 void *context, 1044 enum rdma_ucm_port_space ps, 1045 enum ib_qp_type qp_type) 1046 { 1047 struct rdma_id_private *ret; 1048 1049 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1050 ps, qp_type, NULL); 1051 if (IS_ERR(ret)) 1052 return ERR_CAST(ret); 1053 1054 rdma_restrack_set_name(&ret->res, NULL); 1055 return &ret->id; 1056 } 1057 EXPORT_SYMBOL(rdma_create_user_id); 1058 1059 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1060 { 1061 struct ib_qp_attr qp_attr; 1062 int qp_attr_mask, ret; 1063 1064 qp_attr.qp_state = IB_QPS_INIT; 1065 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1066 if (ret) 1067 return ret; 1068 1069 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1070 if (ret) 1071 return ret; 1072 1073 qp_attr.qp_state = IB_QPS_RTR; 1074 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1075 if (ret) 1076 return ret; 1077 1078 qp_attr.qp_state = IB_QPS_RTS; 1079 qp_attr.sq_psn = 0; 1080 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1081 1082 return ret; 1083 } 1084 1085 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1086 { 1087 struct ib_qp_attr qp_attr; 1088 int qp_attr_mask, ret; 1089 1090 qp_attr.qp_state = IB_QPS_INIT; 1091 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1092 if (ret) 1093 return ret; 1094 1095 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1096 } 1097 1098 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1099 struct ib_qp_init_attr *qp_init_attr) 1100 { 1101 struct rdma_id_private *id_priv; 1102 struct ib_qp *qp; 1103 int ret; 1104 1105 id_priv = container_of(id, struct rdma_id_private, id); 1106 if (id->device != pd->device) { 1107 ret = -EINVAL; 1108 goto out_err; 1109 } 1110 1111 qp_init_attr->port_num = id->port_num; 1112 qp = ib_create_qp(pd, qp_init_attr); 1113 if (IS_ERR(qp)) { 1114 ret = PTR_ERR(qp); 1115 goto out_err; 1116 } 1117 1118 if (id->qp_type == IB_QPT_UD) 1119 ret = cma_init_ud_qp(id_priv, qp); 1120 else 1121 ret = cma_init_conn_qp(id_priv, qp); 1122 if (ret) 1123 goto out_destroy; 1124 1125 id->qp = qp; 1126 id_priv->qp_num = qp->qp_num; 1127 id_priv->srq = (qp->srq != NULL); 1128 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1129 return 0; 1130 out_destroy: 1131 ib_destroy_qp(qp); 1132 out_err: 1133 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1134 return ret; 1135 } 1136 EXPORT_SYMBOL(rdma_create_qp); 1137 1138 void rdma_destroy_qp(struct rdma_cm_id *id) 1139 { 1140 struct rdma_id_private *id_priv; 1141 1142 id_priv = container_of(id, struct rdma_id_private, id); 1143 trace_cm_qp_destroy(id_priv); 1144 mutex_lock(&id_priv->qp_mutex); 1145 ib_destroy_qp(id_priv->id.qp); 1146 id_priv->id.qp = NULL; 1147 mutex_unlock(&id_priv->qp_mutex); 1148 } 1149 EXPORT_SYMBOL(rdma_destroy_qp); 1150 1151 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1152 struct rdma_conn_param *conn_param) 1153 { 1154 struct ib_qp_attr qp_attr; 1155 int qp_attr_mask, ret; 1156 1157 mutex_lock(&id_priv->qp_mutex); 1158 if (!id_priv->id.qp) { 1159 ret = 0; 1160 goto out; 1161 } 1162 1163 /* Need to update QP attributes from default values. */ 1164 qp_attr.qp_state = IB_QPS_INIT; 1165 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1166 if (ret) 1167 goto out; 1168 1169 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1170 if (ret) 1171 goto out; 1172 1173 qp_attr.qp_state = IB_QPS_RTR; 1174 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1175 if (ret) 1176 goto out; 1177 1178 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1179 1180 if (conn_param) 1181 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1182 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1183 out: 1184 mutex_unlock(&id_priv->qp_mutex); 1185 return ret; 1186 } 1187 1188 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1189 struct rdma_conn_param *conn_param) 1190 { 1191 struct ib_qp_attr qp_attr; 1192 int qp_attr_mask, ret; 1193 1194 mutex_lock(&id_priv->qp_mutex); 1195 if (!id_priv->id.qp) { 1196 ret = 0; 1197 goto out; 1198 } 1199 1200 qp_attr.qp_state = IB_QPS_RTS; 1201 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1202 if (ret) 1203 goto out; 1204 1205 if (conn_param) 1206 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1207 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1208 out: 1209 mutex_unlock(&id_priv->qp_mutex); 1210 return ret; 1211 } 1212 1213 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1214 { 1215 struct ib_qp_attr qp_attr; 1216 int ret; 1217 1218 mutex_lock(&id_priv->qp_mutex); 1219 if (!id_priv->id.qp) { 1220 ret = 0; 1221 goto out; 1222 } 1223 1224 qp_attr.qp_state = IB_QPS_ERR; 1225 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1226 out: 1227 mutex_unlock(&id_priv->qp_mutex); 1228 return ret; 1229 } 1230 1231 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1232 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1233 { 1234 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1235 int ret; 1236 u16 pkey; 1237 1238 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1239 pkey = 0xffff; 1240 else 1241 pkey = ib_addr_get_pkey(dev_addr); 1242 1243 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1244 pkey, &qp_attr->pkey_index); 1245 if (ret) 1246 return ret; 1247 1248 qp_attr->port_num = id_priv->id.port_num; 1249 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1250 1251 if (id_priv->id.qp_type == IB_QPT_UD) { 1252 ret = cma_set_default_qkey(id_priv); 1253 if (ret) 1254 return ret; 1255 1256 qp_attr->qkey = id_priv->qkey; 1257 *qp_attr_mask |= IB_QP_QKEY; 1258 } else { 1259 qp_attr->qp_access_flags = 0; 1260 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1261 } 1262 return 0; 1263 } 1264 1265 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1266 int *qp_attr_mask) 1267 { 1268 struct rdma_id_private *id_priv; 1269 int ret = 0; 1270 1271 id_priv = container_of(id, struct rdma_id_private, id); 1272 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1273 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1274 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1275 else 1276 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1277 qp_attr_mask); 1278 1279 if (qp_attr->qp_state == IB_QPS_RTR) 1280 qp_attr->rq_psn = id_priv->seq_num; 1281 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1282 if (!id_priv->cm_id.iw) { 1283 qp_attr->qp_access_flags = 0; 1284 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1285 } else 1286 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1287 qp_attr_mask); 1288 qp_attr->port_num = id_priv->id.port_num; 1289 *qp_attr_mask |= IB_QP_PORT; 1290 } else { 1291 ret = -ENOSYS; 1292 } 1293 1294 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1295 qp_attr->timeout = id_priv->timeout; 1296 1297 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1298 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1299 1300 return ret; 1301 } 1302 EXPORT_SYMBOL(rdma_init_qp_attr); 1303 1304 static inline bool cma_zero_addr(const struct sockaddr *addr) 1305 { 1306 switch (addr->sa_family) { 1307 case AF_INET: 1308 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1309 case AF_INET6: 1310 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1311 case AF_IB: 1312 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1313 default: 1314 return false; 1315 } 1316 } 1317 1318 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1319 { 1320 switch (addr->sa_family) { 1321 case AF_INET: 1322 return ipv4_is_loopback( 1323 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1324 case AF_INET6: 1325 return ipv6_addr_loopback( 1326 &((struct sockaddr_in6 *)addr)->sin6_addr); 1327 case AF_IB: 1328 return ib_addr_loopback( 1329 &((struct sockaddr_ib *)addr)->sib_addr); 1330 default: 1331 return false; 1332 } 1333 } 1334 1335 static inline bool cma_any_addr(const struct sockaddr *addr) 1336 { 1337 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1338 } 1339 1340 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1341 { 1342 if (src->sa_family != dst->sa_family) 1343 return -1; 1344 1345 switch (src->sa_family) { 1346 case AF_INET: 1347 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1348 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1349 case AF_INET6: { 1350 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1351 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1352 bool link_local; 1353 1354 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1355 &dst_addr6->sin6_addr)) 1356 return 1; 1357 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1358 IPV6_ADDR_LINKLOCAL; 1359 /* Link local must match their scope_ids */ 1360 return link_local ? (src_addr6->sin6_scope_id != 1361 dst_addr6->sin6_scope_id) : 1362 0; 1363 } 1364 1365 default: 1366 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1367 &((struct sockaddr_ib *) dst)->sib_addr); 1368 } 1369 } 1370 1371 static __be16 cma_port(const struct sockaddr *addr) 1372 { 1373 struct sockaddr_ib *sib; 1374 1375 switch (addr->sa_family) { 1376 case AF_INET: 1377 return ((struct sockaddr_in *) addr)->sin_port; 1378 case AF_INET6: 1379 return ((struct sockaddr_in6 *) addr)->sin6_port; 1380 case AF_IB: 1381 sib = (struct sockaddr_ib *) addr; 1382 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1383 be64_to_cpu(sib->sib_sid_mask))); 1384 default: 1385 return 0; 1386 } 1387 } 1388 1389 static inline int cma_any_port(const struct sockaddr *addr) 1390 { 1391 return !cma_port(addr); 1392 } 1393 1394 static void cma_save_ib_info(struct sockaddr *src_addr, 1395 struct sockaddr *dst_addr, 1396 const struct rdma_cm_id *listen_id, 1397 const struct sa_path_rec *path) 1398 { 1399 struct sockaddr_ib *listen_ib, *ib; 1400 1401 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1402 if (src_addr) { 1403 ib = (struct sockaddr_ib *)src_addr; 1404 ib->sib_family = AF_IB; 1405 if (path) { 1406 ib->sib_pkey = path->pkey; 1407 ib->sib_flowinfo = path->flow_label; 1408 memcpy(&ib->sib_addr, &path->sgid, 16); 1409 ib->sib_sid = path->service_id; 1410 ib->sib_scope_id = 0; 1411 } else { 1412 ib->sib_pkey = listen_ib->sib_pkey; 1413 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1414 ib->sib_addr = listen_ib->sib_addr; 1415 ib->sib_sid = listen_ib->sib_sid; 1416 ib->sib_scope_id = listen_ib->sib_scope_id; 1417 } 1418 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1419 } 1420 if (dst_addr) { 1421 ib = (struct sockaddr_ib *)dst_addr; 1422 ib->sib_family = AF_IB; 1423 if (path) { 1424 ib->sib_pkey = path->pkey; 1425 ib->sib_flowinfo = path->flow_label; 1426 memcpy(&ib->sib_addr, &path->dgid, 16); 1427 } 1428 } 1429 } 1430 1431 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1432 struct sockaddr_in *dst_addr, 1433 struct cma_hdr *hdr, 1434 __be16 local_port) 1435 { 1436 if (src_addr) { 1437 *src_addr = (struct sockaddr_in) { 1438 .sin_family = AF_INET, 1439 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1440 .sin_port = local_port, 1441 }; 1442 } 1443 1444 if (dst_addr) { 1445 *dst_addr = (struct sockaddr_in) { 1446 .sin_family = AF_INET, 1447 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1448 .sin_port = hdr->port, 1449 }; 1450 } 1451 } 1452 1453 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1454 struct sockaddr_in6 *dst_addr, 1455 struct cma_hdr *hdr, 1456 __be16 local_port) 1457 { 1458 if (src_addr) { 1459 *src_addr = (struct sockaddr_in6) { 1460 .sin6_family = AF_INET6, 1461 .sin6_addr = hdr->dst_addr.ip6, 1462 .sin6_port = local_port, 1463 }; 1464 } 1465 1466 if (dst_addr) { 1467 *dst_addr = (struct sockaddr_in6) { 1468 .sin6_family = AF_INET6, 1469 .sin6_addr = hdr->src_addr.ip6, 1470 .sin6_port = hdr->port, 1471 }; 1472 } 1473 } 1474 1475 static u16 cma_port_from_service_id(__be64 service_id) 1476 { 1477 return (u16)be64_to_cpu(service_id); 1478 } 1479 1480 static int cma_save_ip_info(struct sockaddr *src_addr, 1481 struct sockaddr *dst_addr, 1482 const struct ib_cm_event *ib_event, 1483 __be64 service_id) 1484 { 1485 struct cma_hdr *hdr; 1486 __be16 port; 1487 1488 hdr = ib_event->private_data; 1489 if (hdr->cma_version != CMA_VERSION) 1490 return -EINVAL; 1491 1492 port = htons(cma_port_from_service_id(service_id)); 1493 1494 switch (cma_get_ip_ver(hdr)) { 1495 case 4: 1496 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1497 (struct sockaddr_in *)dst_addr, hdr, port); 1498 break; 1499 case 6: 1500 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1501 (struct sockaddr_in6 *)dst_addr, hdr, port); 1502 break; 1503 default: 1504 return -EAFNOSUPPORT; 1505 } 1506 1507 return 0; 1508 } 1509 1510 static int cma_save_net_info(struct sockaddr *src_addr, 1511 struct sockaddr *dst_addr, 1512 const struct rdma_cm_id *listen_id, 1513 const struct ib_cm_event *ib_event, 1514 sa_family_t sa_family, __be64 service_id) 1515 { 1516 if (sa_family == AF_IB) { 1517 if (ib_event->event == IB_CM_REQ_RECEIVED) 1518 cma_save_ib_info(src_addr, dst_addr, listen_id, 1519 ib_event->param.req_rcvd.primary_path); 1520 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1521 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1522 return 0; 1523 } 1524 1525 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1526 } 1527 1528 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1529 struct cma_req_info *req) 1530 { 1531 const struct ib_cm_req_event_param *req_param = 1532 &ib_event->param.req_rcvd; 1533 const struct ib_cm_sidr_req_event_param *sidr_param = 1534 &ib_event->param.sidr_req_rcvd; 1535 1536 switch (ib_event->event) { 1537 case IB_CM_REQ_RECEIVED: 1538 req->device = req_param->listen_id->device; 1539 req->port = req_param->port; 1540 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1541 sizeof(req->local_gid)); 1542 req->has_gid = true; 1543 req->service_id = req_param->primary_path->service_id; 1544 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1545 if (req->pkey != req_param->bth_pkey) 1546 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1547 "RDMA CMA: in the future this may cause the request to be dropped\n", 1548 req_param->bth_pkey, req->pkey); 1549 break; 1550 case IB_CM_SIDR_REQ_RECEIVED: 1551 req->device = sidr_param->listen_id->device; 1552 req->port = sidr_param->port; 1553 req->has_gid = false; 1554 req->service_id = sidr_param->service_id; 1555 req->pkey = sidr_param->pkey; 1556 if (req->pkey != sidr_param->bth_pkey) 1557 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1558 "RDMA CMA: in the future this may cause the request to be dropped\n", 1559 sidr_param->bth_pkey, req->pkey); 1560 break; 1561 default: 1562 return -EINVAL; 1563 } 1564 1565 return 0; 1566 } 1567 1568 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1569 const struct sockaddr_in *dst_addr, 1570 const struct sockaddr_in *src_addr) 1571 { 1572 __be32 daddr = dst_addr->sin_addr.s_addr, 1573 saddr = src_addr->sin_addr.s_addr; 1574 struct fib_result res; 1575 struct flowi4 fl4; 1576 int err; 1577 bool ret; 1578 1579 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1580 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1581 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1582 ipv4_is_loopback(saddr)) 1583 return false; 1584 1585 memset(&fl4, 0, sizeof(fl4)); 1586 fl4.flowi4_oif = net_dev->ifindex; 1587 fl4.daddr = daddr; 1588 fl4.saddr = saddr; 1589 1590 rcu_read_lock(); 1591 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1592 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1593 rcu_read_unlock(); 1594 1595 return ret; 1596 } 1597 1598 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1599 const struct sockaddr_in6 *dst_addr, 1600 const struct sockaddr_in6 *src_addr) 1601 { 1602 #if IS_ENABLED(CONFIG_IPV6) 1603 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1604 IPV6_ADDR_LINKLOCAL; 1605 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1606 &src_addr->sin6_addr, net_dev->ifindex, 1607 NULL, strict); 1608 bool ret; 1609 1610 if (!rt) 1611 return false; 1612 1613 ret = rt->rt6i_idev->dev == net_dev; 1614 ip6_rt_put(rt); 1615 1616 return ret; 1617 #else 1618 return false; 1619 #endif 1620 } 1621 1622 static bool validate_net_dev(struct net_device *net_dev, 1623 const struct sockaddr *daddr, 1624 const struct sockaddr *saddr) 1625 { 1626 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1627 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1628 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1629 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1630 1631 switch (daddr->sa_family) { 1632 case AF_INET: 1633 return saddr->sa_family == AF_INET && 1634 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1635 1636 case AF_INET6: 1637 return saddr->sa_family == AF_INET6 && 1638 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1639 1640 default: 1641 return false; 1642 } 1643 } 1644 1645 static struct net_device * 1646 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1647 { 1648 const struct ib_gid_attr *sgid_attr = NULL; 1649 struct net_device *ndev; 1650 1651 if (ib_event->event == IB_CM_REQ_RECEIVED) 1652 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1653 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1654 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1655 1656 if (!sgid_attr) 1657 return NULL; 1658 1659 rcu_read_lock(); 1660 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1661 if (IS_ERR(ndev)) 1662 ndev = NULL; 1663 else 1664 dev_hold(ndev); 1665 rcu_read_unlock(); 1666 return ndev; 1667 } 1668 1669 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1670 struct cma_req_info *req) 1671 { 1672 struct sockaddr *listen_addr = 1673 (struct sockaddr *)&req->listen_addr_storage; 1674 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1675 struct net_device *net_dev; 1676 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1677 int err; 1678 1679 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1680 req->service_id); 1681 if (err) 1682 return ERR_PTR(err); 1683 1684 if (rdma_protocol_roce(req->device, req->port)) 1685 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1686 else 1687 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1688 req->pkey, 1689 gid, listen_addr); 1690 if (!net_dev) 1691 return ERR_PTR(-ENODEV); 1692 1693 return net_dev; 1694 } 1695 1696 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1697 { 1698 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1699 } 1700 1701 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1702 const struct cma_hdr *hdr) 1703 { 1704 struct sockaddr *addr = cma_src_addr(id_priv); 1705 __be32 ip4_addr; 1706 struct in6_addr ip6_addr; 1707 1708 if (cma_any_addr(addr) && !id_priv->afonly) 1709 return true; 1710 1711 switch (addr->sa_family) { 1712 case AF_INET: 1713 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1714 if (cma_get_ip_ver(hdr) != 4) 1715 return false; 1716 if (!cma_any_addr(addr) && 1717 hdr->dst_addr.ip4.addr != ip4_addr) 1718 return false; 1719 break; 1720 case AF_INET6: 1721 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1722 if (cma_get_ip_ver(hdr) != 6) 1723 return false; 1724 if (!cma_any_addr(addr) && 1725 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1726 return false; 1727 break; 1728 case AF_IB: 1729 return true; 1730 default: 1731 return false; 1732 } 1733 1734 return true; 1735 } 1736 1737 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1738 { 1739 struct ib_device *device = id->device; 1740 const u32 port_num = id->port_num ?: rdma_start_port(device); 1741 1742 return rdma_protocol_roce(device, port_num); 1743 } 1744 1745 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1746 { 1747 const struct sockaddr *daddr = 1748 (const struct sockaddr *)&req->listen_addr_storage; 1749 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1750 1751 /* Returns true if the req is for IPv6 link local */ 1752 return (daddr->sa_family == AF_INET6 && 1753 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1754 } 1755 1756 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1757 const struct net_device *net_dev, 1758 const struct cma_req_info *req) 1759 { 1760 const struct rdma_addr *addr = &id->route.addr; 1761 1762 if (!net_dev) 1763 /* This request is an AF_IB request */ 1764 return (!id->port_num || id->port_num == req->port) && 1765 (addr->src_addr.ss_family == AF_IB); 1766 1767 /* 1768 * If the request is not for IPv6 link local, allow matching 1769 * request to any netdevice of the one or multiport rdma device. 1770 */ 1771 if (!cma_is_req_ipv6_ll(req)) 1772 return true; 1773 /* 1774 * Net namespaces must match, and if the listner is listening 1775 * on a specific netdevice than netdevice must match as well. 1776 */ 1777 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1778 (!!addr->dev_addr.bound_dev_if == 1779 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1780 return true; 1781 else 1782 return false; 1783 } 1784 1785 static struct rdma_id_private *cma_find_listener( 1786 const struct rdma_bind_list *bind_list, 1787 const struct ib_cm_id *cm_id, 1788 const struct ib_cm_event *ib_event, 1789 const struct cma_req_info *req, 1790 const struct net_device *net_dev) 1791 { 1792 struct rdma_id_private *id_priv, *id_priv_dev; 1793 1794 lockdep_assert_held(&lock); 1795 1796 if (!bind_list) 1797 return ERR_PTR(-EINVAL); 1798 1799 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1800 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1801 if (id_priv->id.device == cm_id->device && 1802 cma_match_net_dev(&id_priv->id, net_dev, req)) 1803 return id_priv; 1804 list_for_each_entry(id_priv_dev, 1805 &id_priv->listen_list, 1806 listen_item) { 1807 if (id_priv_dev->id.device == cm_id->device && 1808 cma_match_net_dev(&id_priv_dev->id, 1809 net_dev, req)) 1810 return id_priv_dev; 1811 } 1812 } 1813 } 1814 1815 return ERR_PTR(-EINVAL); 1816 } 1817 1818 static struct rdma_id_private * 1819 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1820 const struct ib_cm_event *ib_event, 1821 struct cma_req_info *req, 1822 struct net_device **net_dev) 1823 { 1824 struct rdma_bind_list *bind_list; 1825 struct rdma_id_private *id_priv; 1826 int err; 1827 1828 err = cma_save_req_info(ib_event, req); 1829 if (err) 1830 return ERR_PTR(err); 1831 1832 *net_dev = cma_get_net_dev(ib_event, req); 1833 if (IS_ERR(*net_dev)) { 1834 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1835 /* Assuming the protocol is AF_IB */ 1836 *net_dev = NULL; 1837 } else { 1838 return ERR_CAST(*net_dev); 1839 } 1840 } 1841 1842 mutex_lock(&lock); 1843 /* 1844 * Net namespace might be getting deleted while route lookup, 1845 * cm_id lookup is in progress. Therefore, perform netdevice 1846 * validation, cm_id lookup under rcu lock. 1847 * RCU lock along with netdevice state check, synchronizes with 1848 * netdevice migrating to different net namespace and also avoids 1849 * case where net namespace doesn't get deleted while lookup is in 1850 * progress. 1851 * If the device state is not IFF_UP, its properties such as ifindex 1852 * and nd_net cannot be trusted to remain valid without rcu lock. 1853 * net/core/dev.c change_net_namespace() ensures to synchronize with 1854 * ongoing operations on net device after device is closed using 1855 * synchronize_net(). 1856 */ 1857 rcu_read_lock(); 1858 if (*net_dev) { 1859 /* 1860 * If netdevice is down, it is likely that it is administratively 1861 * down or it might be migrating to different namespace. 1862 * In that case avoid further processing, as the net namespace 1863 * or ifindex may change. 1864 */ 1865 if (((*net_dev)->flags & IFF_UP) == 0) { 1866 id_priv = ERR_PTR(-EHOSTUNREACH); 1867 goto err; 1868 } 1869 1870 if (!validate_net_dev(*net_dev, 1871 (struct sockaddr *)&req->src_addr_storage, 1872 (struct sockaddr *)&req->listen_addr_storage)) { 1873 id_priv = ERR_PTR(-EHOSTUNREACH); 1874 goto err; 1875 } 1876 } 1877 1878 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1879 rdma_ps_from_service_id(req->service_id), 1880 cma_port_from_service_id(req->service_id)); 1881 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1882 err: 1883 rcu_read_unlock(); 1884 mutex_unlock(&lock); 1885 if (IS_ERR(id_priv) && *net_dev) { 1886 dev_put(*net_dev); 1887 *net_dev = NULL; 1888 } 1889 return id_priv; 1890 } 1891 1892 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1893 { 1894 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1895 } 1896 1897 static void cma_cancel_route(struct rdma_id_private *id_priv) 1898 { 1899 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1900 if (id_priv->query) 1901 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1902 } 1903 } 1904 1905 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1906 { 1907 struct rdma_id_private *dev_id_priv; 1908 1909 lockdep_assert_held(&lock); 1910 1911 /* 1912 * Remove from listen_any_list to prevent added devices from spawning 1913 * additional listen requests. 1914 */ 1915 list_del_init(&id_priv->listen_any_item); 1916 1917 while (!list_empty(&id_priv->listen_list)) { 1918 dev_id_priv = 1919 list_first_entry(&id_priv->listen_list, 1920 struct rdma_id_private, listen_item); 1921 /* sync with device removal to avoid duplicate destruction */ 1922 list_del_init(&dev_id_priv->device_item); 1923 list_del_init(&dev_id_priv->listen_item); 1924 mutex_unlock(&lock); 1925 1926 rdma_destroy_id(&dev_id_priv->id); 1927 mutex_lock(&lock); 1928 } 1929 } 1930 1931 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1932 { 1933 mutex_lock(&lock); 1934 _cma_cancel_listens(id_priv); 1935 mutex_unlock(&lock); 1936 } 1937 1938 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1939 enum rdma_cm_state state) 1940 { 1941 switch (state) { 1942 case RDMA_CM_ADDR_QUERY: 1943 /* 1944 * We can avoid doing the rdma_addr_cancel() based on state, 1945 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1946 * Notice that the addr_handler work could still be exiting 1947 * outside this state, however due to the interaction with the 1948 * handler_mutex the work is guaranteed not to touch id_priv 1949 * during exit. 1950 */ 1951 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1952 break; 1953 case RDMA_CM_ROUTE_QUERY: 1954 cma_cancel_route(id_priv); 1955 break; 1956 case RDMA_CM_LISTEN: 1957 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1958 cma_cancel_listens(id_priv); 1959 break; 1960 default: 1961 break; 1962 } 1963 } 1964 1965 static void cma_release_port(struct rdma_id_private *id_priv) 1966 { 1967 struct rdma_bind_list *bind_list = id_priv->bind_list; 1968 struct net *net = id_priv->id.route.addr.dev_addr.net; 1969 1970 if (!bind_list) 1971 return; 1972 1973 mutex_lock(&lock); 1974 hlist_del(&id_priv->node); 1975 if (hlist_empty(&bind_list->owners)) { 1976 cma_ps_remove(net, bind_list->ps, bind_list->port); 1977 kfree(bind_list); 1978 } 1979 mutex_unlock(&lock); 1980 } 1981 1982 static void destroy_mc(struct rdma_id_private *id_priv, 1983 struct cma_multicast *mc) 1984 { 1985 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1986 1987 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1988 ib_sa_free_multicast(mc->sa_mc); 1989 1990 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1991 struct rdma_dev_addr *dev_addr = 1992 &id_priv->id.route.addr.dev_addr; 1993 struct net_device *ndev = NULL; 1994 1995 if (dev_addr->bound_dev_if) 1996 ndev = dev_get_by_index(dev_addr->net, 1997 dev_addr->bound_dev_if); 1998 if (ndev && !send_only) { 1999 enum ib_gid_type gid_type; 2000 union ib_gid mgid; 2001 2002 gid_type = id_priv->cma_dev->default_gid_type 2003 [id_priv->id.port_num - 2004 rdma_start_port( 2005 id_priv->cma_dev->device)]; 2006 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2007 gid_type); 2008 cma_igmp_send(ndev, &mgid, false); 2009 } 2010 dev_put(ndev); 2011 2012 cancel_work_sync(&mc->iboe_join.work); 2013 } 2014 kfree(mc); 2015 } 2016 2017 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2018 { 2019 struct cma_multicast *mc; 2020 2021 while (!list_empty(&id_priv->mc_list)) { 2022 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2023 list); 2024 list_del(&mc->list); 2025 destroy_mc(id_priv, mc); 2026 } 2027 } 2028 2029 static void _destroy_id(struct rdma_id_private *id_priv, 2030 enum rdma_cm_state state) 2031 { 2032 cma_cancel_operation(id_priv, state); 2033 2034 rdma_restrack_del(&id_priv->res); 2035 cma_remove_id_from_tree(id_priv); 2036 if (id_priv->cma_dev) { 2037 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2038 if (id_priv->cm_id.ib) 2039 ib_destroy_cm_id(id_priv->cm_id.ib); 2040 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2041 if (id_priv->cm_id.iw) 2042 iw_destroy_cm_id(id_priv->cm_id.iw); 2043 } 2044 cma_leave_mc_groups(id_priv); 2045 cma_release_dev(id_priv); 2046 } 2047 2048 cma_release_port(id_priv); 2049 cma_id_put(id_priv); 2050 wait_for_completion(&id_priv->comp); 2051 2052 if (id_priv->internal_id) 2053 cma_id_put(id_priv->id.context); 2054 2055 kfree(id_priv->id.route.path_rec); 2056 kfree(id_priv->id.route.path_rec_inbound); 2057 kfree(id_priv->id.route.path_rec_outbound); 2058 2059 put_net(id_priv->id.route.addr.dev_addr.net); 2060 kfree(id_priv); 2061 } 2062 2063 /* 2064 * destroy an ID from within the handler_mutex. This ensures that no other 2065 * handlers can start running concurrently. 2066 */ 2067 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2068 __releases(&idprv->handler_mutex) 2069 { 2070 enum rdma_cm_state state; 2071 unsigned long flags; 2072 2073 trace_cm_id_destroy(id_priv); 2074 2075 /* 2076 * Setting the state to destroyed under the handler mutex provides a 2077 * fence against calling handler callbacks. If this is invoked due to 2078 * the failure of a handler callback then it guarentees that no future 2079 * handlers will be called. 2080 */ 2081 lockdep_assert_held(&id_priv->handler_mutex); 2082 spin_lock_irqsave(&id_priv->lock, flags); 2083 state = id_priv->state; 2084 id_priv->state = RDMA_CM_DESTROYING; 2085 spin_unlock_irqrestore(&id_priv->lock, flags); 2086 mutex_unlock(&id_priv->handler_mutex); 2087 _destroy_id(id_priv, state); 2088 } 2089 2090 void rdma_destroy_id(struct rdma_cm_id *id) 2091 { 2092 struct rdma_id_private *id_priv = 2093 container_of(id, struct rdma_id_private, id); 2094 2095 mutex_lock(&id_priv->handler_mutex); 2096 destroy_id_handler_unlock(id_priv); 2097 } 2098 EXPORT_SYMBOL(rdma_destroy_id); 2099 2100 static int cma_rep_recv(struct rdma_id_private *id_priv) 2101 { 2102 int ret; 2103 2104 ret = cma_modify_qp_rtr(id_priv, NULL); 2105 if (ret) 2106 goto reject; 2107 2108 ret = cma_modify_qp_rts(id_priv, NULL); 2109 if (ret) 2110 goto reject; 2111 2112 trace_cm_send_rtu(id_priv); 2113 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2114 if (ret) 2115 goto reject; 2116 2117 return 0; 2118 reject: 2119 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2120 cma_modify_qp_err(id_priv); 2121 trace_cm_send_rej(id_priv); 2122 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2123 NULL, 0, NULL, 0); 2124 return ret; 2125 } 2126 2127 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2128 const struct ib_cm_rep_event_param *rep_data, 2129 void *private_data) 2130 { 2131 event->param.conn.private_data = private_data; 2132 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2133 event->param.conn.responder_resources = rep_data->responder_resources; 2134 event->param.conn.initiator_depth = rep_data->initiator_depth; 2135 event->param.conn.flow_control = rep_data->flow_control; 2136 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2137 event->param.conn.srq = rep_data->srq; 2138 event->param.conn.qp_num = rep_data->remote_qpn; 2139 2140 event->ece.vendor_id = rep_data->ece.vendor_id; 2141 event->ece.attr_mod = rep_data->ece.attr_mod; 2142 } 2143 2144 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2145 struct rdma_cm_event *event) 2146 { 2147 int ret; 2148 2149 lockdep_assert_held(&id_priv->handler_mutex); 2150 2151 trace_cm_event_handler(id_priv, event); 2152 ret = id_priv->id.event_handler(&id_priv->id, event); 2153 trace_cm_event_done(id_priv, event, ret); 2154 return ret; 2155 } 2156 2157 static int cma_ib_handler(struct ib_cm_id *cm_id, 2158 const struct ib_cm_event *ib_event) 2159 { 2160 struct rdma_id_private *id_priv = cm_id->context; 2161 struct rdma_cm_event event = {}; 2162 enum rdma_cm_state state; 2163 int ret; 2164 2165 mutex_lock(&id_priv->handler_mutex); 2166 state = READ_ONCE(id_priv->state); 2167 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2168 state != RDMA_CM_CONNECT) || 2169 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2170 state != RDMA_CM_DISCONNECT)) 2171 goto out; 2172 2173 switch (ib_event->event) { 2174 case IB_CM_REQ_ERROR: 2175 case IB_CM_REP_ERROR: 2176 event.event = RDMA_CM_EVENT_UNREACHABLE; 2177 event.status = -ETIMEDOUT; 2178 break; 2179 case IB_CM_REP_RECEIVED: 2180 if (state == RDMA_CM_CONNECT && 2181 (id_priv->id.qp_type != IB_QPT_UD)) { 2182 trace_cm_send_mra(id_priv); 2183 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2184 } 2185 if (id_priv->id.qp) { 2186 event.status = cma_rep_recv(id_priv); 2187 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2188 RDMA_CM_EVENT_ESTABLISHED; 2189 } else { 2190 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2191 } 2192 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2193 ib_event->private_data); 2194 break; 2195 case IB_CM_RTU_RECEIVED: 2196 case IB_CM_USER_ESTABLISHED: 2197 event.event = RDMA_CM_EVENT_ESTABLISHED; 2198 break; 2199 case IB_CM_DREQ_ERROR: 2200 event.status = -ETIMEDOUT; 2201 fallthrough; 2202 case IB_CM_DREQ_RECEIVED: 2203 case IB_CM_DREP_RECEIVED: 2204 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2205 RDMA_CM_DISCONNECT)) 2206 goto out; 2207 event.event = RDMA_CM_EVENT_DISCONNECTED; 2208 break; 2209 case IB_CM_TIMEWAIT_EXIT: 2210 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2211 break; 2212 case IB_CM_MRA_RECEIVED: 2213 /* ignore event */ 2214 goto out; 2215 case IB_CM_REJ_RECEIVED: 2216 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2217 ib_event->param.rej_rcvd.reason)); 2218 cma_modify_qp_err(id_priv); 2219 event.status = ib_event->param.rej_rcvd.reason; 2220 event.event = RDMA_CM_EVENT_REJECTED; 2221 event.param.conn.private_data = ib_event->private_data; 2222 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2223 break; 2224 default: 2225 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2226 ib_event->event); 2227 goto out; 2228 } 2229 2230 ret = cma_cm_event_handler(id_priv, &event); 2231 if (ret) { 2232 /* Destroy the CM ID by returning a non-zero value. */ 2233 id_priv->cm_id.ib = NULL; 2234 destroy_id_handler_unlock(id_priv); 2235 return ret; 2236 } 2237 out: 2238 mutex_unlock(&id_priv->handler_mutex); 2239 return 0; 2240 } 2241 2242 static struct rdma_id_private * 2243 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2244 const struct ib_cm_event *ib_event, 2245 struct net_device *net_dev) 2246 { 2247 struct rdma_id_private *listen_id_priv; 2248 struct rdma_id_private *id_priv; 2249 struct rdma_cm_id *id; 2250 struct rdma_route *rt; 2251 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2252 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2253 const __be64 service_id = 2254 ib_event->param.req_rcvd.primary_path->service_id; 2255 int ret; 2256 2257 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2258 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2259 listen_id->event_handler, listen_id->context, 2260 listen_id->ps, 2261 ib_event->param.req_rcvd.qp_type, 2262 listen_id_priv); 2263 if (IS_ERR(id_priv)) 2264 return NULL; 2265 2266 id = &id_priv->id; 2267 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2268 (struct sockaddr *)&id->route.addr.dst_addr, 2269 listen_id, ib_event, ss_family, service_id)) 2270 goto err; 2271 2272 rt = &id->route; 2273 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2274 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2275 sizeof(*rt->path_rec), GFP_KERNEL); 2276 if (!rt->path_rec) 2277 goto err; 2278 2279 rt->path_rec[0] = *path; 2280 if (rt->num_pri_alt_paths == 2) 2281 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2282 2283 if (net_dev) { 2284 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2285 } else { 2286 if (!cma_protocol_roce(listen_id) && 2287 cma_any_addr(cma_src_addr(id_priv))) { 2288 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2289 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2290 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2291 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2292 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2293 if (ret) 2294 goto err; 2295 } 2296 } 2297 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2298 2299 id_priv->state = RDMA_CM_CONNECT; 2300 return id_priv; 2301 2302 err: 2303 rdma_destroy_id(id); 2304 return NULL; 2305 } 2306 2307 static struct rdma_id_private * 2308 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2309 const struct ib_cm_event *ib_event, 2310 struct net_device *net_dev) 2311 { 2312 const struct rdma_id_private *listen_id_priv; 2313 struct rdma_id_private *id_priv; 2314 struct rdma_cm_id *id; 2315 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2316 struct net *net = listen_id->route.addr.dev_addr.net; 2317 int ret; 2318 2319 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2320 id_priv = __rdma_create_id(net, listen_id->event_handler, 2321 listen_id->context, listen_id->ps, IB_QPT_UD, 2322 listen_id_priv); 2323 if (IS_ERR(id_priv)) 2324 return NULL; 2325 2326 id = &id_priv->id; 2327 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2328 (struct sockaddr *)&id->route.addr.dst_addr, 2329 listen_id, ib_event, ss_family, 2330 ib_event->param.sidr_req_rcvd.service_id)) 2331 goto err; 2332 2333 if (net_dev) { 2334 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2335 } else { 2336 if (!cma_any_addr(cma_src_addr(id_priv))) { 2337 ret = cma_translate_addr(cma_src_addr(id_priv), 2338 &id->route.addr.dev_addr); 2339 if (ret) 2340 goto err; 2341 } 2342 } 2343 2344 id_priv->state = RDMA_CM_CONNECT; 2345 return id_priv; 2346 err: 2347 rdma_destroy_id(id); 2348 return NULL; 2349 } 2350 2351 static void cma_set_req_event_data(struct rdma_cm_event *event, 2352 const struct ib_cm_req_event_param *req_data, 2353 void *private_data, int offset) 2354 { 2355 event->param.conn.private_data = private_data + offset; 2356 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2357 event->param.conn.responder_resources = req_data->responder_resources; 2358 event->param.conn.initiator_depth = req_data->initiator_depth; 2359 event->param.conn.flow_control = req_data->flow_control; 2360 event->param.conn.retry_count = req_data->retry_count; 2361 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2362 event->param.conn.srq = req_data->srq; 2363 event->param.conn.qp_num = req_data->remote_qpn; 2364 2365 event->ece.vendor_id = req_data->ece.vendor_id; 2366 event->ece.attr_mod = req_data->ece.attr_mod; 2367 } 2368 2369 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2370 const struct ib_cm_event *ib_event) 2371 { 2372 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2373 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2374 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2375 (id->qp_type == IB_QPT_UD)) || 2376 (!id->qp_type)); 2377 } 2378 2379 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2380 const struct ib_cm_event *ib_event) 2381 { 2382 struct rdma_id_private *listen_id, *conn_id = NULL; 2383 struct rdma_cm_event event = {}; 2384 struct cma_req_info req = {}; 2385 struct net_device *net_dev; 2386 u8 offset; 2387 int ret; 2388 2389 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2390 if (IS_ERR(listen_id)) 2391 return PTR_ERR(listen_id); 2392 2393 trace_cm_req_handler(listen_id, ib_event->event); 2394 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2395 ret = -EINVAL; 2396 goto net_dev_put; 2397 } 2398 2399 mutex_lock(&listen_id->handler_mutex); 2400 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2401 ret = -ECONNABORTED; 2402 goto err_unlock; 2403 } 2404 2405 offset = cma_user_data_offset(listen_id); 2406 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2407 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2408 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2409 event.param.ud.private_data = ib_event->private_data + offset; 2410 event.param.ud.private_data_len = 2411 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2412 } else { 2413 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2414 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2415 ib_event->private_data, offset); 2416 } 2417 if (!conn_id) { 2418 ret = -ENOMEM; 2419 goto err_unlock; 2420 } 2421 2422 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2423 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2424 if (ret) { 2425 destroy_id_handler_unlock(conn_id); 2426 goto err_unlock; 2427 } 2428 2429 conn_id->cm_id.ib = cm_id; 2430 cm_id->context = conn_id; 2431 cm_id->cm_handler = cma_ib_handler; 2432 2433 ret = cma_cm_event_handler(conn_id, &event); 2434 if (ret) { 2435 /* Destroy the CM ID by returning a non-zero value. */ 2436 conn_id->cm_id.ib = NULL; 2437 mutex_unlock(&listen_id->handler_mutex); 2438 destroy_id_handler_unlock(conn_id); 2439 goto net_dev_put; 2440 } 2441 2442 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2443 conn_id->id.qp_type != IB_QPT_UD) { 2444 trace_cm_send_mra(cm_id->context); 2445 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2446 } 2447 mutex_unlock(&conn_id->handler_mutex); 2448 2449 err_unlock: 2450 mutex_unlock(&listen_id->handler_mutex); 2451 2452 net_dev_put: 2453 dev_put(net_dev); 2454 2455 return ret; 2456 } 2457 2458 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2459 { 2460 if (addr->sa_family == AF_IB) 2461 return ((struct sockaddr_ib *) addr)->sib_sid; 2462 2463 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2464 } 2465 EXPORT_SYMBOL(rdma_get_service_id); 2466 2467 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2468 union ib_gid *dgid) 2469 { 2470 struct rdma_addr *addr = &cm_id->route.addr; 2471 2472 if (!cm_id->device) { 2473 if (sgid) 2474 memset(sgid, 0, sizeof(*sgid)); 2475 if (dgid) 2476 memset(dgid, 0, sizeof(*dgid)); 2477 return; 2478 } 2479 2480 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2481 if (sgid) 2482 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2483 if (dgid) 2484 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2485 } else { 2486 if (sgid) 2487 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2488 if (dgid) 2489 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2490 } 2491 } 2492 EXPORT_SYMBOL(rdma_read_gids); 2493 2494 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2495 { 2496 struct rdma_id_private *id_priv = iw_id->context; 2497 struct rdma_cm_event event = {}; 2498 int ret = 0; 2499 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2500 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2501 2502 mutex_lock(&id_priv->handler_mutex); 2503 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2504 goto out; 2505 2506 switch (iw_event->event) { 2507 case IW_CM_EVENT_CLOSE: 2508 event.event = RDMA_CM_EVENT_DISCONNECTED; 2509 break; 2510 case IW_CM_EVENT_CONNECT_REPLY: 2511 memcpy(cma_src_addr(id_priv), laddr, 2512 rdma_addr_size(laddr)); 2513 memcpy(cma_dst_addr(id_priv), raddr, 2514 rdma_addr_size(raddr)); 2515 switch (iw_event->status) { 2516 case 0: 2517 event.event = RDMA_CM_EVENT_ESTABLISHED; 2518 event.param.conn.initiator_depth = iw_event->ird; 2519 event.param.conn.responder_resources = iw_event->ord; 2520 break; 2521 case -ECONNRESET: 2522 case -ECONNREFUSED: 2523 event.event = RDMA_CM_EVENT_REJECTED; 2524 break; 2525 case -ETIMEDOUT: 2526 event.event = RDMA_CM_EVENT_UNREACHABLE; 2527 break; 2528 default: 2529 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2530 break; 2531 } 2532 break; 2533 case IW_CM_EVENT_ESTABLISHED: 2534 event.event = RDMA_CM_EVENT_ESTABLISHED; 2535 event.param.conn.initiator_depth = iw_event->ird; 2536 event.param.conn.responder_resources = iw_event->ord; 2537 break; 2538 default: 2539 goto out; 2540 } 2541 2542 event.status = iw_event->status; 2543 event.param.conn.private_data = iw_event->private_data; 2544 event.param.conn.private_data_len = iw_event->private_data_len; 2545 ret = cma_cm_event_handler(id_priv, &event); 2546 if (ret) { 2547 /* Destroy the CM ID by returning a non-zero value. */ 2548 id_priv->cm_id.iw = NULL; 2549 destroy_id_handler_unlock(id_priv); 2550 return ret; 2551 } 2552 2553 out: 2554 mutex_unlock(&id_priv->handler_mutex); 2555 return ret; 2556 } 2557 2558 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2559 struct iw_cm_event *iw_event) 2560 { 2561 struct rdma_id_private *listen_id, *conn_id; 2562 struct rdma_cm_event event = {}; 2563 int ret = -ECONNABORTED; 2564 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2565 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2566 2567 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2568 event.param.conn.private_data = iw_event->private_data; 2569 event.param.conn.private_data_len = iw_event->private_data_len; 2570 event.param.conn.initiator_depth = iw_event->ird; 2571 event.param.conn.responder_resources = iw_event->ord; 2572 2573 listen_id = cm_id->context; 2574 2575 mutex_lock(&listen_id->handler_mutex); 2576 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2577 goto out; 2578 2579 /* Create a new RDMA id for the new IW CM ID */ 2580 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2581 listen_id->id.event_handler, 2582 listen_id->id.context, RDMA_PS_TCP, 2583 IB_QPT_RC, listen_id); 2584 if (IS_ERR(conn_id)) { 2585 ret = -ENOMEM; 2586 goto out; 2587 } 2588 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2589 conn_id->state = RDMA_CM_CONNECT; 2590 2591 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2592 if (ret) { 2593 mutex_unlock(&listen_id->handler_mutex); 2594 destroy_id_handler_unlock(conn_id); 2595 return ret; 2596 } 2597 2598 ret = cma_iw_acquire_dev(conn_id, listen_id); 2599 if (ret) { 2600 mutex_unlock(&listen_id->handler_mutex); 2601 destroy_id_handler_unlock(conn_id); 2602 return ret; 2603 } 2604 2605 conn_id->cm_id.iw = cm_id; 2606 cm_id->context = conn_id; 2607 cm_id->cm_handler = cma_iw_handler; 2608 2609 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2610 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2611 2612 ret = cma_cm_event_handler(conn_id, &event); 2613 if (ret) { 2614 /* User wants to destroy the CM ID */ 2615 conn_id->cm_id.iw = NULL; 2616 mutex_unlock(&listen_id->handler_mutex); 2617 destroy_id_handler_unlock(conn_id); 2618 return ret; 2619 } 2620 2621 mutex_unlock(&conn_id->handler_mutex); 2622 2623 out: 2624 mutex_unlock(&listen_id->handler_mutex); 2625 return ret; 2626 } 2627 2628 static int cma_ib_listen(struct rdma_id_private *id_priv) 2629 { 2630 struct sockaddr *addr; 2631 struct ib_cm_id *id; 2632 __be64 svc_id; 2633 2634 addr = cma_src_addr(id_priv); 2635 svc_id = rdma_get_service_id(&id_priv->id, addr); 2636 id = ib_cm_insert_listen(id_priv->id.device, 2637 cma_ib_req_handler, svc_id); 2638 if (IS_ERR(id)) 2639 return PTR_ERR(id); 2640 id_priv->cm_id.ib = id; 2641 2642 return 0; 2643 } 2644 2645 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2646 { 2647 int ret; 2648 struct iw_cm_id *id; 2649 2650 id = iw_create_cm_id(id_priv->id.device, 2651 iw_conn_req_handler, 2652 id_priv); 2653 if (IS_ERR(id)) 2654 return PTR_ERR(id); 2655 2656 mutex_lock(&id_priv->qp_mutex); 2657 id->tos = id_priv->tos; 2658 id->tos_set = id_priv->tos_set; 2659 mutex_unlock(&id_priv->qp_mutex); 2660 id->afonly = id_priv->afonly; 2661 id_priv->cm_id.iw = id; 2662 2663 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2664 rdma_addr_size(cma_src_addr(id_priv))); 2665 2666 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2667 2668 if (ret) { 2669 iw_destroy_cm_id(id_priv->cm_id.iw); 2670 id_priv->cm_id.iw = NULL; 2671 } 2672 2673 return ret; 2674 } 2675 2676 static int cma_listen_handler(struct rdma_cm_id *id, 2677 struct rdma_cm_event *event) 2678 { 2679 struct rdma_id_private *id_priv = id->context; 2680 2681 /* Listening IDs are always destroyed on removal */ 2682 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2683 return -1; 2684 2685 id->context = id_priv->id.context; 2686 id->event_handler = id_priv->id.event_handler; 2687 trace_cm_event_handler(id_priv, event); 2688 return id_priv->id.event_handler(id, event); 2689 } 2690 2691 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2692 struct cma_device *cma_dev, 2693 struct rdma_id_private **to_destroy) 2694 { 2695 struct rdma_id_private *dev_id_priv; 2696 struct net *net = id_priv->id.route.addr.dev_addr.net; 2697 int ret; 2698 2699 lockdep_assert_held(&lock); 2700 2701 *to_destroy = NULL; 2702 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2703 return 0; 2704 2705 dev_id_priv = 2706 __rdma_create_id(net, cma_listen_handler, id_priv, 2707 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2708 if (IS_ERR(dev_id_priv)) 2709 return PTR_ERR(dev_id_priv); 2710 2711 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2712 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2713 rdma_addr_size(cma_src_addr(id_priv))); 2714 2715 _cma_attach_to_dev(dev_id_priv, cma_dev); 2716 rdma_restrack_add(&dev_id_priv->res); 2717 cma_id_get(id_priv); 2718 dev_id_priv->internal_id = 1; 2719 dev_id_priv->afonly = id_priv->afonly; 2720 mutex_lock(&id_priv->qp_mutex); 2721 dev_id_priv->tos_set = id_priv->tos_set; 2722 dev_id_priv->tos = id_priv->tos; 2723 mutex_unlock(&id_priv->qp_mutex); 2724 2725 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2726 if (ret) 2727 goto err_listen; 2728 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2729 return 0; 2730 err_listen: 2731 /* Caller must destroy this after releasing lock */ 2732 *to_destroy = dev_id_priv; 2733 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2734 return ret; 2735 } 2736 2737 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2738 { 2739 struct rdma_id_private *to_destroy; 2740 struct cma_device *cma_dev; 2741 int ret; 2742 2743 mutex_lock(&lock); 2744 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2745 list_for_each_entry(cma_dev, &dev_list, list) { 2746 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2747 if (ret) { 2748 /* Prevent racing with cma_process_remove() */ 2749 if (to_destroy) 2750 list_del_init(&to_destroy->device_item); 2751 goto err_listen; 2752 } 2753 } 2754 mutex_unlock(&lock); 2755 return 0; 2756 2757 err_listen: 2758 _cma_cancel_listens(id_priv); 2759 mutex_unlock(&lock); 2760 if (to_destroy) 2761 rdma_destroy_id(&to_destroy->id); 2762 return ret; 2763 } 2764 2765 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2766 { 2767 struct rdma_id_private *id_priv; 2768 2769 id_priv = container_of(id, struct rdma_id_private, id); 2770 mutex_lock(&id_priv->qp_mutex); 2771 id_priv->tos = (u8) tos; 2772 id_priv->tos_set = true; 2773 mutex_unlock(&id_priv->qp_mutex); 2774 } 2775 EXPORT_SYMBOL(rdma_set_service_type); 2776 2777 /** 2778 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2779 * with a connection identifier. 2780 * @id: Communication identifier to associated with service type. 2781 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2782 * 2783 * This function should be called before rdma_connect() on active side, 2784 * and on passive side before rdma_accept(). It is applicable to primary 2785 * path only. The timeout will affect the local side of the QP, it is not 2786 * negotiated with remote side and zero disables the timer. In case it is 2787 * set before rdma_resolve_route, the value will also be used to determine 2788 * PacketLifeTime for RoCE. 2789 * 2790 * Return: 0 for success 2791 */ 2792 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2793 { 2794 struct rdma_id_private *id_priv; 2795 2796 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2797 return -EINVAL; 2798 2799 id_priv = container_of(id, struct rdma_id_private, id); 2800 mutex_lock(&id_priv->qp_mutex); 2801 id_priv->timeout = timeout; 2802 id_priv->timeout_set = true; 2803 mutex_unlock(&id_priv->qp_mutex); 2804 2805 return 0; 2806 } 2807 EXPORT_SYMBOL(rdma_set_ack_timeout); 2808 2809 /** 2810 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2811 * QP associated with a connection identifier. 2812 * @id: Communication identifier to associated with service type. 2813 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2814 * Timer Field" in the IBTA specification. 2815 * 2816 * This function should be called before rdma_connect() on active 2817 * side, and on passive side before rdma_accept(). The timer value 2818 * will be associated with the local QP. When it receives a send it is 2819 * not read to handle, typically if the receive queue is empty, an RNR 2820 * Retry NAK is returned to the requester with the min_rnr_timer 2821 * encoded. The requester will then wait at least the time specified 2822 * in the NAK before retrying. The default is zero, which translates 2823 * to a minimum RNR Timer value of 655 ms. 2824 * 2825 * Return: 0 for success 2826 */ 2827 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2828 { 2829 struct rdma_id_private *id_priv; 2830 2831 /* It is a five-bit value */ 2832 if (min_rnr_timer & 0xe0) 2833 return -EINVAL; 2834 2835 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2836 return -EINVAL; 2837 2838 id_priv = container_of(id, struct rdma_id_private, id); 2839 mutex_lock(&id_priv->qp_mutex); 2840 id_priv->min_rnr_timer = min_rnr_timer; 2841 id_priv->min_rnr_timer_set = true; 2842 mutex_unlock(&id_priv->qp_mutex); 2843 2844 return 0; 2845 } 2846 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2847 2848 static int route_set_path_rec_inbound(struct cma_work *work, 2849 struct sa_path_rec *path_rec) 2850 { 2851 struct rdma_route *route = &work->id->id.route; 2852 2853 if (!route->path_rec_inbound) { 2854 route->path_rec_inbound = 2855 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2856 if (!route->path_rec_inbound) 2857 return -ENOMEM; 2858 } 2859 2860 *route->path_rec_inbound = *path_rec; 2861 return 0; 2862 } 2863 2864 static int route_set_path_rec_outbound(struct cma_work *work, 2865 struct sa_path_rec *path_rec) 2866 { 2867 struct rdma_route *route = &work->id->id.route; 2868 2869 if (!route->path_rec_outbound) { 2870 route->path_rec_outbound = 2871 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2872 if (!route->path_rec_outbound) 2873 return -ENOMEM; 2874 } 2875 2876 *route->path_rec_outbound = *path_rec; 2877 return 0; 2878 } 2879 2880 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2881 unsigned int num_prs, void *context) 2882 { 2883 struct cma_work *work = context; 2884 struct rdma_route *route; 2885 int i; 2886 2887 route = &work->id->id.route; 2888 2889 if (status) 2890 goto fail; 2891 2892 for (i = 0; i < num_prs; i++) { 2893 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2894 *route->path_rec = path_rec[i]; 2895 else if (path_rec[i].flags & IB_PATH_INBOUND) 2896 status = route_set_path_rec_inbound(work, &path_rec[i]); 2897 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2898 status = route_set_path_rec_outbound(work, 2899 &path_rec[i]); 2900 else 2901 status = -EINVAL; 2902 2903 if (status) 2904 goto fail; 2905 } 2906 2907 route->num_pri_alt_paths = 1; 2908 queue_work(cma_wq, &work->work); 2909 return; 2910 2911 fail: 2912 work->old_state = RDMA_CM_ROUTE_QUERY; 2913 work->new_state = RDMA_CM_ADDR_RESOLVED; 2914 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2915 work->event.status = status; 2916 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2917 status); 2918 queue_work(cma_wq, &work->work); 2919 } 2920 2921 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2922 unsigned long timeout_ms, struct cma_work *work) 2923 { 2924 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2925 struct sa_path_rec path_rec; 2926 ib_sa_comp_mask comp_mask; 2927 struct sockaddr_in6 *sin6; 2928 struct sockaddr_ib *sib; 2929 2930 memset(&path_rec, 0, sizeof path_rec); 2931 2932 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2933 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2934 else 2935 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2936 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2937 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2938 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2939 path_rec.numb_path = 1; 2940 path_rec.reversible = 1; 2941 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2942 cma_dst_addr(id_priv)); 2943 2944 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2945 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2946 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2947 2948 switch (cma_family(id_priv)) { 2949 case AF_INET: 2950 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2951 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2952 break; 2953 case AF_INET6: 2954 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2955 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2956 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2957 break; 2958 case AF_IB: 2959 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2960 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2961 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2962 break; 2963 } 2964 2965 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2966 id_priv->id.port_num, &path_rec, 2967 comp_mask, timeout_ms, 2968 GFP_KERNEL, cma_query_handler, 2969 work, &id_priv->query); 2970 2971 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2972 } 2973 2974 static void cma_iboe_join_work_handler(struct work_struct *work) 2975 { 2976 struct cma_multicast *mc = 2977 container_of(work, struct cma_multicast, iboe_join.work); 2978 struct rdma_cm_event *event = &mc->iboe_join.event; 2979 struct rdma_id_private *id_priv = mc->id_priv; 2980 int ret; 2981 2982 mutex_lock(&id_priv->handler_mutex); 2983 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2984 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2985 goto out_unlock; 2986 2987 ret = cma_cm_event_handler(id_priv, event); 2988 WARN_ON(ret); 2989 2990 out_unlock: 2991 mutex_unlock(&id_priv->handler_mutex); 2992 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2993 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2994 } 2995 2996 static void cma_work_handler(struct work_struct *_work) 2997 { 2998 struct cma_work *work = container_of(_work, struct cma_work, work); 2999 struct rdma_id_private *id_priv = work->id; 3000 3001 mutex_lock(&id_priv->handler_mutex); 3002 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3003 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3004 goto out_unlock; 3005 if (work->old_state != 0 || work->new_state != 0) { 3006 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3007 goto out_unlock; 3008 } 3009 3010 if (cma_cm_event_handler(id_priv, &work->event)) { 3011 cma_id_put(id_priv); 3012 destroy_id_handler_unlock(id_priv); 3013 goto out_free; 3014 } 3015 3016 out_unlock: 3017 mutex_unlock(&id_priv->handler_mutex); 3018 cma_id_put(id_priv); 3019 out_free: 3020 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3021 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3022 kfree(work); 3023 } 3024 3025 static void cma_init_resolve_route_work(struct cma_work *work, 3026 struct rdma_id_private *id_priv) 3027 { 3028 work->id = id_priv; 3029 INIT_WORK(&work->work, cma_work_handler); 3030 work->old_state = RDMA_CM_ROUTE_QUERY; 3031 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3032 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3033 } 3034 3035 static void enqueue_resolve_addr_work(struct cma_work *work, 3036 struct rdma_id_private *id_priv) 3037 { 3038 /* Balances with cma_id_put() in cma_work_handler */ 3039 cma_id_get(id_priv); 3040 3041 work->id = id_priv; 3042 INIT_WORK(&work->work, cma_work_handler); 3043 work->old_state = RDMA_CM_ADDR_QUERY; 3044 work->new_state = RDMA_CM_ADDR_RESOLVED; 3045 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3046 3047 queue_work(cma_wq, &work->work); 3048 } 3049 3050 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3051 unsigned long timeout_ms) 3052 { 3053 struct rdma_route *route = &id_priv->id.route; 3054 struct cma_work *work; 3055 int ret; 3056 3057 work = kzalloc(sizeof *work, GFP_KERNEL); 3058 if (!work) 3059 return -ENOMEM; 3060 3061 cma_init_resolve_route_work(work, id_priv); 3062 3063 if (!route->path_rec) 3064 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3065 if (!route->path_rec) { 3066 ret = -ENOMEM; 3067 goto err1; 3068 } 3069 3070 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3071 if (ret) 3072 goto err2; 3073 3074 return 0; 3075 err2: 3076 kfree(route->path_rec); 3077 route->path_rec = NULL; 3078 err1: 3079 kfree(work); 3080 return ret; 3081 } 3082 3083 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3084 unsigned long supported_gids, 3085 enum ib_gid_type default_gid) 3086 { 3087 if ((network_type == RDMA_NETWORK_IPV4 || 3088 network_type == RDMA_NETWORK_IPV6) && 3089 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3090 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3091 3092 return default_gid; 3093 } 3094 3095 /* 3096 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3097 * path record type based on GID type. 3098 * It also sets up other L2 fields which includes destination mac address 3099 * netdev ifindex, of the path record. 3100 * It returns the netdev of the bound interface for this path record entry. 3101 */ 3102 static struct net_device * 3103 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3104 { 3105 struct rdma_route *route = &id_priv->id.route; 3106 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3107 struct rdma_addr *addr = &route->addr; 3108 unsigned long supported_gids; 3109 struct net_device *ndev; 3110 3111 if (!addr->dev_addr.bound_dev_if) 3112 return NULL; 3113 3114 ndev = dev_get_by_index(addr->dev_addr.net, 3115 addr->dev_addr.bound_dev_if); 3116 if (!ndev) 3117 return NULL; 3118 3119 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3120 id_priv->id.port_num); 3121 gid_type = cma_route_gid_type(addr->dev_addr.network, 3122 supported_gids, 3123 id_priv->gid_type); 3124 /* Use the hint from IP Stack to select GID Type */ 3125 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3126 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3127 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3128 3129 route->path_rec->roce.route_resolved = true; 3130 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3131 return ndev; 3132 } 3133 3134 int rdma_set_ib_path(struct rdma_cm_id *id, 3135 struct sa_path_rec *path_rec) 3136 { 3137 struct rdma_id_private *id_priv; 3138 struct net_device *ndev; 3139 int ret; 3140 3141 id_priv = container_of(id, struct rdma_id_private, id); 3142 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3143 RDMA_CM_ROUTE_RESOLVED)) 3144 return -EINVAL; 3145 3146 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3147 GFP_KERNEL); 3148 if (!id->route.path_rec) { 3149 ret = -ENOMEM; 3150 goto err; 3151 } 3152 3153 if (rdma_protocol_roce(id->device, id->port_num)) { 3154 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3155 if (!ndev) { 3156 ret = -ENODEV; 3157 goto err_free; 3158 } 3159 dev_put(ndev); 3160 } 3161 3162 id->route.num_pri_alt_paths = 1; 3163 return 0; 3164 3165 err_free: 3166 kfree(id->route.path_rec); 3167 id->route.path_rec = NULL; 3168 err: 3169 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3170 return ret; 3171 } 3172 EXPORT_SYMBOL(rdma_set_ib_path); 3173 3174 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3175 { 3176 struct cma_work *work; 3177 3178 work = kzalloc(sizeof *work, GFP_KERNEL); 3179 if (!work) 3180 return -ENOMEM; 3181 3182 cma_init_resolve_route_work(work, id_priv); 3183 queue_work(cma_wq, &work->work); 3184 return 0; 3185 } 3186 3187 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3188 { 3189 struct net_device *dev; 3190 3191 dev = vlan_dev_real_dev(vlan_ndev); 3192 if (dev->num_tc) 3193 return netdev_get_prio_tc_map(dev, prio); 3194 3195 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3196 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3197 } 3198 3199 struct iboe_prio_tc_map { 3200 int input_prio; 3201 int output_tc; 3202 bool found; 3203 }; 3204 3205 static int get_lower_vlan_dev_tc(struct net_device *dev, 3206 struct netdev_nested_priv *priv) 3207 { 3208 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3209 3210 if (is_vlan_dev(dev)) 3211 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3212 else if (dev->num_tc) 3213 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3214 else 3215 map->output_tc = 0; 3216 /* We are interested only in first level VLAN device, so always 3217 * return 1 to stop iterating over next level devices. 3218 */ 3219 map->found = true; 3220 return 1; 3221 } 3222 3223 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3224 { 3225 struct iboe_prio_tc_map prio_tc_map = {}; 3226 int prio = rt_tos2priority(tos); 3227 struct netdev_nested_priv priv; 3228 3229 /* If VLAN device, get it directly from the VLAN netdev */ 3230 if (is_vlan_dev(ndev)) 3231 return get_vlan_ndev_tc(ndev, prio); 3232 3233 prio_tc_map.input_prio = prio; 3234 priv.data = (void *)&prio_tc_map; 3235 rcu_read_lock(); 3236 netdev_walk_all_lower_dev_rcu(ndev, 3237 get_lower_vlan_dev_tc, 3238 &priv); 3239 rcu_read_unlock(); 3240 /* If map is found from lower device, use it; Otherwise 3241 * continue with the current netdevice to get priority to tc map. 3242 */ 3243 if (prio_tc_map.found) 3244 return prio_tc_map.output_tc; 3245 else if (ndev->num_tc) 3246 return netdev_get_prio_tc_map(ndev, prio); 3247 else 3248 return 0; 3249 } 3250 3251 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3252 { 3253 struct sockaddr_in6 *addr6; 3254 u16 dport, sport; 3255 u32 hash, fl; 3256 3257 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3258 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3259 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3260 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3261 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3262 hash = (u32)sport * 31 + dport; 3263 fl = hash & IB_GRH_FLOWLABEL_MASK; 3264 } 3265 3266 return cpu_to_be32(fl); 3267 } 3268 3269 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3270 { 3271 struct rdma_route *route = &id_priv->id.route; 3272 struct rdma_addr *addr = &route->addr; 3273 struct cma_work *work; 3274 int ret; 3275 struct net_device *ndev; 3276 3277 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3278 rdma_start_port(id_priv->cma_dev->device)]; 3279 u8 tos; 3280 3281 mutex_lock(&id_priv->qp_mutex); 3282 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3283 mutex_unlock(&id_priv->qp_mutex); 3284 3285 work = kzalloc(sizeof *work, GFP_KERNEL); 3286 if (!work) 3287 return -ENOMEM; 3288 3289 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3290 if (!route->path_rec) { 3291 ret = -ENOMEM; 3292 goto err1; 3293 } 3294 3295 route->num_pri_alt_paths = 1; 3296 3297 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3298 if (!ndev) { 3299 ret = -ENODEV; 3300 goto err2; 3301 } 3302 3303 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3304 &route->path_rec->sgid); 3305 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3306 &route->path_rec->dgid); 3307 3308 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3309 /* TODO: get the hoplimit from the inet/inet6 device */ 3310 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3311 else 3312 route->path_rec->hop_limit = 1; 3313 route->path_rec->reversible = 1; 3314 route->path_rec->pkey = cpu_to_be16(0xffff); 3315 route->path_rec->mtu_selector = IB_SA_EQ; 3316 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3317 route->path_rec->traffic_class = tos; 3318 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3319 route->path_rec->rate_selector = IB_SA_EQ; 3320 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3321 dev_put(ndev); 3322 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3323 /* In case ACK timeout is set, use this value to calculate 3324 * PacketLifeTime. As per IBTA 12.7.34, 3325 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3326 * Assuming a negligible local ACK delay, we can use 3327 * PacketLifeTime = local ACK timeout/2 3328 * as a reasonable approximation for RoCE networks. 3329 */ 3330 mutex_lock(&id_priv->qp_mutex); 3331 if (id_priv->timeout_set && id_priv->timeout) 3332 route->path_rec->packet_life_time = id_priv->timeout - 1; 3333 else 3334 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3335 mutex_unlock(&id_priv->qp_mutex); 3336 3337 if (!route->path_rec->mtu) { 3338 ret = -EINVAL; 3339 goto err2; 3340 } 3341 3342 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3343 id_priv->id.port_num)) 3344 route->path_rec->flow_label = 3345 cma_get_roce_udp_flow_label(id_priv); 3346 3347 cma_init_resolve_route_work(work, id_priv); 3348 queue_work(cma_wq, &work->work); 3349 3350 return 0; 3351 3352 err2: 3353 kfree(route->path_rec); 3354 route->path_rec = NULL; 3355 route->num_pri_alt_paths = 0; 3356 err1: 3357 kfree(work); 3358 return ret; 3359 } 3360 3361 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3362 { 3363 struct rdma_id_private *id_priv; 3364 int ret; 3365 3366 if (!timeout_ms) 3367 return -EINVAL; 3368 3369 id_priv = container_of(id, struct rdma_id_private, id); 3370 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3371 return -EINVAL; 3372 3373 cma_id_get(id_priv); 3374 if (rdma_cap_ib_sa(id->device, id->port_num)) 3375 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3376 else if (rdma_protocol_roce(id->device, id->port_num)) { 3377 ret = cma_resolve_iboe_route(id_priv); 3378 if (!ret) 3379 cma_add_id_to_tree(id_priv); 3380 } 3381 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3382 ret = cma_resolve_iw_route(id_priv); 3383 else 3384 ret = -ENOSYS; 3385 3386 if (ret) 3387 goto err; 3388 3389 return 0; 3390 err: 3391 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3392 cma_id_put(id_priv); 3393 return ret; 3394 } 3395 EXPORT_SYMBOL(rdma_resolve_route); 3396 3397 static void cma_set_loopback(struct sockaddr *addr) 3398 { 3399 switch (addr->sa_family) { 3400 case AF_INET: 3401 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3402 break; 3403 case AF_INET6: 3404 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3405 0, 0, 0, htonl(1)); 3406 break; 3407 default: 3408 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3409 0, 0, 0, htonl(1)); 3410 break; 3411 } 3412 } 3413 3414 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3415 { 3416 struct cma_device *cma_dev, *cur_dev; 3417 union ib_gid gid; 3418 enum ib_port_state port_state; 3419 unsigned int p; 3420 u16 pkey; 3421 int ret; 3422 3423 cma_dev = NULL; 3424 mutex_lock(&lock); 3425 list_for_each_entry(cur_dev, &dev_list, list) { 3426 if (cma_family(id_priv) == AF_IB && 3427 !rdma_cap_ib_cm(cur_dev->device, 1)) 3428 continue; 3429 3430 if (!cma_dev) 3431 cma_dev = cur_dev; 3432 3433 rdma_for_each_port (cur_dev->device, p) { 3434 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3435 port_state == IB_PORT_ACTIVE) { 3436 cma_dev = cur_dev; 3437 goto port_found; 3438 } 3439 } 3440 } 3441 3442 if (!cma_dev) { 3443 ret = -ENODEV; 3444 goto out; 3445 } 3446 3447 p = 1; 3448 3449 port_found: 3450 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3451 if (ret) 3452 goto out; 3453 3454 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3455 if (ret) 3456 goto out; 3457 3458 id_priv->id.route.addr.dev_addr.dev_type = 3459 (rdma_protocol_ib(cma_dev->device, p)) ? 3460 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3461 3462 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3463 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3464 id_priv->id.port_num = p; 3465 cma_attach_to_dev(id_priv, cma_dev); 3466 rdma_restrack_add(&id_priv->res); 3467 cma_set_loopback(cma_src_addr(id_priv)); 3468 out: 3469 mutex_unlock(&lock); 3470 return ret; 3471 } 3472 3473 static void addr_handler(int status, struct sockaddr *src_addr, 3474 struct rdma_dev_addr *dev_addr, void *context) 3475 { 3476 struct rdma_id_private *id_priv = context; 3477 struct rdma_cm_event event = {}; 3478 struct sockaddr *addr; 3479 struct sockaddr_storage old_addr; 3480 3481 mutex_lock(&id_priv->handler_mutex); 3482 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3483 RDMA_CM_ADDR_RESOLVED)) 3484 goto out; 3485 3486 /* 3487 * Store the previous src address, so that if we fail to acquire 3488 * matching rdma device, old address can be restored back, which helps 3489 * to cancel the cma listen operation correctly. 3490 */ 3491 addr = cma_src_addr(id_priv); 3492 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3493 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3494 if (!status && !id_priv->cma_dev) { 3495 status = cma_acquire_dev_by_src_ip(id_priv); 3496 if (status) 3497 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3498 status); 3499 rdma_restrack_add(&id_priv->res); 3500 } else if (status) { 3501 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3502 } 3503 3504 if (status) { 3505 memcpy(addr, &old_addr, 3506 rdma_addr_size((struct sockaddr *)&old_addr)); 3507 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3508 RDMA_CM_ADDR_BOUND)) 3509 goto out; 3510 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3511 event.status = status; 3512 } else 3513 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3514 3515 if (cma_cm_event_handler(id_priv, &event)) { 3516 destroy_id_handler_unlock(id_priv); 3517 return; 3518 } 3519 out: 3520 mutex_unlock(&id_priv->handler_mutex); 3521 } 3522 3523 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3524 { 3525 struct cma_work *work; 3526 union ib_gid gid; 3527 int ret; 3528 3529 work = kzalloc(sizeof *work, GFP_KERNEL); 3530 if (!work) 3531 return -ENOMEM; 3532 3533 if (!id_priv->cma_dev) { 3534 ret = cma_bind_loopback(id_priv); 3535 if (ret) 3536 goto err; 3537 } 3538 3539 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3540 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3541 3542 enqueue_resolve_addr_work(work, id_priv); 3543 return 0; 3544 err: 3545 kfree(work); 3546 return ret; 3547 } 3548 3549 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3550 { 3551 struct cma_work *work; 3552 int ret; 3553 3554 work = kzalloc(sizeof *work, GFP_KERNEL); 3555 if (!work) 3556 return -ENOMEM; 3557 3558 if (!id_priv->cma_dev) { 3559 ret = cma_resolve_ib_dev(id_priv); 3560 if (ret) 3561 goto err; 3562 } 3563 3564 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3565 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3566 3567 enqueue_resolve_addr_work(work, id_priv); 3568 return 0; 3569 err: 3570 kfree(work); 3571 return ret; 3572 } 3573 3574 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3575 { 3576 struct rdma_id_private *id_priv; 3577 unsigned long flags; 3578 int ret; 3579 3580 id_priv = container_of(id, struct rdma_id_private, id); 3581 spin_lock_irqsave(&id_priv->lock, flags); 3582 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3583 id_priv->state == RDMA_CM_IDLE) { 3584 id_priv->reuseaddr = reuse; 3585 ret = 0; 3586 } else { 3587 ret = -EINVAL; 3588 } 3589 spin_unlock_irqrestore(&id_priv->lock, flags); 3590 return ret; 3591 } 3592 EXPORT_SYMBOL(rdma_set_reuseaddr); 3593 3594 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3595 { 3596 struct rdma_id_private *id_priv; 3597 unsigned long flags; 3598 int ret; 3599 3600 id_priv = container_of(id, struct rdma_id_private, id); 3601 spin_lock_irqsave(&id_priv->lock, flags); 3602 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3603 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3604 id_priv->afonly = afonly; 3605 ret = 0; 3606 } else { 3607 ret = -EINVAL; 3608 } 3609 spin_unlock_irqrestore(&id_priv->lock, flags); 3610 return ret; 3611 } 3612 EXPORT_SYMBOL(rdma_set_afonly); 3613 3614 static void cma_bind_port(struct rdma_bind_list *bind_list, 3615 struct rdma_id_private *id_priv) 3616 { 3617 struct sockaddr *addr; 3618 struct sockaddr_ib *sib; 3619 u64 sid, mask; 3620 __be16 port; 3621 3622 lockdep_assert_held(&lock); 3623 3624 addr = cma_src_addr(id_priv); 3625 port = htons(bind_list->port); 3626 3627 switch (addr->sa_family) { 3628 case AF_INET: 3629 ((struct sockaddr_in *) addr)->sin_port = port; 3630 break; 3631 case AF_INET6: 3632 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3633 break; 3634 case AF_IB: 3635 sib = (struct sockaddr_ib *) addr; 3636 sid = be64_to_cpu(sib->sib_sid); 3637 mask = be64_to_cpu(sib->sib_sid_mask); 3638 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3639 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3640 break; 3641 } 3642 id_priv->bind_list = bind_list; 3643 hlist_add_head(&id_priv->node, &bind_list->owners); 3644 } 3645 3646 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3647 struct rdma_id_private *id_priv, unsigned short snum) 3648 { 3649 struct rdma_bind_list *bind_list; 3650 int ret; 3651 3652 lockdep_assert_held(&lock); 3653 3654 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3655 if (!bind_list) 3656 return -ENOMEM; 3657 3658 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3659 snum); 3660 if (ret < 0) 3661 goto err; 3662 3663 bind_list->ps = ps; 3664 bind_list->port = snum; 3665 cma_bind_port(bind_list, id_priv); 3666 return 0; 3667 err: 3668 kfree(bind_list); 3669 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3670 } 3671 3672 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3673 struct rdma_id_private *id_priv) 3674 { 3675 struct rdma_id_private *cur_id; 3676 struct sockaddr *daddr = cma_dst_addr(id_priv); 3677 struct sockaddr *saddr = cma_src_addr(id_priv); 3678 __be16 dport = cma_port(daddr); 3679 3680 lockdep_assert_held(&lock); 3681 3682 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3683 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3684 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3685 __be16 cur_dport = cma_port(cur_daddr); 3686 3687 if (id_priv == cur_id) 3688 continue; 3689 3690 /* different dest port -> unique */ 3691 if (!cma_any_port(daddr) && 3692 !cma_any_port(cur_daddr) && 3693 (dport != cur_dport)) 3694 continue; 3695 3696 /* different src address -> unique */ 3697 if (!cma_any_addr(saddr) && 3698 !cma_any_addr(cur_saddr) && 3699 cma_addr_cmp(saddr, cur_saddr)) 3700 continue; 3701 3702 /* different dst address -> unique */ 3703 if (!cma_any_addr(daddr) && 3704 !cma_any_addr(cur_daddr) && 3705 cma_addr_cmp(daddr, cur_daddr)) 3706 continue; 3707 3708 return -EADDRNOTAVAIL; 3709 } 3710 return 0; 3711 } 3712 3713 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3714 struct rdma_id_private *id_priv) 3715 { 3716 static unsigned int last_used_port; 3717 int low, high, remaining; 3718 unsigned int rover; 3719 struct net *net = id_priv->id.route.addr.dev_addr.net; 3720 3721 lockdep_assert_held(&lock); 3722 3723 inet_get_local_port_range(net, &low, &high); 3724 remaining = (high - low) + 1; 3725 rover = get_random_u32_inclusive(low, remaining + low - 1); 3726 retry: 3727 if (last_used_port != rover) { 3728 struct rdma_bind_list *bind_list; 3729 int ret; 3730 3731 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3732 3733 if (!bind_list) { 3734 ret = cma_alloc_port(ps, id_priv, rover); 3735 } else { 3736 ret = cma_port_is_unique(bind_list, id_priv); 3737 if (!ret) 3738 cma_bind_port(bind_list, id_priv); 3739 } 3740 /* 3741 * Remember previously used port number in order to avoid 3742 * re-using same port immediately after it is closed. 3743 */ 3744 if (!ret) 3745 last_used_port = rover; 3746 if (ret != -EADDRNOTAVAIL) 3747 return ret; 3748 } 3749 if (--remaining) { 3750 rover++; 3751 if ((rover < low) || (rover > high)) 3752 rover = low; 3753 goto retry; 3754 } 3755 return -EADDRNOTAVAIL; 3756 } 3757 3758 /* 3759 * Check that the requested port is available. This is called when trying to 3760 * bind to a specific port, or when trying to listen on a bound port. In 3761 * the latter case, the provided id_priv may already be on the bind_list, but 3762 * we still need to check that it's okay to start listening. 3763 */ 3764 static int cma_check_port(struct rdma_bind_list *bind_list, 3765 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3766 { 3767 struct rdma_id_private *cur_id; 3768 struct sockaddr *addr, *cur_addr; 3769 3770 lockdep_assert_held(&lock); 3771 3772 addr = cma_src_addr(id_priv); 3773 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3774 if (id_priv == cur_id) 3775 continue; 3776 3777 if (reuseaddr && cur_id->reuseaddr) 3778 continue; 3779 3780 cur_addr = cma_src_addr(cur_id); 3781 if (id_priv->afonly && cur_id->afonly && 3782 (addr->sa_family != cur_addr->sa_family)) 3783 continue; 3784 3785 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3786 return -EADDRNOTAVAIL; 3787 3788 if (!cma_addr_cmp(addr, cur_addr)) 3789 return -EADDRINUSE; 3790 } 3791 return 0; 3792 } 3793 3794 static int cma_use_port(enum rdma_ucm_port_space ps, 3795 struct rdma_id_private *id_priv) 3796 { 3797 struct rdma_bind_list *bind_list; 3798 unsigned short snum; 3799 int ret; 3800 3801 lockdep_assert_held(&lock); 3802 3803 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3804 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3805 return -EACCES; 3806 3807 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3808 if (!bind_list) { 3809 ret = cma_alloc_port(ps, id_priv, snum); 3810 } else { 3811 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3812 if (!ret) 3813 cma_bind_port(bind_list, id_priv); 3814 } 3815 return ret; 3816 } 3817 3818 static enum rdma_ucm_port_space 3819 cma_select_inet_ps(struct rdma_id_private *id_priv) 3820 { 3821 switch (id_priv->id.ps) { 3822 case RDMA_PS_TCP: 3823 case RDMA_PS_UDP: 3824 case RDMA_PS_IPOIB: 3825 case RDMA_PS_IB: 3826 return id_priv->id.ps; 3827 default: 3828 3829 return 0; 3830 } 3831 } 3832 3833 static enum rdma_ucm_port_space 3834 cma_select_ib_ps(struct rdma_id_private *id_priv) 3835 { 3836 enum rdma_ucm_port_space ps = 0; 3837 struct sockaddr_ib *sib; 3838 u64 sid_ps, mask, sid; 3839 3840 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3841 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3842 sid = be64_to_cpu(sib->sib_sid) & mask; 3843 3844 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3845 sid_ps = RDMA_IB_IP_PS_IB; 3846 ps = RDMA_PS_IB; 3847 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3848 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3849 sid_ps = RDMA_IB_IP_PS_TCP; 3850 ps = RDMA_PS_TCP; 3851 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3852 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3853 sid_ps = RDMA_IB_IP_PS_UDP; 3854 ps = RDMA_PS_UDP; 3855 } 3856 3857 if (ps) { 3858 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3859 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3860 be64_to_cpu(sib->sib_sid_mask)); 3861 } 3862 return ps; 3863 } 3864 3865 static int cma_get_port(struct rdma_id_private *id_priv) 3866 { 3867 enum rdma_ucm_port_space ps; 3868 int ret; 3869 3870 if (cma_family(id_priv) != AF_IB) 3871 ps = cma_select_inet_ps(id_priv); 3872 else 3873 ps = cma_select_ib_ps(id_priv); 3874 if (!ps) 3875 return -EPROTONOSUPPORT; 3876 3877 mutex_lock(&lock); 3878 if (cma_any_port(cma_src_addr(id_priv))) 3879 ret = cma_alloc_any_port(ps, id_priv); 3880 else 3881 ret = cma_use_port(ps, id_priv); 3882 mutex_unlock(&lock); 3883 3884 return ret; 3885 } 3886 3887 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3888 struct sockaddr *addr) 3889 { 3890 #if IS_ENABLED(CONFIG_IPV6) 3891 struct sockaddr_in6 *sin6; 3892 3893 if (addr->sa_family != AF_INET6) 3894 return 0; 3895 3896 sin6 = (struct sockaddr_in6 *) addr; 3897 3898 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3899 return 0; 3900 3901 if (!sin6->sin6_scope_id) 3902 return -EINVAL; 3903 3904 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3905 #endif 3906 return 0; 3907 } 3908 3909 int rdma_listen(struct rdma_cm_id *id, int backlog) 3910 { 3911 struct rdma_id_private *id_priv = 3912 container_of(id, struct rdma_id_private, id); 3913 int ret; 3914 3915 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3916 struct sockaddr_in any_in = { 3917 .sin_family = AF_INET, 3918 .sin_addr.s_addr = htonl(INADDR_ANY), 3919 }; 3920 3921 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3922 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3923 if (ret) 3924 return ret; 3925 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3926 RDMA_CM_LISTEN))) 3927 return -EINVAL; 3928 } 3929 3930 /* 3931 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3932 * any more, and has to be unique in the bind list. 3933 */ 3934 if (id_priv->reuseaddr) { 3935 mutex_lock(&lock); 3936 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3937 if (!ret) 3938 id_priv->reuseaddr = 0; 3939 mutex_unlock(&lock); 3940 if (ret) 3941 goto err; 3942 } 3943 3944 id_priv->backlog = backlog; 3945 if (id_priv->cma_dev) { 3946 if (rdma_cap_ib_cm(id->device, 1)) { 3947 ret = cma_ib_listen(id_priv); 3948 if (ret) 3949 goto err; 3950 } else if (rdma_cap_iw_cm(id->device, 1)) { 3951 ret = cma_iw_listen(id_priv, backlog); 3952 if (ret) 3953 goto err; 3954 } else { 3955 ret = -ENOSYS; 3956 goto err; 3957 } 3958 } else { 3959 ret = cma_listen_on_all(id_priv); 3960 if (ret) 3961 goto err; 3962 } 3963 3964 return 0; 3965 err: 3966 id_priv->backlog = 0; 3967 /* 3968 * All the failure paths that lead here will not allow the req_handler's 3969 * to have run. 3970 */ 3971 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3972 return ret; 3973 } 3974 EXPORT_SYMBOL(rdma_listen); 3975 3976 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 3977 struct sockaddr *addr, const struct sockaddr *daddr) 3978 { 3979 struct sockaddr *id_daddr; 3980 int ret; 3981 3982 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3983 addr->sa_family != AF_IB) 3984 return -EAFNOSUPPORT; 3985 3986 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3987 return -EINVAL; 3988 3989 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 3990 if (ret) 3991 goto err1; 3992 3993 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3994 if (!cma_any_addr(addr)) { 3995 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 3996 if (ret) 3997 goto err1; 3998 3999 ret = cma_acquire_dev_by_src_ip(id_priv); 4000 if (ret) 4001 goto err1; 4002 } 4003 4004 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4005 if (addr->sa_family == AF_INET) 4006 id_priv->afonly = 1; 4007 #if IS_ENABLED(CONFIG_IPV6) 4008 else if (addr->sa_family == AF_INET6) { 4009 struct net *net = id_priv->id.route.addr.dev_addr.net; 4010 4011 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4012 } 4013 #endif 4014 } 4015 id_daddr = cma_dst_addr(id_priv); 4016 if (daddr != id_daddr) 4017 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4018 id_daddr->sa_family = addr->sa_family; 4019 4020 ret = cma_get_port(id_priv); 4021 if (ret) 4022 goto err2; 4023 4024 if (!cma_any_addr(addr)) 4025 rdma_restrack_add(&id_priv->res); 4026 return 0; 4027 err2: 4028 if (id_priv->cma_dev) 4029 cma_release_dev(id_priv); 4030 err1: 4031 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4032 return ret; 4033 } 4034 4035 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4036 const struct sockaddr *dst_addr) 4037 { 4038 struct rdma_id_private *id_priv = 4039 container_of(id, struct rdma_id_private, id); 4040 struct sockaddr_storage zero_sock = {}; 4041 4042 if (src_addr && src_addr->sa_family) 4043 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4044 4045 /* 4046 * When the src_addr is not specified, automatically supply an any addr 4047 */ 4048 zero_sock.ss_family = dst_addr->sa_family; 4049 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4050 struct sockaddr_in6 *src_addr6 = 4051 (struct sockaddr_in6 *)&zero_sock; 4052 struct sockaddr_in6 *dst_addr6 = 4053 (struct sockaddr_in6 *)dst_addr; 4054 4055 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4056 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4057 id->route.addr.dev_addr.bound_dev_if = 4058 dst_addr6->sin6_scope_id; 4059 } else if (dst_addr->sa_family == AF_IB) { 4060 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4061 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4062 } 4063 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4064 } 4065 4066 /* 4067 * If required, resolve the source address for bind and leave the id_priv in 4068 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4069 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4070 * ignored. 4071 */ 4072 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4073 struct sockaddr *src_addr, 4074 const struct sockaddr *dst_addr) 4075 { 4076 int ret; 4077 4078 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4079 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4080 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4081 if (ret) 4082 return ret; 4083 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4084 RDMA_CM_ADDR_QUERY))) 4085 return -EINVAL; 4086 4087 } else { 4088 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4089 } 4090 4091 if (cma_family(id_priv) != dst_addr->sa_family) { 4092 ret = -EINVAL; 4093 goto err_state; 4094 } 4095 return 0; 4096 4097 err_state: 4098 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4099 return ret; 4100 } 4101 4102 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4103 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4104 { 4105 struct rdma_id_private *id_priv = 4106 container_of(id, struct rdma_id_private, id); 4107 int ret; 4108 4109 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4110 if (ret) 4111 return ret; 4112 4113 if (cma_any_addr(dst_addr)) { 4114 ret = cma_resolve_loopback(id_priv); 4115 } else { 4116 if (dst_addr->sa_family == AF_IB) { 4117 ret = cma_resolve_ib_addr(id_priv); 4118 } else { 4119 /* 4120 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4121 * rdma_resolve_ip() is called, eg through the error 4122 * path in addr_handler(). If this happens the existing 4123 * request must be canceled before issuing a new one. 4124 * Since canceling a request is a bit slow and this 4125 * oddball path is rare, keep track once a request has 4126 * been issued. The track turns out to be a permanent 4127 * state since this is the only cancel as it is 4128 * immediately before rdma_resolve_ip(). 4129 */ 4130 if (id_priv->used_resolve_ip) 4131 rdma_addr_cancel(&id->route.addr.dev_addr); 4132 else 4133 id_priv->used_resolve_ip = 1; 4134 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4135 &id->route.addr.dev_addr, 4136 timeout_ms, addr_handler, 4137 false, id_priv); 4138 } 4139 } 4140 if (ret) 4141 goto err; 4142 4143 return 0; 4144 err: 4145 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4146 return ret; 4147 } 4148 EXPORT_SYMBOL(rdma_resolve_addr); 4149 4150 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4151 { 4152 struct rdma_id_private *id_priv = 4153 container_of(id, struct rdma_id_private, id); 4154 4155 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4156 } 4157 EXPORT_SYMBOL(rdma_bind_addr); 4158 4159 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4160 { 4161 struct cma_hdr *cma_hdr; 4162 4163 cma_hdr = hdr; 4164 cma_hdr->cma_version = CMA_VERSION; 4165 if (cma_family(id_priv) == AF_INET) { 4166 struct sockaddr_in *src4, *dst4; 4167 4168 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4169 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4170 4171 cma_set_ip_ver(cma_hdr, 4); 4172 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4173 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4174 cma_hdr->port = src4->sin_port; 4175 } else if (cma_family(id_priv) == AF_INET6) { 4176 struct sockaddr_in6 *src6, *dst6; 4177 4178 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4179 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4180 4181 cma_set_ip_ver(cma_hdr, 6); 4182 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4183 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4184 cma_hdr->port = src6->sin6_port; 4185 } 4186 return 0; 4187 } 4188 4189 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4190 const struct ib_cm_event *ib_event) 4191 { 4192 struct rdma_id_private *id_priv = cm_id->context; 4193 struct rdma_cm_event event = {}; 4194 const struct ib_cm_sidr_rep_event_param *rep = 4195 &ib_event->param.sidr_rep_rcvd; 4196 int ret; 4197 4198 mutex_lock(&id_priv->handler_mutex); 4199 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4200 goto out; 4201 4202 switch (ib_event->event) { 4203 case IB_CM_SIDR_REQ_ERROR: 4204 event.event = RDMA_CM_EVENT_UNREACHABLE; 4205 event.status = -ETIMEDOUT; 4206 break; 4207 case IB_CM_SIDR_REP_RECEIVED: 4208 event.param.ud.private_data = ib_event->private_data; 4209 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4210 if (rep->status != IB_SIDR_SUCCESS) { 4211 event.event = RDMA_CM_EVENT_UNREACHABLE; 4212 event.status = ib_event->param.sidr_rep_rcvd.status; 4213 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4214 event.status); 4215 break; 4216 } 4217 ret = cma_set_qkey(id_priv, rep->qkey); 4218 if (ret) { 4219 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4220 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4221 event.status = ret; 4222 break; 4223 } 4224 ib_init_ah_attr_from_path(id_priv->id.device, 4225 id_priv->id.port_num, 4226 id_priv->id.route.path_rec, 4227 &event.param.ud.ah_attr, 4228 rep->sgid_attr); 4229 event.param.ud.qp_num = rep->qpn; 4230 event.param.ud.qkey = rep->qkey; 4231 event.event = RDMA_CM_EVENT_ESTABLISHED; 4232 event.status = 0; 4233 break; 4234 default: 4235 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4236 ib_event->event); 4237 goto out; 4238 } 4239 4240 ret = cma_cm_event_handler(id_priv, &event); 4241 4242 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4243 if (ret) { 4244 /* Destroy the CM ID by returning a non-zero value. */ 4245 id_priv->cm_id.ib = NULL; 4246 destroy_id_handler_unlock(id_priv); 4247 return ret; 4248 } 4249 out: 4250 mutex_unlock(&id_priv->handler_mutex); 4251 return 0; 4252 } 4253 4254 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4255 struct rdma_conn_param *conn_param) 4256 { 4257 struct ib_cm_sidr_req_param req; 4258 struct ib_cm_id *id; 4259 void *private_data; 4260 u8 offset; 4261 int ret; 4262 4263 memset(&req, 0, sizeof req); 4264 offset = cma_user_data_offset(id_priv); 4265 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4266 return -EINVAL; 4267 4268 if (req.private_data_len) { 4269 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4270 if (!private_data) 4271 return -ENOMEM; 4272 } else { 4273 private_data = NULL; 4274 } 4275 4276 if (conn_param->private_data && conn_param->private_data_len) 4277 memcpy(private_data + offset, conn_param->private_data, 4278 conn_param->private_data_len); 4279 4280 if (private_data) { 4281 ret = cma_format_hdr(private_data, id_priv); 4282 if (ret) 4283 goto out; 4284 req.private_data = private_data; 4285 } 4286 4287 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4288 id_priv); 4289 if (IS_ERR(id)) { 4290 ret = PTR_ERR(id); 4291 goto out; 4292 } 4293 id_priv->cm_id.ib = id; 4294 4295 req.path = id_priv->id.route.path_rec; 4296 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4297 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4298 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4299 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4300 4301 trace_cm_send_sidr_req(id_priv); 4302 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4303 if (ret) { 4304 ib_destroy_cm_id(id_priv->cm_id.ib); 4305 id_priv->cm_id.ib = NULL; 4306 } 4307 out: 4308 kfree(private_data); 4309 return ret; 4310 } 4311 4312 static int cma_connect_ib(struct rdma_id_private *id_priv, 4313 struct rdma_conn_param *conn_param) 4314 { 4315 struct ib_cm_req_param req; 4316 struct rdma_route *route; 4317 void *private_data; 4318 struct ib_cm_id *id; 4319 u8 offset; 4320 int ret; 4321 4322 memset(&req, 0, sizeof req); 4323 offset = cma_user_data_offset(id_priv); 4324 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4325 return -EINVAL; 4326 4327 if (req.private_data_len) { 4328 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4329 if (!private_data) 4330 return -ENOMEM; 4331 } else { 4332 private_data = NULL; 4333 } 4334 4335 if (conn_param->private_data && conn_param->private_data_len) 4336 memcpy(private_data + offset, conn_param->private_data, 4337 conn_param->private_data_len); 4338 4339 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4340 if (IS_ERR(id)) { 4341 ret = PTR_ERR(id); 4342 goto out; 4343 } 4344 id_priv->cm_id.ib = id; 4345 4346 route = &id_priv->id.route; 4347 if (private_data) { 4348 ret = cma_format_hdr(private_data, id_priv); 4349 if (ret) 4350 goto out; 4351 req.private_data = private_data; 4352 } 4353 4354 req.primary_path = &route->path_rec[0]; 4355 req.primary_path_inbound = route->path_rec_inbound; 4356 req.primary_path_outbound = route->path_rec_outbound; 4357 if (route->num_pri_alt_paths == 2) 4358 req.alternate_path = &route->path_rec[1]; 4359 4360 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4361 /* Alternate path SGID attribute currently unsupported */ 4362 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4363 req.qp_num = id_priv->qp_num; 4364 req.qp_type = id_priv->id.qp_type; 4365 req.starting_psn = id_priv->seq_num; 4366 req.responder_resources = conn_param->responder_resources; 4367 req.initiator_depth = conn_param->initiator_depth; 4368 req.flow_control = conn_param->flow_control; 4369 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4370 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4371 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4372 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4373 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4374 req.srq = id_priv->srq ? 1 : 0; 4375 req.ece.vendor_id = id_priv->ece.vendor_id; 4376 req.ece.attr_mod = id_priv->ece.attr_mod; 4377 4378 trace_cm_send_req(id_priv); 4379 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4380 out: 4381 if (ret && !IS_ERR(id)) { 4382 ib_destroy_cm_id(id); 4383 id_priv->cm_id.ib = NULL; 4384 } 4385 4386 kfree(private_data); 4387 return ret; 4388 } 4389 4390 static int cma_connect_iw(struct rdma_id_private *id_priv, 4391 struct rdma_conn_param *conn_param) 4392 { 4393 struct iw_cm_id *cm_id; 4394 int ret; 4395 struct iw_cm_conn_param iw_param; 4396 4397 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4398 if (IS_ERR(cm_id)) 4399 return PTR_ERR(cm_id); 4400 4401 mutex_lock(&id_priv->qp_mutex); 4402 cm_id->tos = id_priv->tos; 4403 cm_id->tos_set = id_priv->tos_set; 4404 mutex_unlock(&id_priv->qp_mutex); 4405 4406 id_priv->cm_id.iw = cm_id; 4407 4408 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4409 rdma_addr_size(cma_src_addr(id_priv))); 4410 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4411 rdma_addr_size(cma_dst_addr(id_priv))); 4412 4413 ret = cma_modify_qp_rtr(id_priv, conn_param); 4414 if (ret) 4415 goto out; 4416 4417 if (conn_param) { 4418 iw_param.ord = conn_param->initiator_depth; 4419 iw_param.ird = conn_param->responder_resources; 4420 iw_param.private_data = conn_param->private_data; 4421 iw_param.private_data_len = conn_param->private_data_len; 4422 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4423 } else { 4424 memset(&iw_param, 0, sizeof iw_param); 4425 iw_param.qpn = id_priv->qp_num; 4426 } 4427 ret = iw_cm_connect(cm_id, &iw_param); 4428 out: 4429 if (ret) { 4430 iw_destroy_cm_id(cm_id); 4431 id_priv->cm_id.iw = NULL; 4432 } 4433 return ret; 4434 } 4435 4436 /** 4437 * rdma_connect_locked - Initiate an active connection request. 4438 * @id: Connection identifier to connect. 4439 * @conn_param: Connection information used for connected QPs. 4440 * 4441 * Same as rdma_connect() but can only be called from the 4442 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4443 */ 4444 int rdma_connect_locked(struct rdma_cm_id *id, 4445 struct rdma_conn_param *conn_param) 4446 { 4447 struct rdma_id_private *id_priv = 4448 container_of(id, struct rdma_id_private, id); 4449 int ret; 4450 4451 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4452 return -EINVAL; 4453 4454 if (!id->qp) { 4455 id_priv->qp_num = conn_param->qp_num; 4456 id_priv->srq = conn_param->srq; 4457 } 4458 4459 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4460 if (id->qp_type == IB_QPT_UD) 4461 ret = cma_resolve_ib_udp(id_priv, conn_param); 4462 else 4463 ret = cma_connect_ib(id_priv, conn_param); 4464 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4465 ret = cma_connect_iw(id_priv, conn_param); 4466 } else { 4467 ret = -ENOSYS; 4468 } 4469 if (ret) 4470 goto err_state; 4471 return 0; 4472 err_state: 4473 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4474 return ret; 4475 } 4476 EXPORT_SYMBOL(rdma_connect_locked); 4477 4478 /** 4479 * rdma_connect - Initiate an active connection request. 4480 * @id: Connection identifier to connect. 4481 * @conn_param: Connection information used for connected QPs. 4482 * 4483 * Users must have resolved a route for the rdma_cm_id to connect with by having 4484 * called rdma_resolve_route before calling this routine. 4485 * 4486 * This call will either connect to a remote QP or obtain remote QP information 4487 * for unconnected rdma_cm_id's. The actual operation is based on the 4488 * rdma_cm_id's port space. 4489 */ 4490 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4491 { 4492 struct rdma_id_private *id_priv = 4493 container_of(id, struct rdma_id_private, id); 4494 int ret; 4495 4496 mutex_lock(&id_priv->handler_mutex); 4497 ret = rdma_connect_locked(id, conn_param); 4498 mutex_unlock(&id_priv->handler_mutex); 4499 return ret; 4500 } 4501 EXPORT_SYMBOL(rdma_connect); 4502 4503 /** 4504 * rdma_connect_ece - Initiate an active connection request with ECE data. 4505 * @id: Connection identifier to connect. 4506 * @conn_param: Connection information used for connected QPs. 4507 * @ece: ECE parameters 4508 * 4509 * See rdma_connect() explanation. 4510 */ 4511 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4512 struct rdma_ucm_ece *ece) 4513 { 4514 struct rdma_id_private *id_priv = 4515 container_of(id, struct rdma_id_private, id); 4516 4517 id_priv->ece.vendor_id = ece->vendor_id; 4518 id_priv->ece.attr_mod = ece->attr_mod; 4519 4520 return rdma_connect(id, conn_param); 4521 } 4522 EXPORT_SYMBOL(rdma_connect_ece); 4523 4524 static int cma_accept_ib(struct rdma_id_private *id_priv, 4525 struct rdma_conn_param *conn_param) 4526 { 4527 struct ib_cm_rep_param rep; 4528 int ret; 4529 4530 ret = cma_modify_qp_rtr(id_priv, conn_param); 4531 if (ret) 4532 goto out; 4533 4534 ret = cma_modify_qp_rts(id_priv, conn_param); 4535 if (ret) 4536 goto out; 4537 4538 memset(&rep, 0, sizeof rep); 4539 rep.qp_num = id_priv->qp_num; 4540 rep.starting_psn = id_priv->seq_num; 4541 rep.private_data = conn_param->private_data; 4542 rep.private_data_len = conn_param->private_data_len; 4543 rep.responder_resources = conn_param->responder_resources; 4544 rep.initiator_depth = conn_param->initiator_depth; 4545 rep.failover_accepted = 0; 4546 rep.flow_control = conn_param->flow_control; 4547 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4548 rep.srq = id_priv->srq ? 1 : 0; 4549 rep.ece.vendor_id = id_priv->ece.vendor_id; 4550 rep.ece.attr_mod = id_priv->ece.attr_mod; 4551 4552 trace_cm_send_rep(id_priv); 4553 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4554 out: 4555 return ret; 4556 } 4557 4558 static int cma_accept_iw(struct rdma_id_private *id_priv, 4559 struct rdma_conn_param *conn_param) 4560 { 4561 struct iw_cm_conn_param iw_param; 4562 int ret; 4563 4564 if (!conn_param) 4565 return -EINVAL; 4566 4567 ret = cma_modify_qp_rtr(id_priv, conn_param); 4568 if (ret) 4569 return ret; 4570 4571 iw_param.ord = conn_param->initiator_depth; 4572 iw_param.ird = conn_param->responder_resources; 4573 iw_param.private_data = conn_param->private_data; 4574 iw_param.private_data_len = conn_param->private_data_len; 4575 if (id_priv->id.qp) 4576 iw_param.qpn = id_priv->qp_num; 4577 else 4578 iw_param.qpn = conn_param->qp_num; 4579 4580 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4581 } 4582 4583 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4584 enum ib_cm_sidr_status status, u32 qkey, 4585 const void *private_data, int private_data_len) 4586 { 4587 struct ib_cm_sidr_rep_param rep; 4588 int ret; 4589 4590 memset(&rep, 0, sizeof rep); 4591 rep.status = status; 4592 if (status == IB_SIDR_SUCCESS) { 4593 if (qkey) 4594 ret = cma_set_qkey(id_priv, qkey); 4595 else 4596 ret = cma_set_default_qkey(id_priv); 4597 if (ret) 4598 return ret; 4599 rep.qp_num = id_priv->qp_num; 4600 rep.qkey = id_priv->qkey; 4601 4602 rep.ece.vendor_id = id_priv->ece.vendor_id; 4603 rep.ece.attr_mod = id_priv->ece.attr_mod; 4604 } 4605 4606 rep.private_data = private_data; 4607 rep.private_data_len = private_data_len; 4608 4609 trace_cm_send_sidr_rep(id_priv); 4610 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4611 } 4612 4613 /** 4614 * rdma_accept - Called to accept a connection request or response. 4615 * @id: Connection identifier associated with the request. 4616 * @conn_param: Information needed to establish the connection. This must be 4617 * provided if accepting a connection request. If accepting a connection 4618 * response, this parameter must be NULL. 4619 * 4620 * Typically, this routine is only called by the listener to accept a connection 4621 * request. It must also be called on the active side of a connection if the 4622 * user is performing their own QP transitions. 4623 * 4624 * In the case of error, a reject message is sent to the remote side and the 4625 * state of the qp associated with the id is modified to error, such that any 4626 * previously posted receive buffers would be flushed. 4627 * 4628 * This function is for use by kernel ULPs and must be called from under the 4629 * handler callback. 4630 */ 4631 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4632 { 4633 struct rdma_id_private *id_priv = 4634 container_of(id, struct rdma_id_private, id); 4635 int ret; 4636 4637 lockdep_assert_held(&id_priv->handler_mutex); 4638 4639 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4640 return -EINVAL; 4641 4642 if (!id->qp && conn_param) { 4643 id_priv->qp_num = conn_param->qp_num; 4644 id_priv->srq = conn_param->srq; 4645 } 4646 4647 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4648 if (id->qp_type == IB_QPT_UD) { 4649 if (conn_param) 4650 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4651 conn_param->qkey, 4652 conn_param->private_data, 4653 conn_param->private_data_len); 4654 else 4655 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4656 0, NULL, 0); 4657 } else { 4658 if (conn_param) 4659 ret = cma_accept_ib(id_priv, conn_param); 4660 else 4661 ret = cma_rep_recv(id_priv); 4662 } 4663 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4664 ret = cma_accept_iw(id_priv, conn_param); 4665 } else { 4666 ret = -ENOSYS; 4667 } 4668 if (ret) 4669 goto reject; 4670 4671 return 0; 4672 reject: 4673 cma_modify_qp_err(id_priv); 4674 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4675 return ret; 4676 } 4677 EXPORT_SYMBOL(rdma_accept); 4678 4679 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4680 struct rdma_ucm_ece *ece) 4681 { 4682 struct rdma_id_private *id_priv = 4683 container_of(id, struct rdma_id_private, id); 4684 4685 id_priv->ece.vendor_id = ece->vendor_id; 4686 id_priv->ece.attr_mod = ece->attr_mod; 4687 4688 return rdma_accept(id, conn_param); 4689 } 4690 EXPORT_SYMBOL(rdma_accept_ece); 4691 4692 void rdma_lock_handler(struct rdma_cm_id *id) 4693 { 4694 struct rdma_id_private *id_priv = 4695 container_of(id, struct rdma_id_private, id); 4696 4697 mutex_lock(&id_priv->handler_mutex); 4698 } 4699 EXPORT_SYMBOL(rdma_lock_handler); 4700 4701 void rdma_unlock_handler(struct rdma_cm_id *id) 4702 { 4703 struct rdma_id_private *id_priv = 4704 container_of(id, struct rdma_id_private, id); 4705 4706 mutex_unlock(&id_priv->handler_mutex); 4707 } 4708 EXPORT_SYMBOL(rdma_unlock_handler); 4709 4710 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4711 { 4712 struct rdma_id_private *id_priv; 4713 int ret; 4714 4715 id_priv = container_of(id, struct rdma_id_private, id); 4716 if (!id_priv->cm_id.ib) 4717 return -EINVAL; 4718 4719 switch (id->device->node_type) { 4720 case RDMA_NODE_IB_CA: 4721 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4722 break; 4723 default: 4724 ret = 0; 4725 break; 4726 } 4727 return ret; 4728 } 4729 EXPORT_SYMBOL(rdma_notify); 4730 4731 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4732 u8 private_data_len, u8 reason) 4733 { 4734 struct rdma_id_private *id_priv; 4735 int ret; 4736 4737 id_priv = container_of(id, struct rdma_id_private, id); 4738 if (!id_priv->cm_id.ib) 4739 return -EINVAL; 4740 4741 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4742 if (id->qp_type == IB_QPT_UD) { 4743 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4744 private_data, private_data_len); 4745 } else { 4746 trace_cm_send_rej(id_priv); 4747 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4748 private_data, private_data_len); 4749 } 4750 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4751 ret = iw_cm_reject(id_priv->cm_id.iw, 4752 private_data, private_data_len); 4753 } else { 4754 ret = -ENOSYS; 4755 } 4756 4757 return ret; 4758 } 4759 EXPORT_SYMBOL(rdma_reject); 4760 4761 int rdma_disconnect(struct rdma_cm_id *id) 4762 { 4763 struct rdma_id_private *id_priv; 4764 int ret; 4765 4766 id_priv = container_of(id, struct rdma_id_private, id); 4767 if (!id_priv->cm_id.ib) 4768 return -EINVAL; 4769 4770 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4771 ret = cma_modify_qp_err(id_priv); 4772 if (ret) 4773 goto out; 4774 /* Initiate or respond to a disconnect. */ 4775 trace_cm_disconnect(id_priv); 4776 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4777 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4778 trace_cm_sent_drep(id_priv); 4779 } else { 4780 trace_cm_sent_dreq(id_priv); 4781 } 4782 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4783 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4784 } else 4785 ret = -EINVAL; 4786 4787 out: 4788 return ret; 4789 } 4790 EXPORT_SYMBOL(rdma_disconnect); 4791 4792 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4793 struct ib_sa_multicast *multicast, 4794 struct rdma_cm_event *event, 4795 struct cma_multicast *mc) 4796 { 4797 struct rdma_dev_addr *dev_addr; 4798 enum ib_gid_type gid_type; 4799 struct net_device *ndev; 4800 4801 if (status) 4802 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4803 status); 4804 4805 event->status = status; 4806 event->param.ud.private_data = mc->context; 4807 if (status) { 4808 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4809 return; 4810 } 4811 4812 dev_addr = &id_priv->id.route.addr.dev_addr; 4813 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4814 gid_type = 4815 id_priv->cma_dev 4816 ->default_gid_type[id_priv->id.port_num - 4817 rdma_start_port( 4818 id_priv->cma_dev->device)]; 4819 4820 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4821 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4822 &multicast->rec, ndev, gid_type, 4823 &event->param.ud.ah_attr)) { 4824 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4825 goto out; 4826 } 4827 4828 event->param.ud.qp_num = 0xFFFFFF; 4829 event->param.ud.qkey = id_priv->qkey; 4830 4831 out: 4832 dev_put(ndev); 4833 } 4834 4835 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4836 { 4837 struct cma_multicast *mc = multicast->context; 4838 struct rdma_id_private *id_priv = mc->id_priv; 4839 struct rdma_cm_event event = {}; 4840 int ret = 0; 4841 4842 mutex_lock(&id_priv->handler_mutex); 4843 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4844 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4845 goto out; 4846 4847 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4848 if (!ret) { 4849 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4850 ret = cma_cm_event_handler(id_priv, &event); 4851 } 4852 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4853 WARN_ON(ret); 4854 4855 out: 4856 mutex_unlock(&id_priv->handler_mutex); 4857 return 0; 4858 } 4859 4860 static void cma_set_mgid(struct rdma_id_private *id_priv, 4861 struct sockaddr *addr, union ib_gid *mgid) 4862 { 4863 unsigned char mc_map[MAX_ADDR_LEN]; 4864 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4865 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4866 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4867 4868 if (cma_any_addr(addr)) { 4869 memset(mgid, 0, sizeof *mgid); 4870 } else if ((addr->sa_family == AF_INET6) && 4871 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4872 0xFF10A01B)) { 4873 /* IPv6 address is an SA assigned MGID. */ 4874 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4875 } else if (addr->sa_family == AF_IB) { 4876 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4877 } else if (addr->sa_family == AF_INET6) { 4878 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4879 if (id_priv->id.ps == RDMA_PS_UDP) 4880 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4881 *mgid = *(union ib_gid *) (mc_map + 4); 4882 } else { 4883 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4884 if (id_priv->id.ps == RDMA_PS_UDP) 4885 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4886 *mgid = *(union ib_gid *) (mc_map + 4); 4887 } 4888 } 4889 4890 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4891 struct cma_multicast *mc) 4892 { 4893 struct ib_sa_mcmember_rec rec; 4894 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4895 ib_sa_comp_mask comp_mask; 4896 int ret; 4897 4898 ib_addr_get_mgid(dev_addr, &rec.mgid); 4899 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4900 &rec.mgid, &rec); 4901 if (ret) 4902 return ret; 4903 4904 if (!id_priv->qkey) { 4905 ret = cma_set_default_qkey(id_priv); 4906 if (ret) 4907 return ret; 4908 } 4909 4910 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4911 rec.qkey = cpu_to_be32(id_priv->qkey); 4912 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4913 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4914 rec.join_state = mc->join_state; 4915 4916 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4917 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4918 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4919 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4920 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4921 4922 if (id_priv->id.ps == RDMA_PS_IPOIB) 4923 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4924 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4925 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4926 IB_SA_MCMEMBER_REC_MTU | 4927 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4928 4929 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4930 id_priv->id.port_num, &rec, comp_mask, 4931 GFP_KERNEL, cma_ib_mc_handler, mc); 4932 return PTR_ERR_OR_ZERO(mc->sa_mc); 4933 } 4934 4935 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4936 enum ib_gid_type gid_type) 4937 { 4938 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4939 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4940 4941 if (cma_any_addr(addr)) { 4942 memset(mgid, 0, sizeof *mgid); 4943 } else if (addr->sa_family == AF_INET6) { 4944 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4945 } else { 4946 mgid->raw[0] = 4947 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4948 mgid->raw[1] = 4949 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4950 mgid->raw[2] = 0; 4951 mgid->raw[3] = 0; 4952 mgid->raw[4] = 0; 4953 mgid->raw[5] = 0; 4954 mgid->raw[6] = 0; 4955 mgid->raw[7] = 0; 4956 mgid->raw[8] = 0; 4957 mgid->raw[9] = 0; 4958 mgid->raw[10] = 0xff; 4959 mgid->raw[11] = 0xff; 4960 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4961 } 4962 } 4963 4964 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4965 struct cma_multicast *mc) 4966 { 4967 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4968 int err = 0; 4969 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4970 struct net_device *ndev = NULL; 4971 struct ib_sa_multicast ib = {}; 4972 enum ib_gid_type gid_type; 4973 bool send_only; 4974 4975 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4976 4977 if (cma_zero_addr(addr)) 4978 return -EINVAL; 4979 4980 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4981 rdma_start_port(id_priv->cma_dev->device)]; 4982 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4983 4984 ib.rec.pkey = cpu_to_be16(0xffff); 4985 if (dev_addr->bound_dev_if) 4986 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4987 if (!ndev) 4988 return -ENODEV; 4989 4990 ib.rec.rate = IB_RATE_PORT_CURRENT; 4991 ib.rec.hop_limit = 1; 4992 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4993 4994 if (addr->sa_family == AF_INET) { 4995 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4996 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4997 if (!send_only) { 4998 err = cma_igmp_send(ndev, &ib.rec.mgid, 4999 true); 5000 } 5001 } 5002 } else { 5003 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5004 err = -ENOTSUPP; 5005 } 5006 dev_put(ndev); 5007 if (err || !ib.rec.mtu) 5008 return err ?: -EINVAL; 5009 5010 if (!id_priv->qkey) 5011 cma_set_default_qkey(id_priv); 5012 5013 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5014 &ib.rec.port_gid); 5015 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5016 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5017 queue_work(cma_wq, &mc->iboe_join.work); 5018 return 0; 5019 } 5020 5021 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5022 u8 join_state, void *context) 5023 { 5024 struct rdma_id_private *id_priv = 5025 container_of(id, struct rdma_id_private, id); 5026 struct cma_multicast *mc; 5027 int ret; 5028 5029 /* Not supported for kernel QPs */ 5030 if (WARN_ON(id->qp)) 5031 return -EINVAL; 5032 5033 /* ULP is calling this wrong. */ 5034 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5035 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5036 return -EINVAL; 5037 5038 if (id_priv->id.qp_type != IB_QPT_UD) 5039 return -EINVAL; 5040 5041 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5042 if (!mc) 5043 return -ENOMEM; 5044 5045 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5046 mc->context = context; 5047 mc->id_priv = id_priv; 5048 mc->join_state = join_state; 5049 5050 if (rdma_protocol_roce(id->device, id->port_num)) { 5051 ret = cma_iboe_join_multicast(id_priv, mc); 5052 if (ret) 5053 goto out_err; 5054 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5055 ret = cma_join_ib_multicast(id_priv, mc); 5056 if (ret) 5057 goto out_err; 5058 } else { 5059 ret = -ENOSYS; 5060 goto out_err; 5061 } 5062 5063 spin_lock(&id_priv->lock); 5064 list_add(&mc->list, &id_priv->mc_list); 5065 spin_unlock(&id_priv->lock); 5066 5067 return 0; 5068 out_err: 5069 kfree(mc); 5070 return ret; 5071 } 5072 EXPORT_SYMBOL(rdma_join_multicast); 5073 5074 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5075 { 5076 struct rdma_id_private *id_priv; 5077 struct cma_multicast *mc; 5078 5079 id_priv = container_of(id, struct rdma_id_private, id); 5080 spin_lock_irq(&id_priv->lock); 5081 list_for_each_entry(mc, &id_priv->mc_list, list) { 5082 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5083 continue; 5084 list_del(&mc->list); 5085 spin_unlock_irq(&id_priv->lock); 5086 5087 WARN_ON(id_priv->cma_dev->device != id->device); 5088 destroy_mc(id_priv, mc); 5089 return; 5090 } 5091 spin_unlock_irq(&id_priv->lock); 5092 } 5093 EXPORT_SYMBOL(rdma_leave_multicast); 5094 5095 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5096 { 5097 struct rdma_dev_addr *dev_addr; 5098 struct cma_work *work; 5099 5100 dev_addr = &id_priv->id.route.addr.dev_addr; 5101 5102 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5103 (net_eq(dev_net(ndev), dev_addr->net)) && 5104 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5105 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5106 ndev->name, &id_priv->id); 5107 work = kzalloc(sizeof *work, GFP_KERNEL); 5108 if (!work) 5109 return -ENOMEM; 5110 5111 INIT_WORK(&work->work, cma_work_handler); 5112 work->id = id_priv; 5113 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5114 cma_id_get(id_priv); 5115 queue_work(cma_wq, &work->work); 5116 } 5117 5118 return 0; 5119 } 5120 5121 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5122 void *ptr) 5123 { 5124 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5125 struct cma_device *cma_dev; 5126 struct rdma_id_private *id_priv; 5127 int ret = NOTIFY_DONE; 5128 5129 if (event != NETDEV_BONDING_FAILOVER) 5130 return NOTIFY_DONE; 5131 5132 if (!netif_is_bond_master(ndev)) 5133 return NOTIFY_DONE; 5134 5135 mutex_lock(&lock); 5136 list_for_each_entry(cma_dev, &dev_list, list) 5137 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5138 ret = cma_netdev_change(ndev, id_priv); 5139 if (ret) 5140 goto out; 5141 } 5142 5143 out: 5144 mutex_unlock(&lock); 5145 return ret; 5146 } 5147 5148 static void cma_netevent_work_handler(struct work_struct *_work) 5149 { 5150 struct rdma_id_private *id_priv = 5151 container_of(_work, struct rdma_id_private, id.net_work); 5152 struct rdma_cm_event event = {}; 5153 5154 mutex_lock(&id_priv->handler_mutex); 5155 5156 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5157 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5158 goto out_unlock; 5159 5160 event.event = RDMA_CM_EVENT_UNREACHABLE; 5161 event.status = -ETIMEDOUT; 5162 5163 if (cma_cm_event_handler(id_priv, &event)) { 5164 __acquire(&id_priv->handler_mutex); 5165 id_priv->cm_id.ib = NULL; 5166 cma_id_put(id_priv); 5167 destroy_id_handler_unlock(id_priv); 5168 return; 5169 } 5170 5171 out_unlock: 5172 mutex_unlock(&id_priv->handler_mutex); 5173 cma_id_put(id_priv); 5174 } 5175 5176 static int cma_netevent_callback(struct notifier_block *self, 5177 unsigned long event, void *ctx) 5178 { 5179 struct id_table_entry *ips_node = NULL; 5180 struct rdma_id_private *current_id; 5181 struct neighbour *neigh = ctx; 5182 unsigned long flags; 5183 5184 if (event != NETEVENT_NEIGH_UPDATE) 5185 return NOTIFY_DONE; 5186 5187 spin_lock_irqsave(&id_table_lock, flags); 5188 if (neigh->tbl->family == AF_INET6) { 5189 struct sockaddr_in6 neigh_sock_6; 5190 5191 neigh_sock_6.sin6_family = AF_INET6; 5192 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5193 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5194 (struct sockaddr *)&neigh_sock_6); 5195 } else if (neigh->tbl->family == AF_INET) { 5196 struct sockaddr_in neigh_sock_4; 5197 5198 neigh_sock_4.sin_family = AF_INET; 5199 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5200 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5201 (struct sockaddr *)&neigh_sock_4); 5202 } else 5203 goto out; 5204 5205 if (!ips_node) 5206 goto out; 5207 5208 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5209 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5210 neigh->ha, ETH_ALEN)) 5211 continue; 5212 INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler); 5213 cma_id_get(current_id); 5214 queue_work(cma_wq, ¤t_id->id.net_work); 5215 } 5216 out: 5217 spin_unlock_irqrestore(&id_table_lock, flags); 5218 return NOTIFY_DONE; 5219 } 5220 5221 static struct notifier_block cma_nb = { 5222 .notifier_call = cma_netdev_callback 5223 }; 5224 5225 static struct notifier_block cma_netevent_cb = { 5226 .notifier_call = cma_netevent_callback 5227 }; 5228 5229 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5230 { 5231 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5232 enum rdma_cm_state state; 5233 unsigned long flags; 5234 5235 mutex_lock(&id_priv->handler_mutex); 5236 /* Record that we want to remove the device */ 5237 spin_lock_irqsave(&id_priv->lock, flags); 5238 state = id_priv->state; 5239 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5240 spin_unlock_irqrestore(&id_priv->lock, flags); 5241 mutex_unlock(&id_priv->handler_mutex); 5242 cma_id_put(id_priv); 5243 return; 5244 } 5245 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5246 spin_unlock_irqrestore(&id_priv->lock, flags); 5247 5248 if (cma_cm_event_handler(id_priv, &event)) { 5249 /* 5250 * At this point the ULP promises it won't call 5251 * rdma_destroy_id() concurrently 5252 */ 5253 cma_id_put(id_priv); 5254 mutex_unlock(&id_priv->handler_mutex); 5255 trace_cm_id_destroy(id_priv); 5256 _destroy_id(id_priv, state); 5257 return; 5258 } 5259 mutex_unlock(&id_priv->handler_mutex); 5260 5261 /* 5262 * If this races with destroy then the thread that first assigns state 5263 * to a destroying does the cancel. 5264 */ 5265 cma_cancel_operation(id_priv, state); 5266 cma_id_put(id_priv); 5267 } 5268 5269 static void cma_process_remove(struct cma_device *cma_dev) 5270 { 5271 mutex_lock(&lock); 5272 while (!list_empty(&cma_dev->id_list)) { 5273 struct rdma_id_private *id_priv = list_first_entry( 5274 &cma_dev->id_list, struct rdma_id_private, device_item); 5275 5276 list_del_init(&id_priv->listen_item); 5277 list_del_init(&id_priv->device_item); 5278 cma_id_get(id_priv); 5279 mutex_unlock(&lock); 5280 5281 cma_send_device_removal_put(id_priv); 5282 5283 mutex_lock(&lock); 5284 } 5285 mutex_unlock(&lock); 5286 5287 cma_dev_put(cma_dev); 5288 wait_for_completion(&cma_dev->comp); 5289 } 5290 5291 static bool cma_supported(struct ib_device *device) 5292 { 5293 u32 i; 5294 5295 rdma_for_each_port(device, i) { 5296 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5297 return true; 5298 } 5299 return false; 5300 } 5301 5302 static int cma_add_one(struct ib_device *device) 5303 { 5304 struct rdma_id_private *to_destroy; 5305 struct cma_device *cma_dev; 5306 struct rdma_id_private *id_priv; 5307 unsigned long supported_gids = 0; 5308 int ret; 5309 u32 i; 5310 5311 if (!cma_supported(device)) 5312 return -EOPNOTSUPP; 5313 5314 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5315 if (!cma_dev) 5316 return -ENOMEM; 5317 5318 cma_dev->device = device; 5319 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5320 sizeof(*cma_dev->default_gid_type), 5321 GFP_KERNEL); 5322 if (!cma_dev->default_gid_type) { 5323 ret = -ENOMEM; 5324 goto free_cma_dev; 5325 } 5326 5327 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5328 sizeof(*cma_dev->default_roce_tos), 5329 GFP_KERNEL); 5330 if (!cma_dev->default_roce_tos) { 5331 ret = -ENOMEM; 5332 goto free_gid_type; 5333 } 5334 5335 rdma_for_each_port (device, i) { 5336 supported_gids = roce_gid_type_mask_support(device, i); 5337 WARN_ON(!supported_gids); 5338 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5339 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5340 CMA_PREFERRED_ROCE_GID_TYPE; 5341 else 5342 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5343 find_first_bit(&supported_gids, BITS_PER_LONG); 5344 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5345 } 5346 5347 init_completion(&cma_dev->comp); 5348 refcount_set(&cma_dev->refcount, 1); 5349 INIT_LIST_HEAD(&cma_dev->id_list); 5350 ib_set_client_data(device, &cma_client, cma_dev); 5351 5352 mutex_lock(&lock); 5353 list_add_tail(&cma_dev->list, &dev_list); 5354 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5355 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5356 if (ret) 5357 goto free_listen; 5358 } 5359 mutex_unlock(&lock); 5360 5361 trace_cm_add_one(device); 5362 return 0; 5363 5364 free_listen: 5365 list_del(&cma_dev->list); 5366 mutex_unlock(&lock); 5367 5368 /* cma_process_remove() will delete to_destroy */ 5369 cma_process_remove(cma_dev); 5370 kfree(cma_dev->default_roce_tos); 5371 free_gid_type: 5372 kfree(cma_dev->default_gid_type); 5373 5374 free_cma_dev: 5375 kfree(cma_dev); 5376 return ret; 5377 } 5378 5379 static void cma_remove_one(struct ib_device *device, void *client_data) 5380 { 5381 struct cma_device *cma_dev = client_data; 5382 5383 trace_cm_remove_one(device); 5384 5385 mutex_lock(&lock); 5386 list_del(&cma_dev->list); 5387 mutex_unlock(&lock); 5388 5389 cma_process_remove(cma_dev); 5390 kfree(cma_dev->default_roce_tos); 5391 kfree(cma_dev->default_gid_type); 5392 kfree(cma_dev); 5393 } 5394 5395 static int cma_init_net(struct net *net) 5396 { 5397 struct cma_pernet *pernet = cma_pernet(net); 5398 5399 xa_init(&pernet->tcp_ps); 5400 xa_init(&pernet->udp_ps); 5401 xa_init(&pernet->ipoib_ps); 5402 xa_init(&pernet->ib_ps); 5403 5404 return 0; 5405 } 5406 5407 static void cma_exit_net(struct net *net) 5408 { 5409 struct cma_pernet *pernet = cma_pernet(net); 5410 5411 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5412 WARN_ON(!xa_empty(&pernet->udp_ps)); 5413 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5414 WARN_ON(!xa_empty(&pernet->ib_ps)); 5415 } 5416 5417 static struct pernet_operations cma_pernet_operations = { 5418 .init = cma_init_net, 5419 .exit = cma_exit_net, 5420 .id = &cma_pernet_id, 5421 .size = sizeof(struct cma_pernet), 5422 }; 5423 5424 static int __init cma_init(void) 5425 { 5426 int ret; 5427 5428 /* 5429 * There is a rare lock ordering dependency in cma_netdev_callback() 5430 * that only happens when bonding is enabled. Teach lockdep that rtnl 5431 * must never be nested under lock so it can find these without having 5432 * to test with bonding. 5433 */ 5434 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5435 rtnl_lock(); 5436 mutex_lock(&lock); 5437 mutex_unlock(&lock); 5438 rtnl_unlock(); 5439 } 5440 5441 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5442 if (!cma_wq) 5443 return -ENOMEM; 5444 5445 ret = register_pernet_subsys(&cma_pernet_operations); 5446 if (ret) 5447 goto err_wq; 5448 5449 ib_sa_register_client(&sa_client); 5450 register_netdevice_notifier(&cma_nb); 5451 register_netevent_notifier(&cma_netevent_cb); 5452 5453 ret = ib_register_client(&cma_client); 5454 if (ret) 5455 goto err; 5456 5457 ret = cma_configfs_init(); 5458 if (ret) 5459 goto err_ib; 5460 5461 return 0; 5462 5463 err_ib: 5464 ib_unregister_client(&cma_client); 5465 err: 5466 unregister_netevent_notifier(&cma_netevent_cb); 5467 unregister_netdevice_notifier(&cma_nb); 5468 ib_sa_unregister_client(&sa_client); 5469 unregister_pernet_subsys(&cma_pernet_operations); 5470 err_wq: 5471 destroy_workqueue(cma_wq); 5472 return ret; 5473 } 5474 5475 static void __exit cma_cleanup(void) 5476 { 5477 cma_configfs_exit(); 5478 ib_unregister_client(&cma_client); 5479 unregister_netevent_notifier(&cma_netevent_cb); 5480 unregister_netdevice_notifier(&cma_nb); 5481 ib_sa_unregister_client(&sa_client); 5482 unregister_pernet_subsys(&cma_pernet_operations); 5483 destroy_workqueue(cma_wq); 5484 } 5485 5486 module_init(cma_init); 5487 module_exit(cma_cleanup); 5488