xref: /linux/drivers/infiniband/core/cma.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/igmp.h>
15 #include <linux/xarray.h>
16 #include <linux/inetdevice.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <net/route.h>
20 
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 #include <net/tcp.h>
24 #include <net/ipv6.h>
25 #include <net/ip_fib.h>
26 #include <net/ip6_route.h>
27 
28 #include <rdma/rdma_cm.h>
29 #include <rdma/rdma_cm_ib.h>
30 #include <rdma/rdma_netlink.h>
31 #include <rdma/ib.h>
32 #include <rdma/ib_cache.h>
33 #include <rdma/ib_cm.h>
34 #include <rdma/ib_sa.h>
35 #include <rdma/iw_cm.h>
36 
37 #include "core_priv.h"
38 #include "cma_priv.h"
39 #include "cma_trace.h"
40 
41 MODULE_AUTHOR("Sean Hefty");
42 MODULE_DESCRIPTION("Generic RDMA CM Agent");
43 MODULE_LICENSE("Dual BSD/GPL");
44 
45 #define CMA_CM_RESPONSE_TIMEOUT 20
46 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000
47 #define CMA_MAX_CM_RETRIES 15
48 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
49 #define CMA_IBOE_PACKET_LIFETIME 18
50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
51 
52 static const char * const cma_events[] = {
53 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
54 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
55 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
56 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
57 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
58 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
59 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
60 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
61 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
62 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
63 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
64 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
65 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
66 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
67 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
68 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
69 };
70 
71 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr,
72 			 union ib_gid *mgid);
73 
74 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
75 {
76 	size_t index = event;
77 
78 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
79 			cma_events[index] : "unrecognized event";
80 }
81 EXPORT_SYMBOL(rdma_event_msg);
82 
83 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
84 						int reason)
85 {
86 	if (rdma_ib_or_roce(id->device, id->port_num))
87 		return ibcm_reject_msg(reason);
88 
89 	if (rdma_protocol_iwarp(id->device, id->port_num))
90 		return iwcm_reject_msg(reason);
91 
92 	WARN_ON_ONCE(1);
93 	return "unrecognized transport";
94 }
95 EXPORT_SYMBOL(rdma_reject_msg);
96 
97 /**
98  * rdma_is_consumer_reject - return true if the consumer rejected the connect
99  *                           request.
100  * @id: Communication identifier that received the REJECT event.
101  * @reason: Value returned in the REJECT event status field.
102  */
103 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
104 {
105 	if (rdma_ib_or_roce(id->device, id->port_num))
106 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
107 
108 	if (rdma_protocol_iwarp(id->device, id->port_num))
109 		return reason == -ECONNREFUSED;
110 
111 	WARN_ON_ONCE(1);
112 	return false;
113 }
114 
115 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
116 				      struct rdma_cm_event *ev, u8 *data_len)
117 {
118 	const void *p;
119 
120 	if (rdma_is_consumer_reject(id, ev->status)) {
121 		*data_len = ev->param.conn.private_data_len;
122 		p = ev->param.conn.private_data;
123 	} else {
124 		*data_len = 0;
125 		p = NULL;
126 	}
127 	return p;
128 }
129 EXPORT_SYMBOL(rdma_consumer_reject_data);
130 
131 /**
132  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
133  * @id: Communication Identifier
134  */
135 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
136 {
137 	struct rdma_id_private *id_priv;
138 
139 	id_priv = container_of(id, struct rdma_id_private, id);
140 	if (id->device->node_type == RDMA_NODE_RNIC)
141 		return id_priv->cm_id.iw;
142 	return NULL;
143 }
144 EXPORT_SYMBOL(rdma_iw_cm_id);
145 
146 /**
147  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
148  * @res: rdma resource tracking entry pointer
149  */
150 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
151 {
152 	struct rdma_id_private *id_priv =
153 		container_of(res, struct rdma_id_private, res);
154 
155 	return &id_priv->id;
156 }
157 EXPORT_SYMBOL(rdma_res_to_id);
158 
159 static int cma_add_one(struct ib_device *device);
160 static void cma_remove_one(struct ib_device *device, void *client_data);
161 
162 static struct ib_client cma_client = {
163 	.name   = "cma",
164 	.add    = cma_add_one,
165 	.remove = cma_remove_one
166 };
167 
168 static struct ib_sa_client sa_client;
169 static LIST_HEAD(dev_list);
170 static LIST_HEAD(listen_any_list);
171 static DEFINE_MUTEX(lock);
172 static struct workqueue_struct *cma_wq;
173 static unsigned int cma_pernet_id;
174 
175 struct cma_pernet {
176 	struct xarray tcp_ps;
177 	struct xarray udp_ps;
178 	struct xarray ipoib_ps;
179 	struct xarray ib_ps;
180 };
181 
182 static struct cma_pernet *cma_pernet(struct net *net)
183 {
184 	return net_generic(net, cma_pernet_id);
185 }
186 
187 static
188 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
189 {
190 	struct cma_pernet *pernet = cma_pernet(net);
191 
192 	switch (ps) {
193 	case RDMA_PS_TCP:
194 		return &pernet->tcp_ps;
195 	case RDMA_PS_UDP:
196 		return &pernet->udp_ps;
197 	case RDMA_PS_IPOIB:
198 		return &pernet->ipoib_ps;
199 	case RDMA_PS_IB:
200 		return &pernet->ib_ps;
201 	default:
202 		return NULL;
203 	}
204 }
205 
206 struct cma_device {
207 	struct list_head	list;
208 	struct ib_device	*device;
209 	struct completion	comp;
210 	refcount_t refcount;
211 	struct list_head	id_list;
212 	enum ib_gid_type	*default_gid_type;
213 	u8			*default_roce_tos;
214 };
215 
216 struct rdma_bind_list {
217 	enum rdma_ucm_port_space ps;
218 	struct hlist_head	owners;
219 	unsigned short		port;
220 };
221 
222 struct class_port_info_context {
223 	struct ib_class_port_info	*class_port_info;
224 	struct ib_device		*device;
225 	struct completion		done;
226 	struct ib_sa_query		*sa_query;
227 	u8				port_num;
228 };
229 
230 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
231 			struct rdma_bind_list *bind_list, int snum)
232 {
233 	struct xarray *xa = cma_pernet_xa(net, ps);
234 
235 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
236 }
237 
238 static struct rdma_bind_list *cma_ps_find(struct net *net,
239 					  enum rdma_ucm_port_space ps, int snum)
240 {
241 	struct xarray *xa = cma_pernet_xa(net, ps);
242 
243 	return xa_load(xa, snum);
244 }
245 
246 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
247 			  int snum)
248 {
249 	struct xarray *xa = cma_pernet_xa(net, ps);
250 
251 	xa_erase(xa, snum);
252 }
253 
254 enum {
255 	CMA_OPTION_AFONLY,
256 };
257 
258 void cma_dev_get(struct cma_device *cma_dev)
259 {
260 	refcount_inc(&cma_dev->refcount);
261 }
262 
263 void cma_dev_put(struct cma_device *cma_dev)
264 {
265 	if (refcount_dec_and_test(&cma_dev->refcount))
266 		complete(&cma_dev->comp);
267 }
268 
269 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
270 					     void		*cookie)
271 {
272 	struct cma_device *cma_dev;
273 	struct cma_device *found_cma_dev = NULL;
274 
275 	mutex_lock(&lock);
276 
277 	list_for_each_entry(cma_dev, &dev_list, list)
278 		if (filter(cma_dev->device, cookie)) {
279 			found_cma_dev = cma_dev;
280 			break;
281 		}
282 
283 	if (found_cma_dev)
284 		cma_dev_get(found_cma_dev);
285 	mutex_unlock(&lock);
286 	return found_cma_dev;
287 }
288 
289 int cma_get_default_gid_type(struct cma_device *cma_dev,
290 			     unsigned int port)
291 {
292 	if (!rdma_is_port_valid(cma_dev->device, port))
293 		return -EINVAL;
294 
295 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
296 }
297 
298 int cma_set_default_gid_type(struct cma_device *cma_dev,
299 			     unsigned int port,
300 			     enum ib_gid_type default_gid_type)
301 {
302 	unsigned long supported_gids;
303 
304 	if (!rdma_is_port_valid(cma_dev->device, port))
305 		return -EINVAL;
306 
307 	if (default_gid_type == IB_GID_TYPE_IB &&
308 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
309 		default_gid_type = IB_GID_TYPE_ROCE;
310 
311 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
312 
313 	if (!(supported_gids & 1 << default_gid_type))
314 		return -EINVAL;
315 
316 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
317 		default_gid_type;
318 
319 	return 0;
320 }
321 
322 int cma_get_default_roce_tos(struct cma_device *cma_dev, unsigned int port)
323 {
324 	if (!rdma_is_port_valid(cma_dev->device, port))
325 		return -EINVAL;
326 
327 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
328 }
329 
330 int cma_set_default_roce_tos(struct cma_device *cma_dev, unsigned int port,
331 			     u8 default_roce_tos)
332 {
333 	if (!rdma_is_port_valid(cma_dev->device, port))
334 		return -EINVAL;
335 
336 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
337 		 default_roce_tos;
338 
339 	return 0;
340 }
341 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
342 {
343 	return cma_dev->device;
344 }
345 
346 /*
347  * Device removal can occur at anytime, so we need extra handling to
348  * serialize notifying the user of device removal with other callbacks.
349  * We do this by disabling removal notification while a callback is in process,
350  * and reporting it after the callback completes.
351  */
352 
353 struct cma_multicast {
354 	struct rdma_id_private *id_priv;
355 	struct ib_sa_multicast *sa_mc;
356 	struct list_head	list;
357 	void			*context;
358 	struct sockaddr_storage	addr;
359 	u8			join_state;
360 };
361 
362 struct cma_work {
363 	struct work_struct	work;
364 	struct rdma_id_private	*id;
365 	enum rdma_cm_state	old_state;
366 	enum rdma_cm_state	new_state;
367 	struct rdma_cm_event	event;
368 };
369 
370 union cma_ip_addr {
371 	struct in6_addr ip6;
372 	struct {
373 		__be32 pad[3];
374 		__be32 addr;
375 	} ip4;
376 };
377 
378 struct cma_hdr {
379 	u8 cma_version;
380 	u8 ip_version;	/* IP version: 7:4 */
381 	__be16 port;
382 	union cma_ip_addr src_addr;
383 	union cma_ip_addr dst_addr;
384 };
385 
386 #define CMA_VERSION 0x00
387 
388 struct cma_req_info {
389 	struct sockaddr_storage listen_addr_storage;
390 	struct sockaddr_storage src_addr_storage;
391 	struct ib_device *device;
392 	union ib_gid local_gid;
393 	__be64 service_id;
394 	int port;
395 	bool has_gid;
396 	u16 pkey;
397 };
398 
399 static int cma_comp_exch(struct rdma_id_private *id_priv,
400 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
401 {
402 	unsigned long flags;
403 	int ret;
404 
405 	/*
406 	 * The FSM uses a funny double locking where state is protected by both
407 	 * the handler_mutex and the spinlock. State is not allowed to change
408 	 * to/from a handler_mutex protected value without also holding
409 	 * handler_mutex.
410 	 */
411 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
412 		lockdep_assert_held(&id_priv->handler_mutex);
413 
414 	spin_lock_irqsave(&id_priv->lock, flags);
415 	if ((ret = (id_priv->state == comp)))
416 		id_priv->state = exch;
417 	spin_unlock_irqrestore(&id_priv->lock, flags);
418 	return ret;
419 }
420 
421 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
422 {
423 	return hdr->ip_version >> 4;
424 }
425 
426 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
427 {
428 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
429 }
430 
431 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
432 {
433 	struct in_device *in_dev = NULL;
434 
435 	if (ndev) {
436 		rtnl_lock();
437 		in_dev = __in_dev_get_rtnl(ndev);
438 		if (in_dev) {
439 			if (join)
440 				ip_mc_inc_group(in_dev,
441 						*(__be32 *)(mgid->raw + 12));
442 			else
443 				ip_mc_dec_group(in_dev,
444 						*(__be32 *)(mgid->raw + 12));
445 		}
446 		rtnl_unlock();
447 	}
448 	return (in_dev) ? 0 : -ENODEV;
449 }
450 
451 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
452 			       struct cma_device *cma_dev)
453 {
454 	cma_dev_get(cma_dev);
455 	id_priv->cma_dev = cma_dev;
456 	id_priv->id.device = cma_dev->device;
457 	id_priv->id.route.addr.dev_addr.transport =
458 		rdma_node_get_transport(cma_dev->device->node_type);
459 	list_add_tail(&id_priv->list, &cma_dev->id_list);
460 	rdma_restrack_add(&id_priv->res);
461 
462 	trace_cm_id_attach(id_priv, cma_dev->device);
463 }
464 
465 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
466 			      struct cma_device *cma_dev)
467 {
468 	_cma_attach_to_dev(id_priv, cma_dev);
469 	id_priv->gid_type =
470 		cma_dev->default_gid_type[id_priv->id.port_num -
471 					  rdma_start_port(cma_dev->device)];
472 }
473 
474 static void cma_release_dev(struct rdma_id_private *id_priv)
475 {
476 	mutex_lock(&lock);
477 	list_del(&id_priv->list);
478 	cma_dev_put(id_priv->cma_dev);
479 	id_priv->cma_dev = NULL;
480 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
481 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
482 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
483 	}
484 	mutex_unlock(&lock);
485 }
486 
487 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
488 {
489 	return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
490 }
491 
492 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
493 {
494 	return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
495 }
496 
497 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
498 {
499 	return id_priv->id.route.addr.src_addr.ss_family;
500 }
501 
502 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
503 {
504 	struct ib_sa_mcmember_rec rec;
505 	int ret = 0;
506 
507 	if (id_priv->qkey) {
508 		if (qkey && id_priv->qkey != qkey)
509 			return -EINVAL;
510 		return 0;
511 	}
512 
513 	if (qkey) {
514 		id_priv->qkey = qkey;
515 		return 0;
516 	}
517 
518 	switch (id_priv->id.ps) {
519 	case RDMA_PS_UDP:
520 	case RDMA_PS_IB:
521 		id_priv->qkey = RDMA_UDP_QKEY;
522 		break;
523 	case RDMA_PS_IPOIB:
524 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
525 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
526 					     id_priv->id.port_num, &rec.mgid,
527 					     &rec);
528 		if (!ret)
529 			id_priv->qkey = be32_to_cpu(rec.qkey);
530 		break;
531 	default:
532 		break;
533 	}
534 	return ret;
535 }
536 
537 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
538 {
539 	dev_addr->dev_type = ARPHRD_INFINIBAND;
540 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
541 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
542 }
543 
544 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
545 {
546 	int ret;
547 
548 	if (addr->sa_family != AF_IB) {
549 		ret = rdma_translate_ip(addr, dev_addr);
550 	} else {
551 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
552 		ret = 0;
553 	}
554 
555 	return ret;
556 }
557 
558 static const struct ib_gid_attr *
559 cma_validate_port(struct ib_device *device, u8 port,
560 		  enum ib_gid_type gid_type,
561 		  union ib_gid *gid,
562 		  struct rdma_id_private *id_priv)
563 {
564 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
565 	int bound_if_index = dev_addr->bound_dev_if;
566 	const struct ib_gid_attr *sgid_attr;
567 	int dev_type = dev_addr->dev_type;
568 	struct net_device *ndev = NULL;
569 
570 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
571 		return ERR_PTR(-ENODEV);
572 
573 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
574 		return ERR_PTR(-ENODEV);
575 
576 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
577 		return ERR_PTR(-ENODEV);
578 
579 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
580 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
581 		if (!ndev)
582 			return ERR_PTR(-ENODEV);
583 	} else {
584 		gid_type = IB_GID_TYPE_IB;
585 	}
586 
587 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
588 	if (ndev)
589 		dev_put(ndev);
590 	return sgid_attr;
591 }
592 
593 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
594 			       const struct ib_gid_attr *sgid_attr)
595 {
596 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
597 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
598 }
599 
600 /**
601  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
602  * based on source ip address.
603  * @id_priv:	cm_id which should be bound to cma device
604  *
605  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
606  * based on source IP address. It returns 0 on success or error code otherwise.
607  * It is applicable to active and passive side cm_id.
608  */
609 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
610 {
611 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
612 	const struct ib_gid_attr *sgid_attr;
613 	union ib_gid gid, iboe_gid, *gidp;
614 	struct cma_device *cma_dev;
615 	enum ib_gid_type gid_type;
616 	int ret = -ENODEV;
617 	unsigned int port;
618 
619 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
620 	    id_priv->id.ps == RDMA_PS_IPOIB)
621 		return -EINVAL;
622 
623 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
624 		    &iboe_gid);
625 
626 	memcpy(&gid, dev_addr->src_dev_addr +
627 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
628 
629 	mutex_lock(&lock);
630 	list_for_each_entry(cma_dev, &dev_list, list) {
631 		rdma_for_each_port (cma_dev->device, port) {
632 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
633 			       &iboe_gid : &gid;
634 			gid_type = cma_dev->default_gid_type[port - 1];
635 			sgid_attr = cma_validate_port(cma_dev->device, port,
636 						      gid_type, gidp, id_priv);
637 			if (!IS_ERR(sgid_attr)) {
638 				id_priv->id.port_num = port;
639 				cma_bind_sgid_attr(id_priv, sgid_attr);
640 				cma_attach_to_dev(id_priv, cma_dev);
641 				ret = 0;
642 				goto out;
643 			}
644 		}
645 	}
646 out:
647 	mutex_unlock(&lock);
648 	return ret;
649 }
650 
651 /**
652  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
653  * @id_priv:		cm id to bind to cma device
654  * @listen_id_priv:	listener cm id to match against
655  * @req:		Pointer to req structure containaining incoming
656  *			request information
657  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
658  * rdma device matches for listen_id and incoming request. It also verifies
659  * that a GID table entry is present for the source address.
660  * Returns 0 on success, or returns error code otherwise.
661  */
662 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
663 			      const struct rdma_id_private *listen_id_priv,
664 			      struct cma_req_info *req)
665 {
666 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
667 	const struct ib_gid_attr *sgid_attr;
668 	enum ib_gid_type gid_type;
669 	union ib_gid gid;
670 
671 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
672 	    id_priv->id.ps == RDMA_PS_IPOIB)
673 		return -EINVAL;
674 
675 	if (rdma_protocol_roce(req->device, req->port))
676 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
677 			    &gid);
678 	else
679 		memcpy(&gid, dev_addr->src_dev_addr +
680 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
681 
682 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
683 	sgid_attr = cma_validate_port(req->device, req->port,
684 				      gid_type, &gid, id_priv);
685 	if (IS_ERR(sgid_attr))
686 		return PTR_ERR(sgid_attr);
687 
688 	id_priv->id.port_num = req->port;
689 	cma_bind_sgid_attr(id_priv, sgid_attr);
690 	/* Need to acquire lock to protect against reader
691 	 * of cma_dev->id_list such as cma_netdev_callback() and
692 	 * cma_process_remove().
693 	 */
694 	mutex_lock(&lock);
695 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
696 	mutex_unlock(&lock);
697 	return 0;
698 }
699 
700 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
701 			      const struct rdma_id_private *listen_id_priv)
702 {
703 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
704 	const struct ib_gid_attr *sgid_attr;
705 	struct cma_device *cma_dev;
706 	enum ib_gid_type gid_type;
707 	int ret = -ENODEV;
708 	unsigned int port;
709 	union ib_gid gid;
710 
711 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
712 	    id_priv->id.ps == RDMA_PS_IPOIB)
713 		return -EINVAL;
714 
715 	memcpy(&gid, dev_addr->src_dev_addr +
716 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
717 
718 	mutex_lock(&lock);
719 
720 	cma_dev = listen_id_priv->cma_dev;
721 	port = listen_id_priv->id.port_num;
722 	gid_type = listen_id_priv->gid_type;
723 	sgid_attr = cma_validate_port(cma_dev->device, port,
724 				      gid_type, &gid, id_priv);
725 	if (!IS_ERR(sgid_attr)) {
726 		id_priv->id.port_num = port;
727 		cma_bind_sgid_attr(id_priv, sgid_attr);
728 		ret = 0;
729 		goto out;
730 	}
731 
732 	list_for_each_entry(cma_dev, &dev_list, list) {
733 		rdma_for_each_port (cma_dev->device, port) {
734 			if (listen_id_priv->cma_dev == cma_dev &&
735 			    listen_id_priv->id.port_num == port)
736 				continue;
737 
738 			gid_type = cma_dev->default_gid_type[port - 1];
739 			sgid_attr = cma_validate_port(cma_dev->device, port,
740 						      gid_type, &gid, id_priv);
741 			if (!IS_ERR(sgid_attr)) {
742 				id_priv->id.port_num = port;
743 				cma_bind_sgid_attr(id_priv, sgid_attr);
744 				ret = 0;
745 				goto out;
746 			}
747 		}
748 	}
749 
750 out:
751 	if (!ret)
752 		cma_attach_to_dev(id_priv, cma_dev);
753 
754 	mutex_unlock(&lock);
755 	return ret;
756 }
757 
758 /*
759  * Select the source IB device and address to reach the destination IB address.
760  */
761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
762 {
763 	struct cma_device *cma_dev, *cur_dev;
764 	struct sockaddr_ib *addr;
765 	union ib_gid gid, sgid, *dgid;
766 	unsigned int p;
767 	u16 pkey, index;
768 	enum ib_port_state port_state;
769 	int i;
770 
771 	cma_dev = NULL;
772 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
773 	dgid = (union ib_gid *) &addr->sib_addr;
774 	pkey = ntohs(addr->sib_pkey);
775 
776 	mutex_lock(&lock);
777 	list_for_each_entry(cur_dev, &dev_list, list) {
778 		rdma_for_each_port (cur_dev->device, p) {
779 			if (!rdma_cap_af_ib(cur_dev->device, p))
780 				continue;
781 
782 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
783 				continue;
784 
785 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
786 				continue;
787 			for (i = 0; !rdma_query_gid(cur_dev->device,
788 						    p, i, &gid);
789 			     i++) {
790 				if (!memcmp(&gid, dgid, sizeof(gid))) {
791 					cma_dev = cur_dev;
792 					sgid = gid;
793 					id_priv->id.port_num = p;
794 					goto found;
795 				}
796 
797 				if (!cma_dev && (gid.global.subnet_prefix ==
798 				    dgid->global.subnet_prefix) &&
799 				    port_state == IB_PORT_ACTIVE) {
800 					cma_dev = cur_dev;
801 					sgid = gid;
802 					id_priv->id.port_num = p;
803 					goto found;
804 				}
805 			}
806 		}
807 	}
808 	mutex_unlock(&lock);
809 	return -ENODEV;
810 
811 found:
812 	cma_attach_to_dev(id_priv, cma_dev);
813 	mutex_unlock(&lock);
814 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
815 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
816 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
817 	return 0;
818 }
819 
820 static void cma_id_get(struct rdma_id_private *id_priv)
821 {
822 	refcount_inc(&id_priv->refcount);
823 }
824 
825 static void cma_id_put(struct rdma_id_private *id_priv)
826 {
827 	if (refcount_dec_and_test(&id_priv->refcount))
828 		complete(&id_priv->comp);
829 }
830 
831 static struct rdma_id_private *
832 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
833 		 void *context, enum rdma_ucm_port_space ps,
834 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
835 {
836 	struct rdma_id_private *id_priv;
837 
838 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
839 	if (!id_priv)
840 		return ERR_PTR(-ENOMEM);
841 
842 	id_priv->state = RDMA_CM_IDLE;
843 	id_priv->id.context = context;
844 	id_priv->id.event_handler = event_handler;
845 	id_priv->id.ps = ps;
846 	id_priv->id.qp_type = qp_type;
847 	id_priv->tos_set = false;
848 	id_priv->timeout_set = false;
849 	id_priv->gid_type = IB_GID_TYPE_IB;
850 	spin_lock_init(&id_priv->lock);
851 	mutex_init(&id_priv->qp_mutex);
852 	init_completion(&id_priv->comp);
853 	refcount_set(&id_priv->refcount, 1);
854 	mutex_init(&id_priv->handler_mutex);
855 	INIT_LIST_HEAD(&id_priv->listen_list);
856 	INIT_LIST_HEAD(&id_priv->mc_list);
857 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
858 	id_priv->id.route.addr.dev_addr.net = get_net(net);
859 	id_priv->seq_num &= 0x00ffffff;
860 
861 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
862 	if (parent)
863 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
864 
865 	return id_priv;
866 }
867 
868 struct rdma_cm_id *
869 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
870 			void *context, enum rdma_ucm_port_space ps,
871 			enum ib_qp_type qp_type, const char *caller)
872 {
873 	struct rdma_id_private *ret;
874 
875 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
876 	if (IS_ERR(ret))
877 		return ERR_CAST(ret);
878 
879 	rdma_restrack_set_name(&ret->res, caller);
880 	return &ret->id;
881 }
882 EXPORT_SYMBOL(__rdma_create_kernel_id);
883 
884 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
885 				       void *context,
886 				       enum rdma_ucm_port_space ps,
887 				       enum ib_qp_type qp_type)
888 {
889 	struct rdma_id_private *ret;
890 
891 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
892 			       ps, qp_type, NULL);
893 	if (IS_ERR(ret))
894 		return ERR_CAST(ret);
895 
896 	rdma_restrack_set_name(&ret->res, NULL);
897 	return &ret->id;
898 }
899 EXPORT_SYMBOL(rdma_create_user_id);
900 
901 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
902 {
903 	struct ib_qp_attr qp_attr;
904 	int qp_attr_mask, ret;
905 
906 	qp_attr.qp_state = IB_QPS_INIT;
907 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
908 	if (ret)
909 		return ret;
910 
911 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
912 	if (ret)
913 		return ret;
914 
915 	qp_attr.qp_state = IB_QPS_RTR;
916 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
917 	if (ret)
918 		return ret;
919 
920 	qp_attr.qp_state = IB_QPS_RTS;
921 	qp_attr.sq_psn = 0;
922 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
923 
924 	return ret;
925 }
926 
927 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
928 {
929 	struct ib_qp_attr qp_attr;
930 	int qp_attr_mask, ret;
931 
932 	qp_attr.qp_state = IB_QPS_INIT;
933 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
934 	if (ret)
935 		return ret;
936 
937 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
938 }
939 
940 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
941 		   struct ib_qp_init_attr *qp_init_attr)
942 {
943 	struct rdma_id_private *id_priv;
944 	struct ib_qp *qp;
945 	int ret;
946 
947 	id_priv = container_of(id, struct rdma_id_private, id);
948 	if (id->device != pd->device) {
949 		ret = -EINVAL;
950 		goto out_err;
951 	}
952 
953 	qp_init_attr->port_num = id->port_num;
954 	qp = ib_create_qp(pd, qp_init_attr);
955 	if (IS_ERR(qp)) {
956 		ret = PTR_ERR(qp);
957 		goto out_err;
958 	}
959 
960 	if (id->qp_type == IB_QPT_UD)
961 		ret = cma_init_ud_qp(id_priv, qp);
962 	else
963 		ret = cma_init_conn_qp(id_priv, qp);
964 	if (ret)
965 		goto out_destroy;
966 
967 	id->qp = qp;
968 	id_priv->qp_num = qp->qp_num;
969 	id_priv->srq = (qp->srq != NULL);
970 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
971 	return 0;
972 out_destroy:
973 	ib_destroy_qp(qp);
974 out_err:
975 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
976 	return ret;
977 }
978 EXPORT_SYMBOL(rdma_create_qp);
979 
980 void rdma_destroy_qp(struct rdma_cm_id *id)
981 {
982 	struct rdma_id_private *id_priv;
983 
984 	id_priv = container_of(id, struct rdma_id_private, id);
985 	trace_cm_qp_destroy(id_priv);
986 	mutex_lock(&id_priv->qp_mutex);
987 	ib_destroy_qp(id_priv->id.qp);
988 	id_priv->id.qp = NULL;
989 	mutex_unlock(&id_priv->qp_mutex);
990 }
991 EXPORT_SYMBOL(rdma_destroy_qp);
992 
993 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
994 			     struct rdma_conn_param *conn_param)
995 {
996 	struct ib_qp_attr qp_attr;
997 	int qp_attr_mask, ret;
998 
999 	mutex_lock(&id_priv->qp_mutex);
1000 	if (!id_priv->id.qp) {
1001 		ret = 0;
1002 		goto out;
1003 	}
1004 
1005 	/* Need to update QP attributes from default values. */
1006 	qp_attr.qp_state = IB_QPS_INIT;
1007 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1008 	if (ret)
1009 		goto out;
1010 
1011 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1012 	if (ret)
1013 		goto out;
1014 
1015 	qp_attr.qp_state = IB_QPS_RTR;
1016 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1017 	if (ret)
1018 		goto out;
1019 
1020 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1021 
1022 	if (conn_param)
1023 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1024 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1025 out:
1026 	mutex_unlock(&id_priv->qp_mutex);
1027 	return ret;
1028 }
1029 
1030 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1031 			     struct rdma_conn_param *conn_param)
1032 {
1033 	struct ib_qp_attr qp_attr;
1034 	int qp_attr_mask, ret;
1035 
1036 	mutex_lock(&id_priv->qp_mutex);
1037 	if (!id_priv->id.qp) {
1038 		ret = 0;
1039 		goto out;
1040 	}
1041 
1042 	qp_attr.qp_state = IB_QPS_RTS;
1043 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1044 	if (ret)
1045 		goto out;
1046 
1047 	if (conn_param)
1048 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1049 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1050 out:
1051 	mutex_unlock(&id_priv->qp_mutex);
1052 	return ret;
1053 }
1054 
1055 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1056 {
1057 	struct ib_qp_attr qp_attr;
1058 	int ret;
1059 
1060 	mutex_lock(&id_priv->qp_mutex);
1061 	if (!id_priv->id.qp) {
1062 		ret = 0;
1063 		goto out;
1064 	}
1065 
1066 	qp_attr.qp_state = IB_QPS_ERR;
1067 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1068 out:
1069 	mutex_unlock(&id_priv->qp_mutex);
1070 	return ret;
1071 }
1072 
1073 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1074 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1075 {
1076 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1077 	int ret;
1078 	u16 pkey;
1079 
1080 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1081 		pkey = 0xffff;
1082 	else
1083 		pkey = ib_addr_get_pkey(dev_addr);
1084 
1085 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1086 				  pkey, &qp_attr->pkey_index);
1087 	if (ret)
1088 		return ret;
1089 
1090 	qp_attr->port_num = id_priv->id.port_num;
1091 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1092 
1093 	if (id_priv->id.qp_type == IB_QPT_UD) {
1094 		ret = cma_set_qkey(id_priv, 0);
1095 		if (ret)
1096 			return ret;
1097 
1098 		qp_attr->qkey = id_priv->qkey;
1099 		*qp_attr_mask |= IB_QP_QKEY;
1100 	} else {
1101 		qp_attr->qp_access_flags = 0;
1102 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1103 	}
1104 	return 0;
1105 }
1106 
1107 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1108 		       int *qp_attr_mask)
1109 {
1110 	struct rdma_id_private *id_priv;
1111 	int ret = 0;
1112 
1113 	id_priv = container_of(id, struct rdma_id_private, id);
1114 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1115 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1116 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1117 		else
1118 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1119 						 qp_attr_mask);
1120 
1121 		if (qp_attr->qp_state == IB_QPS_RTR)
1122 			qp_attr->rq_psn = id_priv->seq_num;
1123 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1124 		if (!id_priv->cm_id.iw) {
1125 			qp_attr->qp_access_flags = 0;
1126 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1127 		} else
1128 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1129 						 qp_attr_mask);
1130 		qp_attr->port_num = id_priv->id.port_num;
1131 		*qp_attr_mask |= IB_QP_PORT;
1132 	} else
1133 		ret = -ENOSYS;
1134 
1135 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1136 		qp_attr->timeout = id_priv->timeout;
1137 
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL(rdma_init_qp_attr);
1141 
1142 static inline bool cma_zero_addr(const struct sockaddr *addr)
1143 {
1144 	switch (addr->sa_family) {
1145 	case AF_INET:
1146 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1147 	case AF_INET6:
1148 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1149 	case AF_IB:
1150 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1151 	default:
1152 		return false;
1153 	}
1154 }
1155 
1156 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1157 {
1158 	switch (addr->sa_family) {
1159 	case AF_INET:
1160 		return ipv4_is_loopback(
1161 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1162 	case AF_INET6:
1163 		return ipv6_addr_loopback(
1164 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1165 	case AF_IB:
1166 		return ib_addr_loopback(
1167 			&((struct sockaddr_ib *)addr)->sib_addr);
1168 	default:
1169 		return false;
1170 	}
1171 }
1172 
1173 static inline bool cma_any_addr(const struct sockaddr *addr)
1174 {
1175 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1176 }
1177 
1178 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1179 {
1180 	if (src->sa_family != dst->sa_family)
1181 		return -1;
1182 
1183 	switch (src->sa_family) {
1184 	case AF_INET:
1185 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1186 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1187 	case AF_INET6: {
1188 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1189 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1190 		bool link_local;
1191 
1192 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1193 					  &dst_addr6->sin6_addr))
1194 			return 1;
1195 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1196 			     IPV6_ADDR_LINKLOCAL;
1197 		/* Link local must match their scope_ids */
1198 		return link_local ? (src_addr6->sin6_scope_id !=
1199 				     dst_addr6->sin6_scope_id) :
1200 				    0;
1201 	}
1202 
1203 	default:
1204 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1205 				   &((struct sockaddr_ib *) dst)->sib_addr);
1206 	}
1207 }
1208 
1209 static __be16 cma_port(const struct sockaddr *addr)
1210 {
1211 	struct sockaddr_ib *sib;
1212 
1213 	switch (addr->sa_family) {
1214 	case AF_INET:
1215 		return ((struct sockaddr_in *) addr)->sin_port;
1216 	case AF_INET6:
1217 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1218 	case AF_IB:
1219 		sib = (struct sockaddr_ib *) addr;
1220 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1221 				    be64_to_cpu(sib->sib_sid_mask)));
1222 	default:
1223 		return 0;
1224 	}
1225 }
1226 
1227 static inline int cma_any_port(const struct sockaddr *addr)
1228 {
1229 	return !cma_port(addr);
1230 }
1231 
1232 static void cma_save_ib_info(struct sockaddr *src_addr,
1233 			     struct sockaddr *dst_addr,
1234 			     const struct rdma_cm_id *listen_id,
1235 			     const struct sa_path_rec *path)
1236 {
1237 	struct sockaddr_ib *listen_ib, *ib;
1238 
1239 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1240 	if (src_addr) {
1241 		ib = (struct sockaddr_ib *)src_addr;
1242 		ib->sib_family = AF_IB;
1243 		if (path) {
1244 			ib->sib_pkey = path->pkey;
1245 			ib->sib_flowinfo = path->flow_label;
1246 			memcpy(&ib->sib_addr, &path->sgid, 16);
1247 			ib->sib_sid = path->service_id;
1248 			ib->sib_scope_id = 0;
1249 		} else {
1250 			ib->sib_pkey = listen_ib->sib_pkey;
1251 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1252 			ib->sib_addr = listen_ib->sib_addr;
1253 			ib->sib_sid = listen_ib->sib_sid;
1254 			ib->sib_scope_id = listen_ib->sib_scope_id;
1255 		}
1256 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1257 	}
1258 	if (dst_addr) {
1259 		ib = (struct sockaddr_ib *)dst_addr;
1260 		ib->sib_family = AF_IB;
1261 		if (path) {
1262 			ib->sib_pkey = path->pkey;
1263 			ib->sib_flowinfo = path->flow_label;
1264 			memcpy(&ib->sib_addr, &path->dgid, 16);
1265 		}
1266 	}
1267 }
1268 
1269 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1270 			      struct sockaddr_in *dst_addr,
1271 			      struct cma_hdr *hdr,
1272 			      __be16 local_port)
1273 {
1274 	if (src_addr) {
1275 		*src_addr = (struct sockaddr_in) {
1276 			.sin_family = AF_INET,
1277 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1278 			.sin_port = local_port,
1279 		};
1280 	}
1281 
1282 	if (dst_addr) {
1283 		*dst_addr = (struct sockaddr_in) {
1284 			.sin_family = AF_INET,
1285 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1286 			.sin_port = hdr->port,
1287 		};
1288 	}
1289 }
1290 
1291 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1292 			      struct sockaddr_in6 *dst_addr,
1293 			      struct cma_hdr *hdr,
1294 			      __be16 local_port)
1295 {
1296 	if (src_addr) {
1297 		*src_addr = (struct sockaddr_in6) {
1298 			.sin6_family = AF_INET6,
1299 			.sin6_addr = hdr->dst_addr.ip6,
1300 			.sin6_port = local_port,
1301 		};
1302 	}
1303 
1304 	if (dst_addr) {
1305 		*dst_addr = (struct sockaddr_in6) {
1306 			.sin6_family = AF_INET6,
1307 			.sin6_addr = hdr->src_addr.ip6,
1308 			.sin6_port = hdr->port,
1309 		};
1310 	}
1311 }
1312 
1313 static u16 cma_port_from_service_id(__be64 service_id)
1314 {
1315 	return (u16)be64_to_cpu(service_id);
1316 }
1317 
1318 static int cma_save_ip_info(struct sockaddr *src_addr,
1319 			    struct sockaddr *dst_addr,
1320 			    const struct ib_cm_event *ib_event,
1321 			    __be64 service_id)
1322 {
1323 	struct cma_hdr *hdr;
1324 	__be16 port;
1325 
1326 	hdr = ib_event->private_data;
1327 	if (hdr->cma_version != CMA_VERSION)
1328 		return -EINVAL;
1329 
1330 	port = htons(cma_port_from_service_id(service_id));
1331 
1332 	switch (cma_get_ip_ver(hdr)) {
1333 	case 4:
1334 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1335 				  (struct sockaddr_in *)dst_addr, hdr, port);
1336 		break;
1337 	case 6:
1338 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1339 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1340 		break;
1341 	default:
1342 		return -EAFNOSUPPORT;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 static int cma_save_net_info(struct sockaddr *src_addr,
1349 			     struct sockaddr *dst_addr,
1350 			     const struct rdma_cm_id *listen_id,
1351 			     const struct ib_cm_event *ib_event,
1352 			     sa_family_t sa_family, __be64 service_id)
1353 {
1354 	if (sa_family == AF_IB) {
1355 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1356 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1357 					 ib_event->param.req_rcvd.primary_path);
1358 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1359 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1360 		return 0;
1361 	}
1362 
1363 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1364 }
1365 
1366 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1367 			     struct cma_req_info *req)
1368 {
1369 	const struct ib_cm_req_event_param *req_param =
1370 		&ib_event->param.req_rcvd;
1371 	const struct ib_cm_sidr_req_event_param *sidr_param =
1372 		&ib_event->param.sidr_req_rcvd;
1373 
1374 	switch (ib_event->event) {
1375 	case IB_CM_REQ_RECEIVED:
1376 		req->device	= req_param->listen_id->device;
1377 		req->port	= req_param->port;
1378 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1379 		       sizeof(req->local_gid));
1380 		req->has_gid	= true;
1381 		req->service_id = req_param->primary_path->service_id;
1382 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1383 		if (req->pkey != req_param->bth_pkey)
1384 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1385 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1386 					    req_param->bth_pkey, req->pkey);
1387 		break;
1388 	case IB_CM_SIDR_REQ_RECEIVED:
1389 		req->device	= sidr_param->listen_id->device;
1390 		req->port	= sidr_param->port;
1391 		req->has_gid	= false;
1392 		req->service_id	= sidr_param->service_id;
1393 		req->pkey	= sidr_param->pkey;
1394 		if (req->pkey != sidr_param->bth_pkey)
1395 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1396 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1397 					    sidr_param->bth_pkey, req->pkey);
1398 		break;
1399 	default:
1400 		return -EINVAL;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1407 				  const struct sockaddr_in *dst_addr,
1408 				  const struct sockaddr_in *src_addr)
1409 {
1410 	__be32 daddr = dst_addr->sin_addr.s_addr,
1411 	       saddr = src_addr->sin_addr.s_addr;
1412 	struct fib_result res;
1413 	struct flowi4 fl4;
1414 	int err;
1415 	bool ret;
1416 
1417 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1418 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1419 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1420 	    ipv4_is_loopback(saddr))
1421 		return false;
1422 
1423 	memset(&fl4, 0, sizeof(fl4));
1424 	fl4.flowi4_iif = net_dev->ifindex;
1425 	fl4.daddr = daddr;
1426 	fl4.saddr = saddr;
1427 
1428 	rcu_read_lock();
1429 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1430 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1431 	rcu_read_unlock();
1432 
1433 	return ret;
1434 }
1435 
1436 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1437 				  const struct sockaddr_in6 *dst_addr,
1438 				  const struct sockaddr_in6 *src_addr)
1439 {
1440 #if IS_ENABLED(CONFIG_IPV6)
1441 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1442 			   IPV6_ADDR_LINKLOCAL;
1443 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1444 					 &src_addr->sin6_addr, net_dev->ifindex,
1445 					 NULL, strict);
1446 	bool ret;
1447 
1448 	if (!rt)
1449 		return false;
1450 
1451 	ret = rt->rt6i_idev->dev == net_dev;
1452 	ip6_rt_put(rt);
1453 
1454 	return ret;
1455 #else
1456 	return false;
1457 #endif
1458 }
1459 
1460 static bool validate_net_dev(struct net_device *net_dev,
1461 			     const struct sockaddr *daddr,
1462 			     const struct sockaddr *saddr)
1463 {
1464 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1465 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1466 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1467 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1468 
1469 	switch (daddr->sa_family) {
1470 	case AF_INET:
1471 		return saddr->sa_family == AF_INET &&
1472 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1473 
1474 	case AF_INET6:
1475 		return saddr->sa_family == AF_INET6 &&
1476 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1477 
1478 	default:
1479 		return false;
1480 	}
1481 }
1482 
1483 static struct net_device *
1484 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1485 {
1486 	const struct ib_gid_attr *sgid_attr = NULL;
1487 	struct net_device *ndev;
1488 
1489 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1490 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1491 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1492 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1493 
1494 	if (!sgid_attr)
1495 		return NULL;
1496 
1497 	rcu_read_lock();
1498 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1499 	if (IS_ERR(ndev))
1500 		ndev = NULL;
1501 	else
1502 		dev_hold(ndev);
1503 	rcu_read_unlock();
1504 	return ndev;
1505 }
1506 
1507 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1508 					  struct cma_req_info *req)
1509 {
1510 	struct sockaddr *listen_addr =
1511 			(struct sockaddr *)&req->listen_addr_storage;
1512 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1513 	struct net_device *net_dev;
1514 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1515 	int err;
1516 
1517 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1518 			       req->service_id);
1519 	if (err)
1520 		return ERR_PTR(err);
1521 
1522 	if (rdma_protocol_roce(req->device, req->port))
1523 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1524 	else
1525 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1526 						   req->pkey,
1527 						   gid, listen_addr);
1528 	if (!net_dev)
1529 		return ERR_PTR(-ENODEV);
1530 
1531 	return net_dev;
1532 }
1533 
1534 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1535 {
1536 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1537 }
1538 
1539 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1540 				   const struct cma_hdr *hdr)
1541 {
1542 	struct sockaddr *addr = cma_src_addr(id_priv);
1543 	__be32 ip4_addr;
1544 	struct in6_addr ip6_addr;
1545 
1546 	if (cma_any_addr(addr) && !id_priv->afonly)
1547 		return true;
1548 
1549 	switch (addr->sa_family) {
1550 	case AF_INET:
1551 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1552 		if (cma_get_ip_ver(hdr) != 4)
1553 			return false;
1554 		if (!cma_any_addr(addr) &&
1555 		    hdr->dst_addr.ip4.addr != ip4_addr)
1556 			return false;
1557 		break;
1558 	case AF_INET6:
1559 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1560 		if (cma_get_ip_ver(hdr) != 6)
1561 			return false;
1562 		if (!cma_any_addr(addr) &&
1563 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1564 			return false;
1565 		break;
1566 	case AF_IB:
1567 		return true;
1568 	default:
1569 		return false;
1570 	}
1571 
1572 	return true;
1573 }
1574 
1575 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1576 {
1577 	struct ib_device *device = id->device;
1578 	const int port_num = id->port_num ?: rdma_start_port(device);
1579 
1580 	return rdma_protocol_roce(device, port_num);
1581 }
1582 
1583 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1584 {
1585 	const struct sockaddr *daddr =
1586 			(const struct sockaddr *)&req->listen_addr_storage;
1587 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1588 
1589 	/* Returns true if the req is for IPv6 link local */
1590 	return (daddr->sa_family == AF_INET6 &&
1591 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1592 }
1593 
1594 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1595 			      const struct net_device *net_dev,
1596 			      const struct cma_req_info *req)
1597 {
1598 	const struct rdma_addr *addr = &id->route.addr;
1599 
1600 	if (!net_dev)
1601 		/* This request is an AF_IB request */
1602 		return (!id->port_num || id->port_num == req->port) &&
1603 		       (addr->src_addr.ss_family == AF_IB);
1604 
1605 	/*
1606 	 * If the request is not for IPv6 link local, allow matching
1607 	 * request to any netdevice of the one or multiport rdma device.
1608 	 */
1609 	if (!cma_is_req_ipv6_ll(req))
1610 		return true;
1611 	/*
1612 	 * Net namespaces must match, and if the listner is listening
1613 	 * on a specific netdevice than netdevice must match as well.
1614 	 */
1615 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1616 	    (!!addr->dev_addr.bound_dev_if ==
1617 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1618 		return true;
1619 	else
1620 		return false;
1621 }
1622 
1623 static struct rdma_id_private *cma_find_listener(
1624 		const struct rdma_bind_list *bind_list,
1625 		const struct ib_cm_id *cm_id,
1626 		const struct ib_cm_event *ib_event,
1627 		const struct cma_req_info *req,
1628 		const struct net_device *net_dev)
1629 {
1630 	struct rdma_id_private *id_priv, *id_priv_dev;
1631 
1632 	lockdep_assert_held(&lock);
1633 
1634 	if (!bind_list)
1635 		return ERR_PTR(-EINVAL);
1636 
1637 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1638 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1639 			if (id_priv->id.device == cm_id->device &&
1640 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1641 				return id_priv;
1642 			list_for_each_entry(id_priv_dev,
1643 					    &id_priv->listen_list,
1644 					    listen_list) {
1645 				if (id_priv_dev->id.device == cm_id->device &&
1646 				    cma_match_net_dev(&id_priv_dev->id,
1647 						      net_dev, req))
1648 					return id_priv_dev;
1649 			}
1650 		}
1651 	}
1652 
1653 	return ERR_PTR(-EINVAL);
1654 }
1655 
1656 static struct rdma_id_private *
1657 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1658 		     const struct ib_cm_event *ib_event,
1659 		     struct cma_req_info *req,
1660 		     struct net_device **net_dev)
1661 {
1662 	struct rdma_bind_list *bind_list;
1663 	struct rdma_id_private *id_priv;
1664 	int err;
1665 
1666 	err = cma_save_req_info(ib_event, req);
1667 	if (err)
1668 		return ERR_PTR(err);
1669 
1670 	*net_dev = cma_get_net_dev(ib_event, req);
1671 	if (IS_ERR(*net_dev)) {
1672 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1673 			/* Assuming the protocol is AF_IB */
1674 			*net_dev = NULL;
1675 		} else {
1676 			return ERR_CAST(*net_dev);
1677 		}
1678 	}
1679 
1680 	mutex_lock(&lock);
1681 	/*
1682 	 * Net namespace might be getting deleted while route lookup,
1683 	 * cm_id lookup is in progress. Therefore, perform netdevice
1684 	 * validation, cm_id lookup under rcu lock.
1685 	 * RCU lock along with netdevice state check, synchronizes with
1686 	 * netdevice migrating to different net namespace and also avoids
1687 	 * case where net namespace doesn't get deleted while lookup is in
1688 	 * progress.
1689 	 * If the device state is not IFF_UP, its properties such as ifindex
1690 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1691 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1692 	 * ongoing operations on net device after device is closed using
1693 	 * synchronize_net().
1694 	 */
1695 	rcu_read_lock();
1696 	if (*net_dev) {
1697 		/*
1698 		 * If netdevice is down, it is likely that it is administratively
1699 		 * down or it might be migrating to different namespace.
1700 		 * In that case avoid further processing, as the net namespace
1701 		 * or ifindex may change.
1702 		 */
1703 		if (((*net_dev)->flags & IFF_UP) == 0) {
1704 			id_priv = ERR_PTR(-EHOSTUNREACH);
1705 			goto err;
1706 		}
1707 
1708 		if (!validate_net_dev(*net_dev,
1709 				 (struct sockaddr *)&req->listen_addr_storage,
1710 				 (struct sockaddr *)&req->src_addr_storage)) {
1711 			id_priv = ERR_PTR(-EHOSTUNREACH);
1712 			goto err;
1713 		}
1714 	}
1715 
1716 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1717 				rdma_ps_from_service_id(req->service_id),
1718 				cma_port_from_service_id(req->service_id));
1719 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1720 err:
1721 	rcu_read_unlock();
1722 	mutex_unlock(&lock);
1723 	if (IS_ERR(id_priv) && *net_dev) {
1724 		dev_put(*net_dev);
1725 		*net_dev = NULL;
1726 	}
1727 	return id_priv;
1728 }
1729 
1730 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1731 {
1732 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1733 }
1734 
1735 static void cma_cancel_route(struct rdma_id_private *id_priv)
1736 {
1737 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1738 		if (id_priv->query)
1739 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1740 	}
1741 }
1742 
1743 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1744 {
1745 	struct rdma_id_private *dev_id_priv;
1746 
1747 	/*
1748 	 * Remove from listen_any_list to prevent added devices from spawning
1749 	 * additional listen requests.
1750 	 */
1751 	mutex_lock(&lock);
1752 	list_del(&id_priv->list);
1753 
1754 	while (!list_empty(&id_priv->listen_list)) {
1755 		dev_id_priv = list_entry(id_priv->listen_list.next,
1756 					 struct rdma_id_private, listen_list);
1757 		/* sync with device removal to avoid duplicate destruction */
1758 		list_del_init(&dev_id_priv->list);
1759 		list_del(&dev_id_priv->listen_list);
1760 		mutex_unlock(&lock);
1761 
1762 		rdma_destroy_id(&dev_id_priv->id);
1763 		mutex_lock(&lock);
1764 	}
1765 	mutex_unlock(&lock);
1766 }
1767 
1768 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1769 				 enum rdma_cm_state state)
1770 {
1771 	switch (state) {
1772 	case RDMA_CM_ADDR_QUERY:
1773 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1774 		break;
1775 	case RDMA_CM_ROUTE_QUERY:
1776 		cma_cancel_route(id_priv);
1777 		break;
1778 	case RDMA_CM_LISTEN:
1779 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1780 			cma_cancel_listens(id_priv);
1781 		break;
1782 	default:
1783 		break;
1784 	}
1785 }
1786 
1787 static void cma_release_port(struct rdma_id_private *id_priv)
1788 {
1789 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1790 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1791 
1792 	if (!bind_list)
1793 		return;
1794 
1795 	mutex_lock(&lock);
1796 	hlist_del(&id_priv->node);
1797 	if (hlist_empty(&bind_list->owners)) {
1798 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1799 		kfree(bind_list);
1800 	}
1801 	mutex_unlock(&lock);
1802 }
1803 
1804 static void destroy_mc(struct rdma_id_private *id_priv,
1805 		       struct cma_multicast *mc)
1806 {
1807 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1808 		ib_sa_free_multicast(mc->sa_mc);
1809 
1810 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1811 		struct rdma_dev_addr *dev_addr =
1812 			&id_priv->id.route.addr.dev_addr;
1813 		struct net_device *ndev = NULL;
1814 
1815 		if (dev_addr->bound_dev_if)
1816 			ndev = dev_get_by_index(dev_addr->net,
1817 						dev_addr->bound_dev_if);
1818 		if (ndev) {
1819 			union ib_gid mgid;
1820 
1821 			cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr,
1822 				     &mgid);
1823 			cma_igmp_send(ndev, &mgid, false);
1824 			dev_put(ndev);
1825 		}
1826 	}
1827 	kfree(mc);
1828 }
1829 
1830 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1831 {
1832 	struct cma_multicast *mc;
1833 
1834 	while (!list_empty(&id_priv->mc_list)) {
1835 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
1836 				      list);
1837 		list_del(&mc->list);
1838 		destroy_mc(id_priv, mc);
1839 	}
1840 }
1841 
1842 static void _destroy_id(struct rdma_id_private *id_priv,
1843 			enum rdma_cm_state state)
1844 {
1845 	cma_cancel_operation(id_priv, state);
1846 
1847 	if (id_priv->cma_dev) {
1848 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
1849 			if (id_priv->cm_id.ib)
1850 				ib_destroy_cm_id(id_priv->cm_id.ib);
1851 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
1852 			if (id_priv->cm_id.iw)
1853 				iw_destroy_cm_id(id_priv->cm_id.iw);
1854 		}
1855 		cma_leave_mc_groups(id_priv);
1856 		cma_release_dev(id_priv);
1857 	}
1858 
1859 	cma_release_port(id_priv);
1860 	cma_id_put(id_priv);
1861 	wait_for_completion(&id_priv->comp);
1862 
1863 	if (id_priv->internal_id)
1864 		cma_id_put(id_priv->id.context);
1865 
1866 	kfree(id_priv->id.route.path_rec);
1867 
1868 	put_net(id_priv->id.route.addr.dev_addr.net);
1869 	rdma_restrack_del(&id_priv->res);
1870 	kfree(id_priv);
1871 }
1872 
1873 /*
1874  * destroy an ID from within the handler_mutex. This ensures that no other
1875  * handlers can start running concurrently.
1876  */
1877 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
1878 	__releases(&idprv->handler_mutex)
1879 {
1880 	enum rdma_cm_state state;
1881 	unsigned long flags;
1882 
1883 	trace_cm_id_destroy(id_priv);
1884 
1885 	/*
1886 	 * Setting the state to destroyed under the handler mutex provides a
1887 	 * fence against calling handler callbacks. If this is invoked due to
1888 	 * the failure of a handler callback then it guarentees that no future
1889 	 * handlers will be called.
1890 	 */
1891 	lockdep_assert_held(&id_priv->handler_mutex);
1892 	spin_lock_irqsave(&id_priv->lock, flags);
1893 	state = id_priv->state;
1894 	id_priv->state = RDMA_CM_DESTROYING;
1895 	spin_unlock_irqrestore(&id_priv->lock, flags);
1896 	mutex_unlock(&id_priv->handler_mutex);
1897 	_destroy_id(id_priv, state);
1898 }
1899 
1900 void rdma_destroy_id(struct rdma_cm_id *id)
1901 {
1902 	struct rdma_id_private *id_priv =
1903 		container_of(id, struct rdma_id_private, id);
1904 
1905 	mutex_lock(&id_priv->handler_mutex);
1906 	destroy_id_handler_unlock(id_priv);
1907 }
1908 EXPORT_SYMBOL(rdma_destroy_id);
1909 
1910 static int cma_rep_recv(struct rdma_id_private *id_priv)
1911 {
1912 	int ret;
1913 
1914 	ret = cma_modify_qp_rtr(id_priv, NULL);
1915 	if (ret)
1916 		goto reject;
1917 
1918 	ret = cma_modify_qp_rts(id_priv, NULL);
1919 	if (ret)
1920 		goto reject;
1921 
1922 	trace_cm_send_rtu(id_priv);
1923 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
1924 	if (ret)
1925 		goto reject;
1926 
1927 	return 0;
1928 reject:
1929 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
1930 	cma_modify_qp_err(id_priv);
1931 	trace_cm_send_rej(id_priv);
1932 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
1933 		       NULL, 0, NULL, 0);
1934 	return ret;
1935 }
1936 
1937 static void cma_set_rep_event_data(struct rdma_cm_event *event,
1938 				   const struct ib_cm_rep_event_param *rep_data,
1939 				   void *private_data)
1940 {
1941 	event->param.conn.private_data = private_data;
1942 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
1943 	event->param.conn.responder_resources = rep_data->responder_resources;
1944 	event->param.conn.initiator_depth = rep_data->initiator_depth;
1945 	event->param.conn.flow_control = rep_data->flow_control;
1946 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
1947 	event->param.conn.srq = rep_data->srq;
1948 	event->param.conn.qp_num = rep_data->remote_qpn;
1949 
1950 	event->ece.vendor_id = rep_data->ece.vendor_id;
1951 	event->ece.attr_mod = rep_data->ece.attr_mod;
1952 }
1953 
1954 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
1955 				struct rdma_cm_event *event)
1956 {
1957 	int ret;
1958 
1959 	lockdep_assert_held(&id_priv->handler_mutex);
1960 
1961 	trace_cm_event_handler(id_priv, event);
1962 	ret = id_priv->id.event_handler(&id_priv->id, event);
1963 	trace_cm_event_done(id_priv, event, ret);
1964 	return ret;
1965 }
1966 
1967 static int cma_ib_handler(struct ib_cm_id *cm_id,
1968 			  const struct ib_cm_event *ib_event)
1969 {
1970 	struct rdma_id_private *id_priv = cm_id->context;
1971 	struct rdma_cm_event event = {};
1972 	enum rdma_cm_state state;
1973 	int ret;
1974 
1975 	mutex_lock(&id_priv->handler_mutex);
1976 	state = READ_ONCE(id_priv->state);
1977 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
1978 	     state != RDMA_CM_CONNECT) ||
1979 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
1980 	     state != RDMA_CM_DISCONNECT))
1981 		goto out;
1982 
1983 	switch (ib_event->event) {
1984 	case IB_CM_REQ_ERROR:
1985 	case IB_CM_REP_ERROR:
1986 		event.event = RDMA_CM_EVENT_UNREACHABLE;
1987 		event.status = -ETIMEDOUT;
1988 		break;
1989 	case IB_CM_REP_RECEIVED:
1990 		if (state == RDMA_CM_CONNECT &&
1991 		    (id_priv->id.qp_type != IB_QPT_UD)) {
1992 			trace_cm_send_mra(id_priv);
1993 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
1994 		}
1995 		if (id_priv->id.qp) {
1996 			event.status = cma_rep_recv(id_priv);
1997 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
1998 						     RDMA_CM_EVENT_ESTABLISHED;
1999 		} else {
2000 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2001 		}
2002 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2003 				       ib_event->private_data);
2004 		break;
2005 	case IB_CM_RTU_RECEIVED:
2006 	case IB_CM_USER_ESTABLISHED:
2007 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2008 		break;
2009 	case IB_CM_DREQ_ERROR:
2010 		event.status = -ETIMEDOUT;
2011 		fallthrough;
2012 	case IB_CM_DREQ_RECEIVED:
2013 	case IB_CM_DREP_RECEIVED:
2014 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2015 				   RDMA_CM_DISCONNECT))
2016 			goto out;
2017 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2018 		break;
2019 	case IB_CM_TIMEWAIT_EXIT:
2020 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2021 		break;
2022 	case IB_CM_MRA_RECEIVED:
2023 		/* ignore event */
2024 		goto out;
2025 	case IB_CM_REJ_RECEIVED:
2026 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2027 										ib_event->param.rej_rcvd.reason));
2028 		cma_modify_qp_err(id_priv);
2029 		event.status = ib_event->param.rej_rcvd.reason;
2030 		event.event = RDMA_CM_EVENT_REJECTED;
2031 		event.param.conn.private_data = ib_event->private_data;
2032 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2033 		break;
2034 	default:
2035 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2036 		       ib_event->event);
2037 		goto out;
2038 	}
2039 
2040 	ret = cma_cm_event_handler(id_priv, &event);
2041 	if (ret) {
2042 		/* Destroy the CM ID by returning a non-zero value. */
2043 		id_priv->cm_id.ib = NULL;
2044 		destroy_id_handler_unlock(id_priv);
2045 		return ret;
2046 	}
2047 out:
2048 	mutex_unlock(&id_priv->handler_mutex);
2049 	return 0;
2050 }
2051 
2052 static struct rdma_id_private *
2053 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2054 		   const struct ib_cm_event *ib_event,
2055 		   struct net_device *net_dev)
2056 {
2057 	struct rdma_id_private *listen_id_priv;
2058 	struct rdma_id_private *id_priv;
2059 	struct rdma_cm_id *id;
2060 	struct rdma_route *rt;
2061 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2062 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2063 	const __be64 service_id =
2064 		ib_event->param.req_rcvd.primary_path->service_id;
2065 	int ret;
2066 
2067 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2068 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2069 				   listen_id->event_handler, listen_id->context,
2070 				   listen_id->ps,
2071 				   ib_event->param.req_rcvd.qp_type,
2072 				   listen_id_priv);
2073 	if (IS_ERR(id_priv))
2074 		return NULL;
2075 
2076 	id = &id_priv->id;
2077 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2078 			      (struct sockaddr *)&id->route.addr.dst_addr,
2079 			      listen_id, ib_event, ss_family, service_id))
2080 		goto err;
2081 
2082 	rt = &id->route;
2083 	rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2084 	rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
2085 				     GFP_KERNEL);
2086 	if (!rt->path_rec)
2087 		goto err;
2088 
2089 	rt->path_rec[0] = *path;
2090 	if (rt->num_paths == 2)
2091 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2092 
2093 	if (net_dev) {
2094 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2095 	} else {
2096 		if (!cma_protocol_roce(listen_id) &&
2097 		    cma_any_addr(cma_src_addr(id_priv))) {
2098 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2099 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2100 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2101 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2102 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2103 			if (ret)
2104 				goto err;
2105 		}
2106 	}
2107 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2108 
2109 	id_priv->state = RDMA_CM_CONNECT;
2110 	return id_priv;
2111 
2112 err:
2113 	rdma_destroy_id(id);
2114 	return NULL;
2115 }
2116 
2117 static struct rdma_id_private *
2118 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2119 		  const struct ib_cm_event *ib_event,
2120 		  struct net_device *net_dev)
2121 {
2122 	const struct rdma_id_private *listen_id_priv;
2123 	struct rdma_id_private *id_priv;
2124 	struct rdma_cm_id *id;
2125 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2126 	struct net *net = listen_id->route.addr.dev_addr.net;
2127 	int ret;
2128 
2129 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2130 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2131 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2132 				   listen_id_priv);
2133 	if (IS_ERR(id_priv))
2134 		return NULL;
2135 
2136 	id = &id_priv->id;
2137 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2138 			      (struct sockaddr *)&id->route.addr.dst_addr,
2139 			      listen_id, ib_event, ss_family,
2140 			      ib_event->param.sidr_req_rcvd.service_id))
2141 		goto err;
2142 
2143 	if (net_dev) {
2144 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2145 	} else {
2146 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2147 			ret = cma_translate_addr(cma_src_addr(id_priv),
2148 						 &id->route.addr.dev_addr);
2149 			if (ret)
2150 				goto err;
2151 		}
2152 	}
2153 
2154 	id_priv->state = RDMA_CM_CONNECT;
2155 	return id_priv;
2156 err:
2157 	rdma_destroy_id(id);
2158 	return NULL;
2159 }
2160 
2161 static void cma_set_req_event_data(struct rdma_cm_event *event,
2162 				   const struct ib_cm_req_event_param *req_data,
2163 				   void *private_data, int offset)
2164 {
2165 	event->param.conn.private_data = private_data + offset;
2166 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2167 	event->param.conn.responder_resources = req_data->responder_resources;
2168 	event->param.conn.initiator_depth = req_data->initiator_depth;
2169 	event->param.conn.flow_control = req_data->flow_control;
2170 	event->param.conn.retry_count = req_data->retry_count;
2171 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2172 	event->param.conn.srq = req_data->srq;
2173 	event->param.conn.qp_num = req_data->remote_qpn;
2174 
2175 	event->ece.vendor_id = req_data->ece.vendor_id;
2176 	event->ece.attr_mod = req_data->ece.attr_mod;
2177 }
2178 
2179 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2180 				    const struct ib_cm_event *ib_event)
2181 {
2182 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2183 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2184 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2185 		 (id->qp_type == IB_QPT_UD)) ||
2186 		(!id->qp_type));
2187 }
2188 
2189 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2190 			      const struct ib_cm_event *ib_event)
2191 {
2192 	struct rdma_id_private *listen_id, *conn_id = NULL;
2193 	struct rdma_cm_event event = {};
2194 	struct cma_req_info req = {};
2195 	struct net_device *net_dev;
2196 	u8 offset;
2197 	int ret;
2198 
2199 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2200 	if (IS_ERR(listen_id))
2201 		return PTR_ERR(listen_id);
2202 
2203 	trace_cm_req_handler(listen_id, ib_event->event);
2204 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2205 		ret = -EINVAL;
2206 		goto net_dev_put;
2207 	}
2208 
2209 	mutex_lock(&listen_id->handler_mutex);
2210 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2211 		ret = -ECONNABORTED;
2212 		goto err_unlock;
2213 	}
2214 
2215 	offset = cma_user_data_offset(listen_id);
2216 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2217 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2218 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2219 		event.param.ud.private_data = ib_event->private_data + offset;
2220 		event.param.ud.private_data_len =
2221 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2222 	} else {
2223 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2224 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2225 				       ib_event->private_data, offset);
2226 	}
2227 	if (!conn_id) {
2228 		ret = -ENOMEM;
2229 		goto err_unlock;
2230 	}
2231 
2232 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2233 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2234 	if (ret) {
2235 		destroy_id_handler_unlock(conn_id);
2236 		goto err_unlock;
2237 	}
2238 
2239 	conn_id->cm_id.ib = cm_id;
2240 	cm_id->context = conn_id;
2241 	cm_id->cm_handler = cma_ib_handler;
2242 
2243 	ret = cma_cm_event_handler(conn_id, &event);
2244 	if (ret) {
2245 		/* Destroy the CM ID by returning a non-zero value. */
2246 		conn_id->cm_id.ib = NULL;
2247 		mutex_unlock(&listen_id->handler_mutex);
2248 		destroy_id_handler_unlock(conn_id);
2249 		goto net_dev_put;
2250 	}
2251 
2252 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2253 	    conn_id->id.qp_type != IB_QPT_UD) {
2254 		trace_cm_send_mra(cm_id->context);
2255 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2256 	}
2257 	mutex_unlock(&conn_id->handler_mutex);
2258 
2259 err_unlock:
2260 	mutex_unlock(&listen_id->handler_mutex);
2261 
2262 net_dev_put:
2263 	if (net_dev)
2264 		dev_put(net_dev);
2265 
2266 	return ret;
2267 }
2268 
2269 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2270 {
2271 	if (addr->sa_family == AF_IB)
2272 		return ((struct sockaddr_ib *) addr)->sib_sid;
2273 
2274 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2275 }
2276 EXPORT_SYMBOL(rdma_get_service_id);
2277 
2278 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2279 		    union ib_gid *dgid)
2280 {
2281 	struct rdma_addr *addr = &cm_id->route.addr;
2282 
2283 	if (!cm_id->device) {
2284 		if (sgid)
2285 			memset(sgid, 0, sizeof(*sgid));
2286 		if (dgid)
2287 			memset(dgid, 0, sizeof(*dgid));
2288 		return;
2289 	}
2290 
2291 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2292 		if (sgid)
2293 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2294 		if (dgid)
2295 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2296 	} else {
2297 		if (sgid)
2298 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2299 		if (dgid)
2300 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2301 	}
2302 }
2303 EXPORT_SYMBOL(rdma_read_gids);
2304 
2305 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2306 {
2307 	struct rdma_id_private *id_priv = iw_id->context;
2308 	struct rdma_cm_event event = {};
2309 	int ret = 0;
2310 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2311 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2312 
2313 	mutex_lock(&id_priv->handler_mutex);
2314 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2315 		goto out;
2316 
2317 	switch (iw_event->event) {
2318 	case IW_CM_EVENT_CLOSE:
2319 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2320 		break;
2321 	case IW_CM_EVENT_CONNECT_REPLY:
2322 		memcpy(cma_src_addr(id_priv), laddr,
2323 		       rdma_addr_size(laddr));
2324 		memcpy(cma_dst_addr(id_priv), raddr,
2325 		       rdma_addr_size(raddr));
2326 		switch (iw_event->status) {
2327 		case 0:
2328 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2329 			event.param.conn.initiator_depth = iw_event->ird;
2330 			event.param.conn.responder_resources = iw_event->ord;
2331 			break;
2332 		case -ECONNRESET:
2333 		case -ECONNREFUSED:
2334 			event.event = RDMA_CM_EVENT_REJECTED;
2335 			break;
2336 		case -ETIMEDOUT:
2337 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2338 			break;
2339 		default:
2340 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2341 			break;
2342 		}
2343 		break;
2344 	case IW_CM_EVENT_ESTABLISHED:
2345 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2346 		event.param.conn.initiator_depth = iw_event->ird;
2347 		event.param.conn.responder_resources = iw_event->ord;
2348 		break;
2349 	default:
2350 		goto out;
2351 	}
2352 
2353 	event.status = iw_event->status;
2354 	event.param.conn.private_data = iw_event->private_data;
2355 	event.param.conn.private_data_len = iw_event->private_data_len;
2356 	ret = cma_cm_event_handler(id_priv, &event);
2357 	if (ret) {
2358 		/* Destroy the CM ID by returning a non-zero value. */
2359 		id_priv->cm_id.iw = NULL;
2360 		destroy_id_handler_unlock(id_priv);
2361 		return ret;
2362 	}
2363 
2364 out:
2365 	mutex_unlock(&id_priv->handler_mutex);
2366 	return ret;
2367 }
2368 
2369 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2370 			       struct iw_cm_event *iw_event)
2371 {
2372 	struct rdma_id_private *listen_id, *conn_id;
2373 	struct rdma_cm_event event = {};
2374 	int ret = -ECONNABORTED;
2375 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2376 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2377 
2378 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2379 	event.param.conn.private_data = iw_event->private_data;
2380 	event.param.conn.private_data_len = iw_event->private_data_len;
2381 	event.param.conn.initiator_depth = iw_event->ird;
2382 	event.param.conn.responder_resources = iw_event->ord;
2383 
2384 	listen_id = cm_id->context;
2385 
2386 	mutex_lock(&listen_id->handler_mutex);
2387 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2388 		goto out;
2389 
2390 	/* Create a new RDMA id for the new IW CM ID */
2391 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2392 				   listen_id->id.event_handler,
2393 				   listen_id->id.context, RDMA_PS_TCP,
2394 				   IB_QPT_RC, listen_id);
2395 	if (IS_ERR(conn_id)) {
2396 		ret = -ENOMEM;
2397 		goto out;
2398 	}
2399 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2400 	conn_id->state = RDMA_CM_CONNECT;
2401 
2402 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2403 	if (ret) {
2404 		mutex_unlock(&listen_id->handler_mutex);
2405 		destroy_id_handler_unlock(conn_id);
2406 		return ret;
2407 	}
2408 
2409 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2410 	if (ret) {
2411 		mutex_unlock(&listen_id->handler_mutex);
2412 		destroy_id_handler_unlock(conn_id);
2413 		return ret;
2414 	}
2415 
2416 	conn_id->cm_id.iw = cm_id;
2417 	cm_id->context = conn_id;
2418 	cm_id->cm_handler = cma_iw_handler;
2419 
2420 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2421 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2422 
2423 	ret = cma_cm_event_handler(conn_id, &event);
2424 	if (ret) {
2425 		/* User wants to destroy the CM ID */
2426 		conn_id->cm_id.iw = NULL;
2427 		mutex_unlock(&listen_id->handler_mutex);
2428 		destroy_id_handler_unlock(conn_id);
2429 		return ret;
2430 	}
2431 
2432 	mutex_unlock(&conn_id->handler_mutex);
2433 
2434 out:
2435 	mutex_unlock(&listen_id->handler_mutex);
2436 	return ret;
2437 }
2438 
2439 static int cma_ib_listen(struct rdma_id_private *id_priv)
2440 {
2441 	struct sockaddr *addr;
2442 	struct ib_cm_id	*id;
2443 	__be64 svc_id;
2444 
2445 	addr = cma_src_addr(id_priv);
2446 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2447 	id = ib_cm_insert_listen(id_priv->id.device,
2448 				 cma_ib_req_handler, svc_id);
2449 	if (IS_ERR(id))
2450 		return PTR_ERR(id);
2451 	id_priv->cm_id.ib = id;
2452 
2453 	return 0;
2454 }
2455 
2456 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2457 {
2458 	int ret;
2459 	struct iw_cm_id	*id;
2460 
2461 	id = iw_create_cm_id(id_priv->id.device,
2462 			     iw_conn_req_handler,
2463 			     id_priv);
2464 	if (IS_ERR(id))
2465 		return PTR_ERR(id);
2466 
2467 	id->tos = id_priv->tos;
2468 	id->tos_set = id_priv->tos_set;
2469 	id_priv->cm_id.iw = id;
2470 
2471 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2472 	       rdma_addr_size(cma_src_addr(id_priv)));
2473 
2474 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2475 
2476 	if (ret) {
2477 		iw_destroy_cm_id(id_priv->cm_id.iw);
2478 		id_priv->cm_id.iw = NULL;
2479 	}
2480 
2481 	return ret;
2482 }
2483 
2484 static int cma_listen_handler(struct rdma_cm_id *id,
2485 			      struct rdma_cm_event *event)
2486 {
2487 	struct rdma_id_private *id_priv = id->context;
2488 
2489 	/* Listening IDs are always destroyed on removal */
2490 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2491 		return -1;
2492 
2493 	id->context = id_priv->id.context;
2494 	id->event_handler = id_priv->id.event_handler;
2495 	trace_cm_event_handler(id_priv, event);
2496 	return id_priv->id.event_handler(id, event);
2497 }
2498 
2499 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2500 			     struct cma_device *cma_dev,
2501 			     struct rdma_id_private **to_destroy)
2502 {
2503 	struct rdma_id_private *dev_id_priv;
2504 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2505 	int ret;
2506 
2507 	lockdep_assert_held(&lock);
2508 
2509 	*to_destroy = NULL;
2510 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2511 		return 0;
2512 
2513 	dev_id_priv =
2514 		__rdma_create_id(net, cma_listen_handler, id_priv,
2515 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2516 	if (IS_ERR(dev_id_priv))
2517 		return PTR_ERR(dev_id_priv);
2518 
2519 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2520 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2521 	       rdma_addr_size(cma_src_addr(id_priv)));
2522 
2523 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2524 	cma_id_get(id_priv);
2525 	dev_id_priv->internal_id = 1;
2526 	dev_id_priv->afonly = id_priv->afonly;
2527 	dev_id_priv->tos_set = id_priv->tos_set;
2528 	dev_id_priv->tos = id_priv->tos;
2529 
2530 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2531 	if (ret)
2532 		goto err_listen;
2533 	list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
2534 	return 0;
2535 err_listen:
2536 	/* Caller must destroy this after releasing lock */
2537 	*to_destroy = dev_id_priv;
2538 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2539 	return ret;
2540 }
2541 
2542 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2543 {
2544 	struct rdma_id_private *to_destroy;
2545 	struct cma_device *cma_dev;
2546 	int ret;
2547 
2548 	mutex_lock(&lock);
2549 	list_add_tail(&id_priv->list, &listen_any_list);
2550 	list_for_each_entry(cma_dev, &dev_list, list) {
2551 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2552 		if (ret) {
2553 			/* Prevent racing with cma_process_remove() */
2554 			if (to_destroy)
2555 				list_del_init(&to_destroy->list);
2556 			goto err_listen;
2557 		}
2558 	}
2559 	mutex_unlock(&lock);
2560 	return 0;
2561 
2562 err_listen:
2563 	list_del(&id_priv->list);
2564 	mutex_unlock(&lock);
2565 	if (to_destroy)
2566 		rdma_destroy_id(&to_destroy->id);
2567 	return ret;
2568 }
2569 
2570 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2571 {
2572 	struct rdma_id_private *id_priv;
2573 
2574 	id_priv = container_of(id, struct rdma_id_private, id);
2575 	id_priv->tos = (u8) tos;
2576 	id_priv->tos_set = true;
2577 }
2578 EXPORT_SYMBOL(rdma_set_service_type);
2579 
2580 /**
2581  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2582  *                          with a connection identifier.
2583  * @id: Communication identifier to associated with service type.
2584  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2585  *
2586  * This function should be called before rdma_connect() on active side,
2587  * and on passive side before rdma_accept(). It is applicable to primary
2588  * path only. The timeout will affect the local side of the QP, it is not
2589  * negotiated with remote side and zero disables the timer. In case it is
2590  * set before rdma_resolve_route, the value will also be used to determine
2591  * PacketLifeTime for RoCE.
2592  *
2593  * Return: 0 for success
2594  */
2595 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2596 {
2597 	struct rdma_id_private *id_priv;
2598 
2599 	if (id->qp_type != IB_QPT_RC)
2600 		return -EINVAL;
2601 
2602 	id_priv = container_of(id, struct rdma_id_private, id);
2603 	id_priv->timeout = timeout;
2604 	id_priv->timeout_set = true;
2605 
2606 	return 0;
2607 }
2608 EXPORT_SYMBOL(rdma_set_ack_timeout);
2609 
2610 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2611 			      void *context)
2612 {
2613 	struct cma_work *work = context;
2614 	struct rdma_route *route;
2615 
2616 	route = &work->id->id.route;
2617 
2618 	if (!status) {
2619 		route->num_paths = 1;
2620 		*route->path_rec = *path_rec;
2621 	} else {
2622 		work->old_state = RDMA_CM_ROUTE_QUERY;
2623 		work->new_state = RDMA_CM_ADDR_RESOLVED;
2624 		work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2625 		work->event.status = status;
2626 		pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2627 				     status);
2628 	}
2629 
2630 	queue_work(cma_wq, &work->work);
2631 }
2632 
2633 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2634 			      unsigned long timeout_ms, struct cma_work *work)
2635 {
2636 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2637 	struct sa_path_rec path_rec;
2638 	ib_sa_comp_mask comp_mask;
2639 	struct sockaddr_in6 *sin6;
2640 	struct sockaddr_ib *sib;
2641 
2642 	memset(&path_rec, 0, sizeof path_rec);
2643 
2644 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2645 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2646 	else
2647 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2648 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2649 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2650 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2651 	path_rec.numb_path = 1;
2652 	path_rec.reversible = 1;
2653 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2654 						  cma_dst_addr(id_priv));
2655 
2656 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2657 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2658 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2659 
2660 	switch (cma_family(id_priv)) {
2661 	case AF_INET:
2662 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2663 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2664 		break;
2665 	case AF_INET6:
2666 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2667 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2668 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2669 		break;
2670 	case AF_IB:
2671 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2672 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2673 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2674 		break;
2675 	}
2676 
2677 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2678 					       id_priv->id.port_num, &path_rec,
2679 					       comp_mask, timeout_ms,
2680 					       GFP_KERNEL, cma_query_handler,
2681 					       work, &id_priv->query);
2682 
2683 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2684 }
2685 
2686 static void cma_work_handler(struct work_struct *_work)
2687 {
2688 	struct cma_work *work = container_of(_work, struct cma_work, work);
2689 	struct rdma_id_private *id_priv = work->id;
2690 
2691 	mutex_lock(&id_priv->handler_mutex);
2692 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2693 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2694 		goto out_unlock;
2695 	if (work->old_state != 0 || work->new_state != 0) {
2696 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2697 			goto out_unlock;
2698 	}
2699 
2700 	if (cma_cm_event_handler(id_priv, &work->event)) {
2701 		cma_id_put(id_priv);
2702 		destroy_id_handler_unlock(id_priv);
2703 		goto out_free;
2704 	}
2705 
2706 out_unlock:
2707 	mutex_unlock(&id_priv->handler_mutex);
2708 	cma_id_put(id_priv);
2709 out_free:
2710 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2711 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
2712 	kfree(work);
2713 }
2714 
2715 static void cma_init_resolve_route_work(struct cma_work *work,
2716 					struct rdma_id_private *id_priv)
2717 {
2718 	work->id = id_priv;
2719 	INIT_WORK(&work->work, cma_work_handler);
2720 	work->old_state = RDMA_CM_ROUTE_QUERY;
2721 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
2722 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
2723 }
2724 
2725 static void enqueue_resolve_addr_work(struct cma_work *work,
2726 				      struct rdma_id_private *id_priv)
2727 {
2728 	/* Balances with cma_id_put() in cma_work_handler */
2729 	cma_id_get(id_priv);
2730 
2731 	work->id = id_priv;
2732 	INIT_WORK(&work->work, cma_work_handler);
2733 	work->old_state = RDMA_CM_ADDR_QUERY;
2734 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2735 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
2736 
2737 	queue_work(cma_wq, &work->work);
2738 }
2739 
2740 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
2741 				unsigned long timeout_ms)
2742 {
2743 	struct rdma_route *route = &id_priv->id.route;
2744 	struct cma_work *work;
2745 	int ret;
2746 
2747 	work = kzalloc(sizeof *work, GFP_KERNEL);
2748 	if (!work)
2749 		return -ENOMEM;
2750 
2751 	cma_init_resolve_route_work(work, id_priv);
2752 
2753 	route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
2754 	if (!route->path_rec) {
2755 		ret = -ENOMEM;
2756 		goto err1;
2757 	}
2758 
2759 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
2760 	if (ret)
2761 		goto err2;
2762 
2763 	return 0;
2764 err2:
2765 	kfree(route->path_rec);
2766 	route->path_rec = NULL;
2767 err1:
2768 	kfree(work);
2769 	return ret;
2770 }
2771 
2772 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
2773 					   unsigned long supported_gids,
2774 					   enum ib_gid_type default_gid)
2775 {
2776 	if ((network_type == RDMA_NETWORK_IPV4 ||
2777 	     network_type == RDMA_NETWORK_IPV6) &&
2778 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
2779 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
2780 
2781 	return default_gid;
2782 }
2783 
2784 /*
2785  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
2786  * path record type based on GID type.
2787  * It also sets up other L2 fields which includes destination mac address
2788  * netdev ifindex, of the path record.
2789  * It returns the netdev of the bound interface for this path record entry.
2790  */
2791 static struct net_device *
2792 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
2793 {
2794 	struct rdma_route *route = &id_priv->id.route;
2795 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
2796 	struct rdma_addr *addr = &route->addr;
2797 	unsigned long supported_gids;
2798 	struct net_device *ndev;
2799 
2800 	if (!addr->dev_addr.bound_dev_if)
2801 		return NULL;
2802 
2803 	ndev = dev_get_by_index(addr->dev_addr.net,
2804 				addr->dev_addr.bound_dev_if);
2805 	if (!ndev)
2806 		return NULL;
2807 
2808 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
2809 						    id_priv->id.port_num);
2810 	gid_type = cma_route_gid_type(addr->dev_addr.network,
2811 				      supported_gids,
2812 				      id_priv->gid_type);
2813 	/* Use the hint from IP Stack to select GID Type */
2814 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
2815 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
2816 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
2817 
2818 	route->path_rec->roce.route_resolved = true;
2819 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
2820 	return ndev;
2821 }
2822 
2823 int rdma_set_ib_path(struct rdma_cm_id *id,
2824 		     struct sa_path_rec *path_rec)
2825 {
2826 	struct rdma_id_private *id_priv;
2827 	struct net_device *ndev;
2828 	int ret;
2829 
2830 	id_priv = container_of(id, struct rdma_id_private, id);
2831 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
2832 			   RDMA_CM_ROUTE_RESOLVED))
2833 		return -EINVAL;
2834 
2835 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
2836 				     GFP_KERNEL);
2837 	if (!id->route.path_rec) {
2838 		ret = -ENOMEM;
2839 		goto err;
2840 	}
2841 
2842 	if (rdma_protocol_roce(id->device, id->port_num)) {
2843 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
2844 		if (!ndev) {
2845 			ret = -ENODEV;
2846 			goto err_free;
2847 		}
2848 		dev_put(ndev);
2849 	}
2850 
2851 	id->route.num_paths = 1;
2852 	return 0;
2853 
2854 err_free:
2855 	kfree(id->route.path_rec);
2856 	id->route.path_rec = NULL;
2857 err:
2858 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
2859 	return ret;
2860 }
2861 EXPORT_SYMBOL(rdma_set_ib_path);
2862 
2863 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
2864 {
2865 	struct cma_work *work;
2866 
2867 	work = kzalloc(sizeof *work, GFP_KERNEL);
2868 	if (!work)
2869 		return -ENOMEM;
2870 
2871 	cma_init_resolve_route_work(work, id_priv);
2872 	queue_work(cma_wq, &work->work);
2873 	return 0;
2874 }
2875 
2876 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
2877 {
2878 	struct net_device *dev;
2879 
2880 	dev = vlan_dev_real_dev(vlan_ndev);
2881 	if (dev->num_tc)
2882 		return netdev_get_prio_tc_map(dev, prio);
2883 
2884 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
2885 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2886 }
2887 
2888 struct iboe_prio_tc_map {
2889 	int input_prio;
2890 	int output_tc;
2891 	bool found;
2892 };
2893 
2894 static int get_lower_vlan_dev_tc(struct net_device *dev,
2895 				 struct netdev_nested_priv *priv)
2896 {
2897 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
2898 
2899 	if (is_vlan_dev(dev))
2900 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
2901 	else if (dev->num_tc)
2902 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
2903 	else
2904 		map->output_tc = 0;
2905 	/* We are interested only in first level VLAN device, so always
2906 	 * return 1 to stop iterating over next level devices.
2907 	 */
2908 	map->found = true;
2909 	return 1;
2910 }
2911 
2912 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
2913 {
2914 	struct iboe_prio_tc_map prio_tc_map = {};
2915 	int prio = rt_tos2priority(tos);
2916 	struct netdev_nested_priv priv;
2917 
2918 	/* If VLAN device, get it directly from the VLAN netdev */
2919 	if (is_vlan_dev(ndev))
2920 		return get_vlan_ndev_tc(ndev, prio);
2921 
2922 	prio_tc_map.input_prio = prio;
2923 	priv.data = (void *)&prio_tc_map;
2924 	rcu_read_lock();
2925 	netdev_walk_all_lower_dev_rcu(ndev,
2926 				      get_lower_vlan_dev_tc,
2927 				      &priv);
2928 	rcu_read_unlock();
2929 	/* If map is found from lower device, use it; Otherwise
2930 	 * continue with the current netdevice to get priority to tc map.
2931 	 */
2932 	if (prio_tc_map.found)
2933 		return prio_tc_map.output_tc;
2934 	else if (ndev->num_tc)
2935 		return netdev_get_prio_tc_map(ndev, prio);
2936 	else
2937 		return 0;
2938 }
2939 
2940 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
2941 {
2942 	struct sockaddr_in6 *addr6;
2943 	u16 dport, sport;
2944 	u32 hash, fl;
2945 
2946 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
2947 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
2948 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
2949 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
2950 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
2951 		hash = (u32)sport * 31 + dport;
2952 		fl = hash & IB_GRH_FLOWLABEL_MASK;
2953 	}
2954 
2955 	return cpu_to_be32(fl);
2956 }
2957 
2958 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
2959 {
2960 	struct rdma_route *route = &id_priv->id.route;
2961 	struct rdma_addr *addr = &route->addr;
2962 	struct cma_work *work;
2963 	int ret;
2964 	struct net_device *ndev;
2965 
2966 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
2967 					rdma_start_port(id_priv->cma_dev->device)];
2968 	u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
2969 
2970 
2971 	work = kzalloc(sizeof *work, GFP_KERNEL);
2972 	if (!work)
2973 		return -ENOMEM;
2974 
2975 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
2976 	if (!route->path_rec) {
2977 		ret = -ENOMEM;
2978 		goto err1;
2979 	}
2980 
2981 	route->num_paths = 1;
2982 
2983 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
2984 	if (!ndev) {
2985 		ret = -ENODEV;
2986 		goto err2;
2987 	}
2988 
2989 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
2990 		    &route->path_rec->sgid);
2991 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
2992 		    &route->path_rec->dgid);
2993 
2994 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
2995 		/* TODO: get the hoplimit from the inet/inet6 device */
2996 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
2997 	else
2998 		route->path_rec->hop_limit = 1;
2999 	route->path_rec->reversible = 1;
3000 	route->path_rec->pkey = cpu_to_be16(0xffff);
3001 	route->path_rec->mtu_selector = IB_SA_EQ;
3002 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3003 	route->path_rec->traffic_class = tos;
3004 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3005 	route->path_rec->rate_selector = IB_SA_EQ;
3006 	route->path_rec->rate = iboe_get_rate(ndev);
3007 	dev_put(ndev);
3008 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3009 	/* In case ACK timeout is set, use this value to calculate
3010 	 * PacketLifeTime.  As per IBTA 12.7.34,
3011 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3012 	 * Assuming a negligible local ACK delay, we can use
3013 	 * PacketLifeTime = local ACK timeout/2
3014 	 * as a reasonable approximation for RoCE networks.
3015 	 */
3016 	route->path_rec->packet_life_time = id_priv->timeout_set ?
3017 		id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME;
3018 
3019 	if (!route->path_rec->mtu) {
3020 		ret = -EINVAL;
3021 		goto err2;
3022 	}
3023 
3024 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3025 					 id_priv->id.port_num))
3026 		route->path_rec->flow_label =
3027 			cma_get_roce_udp_flow_label(id_priv);
3028 
3029 	cma_init_resolve_route_work(work, id_priv);
3030 	queue_work(cma_wq, &work->work);
3031 
3032 	return 0;
3033 
3034 err2:
3035 	kfree(route->path_rec);
3036 	route->path_rec = NULL;
3037 	route->num_paths = 0;
3038 err1:
3039 	kfree(work);
3040 	return ret;
3041 }
3042 
3043 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3044 {
3045 	struct rdma_id_private *id_priv;
3046 	int ret;
3047 
3048 	id_priv = container_of(id, struct rdma_id_private, id);
3049 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3050 		return -EINVAL;
3051 
3052 	cma_id_get(id_priv);
3053 	if (rdma_cap_ib_sa(id->device, id->port_num))
3054 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3055 	else if (rdma_protocol_roce(id->device, id->port_num))
3056 		ret = cma_resolve_iboe_route(id_priv);
3057 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3058 		ret = cma_resolve_iw_route(id_priv);
3059 	else
3060 		ret = -ENOSYS;
3061 
3062 	if (ret)
3063 		goto err;
3064 
3065 	return 0;
3066 err:
3067 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3068 	cma_id_put(id_priv);
3069 	return ret;
3070 }
3071 EXPORT_SYMBOL(rdma_resolve_route);
3072 
3073 static void cma_set_loopback(struct sockaddr *addr)
3074 {
3075 	switch (addr->sa_family) {
3076 	case AF_INET:
3077 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3078 		break;
3079 	case AF_INET6:
3080 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3081 			      0, 0, 0, htonl(1));
3082 		break;
3083 	default:
3084 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3085 			    0, 0, 0, htonl(1));
3086 		break;
3087 	}
3088 }
3089 
3090 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3091 {
3092 	struct cma_device *cma_dev, *cur_dev;
3093 	union ib_gid gid;
3094 	enum ib_port_state port_state;
3095 	unsigned int p;
3096 	u16 pkey;
3097 	int ret;
3098 
3099 	cma_dev = NULL;
3100 	mutex_lock(&lock);
3101 	list_for_each_entry(cur_dev, &dev_list, list) {
3102 		if (cma_family(id_priv) == AF_IB &&
3103 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3104 			continue;
3105 
3106 		if (!cma_dev)
3107 			cma_dev = cur_dev;
3108 
3109 		rdma_for_each_port (cur_dev->device, p) {
3110 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3111 			    port_state == IB_PORT_ACTIVE) {
3112 				cma_dev = cur_dev;
3113 				goto port_found;
3114 			}
3115 		}
3116 	}
3117 
3118 	if (!cma_dev) {
3119 		ret = -ENODEV;
3120 		goto out;
3121 	}
3122 
3123 	p = 1;
3124 
3125 port_found:
3126 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3127 	if (ret)
3128 		goto out;
3129 
3130 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3131 	if (ret)
3132 		goto out;
3133 
3134 	id_priv->id.route.addr.dev_addr.dev_type =
3135 		(rdma_protocol_ib(cma_dev->device, p)) ?
3136 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3137 
3138 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3139 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3140 	id_priv->id.port_num = p;
3141 	cma_attach_to_dev(id_priv, cma_dev);
3142 	cma_set_loopback(cma_src_addr(id_priv));
3143 out:
3144 	mutex_unlock(&lock);
3145 	return ret;
3146 }
3147 
3148 static void addr_handler(int status, struct sockaddr *src_addr,
3149 			 struct rdma_dev_addr *dev_addr, void *context)
3150 {
3151 	struct rdma_id_private *id_priv = context;
3152 	struct rdma_cm_event event = {};
3153 	struct sockaddr *addr;
3154 	struct sockaddr_storage old_addr;
3155 
3156 	mutex_lock(&id_priv->handler_mutex);
3157 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3158 			   RDMA_CM_ADDR_RESOLVED))
3159 		goto out;
3160 
3161 	/*
3162 	 * Store the previous src address, so that if we fail to acquire
3163 	 * matching rdma device, old address can be restored back, which helps
3164 	 * to cancel the cma listen operation correctly.
3165 	 */
3166 	addr = cma_src_addr(id_priv);
3167 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3168 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3169 	if (!status && !id_priv->cma_dev) {
3170 		status = cma_acquire_dev_by_src_ip(id_priv);
3171 		if (status)
3172 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3173 					     status);
3174 	} else if (status) {
3175 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3176 	}
3177 
3178 	if (status) {
3179 		memcpy(addr, &old_addr,
3180 		       rdma_addr_size((struct sockaddr *)&old_addr));
3181 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3182 				   RDMA_CM_ADDR_BOUND))
3183 			goto out;
3184 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3185 		event.status = status;
3186 	} else
3187 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3188 
3189 	if (cma_cm_event_handler(id_priv, &event)) {
3190 		destroy_id_handler_unlock(id_priv);
3191 		return;
3192 	}
3193 out:
3194 	mutex_unlock(&id_priv->handler_mutex);
3195 }
3196 
3197 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3198 {
3199 	struct cma_work *work;
3200 	union ib_gid gid;
3201 	int ret;
3202 
3203 	work = kzalloc(sizeof *work, GFP_KERNEL);
3204 	if (!work)
3205 		return -ENOMEM;
3206 
3207 	if (!id_priv->cma_dev) {
3208 		ret = cma_bind_loopback(id_priv);
3209 		if (ret)
3210 			goto err;
3211 	}
3212 
3213 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3214 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3215 
3216 	enqueue_resolve_addr_work(work, id_priv);
3217 	return 0;
3218 err:
3219 	kfree(work);
3220 	return ret;
3221 }
3222 
3223 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3224 {
3225 	struct cma_work *work;
3226 	int ret;
3227 
3228 	work = kzalloc(sizeof *work, GFP_KERNEL);
3229 	if (!work)
3230 		return -ENOMEM;
3231 
3232 	if (!id_priv->cma_dev) {
3233 		ret = cma_resolve_ib_dev(id_priv);
3234 		if (ret)
3235 			goto err;
3236 	}
3237 
3238 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3239 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3240 
3241 	enqueue_resolve_addr_work(work, id_priv);
3242 	return 0;
3243 err:
3244 	kfree(work);
3245 	return ret;
3246 }
3247 
3248 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3249 			 const struct sockaddr *dst_addr)
3250 {
3251 	if (!src_addr || !src_addr->sa_family) {
3252 		src_addr = (struct sockaddr *) &id->route.addr.src_addr;
3253 		src_addr->sa_family = dst_addr->sa_family;
3254 		if (IS_ENABLED(CONFIG_IPV6) &&
3255 		    dst_addr->sa_family == AF_INET6) {
3256 			struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr;
3257 			struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr;
3258 			src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
3259 			if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
3260 				id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id;
3261 		} else if (dst_addr->sa_family == AF_IB) {
3262 			((struct sockaddr_ib *) src_addr)->sib_pkey =
3263 				((struct sockaddr_ib *) dst_addr)->sib_pkey;
3264 		}
3265 	}
3266 	return rdma_bind_addr(id, src_addr);
3267 }
3268 
3269 /*
3270  * If required, resolve the source address for bind and leave the id_priv in
3271  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
3272  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
3273  * ignored.
3274  */
3275 static int resolve_prepare_src(struct rdma_id_private *id_priv,
3276 			       struct sockaddr *src_addr,
3277 			       const struct sockaddr *dst_addr)
3278 {
3279 	int ret;
3280 
3281 	memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
3282 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
3283 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3284 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
3285 		if (ret)
3286 			goto err_dst;
3287 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3288 					   RDMA_CM_ADDR_QUERY))) {
3289 			ret = -EINVAL;
3290 			goto err_dst;
3291 		}
3292 	}
3293 
3294 	if (cma_family(id_priv) != dst_addr->sa_family) {
3295 		ret = -EINVAL;
3296 		goto err_state;
3297 	}
3298 	return 0;
3299 
3300 err_state:
3301 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3302 err_dst:
3303 	memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
3304 	return ret;
3305 }
3306 
3307 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3308 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
3309 {
3310 	struct rdma_id_private *id_priv =
3311 		container_of(id, struct rdma_id_private, id);
3312 	int ret;
3313 
3314 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
3315 	if (ret)
3316 		return ret;
3317 
3318 	if (cma_any_addr(dst_addr)) {
3319 		ret = cma_resolve_loopback(id_priv);
3320 	} else {
3321 		if (dst_addr->sa_family == AF_IB) {
3322 			ret = cma_resolve_ib_addr(id_priv);
3323 		} else {
3324 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
3325 					      &id->route.addr.dev_addr,
3326 					      timeout_ms, addr_handler,
3327 					      false, id_priv);
3328 		}
3329 	}
3330 	if (ret)
3331 		goto err;
3332 
3333 	return 0;
3334 err:
3335 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3336 	return ret;
3337 }
3338 EXPORT_SYMBOL(rdma_resolve_addr);
3339 
3340 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3341 {
3342 	struct rdma_id_private *id_priv;
3343 	unsigned long flags;
3344 	int ret;
3345 
3346 	id_priv = container_of(id, struct rdma_id_private, id);
3347 	spin_lock_irqsave(&id_priv->lock, flags);
3348 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3349 	    id_priv->state == RDMA_CM_IDLE) {
3350 		id_priv->reuseaddr = reuse;
3351 		ret = 0;
3352 	} else {
3353 		ret = -EINVAL;
3354 	}
3355 	spin_unlock_irqrestore(&id_priv->lock, flags);
3356 	return ret;
3357 }
3358 EXPORT_SYMBOL(rdma_set_reuseaddr);
3359 
3360 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3361 {
3362 	struct rdma_id_private *id_priv;
3363 	unsigned long flags;
3364 	int ret;
3365 
3366 	id_priv = container_of(id, struct rdma_id_private, id);
3367 	spin_lock_irqsave(&id_priv->lock, flags);
3368 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3369 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3370 		id_priv->afonly = afonly;
3371 		ret = 0;
3372 	} else {
3373 		ret = -EINVAL;
3374 	}
3375 	spin_unlock_irqrestore(&id_priv->lock, flags);
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL(rdma_set_afonly);
3379 
3380 static void cma_bind_port(struct rdma_bind_list *bind_list,
3381 			  struct rdma_id_private *id_priv)
3382 {
3383 	struct sockaddr *addr;
3384 	struct sockaddr_ib *sib;
3385 	u64 sid, mask;
3386 	__be16 port;
3387 
3388 	lockdep_assert_held(&lock);
3389 
3390 	addr = cma_src_addr(id_priv);
3391 	port = htons(bind_list->port);
3392 
3393 	switch (addr->sa_family) {
3394 	case AF_INET:
3395 		((struct sockaddr_in *) addr)->sin_port = port;
3396 		break;
3397 	case AF_INET6:
3398 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3399 		break;
3400 	case AF_IB:
3401 		sib = (struct sockaddr_ib *) addr;
3402 		sid = be64_to_cpu(sib->sib_sid);
3403 		mask = be64_to_cpu(sib->sib_sid_mask);
3404 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3405 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3406 		break;
3407 	}
3408 	id_priv->bind_list = bind_list;
3409 	hlist_add_head(&id_priv->node, &bind_list->owners);
3410 }
3411 
3412 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3413 			  struct rdma_id_private *id_priv, unsigned short snum)
3414 {
3415 	struct rdma_bind_list *bind_list;
3416 	int ret;
3417 
3418 	lockdep_assert_held(&lock);
3419 
3420 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3421 	if (!bind_list)
3422 		return -ENOMEM;
3423 
3424 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3425 			   snum);
3426 	if (ret < 0)
3427 		goto err;
3428 
3429 	bind_list->ps = ps;
3430 	bind_list->port = snum;
3431 	cma_bind_port(bind_list, id_priv);
3432 	return 0;
3433 err:
3434 	kfree(bind_list);
3435 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3436 }
3437 
3438 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3439 			      struct rdma_id_private *id_priv)
3440 {
3441 	struct rdma_id_private *cur_id;
3442 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3443 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3444 	__be16 dport = cma_port(daddr);
3445 
3446 	lockdep_assert_held(&lock);
3447 
3448 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3449 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3450 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3451 		__be16 cur_dport = cma_port(cur_daddr);
3452 
3453 		if (id_priv == cur_id)
3454 			continue;
3455 
3456 		/* different dest port -> unique */
3457 		if (!cma_any_port(daddr) &&
3458 		    !cma_any_port(cur_daddr) &&
3459 		    (dport != cur_dport))
3460 			continue;
3461 
3462 		/* different src address -> unique */
3463 		if (!cma_any_addr(saddr) &&
3464 		    !cma_any_addr(cur_saddr) &&
3465 		    cma_addr_cmp(saddr, cur_saddr))
3466 			continue;
3467 
3468 		/* different dst address -> unique */
3469 		if (!cma_any_addr(daddr) &&
3470 		    !cma_any_addr(cur_daddr) &&
3471 		    cma_addr_cmp(daddr, cur_daddr))
3472 			continue;
3473 
3474 		return -EADDRNOTAVAIL;
3475 	}
3476 	return 0;
3477 }
3478 
3479 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3480 			      struct rdma_id_private *id_priv)
3481 {
3482 	static unsigned int last_used_port;
3483 	int low, high, remaining;
3484 	unsigned int rover;
3485 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3486 
3487 	lockdep_assert_held(&lock);
3488 
3489 	inet_get_local_port_range(net, &low, &high);
3490 	remaining = (high - low) + 1;
3491 	rover = prandom_u32() % remaining + low;
3492 retry:
3493 	if (last_used_port != rover) {
3494 		struct rdma_bind_list *bind_list;
3495 		int ret;
3496 
3497 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3498 
3499 		if (!bind_list) {
3500 			ret = cma_alloc_port(ps, id_priv, rover);
3501 		} else {
3502 			ret = cma_port_is_unique(bind_list, id_priv);
3503 			if (!ret)
3504 				cma_bind_port(bind_list, id_priv);
3505 		}
3506 		/*
3507 		 * Remember previously used port number in order to avoid
3508 		 * re-using same port immediately after it is closed.
3509 		 */
3510 		if (!ret)
3511 			last_used_port = rover;
3512 		if (ret != -EADDRNOTAVAIL)
3513 			return ret;
3514 	}
3515 	if (--remaining) {
3516 		rover++;
3517 		if ((rover < low) || (rover > high))
3518 			rover = low;
3519 		goto retry;
3520 	}
3521 	return -EADDRNOTAVAIL;
3522 }
3523 
3524 /*
3525  * Check that the requested port is available.  This is called when trying to
3526  * bind to a specific port, or when trying to listen on a bound port.  In
3527  * the latter case, the provided id_priv may already be on the bind_list, but
3528  * we still need to check that it's okay to start listening.
3529  */
3530 static int cma_check_port(struct rdma_bind_list *bind_list,
3531 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3532 {
3533 	struct rdma_id_private *cur_id;
3534 	struct sockaddr *addr, *cur_addr;
3535 
3536 	lockdep_assert_held(&lock);
3537 
3538 	addr = cma_src_addr(id_priv);
3539 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3540 		if (id_priv == cur_id)
3541 			continue;
3542 
3543 		if (reuseaddr && cur_id->reuseaddr)
3544 			continue;
3545 
3546 		cur_addr = cma_src_addr(cur_id);
3547 		if (id_priv->afonly && cur_id->afonly &&
3548 		    (addr->sa_family != cur_addr->sa_family))
3549 			continue;
3550 
3551 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3552 			return -EADDRNOTAVAIL;
3553 
3554 		if (!cma_addr_cmp(addr, cur_addr))
3555 			return -EADDRINUSE;
3556 	}
3557 	return 0;
3558 }
3559 
3560 static int cma_use_port(enum rdma_ucm_port_space ps,
3561 			struct rdma_id_private *id_priv)
3562 {
3563 	struct rdma_bind_list *bind_list;
3564 	unsigned short snum;
3565 	int ret;
3566 
3567 	lockdep_assert_held(&lock);
3568 
3569 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3570 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3571 		return -EACCES;
3572 
3573 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3574 	if (!bind_list) {
3575 		ret = cma_alloc_port(ps, id_priv, snum);
3576 	} else {
3577 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3578 		if (!ret)
3579 			cma_bind_port(bind_list, id_priv);
3580 	}
3581 	return ret;
3582 }
3583 
3584 static enum rdma_ucm_port_space
3585 cma_select_inet_ps(struct rdma_id_private *id_priv)
3586 {
3587 	switch (id_priv->id.ps) {
3588 	case RDMA_PS_TCP:
3589 	case RDMA_PS_UDP:
3590 	case RDMA_PS_IPOIB:
3591 	case RDMA_PS_IB:
3592 		return id_priv->id.ps;
3593 	default:
3594 
3595 		return 0;
3596 	}
3597 }
3598 
3599 static enum rdma_ucm_port_space
3600 cma_select_ib_ps(struct rdma_id_private *id_priv)
3601 {
3602 	enum rdma_ucm_port_space ps = 0;
3603 	struct sockaddr_ib *sib;
3604 	u64 sid_ps, mask, sid;
3605 
3606 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3607 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3608 	sid = be64_to_cpu(sib->sib_sid) & mask;
3609 
3610 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3611 		sid_ps = RDMA_IB_IP_PS_IB;
3612 		ps = RDMA_PS_IB;
3613 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3614 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3615 		sid_ps = RDMA_IB_IP_PS_TCP;
3616 		ps = RDMA_PS_TCP;
3617 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3618 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3619 		sid_ps = RDMA_IB_IP_PS_UDP;
3620 		ps = RDMA_PS_UDP;
3621 	}
3622 
3623 	if (ps) {
3624 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3625 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3626 						be64_to_cpu(sib->sib_sid_mask));
3627 	}
3628 	return ps;
3629 }
3630 
3631 static int cma_get_port(struct rdma_id_private *id_priv)
3632 {
3633 	enum rdma_ucm_port_space ps;
3634 	int ret;
3635 
3636 	if (cma_family(id_priv) != AF_IB)
3637 		ps = cma_select_inet_ps(id_priv);
3638 	else
3639 		ps = cma_select_ib_ps(id_priv);
3640 	if (!ps)
3641 		return -EPROTONOSUPPORT;
3642 
3643 	mutex_lock(&lock);
3644 	if (cma_any_port(cma_src_addr(id_priv)))
3645 		ret = cma_alloc_any_port(ps, id_priv);
3646 	else
3647 		ret = cma_use_port(ps, id_priv);
3648 	mutex_unlock(&lock);
3649 
3650 	return ret;
3651 }
3652 
3653 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3654 			       struct sockaddr *addr)
3655 {
3656 #if IS_ENABLED(CONFIG_IPV6)
3657 	struct sockaddr_in6 *sin6;
3658 
3659 	if (addr->sa_family != AF_INET6)
3660 		return 0;
3661 
3662 	sin6 = (struct sockaddr_in6 *) addr;
3663 
3664 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3665 		return 0;
3666 
3667 	if (!sin6->sin6_scope_id)
3668 			return -EINVAL;
3669 
3670 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3671 #endif
3672 	return 0;
3673 }
3674 
3675 int rdma_listen(struct rdma_cm_id *id, int backlog)
3676 {
3677 	struct rdma_id_private *id_priv =
3678 		container_of(id, struct rdma_id_private, id);
3679 	int ret;
3680 
3681 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3682 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3683 		id->route.addr.src_addr.ss_family = AF_INET;
3684 		ret = rdma_bind_addr(id, cma_src_addr(id_priv));
3685 		if (ret)
3686 			return ret;
3687 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3688 					   RDMA_CM_LISTEN)))
3689 			return -EINVAL;
3690 	}
3691 
3692 	/*
3693 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3694 	 * any more, and has to be unique in the bind list.
3695 	 */
3696 	if (id_priv->reuseaddr) {
3697 		mutex_lock(&lock);
3698 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3699 		if (!ret)
3700 			id_priv->reuseaddr = 0;
3701 		mutex_unlock(&lock);
3702 		if (ret)
3703 			goto err;
3704 	}
3705 
3706 	id_priv->backlog = backlog;
3707 	if (id->device) {
3708 		if (rdma_cap_ib_cm(id->device, 1)) {
3709 			ret = cma_ib_listen(id_priv);
3710 			if (ret)
3711 				goto err;
3712 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3713 			ret = cma_iw_listen(id_priv, backlog);
3714 			if (ret)
3715 				goto err;
3716 		} else {
3717 			ret = -ENOSYS;
3718 			goto err;
3719 		}
3720 	} else {
3721 		ret = cma_listen_on_all(id_priv);
3722 		if (ret)
3723 			goto err;
3724 	}
3725 
3726 	return 0;
3727 err:
3728 	id_priv->backlog = 0;
3729 	/*
3730 	 * All the failure paths that lead here will not allow the req_handler's
3731 	 * to have run.
3732 	 */
3733 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3734 	return ret;
3735 }
3736 EXPORT_SYMBOL(rdma_listen);
3737 
3738 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
3739 {
3740 	struct rdma_id_private *id_priv;
3741 	int ret;
3742 	struct sockaddr  *daddr;
3743 
3744 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3745 	    addr->sa_family != AF_IB)
3746 		return -EAFNOSUPPORT;
3747 
3748 	id_priv = container_of(id, struct rdma_id_private, id);
3749 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3750 		return -EINVAL;
3751 
3752 	ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
3753 	if (ret)
3754 		goto err1;
3755 
3756 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3757 	if (!cma_any_addr(addr)) {
3758 		ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
3759 		if (ret)
3760 			goto err1;
3761 
3762 		ret = cma_acquire_dev_by_src_ip(id_priv);
3763 		if (ret)
3764 			goto err1;
3765 	}
3766 
3767 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3768 		if (addr->sa_family == AF_INET)
3769 			id_priv->afonly = 1;
3770 #if IS_ENABLED(CONFIG_IPV6)
3771 		else if (addr->sa_family == AF_INET6) {
3772 			struct net *net = id_priv->id.route.addr.dev_addr.net;
3773 
3774 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
3775 		}
3776 #endif
3777 	}
3778 	daddr = cma_dst_addr(id_priv);
3779 	daddr->sa_family = addr->sa_family;
3780 
3781 	ret = cma_get_port(id_priv);
3782 	if (ret)
3783 		goto err2;
3784 
3785 	return 0;
3786 err2:
3787 	if (id_priv->cma_dev)
3788 		cma_release_dev(id_priv);
3789 err1:
3790 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
3791 	return ret;
3792 }
3793 EXPORT_SYMBOL(rdma_bind_addr);
3794 
3795 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
3796 {
3797 	struct cma_hdr *cma_hdr;
3798 
3799 	cma_hdr = hdr;
3800 	cma_hdr->cma_version = CMA_VERSION;
3801 	if (cma_family(id_priv) == AF_INET) {
3802 		struct sockaddr_in *src4, *dst4;
3803 
3804 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
3805 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
3806 
3807 		cma_set_ip_ver(cma_hdr, 4);
3808 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
3809 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
3810 		cma_hdr->port = src4->sin_port;
3811 	} else if (cma_family(id_priv) == AF_INET6) {
3812 		struct sockaddr_in6 *src6, *dst6;
3813 
3814 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
3815 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
3816 
3817 		cma_set_ip_ver(cma_hdr, 6);
3818 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
3819 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
3820 		cma_hdr->port = src6->sin6_port;
3821 	}
3822 	return 0;
3823 }
3824 
3825 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
3826 				const struct ib_cm_event *ib_event)
3827 {
3828 	struct rdma_id_private *id_priv = cm_id->context;
3829 	struct rdma_cm_event event = {};
3830 	const struct ib_cm_sidr_rep_event_param *rep =
3831 				&ib_event->param.sidr_rep_rcvd;
3832 	int ret;
3833 
3834 	mutex_lock(&id_priv->handler_mutex);
3835 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
3836 		goto out;
3837 
3838 	switch (ib_event->event) {
3839 	case IB_CM_SIDR_REQ_ERROR:
3840 		event.event = RDMA_CM_EVENT_UNREACHABLE;
3841 		event.status = -ETIMEDOUT;
3842 		break;
3843 	case IB_CM_SIDR_REP_RECEIVED:
3844 		event.param.ud.private_data = ib_event->private_data;
3845 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
3846 		if (rep->status != IB_SIDR_SUCCESS) {
3847 			event.event = RDMA_CM_EVENT_UNREACHABLE;
3848 			event.status = ib_event->param.sidr_rep_rcvd.status;
3849 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
3850 					     event.status);
3851 			break;
3852 		}
3853 		ret = cma_set_qkey(id_priv, rep->qkey);
3854 		if (ret) {
3855 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
3856 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
3857 			event.status = ret;
3858 			break;
3859 		}
3860 		ib_init_ah_attr_from_path(id_priv->id.device,
3861 					  id_priv->id.port_num,
3862 					  id_priv->id.route.path_rec,
3863 					  &event.param.ud.ah_attr,
3864 					  rep->sgid_attr);
3865 		event.param.ud.qp_num = rep->qpn;
3866 		event.param.ud.qkey = rep->qkey;
3867 		event.event = RDMA_CM_EVENT_ESTABLISHED;
3868 		event.status = 0;
3869 		break;
3870 	default:
3871 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
3872 		       ib_event->event);
3873 		goto out;
3874 	}
3875 
3876 	ret = cma_cm_event_handler(id_priv, &event);
3877 
3878 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
3879 	if (ret) {
3880 		/* Destroy the CM ID by returning a non-zero value. */
3881 		id_priv->cm_id.ib = NULL;
3882 		destroy_id_handler_unlock(id_priv);
3883 		return ret;
3884 	}
3885 out:
3886 	mutex_unlock(&id_priv->handler_mutex);
3887 	return 0;
3888 }
3889 
3890 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
3891 			      struct rdma_conn_param *conn_param)
3892 {
3893 	struct ib_cm_sidr_req_param req;
3894 	struct ib_cm_id	*id;
3895 	void *private_data;
3896 	u8 offset;
3897 	int ret;
3898 
3899 	memset(&req, 0, sizeof req);
3900 	offset = cma_user_data_offset(id_priv);
3901 	req.private_data_len = offset + conn_param->private_data_len;
3902 	if (req.private_data_len < conn_param->private_data_len)
3903 		return -EINVAL;
3904 
3905 	if (req.private_data_len) {
3906 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
3907 		if (!private_data)
3908 			return -ENOMEM;
3909 	} else {
3910 		private_data = NULL;
3911 	}
3912 
3913 	if (conn_param->private_data && conn_param->private_data_len)
3914 		memcpy(private_data + offset, conn_param->private_data,
3915 		       conn_param->private_data_len);
3916 
3917 	if (private_data) {
3918 		ret = cma_format_hdr(private_data, id_priv);
3919 		if (ret)
3920 			goto out;
3921 		req.private_data = private_data;
3922 	}
3923 
3924 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
3925 			     id_priv);
3926 	if (IS_ERR(id)) {
3927 		ret = PTR_ERR(id);
3928 		goto out;
3929 	}
3930 	id_priv->cm_id.ib = id;
3931 
3932 	req.path = id_priv->id.route.path_rec;
3933 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
3934 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
3935 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
3936 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
3937 
3938 	trace_cm_send_sidr_req(id_priv);
3939 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
3940 	if (ret) {
3941 		ib_destroy_cm_id(id_priv->cm_id.ib);
3942 		id_priv->cm_id.ib = NULL;
3943 	}
3944 out:
3945 	kfree(private_data);
3946 	return ret;
3947 }
3948 
3949 static int cma_connect_ib(struct rdma_id_private *id_priv,
3950 			  struct rdma_conn_param *conn_param)
3951 {
3952 	struct ib_cm_req_param req;
3953 	struct rdma_route *route;
3954 	void *private_data;
3955 	struct ib_cm_id	*id;
3956 	u8 offset;
3957 	int ret;
3958 
3959 	memset(&req, 0, sizeof req);
3960 	offset = cma_user_data_offset(id_priv);
3961 	req.private_data_len = offset + conn_param->private_data_len;
3962 	if (req.private_data_len < conn_param->private_data_len)
3963 		return -EINVAL;
3964 
3965 	if (req.private_data_len) {
3966 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
3967 		if (!private_data)
3968 			return -ENOMEM;
3969 	} else {
3970 		private_data = NULL;
3971 	}
3972 
3973 	if (conn_param->private_data && conn_param->private_data_len)
3974 		memcpy(private_data + offset, conn_param->private_data,
3975 		       conn_param->private_data_len);
3976 
3977 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
3978 	if (IS_ERR(id)) {
3979 		ret = PTR_ERR(id);
3980 		goto out;
3981 	}
3982 	id_priv->cm_id.ib = id;
3983 
3984 	route = &id_priv->id.route;
3985 	if (private_data) {
3986 		ret = cma_format_hdr(private_data, id_priv);
3987 		if (ret)
3988 			goto out;
3989 		req.private_data = private_data;
3990 	}
3991 
3992 	req.primary_path = &route->path_rec[0];
3993 	if (route->num_paths == 2)
3994 		req.alternate_path = &route->path_rec[1];
3995 
3996 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
3997 	/* Alternate path SGID attribute currently unsupported */
3998 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
3999 	req.qp_num = id_priv->qp_num;
4000 	req.qp_type = id_priv->id.qp_type;
4001 	req.starting_psn = id_priv->seq_num;
4002 	req.responder_resources = conn_param->responder_resources;
4003 	req.initiator_depth = conn_param->initiator_depth;
4004 	req.flow_control = conn_param->flow_control;
4005 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4006 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4007 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4008 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4009 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4010 	req.srq = id_priv->srq ? 1 : 0;
4011 	req.ece.vendor_id = id_priv->ece.vendor_id;
4012 	req.ece.attr_mod = id_priv->ece.attr_mod;
4013 
4014 	trace_cm_send_req(id_priv);
4015 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4016 out:
4017 	if (ret && !IS_ERR(id)) {
4018 		ib_destroy_cm_id(id);
4019 		id_priv->cm_id.ib = NULL;
4020 	}
4021 
4022 	kfree(private_data);
4023 	return ret;
4024 }
4025 
4026 static int cma_connect_iw(struct rdma_id_private *id_priv,
4027 			  struct rdma_conn_param *conn_param)
4028 {
4029 	struct iw_cm_id *cm_id;
4030 	int ret;
4031 	struct iw_cm_conn_param iw_param;
4032 
4033 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4034 	if (IS_ERR(cm_id))
4035 		return PTR_ERR(cm_id);
4036 
4037 	cm_id->tos = id_priv->tos;
4038 	cm_id->tos_set = id_priv->tos_set;
4039 	id_priv->cm_id.iw = cm_id;
4040 
4041 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4042 	       rdma_addr_size(cma_src_addr(id_priv)));
4043 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4044 	       rdma_addr_size(cma_dst_addr(id_priv)));
4045 
4046 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4047 	if (ret)
4048 		goto out;
4049 
4050 	if (conn_param) {
4051 		iw_param.ord = conn_param->initiator_depth;
4052 		iw_param.ird = conn_param->responder_resources;
4053 		iw_param.private_data = conn_param->private_data;
4054 		iw_param.private_data_len = conn_param->private_data_len;
4055 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4056 	} else {
4057 		memset(&iw_param, 0, sizeof iw_param);
4058 		iw_param.qpn = id_priv->qp_num;
4059 	}
4060 	ret = iw_cm_connect(cm_id, &iw_param);
4061 out:
4062 	if (ret) {
4063 		iw_destroy_cm_id(cm_id);
4064 		id_priv->cm_id.iw = NULL;
4065 	}
4066 	return ret;
4067 }
4068 
4069 /**
4070  * rdma_connect_locked - Initiate an active connection request.
4071  * @id: Connection identifier to connect.
4072  * @conn_param: Connection information used for connected QPs.
4073  *
4074  * Same as rdma_connect() but can only be called from the
4075  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4076  */
4077 int rdma_connect_locked(struct rdma_cm_id *id,
4078 			struct rdma_conn_param *conn_param)
4079 {
4080 	struct rdma_id_private *id_priv =
4081 		container_of(id, struct rdma_id_private, id);
4082 	int ret;
4083 
4084 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4085 		return -EINVAL;
4086 
4087 	if (!id->qp) {
4088 		id_priv->qp_num = conn_param->qp_num;
4089 		id_priv->srq = conn_param->srq;
4090 	}
4091 
4092 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4093 		if (id->qp_type == IB_QPT_UD)
4094 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4095 		else
4096 			ret = cma_connect_ib(id_priv, conn_param);
4097 	} else if (rdma_cap_iw_cm(id->device, id->port_num))
4098 		ret = cma_connect_iw(id_priv, conn_param);
4099 	else
4100 		ret = -ENOSYS;
4101 	if (ret)
4102 		goto err_state;
4103 	return 0;
4104 err_state:
4105 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4106 	return ret;
4107 }
4108 EXPORT_SYMBOL(rdma_connect_locked);
4109 
4110 /**
4111  * rdma_connect - Initiate an active connection request.
4112  * @id: Connection identifier to connect.
4113  * @conn_param: Connection information used for connected QPs.
4114  *
4115  * Users must have resolved a route for the rdma_cm_id to connect with by having
4116  * called rdma_resolve_route before calling this routine.
4117  *
4118  * This call will either connect to a remote QP or obtain remote QP information
4119  * for unconnected rdma_cm_id's.  The actual operation is based on the
4120  * rdma_cm_id's port space.
4121  */
4122 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4123 {
4124 	struct rdma_id_private *id_priv =
4125 		container_of(id, struct rdma_id_private, id);
4126 	int ret;
4127 
4128 	mutex_lock(&id_priv->handler_mutex);
4129 	ret = rdma_connect_locked(id, conn_param);
4130 	mutex_unlock(&id_priv->handler_mutex);
4131 	return ret;
4132 }
4133 EXPORT_SYMBOL(rdma_connect);
4134 
4135 /**
4136  * rdma_connect_ece - Initiate an active connection request with ECE data.
4137  * @id: Connection identifier to connect.
4138  * @conn_param: Connection information used for connected QPs.
4139  * @ece: ECE parameters
4140  *
4141  * See rdma_connect() explanation.
4142  */
4143 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4144 		     struct rdma_ucm_ece *ece)
4145 {
4146 	struct rdma_id_private *id_priv =
4147 		container_of(id, struct rdma_id_private, id);
4148 
4149 	id_priv->ece.vendor_id = ece->vendor_id;
4150 	id_priv->ece.attr_mod = ece->attr_mod;
4151 
4152 	return rdma_connect(id, conn_param);
4153 }
4154 EXPORT_SYMBOL(rdma_connect_ece);
4155 
4156 static int cma_accept_ib(struct rdma_id_private *id_priv,
4157 			 struct rdma_conn_param *conn_param)
4158 {
4159 	struct ib_cm_rep_param rep;
4160 	int ret;
4161 
4162 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4163 	if (ret)
4164 		goto out;
4165 
4166 	ret = cma_modify_qp_rts(id_priv, conn_param);
4167 	if (ret)
4168 		goto out;
4169 
4170 	memset(&rep, 0, sizeof rep);
4171 	rep.qp_num = id_priv->qp_num;
4172 	rep.starting_psn = id_priv->seq_num;
4173 	rep.private_data = conn_param->private_data;
4174 	rep.private_data_len = conn_param->private_data_len;
4175 	rep.responder_resources = conn_param->responder_resources;
4176 	rep.initiator_depth = conn_param->initiator_depth;
4177 	rep.failover_accepted = 0;
4178 	rep.flow_control = conn_param->flow_control;
4179 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4180 	rep.srq = id_priv->srq ? 1 : 0;
4181 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4182 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4183 
4184 	trace_cm_send_rep(id_priv);
4185 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4186 out:
4187 	return ret;
4188 }
4189 
4190 static int cma_accept_iw(struct rdma_id_private *id_priv,
4191 		  struct rdma_conn_param *conn_param)
4192 {
4193 	struct iw_cm_conn_param iw_param;
4194 	int ret;
4195 
4196 	if (!conn_param)
4197 		return -EINVAL;
4198 
4199 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4200 	if (ret)
4201 		return ret;
4202 
4203 	iw_param.ord = conn_param->initiator_depth;
4204 	iw_param.ird = conn_param->responder_resources;
4205 	iw_param.private_data = conn_param->private_data;
4206 	iw_param.private_data_len = conn_param->private_data_len;
4207 	if (id_priv->id.qp) {
4208 		iw_param.qpn = id_priv->qp_num;
4209 	} else
4210 		iw_param.qpn = conn_param->qp_num;
4211 
4212 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4213 }
4214 
4215 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4216 			     enum ib_cm_sidr_status status, u32 qkey,
4217 			     const void *private_data, int private_data_len)
4218 {
4219 	struct ib_cm_sidr_rep_param rep;
4220 	int ret;
4221 
4222 	memset(&rep, 0, sizeof rep);
4223 	rep.status = status;
4224 	if (status == IB_SIDR_SUCCESS) {
4225 		ret = cma_set_qkey(id_priv, qkey);
4226 		if (ret)
4227 			return ret;
4228 		rep.qp_num = id_priv->qp_num;
4229 		rep.qkey = id_priv->qkey;
4230 
4231 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4232 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4233 	}
4234 
4235 	rep.private_data = private_data;
4236 	rep.private_data_len = private_data_len;
4237 
4238 	trace_cm_send_sidr_rep(id_priv);
4239 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4240 }
4241 
4242 /**
4243  * rdma_accept - Called to accept a connection request or response.
4244  * @id: Connection identifier associated with the request.
4245  * @conn_param: Information needed to establish the connection.  This must be
4246  *   provided if accepting a connection request.  If accepting a connection
4247  *   response, this parameter must be NULL.
4248  *
4249  * Typically, this routine is only called by the listener to accept a connection
4250  * request.  It must also be called on the active side of a connection if the
4251  * user is performing their own QP transitions.
4252  *
4253  * In the case of error, a reject message is sent to the remote side and the
4254  * state of the qp associated with the id is modified to error, such that any
4255  * previously posted receive buffers would be flushed.
4256  *
4257  * This function is for use by kernel ULPs and must be called from under the
4258  * handler callback.
4259  */
4260 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4261 {
4262 	struct rdma_id_private *id_priv =
4263 		container_of(id, struct rdma_id_private, id);
4264 	int ret;
4265 
4266 	lockdep_assert_held(&id_priv->handler_mutex);
4267 
4268 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4269 		return -EINVAL;
4270 
4271 	if (!id->qp && conn_param) {
4272 		id_priv->qp_num = conn_param->qp_num;
4273 		id_priv->srq = conn_param->srq;
4274 	}
4275 
4276 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4277 		if (id->qp_type == IB_QPT_UD) {
4278 			if (conn_param)
4279 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4280 							conn_param->qkey,
4281 							conn_param->private_data,
4282 							conn_param->private_data_len);
4283 			else
4284 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4285 							0, NULL, 0);
4286 		} else {
4287 			if (conn_param)
4288 				ret = cma_accept_ib(id_priv, conn_param);
4289 			else
4290 				ret = cma_rep_recv(id_priv);
4291 		}
4292 	} else if (rdma_cap_iw_cm(id->device, id->port_num))
4293 		ret = cma_accept_iw(id_priv, conn_param);
4294 	else
4295 		ret = -ENOSYS;
4296 
4297 	if (ret)
4298 		goto reject;
4299 
4300 	return 0;
4301 reject:
4302 	cma_modify_qp_err(id_priv);
4303 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4304 	return ret;
4305 }
4306 EXPORT_SYMBOL(rdma_accept);
4307 
4308 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4309 		    struct rdma_ucm_ece *ece)
4310 {
4311 	struct rdma_id_private *id_priv =
4312 		container_of(id, struct rdma_id_private, id);
4313 
4314 	id_priv->ece.vendor_id = ece->vendor_id;
4315 	id_priv->ece.attr_mod = ece->attr_mod;
4316 
4317 	return rdma_accept(id, conn_param);
4318 }
4319 EXPORT_SYMBOL(rdma_accept_ece);
4320 
4321 void rdma_lock_handler(struct rdma_cm_id *id)
4322 {
4323 	struct rdma_id_private *id_priv =
4324 		container_of(id, struct rdma_id_private, id);
4325 
4326 	mutex_lock(&id_priv->handler_mutex);
4327 }
4328 EXPORT_SYMBOL(rdma_lock_handler);
4329 
4330 void rdma_unlock_handler(struct rdma_cm_id *id)
4331 {
4332 	struct rdma_id_private *id_priv =
4333 		container_of(id, struct rdma_id_private, id);
4334 
4335 	mutex_unlock(&id_priv->handler_mutex);
4336 }
4337 EXPORT_SYMBOL(rdma_unlock_handler);
4338 
4339 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4340 {
4341 	struct rdma_id_private *id_priv;
4342 	int ret;
4343 
4344 	id_priv = container_of(id, struct rdma_id_private, id);
4345 	if (!id_priv->cm_id.ib)
4346 		return -EINVAL;
4347 
4348 	switch (id->device->node_type) {
4349 	case RDMA_NODE_IB_CA:
4350 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4351 		break;
4352 	default:
4353 		ret = 0;
4354 		break;
4355 	}
4356 	return ret;
4357 }
4358 EXPORT_SYMBOL(rdma_notify);
4359 
4360 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4361 		u8 private_data_len, u8 reason)
4362 {
4363 	struct rdma_id_private *id_priv;
4364 	int ret;
4365 
4366 	id_priv = container_of(id, struct rdma_id_private, id);
4367 	if (!id_priv->cm_id.ib)
4368 		return -EINVAL;
4369 
4370 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4371 		if (id->qp_type == IB_QPT_UD) {
4372 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4373 						private_data, private_data_len);
4374 		} else {
4375 			trace_cm_send_rej(id_priv);
4376 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4377 					     private_data, private_data_len);
4378 		}
4379 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4380 		ret = iw_cm_reject(id_priv->cm_id.iw,
4381 				   private_data, private_data_len);
4382 	} else
4383 		ret = -ENOSYS;
4384 
4385 	return ret;
4386 }
4387 EXPORT_SYMBOL(rdma_reject);
4388 
4389 int rdma_disconnect(struct rdma_cm_id *id)
4390 {
4391 	struct rdma_id_private *id_priv;
4392 	int ret;
4393 
4394 	id_priv = container_of(id, struct rdma_id_private, id);
4395 	if (!id_priv->cm_id.ib)
4396 		return -EINVAL;
4397 
4398 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4399 		ret = cma_modify_qp_err(id_priv);
4400 		if (ret)
4401 			goto out;
4402 		/* Initiate or respond to a disconnect. */
4403 		trace_cm_disconnect(id_priv);
4404 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4405 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4406 				trace_cm_sent_drep(id_priv);
4407 		} else {
4408 			trace_cm_sent_dreq(id_priv);
4409 		}
4410 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4411 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4412 	} else
4413 		ret = -EINVAL;
4414 
4415 out:
4416 	return ret;
4417 }
4418 EXPORT_SYMBOL(rdma_disconnect);
4419 
4420 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4421 			      struct ib_sa_multicast *multicast,
4422 			      struct rdma_cm_event *event,
4423 			      struct cma_multicast *mc)
4424 {
4425 	struct rdma_dev_addr *dev_addr;
4426 	enum ib_gid_type gid_type;
4427 	struct net_device *ndev;
4428 
4429 	if (!status)
4430 		status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4431 	else
4432 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4433 				     status);
4434 
4435 	event->status = status;
4436 	event->param.ud.private_data = mc->context;
4437 	if (status) {
4438 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4439 		return;
4440 	}
4441 
4442 	dev_addr = &id_priv->id.route.addr.dev_addr;
4443 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4444 	gid_type =
4445 		id_priv->cma_dev
4446 			->default_gid_type[id_priv->id.port_num -
4447 					   rdma_start_port(
4448 						   id_priv->cma_dev->device)];
4449 
4450 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4451 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4452 				     &multicast->rec, ndev, gid_type,
4453 				     &event->param.ud.ah_attr)) {
4454 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4455 		goto out;
4456 	}
4457 
4458 	event->param.ud.qp_num = 0xFFFFFF;
4459 	event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4460 
4461 out:
4462 	if (ndev)
4463 		dev_put(ndev);
4464 }
4465 
4466 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4467 {
4468 	struct cma_multicast *mc = multicast->context;
4469 	struct rdma_id_private *id_priv = mc->id_priv;
4470 	struct rdma_cm_event event = {};
4471 	int ret = 0;
4472 
4473 	mutex_lock(&id_priv->handler_mutex);
4474 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4475 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4476 		goto out;
4477 
4478 	cma_make_mc_event(status, id_priv, multicast, &event, mc);
4479 	ret = cma_cm_event_handler(id_priv, &event);
4480 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4481 	if (ret) {
4482 		destroy_id_handler_unlock(id_priv);
4483 		return 0;
4484 	}
4485 
4486 out:
4487 	mutex_unlock(&id_priv->handler_mutex);
4488 	return 0;
4489 }
4490 
4491 static void cma_set_mgid(struct rdma_id_private *id_priv,
4492 			 struct sockaddr *addr, union ib_gid *mgid)
4493 {
4494 	unsigned char mc_map[MAX_ADDR_LEN];
4495 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4496 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4497 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4498 
4499 	if (cma_any_addr(addr)) {
4500 		memset(mgid, 0, sizeof *mgid);
4501 	} else if ((addr->sa_family == AF_INET6) &&
4502 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4503 								 0xFF10A01B)) {
4504 		/* IPv6 address is an SA assigned MGID. */
4505 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4506 	} else if (addr->sa_family == AF_IB) {
4507 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4508 	} else if (addr->sa_family == AF_INET6) {
4509 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4510 		if (id_priv->id.ps == RDMA_PS_UDP)
4511 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4512 		*mgid = *(union ib_gid *) (mc_map + 4);
4513 	} else {
4514 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4515 		if (id_priv->id.ps == RDMA_PS_UDP)
4516 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4517 		*mgid = *(union ib_gid *) (mc_map + 4);
4518 	}
4519 }
4520 
4521 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4522 				 struct cma_multicast *mc)
4523 {
4524 	struct ib_sa_mcmember_rec rec;
4525 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4526 	ib_sa_comp_mask comp_mask;
4527 	int ret;
4528 
4529 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4530 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4531 				     &rec.mgid, &rec);
4532 	if (ret)
4533 		return ret;
4534 
4535 	ret = cma_set_qkey(id_priv, 0);
4536 	if (ret)
4537 		return ret;
4538 
4539 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4540 	rec.qkey = cpu_to_be32(id_priv->qkey);
4541 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4542 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4543 	rec.join_state = mc->join_state;
4544 
4545 	if ((rec.join_state == BIT(SENDONLY_FULLMEMBER_JOIN)) &&
4546 	    (!ib_sa_sendonly_fullmem_support(&sa_client,
4547 					     id_priv->id.device,
4548 					     id_priv->id.port_num))) {
4549 		dev_warn(
4550 			&id_priv->id.device->dev,
4551 			"RDMA CM: port %u Unable to multicast join: SM doesn't support Send Only Full Member option\n",
4552 			id_priv->id.port_num);
4553 		return -EOPNOTSUPP;
4554 	}
4555 
4556 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4557 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4558 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4559 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4560 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4561 
4562 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4563 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4564 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4565 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4566 			     IB_SA_MCMEMBER_REC_MTU |
4567 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4568 
4569 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4570 					 id_priv->id.port_num, &rec, comp_mask,
4571 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4572 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4573 }
4574 
4575 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4576 			      enum ib_gid_type gid_type)
4577 {
4578 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4579 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4580 
4581 	if (cma_any_addr(addr)) {
4582 		memset(mgid, 0, sizeof *mgid);
4583 	} else if (addr->sa_family == AF_INET6) {
4584 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4585 	} else {
4586 		mgid->raw[0] =
4587 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4588 		mgid->raw[1] =
4589 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4590 		mgid->raw[2] = 0;
4591 		mgid->raw[3] = 0;
4592 		mgid->raw[4] = 0;
4593 		mgid->raw[5] = 0;
4594 		mgid->raw[6] = 0;
4595 		mgid->raw[7] = 0;
4596 		mgid->raw[8] = 0;
4597 		mgid->raw[9] = 0;
4598 		mgid->raw[10] = 0xff;
4599 		mgid->raw[11] = 0xff;
4600 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4601 	}
4602 }
4603 
4604 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4605 				   struct cma_multicast *mc)
4606 {
4607 	struct cma_work *work;
4608 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4609 	int err = 0;
4610 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4611 	struct net_device *ndev = NULL;
4612 	struct ib_sa_multicast ib;
4613 	enum ib_gid_type gid_type;
4614 	bool send_only;
4615 
4616 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4617 
4618 	if (cma_zero_addr(addr))
4619 		return -EINVAL;
4620 
4621 	work = kzalloc(sizeof *work, GFP_KERNEL);
4622 	if (!work)
4623 		return -ENOMEM;
4624 
4625 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4626 		   rdma_start_port(id_priv->cma_dev->device)];
4627 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4628 
4629 	ib.rec.pkey = cpu_to_be16(0xffff);
4630 	if (id_priv->id.ps == RDMA_PS_UDP)
4631 		ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4632 
4633 	if (dev_addr->bound_dev_if)
4634 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4635 	if (!ndev) {
4636 		err = -ENODEV;
4637 		goto err_free;
4638 	}
4639 	ib.rec.rate = iboe_get_rate(ndev);
4640 	ib.rec.hop_limit = 1;
4641 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4642 
4643 	if (addr->sa_family == AF_INET) {
4644 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4645 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4646 			if (!send_only) {
4647 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4648 						    true);
4649 			}
4650 		}
4651 	} else {
4652 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4653 			err = -ENOTSUPP;
4654 	}
4655 	dev_put(ndev);
4656 	if (err || !ib.rec.mtu) {
4657 		if (!err)
4658 			err = -EINVAL;
4659 		goto err_free;
4660 	}
4661 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4662 		    &ib.rec.port_gid);
4663 	work->id = id_priv;
4664 	INIT_WORK(&work->work, cma_work_handler);
4665 	cma_make_mc_event(0, id_priv, &ib, &work->event, mc);
4666 	/* Balances with cma_id_put() in cma_work_handler */
4667 	cma_id_get(id_priv);
4668 	queue_work(cma_wq, &work->work);
4669 	return 0;
4670 
4671 err_free:
4672 	kfree(work);
4673 	return err;
4674 }
4675 
4676 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4677 			u8 join_state, void *context)
4678 {
4679 	struct rdma_id_private *id_priv =
4680 		container_of(id, struct rdma_id_private, id);
4681 	struct cma_multicast *mc;
4682 	int ret;
4683 
4684 	/* Not supported for kernel QPs */
4685 	if (WARN_ON(id->qp))
4686 		return -EINVAL;
4687 
4688 	/* ULP is calling this wrong. */
4689 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
4690 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
4691 		return -EINVAL;
4692 
4693 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
4694 	if (!mc)
4695 		return -ENOMEM;
4696 
4697 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
4698 	mc->context = context;
4699 	mc->id_priv = id_priv;
4700 	mc->join_state = join_state;
4701 
4702 	if (rdma_protocol_roce(id->device, id->port_num)) {
4703 		ret = cma_iboe_join_multicast(id_priv, mc);
4704 		if (ret)
4705 			goto out_err;
4706 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
4707 		ret = cma_join_ib_multicast(id_priv, mc);
4708 		if (ret)
4709 			goto out_err;
4710 	} else {
4711 		ret = -ENOSYS;
4712 		goto out_err;
4713 	}
4714 
4715 	spin_lock(&id_priv->lock);
4716 	list_add(&mc->list, &id_priv->mc_list);
4717 	spin_unlock(&id_priv->lock);
4718 
4719 	return 0;
4720 out_err:
4721 	kfree(mc);
4722 	return ret;
4723 }
4724 EXPORT_SYMBOL(rdma_join_multicast);
4725 
4726 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
4727 {
4728 	struct rdma_id_private *id_priv;
4729 	struct cma_multicast *mc;
4730 
4731 	id_priv = container_of(id, struct rdma_id_private, id);
4732 	spin_lock_irq(&id_priv->lock);
4733 	list_for_each_entry(mc, &id_priv->mc_list, list) {
4734 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
4735 			continue;
4736 		list_del(&mc->list);
4737 		spin_unlock_irq(&id_priv->lock);
4738 
4739 		WARN_ON(id_priv->cma_dev->device != id->device);
4740 		destroy_mc(id_priv, mc);
4741 		return;
4742 	}
4743 	spin_unlock_irq(&id_priv->lock);
4744 }
4745 EXPORT_SYMBOL(rdma_leave_multicast);
4746 
4747 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
4748 {
4749 	struct rdma_dev_addr *dev_addr;
4750 	struct cma_work *work;
4751 
4752 	dev_addr = &id_priv->id.route.addr.dev_addr;
4753 
4754 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
4755 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
4756 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
4757 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
4758 			ndev->name, &id_priv->id);
4759 		work = kzalloc(sizeof *work, GFP_KERNEL);
4760 		if (!work)
4761 			return -ENOMEM;
4762 
4763 		INIT_WORK(&work->work, cma_work_handler);
4764 		work->id = id_priv;
4765 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
4766 		cma_id_get(id_priv);
4767 		queue_work(cma_wq, &work->work);
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
4774 			       void *ptr)
4775 {
4776 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
4777 	struct cma_device *cma_dev;
4778 	struct rdma_id_private *id_priv;
4779 	int ret = NOTIFY_DONE;
4780 
4781 	if (event != NETDEV_BONDING_FAILOVER)
4782 		return NOTIFY_DONE;
4783 
4784 	if (!netif_is_bond_master(ndev))
4785 		return NOTIFY_DONE;
4786 
4787 	mutex_lock(&lock);
4788 	list_for_each_entry(cma_dev, &dev_list, list)
4789 		list_for_each_entry(id_priv, &cma_dev->id_list, list) {
4790 			ret = cma_netdev_change(ndev, id_priv);
4791 			if (ret)
4792 				goto out;
4793 		}
4794 
4795 out:
4796 	mutex_unlock(&lock);
4797 	return ret;
4798 }
4799 
4800 static struct notifier_block cma_nb = {
4801 	.notifier_call = cma_netdev_callback
4802 };
4803 
4804 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
4805 {
4806 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
4807 	enum rdma_cm_state state;
4808 	unsigned long flags;
4809 
4810 	mutex_lock(&id_priv->handler_mutex);
4811 	/* Record that we want to remove the device */
4812 	spin_lock_irqsave(&id_priv->lock, flags);
4813 	state = id_priv->state;
4814 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
4815 		spin_unlock_irqrestore(&id_priv->lock, flags);
4816 		mutex_unlock(&id_priv->handler_mutex);
4817 		cma_id_put(id_priv);
4818 		return;
4819 	}
4820 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
4821 	spin_unlock_irqrestore(&id_priv->lock, flags);
4822 
4823 	if (cma_cm_event_handler(id_priv, &event)) {
4824 		/*
4825 		 * At this point the ULP promises it won't call
4826 		 * rdma_destroy_id() concurrently
4827 		 */
4828 		cma_id_put(id_priv);
4829 		mutex_unlock(&id_priv->handler_mutex);
4830 		trace_cm_id_destroy(id_priv);
4831 		_destroy_id(id_priv, state);
4832 		return;
4833 	}
4834 	mutex_unlock(&id_priv->handler_mutex);
4835 
4836 	/*
4837 	 * If this races with destroy then the thread that first assigns state
4838 	 * to a destroying does the cancel.
4839 	 */
4840 	cma_cancel_operation(id_priv, state);
4841 	cma_id_put(id_priv);
4842 }
4843 
4844 static void cma_process_remove(struct cma_device *cma_dev)
4845 {
4846 	mutex_lock(&lock);
4847 	while (!list_empty(&cma_dev->id_list)) {
4848 		struct rdma_id_private *id_priv = list_first_entry(
4849 			&cma_dev->id_list, struct rdma_id_private, list);
4850 
4851 		list_del(&id_priv->listen_list);
4852 		list_del_init(&id_priv->list);
4853 		cma_id_get(id_priv);
4854 		mutex_unlock(&lock);
4855 
4856 		cma_send_device_removal_put(id_priv);
4857 
4858 		mutex_lock(&lock);
4859 	}
4860 	mutex_unlock(&lock);
4861 
4862 	cma_dev_put(cma_dev);
4863 	wait_for_completion(&cma_dev->comp);
4864 }
4865 
4866 static int cma_add_one(struct ib_device *device)
4867 {
4868 	struct rdma_id_private *to_destroy;
4869 	struct cma_device *cma_dev;
4870 	struct rdma_id_private *id_priv;
4871 	unsigned int i;
4872 	unsigned long supported_gids = 0;
4873 	int ret;
4874 
4875 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
4876 	if (!cma_dev)
4877 		return -ENOMEM;
4878 
4879 	cma_dev->device = device;
4880 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
4881 					    sizeof(*cma_dev->default_gid_type),
4882 					    GFP_KERNEL);
4883 	if (!cma_dev->default_gid_type) {
4884 		ret = -ENOMEM;
4885 		goto free_cma_dev;
4886 	}
4887 
4888 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
4889 					    sizeof(*cma_dev->default_roce_tos),
4890 					    GFP_KERNEL);
4891 	if (!cma_dev->default_roce_tos) {
4892 		ret = -ENOMEM;
4893 		goto free_gid_type;
4894 	}
4895 
4896 	rdma_for_each_port (device, i) {
4897 		supported_gids = roce_gid_type_mask_support(device, i);
4898 		WARN_ON(!supported_gids);
4899 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
4900 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
4901 				CMA_PREFERRED_ROCE_GID_TYPE;
4902 		else
4903 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
4904 				find_first_bit(&supported_gids, BITS_PER_LONG);
4905 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
4906 	}
4907 
4908 	init_completion(&cma_dev->comp);
4909 	refcount_set(&cma_dev->refcount, 1);
4910 	INIT_LIST_HEAD(&cma_dev->id_list);
4911 	ib_set_client_data(device, &cma_client, cma_dev);
4912 
4913 	mutex_lock(&lock);
4914 	list_add_tail(&cma_dev->list, &dev_list);
4915 	list_for_each_entry(id_priv, &listen_any_list, list) {
4916 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
4917 		if (ret)
4918 			goto free_listen;
4919 	}
4920 	mutex_unlock(&lock);
4921 
4922 	trace_cm_add_one(device);
4923 	return 0;
4924 
4925 free_listen:
4926 	list_del(&cma_dev->list);
4927 	mutex_unlock(&lock);
4928 
4929 	/* cma_process_remove() will delete to_destroy */
4930 	cma_process_remove(cma_dev);
4931 	kfree(cma_dev->default_roce_tos);
4932 free_gid_type:
4933 	kfree(cma_dev->default_gid_type);
4934 
4935 free_cma_dev:
4936 	kfree(cma_dev);
4937 	return ret;
4938 }
4939 
4940 static void cma_remove_one(struct ib_device *device, void *client_data)
4941 {
4942 	struct cma_device *cma_dev = client_data;
4943 
4944 	trace_cm_remove_one(device);
4945 
4946 	mutex_lock(&lock);
4947 	list_del(&cma_dev->list);
4948 	mutex_unlock(&lock);
4949 
4950 	cma_process_remove(cma_dev);
4951 	kfree(cma_dev->default_roce_tos);
4952 	kfree(cma_dev->default_gid_type);
4953 	kfree(cma_dev);
4954 }
4955 
4956 static int cma_init_net(struct net *net)
4957 {
4958 	struct cma_pernet *pernet = cma_pernet(net);
4959 
4960 	xa_init(&pernet->tcp_ps);
4961 	xa_init(&pernet->udp_ps);
4962 	xa_init(&pernet->ipoib_ps);
4963 	xa_init(&pernet->ib_ps);
4964 
4965 	return 0;
4966 }
4967 
4968 static void cma_exit_net(struct net *net)
4969 {
4970 	struct cma_pernet *pernet = cma_pernet(net);
4971 
4972 	WARN_ON(!xa_empty(&pernet->tcp_ps));
4973 	WARN_ON(!xa_empty(&pernet->udp_ps));
4974 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
4975 	WARN_ON(!xa_empty(&pernet->ib_ps));
4976 }
4977 
4978 static struct pernet_operations cma_pernet_operations = {
4979 	.init = cma_init_net,
4980 	.exit = cma_exit_net,
4981 	.id = &cma_pernet_id,
4982 	.size = sizeof(struct cma_pernet),
4983 };
4984 
4985 static int __init cma_init(void)
4986 {
4987 	int ret;
4988 
4989 	/*
4990 	 * There is a rare lock ordering dependency in cma_netdev_callback()
4991 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
4992 	 * must never be nested under lock so it can find these without having
4993 	 * to test with bonding.
4994 	 */
4995 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
4996 		rtnl_lock();
4997 		mutex_lock(&lock);
4998 		mutex_unlock(&lock);
4999 		rtnl_unlock();
5000 	}
5001 
5002 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5003 	if (!cma_wq)
5004 		return -ENOMEM;
5005 
5006 	ret = register_pernet_subsys(&cma_pernet_operations);
5007 	if (ret)
5008 		goto err_wq;
5009 
5010 	ib_sa_register_client(&sa_client);
5011 	register_netdevice_notifier(&cma_nb);
5012 
5013 	ret = ib_register_client(&cma_client);
5014 	if (ret)
5015 		goto err;
5016 
5017 	ret = cma_configfs_init();
5018 	if (ret)
5019 		goto err_ib;
5020 
5021 	return 0;
5022 
5023 err_ib:
5024 	ib_unregister_client(&cma_client);
5025 err:
5026 	unregister_netdevice_notifier(&cma_nb);
5027 	ib_sa_unregister_client(&sa_client);
5028 	unregister_pernet_subsys(&cma_pernet_operations);
5029 err_wq:
5030 	destroy_workqueue(cma_wq);
5031 	return ret;
5032 }
5033 
5034 static void __exit cma_cleanup(void)
5035 {
5036 	cma_configfs_exit();
5037 	ib_unregister_client(&cma_client);
5038 	unregister_netdevice_notifier(&cma_nb);
5039 	ib_sa_unregister_client(&sa_client);
5040 	unregister_pernet_subsys(&cma_pernet_operations);
5041 	destroy_workqueue(cma_wq);
5042 }
5043 
5044 module_init(cma_init);
5045 module_exit(cma_cleanup);
5046