xref: /linux/drivers/infiniband/core/cma.c (revision 6d6a8d6a4ed03702fe73cc7770acddda5ecc8a15)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/igmp.h>
15 #include <linux/xarray.h>
16 #include <linux/inetdevice.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <net/route.h>
20 
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 #include <net/tcp.h>
24 #include <net/ipv6.h>
25 #include <net/ip_fib.h>
26 #include <net/ip6_route.h>
27 
28 #include <rdma/rdma_cm.h>
29 #include <rdma/rdma_cm_ib.h>
30 #include <rdma/rdma_netlink.h>
31 #include <rdma/ib.h>
32 #include <rdma/ib_cache.h>
33 #include <rdma/ib_cm.h>
34 #include <rdma/ib_sa.h>
35 #include <rdma/iw_cm.h>
36 
37 #include "core_priv.h"
38 #include "cma_priv.h"
39 #include "cma_trace.h"
40 
41 MODULE_AUTHOR("Sean Hefty");
42 MODULE_DESCRIPTION("Generic RDMA CM Agent");
43 MODULE_LICENSE("Dual BSD/GPL");
44 
45 #define CMA_CM_RESPONSE_TIMEOUT 20
46 #define CMA_MAX_CM_RETRIES 15
47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
48 #define CMA_IBOE_PACKET_LIFETIME 18
49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
50 
51 static const char * const cma_events[] = {
52 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
53 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
54 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
55 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
56 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
57 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
58 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
59 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
60 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
61 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
62 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
63 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
64 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
65 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
66 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
67 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
68 };
69 
70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr,
71 			 union ib_gid *mgid);
72 
73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
74 {
75 	size_t index = event;
76 
77 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
78 			cma_events[index] : "unrecognized event";
79 }
80 EXPORT_SYMBOL(rdma_event_msg);
81 
82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
83 						int reason)
84 {
85 	if (rdma_ib_or_roce(id->device, id->port_num))
86 		return ibcm_reject_msg(reason);
87 
88 	if (rdma_protocol_iwarp(id->device, id->port_num))
89 		return iwcm_reject_msg(reason);
90 
91 	WARN_ON_ONCE(1);
92 	return "unrecognized transport";
93 }
94 EXPORT_SYMBOL(rdma_reject_msg);
95 
96 /**
97  * rdma_is_consumer_reject - return true if the consumer rejected the connect
98  *                           request.
99  * @id: Communication identifier that received the REJECT event.
100  * @reason: Value returned in the REJECT event status field.
101  */
102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
103 {
104 	if (rdma_ib_or_roce(id->device, id->port_num))
105 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
106 
107 	if (rdma_protocol_iwarp(id->device, id->port_num))
108 		return reason == -ECONNREFUSED;
109 
110 	WARN_ON_ONCE(1);
111 	return false;
112 }
113 
114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
115 				      struct rdma_cm_event *ev, u8 *data_len)
116 {
117 	const void *p;
118 
119 	if (rdma_is_consumer_reject(id, ev->status)) {
120 		*data_len = ev->param.conn.private_data_len;
121 		p = ev->param.conn.private_data;
122 	} else {
123 		*data_len = 0;
124 		p = NULL;
125 	}
126 	return p;
127 }
128 EXPORT_SYMBOL(rdma_consumer_reject_data);
129 
130 /**
131  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
132  * @id: Communication Identifier
133  */
134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
135 {
136 	struct rdma_id_private *id_priv;
137 
138 	id_priv = container_of(id, struct rdma_id_private, id);
139 	if (id->device->node_type == RDMA_NODE_RNIC)
140 		return id_priv->cm_id.iw;
141 	return NULL;
142 }
143 EXPORT_SYMBOL(rdma_iw_cm_id);
144 
145 /**
146  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
147  * @res: rdma resource tracking entry pointer
148  */
149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
150 {
151 	struct rdma_id_private *id_priv =
152 		container_of(res, struct rdma_id_private, res);
153 
154 	return &id_priv->id;
155 }
156 EXPORT_SYMBOL(rdma_res_to_id);
157 
158 static int cma_add_one(struct ib_device *device);
159 static void cma_remove_one(struct ib_device *device, void *client_data);
160 
161 static struct ib_client cma_client = {
162 	.name   = "cma",
163 	.add    = cma_add_one,
164 	.remove = cma_remove_one
165 };
166 
167 static struct ib_sa_client sa_client;
168 static LIST_HEAD(dev_list);
169 static LIST_HEAD(listen_any_list);
170 static DEFINE_MUTEX(lock);
171 static struct workqueue_struct *cma_wq;
172 static unsigned int cma_pernet_id;
173 
174 struct cma_pernet {
175 	struct xarray tcp_ps;
176 	struct xarray udp_ps;
177 	struct xarray ipoib_ps;
178 	struct xarray ib_ps;
179 };
180 
181 static struct cma_pernet *cma_pernet(struct net *net)
182 {
183 	return net_generic(net, cma_pernet_id);
184 }
185 
186 static
187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
188 {
189 	struct cma_pernet *pernet = cma_pernet(net);
190 
191 	switch (ps) {
192 	case RDMA_PS_TCP:
193 		return &pernet->tcp_ps;
194 	case RDMA_PS_UDP:
195 		return &pernet->udp_ps;
196 	case RDMA_PS_IPOIB:
197 		return &pernet->ipoib_ps;
198 	case RDMA_PS_IB:
199 		return &pernet->ib_ps;
200 	default:
201 		return NULL;
202 	}
203 }
204 
205 struct cma_device {
206 	struct list_head	list;
207 	struct ib_device	*device;
208 	struct completion	comp;
209 	refcount_t refcount;
210 	struct list_head	id_list;
211 	enum ib_gid_type	*default_gid_type;
212 	u8			*default_roce_tos;
213 };
214 
215 struct rdma_bind_list {
216 	enum rdma_ucm_port_space ps;
217 	struct hlist_head	owners;
218 	unsigned short		port;
219 };
220 
221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
222 			struct rdma_bind_list *bind_list, int snum)
223 {
224 	struct xarray *xa = cma_pernet_xa(net, ps);
225 
226 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
227 }
228 
229 static struct rdma_bind_list *cma_ps_find(struct net *net,
230 					  enum rdma_ucm_port_space ps, int snum)
231 {
232 	struct xarray *xa = cma_pernet_xa(net, ps);
233 
234 	return xa_load(xa, snum);
235 }
236 
237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
238 			  int snum)
239 {
240 	struct xarray *xa = cma_pernet_xa(net, ps);
241 
242 	xa_erase(xa, snum);
243 }
244 
245 enum {
246 	CMA_OPTION_AFONLY,
247 };
248 
249 void cma_dev_get(struct cma_device *cma_dev)
250 {
251 	refcount_inc(&cma_dev->refcount);
252 }
253 
254 void cma_dev_put(struct cma_device *cma_dev)
255 {
256 	if (refcount_dec_and_test(&cma_dev->refcount))
257 		complete(&cma_dev->comp);
258 }
259 
260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
261 					     void		*cookie)
262 {
263 	struct cma_device *cma_dev;
264 	struct cma_device *found_cma_dev = NULL;
265 
266 	mutex_lock(&lock);
267 
268 	list_for_each_entry(cma_dev, &dev_list, list)
269 		if (filter(cma_dev->device, cookie)) {
270 			found_cma_dev = cma_dev;
271 			break;
272 		}
273 
274 	if (found_cma_dev)
275 		cma_dev_get(found_cma_dev);
276 	mutex_unlock(&lock);
277 	return found_cma_dev;
278 }
279 
280 int cma_get_default_gid_type(struct cma_device *cma_dev,
281 			     u32 port)
282 {
283 	if (!rdma_is_port_valid(cma_dev->device, port))
284 		return -EINVAL;
285 
286 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
287 }
288 
289 int cma_set_default_gid_type(struct cma_device *cma_dev,
290 			     u32 port,
291 			     enum ib_gid_type default_gid_type)
292 {
293 	unsigned long supported_gids;
294 
295 	if (!rdma_is_port_valid(cma_dev->device, port))
296 		return -EINVAL;
297 
298 	if (default_gid_type == IB_GID_TYPE_IB &&
299 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
300 		default_gid_type = IB_GID_TYPE_ROCE;
301 
302 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
303 
304 	if (!(supported_gids & 1 << default_gid_type))
305 		return -EINVAL;
306 
307 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
308 		default_gid_type;
309 
310 	return 0;
311 }
312 
313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
314 {
315 	if (!rdma_is_port_valid(cma_dev->device, port))
316 		return -EINVAL;
317 
318 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
319 }
320 
321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
322 			     u8 default_roce_tos)
323 {
324 	if (!rdma_is_port_valid(cma_dev->device, port))
325 		return -EINVAL;
326 
327 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
328 		 default_roce_tos;
329 
330 	return 0;
331 }
332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
333 {
334 	return cma_dev->device;
335 }
336 
337 /*
338  * Device removal can occur at anytime, so we need extra handling to
339  * serialize notifying the user of device removal with other callbacks.
340  * We do this by disabling removal notification while a callback is in process,
341  * and reporting it after the callback completes.
342  */
343 
344 struct cma_multicast {
345 	struct rdma_id_private *id_priv;
346 	union {
347 		struct ib_sa_multicast *sa_mc;
348 		struct {
349 			struct work_struct work;
350 			struct rdma_cm_event event;
351 		} iboe_join;
352 	};
353 	struct list_head	list;
354 	void			*context;
355 	struct sockaddr_storage	addr;
356 	u8			join_state;
357 };
358 
359 struct cma_work {
360 	struct work_struct	work;
361 	struct rdma_id_private	*id;
362 	enum rdma_cm_state	old_state;
363 	enum rdma_cm_state	new_state;
364 	struct rdma_cm_event	event;
365 };
366 
367 union cma_ip_addr {
368 	struct in6_addr ip6;
369 	struct {
370 		__be32 pad[3];
371 		__be32 addr;
372 	} ip4;
373 };
374 
375 struct cma_hdr {
376 	u8 cma_version;
377 	u8 ip_version;	/* IP version: 7:4 */
378 	__be16 port;
379 	union cma_ip_addr src_addr;
380 	union cma_ip_addr dst_addr;
381 };
382 
383 #define CMA_VERSION 0x00
384 
385 struct cma_req_info {
386 	struct sockaddr_storage listen_addr_storage;
387 	struct sockaddr_storage src_addr_storage;
388 	struct ib_device *device;
389 	union ib_gid local_gid;
390 	__be64 service_id;
391 	int port;
392 	bool has_gid;
393 	u16 pkey;
394 };
395 
396 static int cma_comp_exch(struct rdma_id_private *id_priv,
397 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
398 {
399 	unsigned long flags;
400 	int ret;
401 
402 	/*
403 	 * The FSM uses a funny double locking where state is protected by both
404 	 * the handler_mutex and the spinlock. State is not allowed to change
405 	 * to/from a handler_mutex protected value without also holding
406 	 * handler_mutex.
407 	 */
408 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
409 		lockdep_assert_held(&id_priv->handler_mutex);
410 
411 	spin_lock_irqsave(&id_priv->lock, flags);
412 	if ((ret = (id_priv->state == comp)))
413 		id_priv->state = exch;
414 	spin_unlock_irqrestore(&id_priv->lock, flags);
415 	return ret;
416 }
417 
418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
419 {
420 	return hdr->ip_version >> 4;
421 }
422 
423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
424 {
425 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
426 }
427 
428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
429 {
430 	struct in_device *in_dev = NULL;
431 
432 	if (ndev) {
433 		rtnl_lock();
434 		in_dev = __in_dev_get_rtnl(ndev);
435 		if (in_dev) {
436 			if (join)
437 				ip_mc_inc_group(in_dev,
438 						*(__be32 *)(mgid->raw + 12));
439 			else
440 				ip_mc_dec_group(in_dev,
441 						*(__be32 *)(mgid->raw + 12));
442 		}
443 		rtnl_unlock();
444 	}
445 	return (in_dev) ? 0 : -ENODEV;
446 }
447 
448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
449 			       struct cma_device *cma_dev)
450 {
451 	cma_dev_get(cma_dev);
452 	id_priv->cma_dev = cma_dev;
453 	id_priv->id.device = cma_dev->device;
454 	id_priv->id.route.addr.dev_addr.transport =
455 		rdma_node_get_transport(cma_dev->device->node_type);
456 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
457 
458 	trace_cm_id_attach(id_priv, cma_dev->device);
459 }
460 
461 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
462 			      struct cma_device *cma_dev)
463 {
464 	_cma_attach_to_dev(id_priv, cma_dev);
465 	id_priv->gid_type =
466 		cma_dev->default_gid_type[id_priv->id.port_num -
467 					  rdma_start_port(cma_dev->device)];
468 }
469 
470 static void cma_release_dev(struct rdma_id_private *id_priv)
471 {
472 	mutex_lock(&lock);
473 	list_del_init(&id_priv->device_item);
474 	cma_dev_put(id_priv->cma_dev);
475 	id_priv->cma_dev = NULL;
476 	id_priv->id.device = NULL;
477 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
478 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
479 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
480 	}
481 	mutex_unlock(&lock);
482 }
483 
484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
485 {
486 	return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
487 }
488 
489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
490 {
491 	return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
492 }
493 
494 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
495 {
496 	return id_priv->id.route.addr.src_addr.ss_family;
497 }
498 
499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
500 {
501 	struct ib_sa_mcmember_rec rec;
502 	int ret = 0;
503 
504 	if (id_priv->qkey) {
505 		if (qkey && id_priv->qkey != qkey)
506 			return -EINVAL;
507 		return 0;
508 	}
509 
510 	if (qkey) {
511 		id_priv->qkey = qkey;
512 		return 0;
513 	}
514 
515 	switch (id_priv->id.ps) {
516 	case RDMA_PS_UDP:
517 	case RDMA_PS_IB:
518 		id_priv->qkey = RDMA_UDP_QKEY;
519 		break;
520 	case RDMA_PS_IPOIB:
521 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
522 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
523 					     id_priv->id.port_num, &rec.mgid,
524 					     &rec);
525 		if (!ret)
526 			id_priv->qkey = be32_to_cpu(rec.qkey);
527 		break;
528 	default:
529 		break;
530 	}
531 	return ret;
532 }
533 
534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
535 {
536 	dev_addr->dev_type = ARPHRD_INFINIBAND;
537 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
538 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
539 }
540 
541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
542 {
543 	int ret;
544 
545 	if (addr->sa_family != AF_IB) {
546 		ret = rdma_translate_ip(addr, dev_addr);
547 	} else {
548 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
549 		ret = 0;
550 	}
551 
552 	return ret;
553 }
554 
555 static const struct ib_gid_attr *
556 cma_validate_port(struct ib_device *device, u32 port,
557 		  enum ib_gid_type gid_type,
558 		  union ib_gid *gid,
559 		  struct rdma_id_private *id_priv)
560 {
561 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
562 	int bound_if_index = dev_addr->bound_dev_if;
563 	const struct ib_gid_attr *sgid_attr;
564 	int dev_type = dev_addr->dev_type;
565 	struct net_device *ndev = NULL;
566 
567 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
568 		return ERR_PTR(-ENODEV);
569 
570 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
571 		return ERR_PTR(-ENODEV);
572 
573 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
574 		return ERR_PTR(-ENODEV);
575 
576 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
577 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
578 		if (!ndev)
579 			return ERR_PTR(-ENODEV);
580 	} else {
581 		gid_type = IB_GID_TYPE_IB;
582 	}
583 
584 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
585 	if (ndev)
586 		dev_put(ndev);
587 	return sgid_attr;
588 }
589 
590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
591 			       const struct ib_gid_attr *sgid_attr)
592 {
593 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
594 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
595 }
596 
597 /**
598  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
599  * based on source ip address.
600  * @id_priv:	cm_id which should be bound to cma device
601  *
602  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
603  * based on source IP address. It returns 0 on success or error code otherwise.
604  * It is applicable to active and passive side cm_id.
605  */
606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
607 {
608 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
609 	const struct ib_gid_attr *sgid_attr;
610 	union ib_gid gid, iboe_gid, *gidp;
611 	struct cma_device *cma_dev;
612 	enum ib_gid_type gid_type;
613 	int ret = -ENODEV;
614 	u32 port;
615 
616 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
617 	    id_priv->id.ps == RDMA_PS_IPOIB)
618 		return -EINVAL;
619 
620 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
621 		    &iboe_gid);
622 
623 	memcpy(&gid, dev_addr->src_dev_addr +
624 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
625 
626 	mutex_lock(&lock);
627 	list_for_each_entry(cma_dev, &dev_list, list) {
628 		rdma_for_each_port (cma_dev->device, port) {
629 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
630 			       &iboe_gid : &gid;
631 			gid_type = cma_dev->default_gid_type[port - 1];
632 			sgid_attr = cma_validate_port(cma_dev->device, port,
633 						      gid_type, gidp, id_priv);
634 			if (!IS_ERR(sgid_attr)) {
635 				id_priv->id.port_num = port;
636 				cma_bind_sgid_attr(id_priv, sgid_attr);
637 				cma_attach_to_dev(id_priv, cma_dev);
638 				ret = 0;
639 				goto out;
640 			}
641 		}
642 	}
643 out:
644 	mutex_unlock(&lock);
645 	return ret;
646 }
647 
648 /**
649  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
650  * @id_priv:		cm id to bind to cma device
651  * @listen_id_priv:	listener cm id to match against
652  * @req:		Pointer to req structure containaining incoming
653  *			request information
654  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
655  * rdma device matches for listen_id and incoming request. It also verifies
656  * that a GID table entry is present for the source address.
657  * Returns 0 on success, or returns error code otherwise.
658  */
659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
660 			      const struct rdma_id_private *listen_id_priv,
661 			      struct cma_req_info *req)
662 {
663 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
664 	const struct ib_gid_attr *sgid_attr;
665 	enum ib_gid_type gid_type;
666 	union ib_gid gid;
667 
668 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
669 	    id_priv->id.ps == RDMA_PS_IPOIB)
670 		return -EINVAL;
671 
672 	if (rdma_protocol_roce(req->device, req->port))
673 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
674 			    &gid);
675 	else
676 		memcpy(&gid, dev_addr->src_dev_addr +
677 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
678 
679 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
680 	sgid_attr = cma_validate_port(req->device, req->port,
681 				      gid_type, &gid, id_priv);
682 	if (IS_ERR(sgid_attr))
683 		return PTR_ERR(sgid_attr);
684 
685 	id_priv->id.port_num = req->port;
686 	cma_bind_sgid_attr(id_priv, sgid_attr);
687 	/* Need to acquire lock to protect against reader
688 	 * of cma_dev->id_list such as cma_netdev_callback() and
689 	 * cma_process_remove().
690 	 */
691 	mutex_lock(&lock);
692 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
693 	mutex_unlock(&lock);
694 	rdma_restrack_add(&id_priv->res);
695 	return 0;
696 }
697 
698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
699 			      const struct rdma_id_private *listen_id_priv)
700 {
701 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
702 	const struct ib_gid_attr *sgid_attr;
703 	struct cma_device *cma_dev;
704 	enum ib_gid_type gid_type;
705 	int ret = -ENODEV;
706 	union ib_gid gid;
707 	u32 port;
708 
709 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
710 	    id_priv->id.ps == RDMA_PS_IPOIB)
711 		return -EINVAL;
712 
713 	memcpy(&gid, dev_addr->src_dev_addr +
714 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
715 
716 	mutex_lock(&lock);
717 
718 	cma_dev = listen_id_priv->cma_dev;
719 	port = listen_id_priv->id.port_num;
720 	gid_type = listen_id_priv->gid_type;
721 	sgid_attr = cma_validate_port(cma_dev->device, port,
722 				      gid_type, &gid, id_priv);
723 	if (!IS_ERR(sgid_attr)) {
724 		id_priv->id.port_num = port;
725 		cma_bind_sgid_attr(id_priv, sgid_attr);
726 		ret = 0;
727 		goto out;
728 	}
729 
730 	list_for_each_entry(cma_dev, &dev_list, list) {
731 		rdma_for_each_port (cma_dev->device, port) {
732 			if (listen_id_priv->cma_dev == cma_dev &&
733 			    listen_id_priv->id.port_num == port)
734 				continue;
735 
736 			gid_type = cma_dev->default_gid_type[port - 1];
737 			sgid_attr = cma_validate_port(cma_dev->device, port,
738 						      gid_type, &gid, id_priv);
739 			if (!IS_ERR(sgid_attr)) {
740 				id_priv->id.port_num = port;
741 				cma_bind_sgid_attr(id_priv, sgid_attr);
742 				ret = 0;
743 				goto out;
744 			}
745 		}
746 	}
747 
748 out:
749 	if (!ret) {
750 		cma_attach_to_dev(id_priv, cma_dev);
751 		rdma_restrack_add(&id_priv->res);
752 	}
753 
754 	mutex_unlock(&lock);
755 	return ret;
756 }
757 
758 /*
759  * Select the source IB device and address to reach the destination IB address.
760  */
761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
762 {
763 	struct cma_device *cma_dev, *cur_dev;
764 	struct sockaddr_ib *addr;
765 	union ib_gid gid, sgid, *dgid;
766 	unsigned int p;
767 	u16 pkey, index;
768 	enum ib_port_state port_state;
769 	int i;
770 
771 	cma_dev = NULL;
772 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
773 	dgid = (union ib_gid *) &addr->sib_addr;
774 	pkey = ntohs(addr->sib_pkey);
775 
776 	mutex_lock(&lock);
777 	list_for_each_entry(cur_dev, &dev_list, list) {
778 		rdma_for_each_port (cur_dev->device, p) {
779 			if (!rdma_cap_af_ib(cur_dev->device, p))
780 				continue;
781 
782 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
783 				continue;
784 
785 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
786 				continue;
787 			for (i = 0; !rdma_query_gid(cur_dev->device,
788 						    p, i, &gid);
789 			     i++) {
790 				if (!memcmp(&gid, dgid, sizeof(gid))) {
791 					cma_dev = cur_dev;
792 					sgid = gid;
793 					id_priv->id.port_num = p;
794 					goto found;
795 				}
796 
797 				if (!cma_dev && (gid.global.subnet_prefix ==
798 				    dgid->global.subnet_prefix) &&
799 				    port_state == IB_PORT_ACTIVE) {
800 					cma_dev = cur_dev;
801 					sgid = gid;
802 					id_priv->id.port_num = p;
803 					goto found;
804 				}
805 			}
806 		}
807 	}
808 	mutex_unlock(&lock);
809 	return -ENODEV;
810 
811 found:
812 	cma_attach_to_dev(id_priv, cma_dev);
813 	rdma_restrack_add(&id_priv->res);
814 	mutex_unlock(&lock);
815 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
816 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
817 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
818 	return 0;
819 }
820 
821 static void cma_id_get(struct rdma_id_private *id_priv)
822 {
823 	refcount_inc(&id_priv->refcount);
824 }
825 
826 static void cma_id_put(struct rdma_id_private *id_priv)
827 {
828 	if (refcount_dec_and_test(&id_priv->refcount))
829 		complete(&id_priv->comp);
830 }
831 
832 static struct rdma_id_private *
833 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
834 		 void *context, enum rdma_ucm_port_space ps,
835 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
836 {
837 	struct rdma_id_private *id_priv;
838 
839 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
840 	if (!id_priv)
841 		return ERR_PTR(-ENOMEM);
842 
843 	id_priv->state = RDMA_CM_IDLE;
844 	id_priv->id.context = context;
845 	id_priv->id.event_handler = event_handler;
846 	id_priv->id.ps = ps;
847 	id_priv->id.qp_type = qp_type;
848 	id_priv->tos_set = false;
849 	id_priv->timeout_set = false;
850 	id_priv->min_rnr_timer_set = false;
851 	id_priv->gid_type = IB_GID_TYPE_IB;
852 	spin_lock_init(&id_priv->lock);
853 	mutex_init(&id_priv->qp_mutex);
854 	init_completion(&id_priv->comp);
855 	refcount_set(&id_priv->refcount, 1);
856 	mutex_init(&id_priv->handler_mutex);
857 	INIT_LIST_HEAD(&id_priv->device_item);
858 	INIT_LIST_HEAD(&id_priv->listen_list);
859 	INIT_LIST_HEAD(&id_priv->mc_list);
860 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
861 	id_priv->id.route.addr.dev_addr.net = get_net(net);
862 	id_priv->seq_num &= 0x00ffffff;
863 
864 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
865 	if (parent)
866 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
867 
868 	return id_priv;
869 }
870 
871 struct rdma_cm_id *
872 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
873 			void *context, enum rdma_ucm_port_space ps,
874 			enum ib_qp_type qp_type, const char *caller)
875 {
876 	struct rdma_id_private *ret;
877 
878 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
879 	if (IS_ERR(ret))
880 		return ERR_CAST(ret);
881 
882 	rdma_restrack_set_name(&ret->res, caller);
883 	return &ret->id;
884 }
885 EXPORT_SYMBOL(__rdma_create_kernel_id);
886 
887 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
888 				       void *context,
889 				       enum rdma_ucm_port_space ps,
890 				       enum ib_qp_type qp_type)
891 {
892 	struct rdma_id_private *ret;
893 
894 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
895 			       ps, qp_type, NULL);
896 	if (IS_ERR(ret))
897 		return ERR_CAST(ret);
898 
899 	rdma_restrack_set_name(&ret->res, NULL);
900 	return &ret->id;
901 }
902 EXPORT_SYMBOL(rdma_create_user_id);
903 
904 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
905 {
906 	struct ib_qp_attr qp_attr;
907 	int qp_attr_mask, ret;
908 
909 	qp_attr.qp_state = IB_QPS_INIT;
910 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
911 	if (ret)
912 		return ret;
913 
914 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
915 	if (ret)
916 		return ret;
917 
918 	qp_attr.qp_state = IB_QPS_RTR;
919 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
920 	if (ret)
921 		return ret;
922 
923 	qp_attr.qp_state = IB_QPS_RTS;
924 	qp_attr.sq_psn = 0;
925 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
926 
927 	return ret;
928 }
929 
930 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
931 {
932 	struct ib_qp_attr qp_attr;
933 	int qp_attr_mask, ret;
934 
935 	qp_attr.qp_state = IB_QPS_INIT;
936 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
937 	if (ret)
938 		return ret;
939 
940 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
941 }
942 
943 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
944 		   struct ib_qp_init_attr *qp_init_attr)
945 {
946 	struct rdma_id_private *id_priv;
947 	struct ib_qp *qp;
948 	int ret;
949 
950 	id_priv = container_of(id, struct rdma_id_private, id);
951 	if (id->device != pd->device) {
952 		ret = -EINVAL;
953 		goto out_err;
954 	}
955 
956 	qp_init_attr->port_num = id->port_num;
957 	qp = ib_create_qp(pd, qp_init_attr);
958 	if (IS_ERR(qp)) {
959 		ret = PTR_ERR(qp);
960 		goto out_err;
961 	}
962 
963 	if (id->qp_type == IB_QPT_UD)
964 		ret = cma_init_ud_qp(id_priv, qp);
965 	else
966 		ret = cma_init_conn_qp(id_priv, qp);
967 	if (ret)
968 		goto out_destroy;
969 
970 	id->qp = qp;
971 	id_priv->qp_num = qp->qp_num;
972 	id_priv->srq = (qp->srq != NULL);
973 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
974 	return 0;
975 out_destroy:
976 	ib_destroy_qp(qp);
977 out_err:
978 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
979 	return ret;
980 }
981 EXPORT_SYMBOL(rdma_create_qp);
982 
983 void rdma_destroy_qp(struct rdma_cm_id *id)
984 {
985 	struct rdma_id_private *id_priv;
986 
987 	id_priv = container_of(id, struct rdma_id_private, id);
988 	trace_cm_qp_destroy(id_priv);
989 	mutex_lock(&id_priv->qp_mutex);
990 	ib_destroy_qp(id_priv->id.qp);
991 	id_priv->id.qp = NULL;
992 	mutex_unlock(&id_priv->qp_mutex);
993 }
994 EXPORT_SYMBOL(rdma_destroy_qp);
995 
996 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
997 			     struct rdma_conn_param *conn_param)
998 {
999 	struct ib_qp_attr qp_attr;
1000 	int qp_attr_mask, ret;
1001 
1002 	mutex_lock(&id_priv->qp_mutex);
1003 	if (!id_priv->id.qp) {
1004 		ret = 0;
1005 		goto out;
1006 	}
1007 
1008 	/* Need to update QP attributes from default values. */
1009 	qp_attr.qp_state = IB_QPS_INIT;
1010 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1011 	if (ret)
1012 		goto out;
1013 
1014 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1015 	if (ret)
1016 		goto out;
1017 
1018 	qp_attr.qp_state = IB_QPS_RTR;
1019 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1020 	if (ret)
1021 		goto out;
1022 
1023 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1024 
1025 	if (conn_param)
1026 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1027 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1028 out:
1029 	mutex_unlock(&id_priv->qp_mutex);
1030 	return ret;
1031 }
1032 
1033 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1034 			     struct rdma_conn_param *conn_param)
1035 {
1036 	struct ib_qp_attr qp_attr;
1037 	int qp_attr_mask, ret;
1038 
1039 	mutex_lock(&id_priv->qp_mutex);
1040 	if (!id_priv->id.qp) {
1041 		ret = 0;
1042 		goto out;
1043 	}
1044 
1045 	qp_attr.qp_state = IB_QPS_RTS;
1046 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1047 	if (ret)
1048 		goto out;
1049 
1050 	if (conn_param)
1051 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1052 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1053 out:
1054 	mutex_unlock(&id_priv->qp_mutex);
1055 	return ret;
1056 }
1057 
1058 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1059 {
1060 	struct ib_qp_attr qp_attr;
1061 	int ret;
1062 
1063 	mutex_lock(&id_priv->qp_mutex);
1064 	if (!id_priv->id.qp) {
1065 		ret = 0;
1066 		goto out;
1067 	}
1068 
1069 	qp_attr.qp_state = IB_QPS_ERR;
1070 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1071 out:
1072 	mutex_unlock(&id_priv->qp_mutex);
1073 	return ret;
1074 }
1075 
1076 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1077 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1078 {
1079 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1080 	int ret;
1081 	u16 pkey;
1082 
1083 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1084 		pkey = 0xffff;
1085 	else
1086 		pkey = ib_addr_get_pkey(dev_addr);
1087 
1088 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1089 				  pkey, &qp_attr->pkey_index);
1090 	if (ret)
1091 		return ret;
1092 
1093 	qp_attr->port_num = id_priv->id.port_num;
1094 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1095 
1096 	if (id_priv->id.qp_type == IB_QPT_UD) {
1097 		ret = cma_set_qkey(id_priv, 0);
1098 		if (ret)
1099 			return ret;
1100 
1101 		qp_attr->qkey = id_priv->qkey;
1102 		*qp_attr_mask |= IB_QP_QKEY;
1103 	} else {
1104 		qp_attr->qp_access_flags = 0;
1105 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1106 	}
1107 	return 0;
1108 }
1109 
1110 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1111 		       int *qp_attr_mask)
1112 {
1113 	struct rdma_id_private *id_priv;
1114 	int ret = 0;
1115 
1116 	id_priv = container_of(id, struct rdma_id_private, id);
1117 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1118 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1119 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1120 		else
1121 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1122 						 qp_attr_mask);
1123 
1124 		if (qp_attr->qp_state == IB_QPS_RTR)
1125 			qp_attr->rq_psn = id_priv->seq_num;
1126 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1127 		if (!id_priv->cm_id.iw) {
1128 			qp_attr->qp_access_flags = 0;
1129 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1130 		} else
1131 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1132 						 qp_attr_mask);
1133 		qp_attr->port_num = id_priv->id.port_num;
1134 		*qp_attr_mask |= IB_QP_PORT;
1135 	} else {
1136 		ret = -ENOSYS;
1137 	}
1138 
1139 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1140 		qp_attr->timeout = id_priv->timeout;
1141 
1142 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1143 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1144 
1145 	return ret;
1146 }
1147 EXPORT_SYMBOL(rdma_init_qp_attr);
1148 
1149 static inline bool cma_zero_addr(const struct sockaddr *addr)
1150 {
1151 	switch (addr->sa_family) {
1152 	case AF_INET:
1153 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1154 	case AF_INET6:
1155 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1156 	case AF_IB:
1157 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1158 	default:
1159 		return false;
1160 	}
1161 }
1162 
1163 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1164 {
1165 	switch (addr->sa_family) {
1166 	case AF_INET:
1167 		return ipv4_is_loopback(
1168 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1169 	case AF_INET6:
1170 		return ipv6_addr_loopback(
1171 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1172 	case AF_IB:
1173 		return ib_addr_loopback(
1174 			&((struct sockaddr_ib *)addr)->sib_addr);
1175 	default:
1176 		return false;
1177 	}
1178 }
1179 
1180 static inline bool cma_any_addr(const struct sockaddr *addr)
1181 {
1182 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1183 }
1184 
1185 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1186 {
1187 	if (src->sa_family != dst->sa_family)
1188 		return -1;
1189 
1190 	switch (src->sa_family) {
1191 	case AF_INET:
1192 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1193 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1194 	case AF_INET6: {
1195 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1196 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1197 		bool link_local;
1198 
1199 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1200 					  &dst_addr6->sin6_addr))
1201 			return 1;
1202 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1203 			     IPV6_ADDR_LINKLOCAL;
1204 		/* Link local must match their scope_ids */
1205 		return link_local ? (src_addr6->sin6_scope_id !=
1206 				     dst_addr6->sin6_scope_id) :
1207 				    0;
1208 	}
1209 
1210 	default:
1211 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1212 				   &((struct sockaddr_ib *) dst)->sib_addr);
1213 	}
1214 }
1215 
1216 static __be16 cma_port(const struct sockaddr *addr)
1217 {
1218 	struct sockaddr_ib *sib;
1219 
1220 	switch (addr->sa_family) {
1221 	case AF_INET:
1222 		return ((struct sockaddr_in *) addr)->sin_port;
1223 	case AF_INET6:
1224 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1225 	case AF_IB:
1226 		sib = (struct sockaddr_ib *) addr;
1227 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1228 				    be64_to_cpu(sib->sib_sid_mask)));
1229 	default:
1230 		return 0;
1231 	}
1232 }
1233 
1234 static inline int cma_any_port(const struct sockaddr *addr)
1235 {
1236 	return !cma_port(addr);
1237 }
1238 
1239 static void cma_save_ib_info(struct sockaddr *src_addr,
1240 			     struct sockaddr *dst_addr,
1241 			     const struct rdma_cm_id *listen_id,
1242 			     const struct sa_path_rec *path)
1243 {
1244 	struct sockaddr_ib *listen_ib, *ib;
1245 
1246 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1247 	if (src_addr) {
1248 		ib = (struct sockaddr_ib *)src_addr;
1249 		ib->sib_family = AF_IB;
1250 		if (path) {
1251 			ib->sib_pkey = path->pkey;
1252 			ib->sib_flowinfo = path->flow_label;
1253 			memcpy(&ib->sib_addr, &path->sgid, 16);
1254 			ib->sib_sid = path->service_id;
1255 			ib->sib_scope_id = 0;
1256 		} else {
1257 			ib->sib_pkey = listen_ib->sib_pkey;
1258 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1259 			ib->sib_addr = listen_ib->sib_addr;
1260 			ib->sib_sid = listen_ib->sib_sid;
1261 			ib->sib_scope_id = listen_ib->sib_scope_id;
1262 		}
1263 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1264 	}
1265 	if (dst_addr) {
1266 		ib = (struct sockaddr_ib *)dst_addr;
1267 		ib->sib_family = AF_IB;
1268 		if (path) {
1269 			ib->sib_pkey = path->pkey;
1270 			ib->sib_flowinfo = path->flow_label;
1271 			memcpy(&ib->sib_addr, &path->dgid, 16);
1272 		}
1273 	}
1274 }
1275 
1276 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1277 			      struct sockaddr_in *dst_addr,
1278 			      struct cma_hdr *hdr,
1279 			      __be16 local_port)
1280 {
1281 	if (src_addr) {
1282 		*src_addr = (struct sockaddr_in) {
1283 			.sin_family = AF_INET,
1284 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1285 			.sin_port = local_port,
1286 		};
1287 	}
1288 
1289 	if (dst_addr) {
1290 		*dst_addr = (struct sockaddr_in) {
1291 			.sin_family = AF_INET,
1292 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1293 			.sin_port = hdr->port,
1294 		};
1295 	}
1296 }
1297 
1298 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1299 			      struct sockaddr_in6 *dst_addr,
1300 			      struct cma_hdr *hdr,
1301 			      __be16 local_port)
1302 {
1303 	if (src_addr) {
1304 		*src_addr = (struct sockaddr_in6) {
1305 			.sin6_family = AF_INET6,
1306 			.sin6_addr = hdr->dst_addr.ip6,
1307 			.sin6_port = local_port,
1308 		};
1309 	}
1310 
1311 	if (dst_addr) {
1312 		*dst_addr = (struct sockaddr_in6) {
1313 			.sin6_family = AF_INET6,
1314 			.sin6_addr = hdr->src_addr.ip6,
1315 			.sin6_port = hdr->port,
1316 		};
1317 	}
1318 }
1319 
1320 static u16 cma_port_from_service_id(__be64 service_id)
1321 {
1322 	return (u16)be64_to_cpu(service_id);
1323 }
1324 
1325 static int cma_save_ip_info(struct sockaddr *src_addr,
1326 			    struct sockaddr *dst_addr,
1327 			    const struct ib_cm_event *ib_event,
1328 			    __be64 service_id)
1329 {
1330 	struct cma_hdr *hdr;
1331 	__be16 port;
1332 
1333 	hdr = ib_event->private_data;
1334 	if (hdr->cma_version != CMA_VERSION)
1335 		return -EINVAL;
1336 
1337 	port = htons(cma_port_from_service_id(service_id));
1338 
1339 	switch (cma_get_ip_ver(hdr)) {
1340 	case 4:
1341 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1342 				  (struct sockaddr_in *)dst_addr, hdr, port);
1343 		break;
1344 	case 6:
1345 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1346 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1347 		break;
1348 	default:
1349 		return -EAFNOSUPPORT;
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int cma_save_net_info(struct sockaddr *src_addr,
1356 			     struct sockaddr *dst_addr,
1357 			     const struct rdma_cm_id *listen_id,
1358 			     const struct ib_cm_event *ib_event,
1359 			     sa_family_t sa_family, __be64 service_id)
1360 {
1361 	if (sa_family == AF_IB) {
1362 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1363 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1364 					 ib_event->param.req_rcvd.primary_path);
1365 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1366 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1367 		return 0;
1368 	}
1369 
1370 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1371 }
1372 
1373 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1374 			     struct cma_req_info *req)
1375 {
1376 	const struct ib_cm_req_event_param *req_param =
1377 		&ib_event->param.req_rcvd;
1378 	const struct ib_cm_sidr_req_event_param *sidr_param =
1379 		&ib_event->param.sidr_req_rcvd;
1380 
1381 	switch (ib_event->event) {
1382 	case IB_CM_REQ_RECEIVED:
1383 		req->device	= req_param->listen_id->device;
1384 		req->port	= req_param->port;
1385 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1386 		       sizeof(req->local_gid));
1387 		req->has_gid	= true;
1388 		req->service_id = req_param->primary_path->service_id;
1389 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1390 		if (req->pkey != req_param->bth_pkey)
1391 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1392 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1393 					    req_param->bth_pkey, req->pkey);
1394 		break;
1395 	case IB_CM_SIDR_REQ_RECEIVED:
1396 		req->device	= sidr_param->listen_id->device;
1397 		req->port	= sidr_param->port;
1398 		req->has_gid	= false;
1399 		req->service_id	= sidr_param->service_id;
1400 		req->pkey	= sidr_param->pkey;
1401 		if (req->pkey != sidr_param->bth_pkey)
1402 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1403 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1404 					    sidr_param->bth_pkey, req->pkey);
1405 		break;
1406 	default:
1407 		return -EINVAL;
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1414 				  const struct sockaddr_in *dst_addr,
1415 				  const struct sockaddr_in *src_addr)
1416 {
1417 	__be32 daddr = dst_addr->sin_addr.s_addr,
1418 	       saddr = src_addr->sin_addr.s_addr;
1419 	struct fib_result res;
1420 	struct flowi4 fl4;
1421 	int err;
1422 	bool ret;
1423 
1424 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1425 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1426 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1427 	    ipv4_is_loopback(saddr))
1428 		return false;
1429 
1430 	memset(&fl4, 0, sizeof(fl4));
1431 	fl4.flowi4_iif = net_dev->ifindex;
1432 	fl4.daddr = daddr;
1433 	fl4.saddr = saddr;
1434 
1435 	rcu_read_lock();
1436 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1437 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1438 	rcu_read_unlock();
1439 
1440 	return ret;
1441 }
1442 
1443 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1444 				  const struct sockaddr_in6 *dst_addr,
1445 				  const struct sockaddr_in6 *src_addr)
1446 {
1447 #if IS_ENABLED(CONFIG_IPV6)
1448 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1449 			   IPV6_ADDR_LINKLOCAL;
1450 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1451 					 &src_addr->sin6_addr, net_dev->ifindex,
1452 					 NULL, strict);
1453 	bool ret;
1454 
1455 	if (!rt)
1456 		return false;
1457 
1458 	ret = rt->rt6i_idev->dev == net_dev;
1459 	ip6_rt_put(rt);
1460 
1461 	return ret;
1462 #else
1463 	return false;
1464 #endif
1465 }
1466 
1467 static bool validate_net_dev(struct net_device *net_dev,
1468 			     const struct sockaddr *daddr,
1469 			     const struct sockaddr *saddr)
1470 {
1471 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1472 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1473 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1474 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1475 
1476 	switch (daddr->sa_family) {
1477 	case AF_INET:
1478 		return saddr->sa_family == AF_INET &&
1479 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1480 
1481 	case AF_INET6:
1482 		return saddr->sa_family == AF_INET6 &&
1483 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1484 
1485 	default:
1486 		return false;
1487 	}
1488 }
1489 
1490 static struct net_device *
1491 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1492 {
1493 	const struct ib_gid_attr *sgid_attr = NULL;
1494 	struct net_device *ndev;
1495 
1496 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1497 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1498 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1499 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1500 
1501 	if (!sgid_attr)
1502 		return NULL;
1503 
1504 	rcu_read_lock();
1505 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1506 	if (IS_ERR(ndev))
1507 		ndev = NULL;
1508 	else
1509 		dev_hold(ndev);
1510 	rcu_read_unlock();
1511 	return ndev;
1512 }
1513 
1514 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1515 					  struct cma_req_info *req)
1516 {
1517 	struct sockaddr *listen_addr =
1518 			(struct sockaddr *)&req->listen_addr_storage;
1519 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1520 	struct net_device *net_dev;
1521 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1522 	int err;
1523 
1524 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1525 			       req->service_id);
1526 	if (err)
1527 		return ERR_PTR(err);
1528 
1529 	if (rdma_protocol_roce(req->device, req->port))
1530 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1531 	else
1532 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1533 						   req->pkey,
1534 						   gid, listen_addr);
1535 	if (!net_dev)
1536 		return ERR_PTR(-ENODEV);
1537 
1538 	return net_dev;
1539 }
1540 
1541 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1542 {
1543 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1544 }
1545 
1546 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1547 				   const struct cma_hdr *hdr)
1548 {
1549 	struct sockaddr *addr = cma_src_addr(id_priv);
1550 	__be32 ip4_addr;
1551 	struct in6_addr ip6_addr;
1552 
1553 	if (cma_any_addr(addr) && !id_priv->afonly)
1554 		return true;
1555 
1556 	switch (addr->sa_family) {
1557 	case AF_INET:
1558 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1559 		if (cma_get_ip_ver(hdr) != 4)
1560 			return false;
1561 		if (!cma_any_addr(addr) &&
1562 		    hdr->dst_addr.ip4.addr != ip4_addr)
1563 			return false;
1564 		break;
1565 	case AF_INET6:
1566 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1567 		if (cma_get_ip_ver(hdr) != 6)
1568 			return false;
1569 		if (!cma_any_addr(addr) &&
1570 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1571 			return false;
1572 		break;
1573 	case AF_IB:
1574 		return true;
1575 	default:
1576 		return false;
1577 	}
1578 
1579 	return true;
1580 }
1581 
1582 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1583 {
1584 	struct ib_device *device = id->device;
1585 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1586 
1587 	return rdma_protocol_roce(device, port_num);
1588 }
1589 
1590 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1591 {
1592 	const struct sockaddr *daddr =
1593 			(const struct sockaddr *)&req->listen_addr_storage;
1594 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1595 
1596 	/* Returns true if the req is for IPv6 link local */
1597 	return (daddr->sa_family == AF_INET6 &&
1598 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1599 }
1600 
1601 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1602 			      const struct net_device *net_dev,
1603 			      const struct cma_req_info *req)
1604 {
1605 	const struct rdma_addr *addr = &id->route.addr;
1606 
1607 	if (!net_dev)
1608 		/* This request is an AF_IB request */
1609 		return (!id->port_num || id->port_num == req->port) &&
1610 		       (addr->src_addr.ss_family == AF_IB);
1611 
1612 	/*
1613 	 * If the request is not for IPv6 link local, allow matching
1614 	 * request to any netdevice of the one or multiport rdma device.
1615 	 */
1616 	if (!cma_is_req_ipv6_ll(req))
1617 		return true;
1618 	/*
1619 	 * Net namespaces must match, and if the listner is listening
1620 	 * on a specific netdevice than netdevice must match as well.
1621 	 */
1622 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1623 	    (!!addr->dev_addr.bound_dev_if ==
1624 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1625 		return true;
1626 	else
1627 		return false;
1628 }
1629 
1630 static struct rdma_id_private *cma_find_listener(
1631 		const struct rdma_bind_list *bind_list,
1632 		const struct ib_cm_id *cm_id,
1633 		const struct ib_cm_event *ib_event,
1634 		const struct cma_req_info *req,
1635 		const struct net_device *net_dev)
1636 {
1637 	struct rdma_id_private *id_priv, *id_priv_dev;
1638 
1639 	lockdep_assert_held(&lock);
1640 
1641 	if (!bind_list)
1642 		return ERR_PTR(-EINVAL);
1643 
1644 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1645 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1646 			if (id_priv->id.device == cm_id->device &&
1647 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1648 				return id_priv;
1649 			list_for_each_entry(id_priv_dev,
1650 					    &id_priv->listen_list,
1651 					    listen_item) {
1652 				if (id_priv_dev->id.device == cm_id->device &&
1653 				    cma_match_net_dev(&id_priv_dev->id,
1654 						      net_dev, req))
1655 					return id_priv_dev;
1656 			}
1657 		}
1658 	}
1659 
1660 	return ERR_PTR(-EINVAL);
1661 }
1662 
1663 static struct rdma_id_private *
1664 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1665 		     const struct ib_cm_event *ib_event,
1666 		     struct cma_req_info *req,
1667 		     struct net_device **net_dev)
1668 {
1669 	struct rdma_bind_list *bind_list;
1670 	struct rdma_id_private *id_priv;
1671 	int err;
1672 
1673 	err = cma_save_req_info(ib_event, req);
1674 	if (err)
1675 		return ERR_PTR(err);
1676 
1677 	*net_dev = cma_get_net_dev(ib_event, req);
1678 	if (IS_ERR(*net_dev)) {
1679 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1680 			/* Assuming the protocol is AF_IB */
1681 			*net_dev = NULL;
1682 		} else {
1683 			return ERR_CAST(*net_dev);
1684 		}
1685 	}
1686 
1687 	mutex_lock(&lock);
1688 	/*
1689 	 * Net namespace might be getting deleted while route lookup,
1690 	 * cm_id lookup is in progress. Therefore, perform netdevice
1691 	 * validation, cm_id lookup under rcu lock.
1692 	 * RCU lock along with netdevice state check, synchronizes with
1693 	 * netdevice migrating to different net namespace and also avoids
1694 	 * case where net namespace doesn't get deleted while lookup is in
1695 	 * progress.
1696 	 * If the device state is not IFF_UP, its properties such as ifindex
1697 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1698 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1699 	 * ongoing operations on net device after device is closed using
1700 	 * synchronize_net().
1701 	 */
1702 	rcu_read_lock();
1703 	if (*net_dev) {
1704 		/*
1705 		 * If netdevice is down, it is likely that it is administratively
1706 		 * down or it might be migrating to different namespace.
1707 		 * In that case avoid further processing, as the net namespace
1708 		 * or ifindex may change.
1709 		 */
1710 		if (((*net_dev)->flags & IFF_UP) == 0) {
1711 			id_priv = ERR_PTR(-EHOSTUNREACH);
1712 			goto err;
1713 		}
1714 
1715 		if (!validate_net_dev(*net_dev,
1716 				 (struct sockaddr *)&req->listen_addr_storage,
1717 				 (struct sockaddr *)&req->src_addr_storage)) {
1718 			id_priv = ERR_PTR(-EHOSTUNREACH);
1719 			goto err;
1720 		}
1721 	}
1722 
1723 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1724 				rdma_ps_from_service_id(req->service_id),
1725 				cma_port_from_service_id(req->service_id));
1726 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1727 err:
1728 	rcu_read_unlock();
1729 	mutex_unlock(&lock);
1730 	if (IS_ERR(id_priv) && *net_dev) {
1731 		dev_put(*net_dev);
1732 		*net_dev = NULL;
1733 	}
1734 	return id_priv;
1735 }
1736 
1737 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1738 {
1739 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1740 }
1741 
1742 static void cma_cancel_route(struct rdma_id_private *id_priv)
1743 {
1744 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1745 		if (id_priv->query)
1746 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1747 	}
1748 }
1749 
1750 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1751 {
1752 	struct rdma_id_private *dev_id_priv;
1753 
1754 	lockdep_assert_held(&lock);
1755 
1756 	/*
1757 	 * Remove from listen_any_list to prevent added devices from spawning
1758 	 * additional listen requests.
1759 	 */
1760 	list_del_init(&id_priv->listen_any_item);
1761 
1762 	while (!list_empty(&id_priv->listen_list)) {
1763 		dev_id_priv =
1764 			list_first_entry(&id_priv->listen_list,
1765 					 struct rdma_id_private, listen_item);
1766 		/* sync with device removal to avoid duplicate destruction */
1767 		list_del_init(&dev_id_priv->device_item);
1768 		list_del_init(&dev_id_priv->listen_item);
1769 		mutex_unlock(&lock);
1770 
1771 		rdma_destroy_id(&dev_id_priv->id);
1772 		mutex_lock(&lock);
1773 	}
1774 }
1775 
1776 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1777 {
1778 	mutex_lock(&lock);
1779 	_cma_cancel_listens(id_priv);
1780 	mutex_unlock(&lock);
1781 }
1782 
1783 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1784 				 enum rdma_cm_state state)
1785 {
1786 	switch (state) {
1787 	case RDMA_CM_ADDR_QUERY:
1788 		/*
1789 		 * We can avoid doing the rdma_addr_cancel() based on state,
1790 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1791 		 * Notice that the addr_handler work could still be exiting
1792 		 * outside this state, however due to the interaction with the
1793 		 * handler_mutex the work is guaranteed not to touch id_priv
1794 		 * during exit.
1795 		 */
1796 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1797 		break;
1798 	case RDMA_CM_ROUTE_QUERY:
1799 		cma_cancel_route(id_priv);
1800 		break;
1801 	case RDMA_CM_LISTEN:
1802 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1803 			cma_cancel_listens(id_priv);
1804 		break;
1805 	default:
1806 		break;
1807 	}
1808 }
1809 
1810 static void cma_release_port(struct rdma_id_private *id_priv)
1811 {
1812 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1813 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1814 
1815 	if (!bind_list)
1816 		return;
1817 
1818 	mutex_lock(&lock);
1819 	hlist_del(&id_priv->node);
1820 	if (hlist_empty(&bind_list->owners)) {
1821 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1822 		kfree(bind_list);
1823 	}
1824 	mutex_unlock(&lock);
1825 }
1826 
1827 static void destroy_mc(struct rdma_id_private *id_priv,
1828 		       struct cma_multicast *mc)
1829 {
1830 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1831 
1832 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1833 		ib_sa_free_multicast(mc->sa_mc);
1834 
1835 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1836 		struct rdma_dev_addr *dev_addr =
1837 			&id_priv->id.route.addr.dev_addr;
1838 		struct net_device *ndev = NULL;
1839 
1840 		if (dev_addr->bound_dev_if)
1841 			ndev = dev_get_by_index(dev_addr->net,
1842 						dev_addr->bound_dev_if);
1843 		if (ndev) {
1844 			union ib_gid mgid;
1845 
1846 			cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr,
1847 				     &mgid);
1848 
1849 			if (!send_only)
1850 				cma_igmp_send(ndev, &mgid, false);
1851 
1852 			dev_put(ndev);
1853 		}
1854 
1855 		cancel_work_sync(&mc->iboe_join.work);
1856 	}
1857 	kfree(mc);
1858 }
1859 
1860 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1861 {
1862 	struct cma_multicast *mc;
1863 
1864 	while (!list_empty(&id_priv->mc_list)) {
1865 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
1866 				      list);
1867 		list_del(&mc->list);
1868 		destroy_mc(id_priv, mc);
1869 	}
1870 }
1871 
1872 static void _destroy_id(struct rdma_id_private *id_priv,
1873 			enum rdma_cm_state state)
1874 {
1875 	cma_cancel_operation(id_priv, state);
1876 
1877 	rdma_restrack_del(&id_priv->res);
1878 	if (id_priv->cma_dev) {
1879 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
1880 			if (id_priv->cm_id.ib)
1881 				ib_destroy_cm_id(id_priv->cm_id.ib);
1882 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
1883 			if (id_priv->cm_id.iw)
1884 				iw_destroy_cm_id(id_priv->cm_id.iw);
1885 		}
1886 		cma_leave_mc_groups(id_priv);
1887 		cma_release_dev(id_priv);
1888 	}
1889 
1890 	cma_release_port(id_priv);
1891 	cma_id_put(id_priv);
1892 	wait_for_completion(&id_priv->comp);
1893 
1894 	if (id_priv->internal_id)
1895 		cma_id_put(id_priv->id.context);
1896 
1897 	kfree(id_priv->id.route.path_rec);
1898 
1899 	put_net(id_priv->id.route.addr.dev_addr.net);
1900 	kfree(id_priv);
1901 }
1902 
1903 /*
1904  * destroy an ID from within the handler_mutex. This ensures that no other
1905  * handlers can start running concurrently.
1906  */
1907 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
1908 	__releases(&idprv->handler_mutex)
1909 {
1910 	enum rdma_cm_state state;
1911 	unsigned long flags;
1912 
1913 	trace_cm_id_destroy(id_priv);
1914 
1915 	/*
1916 	 * Setting the state to destroyed under the handler mutex provides a
1917 	 * fence against calling handler callbacks. If this is invoked due to
1918 	 * the failure of a handler callback then it guarentees that no future
1919 	 * handlers will be called.
1920 	 */
1921 	lockdep_assert_held(&id_priv->handler_mutex);
1922 	spin_lock_irqsave(&id_priv->lock, flags);
1923 	state = id_priv->state;
1924 	id_priv->state = RDMA_CM_DESTROYING;
1925 	spin_unlock_irqrestore(&id_priv->lock, flags);
1926 	mutex_unlock(&id_priv->handler_mutex);
1927 	_destroy_id(id_priv, state);
1928 }
1929 
1930 void rdma_destroy_id(struct rdma_cm_id *id)
1931 {
1932 	struct rdma_id_private *id_priv =
1933 		container_of(id, struct rdma_id_private, id);
1934 
1935 	mutex_lock(&id_priv->handler_mutex);
1936 	destroy_id_handler_unlock(id_priv);
1937 }
1938 EXPORT_SYMBOL(rdma_destroy_id);
1939 
1940 static int cma_rep_recv(struct rdma_id_private *id_priv)
1941 {
1942 	int ret;
1943 
1944 	ret = cma_modify_qp_rtr(id_priv, NULL);
1945 	if (ret)
1946 		goto reject;
1947 
1948 	ret = cma_modify_qp_rts(id_priv, NULL);
1949 	if (ret)
1950 		goto reject;
1951 
1952 	trace_cm_send_rtu(id_priv);
1953 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
1954 	if (ret)
1955 		goto reject;
1956 
1957 	return 0;
1958 reject:
1959 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
1960 	cma_modify_qp_err(id_priv);
1961 	trace_cm_send_rej(id_priv);
1962 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
1963 		       NULL, 0, NULL, 0);
1964 	return ret;
1965 }
1966 
1967 static void cma_set_rep_event_data(struct rdma_cm_event *event,
1968 				   const struct ib_cm_rep_event_param *rep_data,
1969 				   void *private_data)
1970 {
1971 	event->param.conn.private_data = private_data;
1972 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
1973 	event->param.conn.responder_resources = rep_data->responder_resources;
1974 	event->param.conn.initiator_depth = rep_data->initiator_depth;
1975 	event->param.conn.flow_control = rep_data->flow_control;
1976 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
1977 	event->param.conn.srq = rep_data->srq;
1978 	event->param.conn.qp_num = rep_data->remote_qpn;
1979 
1980 	event->ece.vendor_id = rep_data->ece.vendor_id;
1981 	event->ece.attr_mod = rep_data->ece.attr_mod;
1982 }
1983 
1984 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
1985 				struct rdma_cm_event *event)
1986 {
1987 	int ret;
1988 
1989 	lockdep_assert_held(&id_priv->handler_mutex);
1990 
1991 	trace_cm_event_handler(id_priv, event);
1992 	ret = id_priv->id.event_handler(&id_priv->id, event);
1993 	trace_cm_event_done(id_priv, event, ret);
1994 	return ret;
1995 }
1996 
1997 static int cma_ib_handler(struct ib_cm_id *cm_id,
1998 			  const struct ib_cm_event *ib_event)
1999 {
2000 	struct rdma_id_private *id_priv = cm_id->context;
2001 	struct rdma_cm_event event = {};
2002 	enum rdma_cm_state state;
2003 	int ret;
2004 
2005 	mutex_lock(&id_priv->handler_mutex);
2006 	state = READ_ONCE(id_priv->state);
2007 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2008 	     state != RDMA_CM_CONNECT) ||
2009 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2010 	     state != RDMA_CM_DISCONNECT))
2011 		goto out;
2012 
2013 	switch (ib_event->event) {
2014 	case IB_CM_REQ_ERROR:
2015 	case IB_CM_REP_ERROR:
2016 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2017 		event.status = -ETIMEDOUT;
2018 		break;
2019 	case IB_CM_REP_RECEIVED:
2020 		if (state == RDMA_CM_CONNECT &&
2021 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2022 			trace_cm_send_mra(id_priv);
2023 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2024 		}
2025 		if (id_priv->id.qp) {
2026 			event.status = cma_rep_recv(id_priv);
2027 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2028 						     RDMA_CM_EVENT_ESTABLISHED;
2029 		} else {
2030 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2031 		}
2032 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2033 				       ib_event->private_data);
2034 		break;
2035 	case IB_CM_RTU_RECEIVED:
2036 	case IB_CM_USER_ESTABLISHED:
2037 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2038 		break;
2039 	case IB_CM_DREQ_ERROR:
2040 		event.status = -ETIMEDOUT;
2041 		fallthrough;
2042 	case IB_CM_DREQ_RECEIVED:
2043 	case IB_CM_DREP_RECEIVED:
2044 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2045 				   RDMA_CM_DISCONNECT))
2046 			goto out;
2047 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2048 		break;
2049 	case IB_CM_TIMEWAIT_EXIT:
2050 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2051 		break;
2052 	case IB_CM_MRA_RECEIVED:
2053 		/* ignore event */
2054 		goto out;
2055 	case IB_CM_REJ_RECEIVED:
2056 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2057 										ib_event->param.rej_rcvd.reason));
2058 		cma_modify_qp_err(id_priv);
2059 		event.status = ib_event->param.rej_rcvd.reason;
2060 		event.event = RDMA_CM_EVENT_REJECTED;
2061 		event.param.conn.private_data = ib_event->private_data;
2062 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2063 		break;
2064 	default:
2065 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2066 		       ib_event->event);
2067 		goto out;
2068 	}
2069 
2070 	ret = cma_cm_event_handler(id_priv, &event);
2071 	if (ret) {
2072 		/* Destroy the CM ID by returning a non-zero value. */
2073 		id_priv->cm_id.ib = NULL;
2074 		destroy_id_handler_unlock(id_priv);
2075 		return ret;
2076 	}
2077 out:
2078 	mutex_unlock(&id_priv->handler_mutex);
2079 	return 0;
2080 }
2081 
2082 static struct rdma_id_private *
2083 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2084 		   const struct ib_cm_event *ib_event,
2085 		   struct net_device *net_dev)
2086 {
2087 	struct rdma_id_private *listen_id_priv;
2088 	struct rdma_id_private *id_priv;
2089 	struct rdma_cm_id *id;
2090 	struct rdma_route *rt;
2091 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2092 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2093 	const __be64 service_id =
2094 		ib_event->param.req_rcvd.primary_path->service_id;
2095 	int ret;
2096 
2097 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2098 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2099 				   listen_id->event_handler, listen_id->context,
2100 				   listen_id->ps,
2101 				   ib_event->param.req_rcvd.qp_type,
2102 				   listen_id_priv);
2103 	if (IS_ERR(id_priv))
2104 		return NULL;
2105 
2106 	id = &id_priv->id;
2107 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2108 			      (struct sockaddr *)&id->route.addr.dst_addr,
2109 			      listen_id, ib_event, ss_family, service_id))
2110 		goto err;
2111 
2112 	rt = &id->route;
2113 	rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2114 	rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
2115 				     GFP_KERNEL);
2116 	if (!rt->path_rec)
2117 		goto err;
2118 
2119 	rt->path_rec[0] = *path;
2120 	if (rt->num_paths == 2)
2121 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2122 
2123 	if (net_dev) {
2124 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2125 	} else {
2126 		if (!cma_protocol_roce(listen_id) &&
2127 		    cma_any_addr(cma_src_addr(id_priv))) {
2128 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2129 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2130 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2131 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2132 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2133 			if (ret)
2134 				goto err;
2135 		}
2136 	}
2137 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2138 
2139 	id_priv->state = RDMA_CM_CONNECT;
2140 	return id_priv;
2141 
2142 err:
2143 	rdma_destroy_id(id);
2144 	return NULL;
2145 }
2146 
2147 static struct rdma_id_private *
2148 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2149 		  const struct ib_cm_event *ib_event,
2150 		  struct net_device *net_dev)
2151 {
2152 	const struct rdma_id_private *listen_id_priv;
2153 	struct rdma_id_private *id_priv;
2154 	struct rdma_cm_id *id;
2155 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2156 	struct net *net = listen_id->route.addr.dev_addr.net;
2157 	int ret;
2158 
2159 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2160 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2161 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2162 				   listen_id_priv);
2163 	if (IS_ERR(id_priv))
2164 		return NULL;
2165 
2166 	id = &id_priv->id;
2167 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2168 			      (struct sockaddr *)&id->route.addr.dst_addr,
2169 			      listen_id, ib_event, ss_family,
2170 			      ib_event->param.sidr_req_rcvd.service_id))
2171 		goto err;
2172 
2173 	if (net_dev) {
2174 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2175 	} else {
2176 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2177 			ret = cma_translate_addr(cma_src_addr(id_priv),
2178 						 &id->route.addr.dev_addr);
2179 			if (ret)
2180 				goto err;
2181 		}
2182 	}
2183 
2184 	id_priv->state = RDMA_CM_CONNECT;
2185 	return id_priv;
2186 err:
2187 	rdma_destroy_id(id);
2188 	return NULL;
2189 }
2190 
2191 static void cma_set_req_event_data(struct rdma_cm_event *event,
2192 				   const struct ib_cm_req_event_param *req_data,
2193 				   void *private_data, int offset)
2194 {
2195 	event->param.conn.private_data = private_data + offset;
2196 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2197 	event->param.conn.responder_resources = req_data->responder_resources;
2198 	event->param.conn.initiator_depth = req_data->initiator_depth;
2199 	event->param.conn.flow_control = req_data->flow_control;
2200 	event->param.conn.retry_count = req_data->retry_count;
2201 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2202 	event->param.conn.srq = req_data->srq;
2203 	event->param.conn.qp_num = req_data->remote_qpn;
2204 
2205 	event->ece.vendor_id = req_data->ece.vendor_id;
2206 	event->ece.attr_mod = req_data->ece.attr_mod;
2207 }
2208 
2209 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2210 				    const struct ib_cm_event *ib_event)
2211 {
2212 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2213 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2214 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2215 		 (id->qp_type == IB_QPT_UD)) ||
2216 		(!id->qp_type));
2217 }
2218 
2219 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2220 			      const struct ib_cm_event *ib_event)
2221 {
2222 	struct rdma_id_private *listen_id, *conn_id = NULL;
2223 	struct rdma_cm_event event = {};
2224 	struct cma_req_info req = {};
2225 	struct net_device *net_dev;
2226 	u8 offset;
2227 	int ret;
2228 
2229 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2230 	if (IS_ERR(listen_id))
2231 		return PTR_ERR(listen_id);
2232 
2233 	trace_cm_req_handler(listen_id, ib_event->event);
2234 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2235 		ret = -EINVAL;
2236 		goto net_dev_put;
2237 	}
2238 
2239 	mutex_lock(&listen_id->handler_mutex);
2240 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2241 		ret = -ECONNABORTED;
2242 		goto err_unlock;
2243 	}
2244 
2245 	offset = cma_user_data_offset(listen_id);
2246 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2247 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2248 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2249 		event.param.ud.private_data = ib_event->private_data + offset;
2250 		event.param.ud.private_data_len =
2251 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2252 	} else {
2253 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2254 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2255 				       ib_event->private_data, offset);
2256 	}
2257 	if (!conn_id) {
2258 		ret = -ENOMEM;
2259 		goto err_unlock;
2260 	}
2261 
2262 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2263 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2264 	if (ret) {
2265 		destroy_id_handler_unlock(conn_id);
2266 		goto err_unlock;
2267 	}
2268 
2269 	conn_id->cm_id.ib = cm_id;
2270 	cm_id->context = conn_id;
2271 	cm_id->cm_handler = cma_ib_handler;
2272 
2273 	ret = cma_cm_event_handler(conn_id, &event);
2274 	if (ret) {
2275 		/* Destroy the CM ID by returning a non-zero value. */
2276 		conn_id->cm_id.ib = NULL;
2277 		mutex_unlock(&listen_id->handler_mutex);
2278 		destroy_id_handler_unlock(conn_id);
2279 		goto net_dev_put;
2280 	}
2281 
2282 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2283 	    conn_id->id.qp_type != IB_QPT_UD) {
2284 		trace_cm_send_mra(cm_id->context);
2285 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2286 	}
2287 	mutex_unlock(&conn_id->handler_mutex);
2288 
2289 err_unlock:
2290 	mutex_unlock(&listen_id->handler_mutex);
2291 
2292 net_dev_put:
2293 	if (net_dev)
2294 		dev_put(net_dev);
2295 
2296 	return ret;
2297 }
2298 
2299 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2300 {
2301 	if (addr->sa_family == AF_IB)
2302 		return ((struct sockaddr_ib *) addr)->sib_sid;
2303 
2304 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2305 }
2306 EXPORT_SYMBOL(rdma_get_service_id);
2307 
2308 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2309 		    union ib_gid *dgid)
2310 {
2311 	struct rdma_addr *addr = &cm_id->route.addr;
2312 
2313 	if (!cm_id->device) {
2314 		if (sgid)
2315 			memset(sgid, 0, sizeof(*sgid));
2316 		if (dgid)
2317 			memset(dgid, 0, sizeof(*dgid));
2318 		return;
2319 	}
2320 
2321 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2322 		if (sgid)
2323 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2324 		if (dgid)
2325 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2326 	} else {
2327 		if (sgid)
2328 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2329 		if (dgid)
2330 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2331 	}
2332 }
2333 EXPORT_SYMBOL(rdma_read_gids);
2334 
2335 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2336 {
2337 	struct rdma_id_private *id_priv = iw_id->context;
2338 	struct rdma_cm_event event = {};
2339 	int ret = 0;
2340 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2341 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2342 
2343 	mutex_lock(&id_priv->handler_mutex);
2344 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2345 		goto out;
2346 
2347 	switch (iw_event->event) {
2348 	case IW_CM_EVENT_CLOSE:
2349 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2350 		break;
2351 	case IW_CM_EVENT_CONNECT_REPLY:
2352 		memcpy(cma_src_addr(id_priv), laddr,
2353 		       rdma_addr_size(laddr));
2354 		memcpy(cma_dst_addr(id_priv), raddr,
2355 		       rdma_addr_size(raddr));
2356 		switch (iw_event->status) {
2357 		case 0:
2358 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2359 			event.param.conn.initiator_depth = iw_event->ird;
2360 			event.param.conn.responder_resources = iw_event->ord;
2361 			break;
2362 		case -ECONNRESET:
2363 		case -ECONNREFUSED:
2364 			event.event = RDMA_CM_EVENT_REJECTED;
2365 			break;
2366 		case -ETIMEDOUT:
2367 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2368 			break;
2369 		default:
2370 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2371 			break;
2372 		}
2373 		break;
2374 	case IW_CM_EVENT_ESTABLISHED:
2375 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2376 		event.param.conn.initiator_depth = iw_event->ird;
2377 		event.param.conn.responder_resources = iw_event->ord;
2378 		break;
2379 	default:
2380 		goto out;
2381 	}
2382 
2383 	event.status = iw_event->status;
2384 	event.param.conn.private_data = iw_event->private_data;
2385 	event.param.conn.private_data_len = iw_event->private_data_len;
2386 	ret = cma_cm_event_handler(id_priv, &event);
2387 	if (ret) {
2388 		/* Destroy the CM ID by returning a non-zero value. */
2389 		id_priv->cm_id.iw = NULL;
2390 		destroy_id_handler_unlock(id_priv);
2391 		return ret;
2392 	}
2393 
2394 out:
2395 	mutex_unlock(&id_priv->handler_mutex);
2396 	return ret;
2397 }
2398 
2399 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2400 			       struct iw_cm_event *iw_event)
2401 {
2402 	struct rdma_id_private *listen_id, *conn_id;
2403 	struct rdma_cm_event event = {};
2404 	int ret = -ECONNABORTED;
2405 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2406 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2407 
2408 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2409 	event.param.conn.private_data = iw_event->private_data;
2410 	event.param.conn.private_data_len = iw_event->private_data_len;
2411 	event.param.conn.initiator_depth = iw_event->ird;
2412 	event.param.conn.responder_resources = iw_event->ord;
2413 
2414 	listen_id = cm_id->context;
2415 
2416 	mutex_lock(&listen_id->handler_mutex);
2417 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2418 		goto out;
2419 
2420 	/* Create a new RDMA id for the new IW CM ID */
2421 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2422 				   listen_id->id.event_handler,
2423 				   listen_id->id.context, RDMA_PS_TCP,
2424 				   IB_QPT_RC, listen_id);
2425 	if (IS_ERR(conn_id)) {
2426 		ret = -ENOMEM;
2427 		goto out;
2428 	}
2429 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2430 	conn_id->state = RDMA_CM_CONNECT;
2431 
2432 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2433 	if (ret) {
2434 		mutex_unlock(&listen_id->handler_mutex);
2435 		destroy_id_handler_unlock(conn_id);
2436 		return ret;
2437 	}
2438 
2439 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2440 	if (ret) {
2441 		mutex_unlock(&listen_id->handler_mutex);
2442 		destroy_id_handler_unlock(conn_id);
2443 		return ret;
2444 	}
2445 
2446 	conn_id->cm_id.iw = cm_id;
2447 	cm_id->context = conn_id;
2448 	cm_id->cm_handler = cma_iw_handler;
2449 
2450 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2451 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2452 
2453 	ret = cma_cm_event_handler(conn_id, &event);
2454 	if (ret) {
2455 		/* User wants to destroy the CM ID */
2456 		conn_id->cm_id.iw = NULL;
2457 		mutex_unlock(&listen_id->handler_mutex);
2458 		destroy_id_handler_unlock(conn_id);
2459 		return ret;
2460 	}
2461 
2462 	mutex_unlock(&conn_id->handler_mutex);
2463 
2464 out:
2465 	mutex_unlock(&listen_id->handler_mutex);
2466 	return ret;
2467 }
2468 
2469 static int cma_ib_listen(struct rdma_id_private *id_priv)
2470 {
2471 	struct sockaddr *addr;
2472 	struct ib_cm_id	*id;
2473 	__be64 svc_id;
2474 
2475 	addr = cma_src_addr(id_priv);
2476 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2477 	id = ib_cm_insert_listen(id_priv->id.device,
2478 				 cma_ib_req_handler, svc_id);
2479 	if (IS_ERR(id))
2480 		return PTR_ERR(id);
2481 	id_priv->cm_id.ib = id;
2482 
2483 	return 0;
2484 }
2485 
2486 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2487 {
2488 	int ret;
2489 	struct iw_cm_id	*id;
2490 
2491 	id = iw_create_cm_id(id_priv->id.device,
2492 			     iw_conn_req_handler,
2493 			     id_priv);
2494 	if (IS_ERR(id))
2495 		return PTR_ERR(id);
2496 
2497 	mutex_lock(&id_priv->qp_mutex);
2498 	id->tos = id_priv->tos;
2499 	id->tos_set = id_priv->tos_set;
2500 	mutex_unlock(&id_priv->qp_mutex);
2501 	id->afonly = id_priv->afonly;
2502 	id_priv->cm_id.iw = id;
2503 
2504 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2505 	       rdma_addr_size(cma_src_addr(id_priv)));
2506 
2507 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2508 
2509 	if (ret) {
2510 		iw_destroy_cm_id(id_priv->cm_id.iw);
2511 		id_priv->cm_id.iw = NULL;
2512 	}
2513 
2514 	return ret;
2515 }
2516 
2517 static int cma_listen_handler(struct rdma_cm_id *id,
2518 			      struct rdma_cm_event *event)
2519 {
2520 	struct rdma_id_private *id_priv = id->context;
2521 
2522 	/* Listening IDs are always destroyed on removal */
2523 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2524 		return -1;
2525 
2526 	id->context = id_priv->id.context;
2527 	id->event_handler = id_priv->id.event_handler;
2528 	trace_cm_event_handler(id_priv, event);
2529 	return id_priv->id.event_handler(id, event);
2530 }
2531 
2532 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2533 			     struct cma_device *cma_dev,
2534 			     struct rdma_id_private **to_destroy)
2535 {
2536 	struct rdma_id_private *dev_id_priv;
2537 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2538 	int ret;
2539 
2540 	lockdep_assert_held(&lock);
2541 
2542 	*to_destroy = NULL;
2543 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2544 		return 0;
2545 
2546 	dev_id_priv =
2547 		__rdma_create_id(net, cma_listen_handler, id_priv,
2548 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2549 	if (IS_ERR(dev_id_priv))
2550 		return PTR_ERR(dev_id_priv);
2551 
2552 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2553 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2554 	       rdma_addr_size(cma_src_addr(id_priv)));
2555 
2556 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2557 	rdma_restrack_add(&dev_id_priv->res);
2558 	cma_id_get(id_priv);
2559 	dev_id_priv->internal_id = 1;
2560 	dev_id_priv->afonly = id_priv->afonly;
2561 	mutex_lock(&id_priv->qp_mutex);
2562 	dev_id_priv->tos_set = id_priv->tos_set;
2563 	dev_id_priv->tos = id_priv->tos;
2564 	mutex_unlock(&id_priv->qp_mutex);
2565 
2566 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2567 	if (ret)
2568 		goto err_listen;
2569 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2570 	return 0;
2571 err_listen:
2572 	/* Caller must destroy this after releasing lock */
2573 	*to_destroy = dev_id_priv;
2574 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2575 	return ret;
2576 }
2577 
2578 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2579 {
2580 	struct rdma_id_private *to_destroy;
2581 	struct cma_device *cma_dev;
2582 	int ret;
2583 
2584 	mutex_lock(&lock);
2585 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2586 	list_for_each_entry(cma_dev, &dev_list, list) {
2587 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2588 		if (ret) {
2589 			/* Prevent racing with cma_process_remove() */
2590 			if (to_destroy)
2591 				list_del_init(&to_destroy->device_item);
2592 			goto err_listen;
2593 		}
2594 	}
2595 	mutex_unlock(&lock);
2596 	return 0;
2597 
2598 err_listen:
2599 	_cma_cancel_listens(id_priv);
2600 	mutex_unlock(&lock);
2601 	if (to_destroy)
2602 		rdma_destroy_id(&to_destroy->id);
2603 	return ret;
2604 }
2605 
2606 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2607 {
2608 	struct rdma_id_private *id_priv;
2609 
2610 	id_priv = container_of(id, struct rdma_id_private, id);
2611 	mutex_lock(&id_priv->qp_mutex);
2612 	id_priv->tos = (u8) tos;
2613 	id_priv->tos_set = true;
2614 	mutex_unlock(&id_priv->qp_mutex);
2615 }
2616 EXPORT_SYMBOL(rdma_set_service_type);
2617 
2618 /**
2619  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2620  *                          with a connection identifier.
2621  * @id: Communication identifier to associated with service type.
2622  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2623  *
2624  * This function should be called before rdma_connect() on active side,
2625  * and on passive side before rdma_accept(). It is applicable to primary
2626  * path only. The timeout will affect the local side of the QP, it is not
2627  * negotiated with remote side and zero disables the timer. In case it is
2628  * set before rdma_resolve_route, the value will also be used to determine
2629  * PacketLifeTime for RoCE.
2630  *
2631  * Return: 0 for success
2632  */
2633 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2634 {
2635 	struct rdma_id_private *id_priv;
2636 
2637 	if (id->qp_type != IB_QPT_RC)
2638 		return -EINVAL;
2639 
2640 	id_priv = container_of(id, struct rdma_id_private, id);
2641 	mutex_lock(&id_priv->qp_mutex);
2642 	id_priv->timeout = timeout;
2643 	id_priv->timeout_set = true;
2644 	mutex_unlock(&id_priv->qp_mutex);
2645 
2646 	return 0;
2647 }
2648 EXPORT_SYMBOL(rdma_set_ack_timeout);
2649 
2650 /**
2651  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2652  *			      QP associated with a connection identifier.
2653  * @id: Communication identifier to associated with service type.
2654  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2655  *		   Timer Field" in the IBTA specification.
2656  *
2657  * This function should be called before rdma_connect() on active
2658  * side, and on passive side before rdma_accept(). The timer value
2659  * will be associated with the local QP. When it receives a send it is
2660  * not read to handle, typically if the receive queue is empty, an RNR
2661  * Retry NAK is returned to the requester with the min_rnr_timer
2662  * encoded. The requester will then wait at least the time specified
2663  * in the NAK before retrying. The default is zero, which translates
2664  * to a minimum RNR Timer value of 655 ms.
2665  *
2666  * Return: 0 for success
2667  */
2668 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2669 {
2670 	struct rdma_id_private *id_priv;
2671 
2672 	/* It is a five-bit value */
2673 	if (min_rnr_timer & 0xe0)
2674 		return -EINVAL;
2675 
2676 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2677 		return -EINVAL;
2678 
2679 	id_priv = container_of(id, struct rdma_id_private, id);
2680 	mutex_lock(&id_priv->qp_mutex);
2681 	id_priv->min_rnr_timer = min_rnr_timer;
2682 	id_priv->min_rnr_timer_set = true;
2683 	mutex_unlock(&id_priv->qp_mutex);
2684 
2685 	return 0;
2686 }
2687 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2688 
2689 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2690 			      void *context)
2691 {
2692 	struct cma_work *work = context;
2693 	struct rdma_route *route;
2694 
2695 	route = &work->id->id.route;
2696 
2697 	if (!status) {
2698 		route->num_paths = 1;
2699 		*route->path_rec = *path_rec;
2700 	} else {
2701 		work->old_state = RDMA_CM_ROUTE_QUERY;
2702 		work->new_state = RDMA_CM_ADDR_RESOLVED;
2703 		work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2704 		work->event.status = status;
2705 		pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2706 				     status);
2707 	}
2708 
2709 	queue_work(cma_wq, &work->work);
2710 }
2711 
2712 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2713 			      unsigned long timeout_ms, struct cma_work *work)
2714 {
2715 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2716 	struct sa_path_rec path_rec;
2717 	ib_sa_comp_mask comp_mask;
2718 	struct sockaddr_in6 *sin6;
2719 	struct sockaddr_ib *sib;
2720 
2721 	memset(&path_rec, 0, sizeof path_rec);
2722 
2723 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2724 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2725 	else
2726 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2727 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2728 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2729 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2730 	path_rec.numb_path = 1;
2731 	path_rec.reversible = 1;
2732 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2733 						  cma_dst_addr(id_priv));
2734 
2735 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2736 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2737 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2738 
2739 	switch (cma_family(id_priv)) {
2740 	case AF_INET:
2741 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2742 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2743 		break;
2744 	case AF_INET6:
2745 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2746 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2747 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2748 		break;
2749 	case AF_IB:
2750 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2751 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2752 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2753 		break;
2754 	}
2755 
2756 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2757 					       id_priv->id.port_num, &path_rec,
2758 					       comp_mask, timeout_ms,
2759 					       GFP_KERNEL, cma_query_handler,
2760 					       work, &id_priv->query);
2761 
2762 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2763 }
2764 
2765 static void cma_iboe_join_work_handler(struct work_struct *work)
2766 {
2767 	struct cma_multicast *mc =
2768 		container_of(work, struct cma_multicast, iboe_join.work);
2769 	struct rdma_cm_event *event = &mc->iboe_join.event;
2770 	struct rdma_id_private *id_priv = mc->id_priv;
2771 	int ret;
2772 
2773 	mutex_lock(&id_priv->handler_mutex);
2774 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2775 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2776 		goto out_unlock;
2777 
2778 	ret = cma_cm_event_handler(id_priv, event);
2779 	WARN_ON(ret);
2780 
2781 out_unlock:
2782 	mutex_unlock(&id_priv->handler_mutex);
2783 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2784 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2785 }
2786 
2787 static void cma_work_handler(struct work_struct *_work)
2788 {
2789 	struct cma_work *work = container_of(_work, struct cma_work, work);
2790 	struct rdma_id_private *id_priv = work->id;
2791 
2792 	mutex_lock(&id_priv->handler_mutex);
2793 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2794 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2795 		goto out_unlock;
2796 	if (work->old_state != 0 || work->new_state != 0) {
2797 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2798 			goto out_unlock;
2799 	}
2800 
2801 	if (cma_cm_event_handler(id_priv, &work->event)) {
2802 		cma_id_put(id_priv);
2803 		destroy_id_handler_unlock(id_priv);
2804 		goto out_free;
2805 	}
2806 
2807 out_unlock:
2808 	mutex_unlock(&id_priv->handler_mutex);
2809 	cma_id_put(id_priv);
2810 out_free:
2811 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2812 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
2813 	kfree(work);
2814 }
2815 
2816 static void cma_init_resolve_route_work(struct cma_work *work,
2817 					struct rdma_id_private *id_priv)
2818 {
2819 	work->id = id_priv;
2820 	INIT_WORK(&work->work, cma_work_handler);
2821 	work->old_state = RDMA_CM_ROUTE_QUERY;
2822 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
2823 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
2824 }
2825 
2826 static void enqueue_resolve_addr_work(struct cma_work *work,
2827 				      struct rdma_id_private *id_priv)
2828 {
2829 	/* Balances with cma_id_put() in cma_work_handler */
2830 	cma_id_get(id_priv);
2831 
2832 	work->id = id_priv;
2833 	INIT_WORK(&work->work, cma_work_handler);
2834 	work->old_state = RDMA_CM_ADDR_QUERY;
2835 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2836 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
2837 
2838 	queue_work(cma_wq, &work->work);
2839 }
2840 
2841 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
2842 				unsigned long timeout_ms)
2843 {
2844 	struct rdma_route *route = &id_priv->id.route;
2845 	struct cma_work *work;
2846 	int ret;
2847 
2848 	work = kzalloc(sizeof *work, GFP_KERNEL);
2849 	if (!work)
2850 		return -ENOMEM;
2851 
2852 	cma_init_resolve_route_work(work, id_priv);
2853 
2854 	if (!route->path_rec)
2855 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
2856 	if (!route->path_rec) {
2857 		ret = -ENOMEM;
2858 		goto err1;
2859 	}
2860 
2861 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
2862 	if (ret)
2863 		goto err2;
2864 
2865 	return 0;
2866 err2:
2867 	kfree(route->path_rec);
2868 	route->path_rec = NULL;
2869 err1:
2870 	kfree(work);
2871 	return ret;
2872 }
2873 
2874 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
2875 					   unsigned long supported_gids,
2876 					   enum ib_gid_type default_gid)
2877 {
2878 	if ((network_type == RDMA_NETWORK_IPV4 ||
2879 	     network_type == RDMA_NETWORK_IPV6) &&
2880 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
2881 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
2882 
2883 	return default_gid;
2884 }
2885 
2886 /*
2887  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
2888  * path record type based on GID type.
2889  * It also sets up other L2 fields which includes destination mac address
2890  * netdev ifindex, of the path record.
2891  * It returns the netdev of the bound interface for this path record entry.
2892  */
2893 static struct net_device *
2894 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
2895 {
2896 	struct rdma_route *route = &id_priv->id.route;
2897 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
2898 	struct rdma_addr *addr = &route->addr;
2899 	unsigned long supported_gids;
2900 	struct net_device *ndev;
2901 
2902 	if (!addr->dev_addr.bound_dev_if)
2903 		return NULL;
2904 
2905 	ndev = dev_get_by_index(addr->dev_addr.net,
2906 				addr->dev_addr.bound_dev_if);
2907 	if (!ndev)
2908 		return NULL;
2909 
2910 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
2911 						    id_priv->id.port_num);
2912 	gid_type = cma_route_gid_type(addr->dev_addr.network,
2913 				      supported_gids,
2914 				      id_priv->gid_type);
2915 	/* Use the hint from IP Stack to select GID Type */
2916 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
2917 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
2918 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
2919 
2920 	route->path_rec->roce.route_resolved = true;
2921 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
2922 	return ndev;
2923 }
2924 
2925 int rdma_set_ib_path(struct rdma_cm_id *id,
2926 		     struct sa_path_rec *path_rec)
2927 {
2928 	struct rdma_id_private *id_priv;
2929 	struct net_device *ndev;
2930 	int ret;
2931 
2932 	id_priv = container_of(id, struct rdma_id_private, id);
2933 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
2934 			   RDMA_CM_ROUTE_RESOLVED))
2935 		return -EINVAL;
2936 
2937 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
2938 				     GFP_KERNEL);
2939 	if (!id->route.path_rec) {
2940 		ret = -ENOMEM;
2941 		goto err;
2942 	}
2943 
2944 	if (rdma_protocol_roce(id->device, id->port_num)) {
2945 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
2946 		if (!ndev) {
2947 			ret = -ENODEV;
2948 			goto err_free;
2949 		}
2950 		dev_put(ndev);
2951 	}
2952 
2953 	id->route.num_paths = 1;
2954 	return 0;
2955 
2956 err_free:
2957 	kfree(id->route.path_rec);
2958 	id->route.path_rec = NULL;
2959 err:
2960 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL(rdma_set_ib_path);
2964 
2965 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
2966 {
2967 	struct cma_work *work;
2968 
2969 	work = kzalloc(sizeof *work, GFP_KERNEL);
2970 	if (!work)
2971 		return -ENOMEM;
2972 
2973 	cma_init_resolve_route_work(work, id_priv);
2974 	queue_work(cma_wq, &work->work);
2975 	return 0;
2976 }
2977 
2978 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
2979 {
2980 	struct net_device *dev;
2981 
2982 	dev = vlan_dev_real_dev(vlan_ndev);
2983 	if (dev->num_tc)
2984 		return netdev_get_prio_tc_map(dev, prio);
2985 
2986 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
2987 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2988 }
2989 
2990 struct iboe_prio_tc_map {
2991 	int input_prio;
2992 	int output_tc;
2993 	bool found;
2994 };
2995 
2996 static int get_lower_vlan_dev_tc(struct net_device *dev,
2997 				 struct netdev_nested_priv *priv)
2998 {
2999 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3000 
3001 	if (is_vlan_dev(dev))
3002 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3003 	else if (dev->num_tc)
3004 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3005 	else
3006 		map->output_tc = 0;
3007 	/* We are interested only in first level VLAN device, so always
3008 	 * return 1 to stop iterating over next level devices.
3009 	 */
3010 	map->found = true;
3011 	return 1;
3012 }
3013 
3014 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3015 {
3016 	struct iboe_prio_tc_map prio_tc_map = {};
3017 	int prio = rt_tos2priority(tos);
3018 	struct netdev_nested_priv priv;
3019 
3020 	/* If VLAN device, get it directly from the VLAN netdev */
3021 	if (is_vlan_dev(ndev))
3022 		return get_vlan_ndev_tc(ndev, prio);
3023 
3024 	prio_tc_map.input_prio = prio;
3025 	priv.data = (void *)&prio_tc_map;
3026 	rcu_read_lock();
3027 	netdev_walk_all_lower_dev_rcu(ndev,
3028 				      get_lower_vlan_dev_tc,
3029 				      &priv);
3030 	rcu_read_unlock();
3031 	/* If map is found from lower device, use it; Otherwise
3032 	 * continue with the current netdevice to get priority to tc map.
3033 	 */
3034 	if (prio_tc_map.found)
3035 		return prio_tc_map.output_tc;
3036 	else if (ndev->num_tc)
3037 		return netdev_get_prio_tc_map(ndev, prio);
3038 	else
3039 		return 0;
3040 }
3041 
3042 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3043 {
3044 	struct sockaddr_in6 *addr6;
3045 	u16 dport, sport;
3046 	u32 hash, fl;
3047 
3048 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3049 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3050 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3051 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3052 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3053 		hash = (u32)sport * 31 + dport;
3054 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3055 	}
3056 
3057 	return cpu_to_be32(fl);
3058 }
3059 
3060 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3061 {
3062 	struct rdma_route *route = &id_priv->id.route;
3063 	struct rdma_addr *addr = &route->addr;
3064 	struct cma_work *work;
3065 	int ret;
3066 	struct net_device *ndev;
3067 
3068 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3069 					rdma_start_port(id_priv->cma_dev->device)];
3070 	u8 tos;
3071 
3072 	mutex_lock(&id_priv->qp_mutex);
3073 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3074 	mutex_unlock(&id_priv->qp_mutex);
3075 
3076 	work = kzalloc(sizeof *work, GFP_KERNEL);
3077 	if (!work)
3078 		return -ENOMEM;
3079 
3080 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3081 	if (!route->path_rec) {
3082 		ret = -ENOMEM;
3083 		goto err1;
3084 	}
3085 
3086 	route->num_paths = 1;
3087 
3088 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3089 	if (!ndev) {
3090 		ret = -ENODEV;
3091 		goto err2;
3092 	}
3093 
3094 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3095 		    &route->path_rec->sgid);
3096 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3097 		    &route->path_rec->dgid);
3098 
3099 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3100 		/* TODO: get the hoplimit from the inet/inet6 device */
3101 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3102 	else
3103 		route->path_rec->hop_limit = 1;
3104 	route->path_rec->reversible = 1;
3105 	route->path_rec->pkey = cpu_to_be16(0xffff);
3106 	route->path_rec->mtu_selector = IB_SA_EQ;
3107 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3108 	route->path_rec->traffic_class = tos;
3109 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3110 	route->path_rec->rate_selector = IB_SA_EQ;
3111 	route->path_rec->rate = iboe_get_rate(ndev);
3112 	dev_put(ndev);
3113 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3114 	/* In case ACK timeout is set, use this value to calculate
3115 	 * PacketLifeTime.  As per IBTA 12.7.34,
3116 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3117 	 * Assuming a negligible local ACK delay, we can use
3118 	 * PacketLifeTime = local ACK timeout/2
3119 	 * as a reasonable approximation for RoCE networks.
3120 	 */
3121 	mutex_lock(&id_priv->qp_mutex);
3122 	if (id_priv->timeout_set && id_priv->timeout)
3123 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3124 	else
3125 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3126 	mutex_unlock(&id_priv->qp_mutex);
3127 
3128 	if (!route->path_rec->mtu) {
3129 		ret = -EINVAL;
3130 		goto err2;
3131 	}
3132 
3133 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3134 					 id_priv->id.port_num))
3135 		route->path_rec->flow_label =
3136 			cma_get_roce_udp_flow_label(id_priv);
3137 
3138 	cma_init_resolve_route_work(work, id_priv);
3139 	queue_work(cma_wq, &work->work);
3140 
3141 	return 0;
3142 
3143 err2:
3144 	kfree(route->path_rec);
3145 	route->path_rec = NULL;
3146 	route->num_paths = 0;
3147 err1:
3148 	kfree(work);
3149 	return ret;
3150 }
3151 
3152 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3153 {
3154 	struct rdma_id_private *id_priv;
3155 	int ret;
3156 
3157 	if (!timeout_ms)
3158 		return -EINVAL;
3159 
3160 	id_priv = container_of(id, struct rdma_id_private, id);
3161 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3162 		return -EINVAL;
3163 
3164 	cma_id_get(id_priv);
3165 	if (rdma_cap_ib_sa(id->device, id->port_num))
3166 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3167 	else if (rdma_protocol_roce(id->device, id->port_num))
3168 		ret = cma_resolve_iboe_route(id_priv);
3169 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3170 		ret = cma_resolve_iw_route(id_priv);
3171 	else
3172 		ret = -ENOSYS;
3173 
3174 	if (ret)
3175 		goto err;
3176 
3177 	return 0;
3178 err:
3179 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3180 	cma_id_put(id_priv);
3181 	return ret;
3182 }
3183 EXPORT_SYMBOL(rdma_resolve_route);
3184 
3185 static void cma_set_loopback(struct sockaddr *addr)
3186 {
3187 	switch (addr->sa_family) {
3188 	case AF_INET:
3189 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3190 		break;
3191 	case AF_INET6:
3192 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3193 			      0, 0, 0, htonl(1));
3194 		break;
3195 	default:
3196 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3197 			    0, 0, 0, htonl(1));
3198 		break;
3199 	}
3200 }
3201 
3202 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3203 {
3204 	struct cma_device *cma_dev, *cur_dev;
3205 	union ib_gid gid;
3206 	enum ib_port_state port_state;
3207 	unsigned int p;
3208 	u16 pkey;
3209 	int ret;
3210 
3211 	cma_dev = NULL;
3212 	mutex_lock(&lock);
3213 	list_for_each_entry(cur_dev, &dev_list, list) {
3214 		if (cma_family(id_priv) == AF_IB &&
3215 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3216 			continue;
3217 
3218 		if (!cma_dev)
3219 			cma_dev = cur_dev;
3220 
3221 		rdma_for_each_port (cur_dev->device, p) {
3222 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3223 			    port_state == IB_PORT_ACTIVE) {
3224 				cma_dev = cur_dev;
3225 				goto port_found;
3226 			}
3227 		}
3228 	}
3229 
3230 	if (!cma_dev) {
3231 		ret = -ENODEV;
3232 		goto out;
3233 	}
3234 
3235 	p = 1;
3236 
3237 port_found:
3238 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3239 	if (ret)
3240 		goto out;
3241 
3242 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3243 	if (ret)
3244 		goto out;
3245 
3246 	id_priv->id.route.addr.dev_addr.dev_type =
3247 		(rdma_protocol_ib(cma_dev->device, p)) ?
3248 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3249 
3250 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3251 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3252 	id_priv->id.port_num = p;
3253 	cma_attach_to_dev(id_priv, cma_dev);
3254 	rdma_restrack_add(&id_priv->res);
3255 	cma_set_loopback(cma_src_addr(id_priv));
3256 out:
3257 	mutex_unlock(&lock);
3258 	return ret;
3259 }
3260 
3261 static void addr_handler(int status, struct sockaddr *src_addr,
3262 			 struct rdma_dev_addr *dev_addr, void *context)
3263 {
3264 	struct rdma_id_private *id_priv = context;
3265 	struct rdma_cm_event event = {};
3266 	struct sockaddr *addr;
3267 	struct sockaddr_storage old_addr;
3268 
3269 	mutex_lock(&id_priv->handler_mutex);
3270 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3271 			   RDMA_CM_ADDR_RESOLVED))
3272 		goto out;
3273 
3274 	/*
3275 	 * Store the previous src address, so that if we fail to acquire
3276 	 * matching rdma device, old address can be restored back, which helps
3277 	 * to cancel the cma listen operation correctly.
3278 	 */
3279 	addr = cma_src_addr(id_priv);
3280 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3281 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3282 	if (!status && !id_priv->cma_dev) {
3283 		status = cma_acquire_dev_by_src_ip(id_priv);
3284 		if (status)
3285 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3286 					     status);
3287 		rdma_restrack_add(&id_priv->res);
3288 	} else if (status) {
3289 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3290 	}
3291 
3292 	if (status) {
3293 		memcpy(addr, &old_addr,
3294 		       rdma_addr_size((struct sockaddr *)&old_addr));
3295 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3296 				   RDMA_CM_ADDR_BOUND))
3297 			goto out;
3298 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3299 		event.status = status;
3300 	} else
3301 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3302 
3303 	if (cma_cm_event_handler(id_priv, &event)) {
3304 		destroy_id_handler_unlock(id_priv);
3305 		return;
3306 	}
3307 out:
3308 	mutex_unlock(&id_priv->handler_mutex);
3309 }
3310 
3311 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3312 {
3313 	struct cma_work *work;
3314 	union ib_gid gid;
3315 	int ret;
3316 
3317 	work = kzalloc(sizeof *work, GFP_KERNEL);
3318 	if (!work)
3319 		return -ENOMEM;
3320 
3321 	if (!id_priv->cma_dev) {
3322 		ret = cma_bind_loopback(id_priv);
3323 		if (ret)
3324 			goto err;
3325 	}
3326 
3327 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3328 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3329 
3330 	enqueue_resolve_addr_work(work, id_priv);
3331 	return 0;
3332 err:
3333 	kfree(work);
3334 	return ret;
3335 }
3336 
3337 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3338 {
3339 	struct cma_work *work;
3340 	int ret;
3341 
3342 	work = kzalloc(sizeof *work, GFP_KERNEL);
3343 	if (!work)
3344 		return -ENOMEM;
3345 
3346 	if (!id_priv->cma_dev) {
3347 		ret = cma_resolve_ib_dev(id_priv);
3348 		if (ret)
3349 			goto err;
3350 	}
3351 
3352 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3353 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3354 
3355 	enqueue_resolve_addr_work(work, id_priv);
3356 	return 0;
3357 err:
3358 	kfree(work);
3359 	return ret;
3360 }
3361 
3362 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3363 			 const struct sockaddr *dst_addr)
3364 {
3365 	if (!src_addr || !src_addr->sa_family) {
3366 		src_addr = (struct sockaddr *) &id->route.addr.src_addr;
3367 		src_addr->sa_family = dst_addr->sa_family;
3368 		if (IS_ENABLED(CONFIG_IPV6) &&
3369 		    dst_addr->sa_family == AF_INET6) {
3370 			struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr;
3371 			struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr;
3372 			src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
3373 			if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
3374 				id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id;
3375 		} else if (dst_addr->sa_family == AF_IB) {
3376 			((struct sockaddr_ib *) src_addr)->sib_pkey =
3377 				((struct sockaddr_ib *) dst_addr)->sib_pkey;
3378 		}
3379 	}
3380 	return rdma_bind_addr(id, src_addr);
3381 }
3382 
3383 /*
3384  * If required, resolve the source address for bind and leave the id_priv in
3385  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
3386  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
3387  * ignored.
3388  */
3389 static int resolve_prepare_src(struct rdma_id_private *id_priv,
3390 			       struct sockaddr *src_addr,
3391 			       const struct sockaddr *dst_addr)
3392 {
3393 	int ret;
3394 
3395 	memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
3396 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
3397 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3398 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
3399 		if (ret)
3400 			goto err_dst;
3401 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3402 					   RDMA_CM_ADDR_QUERY))) {
3403 			ret = -EINVAL;
3404 			goto err_dst;
3405 		}
3406 	}
3407 
3408 	if (cma_family(id_priv) != dst_addr->sa_family) {
3409 		ret = -EINVAL;
3410 		goto err_state;
3411 	}
3412 	return 0;
3413 
3414 err_state:
3415 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3416 err_dst:
3417 	memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
3418 	return ret;
3419 }
3420 
3421 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3422 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
3423 {
3424 	struct rdma_id_private *id_priv =
3425 		container_of(id, struct rdma_id_private, id);
3426 	int ret;
3427 
3428 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
3429 	if (ret)
3430 		return ret;
3431 
3432 	if (cma_any_addr(dst_addr)) {
3433 		ret = cma_resolve_loopback(id_priv);
3434 	} else {
3435 		if (dst_addr->sa_family == AF_IB) {
3436 			ret = cma_resolve_ib_addr(id_priv);
3437 		} else {
3438 			/*
3439 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
3440 			 * rdma_resolve_ip() is called, eg through the error
3441 			 * path in addr_handler(). If this happens the existing
3442 			 * request must be canceled before issuing a new one.
3443 			 * Since canceling a request is a bit slow and this
3444 			 * oddball path is rare, keep track once a request has
3445 			 * been issued. The track turns out to be a permanent
3446 			 * state since this is the only cancel as it is
3447 			 * immediately before rdma_resolve_ip().
3448 			 */
3449 			if (id_priv->used_resolve_ip)
3450 				rdma_addr_cancel(&id->route.addr.dev_addr);
3451 			else
3452 				id_priv->used_resolve_ip = 1;
3453 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
3454 					      &id->route.addr.dev_addr,
3455 					      timeout_ms, addr_handler,
3456 					      false, id_priv);
3457 		}
3458 	}
3459 	if (ret)
3460 		goto err;
3461 
3462 	return 0;
3463 err:
3464 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3465 	return ret;
3466 }
3467 EXPORT_SYMBOL(rdma_resolve_addr);
3468 
3469 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3470 {
3471 	struct rdma_id_private *id_priv;
3472 	unsigned long flags;
3473 	int ret;
3474 
3475 	id_priv = container_of(id, struct rdma_id_private, id);
3476 	spin_lock_irqsave(&id_priv->lock, flags);
3477 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3478 	    id_priv->state == RDMA_CM_IDLE) {
3479 		id_priv->reuseaddr = reuse;
3480 		ret = 0;
3481 	} else {
3482 		ret = -EINVAL;
3483 	}
3484 	spin_unlock_irqrestore(&id_priv->lock, flags);
3485 	return ret;
3486 }
3487 EXPORT_SYMBOL(rdma_set_reuseaddr);
3488 
3489 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3490 {
3491 	struct rdma_id_private *id_priv;
3492 	unsigned long flags;
3493 	int ret;
3494 
3495 	id_priv = container_of(id, struct rdma_id_private, id);
3496 	spin_lock_irqsave(&id_priv->lock, flags);
3497 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3498 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3499 		id_priv->afonly = afonly;
3500 		ret = 0;
3501 	} else {
3502 		ret = -EINVAL;
3503 	}
3504 	spin_unlock_irqrestore(&id_priv->lock, flags);
3505 	return ret;
3506 }
3507 EXPORT_SYMBOL(rdma_set_afonly);
3508 
3509 static void cma_bind_port(struct rdma_bind_list *bind_list,
3510 			  struct rdma_id_private *id_priv)
3511 {
3512 	struct sockaddr *addr;
3513 	struct sockaddr_ib *sib;
3514 	u64 sid, mask;
3515 	__be16 port;
3516 
3517 	lockdep_assert_held(&lock);
3518 
3519 	addr = cma_src_addr(id_priv);
3520 	port = htons(bind_list->port);
3521 
3522 	switch (addr->sa_family) {
3523 	case AF_INET:
3524 		((struct sockaddr_in *) addr)->sin_port = port;
3525 		break;
3526 	case AF_INET6:
3527 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3528 		break;
3529 	case AF_IB:
3530 		sib = (struct sockaddr_ib *) addr;
3531 		sid = be64_to_cpu(sib->sib_sid);
3532 		mask = be64_to_cpu(sib->sib_sid_mask);
3533 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3534 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3535 		break;
3536 	}
3537 	id_priv->bind_list = bind_list;
3538 	hlist_add_head(&id_priv->node, &bind_list->owners);
3539 }
3540 
3541 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3542 			  struct rdma_id_private *id_priv, unsigned short snum)
3543 {
3544 	struct rdma_bind_list *bind_list;
3545 	int ret;
3546 
3547 	lockdep_assert_held(&lock);
3548 
3549 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3550 	if (!bind_list)
3551 		return -ENOMEM;
3552 
3553 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3554 			   snum);
3555 	if (ret < 0)
3556 		goto err;
3557 
3558 	bind_list->ps = ps;
3559 	bind_list->port = snum;
3560 	cma_bind_port(bind_list, id_priv);
3561 	return 0;
3562 err:
3563 	kfree(bind_list);
3564 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3565 }
3566 
3567 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3568 			      struct rdma_id_private *id_priv)
3569 {
3570 	struct rdma_id_private *cur_id;
3571 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3572 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3573 	__be16 dport = cma_port(daddr);
3574 
3575 	lockdep_assert_held(&lock);
3576 
3577 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3578 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3579 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3580 		__be16 cur_dport = cma_port(cur_daddr);
3581 
3582 		if (id_priv == cur_id)
3583 			continue;
3584 
3585 		/* different dest port -> unique */
3586 		if (!cma_any_port(daddr) &&
3587 		    !cma_any_port(cur_daddr) &&
3588 		    (dport != cur_dport))
3589 			continue;
3590 
3591 		/* different src address -> unique */
3592 		if (!cma_any_addr(saddr) &&
3593 		    !cma_any_addr(cur_saddr) &&
3594 		    cma_addr_cmp(saddr, cur_saddr))
3595 			continue;
3596 
3597 		/* different dst address -> unique */
3598 		if (!cma_any_addr(daddr) &&
3599 		    !cma_any_addr(cur_daddr) &&
3600 		    cma_addr_cmp(daddr, cur_daddr))
3601 			continue;
3602 
3603 		return -EADDRNOTAVAIL;
3604 	}
3605 	return 0;
3606 }
3607 
3608 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3609 			      struct rdma_id_private *id_priv)
3610 {
3611 	static unsigned int last_used_port;
3612 	int low, high, remaining;
3613 	unsigned int rover;
3614 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3615 
3616 	lockdep_assert_held(&lock);
3617 
3618 	inet_get_local_port_range(net, &low, &high);
3619 	remaining = (high - low) + 1;
3620 	rover = prandom_u32() % remaining + low;
3621 retry:
3622 	if (last_used_port != rover) {
3623 		struct rdma_bind_list *bind_list;
3624 		int ret;
3625 
3626 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3627 
3628 		if (!bind_list) {
3629 			ret = cma_alloc_port(ps, id_priv, rover);
3630 		} else {
3631 			ret = cma_port_is_unique(bind_list, id_priv);
3632 			if (!ret)
3633 				cma_bind_port(bind_list, id_priv);
3634 		}
3635 		/*
3636 		 * Remember previously used port number in order to avoid
3637 		 * re-using same port immediately after it is closed.
3638 		 */
3639 		if (!ret)
3640 			last_used_port = rover;
3641 		if (ret != -EADDRNOTAVAIL)
3642 			return ret;
3643 	}
3644 	if (--remaining) {
3645 		rover++;
3646 		if ((rover < low) || (rover > high))
3647 			rover = low;
3648 		goto retry;
3649 	}
3650 	return -EADDRNOTAVAIL;
3651 }
3652 
3653 /*
3654  * Check that the requested port is available.  This is called when trying to
3655  * bind to a specific port, or when trying to listen on a bound port.  In
3656  * the latter case, the provided id_priv may already be on the bind_list, but
3657  * we still need to check that it's okay to start listening.
3658  */
3659 static int cma_check_port(struct rdma_bind_list *bind_list,
3660 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3661 {
3662 	struct rdma_id_private *cur_id;
3663 	struct sockaddr *addr, *cur_addr;
3664 
3665 	lockdep_assert_held(&lock);
3666 
3667 	addr = cma_src_addr(id_priv);
3668 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3669 		if (id_priv == cur_id)
3670 			continue;
3671 
3672 		if (reuseaddr && cur_id->reuseaddr)
3673 			continue;
3674 
3675 		cur_addr = cma_src_addr(cur_id);
3676 		if (id_priv->afonly && cur_id->afonly &&
3677 		    (addr->sa_family != cur_addr->sa_family))
3678 			continue;
3679 
3680 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3681 			return -EADDRNOTAVAIL;
3682 
3683 		if (!cma_addr_cmp(addr, cur_addr))
3684 			return -EADDRINUSE;
3685 	}
3686 	return 0;
3687 }
3688 
3689 static int cma_use_port(enum rdma_ucm_port_space ps,
3690 			struct rdma_id_private *id_priv)
3691 {
3692 	struct rdma_bind_list *bind_list;
3693 	unsigned short snum;
3694 	int ret;
3695 
3696 	lockdep_assert_held(&lock);
3697 
3698 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3699 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3700 		return -EACCES;
3701 
3702 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3703 	if (!bind_list) {
3704 		ret = cma_alloc_port(ps, id_priv, snum);
3705 	} else {
3706 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3707 		if (!ret)
3708 			cma_bind_port(bind_list, id_priv);
3709 	}
3710 	return ret;
3711 }
3712 
3713 static enum rdma_ucm_port_space
3714 cma_select_inet_ps(struct rdma_id_private *id_priv)
3715 {
3716 	switch (id_priv->id.ps) {
3717 	case RDMA_PS_TCP:
3718 	case RDMA_PS_UDP:
3719 	case RDMA_PS_IPOIB:
3720 	case RDMA_PS_IB:
3721 		return id_priv->id.ps;
3722 	default:
3723 
3724 		return 0;
3725 	}
3726 }
3727 
3728 static enum rdma_ucm_port_space
3729 cma_select_ib_ps(struct rdma_id_private *id_priv)
3730 {
3731 	enum rdma_ucm_port_space ps = 0;
3732 	struct sockaddr_ib *sib;
3733 	u64 sid_ps, mask, sid;
3734 
3735 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3736 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3737 	sid = be64_to_cpu(sib->sib_sid) & mask;
3738 
3739 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3740 		sid_ps = RDMA_IB_IP_PS_IB;
3741 		ps = RDMA_PS_IB;
3742 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3743 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3744 		sid_ps = RDMA_IB_IP_PS_TCP;
3745 		ps = RDMA_PS_TCP;
3746 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3747 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3748 		sid_ps = RDMA_IB_IP_PS_UDP;
3749 		ps = RDMA_PS_UDP;
3750 	}
3751 
3752 	if (ps) {
3753 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3754 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3755 						be64_to_cpu(sib->sib_sid_mask));
3756 	}
3757 	return ps;
3758 }
3759 
3760 static int cma_get_port(struct rdma_id_private *id_priv)
3761 {
3762 	enum rdma_ucm_port_space ps;
3763 	int ret;
3764 
3765 	if (cma_family(id_priv) != AF_IB)
3766 		ps = cma_select_inet_ps(id_priv);
3767 	else
3768 		ps = cma_select_ib_ps(id_priv);
3769 	if (!ps)
3770 		return -EPROTONOSUPPORT;
3771 
3772 	mutex_lock(&lock);
3773 	if (cma_any_port(cma_src_addr(id_priv)))
3774 		ret = cma_alloc_any_port(ps, id_priv);
3775 	else
3776 		ret = cma_use_port(ps, id_priv);
3777 	mutex_unlock(&lock);
3778 
3779 	return ret;
3780 }
3781 
3782 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3783 			       struct sockaddr *addr)
3784 {
3785 #if IS_ENABLED(CONFIG_IPV6)
3786 	struct sockaddr_in6 *sin6;
3787 
3788 	if (addr->sa_family != AF_INET6)
3789 		return 0;
3790 
3791 	sin6 = (struct sockaddr_in6 *) addr;
3792 
3793 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3794 		return 0;
3795 
3796 	if (!sin6->sin6_scope_id)
3797 			return -EINVAL;
3798 
3799 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3800 #endif
3801 	return 0;
3802 }
3803 
3804 int rdma_listen(struct rdma_cm_id *id, int backlog)
3805 {
3806 	struct rdma_id_private *id_priv =
3807 		container_of(id, struct rdma_id_private, id);
3808 	int ret;
3809 
3810 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3811 		struct sockaddr_in any_in = {
3812 			.sin_family = AF_INET,
3813 			.sin_addr.s_addr = htonl(INADDR_ANY),
3814 		};
3815 
3816 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3817 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3818 		if (ret)
3819 			return ret;
3820 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3821 					   RDMA_CM_LISTEN)))
3822 			return -EINVAL;
3823 	}
3824 
3825 	/*
3826 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3827 	 * any more, and has to be unique in the bind list.
3828 	 */
3829 	if (id_priv->reuseaddr) {
3830 		mutex_lock(&lock);
3831 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3832 		if (!ret)
3833 			id_priv->reuseaddr = 0;
3834 		mutex_unlock(&lock);
3835 		if (ret)
3836 			goto err;
3837 	}
3838 
3839 	id_priv->backlog = backlog;
3840 	if (id_priv->cma_dev) {
3841 		if (rdma_cap_ib_cm(id->device, 1)) {
3842 			ret = cma_ib_listen(id_priv);
3843 			if (ret)
3844 				goto err;
3845 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3846 			ret = cma_iw_listen(id_priv, backlog);
3847 			if (ret)
3848 				goto err;
3849 		} else {
3850 			ret = -ENOSYS;
3851 			goto err;
3852 		}
3853 	} else {
3854 		ret = cma_listen_on_all(id_priv);
3855 		if (ret)
3856 			goto err;
3857 	}
3858 
3859 	return 0;
3860 err:
3861 	id_priv->backlog = 0;
3862 	/*
3863 	 * All the failure paths that lead here will not allow the req_handler's
3864 	 * to have run.
3865 	 */
3866 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3867 	return ret;
3868 }
3869 EXPORT_SYMBOL(rdma_listen);
3870 
3871 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
3872 {
3873 	struct rdma_id_private *id_priv;
3874 	int ret;
3875 	struct sockaddr  *daddr;
3876 
3877 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3878 	    addr->sa_family != AF_IB)
3879 		return -EAFNOSUPPORT;
3880 
3881 	id_priv = container_of(id, struct rdma_id_private, id);
3882 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3883 		return -EINVAL;
3884 
3885 	ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
3886 	if (ret)
3887 		goto err1;
3888 
3889 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3890 	if (!cma_any_addr(addr)) {
3891 		ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
3892 		if (ret)
3893 			goto err1;
3894 
3895 		ret = cma_acquire_dev_by_src_ip(id_priv);
3896 		if (ret)
3897 			goto err1;
3898 	}
3899 
3900 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3901 		if (addr->sa_family == AF_INET)
3902 			id_priv->afonly = 1;
3903 #if IS_ENABLED(CONFIG_IPV6)
3904 		else if (addr->sa_family == AF_INET6) {
3905 			struct net *net = id_priv->id.route.addr.dev_addr.net;
3906 
3907 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
3908 		}
3909 #endif
3910 	}
3911 	daddr = cma_dst_addr(id_priv);
3912 	daddr->sa_family = addr->sa_family;
3913 
3914 	ret = cma_get_port(id_priv);
3915 	if (ret)
3916 		goto err2;
3917 
3918 	if (!cma_any_addr(addr))
3919 		rdma_restrack_add(&id_priv->res);
3920 	return 0;
3921 err2:
3922 	if (id_priv->cma_dev)
3923 		cma_release_dev(id_priv);
3924 err1:
3925 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
3926 	return ret;
3927 }
3928 EXPORT_SYMBOL(rdma_bind_addr);
3929 
3930 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
3931 {
3932 	struct cma_hdr *cma_hdr;
3933 
3934 	cma_hdr = hdr;
3935 	cma_hdr->cma_version = CMA_VERSION;
3936 	if (cma_family(id_priv) == AF_INET) {
3937 		struct sockaddr_in *src4, *dst4;
3938 
3939 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
3940 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
3941 
3942 		cma_set_ip_ver(cma_hdr, 4);
3943 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
3944 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
3945 		cma_hdr->port = src4->sin_port;
3946 	} else if (cma_family(id_priv) == AF_INET6) {
3947 		struct sockaddr_in6 *src6, *dst6;
3948 
3949 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
3950 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
3951 
3952 		cma_set_ip_ver(cma_hdr, 6);
3953 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
3954 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
3955 		cma_hdr->port = src6->sin6_port;
3956 	}
3957 	return 0;
3958 }
3959 
3960 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
3961 				const struct ib_cm_event *ib_event)
3962 {
3963 	struct rdma_id_private *id_priv = cm_id->context;
3964 	struct rdma_cm_event event = {};
3965 	const struct ib_cm_sidr_rep_event_param *rep =
3966 				&ib_event->param.sidr_rep_rcvd;
3967 	int ret;
3968 
3969 	mutex_lock(&id_priv->handler_mutex);
3970 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
3971 		goto out;
3972 
3973 	switch (ib_event->event) {
3974 	case IB_CM_SIDR_REQ_ERROR:
3975 		event.event = RDMA_CM_EVENT_UNREACHABLE;
3976 		event.status = -ETIMEDOUT;
3977 		break;
3978 	case IB_CM_SIDR_REP_RECEIVED:
3979 		event.param.ud.private_data = ib_event->private_data;
3980 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
3981 		if (rep->status != IB_SIDR_SUCCESS) {
3982 			event.event = RDMA_CM_EVENT_UNREACHABLE;
3983 			event.status = ib_event->param.sidr_rep_rcvd.status;
3984 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
3985 					     event.status);
3986 			break;
3987 		}
3988 		ret = cma_set_qkey(id_priv, rep->qkey);
3989 		if (ret) {
3990 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
3991 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
3992 			event.status = ret;
3993 			break;
3994 		}
3995 		ib_init_ah_attr_from_path(id_priv->id.device,
3996 					  id_priv->id.port_num,
3997 					  id_priv->id.route.path_rec,
3998 					  &event.param.ud.ah_attr,
3999 					  rep->sgid_attr);
4000 		event.param.ud.qp_num = rep->qpn;
4001 		event.param.ud.qkey = rep->qkey;
4002 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4003 		event.status = 0;
4004 		break;
4005 	default:
4006 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4007 		       ib_event->event);
4008 		goto out;
4009 	}
4010 
4011 	ret = cma_cm_event_handler(id_priv, &event);
4012 
4013 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4014 	if (ret) {
4015 		/* Destroy the CM ID by returning a non-zero value. */
4016 		id_priv->cm_id.ib = NULL;
4017 		destroy_id_handler_unlock(id_priv);
4018 		return ret;
4019 	}
4020 out:
4021 	mutex_unlock(&id_priv->handler_mutex);
4022 	return 0;
4023 }
4024 
4025 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4026 			      struct rdma_conn_param *conn_param)
4027 {
4028 	struct ib_cm_sidr_req_param req;
4029 	struct ib_cm_id	*id;
4030 	void *private_data;
4031 	u8 offset;
4032 	int ret;
4033 
4034 	memset(&req, 0, sizeof req);
4035 	offset = cma_user_data_offset(id_priv);
4036 	req.private_data_len = offset + conn_param->private_data_len;
4037 	if (req.private_data_len < conn_param->private_data_len)
4038 		return -EINVAL;
4039 
4040 	if (req.private_data_len) {
4041 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4042 		if (!private_data)
4043 			return -ENOMEM;
4044 	} else {
4045 		private_data = NULL;
4046 	}
4047 
4048 	if (conn_param->private_data && conn_param->private_data_len)
4049 		memcpy(private_data + offset, conn_param->private_data,
4050 		       conn_param->private_data_len);
4051 
4052 	if (private_data) {
4053 		ret = cma_format_hdr(private_data, id_priv);
4054 		if (ret)
4055 			goto out;
4056 		req.private_data = private_data;
4057 	}
4058 
4059 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4060 			     id_priv);
4061 	if (IS_ERR(id)) {
4062 		ret = PTR_ERR(id);
4063 		goto out;
4064 	}
4065 	id_priv->cm_id.ib = id;
4066 
4067 	req.path = id_priv->id.route.path_rec;
4068 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4069 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4070 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4071 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4072 
4073 	trace_cm_send_sidr_req(id_priv);
4074 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4075 	if (ret) {
4076 		ib_destroy_cm_id(id_priv->cm_id.ib);
4077 		id_priv->cm_id.ib = NULL;
4078 	}
4079 out:
4080 	kfree(private_data);
4081 	return ret;
4082 }
4083 
4084 static int cma_connect_ib(struct rdma_id_private *id_priv,
4085 			  struct rdma_conn_param *conn_param)
4086 {
4087 	struct ib_cm_req_param req;
4088 	struct rdma_route *route;
4089 	void *private_data;
4090 	struct ib_cm_id	*id;
4091 	u8 offset;
4092 	int ret;
4093 
4094 	memset(&req, 0, sizeof req);
4095 	offset = cma_user_data_offset(id_priv);
4096 	req.private_data_len = offset + conn_param->private_data_len;
4097 	if (req.private_data_len < conn_param->private_data_len)
4098 		return -EINVAL;
4099 
4100 	if (req.private_data_len) {
4101 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4102 		if (!private_data)
4103 			return -ENOMEM;
4104 	} else {
4105 		private_data = NULL;
4106 	}
4107 
4108 	if (conn_param->private_data && conn_param->private_data_len)
4109 		memcpy(private_data + offset, conn_param->private_data,
4110 		       conn_param->private_data_len);
4111 
4112 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4113 	if (IS_ERR(id)) {
4114 		ret = PTR_ERR(id);
4115 		goto out;
4116 	}
4117 	id_priv->cm_id.ib = id;
4118 
4119 	route = &id_priv->id.route;
4120 	if (private_data) {
4121 		ret = cma_format_hdr(private_data, id_priv);
4122 		if (ret)
4123 			goto out;
4124 		req.private_data = private_data;
4125 	}
4126 
4127 	req.primary_path = &route->path_rec[0];
4128 	if (route->num_paths == 2)
4129 		req.alternate_path = &route->path_rec[1];
4130 
4131 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4132 	/* Alternate path SGID attribute currently unsupported */
4133 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4134 	req.qp_num = id_priv->qp_num;
4135 	req.qp_type = id_priv->id.qp_type;
4136 	req.starting_psn = id_priv->seq_num;
4137 	req.responder_resources = conn_param->responder_resources;
4138 	req.initiator_depth = conn_param->initiator_depth;
4139 	req.flow_control = conn_param->flow_control;
4140 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4141 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4142 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4143 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4144 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4145 	req.srq = id_priv->srq ? 1 : 0;
4146 	req.ece.vendor_id = id_priv->ece.vendor_id;
4147 	req.ece.attr_mod = id_priv->ece.attr_mod;
4148 
4149 	trace_cm_send_req(id_priv);
4150 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4151 out:
4152 	if (ret && !IS_ERR(id)) {
4153 		ib_destroy_cm_id(id);
4154 		id_priv->cm_id.ib = NULL;
4155 	}
4156 
4157 	kfree(private_data);
4158 	return ret;
4159 }
4160 
4161 static int cma_connect_iw(struct rdma_id_private *id_priv,
4162 			  struct rdma_conn_param *conn_param)
4163 {
4164 	struct iw_cm_id *cm_id;
4165 	int ret;
4166 	struct iw_cm_conn_param iw_param;
4167 
4168 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4169 	if (IS_ERR(cm_id))
4170 		return PTR_ERR(cm_id);
4171 
4172 	mutex_lock(&id_priv->qp_mutex);
4173 	cm_id->tos = id_priv->tos;
4174 	cm_id->tos_set = id_priv->tos_set;
4175 	mutex_unlock(&id_priv->qp_mutex);
4176 
4177 	id_priv->cm_id.iw = cm_id;
4178 
4179 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4180 	       rdma_addr_size(cma_src_addr(id_priv)));
4181 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4182 	       rdma_addr_size(cma_dst_addr(id_priv)));
4183 
4184 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4185 	if (ret)
4186 		goto out;
4187 
4188 	if (conn_param) {
4189 		iw_param.ord = conn_param->initiator_depth;
4190 		iw_param.ird = conn_param->responder_resources;
4191 		iw_param.private_data = conn_param->private_data;
4192 		iw_param.private_data_len = conn_param->private_data_len;
4193 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4194 	} else {
4195 		memset(&iw_param, 0, sizeof iw_param);
4196 		iw_param.qpn = id_priv->qp_num;
4197 	}
4198 	ret = iw_cm_connect(cm_id, &iw_param);
4199 out:
4200 	if (ret) {
4201 		iw_destroy_cm_id(cm_id);
4202 		id_priv->cm_id.iw = NULL;
4203 	}
4204 	return ret;
4205 }
4206 
4207 /**
4208  * rdma_connect_locked - Initiate an active connection request.
4209  * @id: Connection identifier to connect.
4210  * @conn_param: Connection information used for connected QPs.
4211  *
4212  * Same as rdma_connect() but can only be called from the
4213  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4214  */
4215 int rdma_connect_locked(struct rdma_cm_id *id,
4216 			struct rdma_conn_param *conn_param)
4217 {
4218 	struct rdma_id_private *id_priv =
4219 		container_of(id, struct rdma_id_private, id);
4220 	int ret;
4221 
4222 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4223 		return -EINVAL;
4224 
4225 	if (!id->qp) {
4226 		id_priv->qp_num = conn_param->qp_num;
4227 		id_priv->srq = conn_param->srq;
4228 	}
4229 
4230 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4231 		if (id->qp_type == IB_QPT_UD)
4232 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4233 		else
4234 			ret = cma_connect_ib(id_priv, conn_param);
4235 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4236 		ret = cma_connect_iw(id_priv, conn_param);
4237 	} else {
4238 		ret = -ENOSYS;
4239 	}
4240 	if (ret)
4241 		goto err_state;
4242 	return 0;
4243 err_state:
4244 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4245 	return ret;
4246 }
4247 EXPORT_SYMBOL(rdma_connect_locked);
4248 
4249 /**
4250  * rdma_connect - Initiate an active connection request.
4251  * @id: Connection identifier to connect.
4252  * @conn_param: Connection information used for connected QPs.
4253  *
4254  * Users must have resolved a route for the rdma_cm_id to connect with by having
4255  * called rdma_resolve_route before calling this routine.
4256  *
4257  * This call will either connect to a remote QP or obtain remote QP information
4258  * for unconnected rdma_cm_id's.  The actual operation is based on the
4259  * rdma_cm_id's port space.
4260  */
4261 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4262 {
4263 	struct rdma_id_private *id_priv =
4264 		container_of(id, struct rdma_id_private, id);
4265 	int ret;
4266 
4267 	mutex_lock(&id_priv->handler_mutex);
4268 	ret = rdma_connect_locked(id, conn_param);
4269 	mutex_unlock(&id_priv->handler_mutex);
4270 	return ret;
4271 }
4272 EXPORT_SYMBOL(rdma_connect);
4273 
4274 /**
4275  * rdma_connect_ece - Initiate an active connection request with ECE data.
4276  * @id: Connection identifier to connect.
4277  * @conn_param: Connection information used for connected QPs.
4278  * @ece: ECE parameters
4279  *
4280  * See rdma_connect() explanation.
4281  */
4282 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4283 		     struct rdma_ucm_ece *ece)
4284 {
4285 	struct rdma_id_private *id_priv =
4286 		container_of(id, struct rdma_id_private, id);
4287 
4288 	id_priv->ece.vendor_id = ece->vendor_id;
4289 	id_priv->ece.attr_mod = ece->attr_mod;
4290 
4291 	return rdma_connect(id, conn_param);
4292 }
4293 EXPORT_SYMBOL(rdma_connect_ece);
4294 
4295 static int cma_accept_ib(struct rdma_id_private *id_priv,
4296 			 struct rdma_conn_param *conn_param)
4297 {
4298 	struct ib_cm_rep_param rep;
4299 	int ret;
4300 
4301 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4302 	if (ret)
4303 		goto out;
4304 
4305 	ret = cma_modify_qp_rts(id_priv, conn_param);
4306 	if (ret)
4307 		goto out;
4308 
4309 	memset(&rep, 0, sizeof rep);
4310 	rep.qp_num = id_priv->qp_num;
4311 	rep.starting_psn = id_priv->seq_num;
4312 	rep.private_data = conn_param->private_data;
4313 	rep.private_data_len = conn_param->private_data_len;
4314 	rep.responder_resources = conn_param->responder_resources;
4315 	rep.initiator_depth = conn_param->initiator_depth;
4316 	rep.failover_accepted = 0;
4317 	rep.flow_control = conn_param->flow_control;
4318 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4319 	rep.srq = id_priv->srq ? 1 : 0;
4320 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4321 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4322 
4323 	trace_cm_send_rep(id_priv);
4324 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4325 out:
4326 	return ret;
4327 }
4328 
4329 static int cma_accept_iw(struct rdma_id_private *id_priv,
4330 		  struct rdma_conn_param *conn_param)
4331 {
4332 	struct iw_cm_conn_param iw_param;
4333 	int ret;
4334 
4335 	if (!conn_param)
4336 		return -EINVAL;
4337 
4338 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4339 	if (ret)
4340 		return ret;
4341 
4342 	iw_param.ord = conn_param->initiator_depth;
4343 	iw_param.ird = conn_param->responder_resources;
4344 	iw_param.private_data = conn_param->private_data;
4345 	iw_param.private_data_len = conn_param->private_data_len;
4346 	if (id_priv->id.qp)
4347 		iw_param.qpn = id_priv->qp_num;
4348 	else
4349 		iw_param.qpn = conn_param->qp_num;
4350 
4351 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4352 }
4353 
4354 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4355 			     enum ib_cm_sidr_status status, u32 qkey,
4356 			     const void *private_data, int private_data_len)
4357 {
4358 	struct ib_cm_sidr_rep_param rep;
4359 	int ret;
4360 
4361 	memset(&rep, 0, sizeof rep);
4362 	rep.status = status;
4363 	if (status == IB_SIDR_SUCCESS) {
4364 		ret = cma_set_qkey(id_priv, qkey);
4365 		if (ret)
4366 			return ret;
4367 		rep.qp_num = id_priv->qp_num;
4368 		rep.qkey = id_priv->qkey;
4369 
4370 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4371 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4372 	}
4373 
4374 	rep.private_data = private_data;
4375 	rep.private_data_len = private_data_len;
4376 
4377 	trace_cm_send_sidr_rep(id_priv);
4378 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4379 }
4380 
4381 /**
4382  * rdma_accept - Called to accept a connection request or response.
4383  * @id: Connection identifier associated with the request.
4384  * @conn_param: Information needed to establish the connection.  This must be
4385  *   provided if accepting a connection request.  If accepting a connection
4386  *   response, this parameter must be NULL.
4387  *
4388  * Typically, this routine is only called by the listener to accept a connection
4389  * request.  It must also be called on the active side of a connection if the
4390  * user is performing their own QP transitions.
4391  *
4392  * In the case of error, a reject message is sent to the remote side and the
4393  * state of the qp associated with the id is modified to error, such that any
4394  * previously posted receive buffers would be flushed.
4395  *
4396  * This function is for use by kernel ULPs and must be called from under the
4397  * handler callback.
4398  */
4399 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4400 {
4401 	struct rdma_id_private *id_priv =
4402 		container_of(id, struct rdma_id_private, id);
4403 	int ret;
4404 
4405 	lockdep_assert_held(&id_priv->handler_mutex);
4406 
4407 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4408 		return -EINVAL;
4409 
4410 	if (!id->qp && conn_param) {
4411 		id_priv->qp_num = conn_param->qp_num;
4412 		id_priv->srq = conn_param->srq;
4413 	}
4414 
4415 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4416 		if (id->qp_type == IB_QPT_UD) {
4417 			if (conn_param)
4418 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4419 							conn_param->qkey,
4420 							conn_param->private_data,
4421 							conn_param->private_data_len);
4422 			else
4423 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4424 							0, NULL, 0);
4425 		} else {
4426 			if (conn_param)
4427 				ret = cma_accept_ib(id_priv, conn_param);
4428 			else
4429 				ret = cma_rep_recv(id_priv);
4430 		}
4431 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4432 		ret = cma_accept_iw(id_priv, conn_param);
4433 	} else {
4434 		ret = -ENOSYS;
4435 	}
4436 	if (ret)
4437 		goto reject;
4438 
4439 	return 0;
4440 reject:
4441 	cma_modify_qp_err(id_priv);
4442 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4443 	return ret;
4444 }
4445 EXPORT_SYMBOL(rdma_accept);
4446 
4447 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4448 		    struct rdma_ucm_ece *ece)
4449 {
4450 	struct rdma_id_private *id_priv =
4451 		container_of(id, struct rdma_id_private, id);
4452 
4453 	id_priv->ece.vendor_id = ece->vendor_id;
4454 	id_priv->ece.attr_mod = ece->attr_mod;
4455 
4456 	return rdma_accept(id, conn_param);
4457 }
4458 EXPORT_SYMBOL(rdma_accept_ece);
4459 
4460 void rdma_lock_handler(struct rdma_cm_id *id)
4461 {
4462 	struct rdma_id_private *id_priv =
4463 		container_of(id, struct rdma_id_private, id);
4464 
4465 	mutex_lock(&id_priv->handler_mutex);
4466 }
4467 EXPORT_SYMBOL(rdma_lock_handler);
4468 
4469 void rdma_unlock_handler(struct rdma_cm_id *id)
4470 {
4471 	struct rdma_id_private *id_priv =
4472 		container_of(id, struct rdma_id_private, id);
4473 
4474 	mutex_unlock(&id_priv->handler_mutex);
4475 }
4476 EXPORT_SYMBOL(rdma_unlock_handler);
4477 
4478 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4479 {
4480 	struct rdma_id_private *id_priv;
4481 	int ret;
4482 
4483 	id_priv = container_of(id, struct rdma_id_private, id);
4484 	if (!id_priv->cm_id.ib)
4485 		return -EINVAL;
4486 
4487 	switch (id->device->node_type) {
4488 	case RDMA_NODE_IB_CA:
4489 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4490 		break;
4491 	default:
4492 		ret = 0;
4493 		break;
4494 	}
4495 	return ret;
4496 }
4497 EXPORT_SYMBOL(rdma_notify);
4498 
4499 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4500 		u8 private_data_len, u8 reason)
4501 {
4502 	struct rdma_id_private *id_priv;
4503 	int ret;
4504 
4505 	id_priv = container_of(id, struct rdma_id_private, id);
4506 	if (!id_priv->cm_id.ib)
4507 		return -EINVAL;
4508 
4509 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4510 		if (id->qp_type == IB_QPT_UD) {
4511 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4512 						private_data, private_data_len);
4513 		} else {
4514 			trace_cm_send_rej(id_priv);
4515 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4516 					     private_data, private_data_len);
4517 		}
4518 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4519 		ret = iw_cm_reject(id_priv->cm_id.iw,
4520 				   private_data, private_data_len);
4521 	} else {
4522 		ret = -ENOSYS;
4523 	}
4524 
4525 	return ret;
4526 }
4527 EXPORT_SYMBOL(rdma_reject);
4528 
4529 int rdma_disconnect(struct rdma_cm_id *id)
4530 {
4531 	struct rdma_id_private *id_priv;
4532 	int ret;
4533 
4534 	id_priv = container_of(id, struct rdma_id_private, id);
4535 	if (!id_priv->cm_id.ib)
4536 		return -EINVAL;
4537 
4538 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4539 		ret = cma_modify_qp_err(id_priv);
4540 		if (ret)
4541 			goto out;
4542 		/* Initiate or respond to a disconnect. */
4543 		trace_cm_disconnect(id_priv);
4544 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4545 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4546 				trace_cm_sent_drep(id_priv);
4547 		} else {
4548 			trace_cm_sent_dreq(id_priv);
4549 		}
4550 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4551 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4552 	} else
4553 		ret = -EINVAL;
4554 
4555 out:
4556 	return ret;
4557 }
4558 EXPORT_SYMBOL(rdma_disconnect);
4559 
4560 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4561 			      struct ib_sa_multicast *multicast,
4562 			      struct rdma_cm_event *event,
4563 			      struct cma_multicast *mc)
4564 {
4565 	struct rdma_dev_addr *dev_addr;
4566 	enum ib_gid_type gid_type;
4567 	struct net_device *ndev;
4568 
4569 	if (!status)
4570 		status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4571 	else
4572 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4573 				     status);
4574 
4575 	event->status = status;
4576 	event->param.ud.private_data = mc->context;
4577 	if (status) {
4578 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4579 		return;
4580 	}
4581 
4582 	dev_addr = &id_priv->id.route.addr.dev_addr;
4583 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4584 	gid_type =
4585 		id_priv->cma_dev
4586 			->default_gid_type[id_priv->id.port_num -
4587 					   rdma_start_port(
4588 						   id_priv->cma_dev->device)];
4589 
4590 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4591 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4592 				     &multicast->rec, ndev, gid_type,
4593 				     &event->param.ud.ah_attr)) {
4594 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4595 		goto out;
4596 	}
4597 
4598 	event->param.ud.qp_num = 0xFFFFFF;
4599 	event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4600 
4601 out:
4602 	if (ndev)
4603 		dev_put(ndev);
4604 }
4605 
4606 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4607 {
4608 	struct cma_multicast *mc = multicast->context;
4609 	struct rdma_id_private *id_priv = mc->id_priv;
4610 	struct rdma_cm_event event = {};
4611 	int ret = 0;
4612 
4613 	mutex_lock(&id_priv->handler_mutex);
4614 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4615 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4616 		goto out;
4617 
4618 	cma_make_mc_event(status, id_priv, multicast, &event, mc);
4619 	ret = cma_cm_event_handler(id_priv, &event);
4620 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4621 	WARN_ON(ret);
4622 
4623 out:
4624 	mutex_unlock(&id_priv->handler_mutex);
4625 	return 0;
4626 }
4627 
4628 static void cma_set_mgid(struct rdma_id_private *id_priv,
4629 			 struct sockaddr *addr, union ib_gid *mgid)
4630 {
4631 	unsigned char mc_map[MAX_ADDR_LEN];
4632 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4633 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4634 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4635 
4636 	if (cma_any_addr(addr)) {
4637 		memset(mgid, 0, sizeof *mgid);
4638 	} else if ((addr->sa_family == AF_INET6) &&
4639 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4640 								 0xFF10A01B)) {
4641 		/* IPv6 address is an SA assigned MGID. */
4642 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4643 	} else if (addr->sa_family == AF_IB) {
4644 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4645 	} else if (addr->sa_family == AF_INET6) {
4646 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4647 		if (id_priv->id.ps == RDMA_PS_UDP)
4648 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4649 		*mgid = *(union ib_gid *) (mc_map + 4);
4650 	} else {
4651 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4652 		if (id_priv->id.ps == RDMA_PS_UDP)
4653 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4654 		*mgid = *(union ib_gid *) (mc_map + 4);
4655 	}
4656 }
4657 
4658 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4659 				 struct cma_multicast *mc)
4660 {
4661 	struct ib_sa_mcmember_rec rec;
4662 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4663 	ib_sa_comp_mask comp_mask;
4664 	int ret;
4665 
4666 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4667 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4668 				     &rec.mgid, &rec);
4669 	if (ret)
4670 		return ret;
4671 
4672 	ret = cma_set_qkey(id_priv, 0);
4673 	if (ret)
4674 		return ret;
4675 
4676 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4677 	rec.qkey = cpu_to_be32(id_priv->qkey);
4678 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4679 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4680 	rec.join_state = mc->join_state;
4681 
4682 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4683 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4684 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4685 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4686 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4687 
4688 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4689 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4690 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4691 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4692 			     IB_SA_MCMEMBER_REC_MTU |
4693 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4694 
4695 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4696 					 id_priv->id.port_num, &rec, comp_mask,
4697 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4698 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4699 }
4700 
4701 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4702 			      enum ib_gid_type gid_type)
4703 {
4704 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4705 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4706 
4707 	if (cma_any_addr(addr)) {
4708 		memset(mgid, 0, sizeof *mgid);
4709 	} else if (addr->sa_family == AF_INET6) {
4710 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4711 	} else {
4712 		mgid->raw[0] =
4713 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4714 		mgid->raw[1] =
4715 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4716 		mgid->raw[2] = 0;
4717 		mgid->raw[3] = 0;
4718 		mgid->raw[4] = 0;
4719 		mgid->raw[5] = 0;
4720 		mgid->raw[6] = 0;
4721 		mgid->raw[7] = 0;
4722 		mgid->raw[8] = 0;
4723 		mgid->raw[9] = 0;
4724 		mgid->raw[10] = 0xff;
4725 		mgid->raw[11] = 0xff;
4726 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4727 	}
4728 }
4729 
4730 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4731 				   struct cma_multicast *mc)
4732 {
4733 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4734 	int err = 0;
4735 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4736 	struct net_device *ndev = NULL;
4737 	struct ib_sa_multicast ib;
4738 	enum ib_gid_type gid_type;
4739 	bool send_only;
4740 
4741 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4742 
4743 	if (cma_zero_addr(addr))
4744 		return -EINVAL;
4745 
4746 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4747 		   rdma_start_port(id_priv->cma_dev->device)];
4748 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4749 
4750 	ib.rec.pkey = cpu_to_be16(0xffff);
4751 	if (id_priv->id.ps == RDMA_PS_UDP)
4752 		ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4753 
4754 	if (dev_addr->bound_dev_if)
4755 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4756 	if (!ndev)
4757 		return -ENODEV;
4758 
4759 	ib.rec.rate = iboe_get_rate(ndev);
4760 	ib.rec.hop_limit = 1;
4761 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4762 
4763 	if (addr->sa_family == AF_INET) {
4764 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4765 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4766 			if (!send_only) {
4767 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4768 						    true);
4769 			}
4770 		}
4771 	} else {
4772 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4773 			err = -ENOTSUPP;
4774 	}
4775 	dev_put(ndev);
4776 	if (err || !ib.rec.mtu)
4777 		return err ?: -EINVAL;
4778 
4779 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4780 		    &ib.rec.port_gid);
4781 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4782 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4783 	queue_work(cma_wq, &mc->iboe_join.work);
4784 	return 0;
4785 }
4786 
4787 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4788 			u8 join_state, void *context)
4789 {
4790 	struct rdma_id_private *id_priv =
4791 		container_of(id, struct rdma_id_private, id);
4792 	struct cma_multicast *mc;
4793 	int ret;
4794 
4795 	/* Not supported for kernel QPs */
4796 	if (WARN_ON(id->qp))
4797 		return -EINVAL;
4798 
4799 	/* ULP is calling this wrong. */
4800 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
4801 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
4802 		return -EINVAL;
4803 
4804 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
4805 	if (!mc)
4806 		return -ENOMEM;
4807 
4808 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
4809 	mc->context = context;
4810 	mc->id_priv = id_priv;
4811 	mc->join_state = join_state;
4812 
4813 	if (rdma_protocol_roce(id->device, id->port_num)) {
4814 		ret = cma_iboe_join_multicast(id_priv, mc);
4815 		if (ret)
4816 			goto out_err;
4817 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
4818 		ret = cma_join_ib_multicast(id_priv, mc);
4819 		if (ret)
4820 			goto out_err;
4821 	} else {
4822 		ret = -ENOSYS;
4823 		goto out_err;
4824 	}
4825 
4826 	spin_lock(&id_priv->lock);
4827 	list_add(&mc->list, &id_priv->mc_list);
4828 	spin_unlock(&id_priv->lock);
4829 
4830 	return 0;
4831 out_err:
4832 	kfree(mc);
4833 	return ret;
4834 }
4835 EXPORT_SYMBOL(rdma_join_multicast);
4836 
4837 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
4838 {
4839 	struct rdma_id_private *id_priv;
4840 	struct cma_multicast *mc;
4841 
4842 	id_priv = container_of(id, struct rdma_id_private, id);
4843 	spin_lock_irq(&id_priv->lock);
4844 	list_for_each_entry(mc, &id_priv->mc_list, list) {
4845 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
4846 			continue;
4847 		list_del(&mc->list);
4848 		spin_unlock_irq(&id_priv->lock);
4849 
4850 		WARN_ON(id_priv->cma_dev->device != id->device);
4851 		destroy_mc(id_priv, mc);
4852 		return;
4853 	}
4854 	spin_unlock_irq(&id_priv->lock);
4855 }
4856 EXPORT_SYMBOL(rdma_leave_multicast);
4857 
4858 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
4859 {
4860 	struct rdma_dev_addr *dev_addr;
4861 	struct cma_work *work;
4862 
4863 	dev_addr = &id_priv->id.route.addr.dev_addr;
4864 
4865 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
4866 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
4867 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
4868 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
4869 			ndev->name, &id_priv->id);
4870 		work = kzalloc(sizeof *work, GFP_KERNEL);
4871 		if (!work)
4872 			return -ENOMEM;
4873 
4874 		INIT_WORK(&work->work, cma_work_handler);
4875 		work->id = id_priv;
4876 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
4877 		cma_id_get(id_priv);
4878 		queue_work(cma_wq, &work->work);
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
4885 			       void *ptr)
4886 {
4887 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
4888 	struct cma_device *cma_dev;
4889 	struct rdma_id_private *id_priv;
4890 	int ret = NOTIFY_DONE;
4891 
4892 	if (event != NETDEV_BONDING_FAILOVER)
4893 		return NOTIFY_DONE;
4894 
4895 	if (!netif_is_bond_master(ndev))
4896 		return NOTIFY_DONE;
4897 
4898 	mutex_lock(&lock);
4899 	list_for_each_entry(cma_dev, &dev_list, list)
4900 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
4901 			ret = cma_netdev_change(ndev, id_priv);
4902 			if (ret)
4903 				goto out;
4904 		}
4905 
4906 out:
4907 	mutex_unlock(&lock);
4908 	return ret;
4909 }
4910 
4911 static struct notifier_block cma_nb = {
4912 	.notifier_call = cma_netdev_callback
4913 };
4914 
4915 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
4916 {
4917 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
4918 	enum rdma_cm_state state;
4919 	unsigned long flags;
4920 
4921 	mutex_lock(&id_priv->handler_mutex);
4922 	/* Record that we want to remove the device */
4923 	spin_lock_irqsave(&id_priv->lock, flags);
4924 	state = id_priv->state;
4925 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
4926 		spin_unlock_irqrestore(&id_priv->lock, flags);
4927 		mutex_unlock(&id_priv->handler_mutex);
4928 		cma_id_put(id_priv);
4929 		return;
4930 	}
4931 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
4932 	spin_unlock_irqrestore(&id_priv->lock, flags);
4933 
4934 	if (cma_cm_event_handler(id_priv, &event)) {
4935 		/*
4936 		 * At this point the ULP promises it won't call
4937 		 * rdma_destroy_id() concurrently
4938 		 */
4939 		cma_id_put(id_priv);
4940 		mutex_unlock(&id_priv->handler_mutex);
4941 		trace_cm_id_destroy(id_priv);
4942 		_destroy_id(id_priv, state);
4943 		return;
4944 	}
4945 	mutex_unlock(&id_priv->handler_mutex);
4946 
4947 	/*
4948 	 * If this races with destroy then the thread that first assigns state
4949 	 * to a destroying does the cancel.
4950 	 */
4951 	cma_cancel_operation(id_priv, state);
4952 	cma_id_put(id_priv);
4953 }
4954 
4955 static void cma_process_remove(struct cma_device *cma_dev)
4956 {
4957 	mutex_lock(&lock);
4958 	while (!list_empty(&cma_dev->id_list)) {
4959 		struct rdma_id_private *id_priv = list_first_entry(
4960 			&cma_dev->id_list, struct rdma_id_private, device_item);
4961 
4962 		list_del_init(&id_priv->listen_item);
4963 		list_del_init(&id_priv->device_item);
4964 		cma_id_get(id_priv);
4965 		mutex_unlock(&lock);
4966 
4967 		cma_send_device_removal_put(id_priv);
4968 
4969 		mutex_lock(&lock);
4970 	}
4971 	mutex_unlock(&lock);
4972 
4973 	cma_dev_put(cma_dev);
4974 	wait_for_completion(&cma_dev->comp);
4975 }
4976 
4977 static bool cma_supported(struct ib_device *device)
4978 {
4979 	u32 i;
4980 
4981 	rdma_for_each_port(device, i) {
4982 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
4983 			return true;
4984 	}
4985 	return false;
4986 }
4987 
4988 static int cma_add_one(struct ib_device *device)
4989 {
4990 	struct rdma_id_private *to_destroy;
4991 	struct cma_device *cma_dev;
4992 	struct rdma_id_private *id_priv;
4993 	unsigned long supported_gids = 0;
4994 	int ret;
4995 	u32 i;
4996 
4997 	if (!cma_supported(device))
4998 		return -EOPNOTSUPP;
4999 
5000 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5001 	if (!cma_dev)
5002 		return -ENOMEM;
5003 
5004 	cma_dev->device = device;
5005 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5006 					    sizeof(*cma_dev->default_gid_type),
5007 					    GFP_KERNEL);
5008 	if (!cma_dev->default_gid_type) {
5009 		ret = -ENOMEM;
5010 		goto free_cma_dev;
5011 	}
5012 
5013 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5014 					    sizeof(*cma_dev->default_roce_tos),
5015 					    GFP_KERNEL);
5016 	if (!cma_dev->default_roce_tos) {
5017 		ret = -ENOMEM;
5018 		goto free_gid_type;
5019 	}
5020 
5021 	rdma_for_each_port (device, i) {
5022 		supported_gids = roce_gid_type_mask_support(device, i);
5023 		WARN_ON(!supported_gids);
5024 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5025 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5026 				CMA_PREFERRED_ROCE_GID_TYPE;
5027 		else
5028 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5029 				find_first_bit(&supported_gids, BITS_PER_LONG);
5030 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5031 	}
5032 
5033 	init_completion(&cma_dev->comp);
5034 	refcount_set(&cma_dev->refcount, 1);
5035 	INIT_LIST_HEAD(&cma_dev->id_list);
5036 	ib_set_client_data(device, &cma_client, cma_dev);
5037 
5038 	mutex_lock(&lock);
5039 	list_add_tail(&cma_dev->list, &dev_list);
5040 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5041 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5042 		if (ret)
5043 			goto free_listen;
5044 	}
5045 	mutex_unlock(&lock);
5046 
5047 	trace_cm_add_one(device);
5048 	return 0;
5049 
5050 free_listen:
5051 	list_del(&cma_dev->list);
5052 	mutex_unlock(&lock);
5053 
5054 	/* cma_process_remove() will delete to_destroy */
5055 	cma_process_remove(cma_dev);
5056 	kfree(cma_dev->default_roce_tos);
5057 free_gid_type:
5058 	kfree(cma_dev->default_gid_type);
5059 
5060 free_cma_dev:
5061 	kfree(cma_dev);
5062 	return ret;
5063 }
5064 
5065 static void cma_remove_one(struct ib_device *device, void *client_data)
5066 {
5067 	struct cma_device *cma_dev = client_data;
5068 
5069 	trace_cm_remove_one(device);
5070 
5071 	mutex_lock(&lock);
5072 	list_del(&cma_dev->list);
5073 	mutex_unlock(&lock);
5074 
5075 	cma_process_remove(cma_dev);
5076 	kfree(cma_dev->default_roce_tos);
5077 	kfree(cma_dev->default_gid_type);
5078 	kfree(cma_dev);
5079 }
5080 
5081 static int cma_init_net(struct net *net)
5082 {
5083 	struct cma_pernet *pernet = cma_pernet(net);
5084 
5085 	xa_init(&pernet->tcp_ps);
5086 	xa_init(&pernet->udp_ps);
5087 	xa_init(&pernet->ipoib_ps);
5088 	xa_init(&pernet->ib_ps);
5089 
5090 	return 0;
5091 }
5092 
5093 static void cma_exit_net(struct net *net)
5094 {
5095 	struct cma_pernet *pernet = cma_pernet(net);
5096 
5097 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5098 	WARN_ON(!xa_empty(&pernet->udp_ps));
5099 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5100 	WARN_ON(!xa_empty(&pernet->ib_ps));
5101 }
5102 
5103 static struct pernet_operations cma_pernet_operations = {
5104 	.init = cma_init_net,
5105 	.exit = cma_exit_net,
5106 	.id = &cma_pernet_id,
5107 	.size = sizeof(struct cma_pernet),
5108 };
5109 
5110 static int __init cma_init(void)
5111 {
5112 	int ret;
5113 
5114 	/*
5115 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5116 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5117 	 * must never be nested under lock so it can find these without having
5118 	 * to test with bonding.
5119 	 */
5120 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5121 		rtnl_lock();
5122 		mutex_lock(&lock);
5123 		mutex_unlock(&lock);
5124 		rtnl_unlock();
5125 	}
5126 
5127 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5128 	if (!cma_wq)
5129 		return -ENOMEM;
5130 
5131 	ret = register_pernet_subsys(&cma_pernet_operations);
5132 	if (ret)
5133 		goto err_wq;
5134 
5135 	ib_sa_register_client(&sa_client);
5136 	register_netdevice_notifier(&cma_nb);
5137 
5138 	ret = ib_register_client(&cma_client);
5139 	if (ret)
5140 		goto err;
5141 
5142 	ret = cma_configfs_init();
5143 	if (ret)
5144 		goto err_ib;
5145 
5146 	return 0;
5147 
5148 err_ib:
5149 	ib_unregister_client(&cma_client);
5150 err:
5151 	unregister_netdevice_notifier(&cma_nb);
5152 	ib_sa_unregister_client(&sa_client);
5153 	unregister_pernet_subsys(&cma_pernet_operations);
5154 err_wq:
5155 	destroy_workqueue(cma_wq);
5156 	return ret;
5157 }
5158 
5159 static void __exit cma_cleanup(void)
5160 {
5161 	cma_configfs_exit();
5162 	ib_unregister_client(&cma_client);
5163 	unregister_netdevice_notifier(&cma_nb);
5164 	ib_sa_unregister_client(&sa_client);
5165 	unregister_pernet_subsys(&cma_pernet_operations);
5166 	destroy_workqueue(cma_wq);
5167 }
5168 
5169 module_init(cma_init);
5170 module_exit(cma_cleanup);
5171