1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_MAX_CM_RETRIES 15 47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 48 #define CMA_IBOE_PACKET_LIFETIME 18 49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 50 51 static const char * const cma_events[] = { 52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 60 [RDMA_CM_EVENT_REJECTED] = "rejected", 61 [RDMA_CM_EVENT_ESTABLISHED] = "established", 62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 68 }; 69 70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 71 union ib_gid *mgid); 72 73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 74 { 75 size_t index = event; 76 77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 78 cma_events[index] : "unrecognized event"; 79 } 80 EXPORT_SYMBOL(rdma_event_msg); 81 82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 83 int reason) 84 { 85 if (rdma_ib_or_roce(id->device, id->port_num)) 86 return ibcm_reject_msg(reason); 87 88 if (rdma_protocol_iwarp(id->device, id->port_num)) 89 return iwcm_reject_msg(reason); 90 91 WARN_ON_ONCE(1); 92 return "unrecognized transport"; 93 } 94 EXPORT_SYMBOL(rdma_reject_msg); 95 96 /** 97 * rdma_is_consumer_reject - return true if the consumer rejected the connect 98 * request. 99 * @id: Communication identifier that received the REJECT event. 100 * @reason: Value returned in the REJECT event status field. 101 */ 102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 103 { 104 if (rdma_ib_or_roce(id->device, id->port_num)) 105 return reason == IB_CM_REJ_CONSUMER_DEFINED; 106 107 if (rdma_protocol_iwarp(id->device, id->port_num)) 108 return reason == -ECONNREFUSED; 109 110 WARN_ON_ONCE(1); 111 return false; 112 } 113 114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 115 struct rdma_cm_event *ev, u8 *data_len) 116 { 117 const void *p; 118 119 if (rdma_is_consumer_reject(id, ev->status)) { 120 *data_len = ev->param.conn.private_data_len; 121 p = ev->param.conn.private_data; 122 } else { 123 *data_len = 0; 124 p = NULL; 125 } 126 return p; 127 } 128 EXPORT_SYMBOL(rdma_consumer_reject_data); 129 130 /** 131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 132 * @id: Communication Identifier 133 */ 134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 135 { 136 struct rdma_id_private *id_priv; 137 138 id_priv = container_of(id, struct rdma_id_private, id); 139 if (id->device->node_type == RDMA_NODE_RNIC) 140 return id_priv->cm_id.iw; 141 return NULL; 142 } 143 EXPORT_SYMBOL(rdma_iw_cm_id); 144 145 /** 146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 147 * @res: rdma resource tracking entry pointer 148 */ 149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 150 { 151 struct rdma_id_private *id_priv = 152 container_of(res, struct rdma_id_private, res); 153 154 return &id_priv->id; 155 } 156 EXPORT_SYMBOL(rdma_res_to_id); 157 158 static int cma_add_one(struct ib_device *device); 159 static void cma_remove_one(struct ib_device *device, void *client_data); 160 161 static struct ib_client cma_client = { 162 .name = "cma", 163 .add = cma_add_one, 164 .remove = cma_remove_one 165 }; 166 167 static struct ib_sa_client sa_client; 168 static LIST_HEAD(dev_list); 169 static LIST_HEAD(listen_any_list); 170 static DEFINE_MUTEX(lock); 171 static struct workqueue_struct *cma_wq; 172 static unsigned int cma_pernet_id; 173 174 struct cma_pernet { 175 struct xarray tcp_ps; 176 struct xarray udp_ps; 177 struct xarray ipoib_ps; 178 struct xarray ib_ps; 179 }; 180 181 static struct cma_pernet *cma_pernet(struct net *net) 182 { 183 return net_generic(net, cma_pernet_id); 184 } 185 186 static 187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 188 { 189 struct cma_pernet *pernet = cma_pernet(net); 190 191 switch (ps) { 192 case RDMA_PS_TCP: 193 return &pernet->tcp_ps; 194 case RDMA_PS_UDP: 195 return &pernet->udp_ps; 196 case RDMA_PS_IPOIB: 197 return &pernet->ipoib_ps; 198 case RDMA_PS_IB: 199 return &pernet->ib_ps; 200 default: 201 return NULL; 202 } 203 } 204 205 struct cma_device { 206 struct list_head list; 207 struct ib_device *device; 208 struct completion comp; 209 refcount_t refcount; 210 struct list_head id_list; 211 enum ib_gid_type *default_gid_type; 212 u8 *default_roce_tos; 213 }; 214 215 struct rdma_bind_list { 216 enum rdma_ucm_port_space ps; 217 struct hlist_head owners; 218 unsigned short port; 219 }; 220 221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 222 struct rdma_bind_list *bind_list, int snum) 223 { 224 struct xarray *xa = cma_pernet_xa(net, ps); 225 226 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 227 } 228 229 static struct rdma_bind_list *cma_ps_find(struct net *net, 230 enum rdma_ucm_port_space ps, int snum) 231 { 232 struct xarray *xa = cma_pernet_xa(net, ps); 233 234 return xa_load(xa, snum); 235 } 236 237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 238 int snum) 239 { 240 struct xarray *xa = cma_pernet_xa(net, ps); 241 242 xa_erase(xa, snum); 243 } 244 245 enum { 246 CMA_OPTION_AFONLY, 247 }; 248 249 void cma_dev_get(struct cma_device *cma_dev) 250 { 251 refcount_inc(&cma_dev->refcount); 252 } 253 254 void cma_dev_put(struct cma_device *cma_dev) 255 { 256 if (refcount_dec_and_test(&cma_dev->refcount)) 257 complete(&cma_dev->comp); 258 } 259 260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 261 void *cookie) 262 { 263 struct cma_device *cma_dev; 264 struct cma_device *found_cma_dev = NULL; 265 266 mutex_lock(&lock); 267 268 list_for_each_entry(cma_dev, &dev_list, list) 269 if (filter(cma_dev->device, cookie)) { 270 found_cma_dev = cma_dev; 271 break; 272 } 273 274 if (found_cma_dev) 275 cma_dev_get(found_cma_dev); 276 mutex_unlock(&lock); 277 return found_cma_dev; 278 } 279 280 int cma_get_default_gid_type(struct cma_device *cma_dev, 281 u32 port) 282 { 283 if (!rdma_is_port_valid(cma_dev->device, port)) 284 return -EINVAL; 285 286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 287 } 288 289 int cma_set_default_gid_type(struct cma_device *cma_dev, 290 u32 port, 291 enum ib_gid_type default_gid_type) 292 { 293 unsigned long supported_gids; 294 295 if (!rdma_is_port_valid(cma_dev->device, port)) 296 return -EINVAL; 297 298 if (default_gid_type == IB_GID_TYPE_IB && 299 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 300 default_gid_type = IB_GID_TYPE_ROCE; 301 302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 303 304 if (!(supported_gids & 1 << default_gid_type)) 305 return -EINVAL; 306 307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 308 default_gid_type; 309 310 return 0; 311 } 312 313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 314 { 315 if (!rdma_is_port_valid(cma_dev->device, port)) 316 return -EINVAL; 317 318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 319 } 320 321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 322 u8 default_roce_tos) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 328 default_roce_tos; 329 330 return 0; 331 } 332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 333 { 334 return cma_dev->device; 335 } 336 337 /* 338 * Device removal can occur at anytime, so we need extra handling to 339 * serialize notifying the user of device removal with other callbacks. 340 * We do this by disabling removal notification while a callback is in process, 341 * and reporting it after the callback completes. 342 */ 343 344 struct cma_multicast { 345 struct rdma_id_private *id_priv; 346 union { 347 struct ib_sa_multicast *sa_mc; 348 struct { 349 struct work_struct work; 350 struct rdma_cm_event event; 351 } iboe_join; 352 }; 353 struct list_head list; 354 void *context; 355 struct sockaddr_storage addr; 356 u8 join_state; 357 }; 358 359 struct cma_work { 360 struct work_struct work; 361 struct rdma_id_private *id; 362 enum rdma_cm_state old_state; 363 enum rdma_cm_state new_state; 364 struct rdma_cm_event event; 365 }; 366 367 union cma_ip_addr { 368 struct in6_addr ip6; 369 struct { 370 __be32 pad[3]; 371 __be32 addr; 372 } ip4; 373 }; 374 375 struct cma_hdr { 376 u8 cma_version; 377 u8 ip_version; /* IP version: 7:4 */ 378 __be16 port; 379 union cma_ip_addr src_addr; 380 union cma_ip_addr dst_addr; 381 }; 382 383 #define CMA_VERSION 0x00 384 385 struct cma_req_info { 386 struct sockaddr_storage listen_addr_storage; 387 struct sockaddr_storage src_addr_storage; 388 struct ib_device *device; 389 union ib_gid local_gid; 390 __be64 service_id; 391 int port; 392 bool has_gid; 393 u16 pkey; 394 }; 395 396 static int cma_comp_exch(struct rdma_id_private *id_priv, 397 enum rdma_cm_state comp, enum rdma_cm_state exch) 398 { 399 unsigned long flags; 400 int ret; 401 402 /* 403 * The FSM uses a funny double locking where state is protected by both 404 * the handler_mutex and the spinlock. State is not allowed to change 405 * to/from a handler_mutex protected value without also holding 406 * handler_mutex. 407 */ 408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 409 lockdep_assert_held(&id_priv->handler_mutex); 410 411 spin_lock_irqsave(&id_priv->lock, flags); 412 if ((ret = (id_priv->state == comp))) 413 id_priv->state = exch; 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 419 { 420 return hdr->ip_version >> 4; 421 } 422 423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 424 { 425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 426 } 427 428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 429 { 430 struct in_device *in_dev = NULL; 431 432 if (ndev) { 433 rtnl_lock(); 434 in_dev = __in_dev_get_rtnl(ndev); 435 if (in_dev) { 436 if (join) 437 ip_mc_inc_group(in_dev, 438 *(__be32 *)(mgid->raw + 12)); 439 else 440 ip_mc_dec_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 } 443 rtnl_unlock(); 444 } 445 return (in_dev) ? 0 : -ENODEV; 446 } 447 448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 449 struct cma_device *cma_dev) 450 { 451 cma_dev_get(cma_dev); 452 id_priv->cma_dev = cma_dev; 453 id_priv->id.device = cma_dev->device; 454 id_priv->id.route.addr.dev_addr.transport = 455 rdma_node_get_transport(cma_dev->device->node_type); 456 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 457 458 trace_cm_id_attach(id_priv, cma_dev->device); 459 } 460 461 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 _cma_attach_to_dev(id_priv, cma_dev); 465 id_priv->gid_type = 466 cma_dev->default_gid_type[id_priv->id.port_num - 467 rdma_start_port(cma_dev->device)]; 468 } 469 470 static void cma_release_dev(struct rdma_id_private *id_priv) 471 { 472 mutex_lock(&lock); 473 list_del_init(&id_priv->device_item); 474 cma_dev_put(id_priv->cma_dev); 475 id_priv->cma_dev = NULL; 476 id_priv->id.device = NULL; 477 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 480 } 481 mutex_unlock(&lock); 482 } 483 484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 485 { 486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 487 } 488 489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 490 { 491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 492 } 493 494 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 495 { 496 return id_priv->id.route.addr.src_addr.ss_family; 497 } 498 499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 500 { 501 struct ib_sa_mcmember_rec rec; 502 int ret = 0; 503 504 if (id_priv->qkey) { 505 if (qkey && id_priv->qkey != qkey) 506 return -EINVAL; 507 return 0; 508 } 509 510 if (qkey) { 511 id_priv->qkey = qkey; 512 return 0; 513 } 514 515 switch (id_priv->id.ps) { 516 case RDMA_PS_UDP: 517 case RDMA_PS_IB: 518 id_priv->qkey = RDMA_UDP_QKEY; 519 break; 520 case RDMA_PS_IPOIB: 521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 522 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 523 id_priv->id.port_num, &rec.mgid, 524 &rec); 525 if (!ret) 526 id_priv->qkey = be32_to_cpu(rec.qkey); 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 535 { 536 dev_addr->dev_type = ARPHRD_INFINIBAND; 537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 539 } 540 541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 542 { 543 int ret; 544 545 if (addr->sa_family != AF_IB) { 546 ret = rdma_translate_ip(addr, dev_addr); 547 } else { 548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 549 ret = 0; 550 } 551 552 return ret; 553 } 554 555 static const struct ib_gid_attr * 556 cma_validate_port(struct ib_device *device, u32 port, 557 enum ib_gid_type gid_type, 558 union ib_gid *gid, 559 struct rdma_id_private *id_priv) 560 { 561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 562 int bound_if_index = dev_addr->bound_dev_if; 563 const struct ib_gid_attr *sgid_attr; 564 int dev_type = dev_addr->dev_type; 565 struct net_device *ndev = NULL; 566 567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 568 return ERR_PTR(-ENODEV); 569 570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 577 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 578 if (!ndev) 579 return ERR_PTR(-ENODEV); 580 } else { 581 gid_type = IB_GID_TYPE_IB; 582 } 583 584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 585 if (ndev) 586 dev_put(ndev); 587 return sgid_attr; 588 } 589 590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 591 const struct ib_gid_attr *sgid_attr) 592 { 593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 595 } 596 597 /** 598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 599 * based on source ip address. 600 * @id_priv: cm_id which should be bound to cma device 601 * 602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 603 * based on source IP address. It returns 0 on success or error code otherwise. 604 * It is applicable to active and passive side cm_id. 605 */ 606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 607 { 608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 609 const struct ib_gid_attr *sgid_attr; 610 union ib_gid gid, iboe_gid, *gidp; 611 struct cma_device *cma_dev; 612 enum ib_gid_type gid_type; 613 int ret = -ENODEV; 614 u32 port; 615 616 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 617 id_priv->id.ps == RDMA_PS_IPOIB) 618 return -EINVAL; 619 620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 621 &iboe_gid); 622 623 memcpy(&gid, dev_addr->src_dev_addr + 624 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 625 626 mutex_lock(&lock); 627 list_for_each_entry(cma_dev, &dev_list, list) { 628 rdma_for_each_port (cma_dev->device, port) { 629 gidp = rdma_protocol_roce(cma_dev->device, port) ? 630 &iboe_gid : &gid; 631 gid_type = cma_dev->default_gid_type[port - 1]; 632 sgid_attr = cma_validate_port(cma_dev->device, port, 633 gid_type, gidp, id_priv); 634 if (!IS_ERR(sgid_attr)) { 635 id_priv->id.port_num = port; 636 cma_bind_sgid_attr(id_priv, sgid_attr); 637 cma_attach_to_dev(id_priv, cma_dev); 638 ret = 0; 639 goto out; 640 } 641 } 642 } 643 out: 644 mutex_unlock(&lock); 645 return ret; 646 } 647 648 /** 649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 650 * @id_priv: cm id to bind to cma device 651 * @listen_id_priv: listener cm id to match against 652 * @req: Pointer to req structure containaining incoming 653 * request information 654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 655 * rdma device matches for listen_id and incoming request. It also verifies 656 * that a GID table entry is present for the source address. 657 * Returns 0 on success, or returns error code otherwise. 658 */ 659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 660 const struct rdma_id_private *listen_id_priv, 661 struct cma_req_info *req) 662 { 663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 664 const struct ib_gid_attr *sgid_attr; 665 enum ib_gid_type gid_type; 666 union ib_gid gid; 667 668 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 669 id_priv->id.ps == RDMA_PS_IPOIB) 670 return -EINVAL; 671 672 if (rdma_protocol_roce(req->device, req->port)) 673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 674 &gid); 675 else 676 memcpy(&gid, dev_addr->src_dev_addr + 677 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 678 679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 680 sgid_attr = cma_validate_port(req->device, req->port, 681 gid_type, &gid, id_priv); 682 if (IS_ERR(sgid_attr)) 683 return PTR_ERR(sgid_attr); 684 685 id_priv->id.port_num = req->port; 686 cma_bind_sgid_attr(id_priv, sgid_attr); 687 /* Need to acquire lock to protect against reader 688 * of cma_dev->id_list such as cma_netdev_callback() and 689 * cma_process_remove(). 690 */ 691 mutex_lock(&lock); 692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 693 mutex_unlock(&lock); 694 rdma_restrack_add(&id_priv->res); 695 return 0; 696 } 697 698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 699 const struct rdma_id_private *listen_id_priv) 700 { 701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 702 const struct ib_gid_attr *sgid_attr; 703 struct cma_device *cma_dev; 704 enum ib_gid_type gid_type; 705 int ret = -ENODEV; 706 union ib_gid gid; 707 u32 port; 708 709 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 710 id_priv->id.ps == RDMA_PS_IPOIB) 711 return -EINVAL; 712 713 memcpy(&gid, dev_addr->src_dev_addr + 714 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 715 716 mutex_lock(&lock); 717 718 cma_dev = listen_id_priv->cma_dev; 719 port = listen_id_priv->id.port_num; 720 gid_type = listen_id_priv->gid_type; 721 sgid_attr = cma_validate_port(cma_dev->device, port, 722 gid_type, &gid, id_priv); 723 if (!IS_ERR(sgid_attr)) { 724 id_priv->id.port_num = port; 725 cma_bind_sgid_attr(id_priv, sgid_attr); 726 ret = 0; 727 goto out; 728 } 729 730 list_for_each_entry(cma_dev, &dev_list, list) { 731 rdma_for_each_port (cma_dev->device, port) { 732 if (listen_id_priv->cma_dev == cma_dev && 733 listen_id_priv->id.port_num == port) 734 continue; 735 736 gid_type = cma_dev->default_gid_type[port - 1]; 737 sgid_attr = cma_validate_port(cma_dev->device, port, 738 gid_type, &gid, id_priv); 739 if (!IS_ERR(sgid_attr)) { 740 id_priv->id.port_num = port; 741 cma_bind_sgid_attr(id_priv, sgid_attr); 742 ret = 0; 743 goto out; 744 } 745 } 746 } 747 748 out: 749 if (!ret) { 750 cma_attach_to_dev(id_priv, cma_dev); 751 rdma_restrack_add(&id_priv->res); 752 } 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int i; 770 771 cma_dev = NULL; 772 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 773 dgid = (union ib_gid *) &addr->sib_addr; 774 pkey = ntohs(addr->sib_pkey); 775 776 mutex_lock(&lock); 777 list_for_each_entry(cur_dev, &dev_list, list) { 778 rdma_for_each_port (cur_dev->device, p) { 779 if (!rdma_cap_af_ib(cur_dev->device, p)) 780 continue; 781 782 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 783 continue; 784 785 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 786 continue; 787 for (i = 0; !rdma_query_gid(cur_dev->device, 788 p, i, &gid); 789 i++) { 790 if (!memcmp(&gid, dgid, sizeof(gid))) { 791 cma_dev = cur_dev; 792 sgid = gid; 793 id_priv->id.port_num = p; 794 goto found; 795 } 796 797 if (!cma_dev && (gid.global.subnet_prefix == 798 dgid->global.subnet_prefix) && 799 port_state == IB_PORT_ACTIVE) { 800 cma_dev = cur_dev; 801 sgid = gid; 802 id_priv->id.port_num = p; 803 goto found; 804 } 805 } 806 } 807 } 808 mutex_unlock(&lock); 809 return -ENODEV; 810 811 found: 812 cma_attach_to_dev(id_priv, cma_dev); 813 rdma_restrack_add(&id_priv->res); 814 mutex_unlock(&lock); 815 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 816 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 817 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 818 return 0; 819 } 820 821 static void cma_id_get(struct rdma_id_private *id_priv) 822 { 823 refcount_inc(&id_priv->refcount); 824 } 825 826 static void cma_id_put(struct rdma_id_private *id_priv) 827 { 828 if (refcount_dec_and_test(&id_priv->refcount)) 829 complete(&id_priv->comp); 830 } 831 832 static struct rdma_id_private * 833 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 834 void *context, enum rdma_ucm_port_space ps, 835 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 836 { 837 struct rdma_id_private *id_priv; 838 839 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 840 if (!id_priv) 841 return ERR_PTR(-ENOMEM); 842 843 id_priv->state = RDMA_CM_IDLE; 844 id_priv->id.context = context; 845 id_priv->id.event_handler = event_handler; 846 id_priv->id.ps = ps; 847 id_priv->id.qp_type = qp_type; 848 id_priv->tos_set = false; 849 id_priv->timeout_set = false; 850 id_priv->min_rnr_timer_set = false; 851 id_priv->gid_type = IB_GID_TYPE_IB; 852 spin_lock_init(&id_priv->lock); 853 mutex_init(&id_priv->qp_mutex); 854 init_completion(&id_priv->comp); 855 refcount_set(&id_priv->refcount, 1); 856 mutex_init(&id_priv->handler_mutex); 857 INIT_LIST_HEAD(&id_priv->device_item); 858 INIT_LIST_HEAD(&id_priv->listen_list); 859 INIT_LIST_HEAD(&id_priv->mc_list); 860 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 861 id_priv->id.route.addr.dev_addr.net = get_net(net); 862 id_priv->seq_num &= 0x00ffffff; 863 864 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 865 if (parent) 866 rdma_restrack_parent_name(&id_priv->res, &parent->res); 867 868 return id_priv; 869 } 870 871 struct rdma_cm_id * 872 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 873 void *context, enum rdma_ucm_port_space ps, 874 enum ib_qp_type qp_type, const char *caller) 875 { 876 struct rdma_id_private *ret; 877 878 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 879 if (IS_ERR(ret)) 880 return ERR_CAST(ret); 881 882 rdma_restrack_set_name(&ret->res, caller); 883 return &ret->id; 884 } 885 EXPORT_SYMBOL(__rdma_create_kernel_id); 886 887 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 888 void *context, 889 enum rdma_ucm_port_space ps, 890 enum ib_qp_type qp_type) 891 { 892 struct rdma_id_private *ret; 893 894 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 895 ps, qp_type, NULL); 896 if (IS_ERR(ret)) 897 return ERR_CAST(ret); 898 899 rdma_restrack_set_name(&ret->res, NULL); 900 return &ret->id; 901 } 902 EXPORT_SYMBOL(rdma_create_user_id); 903 904 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 905 { 906 struct ib_qp_attr qp_attr; 907 int qp_attr_mask, ret; 908 909 qp_attr.qp_state = IB_QPS_INIT; 910 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 911 if (ret) 912 return ret; 913 914 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 915 if (ret) 916 return ret; 917 918 qp_attr.qp_state = IB_QPS_RTR; 919 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 920 if (ret) 921 return ret; 922 923 qp_attr.qp_state = IB_QPS_RTS; 924 qp_attr.sq_psn = 0; 925 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 926 927 return ret; 928 } 929 930 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 931 { 932 struct ib_qp_attr qp_attr; 933 int qp_attr_mask, ret; 934 935 qp_attr.qp_state = IB_QPS_INIT; 936 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 937 if (ret) 938 return ret; 939 940 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 941 } 942 943 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 944 struct ib_qp_init_attr *qp_init_attr) 945 { 946 struct rdma_id_private *id_priv; 947 struct ib_qp *qp; 948 int ret; 949 950 id_priv = container_of(id, struct rdma_id_private, id); 951 if (id->device != pd->device) { 952 ret = -EINVAL; 953 goto out_err; 954 } 955 956 qp_init_attr->port_num = id->port_num; 957 qp = ib_create_qp(pd, qp_init_attr); 958 if (IS_ERR(qp)) { 959 ret = PTR_ERR(qp); 960 goto out_err; 961 } 962 963 if (id->qp_type == IB_QPT_UD) 964 ret = cma_init_ud_qp(id_priv, qp); 965 else 966 ret = cma_init_conn_qp(id_priv, qp); 967 if (ret) 968 goto out_destroy; 969 970 id->qp = qp; 971 id_priv->qp_num = qp->qp_num; 972 id_priv->srq = (qp->srq != NULL); 973 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 974 return 0; 975 out_destroy: 976 ib_destroy_qp(qp); 977 out_err: 978 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 979 return ret; 980 } 981 EXPORT_SYMBOL(rdma_create_qp); 982 983 void rdma_destroy_qp(struct rdma_cm_id *id) 984 { 985 struct rdma_id_private *id_priv; 986 987 id_priv = container_of(id, struct rdma_id_private, id); 988 trace_cm_qp_destroy(id_priv); 989 mutex_lock(&id_priv->qp_mutex); 990 ib_destroy_qp(id_priv->id.qp); 991 id_priv->id.qp = NULL; 992 mutex_unlock(&id_priv->qp_mutex); 993 } 994 EXPORT_SYMBOL(rdma_destroy_qp); 995 996 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 997 struct rdma_conn_param *conn_param) 998 { 999 struct ib_qp_attr qp_attr; 1000 int qp_attr_mask, ret; 1001 1002 mutex_lock(&id_priv->qp_mutex); 1003 if (!id_priv->id.qp) { 1004 ret = 0; 1005 goto out; 1006 } 1007 1008 /* Need to update QP attributes from default values. */ 1009 qp_attr.qp_state = IB_QPS_INIT; 1010 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1011 if (ret) 1012 goto out; 1013 1014 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1015 if (ret) 1016 goto out; 1017 1018 qp_attr.qp_state = IB_QPS_RTR; 1019 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1020 if (ret) 1021 goto out; 1022 1023 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1024 1025 if (conn_param) 1026 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1027 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1028 out: 1029 mutex_unlock(&id_priv->qp_mutex); 1030 return ret; 1031 } 1032 1033 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1034 struct rdma_conn_param *conn_param) 1035 { 1036 struct ib_qp_attr qp_attr; 1037 int qp_attr_mask, ret; 1038 1039 mutex_lock(&id_priv->qp_mutex); 1040 if (!id_priv->id.qp) { 1041 ret = 0; 1042 goto out; 1043 } 1044 1045 qp_attr.qp_state = IB_QPS_RTS; 1046 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1047 if (ret) 1048 goto out; 1049 1050 if (conn_param) 1051 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1052 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1053 out: 1054 mutex_unlock(&id_priv->qp_mutex); 1055 return ret; 1056 } 1057 1058 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1059 { 1060 struct ib_qp_attr qp_attr; 1061 int ret; 1062 1063 mutex_lock(&id_priv->qp_mutex); 1064 if (!id_priv->id.qp) { 1065 ret = 0; 1066 goto out; 1067 } 1068 1069 qp_attr.qp_state = IB_QPS_ERR; 1070 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1071 out: 1072 mutex_unlock(&id_priv->qp_mutex); 1073 return ret; 1074 } 1075 1076 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1077 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1078 { 1079 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1080 int ret; 1081 u16 pkey; 1082 1083 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1084 pkey = 0xffff; 1085 else 1086 pkey = ib_addr_get_pkey(dev_addr); 1087 1088 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1089 pkey, &qp_attr->pkey_index); 1090 if (ret) 1091 return ret; 1092 1093 qp_attr->port_num = id_priv->id.port_num; 1094 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1095 1096 if (id_priv->id.qp_type == IB_QPT_UD) { 1097 ret = cma_set_qkey(id_priv, 0); 1098 if (ret) 1099 return ret; 1100 1101 qp_attr->qkey = id_priv->qkey; 1102 *qp_attr_mask |= IB_QP_QKEY; 1103 } else { 1104 qp_attr->qp_access_flags = 0; 1105 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1106 } 1107 return 0; 1108 } 1109 1110 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1111 int *qp_attr_mask) 1112 { 1113 struct rdma_id_private *id_priv; 1114 int ret = 0; 1115 1116 id_priv = container_of(id, struct rdma_id_private, id); 1117 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1118 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1119 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1120 else 1121 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1122 qp_attr_mask); 1123 1124 if (qp_attr->qp_state == IB_QPS_RTR) 1125 qp_attr->rq_psn = id_priv->seq_num; 1126 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1127 if (!id_priv->cm_id.iw) { 1128 qp_attr->qp_access_flags = 0; 1129 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1130 } else 1131 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1132 qp_attr_mask); 1133 qp_attr->port_num = id_priv->id.port_num; 1134 *qp_attr_mask |= IB_QP_PORT; 1135 } else { 1136 ret = -ENOSYS; 1137 } 1138 1139 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1140 qp_attr->timeout = id_priv->timeout; 1141 1142 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1143 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1144 1145 return ret; 1146 } 1147 EXPORT_SYMBOL(rdma_init_qp_attr); 1148 1149 static inline bool cma_zero_addr(const struct sockaddr *addr) 1150 { 1151 switch (addr->sa_family) { 1152 case AF_INET: 1153 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1154 case AF_INET6: 1155 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1156 case AF_IB: 1157 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1158 default: 1159 return false; 1160 } 1161 } 1162 1163 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1164 { 1165 switch (addr->sa_family) { 1166 case AF_INET: 1167 return ipv4_is_loopback( 1168 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1169 case AF_INET6: 1170 return ipv6_addr_loopback( 1171 &((struct sockaddr_in6 *)addr)->sin6_addr); 1172 case AF_IB: 1173 return ib_addr_loopback( 1174 &((struct sockaddr_ib *)addr)->sib_addr); 1175 default: 1176 return false; 1177 } 1178 } 1179 1180 static inline bool cma_any_addr(const struct sockaddr *addr) 1181 { 1182 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1183 } 1184 1185 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1186 { 1187 if (src->sa_family != dst->sa_family) 1188 return -1; 1189 1190 switch (src->sa_family) { 1191 case AF_INET: 1192 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1193 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1194 case AF_INET6: { 1195 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1196 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1197 bool link_local; 1198 1199 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1200 &dst_addr6->sin6_addr)) 1201 return 1; 1202 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1203 IPV6_ADDR_LINKLOCAL; 1204 /* Link local must match their scope_ids */ 1205 return link_local ? (src_addr6->sin6_scope_id != 1206 dst_addr6->sin6_scope_id) : 1207 0; 1208 } 1209 1210 default: 1211 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1212 &((struct sockaddr_ib *) dst)->sib_addr); 1213 } 1214 } 1215 1216 static __be16 cma_port(const struct sockaddr *addr) 1217 { 1218 struct sockaddr_ib *sib; 1219 1220 switch (addr->sa_family) { 1221 case AF_INET: 1222 return ((struct sockaddr_in *) addr)->sin_port; 1223 case AF_INET6: 1224 return ((struct sockaddr_in6 *) addr)->sin6_port; 1225 case AF_IB: 1226 sib = (struct sockaddr_ib *) addr; 1227 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1228 be64_to_cpu(sib->sib_sid_mask))); 1229 default: 1230 return 0; 1231 } 1232 } 1233 1234 static inline int cma_any_port(const struct sockaddr *addr) 1235 { 1236 return !cma_port(addr); 1237 } 1238 1239 static void cma_save_ib_info(struct sockaddr *src_addr, 1240 struct sockaddr *dst_addr, 1241 const struct rdma_cm_id *listen_id, 1242 const struct sa_path_rec *path) 1243 { 1244 struct sockaddr_ib *listen_ib, *ib; 1245 1246 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1247 if (src_addr) { 1248 ib = (struct sockaddr_ib *)src_addr; 1249 ib->sib_family = AF_IB; 1250 if (path) { 1251 ib->sib_pkey = path->pkey; 1252 ib->sib_flowinfo = path->flow_label; 1253 memcpy(&ib->sib_addr, &path->sgid, 16); 1254 ib->sib_sid = path->service_id; 1255 ib->sib_scope_id = 0; 1256 } else { 1257 ib->sib_pkey = listen_ib->sib_pkey; 1258 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1259 ib->sib_addr = listen_ib->sib_addr; 1260 ib->sib_sid = listen_ib->sib_sid; 1261 ib->sib_scope_id = listen_ib->sib_scope_id; 1262 } 1263 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1264 } 1265 if (dst_addr) { 1266 ib = (struct sockaddr_ib *)dst_addr; 1267 ib->sib_family = AF_IB; 1268 if (path) { 1269 ib->sib_pkey = path->pkey; 1270 ib->sib_flowinfo = path->flow_label; 1271 memcpy(&ib->sib_addr, &path->dgid, 16); 1272 } 1273 } 1274 } 1275 1276 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1277 struct sockaddr_in *dst_addr, 1278 struct cma_hdr *hdr, 1279 __be16 local_port) 1280 { 1281 if (src_addr) { 1282 *src_addr = (struct sockaddr_in) { 1283 .sin_family = AF_INET, 1284 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1285 .sin_port = local_port, 1286 }; 1287 } 1288 1289 if (dst_addr) { 1290 *dst_addr = (struct sockaddr_in) { 1291 .sin_family = AF_INET, 1292 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1293 .sin_port = hdr->port, 1294 }; 1295 } 1296 } 1297 1298 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1299 struct sockaddr_in6 *dst_addr, 1300 struct cma_hdr *hdr, 1301 __be16 local_port) 1302 { 1303 if (src_addr) { 1304 *src_addr = (struct sockaddr_in6) { 1305 .sin6_family = AF_INET6, 1306 .sin6_addr = hdr->dst_addr.ip6, 1307 .sin6_port = local_port, 1308 }; 1309 } 1310 1311 if (dst_addr) { 1312 *dst_addr = (struct sockaddr_in6) { 1313 .sin6_family = AF_INET6, 1314 .sin6_addr = hdr->src_addr.ip6, 1315 .sin6_port = hdr->port, 1316 }; 1317 } 1318 } 1319 1320 static u16 cma_port_from_service_id(__be64 service_id) 1321 { 1322 return (u16)be64_to_cpu(service_id); 1323 } 1324 1325 static int cma_save_ip_info(struct sockaddr *src_addr, 1326 struct sockaddr *dst_addr, 1327 const struct ib_cm_event *ib_event, 1328 __be64 service_id) 1329 { 1330 struct cma_hdr *hdr; 1331 __be16 port; 1332 1333 hdr = ib_event->private_data; 1334 if (hdr->cma_version != CMA_VERSION) 1335 return -EINVAL; 1336 1337 port = htons(cma_port_from_service_id(service_id)); 1338 1339 switch (cma_get_ip_ver(hdr)) { 1340 case 4: 1341 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1342 (struct sockaddr_in *)dst_addr, hdr, port); 1343 break; 1344 case 6: 1345 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1346 (struct sockaddr_in6 *)dst_addr, hdr, port); 1347 break; 1348 default: 1349 return -EAFNOSUPPORT; 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int cma_save_net_info(struct sockaddr *src_addr, 1356 struct sockaddr *dst_addr, 1357 const struct rdma_cm_id *listen_id, 1358 const struct ib_cm_event *ib_event, 1359 sa_family_t sa_family, __be64 service_id) 1360 { 1361 if (sa_family == AF_IB) { 1362 if (ib_event->event == IB_CM_REQ_RECEIVED) 1363 cma_save_ib_info(src_addr, dst_addr, listen_id, 1364 ib_event->param.req_rcvd.primary_path); 1365 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1366 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1367 return 0; 1368 } 1369 1370 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1371 } 1372 1373 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1374 struct cma_req_info *req) 1375 { 1376 const struct ib_cm_req_event_param *req_param = 1377 &ib_event->param.req_rcvd; 1378 const struct ib_cm_sidr_req_event_param *sidr_param = 1379 &ib_event->param.sidr_req_rcvd; 1380 1381 switch (ib_event->event) { 1382 case IB_CM_REQ_RECEIVED: 1383 req->device = req_param->listen_id->device; 1384 req->port = req_param->port; 1385 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1386 sizeof(req->local_gid)); 1387 req->has_gid = true; 1388 req->service_id = req_param->primary_path->service_id; 1389 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1390 if (req->pkey != req_param->bth_pkey) 1391 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1392 "RDMA CMA: in the future this may cause the request to be dropped\n", 1393 req_param->bth_pkey, req->pkey); 1394 break; 1395 case IB_CM_SIDR_REQ_RECEIVED: 1396 req->device = sidr_param->listen_id->device; 1397 req->port = sidr_param->port; 1398 req->has_gid = false; 1399 req->service_id = sidr_param->service_id; 1400 req->pkey = sidr_param->pkey; 1401 if (req->pkey != sidr_param->bth_pkey) 1402 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1403 "RDMA CMA: in the future this may cause the request to be dropped\n", 1404 sidr_param->bth_pkey, req->pkey); 1405 break; 1406 default: 1407 return -EINVAL; 1408 } 1409 1410 return 0; 1411 } 1412 1413 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1414 const struct sockaddr_in *dst_addr, 1415 const struct sockaddr_in *src_addr) 1416 { 1417 __be32 daddr = dst_addr->sin_addr.s_addr, 1418 saddr = src_addr->sin_addr.s_addr; 1419 struct fib_result res; 1420 struct flowi4 fl4; 1421 int err; 1422 bool ret; 1423 1424 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1425 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1426 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1427 ipv4_is_loopback(saddr)) 1428 return false; 1429 1430 memset(&fl4, 0, sizeof(fl4)); 1431 fl4.flowi4_iif = net_dev->ifindex; 1432 fl4.daddr = daddr; 1433 fl4.saddr = saddr; 1434 1435 rcu_read_lock(); 1436 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1437 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1438 rcu_read_unlock(); 1439 1440 return ret; 1441 } 1442 1443 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1444 const struct sockaddr_in6 *dst_addr, 1445 const struct sockaddr_in6 *src_addr) 1446 { 1447 #if IS_ENABLED(CONFIG_IPV6) 1448 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1449 IPV6_ADDR_LINKLOCAL; 1450 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1451 &src_addr->sin6_addr, net_dev->ifindex, 1452 NULL, strict); 1453 bool ret; 1454 1455 if (!rt) 1456 return false; 1457 1458 ret = rt->rt6i_idev->dev == net_dev; 1459 ip6_rt_put(rt); 1460 1461 return ret; 1462 #else 1463 return false; 1464 #endif 1465 } 1466 1467 static bool validate_net_dev(struct net_device *net_dev, 1468 const struct sockaddr *daddr, 1469 const struct sockaddr *saddr) 1470 { 1471 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1472 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1473 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1474 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1475 1476 switch (daddr->sa_family) { 1477 case AF_INET: 1478 return saddr->sa_family == AF_INET && 1479 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1480 1481 case AF_INET6: 1482 return saddr->sa_family == AF_INET6 && 1483 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1484 1485 default: 1486 return false; 1487 } 1488 } 1489 1490 static struct net_device * 1491 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1492 { 1493 const struct ib_gid_attr *sgid_attr = NULL; 1494 struct net_device *ndev; 1495 1496 if (ib_event->event == IB_CM_REQ_RECEIVED) 1497 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1498 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1499 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1500 1501 if (!sgid_attr) 1502 return NULL; 1503 1504 rcu_read_lock(); 1505 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1506 if (IS_ERR(ndev)) 1507 ndev = NULL; 1508 else 1509 dev_hold(ndev); 1510 rcu_read_unlock(); 1511 return ndev; 1512 } 1513 1514 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1515 struct cma_req_info *req) 1516 { 1517 struct sockaddr *listen_addr = 1518 (struct sockaddr *)&req->listen_addr_storage; 1519 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1520 struct net_device *net_dev; 1521 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1522 int err; 1523 1524 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1525 req->service_id); 1526 if (err) 1527 return ERR_PTR(err); 1528 1529 if (rdma_protocol_roce(req->device, req->port)) 1530 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1531 else 1532 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1533 req->pkey, 1534 gid, listen_addr); 1535 if (!net_dev) 1536 return ERR_PTR(-ENODEV); 1537 1538 return net_dev; 1539 } 1540 1541 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1542 { 1543 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1544 } 1545 1546 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1547 const struct cma_hdr *hdr) 1548 { 1549 struct sockaddr *addr = cma_src_addr(id_priv); 1550 __be32 ip4_addr; 1551 struct in6_addr ip6_addr; 1552 1553 if (cma_any_addr(addr) && !id_priv->afonly) 1554 return true; 1555 1556 switch (addr->sa_family) { 1557 case AF_INET: 1558 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1559 if (cma_get_ip_ver(hdr) != 4) 1560 return false; 1561 if (!cma_any_addr(addr) && 1562 hdr->dst_addr.ip4.addr != ip4_addr) 1563 return false; 1564 break; 1565 case AF_INET6: 1566 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1567 if (cma_get_ip_ver(hdr) != 6) 1568 return false; 1569 if (!cma_any_addr(addr) && 1570 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1571 return false; 1572 break; 1573 case AF_IB: 1574 return true; 1575 default: 1576 return false; 1577 } 1578 1579 return true; 1580 } 1581 1582 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1583 { 1584 struct ib_device *device = id->device; 1585 const u32 port_num = id->port_num ?: rdma_start_port(device); 1586 1587 return rdma_protocol_roce(device, port_num); 1588 } 1589 1590 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1591 { 1592 const struct sockaddr *daddr = 1593 (const struct sockaddr *)&req->listen_addr_storage; 1594 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1595 1596 /* Returns true if the req is for IPv6 link local */ 1597 return (daddr->sa_family == AF_INET6 && 1598 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1599 } 1600 1601 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1602 const struct net_device *net_dev, 1603 const struct cma_req_info *req) 1604 { 1605 const struct rdma_addr *addr = &id->route.addr; 1606 1607 if (!net_dev) 1608 /* This request is an AF_IB request */ 1609 return (!id->port_num || id->port_num == req->port) && 1610 (addr->src_addr.ss_family == AF_IB); 1611 1612 /* 1613 * If the request is not for IPv6 link local, allow matching 1614 * request to any netdevice of the one or multiport rdma device. 1615 */ 1616 if (!cma_is_req_ipv6_ll(req)) 1617 return true; 1618 /* 1619 * Net namespaces must match, and if the listner is listening 1620 * on a specific netdevice than netdevice must match as well. 1621 */ 1622 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1623 (!!addr->dev_addr.bound_dev_if == 1624 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1625 return true; 1626 else 1627 return false; 1628 } 1629 1630 static struct rdma_id_private *cma_find_listener( 1631 const struct rdma_bind_list *bind_list, 1632 const struct ib_cm_id *cm_id, 1633 const struct ib_cm_event *ib_event, 1634 const struct cma_req_info *req, 1635 const struct net_device *net_dev) 1636 { 1637 struct rdma_id_private *id_priv, *id_priv_dev; 1638 1639 lockdep_assert_held(&lock); 1640 1641 if (!bind_list) 1642 return ERR_PTR(-EINVAL); 1643 1644 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1645 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1646 if (id_priv->id.device == cm_id->device && 1647 cma_match_net_dev(&id_priv->id, net_dev, req)) 1648 return id_priv; 1649 list_for_each_entry(id_priv_dev, 1650 &id_priv->listen_list, 1651 listen_item) { 1652 if (id_priv_dev->id.device == cm_id->device && 1653 cma_match_net_dev(&id_priv_dev->id, 1654 net_dev, req)) 1655 return id_priv_dev; 1656 } 1657 } 1658 } 1659 1660 return ERR_PTR(-EINVAL); 1661 } 1662 1663 static struct rdma_id_private * 1664 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1665 const struct ib_cm_event *ib_event, 1666 struct cma_req_info *req, 1667 struct net_device **net_dev) 1668 { 1669 struct rdma_bind_list *bind_list; 1670 struct rdma_id_private *id_priv; 1671 int err; 1672 1673 err = cma_save_req_info(ib_event, req); 1674 if (err) 1675 return ERR_PTR(err); 1676 1677 *net_dev = cma_get_net_dev(ib_event, req); 1678 if (IS_ERR(*net_dev)) { 1679 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1680 /* Assuming the protocol is AF_IB */ 1681 *net_dev = NULL; 1682 } else { 1683 return ERR_CAST(*net_dev); 1684 } 1685 } 1686 1687 mutex_lock(&lock); 1688 /* 1689 * Net namespace might be getting deleted while route lookup, 1690 * cm_id lookup is in progress. Therefore, perform netdevice 1691 * validation, cm_id lookup under rcu lock. 1692 * RCU lock along with netdevice state check, synchronizes with 1693 * netdevice migrating to different net namespace and also avoids 1694 * case where net namespace doesn't get deleted while lookup is in 1695 * progress. 1696 * If the device state is not IFF_UP, its properties such as ifindex 1697 * and nd_net cannot be trusted to remain valid without rcu lock. 1698 * net/core/dev.c change_net_namespace() ensures to synchronize with 1699 * ongoing operations on net device after device is closed using 1700 * synchronize_net(). 1701 */ 1702 rcu_read_lock(); 1703 if (*net_dev) { 1704 /* 1705 * If netdevice is down, it is likely that it is administratively 1706 * down or it might be migrating to different namespace. 1707 * In that case avoid further processing, as the net namespace 1708 * or ifindex may change. 1709 */ 1710 if (((*net_dev)->flags & IFF_UP) == 0) { 1711 id_priv = ERR_PTR(-EHOSTUNREACH); 1712 goto err; 1713 } 1714 1715 if (!validate_net_dev(*net_dev, 1716 (struct sockaddr *)&req->listen_addr_storage, 1717 (struct sockaddr *)&req->src_addr_storage)) { 1718 id_priv = ERR_PTR(-EHOSTUNREACH); 1719 goto err; 1720 } 1721 } 1722 1723 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1724 rdma_ps_from_service_id(req->service_id), 1725 cma_port_from_service_id(req->service_id)); 1726 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1727 err: 1728 rcu_read_unlock(); 1729 mutex_unlock(&lock); 1730 if (IS_ERR(id_priv) && *net_dev) { 1731 dev_put(*net_dev); 1732 *net_dev = NULL; 1733 } 1734 return id_priv; 1735 } 1736 1737 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1738 { 1739 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1740 } 1741 1742 static void cma_cancel_route(struct rdma_id_private *id_priv) 1743 { 1744 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1745 if (id_priv->query) 1746 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1747 } 1748 } 1749 1750 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1751 { 1752 struct rdma_id_private *dev_id_priv; 1753 1754 lockdep_assert_held(&lock); 1755 1756 /* 1757 * Remove from listen_any_list to prevent added devices from spawning 1758 * additional listen requests. 1759 */ 1760 list_del_init(&id_priv->listen_any_item); 1761 1762 while (!list_empty(&id_priv->listen_list)) { 1763 dev_id_priv = 1764 list_first_entry(&id_priv->listen_list, 1765 struct rdma_id_private, listen_item); 1766 /* sync with device removal to avoid duplicate destruction */ 1767 list_del_init(&dev_id_priv->device_item); 1768 list_del_init(&dev_id_priv->listen_item); 1769 mutex_unlock(&lock); 1770 1771 rdma_destroy_id(&dev_id_priv->id); 1772 mutex_lock(&lock); 1773 } 1774 } 1775 1776 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1777 { 1778 mutex_lock(&lock); 1779 _cma_cancel_listens(id_priv); 1780 mutex_unlock(&lock); 1781 } 1782 1783 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1784 enum rdma_cm_state state) 1785 { 1786 switch (state) { 1787 case RDMA_CM_ADDR_QUERY: 1788 /* 1789 * We can avoid doing the rdma_addr_cancel() based on state, 1790 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1791 * Notice that the addr_handler work could still be exiting 1792 * outside this state, however due to the interaction with the 1793 * handler_mutex the work is guaranteed not to touch id_priv 1794 * during exit. 1795 */ 1796 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1797 break; 1798 case RDMA_CM_ROUTE_QUERY: 1799 cma_cancel_route(id_priv); 1800 break; 1801 case RDMA_CM_LISTEN: 1802 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1803 cma_cancel_listens(id_priv); 1804 break; 1805 default: 1806 break; 1807 } 1808 } 1809 1810 static void cma_release_port(struct rdma_id_private *id_priv) 1811 { 1812 struct rdma_bind_list *bind_list = id_priv->bind_list; 1813 struct net *net = id_priv->id.route.addr.dev_addr.net; 1814 1815 if (!bind_list) 1816 return; 1817 1818 mutex_lock(&lock); 1819 hlist_del(&id_priv->node); 1820 if (hlist_empty(&bind_list->owners)) { 1821 cma_ps_remove(net, bind_list->ps, bind_list->port); 1822 kfree(bind_list); 1823 } 1824 mutex_unlock(&lock); 1825 } 1826 1827 static void destroy_mc(struct rdma_id_private *id_priv, 1828 struct cma_multicast *mc) 1829 { 1830 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1831 1832 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1833 ib_sa_free_multicast(mc->sa_mc); 1834 1835 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1836 struct rdma_dev_addr *dev_addr = 1837 &id_priv->id.route.addr.dev_addr; 1838 struct net_device *ndev = NULL; 1839 1840 if (dev_addr->bound_dev_if) 1841 ndev = dev_get_by_index(dev_addr->net, 1842 dev_addr->bound_dev_if); 1843 if (ndev) { 1844 union ib_gid mgid; 1845 1846 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1847 &mgid); 1848 1849 if (!send_only) 1850 cma_igmp_send(ndev, &mgid, false); 1851 1852 dev_put(ndev); 1853 } 1854 1855 cancel_work_sync(&mc->iboe_join.work); 1856 } 1857 kfree(mc); 1858 } 1859 1860 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1861 { 1862 struct cma_multicast *mc; 1863 1864 while (!list_empty(&id_priv->mc_list)) { 1865 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1866 list); 1867 list_del(&mc->list); 1868 destroy_mc(id_priv, mc); 1869 } 1870 } 1871 1872 static void _destroy_id(struct rdma_id_private *id_priv, 1873 enum rdma_cm_state state) 1874 { 1875 cma_cancel_operation(id_priv, state); 1876 1877 rdma_restrack_del(&id_priv->res); 1878 if (id_priv->cma_dev) { 1879 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1880 if (id_priv->cm_id.ib) 1881 ib_destroy_cm_id(id_priv->cm_id.ib); 1882 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1883 if (id_priv->cm_id.iw) 1884 iw_destroy_cm_id(id_priv->cm_id.iw); 1885 } 1886 cma_leave_mc_groups(id_priv); 1887 cma_release_dev(id_priv); 1888 } 1889 1890 cma_release_port(id_priv); 1891 cma_id_put(id_priv); 1892 wait_for_completion(&id_priv->comp); 1893 1894 if (id_priv->internal_id) 1895 cma_id_put(id_priv->id.context); 1896 1897 kfree(id_priv->id.route.path_rec); 1898 1899 put_net(id_priv->id.route.addr.dev_addr.net); 1900 kfree(id_priv); 1901 } 1902 1903 /* 1904 * destroy an ID from within the handler_mutex. This ensures that no other 1905 * handlers can start running concurrently. 1906 */ 1907 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1908 __releases(&idprv->handler_mutex) 1909 { 1910 enum rdma_cm_state state; 1911 unsigned long flags; 1912 1913 trace_cm_id_destroy(id_priv); 1914 1915 /* 1916 * Setting the state to destroyed under the handler mutex provides a 1917 * fence against calling handler callbacks. If this is invoked due to 1918 * the failure of a handler callback then it guarentees that no future 1919 * handlers will be called. 1920 */ 1921 lockdep_assert_held(&id_priv->handler_mutex); 1922 spin_lock_irqsave(&id_priv->lock, flags); 1923 state = id_priv->state; 1924 id_priv->state = RDMA_CM_DESTROYING; 1925 spin_unlock_irqrestore(&id_priv->lock, flags); 1926 mutex_unlock(&id_priv->handler_mutex); 1927 _destroy_id(id_priv, state); 1928 } 1929 1930 void rdma_destroy_id(struct rdma_cm_id *id) 1931 { 1932 struct rdma_id_private *id_priv = 1933 container_of(id, struct rdma_id_private, id); 1934 1935 mutex_lock(&id_priv->handler_mutex); 1936 destroy_id_handler_unlock(id_priv); 1937 } 1938 EXPORT_SYMBOL(rdma_destroy_id); 1939 1940 static int cma_rep_recv(struct rdma_id_private *id_priv) 1941 { 1942 int ret; 1943 1944 ret = cma_modify_qp_rtr(id_priv, NULL); 1945 if (ret) 1946 goto reject; 1947 1948 ret = cma_modify_qp_rts(id_priv, NULL); 1949 if (ret) 1950 goto reject; 1951 1952 trace_cm_send_rtu(id_priv); 1953 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1954 if (ret) 1955 goto reject; 1956 1957 return 0; 1958 reject: 1959 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1960 cma_modify_qp_err(id_priv); 1961 trace_cm_send_rej(id_priv); 1962 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1963 NULL, 0, NULL, 0); 1964 return ret; 1965 } 1966 1967 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1968 const struct ib_cm_rep_event_param *rep_data, 1969 void *private_data) 1970 { 1971 event->param.conn.private_data = private_data; 1972 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1973 event->param.conn.responder_resources = rep_data->responder_resources; 1974 event->param.conn.initiator_depth = rep_data->initiator_depth; 1975 event->param.conn.flow_control = rep_data->flow_control; 1976 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1977 event->param.conn.srq = rep_data->srq; 1978 event->param.conn.qp_num = rep_data->remote_qpn; 1979 1980 event->ece.vendor_id = rep_data->ece.vendor_id; 1981 event->ece.attr_mod = rep_data->ece.attr_mod; 1982 } 1983 1984 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1985 struct rdma_cm_event *event) 1986 { 1987 int ret; 1988 1989 lockdep_assert_held(&id_priv->handler_mutex); 1990 1991 trace_cm_event_handler(id_priv, event); 1992 ret = id_priv->id.event_handler(&id_priv->id, event); 1993 trace_cm_event_done(id_priv, event, ret); 1994 return ret; 1995 } 1996 1997 static int cma_ib_handler(struct ib_cm_id *cm_id, 1998 const struct ib_cm_event *ib_event) 1999 { 2000 struct rdma_id_private *id_priv = cm_id->context; 2001 struct rdma_cm_event event = {}; 2002 enum rdma_cm_state state; 2003 int ret; 2004 2005 mutex_lock(&id_priv->handler_mutex); 2006 state = READ_ONCE(id_priv->state); 2007 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2008 state != RDMA_CM_CONNECT) || 2009 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2010 state != RDMA_CM_DISCONNECT)) 2011 goto out; 2012 2013 switch (ib_event->event) { 2014 case IB_CM_REQ_ERROR: 2015 case IB_CM_REP_ERROR: 2016 event.event = RDMA_CM_EVENT_UNREACHABLE; 2017 event.status = -ETIMEDOUT; 2018 break; 2019 case IB_CM_REP_RECEIVED: 2020 if (state == RDMA_CM_CONNECT && 2021 (id_priv->id.qp_type != IB_QPT_UD)) { 2022 trace_cm_send_mra(id_priv); 2023 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2024 } 2025 if (id_priv->id.qp) { 2026 event.status = cma_rep_recv(id_priv); 2027 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2028 RDMA_CM_EVENT_ESTABLISHED; 2029 } else { 2030 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2031 } 2032 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2033 ib_event->private_data); 2034 break; 2035 case IB_CM_RTU_RECEIVED: 2036 case IB_CM_USER_ESTABLISHED: 2037 event.event = RDMA_CM_EVENT_ESTABLISHED; 2038 break; 2039 case IB_CM_DREQ_ERROR: 2040 event.status = -ETIMEDOUT; 2041 fallthrough; 2042 case IB_CM_DREQ_RECEIVED: 2043 case IB_CM_DREP_RECEIVED: 2044 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2045 RDMA_CM_DISCONNECT)) 2046 goto out; 2047 event.event = RDMA_CM_EVENT_DISCONNECTED; 2048 break; 2049 case IB_CM_TIMEWAIT_EXIT: 2050 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2051 break; 2052 case IB_CM_MRA_RECEIVED: 2053 /* ignore event */ 2054 goto out; 2055 case IB_CM_REJ_RECEIVED: 2056 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2057 ib_event->param.rej_rcvd.reason)); 2058 cma_modify_qp_err(id_priv); 2059 event.status = ib_event->param.rej_rcvd.reason; 2060 event.event = RDMA_CM_EVENT_REJECTED; 2061 event.param.conn.private_data = ib_event->private_data; 2062 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2063 break; 2064 default: 2065 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2066 ib_event->event); 2067 goto out; 2068 } 2069 2070 ret = cma_cm_event_handler(id_priv, &event); 2071 if (ret) { 2072 /* Destroy the CM ID by returning a non-zero value. */ 2073 id_priv->cm_id.ib = NULL; 2074 destroy_id_handler_unlock(id_priv); 2075 return ret; 2076 } 2077 out: 2078 mutex_unlock(&id_priv->handler_mutex); 2079 return 0; 2080 } 2081 2082 static struct rdma_id_private * 2083 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2084 const struct ib_cm_event *ib_event, 2085 struct net_device *net_dev) 2086 { 2087 struct rdma_id_private *listen_id_priv; 2088 struct rdma_id_private *id_priv; 2089 struct rdma_cm_id *id; 2090 struct rdma_route *rt; 2091 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2092 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2093 const __be64 service_id = 2094 ib_event->param.req_rcvd.primary_path->service_id; 2095 int ret; 2096 2097 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2098 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2099 listen_id->event_handler, listen_id->context, 2100 listen_id->ps, 2101 ib_event->param.req_rcvd.qp_type, 2102 listen_id_priv); 2103 if (IS_ERR(id_priv)) 2104 return NULL; 2105 2106 id = &id_priv->id; 2107 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2108 (struct sockaddr *)&id->route.addr.dst_addr, 2109 listen_id, ib_event, ss_family, service_id)) 2110 goto err; 2111 2112 rt = &id->route; 2113 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2114 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2115 GFP_KERNEL); 2116 if (!rt->path_rec) 2117 goto err; 2118 2119 rt->path_rec[0] = *path; 2120 if (rt->num_paths == 2) 2121 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2122 2123 if (net_dev) { 2124 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2125 } else { 2126 if (!cma_protocol_roce(listen_id) && 2127 cma_any_addr(cma_src_addr(id_priv))) { 2128 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2129 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2130 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2131 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2132 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2133 if (ret) 2134 goto err; 2135 } 2136 } 2137 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2138 2139 id_priv->state = RDMA_CM_CONNECT; 2140 return id_priv; 2141 2142 err: 2143 rdma_destroy_id(id); 2144 return NULL; 2145 } 2146 2147 static struct rdma_id_private * 2148 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2149 const struct ib_cm_event *ib_event, 2150 struct net_device *net_dev) 2151 { 2152 const struct rdma_id_private *listen_id_priv; 2153 struct rdma_id_private *id_priv; 2154 struct rdma_cm_id *id; 2155 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2156 struct net *net = listen_id->route.addr.dev_addr.net; 2157 int ret; 2158 2159 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2160 id_priv = __rdma_create_id(net, listen_id->event_handler, 2161 listen_id->context, listen_id->ps, IB_QPT_UD, 2162 listen_id_priv); 2163 if (IS_ERR(id_priv)) 2164 return NULL; 2165 2166 id = &id_priv->id; 2167 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2168 (struct sockaddr *)&id->route.addr.dst_addr, 2169 listen_id, ib_event, ss_family, 2170 ib_event->param.sidr_req_rcvd.service_id)) 2171 goto err; 2172 2173 if (net_dev) { 2174 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2175 } else { 2176 if (!cma_any_addr(cma_src_addr(id_priv))) { 2177 ret = cma_translate_addr(cma_src_addr(id_priv), 2178 &id->route.addr.dev_addr); 2179 if (ret) 2180 goto err; 2181 } 2182 } 2183 2184 id_priv->state = RDMA_CM_CONNECT; 2185 return id_priv; 2186 err: 2187 rdma_destroy_id(id); 2188 return NULL; 2189 } 2190 2191 static void cma_set_req_event_data(struct rdma_cm_event *event, 2192 const struct ib_cm_req_event_param *req_data, 2193 void *private_data, int offset) 2194 { 2195 event->param.conn.private_data = private_data + offset; 2196 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2197 event->param.conn.responder_resources = req_data->responder_resources; 2198 event->param.conn.initiator_depth = req_data->initiator_depth; 2199 event->param.conn.flow_control = req_data->flow_control; 2200 event->param.conn.retry_count = req_data->retry_count; 2201 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2202 event->param.conn.srq = req_data->srq; 2203 event->param.conn.qp_num = req_data->remote_qpn; 2204 2205 event->ece.vendor_id = req_data->ece.vendor_id; 2206 event->ece.attr_mod = req_data->ece.attr_mod; 2207 } 2208 2209 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2210 const struct ib_cm_event *ib_event) 2211 { 2212 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2213 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2214 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2215 (id->qp_type == IB_QPT_UD)) || 2216 (!id->qp_type)); 2217 } 2218 2219 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2220 const struct ib_cm_event *ib_event) 2221 { 2222 struct rdma_id_private *listen_id, *conn_id = NULL; 2223 struct rdma_cm_event event = {}; 2224 struct cma_req_info req = {}; 2225 struct net_device *net_dev; 2226 u8 offset; 2227 int ret; 2228 2229 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2230 if (IS_ERR(listen_id)) 2231 return PTR_ERR(listen_id); 2232 2233 trace_cm_req_handler(listen_id, ib_event->event); 2234 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2235 ret = -EINVAL; 2236 goto net_dev_put; 2237 } 2238 2239 mutex_lock(&listen_id->handler_mutex); 2240 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2241 ret = -ECONNABORTED; 2242 goto err_unlock; 2243 } 2244 2245 offset = cma_user_data_offset(listen_id); 2246 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2247 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2248 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2249 event.param.ud.private_data = ib_event->private_data + offset; 2250 event.param.ud.private_data_len = 2251 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2252 } else { 2253 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2254 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2255 ib_event->private_data, offset); 2256 } 2257 if (!conn_id) { 2258 ret = -ENOMEM; 2259 goto err_unlock; 2260 } 2261 2262 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2263 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2264 if (ret) { 2265 destroy_id_handler_unlock(conn_id); 2266 goto err_unlock; 2267 } 2268 2269 conn_id->cm_id.ib = cm_id; 2270 cm_id->context = conn_id; 2271 cm_id->cm_handler = cma_ib_handler; 2272 2273 ret = cma_cm_event_handler(conn_id, &event); 2274 if (ret) { 2275 /* Destroy the CM ID by returning a non-zero value. */ 2276 conn_id->cm_id.ib = NULL; 2277 mutex_unlock(&listen_id->handler_mutex); 2278 destroy_id_handler_unlock(conn_id); 2279 goto net_dev_put; 2280 } 2281 2282 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2283 conn_id->id.qp_type != IB_QPT_UD) { 2284 trace_cm_send_mra(cm_id->context); 2285 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2286 } 2287 mutex_unlock(&conn_id->handler_mutex); 2288 2289 err_unlock: 2290 mutex_unlock(&listen_id->handler_mutex); 2291 2292 net_dev_put: 2293 if (net_dev) 2294 dev_put(net_dev); 2295 2296 return ret; 2297 } 2298 2299 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2300 { 2301 if (addr->sa_family == AF_IB) 2302 return ((struct sockaddr_ib *) addr)->sib_sid; 2303 2304 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2305 } 2306 EXPORT_SYMBOL(rdma_get_service_id); 2307 2308 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2309 union ib_gid *dgid) 2310 { 2311 struct rdma_addr *addr = &cm_id->route.addr; 2312 2313 if (!cm_id->device) { 2314 if (sgid) 2315 memset(sgid, 0, sizeof(*sgid)); 2316 if (dgid) 2317 memset(dgid, 0, sizeof(*dgid)); 2318 return; 2319 } 2320 2321 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2322 if (sgid) 2323 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2324 if (dgid) 2325 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2326 } else { 2327 if (sgid) 2328 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2329 if (dgid) 2330 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2331 } 2332 } 2333 EXPORT_SYMBOL(rdma_read_gids); 2334 2335 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2336 { 2337 struct rdma_id_private *id_priv = iw_id->context; 2338 struct rdma_cm_event event = {}; 2339 int ret = 0; 2340 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2341 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2342 2343 mutex_lock(&id_priv->handler_mutex); 2344 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2345 goto out; 2346 2347 switch (iw_event->event) { 2348 case IW_CM_EVENT_CLOSE: 2349 event.event = RDMA_CM_EVENT_DISCONNECTED; 2350 break; 2351 case IW_CM_EVENT_CONNECT_REPLY: 2352 memcpy(cma_src_addr(id_priv), laddr, 2353 rdma_addr_size(laddr)); 2354 memcpy(cma_dst_addr(id_priv), raddr, 2355 rdma_addr_size(raddr)); 2356 switch (iw_event->status) { 2357 case 0: 2358 event.event = RDMA_CM_EVENT_ESTABLISHED; 2359 event.param.conn.initiator_depth = iw_event->ird; 2360 event.param.conn.responder_resources = iw_event->ord; 2361 break; 2362 case -ECONNRESET: 2363 case -ECONNREFUSED: 2364 event.event = RDMA_CM_EVENT_REJECTED; 2365 break; 2366 case -ETIMEDOUT: 2367 event.event = RDMA_CM_EVENT_UNREACHABLE; 2368 break; 2369 default: 2370 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2371 break; 2372 } 2373 break; 2374 case IW_CM_EVENT_ESTABLISHED: 2375 event.event = RDMA_CM_EVENT_ESTABLISHED; 2376 event.param.conn.initiator_depth = iw_event->ird; 2377 event.param.conn.responder_resources = iw_event->ord; 2378 break; 2379 default: 2380 goto out; 2381 } 2382 2383 event.status = iw_event->status; 2384 event.param.conn.private_data = iw_event->private_data; 2385 event.param.conn.private_data_len = iw_event->private_data_len; 2386 ret = cma_cm_event_handler(id_priv, &event); 2387 if (ret) { 2388 /* Destroy the CM ID by returning a non-zero value. */ 2389 id_priv->cm_id.iw = NULL; 2390 destroy_id_handler_unlock(id_priv); 2391 return ret; 2392 } 2393 2394 out: 2395 mutex_unlock(&id_priv->handler_mutex); 2396 return ret; 2397 } 2398 2399 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2400 struct iw_cm_event *iw_event) 2401 { 2402 struct rdma_id_private *listen_id, *conn_id; 2403 struct rdma_cm_event event = {}; 2404 int ret = -ECONNABORTED; 2405 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2406 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2407 2408 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2409 event.param.conn.private_data = iw_event->private_data; 2410 event.param.conn.private_data_len = iw_event->private_data_len; 2411 event.param.conn.initiator_depth = iw_event->ird; 2412 event.param.conn.responder_resources = iw_event->ord; 2413 2414 listen_id = cm_id->context; 2415 2416 mutex_lock(&listen_id->handler_mutex); 2417 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2418 goto out; 2419 2420 /* Create a new RDMA id for the new IW CM ID */ 2421 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2422 listen_id->id.event_handler, 2423 listen_id->id.context, RDMA_PS_TCP, 2424 IB_QPT_RC, listen_id); 2425 if (IS_ERR(conn_id)) { 2426 ret = -ENOMEM; 2427 goto out; 2428 } 2429 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2430 conn_id->state = RDMA_CM_CONNECT; 2431 2432 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2433 if (ret) { 2434 mutex_unlock(&listen_id->handler_mutex); 2435 destroy_id_handler_unlock(conn_id); 2436 return ret; 2437 } 2438 2439 ret = cma_iw_acquire_dev(conn_id, listen_id); 2440 if (ret) { 2441 mutex_unlock(&listen_id->handler_mutex); 2442 destroy_id_handler_unlock(conn_id); 2443 return ret; 2444 } 2445 2446 conn_id->cm_id.iw = cm_id; 2447 cm_id->context = conn_id; 2448 cm_id->cm_handler = cma_iw_handler; 2449 2450 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2451 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2452 2453 ret = cma_cm_event_handler(conn_id, &event); 2454 if (ret) { 2455 /* User wants to destroy the CM ID */ 2456 conn_id->cm_id.iw = NULL; 2457 mutex_unlock(&listen_id->handler_mutex); 2458 destroy_id_handler_unlock(conn_id); 2459 return ret; 2460 } 2461 2462 mutex_unlock(&conn_id->handler_mutex); 2463 2464 out: 2465 mutex_unlock(&listen_id->handler_mutex); 2466 return ret; 2467 } 2468 2469 static int cma_ib_listen(struct rdma_id_private *id_priv) 2470 { 2471 struct sockaddr *addr; 2472 struct ib_cm_id *id; 2473 __be64 svc_id; 2474 2475 addr = cma_src_addr(id_priv); 2476 svc_id = rdma_get_service_id(&id_priv->id, addr); 2477 id = ib_cm_insert_listen(id_priv->id.device, 2478 cma_ib_req_handler, svc_id); 2479 if (IS_ERR(id)) 2480 return PTR_ERR(id); 2481 id_priv->cm_id.ib = id; 2482 2483 return 0; 2484 } 2485 2486 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2487 { 2488 int ret; 2489 struct iw_cm_id *id; 2490 2491 id = iw_create_cm_id(id_priv->id.device, 2492 iw_conn_req_handler, 2493 id_priv); 2494 if (IS_ERR(id)) 2495 return PTR_ERR(id); 2496 2497 mutex_lock(&id_priv->qp_mutex); 2498 id->tos = id_priv->tos; 2499 id->tos_set = id_priv->tos_set; 2500 mutex_unlock(&id_priv->qp_mutex); 2501 id->afonly = id_priv->afonly; 2502 id_priv->cm_id.iw = id; 2503 2504 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2505 rdma_addr_size(cma_src_addr(id_priv))); 2506 2507 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2508 2509 if (ret) { 2510 iw_destroy_cm_id(id_priv->cm_id.iw); 2511 id_priv->cm_id.iw = NULL; 2512 } 2513 2514 return ret; 2515 } 2516 2517 static int cma_listen_handler(struct rdma_cm_id *id, 2518 struct rdma_cm_event *event) 2519 { 2520 struct rdma_id_private *id_priv = id->context; 2521 2522 /* Listening IDs are always destroyed on removal */ 2523 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2524 return -1; 2525 2526 id->context = id_priv->id.context; 2527 id->event_handler = id_priv->id.event_handler; 2528 trace_cm_event_handler(id_priv, event); 2529 return id_priv->id.event_handler(id, event); 2530 } 2531 2532 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2533 struct cma_device *cma_dev, 2534 struct rdma_id_private **to_destroy) 2535 { 2536 struct rdma_id_private *dev_id_priv; 2537 struct net *net = id_priv->id.route.addr.dev_addr.net; 2538 int ret; 2539 2540 lockdep_assert_held(&lock); 2541 2542 *to_destroy = NULL; 2543 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2544 return 0; 2545 2546 dev_id_priv = 2547 __rdma_create_id(net, cma_listen_handler, id_priv, 2548 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2549 if (IS_ERR(dev_id_priv)) 2550 return PTR_ERR(dev_id_priv); 2551 2552 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2553 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2554 rdma_addr_size(cma_src_addr(id_priv))); 2555 2556 _cma_attach_to_dev(dev_id_priv, cma_dev); 2557 rdma_restrack_add(&dev_id_priv->res); 2558 cma_id_get(id_priv); 2559 dev_id_priv->internal_id = 1; 2560 dev_id_priv->afonly = id_priv->afonly; 2561 mutex_lock(&id_priv->qp_mutex); 2562 dev_id_priv->tos_set = id_priv->tos_set; 2563 dev_id_priv->tos = id_priv->tos; 2564 mutex_unlock(&id_priv->qp_mutex); 2565 2566 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2567 if (ret) 2568 goto err_listen; 2569 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2570 return 0; 2571 err_listen: 2572 /* Caller must destroy this after releasing lock */ 2573 *to_destroy = dev_id_priv; 2574 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2575 return ret; 2576 } 2577 2578 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2579 { 2580 struct rdma_id_private *to_destroy; 2581 struct cma_device *cma_dev; 2582 int ret; 2583 2584 mutex_lock(&lock); 2585 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2586 list_for_each_entry(cma_dev, &dev_list, list) { 2587 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2588 if (ret) { 2589 /* Prevent racing with cma_process_remove() */ 2590 if (to_destroy) 2591 list_del_init(&to_destroy->device_item); 2592 goto err_listen; 2593 } 2594 } 2595 mutex_unlock(&lock); 2596 return 0; 2597 2598 err_listen: 2599 _cma_cancel_listens(id_priv); 2600 mutex_unlock(&lock); 2601 if (to_destroy) 2602 rdma_destroy_id(&to_destroy->id); 2603 return ret; 2604 } 2605 2606 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2607 { 2608 struct rdma_id_private *id_priv; 2609 2610 id_priv = container_of(id, struct rdma_id_private, id); 2611 mutex_lock(&id_priv->qp_mutex); 2612 id_priv->tos = (u8) tos; 2613 id_priv->tos_set = true; 2614 mutex_unlock(&id_priv->qp_mutex); 2615 } 2616 EXPORT_SYMBOL(rdma_set_service_type); 2617 2618 /** 2619 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2620 * with a connection identifier. 2621 * @id: Communication identifier to associated with service type. 2622 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2623 * 2624 * This function should be called before rdma_connect() on active side, 2625 * and on passive side before rdma_accept(). It is applicable to primary 2626 * path only. The timeout will affect the local side of the QP, it is not 2627 * negotiated with remote side and zero disables the timer. In case it is 2628 * set before rdma_resolve_route, the value will also be used to determine 2629 * PacketLifeTime for RoCE. 2630 * 2631 * Return: 0 for success 2632 */ 2633 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2634 { 2635 struct rdma_id_private *id_priv; 2636 2637 if (id->qp_type != IB_QPT_RC) 2638 return -EINVAL; 2639 2640 id_priv = container_of(id, struct rdma_id_private, id); 2641 mutex_lock(&id_priv->qp_mutex); 2642 id_priv->timeout = timeout; 2643 id_priv->timeout_set = true; 2644 mutex_unlock(&id_priv->qp_mutex); 2645 2646 return 0; 2647 } 2648 EXPORT_SYMBOL(rdma_set_ack_timeout); 2649 2650 /** 2651 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2652 * QP associated with a connection identifier. 2653 * @id: Communication identifier to associated with service type. 2654 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2655 * Timer Field" in the IBTA specification. 2656 * 2657 * This function should be called before rdma_connect() on active 2658 * side, and on passive side before rdma_accept(). The timer value 2659 * will be associated with the local QP. When it receives a send it is 2660 * not read to handle, typically if the receive queue is empty, an RNR 2661 * Retry NAK is returned to the requester with the min_rnr_timer 2662 * encoded. The requester will then wait at least the time specified 2663 * in the NAK before retrying. The default is zero, which translates 2664 * to a minimum RNR Timer value of 655 ms. 2665 * 2666 * Return: 0 for success 2667 */ 2668 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2669 { 2670 struct rdma_id_private *id_priv; 2671 2672 /* It is a five-bit value */ 2673 if (min_rnr_timer & 0xe0) 2674 return -EINVAL; 2675 2676 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2677 return -EINVAL; 2678 2679 id_priv = container_of(id, struct rdma_id_private, id); 2680 mutex_lock(&id_priv->qp_mutex); 2681 id_priv->min_rnr_timer = min_rnr_timer; 2682 id_priv->min_rnr_timer_set = true; 2683 mutex_unlock(&id_priv->qp_mutex); 2684 2685 return 0; 2686 } 2687 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2688 2689 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2690 void *context) 2691 { 2692 struct cma_work *work = context; 2693 struct rdma_route *route; 2694 2695 route = &work->id->id.route; 2696 2697 if (!status) { 2698 route->num_paths = 1; 2699 *route->path_rec = *path_rec; 2700 } else { 2701 work->old_state = RDMA_CM_ROUTE_QUERY; 2702 work->new_state = RDMA_CM_ADDR_RESOLVED; 2703 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2704 work->event.status = status; 2705 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2706 status); 2707 } 2708 2709 queue_work(cma_wq, &work->work); 2710 } 2711 2712 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2713 unsigned long timeout_ms, struct cma_work *work) 2714 { 2715 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2716 struct sa_path_rec path_rec; 2717 ib_sa_comp_mask comp_mask; 2718 struct sockaddr_in6 *sin6; 2719 struct sockaddr_ib *sib; 2720 2721 memset(&path_rec, 0, sizeof path_rec); 2722 2723 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2724 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2725 else 2726 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2727 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2728 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2729 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2730 path_rec.numb_path = 1; 2731 path_rec.reversible = 1; 2732 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2733 cma_dst_addr(id_priv)); 2734 2735 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2736 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2737 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2738 2739 switch (cma_family(id_priv)) { 2740 case AF_INET: 2741 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2742 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2743 break; 2744 case AF_INET6: 2745 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2746 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2747 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2748 break; 2749 case AF_IB: 2750 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2751 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2752 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2753 break; 2754 } 2755 2756 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2757 id_priv->id.port_num, &path_rec, 2758 comp_mask, timeout_ms, 2759 GFP_KERNEL, cma_query_handler, 2760 work, &id_priv->query); 2761 2762 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2763 } 2764 2765 static void cma_iboe_join_work_handler(struct work_struct *work) 2766 { 2767 struct cma_multicast *mc = 2768 container_of(work, struct cma_multicast, iboe_join.work); 2769 struct rdma_cm_event *event = &mc->iboe_join.event; 2770 struct rdma_id_private *id_priv = mc->id_priv; 2771 int ret; 2772 2773 mutex_lock(&id_priv->handler_mutex); 2774 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2775 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2776 goto out_unlock; 2777 2778 ret = cma_cm_event_handler(id_priv, event); 2779 WARN_ON(ret); 2780 2781 out_unlock: 2782 mutex_unlock(&id_priv->handler_mutex); 2783 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2784 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2785 } 2786 2787 static void cma_work_handler(struct work_struct *_work) 2788 { 2789 struct cma_work *work = container_of(_work, struct cma_work, work); 2790 struct rdma_id_private *id_priv = work->id; 2791 2792 mutex_lock(&id_priv->handler_mutex); 2793 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2794 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2795 goto out_unlock; 2796 if (work->old_state != 0 || work->new_state != 0) { 2797 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2798 goto out_unlock; 2799 } 2800 2801 if (cma_cm_event_handler(id_priv, &work->event)) { 2802 cma_id_put(id_priv); 2803 destroy_id_handler_unlock(id_priv); 2804 goto out_free; 2805 } 2806 2807 out_unlock: 2808 mutex_unlock(&id_priv->handler_mutex); 2809 cma_id_put(id_priv); 2810 out_free: 2811 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2812 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2813 kfree(work); 2814 } 2815 2816 static void cma_init_resolve_route_work(struct cma_work *work, 2817 struct rdma_id_private *id_priv) 2818 { 2819 work->id = id_priv; 2820 INIT_WORK(&work->work, cma_work_handler); 2821 work->old_state = RDMA_CM_ROUTE_QUERY; 2822 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2823 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2824 } 2825 2826 static void enqueue_resolve_addr_work(struct cma_work *work, 2827 struct rdma_id_private *id_priv) 2828 { 2829 /* Balances with cma_id_put() in cma_work_handler */ 2830 cma_id_get(id_priv); 2831 2832 work->id = id_priv; 2833 INIT_WORK(&work->work, cma_work_handler); 2834 work->old_state = RDMA_CM_ADDR_QUERY; 2835 work->new_state = RDMA_CM_ADDR_RESOLVED; 2836 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2837 2838 queue_work(cma_wq, &work->work); 2839 } 2840 2841 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2842 unsigned long timeout_ms) 2843 { 2844 struct rdma_route *route = &id_priv->id.route; 2845 struct cma_work *work; 2846 int ret; 2847 2848 work = kzalloc(sizeof *work, GFP_KERNEL); 2849 if (!work) 2850 return -ENOMEM; 2851 2852 cma_init_resolve_route_work(work, id_priv); 2853 2854 if (!route->path_rec) 2855 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2856 if (!route->path_rec) { 2857 ret = -ENOMEM; 2858 goto err1; 2859 } 2860 2861 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2862 if (ret) 2863 goto err2; 2864 2865 return 0; 2866 err2: 2867 kfree(route->path_rec); 2868 route->path_rec = NULL; 2869 err1: 2870 kfree(work); 2871 return ret; 2872 } 2873 2874 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2875 unsigned long supported_gids, 2876 enum ib_gid_type default_gid) 2877 { 2878 if ((network_type == RDMA_NETWORK_IPV4 || 2879 network_type == RDMA_NETWORK_IPV6) && 2880 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2881 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2882 2883 return default_gid; 2884 } 2885 2886 /* 2887 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2888 * path record type based on GID type. 2889 * It also sets up other L2 fields which includes destination mac address 2890 * netdev ifindex, of the path record. 2891 * It returns the netdev of the bound interface for this path record entry. 2892 */ 2893 static struct net_device * 2894 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2895 { 2896 struct rdma_route *route = &id_priv->id.route; 2897 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2898 struct rdma_addr *addr = &route->addr; 2899 unsigned long supported_gids; 2900 struct net_device *ndev; 2901 2902 if (!addr->dev_addr.bound_dev_if) 2903 return NULL; 2904 2905 ndev = dev_get_by_index(addr->dev_addr.net, 2906 addr->dev_addr.bound_dev_if); 2907 if (!ndev) 2908 return NULL; 2909 2910 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2911 id_priv->id.port_num); 2912 gid_type = cma_route_gid_type(addr->dev_addr.network, 2913 supported_gids, 2914 id_priv->gid_type); 2915 /* Use the hint from IP Stack to select GID Type */ 2916 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2917 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2918 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2919 2920 route->path_rec->roce.route_resolved = true; 2921 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2922 return ndev; 2923 } 2924 2925 int rdma_set_ib_path(struct rdma_cm_id *id, 2926 struct sa_path_rec *path_rec) 2927 { 2928 struct rdma_id_private *id_priv; 2929 struct net_device *ndev; 2930 int ret; 2931 2932 id_priv = container_of(id, struct rdma_id_private, id); 2933 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2934 RDMA_CM_ROUTE_RESOLVED)) 2935 return -EINVAL; 2936 2937 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2938 GFP_KERNEL); 2939 if (!id->route.path_rec) { 2940 ret = -ENOMEM; 2941 goto err; 2942 } 2943 2944 if (rdma_protocol_roce(id->device, id->port_num)) { 2945 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2946 if (!ndev) { 2947 ret = -ENODEV; 2948 goto err_free; 2949 } 2950 dev_put(ndev); 2951 } 2952 2953 id->route.num_paths = 1; 2954 return 0; 2955 2956 err_free: 2957 kfree(id->route.path_rec); 2958 id->route.path_rec = NULL; 2959 err: 2960 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2961 return ret; 2962 } 2963 EXPORT_SYMBOL(rdma_set_ib_path); 2964 2965 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2966 { 2967 struct cma_work *work; 2968 2969 work = kzalloc(sizeof *work, GFP_KERNEL); 2970 if (!work) 2971 return -ENOMEM; 2972 2973 cma_init_resolve_route_work(work, id_priv); 2974 queue_work(cma_wq, &work->work); 2975 return 0; 2976 } 2977 2978 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2979 { 2980 struct net_device *dev; 2981 2982 dev = vlan_dev_real_dev(vlan_ndev); 2983 if (dev->num_tc) 2984 return netdev_get_prio_tc_map(dev, prio); 2985 2986 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2987 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2988 } 2989 2990 struct iboe_prio_tc_map { 2991 int input_prio; 2992 int output_tc; 2993 bool found; 2994 }; 2995 2996 static int get_lower_vlan_dev_tc(struct net_device *dev, 2997 struct netdev_nested_priv *priv) 2998 { 2999 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3000 3001 if (is_vlan_dev(dev)) 3002 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3003 else if (dev->num_tc) 3004 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3005 else 3006 map->output_tc = 0; 3007 /* We are interested only in first level VLAN device, so always 3008 * return 1 to stop iterating over next level devices. 3009 */ 3010 map->found = true; 3011 return 1; 3012 } 3013 3014 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3015 { 3016 struct iboe_prio_tc_map prio_tc_map = {}; 3017 int prio = rt_tos2priority(tos); 3018 struct netdev_nested_priv priv; 3019 3020 /* If VLAN device, get it directly from the VLAN netdev */ 3021 if (is_vlan_dev(ndev)) 3022 return get_vlan_ndev_tc(ndev, prio); 3023 3024 prio_tc_map.input_prio = prio; 3025 priv.data = (void *)&prio_tc_map; 3026 rcu_read_lock(); 3027 netdev_walk_all_lower_dev_rcu(ndev, 3028 get_lower_vlan_dev_tc, 3029 &priv); 3030 rcu_read_unlock(); 3031 /* If map is found from lower device, use it; Otherwise 3032 * continue with the current netdevice to get priority to tc map. 3033 */ 3034 if (prio_tc_map.found) 3035 return prio_tc_map.output_tc; 3036 else if (ndev->num_tc) 3037 return netdev_get_prio_tc_map(ndev, prio); 3038 else 3039 return 0; 3040 } 3041 3042 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3043 { 3044 struct sockaddr_in6 *addr6; 3045 u16 dport, sport; 3046 u32 hash, fl; 3047 3048 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3049 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3050 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3051 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3052 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3053 hash = (u32)sport * 31 + dport; 3054 fl = hash & IB_GRH_FLOWLABEL_MASK; 3055 } 3056 3057 return cpu_to_be32(fl); 3058 } 3059 3060 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3061 { 3062 struct rdma_route *route = &id_priv->id.route; 3063 struct rdma_addr *addr = &route->addr; 3064 struct cma_work *work; 3065 int ret; 3066 struct net_device *ndev; 3067 3068 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3069 rdma_start_port(id_priv->cma_dev->device)]; 3070 u8 tos; 3071 3072 mutex_lock(&id_priv->qp_mutex); 3073 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3074 mutex_unlock(&id_priv->qp_mutex); 3075 3076 work = kzalloc(sizeof *work, GFP_KERNEL); 3077 if (!work) 3078 return -ENOMEM; 3079 3080 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3081 if (!route->path_rec) { 3082 ret = -ENOMEM; 3083 goto err1; 3084 } 3085 3086 route->num_paths = 1; 3087 3088 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3089 if (!ndev) { 3090 ret = -ENODEV; 3091 goto err2; 3092 } 3093 3094 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3095 &route->path_rec->sgid); 3096 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3097 &route->path_rec->dgid); 3098 3099 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3100 /* TODO: get the hoplimit from the inet/inet6 device */ 3101 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3102 else 3103 route->path_rec->hop_limit = 1; 3104 route->path_rec->reversible = 1; 3105 route->path_rec->pkey = cpu_to_be16(0xffff); 3106 route->path_rec->mtu_selector = IB_SA_EQ; 3107 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3108 route->path_rec->traffic_class = tos; 3109 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3110 route->path_rec->rate_selector = IB_SA_EQ; 3111 route->path_rec->rate = iboe_get_rate(ndev); 3112 dev_put(ndev); 3113 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3114 /* In case ACK timeout is set, use this value to calculate 3115 * PacketLifeTime. As per IBTA 12.7.34, 3116 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3117 * Assuming a negligible local ACK delay, we can use 3118 * PacketLifeTime = local ACK timeout/2 3119 * as a reasonable approximation for RoCE networks. 3120 */ 3121 mutex_lock(&id_priv->qp_mutex); 3122 if (id_priv->timeout_set && id_priv->timeout) 3123 route->path_rec->packet_life_time = id_priv->timeout - 1; 3124 else 3125 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3126 mutex_unlock(&id_priv->qp_mutex); 3127 3128 if (!route->path_rec->mtu) { 3129 ret = -EINVAL; 3130 goto err2; 3131 } 3132 3133 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3134 id_priv->id.port_num)) 3135 route->path_rec->flow_label = 3136 cma_get_roce_udp_flow_label(id_priv); 3137 3138 cma_init_resolve_route_work(work, id_priv); 3139 queue_work(cma_wq, &work->work); 3140 3141 return 0; 3142 3143 err2: 3144 kfree(route->path_rec); 3145 route->path_rec = NULL; 3146 route->num_paths = 0; 3147 err1: 3148 kfree(work); 3149 return ret; 3150 } 3151 3152 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3153 { 3154 struct rdma_id_private *id_priv; 3155 int ret; 3156 3157 if (!timeout_ms) 3158 return -EINVAL; 3159 3160 id_priv = container_of(id, struct rdma_id_private, id); 3161 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3162 return -EINVAL; 3163 3164 cma_id_get(id_priv); 3165 if (rdma_cap_ib_sa(id->device, id->port_num)) 3166 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3167 else if (rdma_protocol_roce(id->device, id->port_num)) 3168 ret = cma_resolve_iboe_route(id_priv); 3169 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3170 ret = cma_resolve_iw_route(id_priv); 3171 else 3172 ret = -ENOSYS; 3173 3174 if (ret) 3175 goto err; 3176 3177 return 0; 3178 err: 3179 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3180 cma_id_put(id_priv); 3181 return ret; 3182 } 3183 EXPORT_SYMBOL(rdma_resolve_route); 3184 3185 static void cma_set_loopback(struct sockaddr *addr) 3186 { 3187 switch (addr->sa_family) { 3188 case AF_INET: 3189 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3190 break; 3191 case AF_INET6: 3192 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3193 0, 0, 0, htonl(1)); 3194 break; 3195 default: 3196 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3197 0, 0, 0, htonl(1)); 3198 break; 3199 } 3200 } 3201 3202 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3203 { 3204 struct cma_device *cma_dev, *cur_dev; 3205 union ib_gid gid; 3206 enum ib_port_state port_state; 3207 unsigned int p; 3208 u16 pkey; 3209 int ret; 3210 3211 cma_dev = NULL; 3212 mutex_lock(&lock); 3213 list_for_each_entry(cur_dev, &dev_list, list) { 3214 if (cma_family(id_priv) == AF_IB && 3215 !rdma_cap_ib_cm(cur_dev->device, 1)) 3216 continue; 3217 3218 if (!cma_dev) 3219 cma_dev = cur_dev; 3220 3221 rdma_for_each_port (cur_dev->device, p) { 3222 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3223 port_state == IB_PORT_ACTIVE) { 3224 cma_dev = cur_dev; 3225 goto port_found; 3226 } 3227 } 3228 } 3229 3230 if (!cma_dev) { 3231 ret = -ENODEV; 3232 goto out; 3233 } 3234 3235 p = 1; 3236 3237 port_found: 3238 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3239 if (ret) 3240 goto out; 3241 3242 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3243 if (ret) 3244 goto out; 3245 3246 id_priv->id.route.addr.dev_addr.dev_type = 3247 (rdma_protocol_ib(cma_dev->device, p)) ? 3248 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3249 3250 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3251 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3252 id_priv->id.port_num = p; 3253 cma_attach_to_dev(id_priv, cma_dev); 3254 rdma_restrack_add(&id_priv->res); 3255 cma_set_loopback(cma_src_addr(id_priv)); 3256 out: 3257 mutex_unlock(&lock); 3258 return ret; 3259 } 3260 3261 static void addr_handler(int status, struct sockaddr *src_addr, 3262 struct rdma_dev_addr *dev_addr, void *context) 3263 { 3264 struct rdma_id_private *id_priv = context; 3265 struct rdma_cm_event event = {}; 3266 struct sockaddr *addr; 3267 struct sockaddr_storage old_addr; 3268 3269 mutex_lock(&id_priv->handler_mutex); 3270 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3271 RDMA_CM_ADDR_RESOLVED)) 3272 goto out; 3273 3274 /* 3275 * Store the previous src address, so that if we fail to acquire 3276 * matching rdma device, old address can be restored back, which helps 3277 * to cancel the cma listen operation correctly. 3278 */ 3279 addr = cma_src_addr(id_priv); 3280 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3281 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3282 if (!status && !id_priv->cma_dev) { 3283 status = cma_acquire_dev_by_src_ip(id_priv); 3284 if (status) 3285 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3286 status); 3287 rdma_restrack_add(&id_priv->res); 3288 } else if (status) { 3289 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3290 } 3291 3292 if (status) { 3293 memcpy(addr, &old_addr, 3294 rdma_addr_size((struct sockaddr *)&old_addr)); 3295 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3296 RDMA_CM_ADDR_BOUND)) 3297 goto out; 3298 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3299 event.status = status; 3300 } else 3301 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3302 3303 if (cma_cm_event_handler(id_priv, &event)) { 3304 destroy_id_handler_unlock(id_priv); 3305 return; 3306 } 3307 out: 3308 mutex_unlock(&id_priv->handler_mutex); 3309 } 3310 3311 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3312 { 3313 struct cma_work *work; 3314 union ib_gid gid; 3315 int ret; 3316 3317 work = kzalloc(sizeof *work, GFP_KERNEL); 3318 if (!work) 3319 return -ENOMEM; 3320 3321 if (!id_priv->cma_dev) { 3322 ret = cma_bind_loopback(id_priv); 3323 if (ret) 3324 goto err; 3325 } 3326 3327 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3328 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3329 3330 enqueue_resolve_addr_work(work, id_priv); 3331 return 0; 3332 err: 3333 kfree(work); 3334 return ret; 3335 } 3336 3337 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3338 { 3339 struct cma_work *work; 3340 int ret; 3341 3342 work = kzalloc(sizeof *work, GFP_KERNEL); 3343 if (!work) 3344 return -ENOMEM; 3345 3346 if (!id_priv->cma_dev) { 3347 ret = cma_resolve_ib_dev(id_priv); 3348 if (ret) 3349 goto err; 3350 } 3351 3352 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3353 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3354 3355 enqueue_resolve_addr_work(work, id_priv); 3356 return 0; 3357 err: 3358 kfree(work); 3359 return ret; 3360 } 3361 3362 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3363 const struct sockaddr *dst_addr) 3364 { 3365 if (!src_addr || !src_addr->sa_family) { 3366 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3367 src_addr->sa_family = dst_addr->sa_family; 3368 if (IS_ENABLED(CONFIG_IPV6) && 3369 dst_addr->sa_family == AF_INET6) { 3370 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3371 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3372 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3373 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3374 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3375 } else if (dst_addr->sa_family == AF_IB) { 3376 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3377 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3378 } 3379 } 3380 return rdma_bind_addr(id, src_addr); 3381 } 3382 3383 /* 3384 * If required, resolve the source address for bind and leave the id_priv in 3385 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3386 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3387 * ignored. 3388 */ 3389 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3390 struct sockaddr *src_addr, 3391 const struct sockaddr *dst_addr) 3392 { 3393 int ret; 3394 3395 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3396 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3397 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3398 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3399 if (ret) 3400 goto err_dst; 3401 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3402 RDMA_CM_ADDR_QUERY))) { 3403 ret = -EINVAL; 3404 goto err_dst; 3405 } 3406 } 3407 3408 if (cma_family(id_priv) != dst_addr->sa_family) { 3409 ret = -EINVAL; 3410 goto err_state; 3411 } 3412 return 0; 3413 3414 err_state: 3415 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3416 err_dst: 3417 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3418 return ret; 3419 } 3420 3421 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3422 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3423 { 3424 struct rdma_id_private *id_priv = 3425 container_of(id, struct rdma_id_private, id); 3426 int ret; 3427 3428 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3429 if (ret) 3430 return ret; 3431 3432 if (cma_any_addr(dst_addr)) { 3433 ret = cma_resolve_loopback(id_priv); 3434 } else { 3435 if (dst_addr->sa_family == AF_IB) { 3436 ret = cma_resolve_ib_addr(id_priv); 3437 } else { 3438 /* 3439 * The FSM can return back to RDMA_CM_ADDR_BOUND after 3440 * rdma_resolve_ip() is called, eg through the error 3441 * path in addr_handler(). If this happens the existing 3442 * request must be canceled before issuing a new one. 3443 * Since canceling a request is a bit slow and this 3444 * oddball path is rare, keep track once a request has 3445 * been issued. The track turns out to be a permanent 3446 * state since this is the only cancel as it is 3447 * immediately before rdma_resolve_ip(). 3448 */ 3449 if (id_priv->used_resolve_ip) 3450 rdma_addr_cancel(&id->route.addr.dev_addr); 3451 else 3452 id_priv->used_resolve_ip = 1; 3453 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3454 &id->route.addr.dev_addr, 3455 timeout_ms, addr_handler, 3456 false, id_priv); 3457 } 3458 } 3459 if (ret) 3460 goto err; 3461 3462 return 0; 3463 err: 3464 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3465 return ret; 3466 } 3467 EXPORT_SYMBOL(rdma_resolve_addr); 3468 3469 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3470 { 3471 struct rdma_id_private *id_priv; 3472 unsigned long flags; 3473 int ret; 3474 3475 id_priv = container_of(id, struct rdma_id_private, id); 3476 spin_lock_irqsave(&id_priv->lock, flags); 3477 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3478 id_priv->state == RDMA_CM_IDLE) { 3479 id_priv->reuseaddr = reuse; 3480 ret = 0; 3481 } else { 3482 ret = -EINVAL; 3483 } 3484 spin_unlock_irqrestore(&id_priv->lock, flags); 3485 return ret; 3486 } 3487 EXPORT_SYMBOL(rdma_set_reuseaddr); 3488 3489 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3490 { 3491 struct rdma_id_private *id_priv; 3492 unsigned long flags; 3493 int ret; 3494 3495 id_priv = container_of(id, struct rdma_id_private, id); 3496 spin_lock_irqsave(&id_priv->lock, flags); 3497 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3498 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3499 id_priv->afonly = afonly; 3500 ret = 0; 3501 } else { 3502 ret = -EINVAL; 3503 } 3504 spin_unlock_irqrestore(&id_priv->lock, flags); 3505 return ret; 3506 } 3507 EXPORT_SYMBOL(rdma_set_afonly); 3508 3509 static void cma_bind_port(struct rdma_bind_list *bind_list, 3510 struct rdma_id_private *id_priv) 3511 { 3512 struct sockaddr *addr; 3513 struct sockaddr_ib *sib; 3514 u64 sid, mask; 3515 __be16 port; 3516 3517 lockdep_assert_held(&lock); 3518 3519 addr = cma_src_addr(id_priv); 3520 port = htons(bind_list->port); 3521 3522 switch (addr->sa_family) { 3523 case AF_INET: 3524 ((struct sockaddr_in *) addr)->sin_port = port; 3525 break; 3526 case AF_INET6: 3527 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3528 break; 3529 case AF_IB: 3530 sib = (struct sockaddr_ib *) addr; 3531 sid = be64_to_cpu(sib->sib_sid); 3532 mask = be64_to_cpu(sib->sib_sid_mask); 3533 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3534 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3535 break; 3536 } 3537 id_priv->bind_list = bind_list; 3538 hlist_add_head(&id_priv->node, &bind_list->owners); 3539 } 3540 3541 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3542 struct rdma_id_private *id_priv, unsigned short snum) 3543 { 3544 struct rdma_bind_list *bind_list; 3545 int ret; 3546 3547 lockdep_assert_held(&lock); 3548 3549 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3550 if (!bind_list) 3551 return -ENOMEM; 3552 3553 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3554 snum); 3555 if (ret < 0) 3556 goto err; 3557 3558 bind_list->ps = ps; 3559 bind_list->port = snum; 3560 cma_bind_port(bind_list, id_priv); 3561 return 0; 3562 err: 3563 kfree(bind_list); 3564 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3565 } 3566 3567 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3568 struct rdma_id_private *id_priv) 3569 { 3570 struct rdma_id_private *cur_id; 3571 struct sockaddr *daddr = cma_dst_addr(id_priv); 3572 struct sockaddr *saddr = cma_src_addr(id_priv); 3573 __be16 dport = cma_port(daddr); 3574 3575 lockdep_assert_held(&lock); 3576 3577 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3578 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3579 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3580 __be16 cur_dport = cma_port(cur_daddr); 3581 3582 if (id_priv == cur_id) 3583 continue; 3584 3585 /* different dest port -> unique */ 3586 if (!cma_any_port(daddr) && 3587 !cma_any_port(cur_daddr) && 3588 (dport != cur_dport)) 3589 continue; 3590 3591 /* different src address -> unique */ 3592 if (!cma_any_addr(saddr) && 3593 !cma_any_addr(cur_saddr) && 3594 cma_addr_cmp(saddr, cur_saddr)) 3595 continue; 3596 3597 /* different dst address -> unique */ 3598 if (!cma_any_addr(daddr) && 3599 !cma_any_addr(cur_daddr) && 3600 cma_addr_cmp(daddr, cur_daddr)) 3601 continue; 3602 3603 return -EADDRNOTAVAIL; 3604 } 3605 return 0; 3606 } 3607 3608 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3609 struct rdma_id_private *id_priv) 3610 { 3611 static unsigned int last_used_port; 3612 int low, high, remaining; 3613 unsigned int rover; 3614 struct net *net = id_priv->id.route.addr.dev_addr.net; 3615 3616 lockdep_assert_held(&lock); 3617 3618 inet_get_local_port_range(net, &low, &high); 3619 remaining = (high - low) + 1; 3620 rover = prandom_u32() % remaining + low; 3621 retry: 3622 if (last_used_port != rover) { 3623 struct rdma_bind_list *bind_list; 3624 int ret; 3625 3626 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3627 3628 if (!bind_list) { 3629 ret = cma_alloc_port(ps, id_priv, rover); 3630 } else { 3631 ret = cma_port_is_unique(bind_list, id_priv); 3632 if (!ret) 3633 cma_bind_port(bind_list, id_priv); 3634 } 3635 /* 3636 * Remember previously used port number in order to avoid 3637 * re-using same port immediately after it is closed. 3638 */ 3639 if (!ret) 3640 last_used_port = rover; 3641 if (ret != -EADDRNOTAVAIL) 3642 return ret; 3643 } 3644 if (--remaining) { 3645 rover++; 3646 if ((rover < low) || (rover > high)) 3647 rover = low; 3648 goto retry; 3649 } 3650 return -EADDRNOTAVAIL; 3651 } 3652 3653 /* 3654 * Check that the requested port is available. This is called when trying to 3655 * bind to a specific port, or when trying to listen on a bound port. In 3656 * the latter case, the provided id_priv may already be on the bind_list, but 3657 * we still need to check that it's okay to start listening. 3658 */ 3659 static int cma_check_port(struct rdma_bind_list *bind_list, 3660 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3661 { 3662 struct rdma_id_private *cur_id; 3663 struct sockaddr *addr, *cur_addr; 3664 3665 lockdep_assert_held(&lock); 3666 3667 addr = cma_src_addr(id_priv); 3668 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3669 if (id_priv == cur_id) 3670 continue; 3671 3672 if (reuseaddr && cur_id->reuseaddr) 3673 continue; 3674 3675 cur_addr = cma_src_addr(cur_id); 3676 if (id_priv->afonly && cur_id->afonly && 3677 (addr->sa_family != cur_addr->sa_family)) 3678 continue; 3679 3680 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3681 return -EADDRNOTAVAIL; 3682 3683 if (!cma_addr_cmp(addr, cur_addr)) 3684 return -EADDRINUSE; 3685 } 3686 return 0; 3687 } 3688 3689 static int cma_use_port(enum rdma_ucm_port_space ps, 3690 struct rdma_id_private *id_priv) 3691 { 3692 struct rdma_bind_list *bind_list; 3693 unsigned short snum; 3694 int ret; 3695 3696 lockdep_assert_held(&lock); 3697 3698 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3699 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3700 return -EACCES; 3701 3702 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3703 if (!bind_list) { 3704 ret = cma_alloc_port(ps, id_priv, snum); 3705 } else { 3706 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3707 if (!ret) 3708 cma_bind_port(bind_list, id_priv); 3709 } 3710 return ret; 3711 } 3712 3713 static enum rdma_ucm_port_space 3714 cma_select_inet_ps(struct rdma_id_private *id_priv) 3715 { 3716 switch (id_priv->id.ps) { 3717 case RDMA_PS_TCP: 3718 case RDMA_PS_UDP: 3719 case RDMA_PS_IPOIB: 3720 case RDMA_PS_IB: 3721 return id_priv->id.ps; 3722 default: 3723 3724 return 0; 3725 } 3726 } 3727 3728 static enum rdma_ucm_port_space 3729 cma_select_ib_ps(struct rdma_id_private *id_priv) 3730 { 3731 enum rdma_ucm_port_space ps = 0; 3732 struct sockaddr_ib *sib; 3733 u64 sid_ps, mask, sid; 3734 3735 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3736 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3737 sid = be64_to_cpu(sib->sib_sid) & mask; 3738 3739 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3740 sid_ps = RDMA_IB_IP_PS_IB; 3741 ps = RDMA_PS_IB; 3742 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3743 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3744 sid_ps = RDMA_IB_IP_PS_TCP; 3745 ps = RDMA_PS_TCP; 3746 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3747 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3748 sid_ps = RDMA_IB_IP_PS_UDP; 3749 ps = RDMA_PS_UDP; 3750 } 3751 3752 if (ps) { 3753 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3754 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3755 be64_to_cpu(sib->sib_sid_mask)); 3756 } 3757 return ps; 3758 } 3759 3760 static int cma_get_port(struct rdma_id_private *id_priv) 3761 { 3762 enum rdma_ucm_port_space ps; 3763 int ret; 3764 3765 if (cma_family(id_priv) != AF_IB) 3766 ps = cma_select_inet_ps(id_priv); 3767 else 3768 ps = cma_select_ib_ps(id_priv); 3769 if (!ps) 3770 return -EPROTONOSUPPORT; 3771 3772 mutex_lock(&lock); 3773 if (cma_any_port(cma_src_addr(id_priv))) 3774 ret = cma_alloc_any_port(ps, id_priv); 3775 else 3776 ret = cma_use_port(ps, id_priv); 3777 mutex_unlock(&lock); 3778 3779 return ret; 3780 } 3781 3782 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3783 struct sockaddr *addr) 3784 { 3785 #if IS_ENABLED(CONFIG_IPV6) 3786 struct sockaddr_in6 *sin6; 3787 3788 if (addr->sa_family != AF_INET6) 3789 return 0; 3790 3791 sin6 = (struct sockaddr_in6 *) addr; 3792 3793 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3794 return 0; 3795 3796 if (!sin6->sin6_scope_id) 3797 return -EINVAL; 3798 3799 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3800 #endif 3801 return 0; 3802 } 3803 3804 int rdma_listen(struct rdma_cm_id *id, int backlog) 3805 { 3806 struct rdma_id_private *id_priv = 3807 container_of(id, struct rdma_id_private, id); 3808 int ret; 3809 3810 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3811 struct sockaddr_in any_in = { 3812 .sin_family = AF_INET, 3813 .sin_addr.s_addr = htonl(INADDR_ANY), 3814 }; 3815 3816 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3817 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3818 if (ret) 3819 return ret; 3820 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3821 RDMA_CM_LISTEN))) 3822 return -EINVAL; 3823 } 3824 3825 /* 3826 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3827 * any more, and has to be unique in the bind list. 3828 */ 3829 if (id_priv->reuseaddr) { 3830 mutex_lock(&lock); 3831 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3832 if (!ret) 3833 id_priv->reuseaddr = 0; 3834 mutex_unlock(&lock); 3835 if (ret) 3836 goto err; 3837 } 3838 3839 id_priv->backlog = backlog; 3840 if (id_priv->cma_dev) { 3841 if (rdma_cap_ib_cm(id->device, 1)) { 3842 ret = cma_ib_listen(id_priv); 3843 if (ret) 3844 goto err; 3845 } else if (rdma_cap_iw_cm(id->device, 1)) { 3846 ret = cma_iw_listen(id_priv, backlog); 3847 if (ret) 3848 goto err; 3849 } else { 3850 ret = -ENOSYS; 3851 goto err; 3852 } 3853 } else { 3854 ret = cma_listen_on_all(id_priv); 3855 if (ret) 3856 goto err; 3857 } 3858 3859 return 0; 3860 err: 3861 id_priv->backlog = 0; 3862 /* 3863 * All the failure paths that lead here will not allow the req_handler's 3864 * to have run. 3865 */ 3866 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3867 return ret; 3868 } 3869 EXPORT_SYMBOL(rdma_listen); 3870 3871 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3872 { 3873 struct rdma_id_private *id_priv; 3874 int ret; 3875 struct sockaddr *daddr; 3876 3877 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3878 addr->sa_family != AF_IB) 3879 return -EAFNOSUPPORT; 3880 3881 id_priv = container_of(id, struct rdma_id_private, id); 3882 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3883 return -EINVAL; 3884 3885 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3886 if (ret) 3887 goto err1; 3888 3889 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3890 if (!cma_any_addr(addr)) { 3891 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3892 if (ret) 3893 goto err1; 3894 3895 ret = cma_acquire_dev_by_src_ip(id_priv); 3896 if (ret) 3897 goto err1; 3898 } 3899 3900 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3901 if (addr->sa_family == AF_INET) 3902 id_priv->afonly = 1; 3903 #if IS_ENABLED(CONFIG_IPV6) 3904 else if (addr->sa_family == AF_INET6) { 3905 struct net *net = id_priv->id.route.addr.dev_addr.net; 3906 3907 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3908 } 3909 #endif 3910 } 3911 daddr = cma_dst_addr(id_priv); 3912 daddr->sa_family = addr->sa_family; 3913 3914 ret = cma_get_port(id_priv); 3915 if (ret) 3916 goto err2; 3917 3918 if (!cma_any_addr(addr)) 3919 rdma_restrack_add(&id_priv->res); 3920 return 0; 3921 err2: 3922 if (id_priv->cma_dev) 3923 cma_release_dev(id_priv); 3924 err1: 3925 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3926 return ret; 3927 } 3928 EXPORT_SYMBOL(rdma_bind_addr); 3929 3930 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3931 { 3932 struct cma_hdr *cma_hdr; 3933 3934 cma_hdr = hdr; 3935 cma_hdr->cma_version = CMA_VERSION; 3936 if (cma_family(id_priv) == AF_INET) { 3937 struct sockaddr_in *src4, *dst4; 3938 3939 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3940 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3941 3942 cma_set_ip_ver(cma_hdr, 4); 3943 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3944 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3945 cma_hdr->port = src4->sin_port; 3946 } else if (cma_family(id_priv) == AF_INET6) { 3947 struct sockaddr_in6 *src6, *dst6; 3948 3949 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3950 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3951 3952 cma_set_ip_ver(cma_hdr, 6); 3953 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3954 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3955 cma_hdr->port = src6->sin6_port; 3956 } 3957 return 0; 3958 } 3959 3960 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3961 const struct ib_cm_event *ib_event) 3962 { 3963 struct rdma_id_private *id_priv = cm_id->context; 3964 struct rdma_cm_event event = {}; 3965 const struct ib_cm_sidr_rep_event_param *rep = 3966 &ib_event->param.sidr_rep_rcvd; 3967 int ret; 3968 3969 mutex_lock(&id_priv->handler_mutex); 3970 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3971 goto out; 3972 3973 switch (ib_event->event) { 3974 case IB_CM_SIDR_REQ_ERROR: 3975 event.event = RDMA_CM_EVENT_UNREACHABLE; 3976 event.status = -ETIMEDOUT; 3977 break; 3978 case IB_CM_SIDR_REP_RECEIVED: 3979 event.param.ud.private_data = ib_event->private_data; 3980 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3981 if (rep->status != IB_SIDR_SUCCESS) { 3982 event.event = RDMA_CM_EVENT_UNREACHABLE; 3983 event.status = ib_event->param.sidr_rep_rcvd.status; 3984 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3985 event.status); 3986 break; 3987 } 3988 ret = cma_set_qkey(id_priv, rep->qkey); 3989 if (ret) { 3990 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3991 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3992 event.status = ret; 3993 break; 3994 } 3995 ib_init_ah_attr_from_path(id_priv->id.device, 3996 id_priv->id.port_num, 3997 id_priv->id.route.path_rec, 3998 &event.param.ud.ah_attr, 3999 rep->sgid_attr); 4000 event.param.ud.qp_num = rep->qpn; 4001 event.param.ud.qkey = rep->qkey; 4002 event.event = RDMA_CM_EVENT_ESTABLISHED; 4003 event.status = 0; 4004 break; 4005 default: 4006 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4007 ib_event->event); 4008 goto out; 4009 } 4010 4011 ret = cma_cm_event_handler(id_priv, &event); 4012 4013 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4014 if (ret) { 4015 /* Destroy the CM ID by returning a non-zero value. */ 4016 id_priv->cm_id.ib = NULL; 4017 destroy_id_handler_unlock(id_priv); 4018 return ret; 4019 } 4020 out: 4021 mutex_unlock(&id_priv->handler_mutex); 4022 return 0; 4023 } 4024 4025 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4026 struct rdma_conn_param *conn_param) 4027 { 4028 struct ib_cm_sidr_req_param req; 4029 struct ib_cm_id *id; 4030 void *private_data; 4031 u8 offset; 4032 int ret; 4033 4034 memset(&req, 0, sizeof req); 4035 offset = cma_user_data_offset(id_priv); 4036 req.private_data_len = offset + conn_param->private_data_len; 4037 if (req.private_data_len < conn_param->private_data_len) 4038 return -EINVAL; 4039 4040 if (req.private_data_len) { 4041 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4042 if (!private_data) 4043 return -ENOMEM; 4044 } else { 4045 private_data = NULL; 4046 } 4047 4048 if (conn_param->private_data && conn_param->private_data_len) 4049 memcpy(private_data + offset, conn_param->private_data, 4050 conn_param->private_data_len); 4051 4052 if (private_data) { 4053 ret = cma_format_hdr(private_data, id_priv); 4054 if (ret) 4055 goto out; 4056 req.private_data = private_data; 4057 } 4058 4059 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4060 id_priv); 4061 if (IS_ERR(id)) { 4062 ret = PTR_ERR(id); 4063 goto out; 4064 } 4065 id_priv->cm_id.ib = id; 4066 4067 req.path = id_priv->id.route.path_rec; 4068 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4069 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4070 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4071 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4072 4073 trace_cm_send_sidr_req(id_priv); 4074 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4075 if (ret) { 4076 ib_destroy_cm_id(id_priv->cm_id.ib); 4077 id_priv->cm_id.ib = NULL; 4078 } 4079 out: 4080 kfree(private_data); 4081 return ret; 4082 } 4083 4084 static int cma_connect_ib(struct rdma_id_private *id_priv, 4085 struct rdma_conn_param *conn_param) 4086 { 4087 struct ib_cm_req_param req; 4088 struct rdma_route *route; 4089 void *private_data; 4090 struct ib_cm_id *id; 4091 u8 offset; 4092 int ret; 4093 4094 memset(&req, 0, sizeof req); 4095 offset = cma_user_data_offset(id_priv); 4096 req.private_data_len = offset + conn_param->private_data_len; 4097 if (req.private_data_len < conn_param->private_data_len) 4098 return -EINVAL; 4099 4100 if (req.private_data_len) { 4101 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4102 if (!private_data) 4103 return -ENOMEM; 4104 } else { 4105 private_data = NULL; 4106 } 4107 4108 if (conn_param->private_data && conn_param->private_data_len) 4109 memcpy(private_data + offset, conn_param->private_data, 4110 conn_param->private_data_len); 4111 4112 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4113 if (IS_ERR(id)) { 4114 ret = PTR_ERR(id); 4115 goto out; 4116 } 4117 id_priv->cm_id.ib = id; 4118 4119 route = &id_priv->id.route; 4120 if (private_data) { 4121 ret = cma_format_hdr(private_data, id_priv); 4122 if (ret) 4123 goto out; 4124 req.private_data = private_data; 4125 } 4126 4127 req.primary_path = &route->path_rec[0]; 4128 if (route->num_paths == 2) 4129 req.alternate_path = &route->path_rec[1]; 4130 4131 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4132 /* Alternate path SGID attribute currently unsupported */ 4133 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4134 req.qp_num = id_priv->qp_num; 4135 req.qp_type = id_priv->id.qp_type; 4136 req.starting_psn = id_priv->seq_num; 4137 req.responder_resources = conn_param->responder_resources; 4138 req.initiator_depth = conn_param->initiator_depth; 4139 req.flow_control = conn_param->flow_control; 4140 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4141 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4142 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4143 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4144 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4145 req.srq = id_priv->srq ? 1 : 0; 4146 req.ece.vendor_id = id_priv->ece.vendor_id; 4147 req.ece.attr_mod = id_priv->ece.attr_mod; 4148 4149 trace_cm_send_req(id_priv); 4150 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4151 out: 4152 if (ret && !IS_ERR(id)) { 4153 ib_destroy_cm_id(id); 4154 id_priv->cm_id.ib = NULL; 4155 } 4156 4157 kfree(private_data); 4158 return ret; 4159 } 4160 4161 static int cma_connect_iw(struct rdma_id_private *id_priv, 4162 struct rdma_conn_param *conn_param) 4163 { 4164 struct iw_cm_id *cm_id; 4165 int ret; 4166 struct iw_cm_conn_param iw_param; 4167 4168 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4169 if (IS_ERR(cm_id)) 4170 return PTR_ERR(cm_id); 4171 4172 mutex_lock(&id_priv->qp_mutex); 4173 cm_id->tos = id_priv->tos; 4174 cm_id->tos_set = id_priv->tos_set; 4175 mutex_unlock(&id_priv->qp_mutex); 4176 4177 id_priv->cm_id.iw = cm_id; 4178 4179 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4180 rdma_addr_size(cma_src_addr(id_priv))); 4181 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4182 rdma_addr_size(cma_dst_addr(id_priv))); 4183 4184 ret = cma_modify_qp_rtr(id_priv, conn_param); 4185 if (ret) 4186 goto out; 4187 4188 if (conn_param) { 4189 iw_param.ord = conn_param->initiator_depth; 4190 iw_param.ird = conn_param->responder_resources; 4191 iw_param.private_data = conn_param->private_data; 4192 iw_param.private_data_len = conn_param->private_data_len; 4193 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4194 } else { 4195 memset(&iw_param, 0, sizeof iw_param); 4196 iw_param.qpn = id_priv->qp_num; 4197 } 4198 ret = iw_cm_connect(cm_id, &iw_param); 4199 out: 4200 if (ret) { 4201 iw_destroy_cm_id(cm_id); 4202 id_priv->cm_id.iw = NULL; 4203 } 4204 return ret; 4205 } 4206 4207 /** 4208 * rdma_connect_locked - Initiate an active connection request. 4209 * @id: Connection identifier to connect. 4210 * @conn_param: Connection information used for connected QPs. 4211 * 4212 * Same as rdma_connect() but can only be called from the 4213 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4214 */ 4215 int rdma_connect_locked(struct rdma_cm_id *id, 4216 struct rdma_conn_param *conn_param) 4217 { 4218 struct rdma_id_private *id_priv = 4219 container_of(id, struct rdma_id_private, id); 4220 int ret; 4221 4222 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4223 return -EINVAL; 4224 4225 if (!id->qp) { 4226 id_priv->qp_num = conn_param->qp_num; 4227 id_priv->srq = conn_param->srq; 4228 } 4229 4230 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4231 if (id->qp_type == IB_QPT_UD) 4232 ret = cma_resolve_ib_udp(id_priv, conn_param); 4233 else 4234 ret = cma_connect_ib(id_priv, conn_param); 4235 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4236 ret = cma_connect_iw(id_priv, conn_param); 4237 } else { 4238 ret = -ENOSYS; 4239 } 4240 if (ret) 4241 goto err_state; 4242 return 0; 4243 err_state: 4244 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4245 return ret; 4246 } 4247 EXPORT_SYMBOL(rdma_connect_locked); 4248 4249 /** 4250 * rdma_connect - Initiate an active connection request. 4251 * @id: Connection identifier to connect. 4252 * @conn_param: Connection information used for connected QPs. 4253 * 4254 * Users must have resolved a route for the rdma_cm_id to connect with by having 4255 * called rdma_resolve_route before calling this routine. 4256 * 4257 * This call will either connect to a remote QP or obtain remote QP information 4258 * for unconnected rdma_cm_id's. The actual operation is based on the 4259 * rdma_cm_id's port space. 4260 */ 4261 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4262 { 4263 struct rdma_id_private *id_priv = 4264 container_of(id, struct rdma_id_private, id); 4265 int ret; 4266 4267 mutex_lock(&id_priv->handler_mutex); 4268 ret = rdma_connect_locked(id, conn_param); 4269 mutex_unlock(&id_priv->handler_mutex); 4270 return ret; 4271 } 4272 EXPORT_SYMBOL(rdma_connect); 4273 4274 /** 4275 * rdma_connect_ece - Initiate an active connection request with ECE data. 4276 * @id: Connection identifier to connect. 4277 * @conn_param: Connection information used for connected QPs. 4278 * @ece: ECE parameters 4279 * 4280 * See rdma_connect() explanation. 4281 */ 4282 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4283 struct rdma_ucm_ece *ece) 4284 { 4285 struct rdma_id_private *id_priv = 4286 container_of(id, struct rdma_id_private, id); 4287 4288 id_priv->ece.vendor_id = ece->vendor_id; 4289 id_priv->ece.attr_mod = ece->attr_mod; 4290 4291 return rdma_connect(id, conn_param); 4292 } 4293 EXPORT_SYMBOL(rdma_connect_ece); 4294 4295 static int cma_accept_ib(struct rdma_id_private *id_priv, 4296 struct rdma_conn_param *conn_param) 4297 { 4298 struct ib_cm_rep_param rep; 4299 int ret; 4300 4301 ret = cma_modify_qp_rtr(id_priv, conn_param); 4302 if (ret) 4303 goto out; 4304 4305 ret = cma_modify_qp_rts(id_priv, conn_param); 4306 if (ret) 4307 goto out; 4308 4309 memset(&rep, 0, sizeof rep); 4310 rep.qp_num = id_priv->qp_num; 4311 rep.starting_psn = id_priv->seq_num; 4312 rep.private_data = conn_param->private_data; 4313 rep.private_data_len = conn_param->private_data_len; 4314 rep.responder_resources = conn_param->responder_resources; 4315 rep.initiator_depth = conn_param->initiator_depth; 4316 rep.failover_accepted = 0; 4317 rep.flow_control = conn_param->flow_control; 4318 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4319 rep.srq = id_priv->srq ? 1 : 0; 4320 rep.ece.vendor_id = id_priv->ece.vendor_id; 4321 rep.ece.attr_mod = id_priv->ece.attr_mod; 4322 4323 trace_cm_send_rep(id_priv); 4324 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4325 out: 4326 return ret; 4327 } 4328 4329 static int cma_accept_iw(struct rdma_id_private *id_priv, 4330 struct rdma_conn_param *conn_param) 4331 { 4332 struct iw_cm_conn_param iw_param; 4333 int ret; 4334 4335 if (!conn_param) 4336 return -EINVAL; 4337 4338 ret = cma_modify_qp_rtr(id_priv, conn_param); 4339 if (ret) 4340 return ret; 4341 4342 iw_param.ord = conn_param->initiator_depth; 4343 iw_param.ird = conn_param->responder_resources; 4344 iw_param.private_data = conn_param->private_data; 4345 iw_param.private_data_len = conn_param->private_data_len; 4346 if (id_priv->id.qp) 4347 iw_param.qpn = id_priv->qp_num; 4348 else 4349 iw_param.qpn = conn_param->qp_num; 4350 4351 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4352 } 4353 4354 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4355 enum ib_cm_sidr_status status, u32 qkey, 4356 const void *private_data, int private_data_len) 4357 { 4358 struct ib_cm_sidr_rep_param rep; 4359 int ret; 4360 4361 memset(&rep, 0, sizeof rep); 4362 rep.status = status; 4363 if (status == IB_SIDR_SUCCESS) { 4364 ret = cma_set_qkey(id_priv, qkey); 4365 if (ret) 4366 return ret; 4367 rep.qp_num = id_priv->qp_num; 4368 rep.qkey = id_priv->qkey; 4369 4370 rep.ece.vendor_id = id_priv->ece.vendor_id; 4371 rep.ece.attr_mod = id_priv->ece.attr_mod; 4372 } 4373 4374 rep.private_data = private_data; 4375 rep.private_data_len = private_data_len; 4376 4377 trace_cm_send_sidr_rep(id_priv); 4378 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4379 } 4380 4381 /** 4382 * rdma_accept - Called to accept a connection request or response. 4383 * @id: Connection identifier associated with the request. 4384 * @conn_param: Information needed to establish the connection. This must be 4385 * provided if accepting a connection request. If accepting a connection 4386 * response, this parameter must be NULL. 4387 * 4388 * Typically, this routine is only called by the listener to accept a connection 4389 * request. It must also be called on the active side of a connection if the 4390 * user is performing their own QP transitions. 4391 * 4392 * In the case of error, a reject message is sent to the remote side and the 4393 * state of the qp associated with the id is modified to error, such that any 4394 * previously posted receive buffers would be flushed. 4395 * 4396 * This function is for use by kernel ULPs and must be called from under the 4397 * handler callback. 4398 */ 4399 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4400 { 4401 struct rdma_id_private *id_priv = 4402 container_of(id, struct rdma_id_private, id); 4403 int ret; 4404 4405 lockdep_assert_held(&id_priv->handler_mutex); 4406 4407 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4408 return -EINVAL; 4409 4410 if (!id->qp && conn_param) { 4411 id_priv->qp_num = conn_param->qp_num; 4412 id_priv->srq = conn_param->srq; 4413 } 4414 4415 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4416 if (id->qp_type == IB_QPT_UD) { 4417 if (conn_param) 4418 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4419 conn_param->qkey, 4420 conn_param->private_data, 4421 conn_param->private_data_len); 4422 else 4423 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4424 0, NULL, 0); 4425 } else { 4426 if (conn_param) 4427 ret = cma_accept_ib(id_priv, conn_param); 4428 else 4429 ret = cma_rep_recv(id_priv); 4430 } 4431 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4432 ret = cma_accept_iw(id_priv, conn_param); 4433 } else { 4434 ret = -ENOSYS; 4435 } 4436 if (ret) 4437 goto reject; 4438 4439 return 0; 4440 reject: 4441 cma_modify_qp_err(id_priv); 4442 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4443 return ret; 4444 } 4445 EXPORT_SYMBOL(rdma_accept); 4446 4447 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4448 struct rdma_ucm_ece *ece) 4449 { 4450 struct rdma_id_private *id_priv = 4451 container_of(id, struct rdma_id_private, id); 4452 4453 id_priv->ece.vendor_id = ece->vendor_id; 4454 id_priv->ece.attr_mod = ece->attr_mod; 4455 4456 return rdma_accept(id, conn_param); 4457 } 4458 EXPORT_SYMBOL(rdma_accept_ece); 4459 4460 void rdma_lock_handler(struct rdma_cm_id *id) 4461 { 4462 struct rdma_id_private *id_priv = 4463 container_of(id, struct rdma_id_private, id); 4464 4465 mutex_lock(&id_priv->handler_mutex); 4466 } 4467 EXPORT_SYMBOL(rdma_lock_handler); 4468 4469 void rdma_unlock_handler(struct rdma_cm_id *id) 4470 { 4471 struct rdma_id_private *id_priv = 4472 container_of(id, struct rdma_id_private, id); 4473 4474 mutex_unlock(&id_priv->handler_mutex); 4475 } 4476 EXPORT_SYMBOL(rdma_unlock_handler); 4477 4478 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4479 { 4480 struct rdma_id_private *id_priv; 4481 int ret; 4482 4483 id_priv = container_of(id, struct rdma_id_private, id); 4484 if (!id_priv->cm_id.ib) 4485 return -EINVAL; 4486 4487 switch (id->device->node_type) { 4488 case RDMA_NODE_IB_CA: 4489 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4490 break; 4491 default: 4492 ret = 0; 4493 break; 4494 } 4495 return ret; 4496 } 4497 EXPORT_SYMBOL(rdma_notify); 4498 4499 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4500 u8 private_data_len, u8 reason) 4501 { 4502 struct rdma_id_private *id_priv; 4503 int ret; 4504 4505 id_priv = container_of(id, struct rdma_id_private, id); 4506 if (!id_priv->cm_id.ib) 4507 return -EINVAL; 4508 4509 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4510 if (id->qp_type == IB_QPT_UD) { 4511 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4512 private_data, private_data_len); 4513 } else { 4514 trace_cm_send_rej(id_priv); 4515 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4516 private_data, private_data_len); 4517 } 4518 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4519 ret = iw_cm_reject(id_priv->cm_id.iw, 4520 private_data, private_data_len); 4521 } else { 4522 ret = -ENOSYS; 4523 } 4524 4525 return ret; 4526 } 4527 EXPORT_SYMBOL(rdma_reject); 4528 4529 int rdma_disconnect(struct rdma_cm_id *id) 4530 { 4531 struct rdma_id_private *id_priv; 4532 int ret; 4533 4534 id_priv = container_of(id, struct rdma_id_private, id); 4535 if (!id_priv->cm_id.ib) 4536 return -EINVAL; 4537 4538 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4539 ret = cma_modify_qp_err(id_priv); 4540 if (ret) 4541 goto out; 4542 /* Initiate or respond to a disconnect. */ 4543 trace_cm_disconnect(id_priv); 4544 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4545 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4546 trace_cm_sent_drep(id_priv); 4547 } else { 4548 trace_cm_sent_dreq(id_priv); 4549 } 4550 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4551 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4552 } else 4553 ret = -EINVAL; 4554 4555 out: 4556 return ret; 4557 } 4558 EXPORT_SYMBOL(rdma_disconnect); 4559 4560 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4561 struct ib_sa_multicast *multicast, 4562 struct rdma_cm_event *event, 4563 struct cma_multicast *mc) 4564 { 4565 struct rdma_dev_addr *dev_addr; 4566 enum ib_gid_type gid_type; 4567 struct net_device *ndev; 4568 4569 if (!status) 4570 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4571 else 4572 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4573 status); 4574 4575 event->status = status; 4576 event->param.ud.private_data = mc->context; 4577 if (status) { 4578 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4579 return; 4580 } 4581 4582 dev_addr = &id_priv->id.route.addr.dev_addr; 4583 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4584 gid_type = 4585 id_priv->cma_dev 4586 ->default_gid_type[id_priv->id.port_num - 4587 rdma_start_port( 4588 id_priv->cma_dev->device)]; 4589 4590 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4591 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4592 &multicast->rec, ndev, gid_type, 4593 &event->param.ud.ah_attr)) { 4594 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4595 goto out; 4596 } 4597 4598 event->param.ud.qp_num = 0xFFFFFF; 4599 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4600 4601 out: 4602 if (ndev) 4603 dev_put(ndev); 4604 } 4605 4606 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4607 { 4608 struct cma_multicast *mc = multicast->context; 4609 struct rdma_id_private *id_priv = mc->id_priv; 4610 struct rdma_cm_event event = {}; 4611 int ret = 0; 4612 4613 mutex_lock(&id_priv->handler_mutex); 4614 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4615 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4616 goto out; 4617 4618 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4619 ret = cma_cm_event_handler(id_priv, &event); 4620 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4621 WARN_ON(ret); 4622 4623 out: 4624 mutex_unlock(&id_priv->handler_mutex); 4625 return 0; 4626 } 4627 4628 static void cma_set_mgid(struct rdma_id_private *id_priv, 4629 struct sockaddr *addr, union ib_gid *mgid) 4630 { 4631 unsigned char mc_map[MAX_ADDR_LEN]; 4632 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4633 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4634 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4635 4636 if (cma_any_addr(addr)) { 4637 memset(mgid, 0, sizeof *mgid); 4638 } else if ((addr->sa_family == AF_INET6) && 4639 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4640 0xFF10A01B)) { 4641 /* IPv6 address is an SA assigned MGID. */ 4642 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4643 } else if (addr->sa_family == AF_IB) { 4644 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4645 } else if (addr->sa_family == AF_INET6) { 4646 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4647 if (id_priv->id.ps == RDMA_PS_UDP) 4648 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4649 *mgid = *(union ib_gid *) (mc_map + 4); 4650 } else { 4651 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4652 if (id_priv->id.ps == RDMA_PS_UDP) 4653 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4654 *mgid = *(union ib_gid *) (mc_map + 4); 4655 } 4656 } 4657 4658 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4659 struct cma_multicast *mc) 4660 { 4661 struct ib_sa_mcmember_rec rec; 4662 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4663 ib_sa_comp_mask comp_mask; 4664 int ret; 4665 4666 ib_addr_get_mgid(dev_addr, &rec.mgid); 4667 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4668 &rec.mgid, &rec); 4669 if (ret) 4670 return ret; 4671 4672 ret = cma_set_qkey(id_priv, 0); 4673 if (ret) 4674 return ret; 4675 4676 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4677 rec.qkey = cpu_to_be32(id_priv->qkey); 4678 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4679 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4680 rec.join_state = mc->join_state; 4681 4682 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4683 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4684 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4685 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4686 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4687 4688 if (id_priv->id.ps == RDMA_PS_IPOIB) 4689 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4690 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4691 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4692 IB_SA_MCMEMBER_REC_MTU | 4693 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4694 4695 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4696 id_priv->id.port_num, &rec, comp_mask, 4697 GFP_KERNEL, cma_ib_mc_handler, mc); 4698 return PTR_ERR_OR_ZERO(mc->sa_mc); 4699 } 4700 4701 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4702 enum ib_gid_type gid_type) 4703 { 4704 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4705 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4706 4707 if (cma_any_addr(addr)) { 4708 memset(mgid, 0, sizeof *mgid); 4709 } else if (addr->sa_family == AF_INET6) { 4710 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4711 } else { 4712 mgid->raw[0] = 4713 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4714 mgid->raw[1] = 4715 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4716 mgid->raw[2] = 0; 4717 mgid->raw[3] = 0; 4718 mgid->raw[4] = 0; 4719 mgid->raw[5] = 0; 4720 mgid->raw[6] = 0; 4721 mgid->raw[7] = 0; 4722 mgid->raw[8] = 0; 4723 mgid->raw[9] = 0; 4724 mgid->raw[10] = 0xff; 4725 mgid->raw[11] = 0xff; 4726 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4727 } 4728 } 4729 4730 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4731 struct cma_multicast *mc) 4732 { 4733 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4734 int err = 0; 4735 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4736 struct net_device *ndev = NULL; 4737 struct ib_sa_multicast ib; 4738 enum ib_gid_type gid_type; 4739 bool send_only; 4740 4741 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4742 4743 if (cma_zero_addr(addr)) 4744 return -EINVAL; 4745 4746 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4747 rdma_start_port(id_priv->cma_dev->device)]; 4748 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4749 4750 ib.rec.pkey = cpu_to_be16(0xffff); 4751 if (id_priv->id.ps == RDMA_PS_UDP) 4752 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4753 4754 if (dev_addr->bound_dev_if) 4755 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4756 if (!ndev) 4757 return -ENODEV; 4758 4759 ib.rec.rate = iboe_get_rate(ndev); 4760 ib.rec.hop_limit = 1; 4761 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4762 4763 if (addr->sa_family == AF_INET) { 4764 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4765 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4766 if (!send_only) { 4767 err = cma_igmp_send(ndev, &ib.rec.mgid, 4768 true); 4769 } 4770 } 4771 } else { 4772 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4773 err = -ENOTSUPP; 4774 } 4775 dev_put(ndev); 4776 if (err || !ib.rec.mtu) 4777 return err ?: -EINVAL; 4778 4779 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4780 &ib.rec.port_gid); 4781 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4782 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4783 queue_work(cma_wq, &mc->iboe_join.work); 4784 return 0; 4785 } 4786 4787 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4788 u8 join_state, void *context) 4789 { 4790 struct rdma_id_private *id_priv = 4791 container_of(id, struct rdma_id_private, id); 4792 struct cma_multicast *mc; 4793 int ret; 4794 4795 /* Not supported for kernel QPs */ 4796 if (WARN_ON(id->qp)) 4797 return -EINVAL; 4798 4799 /* ULP is calling this wrong. */ 4800 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4801 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4802 return -EINVAL; 4803 4804 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4805 if (!mc) 4806 return -ENOMEM; 4807 4808 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4809 mc->context = context; 4810 mc->id_priv = id_priv; 4811 mc->join_state = join_state; 4812 4813 if (rdma_protocol_roce(id->device, id->port_num)) { 4814 ret = cma_iboe_join_multicast(id_priv, mc); 4815 if (ret) 4816 goto out_err; 4817 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4818 ret = cma_join_ib_multicast(id_priv, mc); 4819 if (ret) 4820 goto out_err; 4821 } else { 4822 ret = -ENOSYS; 4823 goto out_err; 4824 } 4825 4826 spin_lock(&id_priv->lock); 4827 list_add(&mc->list, &id_priv->mc_list); 4828 spin_unlock(&id_priv->lock); 4829 4830 return 0; 4831 out_err: 4832 kfree(mc); 4833 return ret; 4834 } 4835 EXPORT_SYMBOL(rdma_join_multicast); 4836 4837 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4838 { 4839 struct rdma_id_private *id_priv; 4840 struct cma_multicast *mc; 4841 4842 id_priv = container_of(id, struct rdma_id_private, id); 4843 spin_lock_irq(&id_priv->lock); 4844 list_for_each_entry(mc, &id_priv->mc_list, list) { 4845 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4846 continue; 4847 list_del(&mc->list); 4848 spin_unlock_irq(&id_priv->lock); 4849 4850 WARN_ON(id_priv->cma_dev->device != id->device); 4851 destroy_mc(id_priv, mc); 4852 return; 4853 } 4854 spin_unlock_irq(&id_priv->lock); 4855 } 4856 EXPORT_SYMBOL(rdma_leave_multicast); 4857 4858 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4859 { 4860 struct rdma_dev_addr *dev_addr; 4861 struct cma_work *work; 4862 4863 dev_addr = &id_priv->id.route.addr.dev_addr; 4864 4865 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4866 (net_eq(dev_net(ndev), dev_addr->net)) && 4867 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4868 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4869 ndev->name, &id_priv->id); 4870 work = kzalloc(sizeof *work, GFP_KERNEL); 4871 if (!work) 4872 return -ENOMEM; 4873 4874 INIT_WORK(&work->work, cma_work_handler); 4875 work->id = id_priv; 4876 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4877 cma_id_get(id_priv); 4878 queue_work(cma_wq, &work->work); 4879 } 4880 4881 return 0; 4882 } 4883 4884 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4885 void *ptr) 4886 { 4887 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4888 struct cma_device *cma_dev; 4889 struct rdma_id_private *id_priv; 4890 int ret = NOTIFY_DONE; 4891 4892 if (event != NETDEV_BONDING_FAILOVER) 4893 return NOTIFY_DONE; 4894 4895 if (!netif_is_bond_master(ndev)) 4896 return NOTIFY_DONE; 4897 4898 mutex_lock(&lock); 4899 list_for_each_entry(cma_dev, &dev_list, list) 4900 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 4901 ret = cma_netdev_change(ndev, id_priv); 4902 if (ret) 4903 goto out; 4904 } 4905 4906 out: 4907 mutex_unlock(&lock); 4908 return ret; 4909 } 4910 4911 static struct notifier_block cma_nb = { 4912 .notifier_call = cma_netdev_callback 4913 }; 4914 4915 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4916 { 4917 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4918 enum rdma_cm_state state; 4919 unsigned long flags; 4920 4921 mutex_lock(&id_priv->handler_mutex); 4922 /* Record that we want to remove the device */ 4923 spin_lock_irqsave(&id_priv->lock, flags); 4924 state = id_priv->state; 4925 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4926 spin_unlock_irqrestore(&id_priv->lock, flags); 4927 mutex_unlock(&id_priv->handler_mutex); 4928 cma_id_put(id_priv); 4929 return; 4930 } 4931 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4932 spin_unlock_irqrestore(&id_priv->lock, flags); 4933 4934 if (cma_cm_event_handler(id_priv, &event)) { 4935 /* 4936 * At this point the ULP promises it won't call 4937 * rdma_destroy_id() concurrently 4938 */ 4939 cma_id_put(id_priv); 4940 mutex_unlock(&id_priv->handler_mutex); 4941 trace_cm_id_destroy(id_priv); 4942 _destroy_id(id_priv, state); 4943 return; 4944 } 4945 mutex_unlock(&id_priv->handler_mutex); 4946 4947 /* 4948 * If this races with destroy then the thread that first assigns state 4949 * to a destroying does the cancel. 4950 */ 4951 cma_cancel_operation(id_priv, state); 4952 cma_id_put(id_priv); 4953 } 4954 4955 static void cma_process_remove(struct cma_device *cma_dev) 4956 { 4957 mutex_lock(&lock); 4958 while (!list_empty(&cma_dev->id_list)) { 4959 struct rdma_id_private *id_priv = list_first_entry( 4960 &cma_dev->id_list, struct rdma_id_private, device_item); 4961 4962 list_del_init(&id_priv->listen_item); 4963 list_del_init(&id_priv->device_item); 4964 cma_id_get(id_priv); 4965 mutex_unlock(&lock); 4966 4967 cma_send_device_removal_put(id_priv); 4968 4969 mutex_lock(&lock); 4970 } 4971 mutex_unlock(&lock); 4972 4973 cma_dev_put(cma_dev); 4974 wait_for_completion(&cma_dev->comp); 4975 } 4976 4977 static bool cma_supported(struct ib_device *device) 4978 { 4979 u32 i; 4980 4981 rdma_for_each_port(device, i) { 4982 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 4983 return true; 4984 } 4985 return false; 4986 } 4987 4988 static int cma_add_one(struct ib_device *device) 4989 { 4990 struct rdma_id_private *to_destroy; 4991 struct cma_device *cma_dev; 4992 struct rdma_id_private *id_priv; 4993 unsigned long supported_gids = 0; 4994 int ret; 4995 u32 i; 4996 4997 if (!cma_supported(device)) 4998 return -EOPNOTSUPP; 4999 5000 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5001 if (!cma_dev) 5002 return -ENOMEM; 5003 5004 cma_dev->device = device; 5005 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5006 sizeof(*cma_dev->default_gid_type), 5007 GFP_KERNEL); 5008 if (!cma_dev->default_gid_type) { 5009 ret = -ENOMEM; 5010 goto free_cma_dev; 5011 } 5012 5013 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5014 sizeof(*cma_dev->default_roce_tos), 5015 GFP_KERNEL); 5016 if (!cma_dev->default_roce_tos) { 5017 ret = -ENOMEM; 5018 goto free_gid_type; 5019 } 5020 5021 rdma_for_each_port (device, i) { 5022 supported_gids = roce_gid_type_mask_support(device, i); 5023 WARN_ON(!supported_gids); 5024 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5025 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5026 CMA_PREFERRED_ROCE_GID_TYPE; 5027 else 5028 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5029 find_first_bit(&supported_gids, BITS_PER_LONG); 5030 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5031 } 5032 5033 init_completion(&cma_dev->comp); 5034 refcount_set(&cma_dev->refcount, 1); 5035 INIT_LIST_HEAD(&cma_dev->id_list); 5036 ib_set_client_data(device, &cma_client, cma_dev); 5037 5038 mutex_lock(&lock); 5039 list_add_tail(&cma_dev->list, &dev_list); 5040 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5041 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5042 if (ret) 5043 goto free_listen; 5044 } 5045 mutex_unlock(&lock); 5046 5047 trace_cm_add_one(device); 5048 return 0; 5049 5050 free_listen: 5051 list_del(&cma_dev->list); 5052 mutex_unlock(&lock); 5053 5054 /* cma_process_remove() will delete to_destroy */ 5055 cma_process_remove(cma_dev); 5056 kfree(cma_dev->default_roce_tos); 5057 free_gid_type: 5058 kfree(cma_dev->default_gid_type); 5059 5060 free_cma_dev: 5061 kfree(cma_dev); 5062 return ret; 5063 } 5064 5065 static void cma_remove_one(struct ib_device *device, void *client_data) 5066 { 5067 struct cma_device *cma_dev = client_data; 5068 5069 trace_cm_remove_one(device); 5070 5071 mutex_lock(&lock); 5072 list_del(&cma_dev->list); 5073 mutex_unlock(&lock); 5074 5075 cma_process_remove(cma_dev); 5076 kfree(cma_dev->default_roce_tos); 5077 kfree(cma_dev->default_gid_type); 5078 kfree(cma_dev); 5079 } 5080 5081 static int cma_init_net(struct net *net) 5082 { 5083 struct cma_pernet *pernet = cma_pernet(net); 5084 5085 xa_init(&pernet->tcp_ps); 5086 xa_init(&pernet->udp_ps); 5087 xa_init(&pernet->ipoib_ps); 5088 xa_init(&pernet->ib_ps); 5089 5090 return 0; 5091 } 5092 5093 static void cma_exit_net(struct net *net) 5094 { 5095 struct cma_pernet *pernet = cma_pernet(net); 5096 5097 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5098 WARN_ON(!xa_empty(&pernet->udp_ps)); 5099 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5100 WARN_ON(!xa_empty(&pernet->ib_ps)); 5101 } 5102 5103 static struct pernet_operations cma_pernet_operations = { 5104 .init = cma_init_net, 5105 .exit = cma_exit_net, 5106 .id = &cma_pernet_id, 5107 .size = sizeof(struct cma_pernet), 5108 }; 5109 5110 static int __init cma_init(void) 5111 { 5112 int ret; 5113 5114 /* 5115 * There is a rare lock ordering dependency in cma_netdev_callback() 5116 * that only happens when bonding is enabled. Teach lockdep that rtnl 5117 * must never be nested under lock so it can find these without having 5118 * to test with bonding. 5119 */ 5120 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5121 rtnl_lock(); 5122 mutex_lock(&lock); 5123 mutex_unlock(&lock); 5124 rtnl_unlock(); 5125 } 5126 5127 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5128 if (!cma_wq) 5129 return -ENOMEM; 5130 5131 ret = register_pernet_subsys(&cma_pernet_operations); 5132 if (ret) 5133 goto err_wq; 5134 5135 ib_sa_register_client(&sa_client); 5136 register_netdevice_notifier(&cma_nb); 5137 5138 ret = ib_register_client(&cma_client); 5139 if (ret) 5140 goto err; 5141 5142 ret = cma_configfs_init(); 5143 if (ret) 5144 goto err_ib; 5145 5146 return 0; 5147 5148 err_ib: 5149 ib_unregister_client(&cma_client); 5150 err: 5151 unregister_netdevice_notifier(&cma_nb); 5152 ib_sa_unregister_client(&sa_client); 5153 unregister_pernet_subsys(&cma_pernet_operations); 5154 err_wq: 5155 destroy_workqueue(cma_wq); 5156 return ret; 5157 } 5158 5159 static void __exit cma_cleanup(void) 5160 { 5161 cma_configfs_exit(); 5162 ib_unregister_client(&cma_client); 5163 unregister_netdevice_notifier(&cma_nb); 5164 ib_sa_unregister_client(&sa_client); 5165 unregister_pernet_subsys(&cma_pernet_operations); 5166 destroy_workqueue(cma_wq); 5167 } 5168 5169 module_init(cma_init); 5170 module_exit(cma_cleanup); 5171